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Abstract

In recent years, advancements in drilling technology have led to increasingly complex
wellbore trajectories, particularly in the case of horizontal wells and extended reach
wells (ERWs). This complexity necessitates highly accurate models for predicting
forces exerted on downhole equipment during drilling operations, especially given
the amplified gravitational and frictional forces encountered. This thesis presents an
advanced torque and drag model, capable of forecasting the drag forces experienced
by casing during tripping operations. Despite notable technological advancements,
the core mathematical principles underpinning most torque and drag models have
largely remained unaltered since their inception. Building upon these foundational
principles, the code developed in this project provides improved predictive accuracy
which is critical during the planning and design stages of well construction. The
developed code applies the classic torque and drag model to quantify the drag on
casing during running operations, using well paths from the Ullrigg drilling and well
site. The model is intended for use in the early stages of well planning, where it
assists in assessing casing choices and the potential necessity for specific techniques,
such as flotation or rotation. By providing the ability to predict potential complica-
tions—like pipe sticking, buckling, or failure due to excessive downhole forces—the
model can guide preventive measures that enhance the efficiency, safety, and cost-
effectiveness of casing operations. Hence, this model offers a valuable tool for min-
imizing equipment damage and optimizing modern well construction practices [1]
[2]
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Nomenclature

i Inner pipe area, nominal ID

o Outer pipe area, nominal OD

κ Wellbore curvature

µ Friction coefficient

ϕ Wellbore inclination

ϕn new wellbore inclination

ρi Density inside pipe

ρm Density of mud

ρo Density outside pipe

ρs Density of steel

θ Wellbore azimuth

θn new wellbore azimuth

t⃗ Tangent vector

w⃗c Contact force vector

w⃗d Friction force vector

BF Buoyancy factor

nz Z-component of normal vector

RF ratio factor

s measured depth

starget measured depth to target

wp Weight of pipe in air per unit

wbp Bouyed weight of segment per unit

wc Contact force

bz Z-component of binormal vector

tz Z-component of unit tangential vector
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Chapter 1

Introduction

By virtue of better techniques and technologies that have evolved throughout the
decades, modern wells are far more intricate than they were just 50 years ago, hori-
zontal wells and extended reach wells (ERW) have become more common throughout
the years. With the increasing prevalence of horizontal and Extended Reach Well
(ERW) drilling techniques, long horizontal sections have become a common feature
in modern wells[1]. This poses significant operational challenges as these sections
typically generate high frictional forces acting on downhole equipment such as cas-
ing, drill pipe, and drill string. The change in trajectory and its inclination means
that both friction and gravity work against the casing, potentially causing it to get
stuck. This context has fueled a demand for precise models capable of accurately
predicting these forces, to mitigate risks and ensure safe and efficient operations.

A reliable torque and drag model plays an essential role in the planning and
design stages of well construction. The importance of these models is anchored in
their ability to estimate the forces that are anticipated during drilling and comple-
tion. This foresight is crucial in the creation of a safe and efficient well trajectory.
Moreover, it guides the selection of appropriate drilling equipment to match the spe-
cific challenges of each operation. Another vital aspect of torque and drag models is
their contribution to the prevention of equipment damage[1]. Drilling is a demand-
ing process that involves high mechanical stresses. Excessive torque and drag can
lead to significant wear and tear on drilling equipment. Such wear can escalate into
equipment failure, which can not only be costly, but also dangerous[3]. By utilizing
models, these problems can be anticipated and preventive measures can be put in
place, protecting both personnel and valuable drilling equipment. Torque and drag
modelling is an important tool for optimizing drilling and completion operations.
The models play a critical role not only in ensuring safety but also in enhancing op-
erational efficiency. An example of how these models play an integral role in drilling
operations can be seen in their application during the drilling phase. One notable
application during the drilling phase is the generation of "hookload roadmaps"[4].
These roadmaps outline the expected hookload — the weight experienced by the
hoisting system — at various depths during lifting, lowering, and rotating opera-
tions. Any significant discrepancy between the field measurements and the model’s
prediction can indicate potential issues within the well, such as an accumulation
of cuttings particles causing increased friction, or a poorly aligned well resulting in
greater contact forces and friction. By identifying these anomalies early, the model
facilitates prompt intervention and minimizes operational delays, contributing to
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overall productivity and cost-effectiveness. [4]
Torque and drag models also play a key role in predicting and managing op-

erational issues. These models provide insights into potential problems like pipe
sticking, buckling, or failure due to excessive downhole forces. They are equally
vital during casing operations, where the forces at play can result in the casing be-
coming stuck, damaged, or falling short of the target depth. Accurate prediction and
management of the drag forces during casing operations can greatly reduce the risk
of such problems. These predictions allow for the timely implementation of mea-
sures to manage or even avoid these issues, enhancing the reliability and continuity
of drilling operations. [1] [3] [5]

The program presented in this paper, which builds upon over two decades of
development in torque and drag models, is adept at calculating these crucial drag
forces during casing operations. Even though technology and computational capa-
bilities have advanced significantly over the years, the fundamental mathematical
principles underpinning the soft string torque and drag model remain consistent.
The key to these models’ enduring utility lies in their ability to adapt and account
for the diverse range of operational scenarios encountered in well construction, from
drilling to casing operations.

1.1 Objective
The objective of this thesis is to implement, verify, and apply a computational model
for calculating the frictional forces encountered during the tripping operations in
deviated and extended reach wells. Through a meticulous study of the principles
of drilling dynamics and by using the minimum curvature, soft-string model, the
aim is to gain insights into how the well path trajectory influence drag forces. The
model will take into account parameters such as wellbore geometry, casing string
properties, and frictional coefficients.

Utilizing this model, the intention is to investigate and illustrate the disparity
between tripping in and tripping out operations in terms of drag forces for three
different well paths, namely well U1, U2, and U6B from Ullrig Test Centre [6].
The case study findings are expected to demonstrate the complexities associated
with different well trajectories, thus providing crucial insights into the challenges
faced during casing running operations. Ultimately, this research seeks to contribute
valuable insights to the industry, aiding in the design and planning of future well
operations.

11



Chapter 2

Literature Review

2.1 Torque and drag fundamentals

2.1.1 Drag

Drag refers to the frictional resistance experienced by the casing or drill string as
it moves along the wellbore. This force can either contribute to increasing tension
(when pulling the drill string out) or increasing compression (when sliding the drill
string in) [2]. In the models developed over the years, both torque and drag are
attributed solely to the sliding friction forces that occur due to the drill string’s
contact with the wellbore [7]. This interaction becomes especially significant in
deviated wells, as gravity pulls the drill string downwards, causing it to contact the
wellbore wall and leading to the development of drag forces. Understanding and
managing these forces is crucial for the efficiency, safety, and overall success of both
casing-running and drilling operations.

2.1.2 Torque

Torque is typically the product of force and the length of the lever arm. In the
context of drilling, torque refers to the rotational force required to turn the drill
pipe. This force is essential for overcoming the friction that arises within the wellbore
and at the drill bit while rotating. As torque is applied, some of it is lost during
transmission, which reduces the amount of torque available at the bit for breaking
the rock. High torque and drag forces often occur simultaneously. In an ideal
vertical well, torque losses would be minimal, with only a slight reduction due to the
viscous force exerted by the drilling mud. However, in deviated wells, particularly
in extended reach wells, torque loss can be significant. This loss can be a limiting
factor in casing running operations, as well as the drilling process. Torque is directly
proportional to the radius at which rotation takes place, the coefficient of friction,
and the side (normal) force exerted by the casing against the wellbore wall. [8] [7]

What causes torque and drag

Torque and drag in drilling and casing operations are primarily caused by the friction
that arises from the contact between the drill string or casing and the wellbore. This
frictional force is generally modeled using the Coulomb friction model. According to
the Coulomb friction model, the frictional force (F) is the product of the normal force
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(N) and the friction coefficient (µ), mathematically represented as F = µN . Here,
N is the normal force, which represents the contact force between the drill string
or casing and the wellbore, and µ is the friction coefficient that characterizes the
frictional resistance between the two contacting surfaces. Importantly, the frictional
force operates in the opposite direction to the movement, thus either increasing the
tension when pulling out or reducing it and thereby increasing compression during
run-in operations. While the Coulomb model offers a basic framework for under-
standing the interactions leading to torque and drag, it’s important to note that
there are additional factors not considered in this model which may also influence
the behavior of torque and drag in wellbore operations [9][7][3]. There are still other
factors contributing to an increase in drag forces, such as:

• Restrictive hole conditions

• Sloughing holes

• Doglegs

• Keyseat - A keyseat refers to a ledge or groove carved into the wall of a
wellbore. This can occur when there is a drastic change in direction during
drilling, known as a dogleg, or if a hard formation ledge is left between softer
formations that enlarge over time. During tripping operations tools such as
drill collars, stabilizers, tool joints, and bits, that are larger in diameter may
get stuck. In order to prevent keyseating, it is advised to ensure that changes
in direction in the wellbore are gradual and smooth. If keyseating is to occur,
the solution is to widen the eroded channel to a size that can accommodate
the tools.[10]

• Differential sticking - Differential sticking is a condition where the drill string
cannot be moved. Differential sticking is a product of the differential pressure
between the reservoir and the wellbore, and the area that the pressure is acting
upon. This causes the pipe to be pushed into the mud filter cake.

• Cuttings accumulation and poor hole cleaning

• Wellbore trajectory

• Loss of circulation

2.2 Wellbore Trajectory
Inclination (ϕ) is the angle between the vertical and the tangent of the wellbore. A
vertical well has an inclination of 0°, while a horizontal well has an inclination of
90°. The azimuth (θ)denotes the angle between true north and the tangent of the
wellbore projected onto a horizontal plane, beginning with 0° at north and moving
clockwise, with west at 270°. The usual representation of a directional well is shown
in figure 2.1[1]

A variety of surveying instruments are used in the oil and gas industry to measure
inclination and azimuth angles. There are several types of surveying instruments,
magnetic devices, including single-shot, and multi-shot, as well as more advanced
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Figure 2.1: Hole inclination and azimuth [1]

gyroscopic tools. Magnetic instruments rely on an inclinometer, compass, timer, and
camera for their measurements, while gyroscopic devices are based on the spinning
mass principle. To accomodate magnetic instruments, the bottomhole assembly
(BHA) must include drill collars made of nonmagnetic materials, such as stainless
steel and "monel" metals so that they do not interfere with the surveying instrument.
Gyroscopic instruments, on the other hand, do not require nonmagnetic equipment
as they are resistant to magnetic interference. The angle between true north and
magnetic north is called the declination angle. Measurement locations are called
stations, at each station, the measured depth (MD), inclination angle, and azimuth
angle are recorded. Depending on the complexity of the well path, measurements
are taken at intervals between 30 and 300 feet, or even less if necessary. This data
is then used to calculate true vertical depth (TVD), and the geographic positioning
in the North-South direction and East-West direction. Using this data it is also
possible to calculate dogleg (DL) and dogleg severity (DLS). [1]

Dogleg (DL) is used to describe the curvature or bending of the wellbore typically
in degrees. The dogleg (DL) is the angle between the tangents of two wellbore
positions. It represents the change in direction of the wellbore between two survey
stations. A large dogleg indicates a larger change in direction, while a smaller dogleg
indicates a more gradual change. Dogleg severity (DLS) is a measure of the wellbore
curvature rate, representing the change in the dogleg per unit length of the wellbore,
typically expressed in degrees per 100 feet or degrees per 30 meters. [1]

There are several methods developed to analyse the trajectory. One of the first
developed is the Average angle method (AAM). This approach models the well as
a series of straight segments in a vertical and horizontal plane. It is assumed that
the inclination and azimuth angles are constant and equal to the average value
for two subsequent points. [1] Another method is the Radius-of-curvatore method
(RCM), this method assumes constant build rates and turn rate along the trajectory.
The method that is currently the most established in the oil and gas industry is
the minimum curvature method (MCM). This method assumes that two successive
points on the trajectory lie on a circular arc located in a plane, resulting in a constant
curvature between the successive stations. This angle is called the dogleg (β). [1]
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2.3 Casing Operations

2.3.1 Casing Running Techniques

In deviated wells, traditional casing running techniques may prove inadequate due to
the increased drag forces encountered within the well. As a result, various specialized
methods have been devised to tackle this challenge.

Rotation is one such method that has gained widespread acceptance, not only
for use in horizontal wells but also in conventional vertical wells that present com-
plicated conditions or encounter operational issues. The rotational technique can
significantly reduce the drag forces by changing the nature of the frictional interac-
tion in the wellbore. Rather than dealing with the static friction that occurs when
the casing is stationary, rotation introduces a dynamic frictional component. This
dynamic friction is considerably lower than its static counterpart, which allows the
available weight of the casing to be more effectively utilized for downward pene-
tration. in the well, offering the additional benefit of mitigating buckling-related
problems. Furthermore, equipment designed for casing rotation permits circulation
during tripping, assuming no flotation is involved [3] [11].

Alternatively, applying additional pushing force serves as a simple yet effective
means of counteracting the drag forces. Such additional weight can be introduced
through various approaches. For instance, tapered casing can be employed, whereby
the top part of the casing is heavier than the bottom section. Another option
involves the use of flotation. Floatation is a technique centered around the principle
of buoyancy. By filling the casing with a lighter fluid or even partially with air, the
overall weight of the casing string that must be managed is reduced. This effectively
provides a degree of ’uplift’ or ’float’ to the casing, counteracting the force of gravity
and subsequently the drag forces experienced during casing running operations.[3]

In practice, the internal volume of the casing string is filled with a gas, such as
air, or a fluid that is less dense than the drilling mud. This can be done in sections
or across the whole casing string. The resultant buoyant force can significantly
alleviate the axial load on the casing string, reducing the risk of buckling, and can
also facilitate casing running in challenging sections of the wellbore. [3].

Lastly, reducing the existing side force presents another strategy for diminishing
drag force. This can be achieved through the use of lighter pipe materials or by
filling the pipe with a fluid that is less dense than the drilling mud, a technique also
known as flotation. This is evident when exploring the the equation used in the
model: Equation 3.11.

These methods, either singly or in combination, offer promising avenues for over-
coming the challenges posed by drag forces in deviated wells.

Buckling

Applying additional pushing force as a technique to overcome drag forces, while
effective, is not without its limitations. One notable complication is the potential
onset of a phenomenon known as buckling, a condition where the pipe exhibits
bending or coiling behavior within the wellbore.

Buckling generally manifests in two stages: sinusoidal and helical. Sinusoidal
buckling represents the initial stage, occurring when the pipe is subjected to a
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relatively lower compressive load. During this phase, the pipe starts to deviate from
its straight configuration, instead adopting a sinusoidal, or wave-like, shape.

As the compressive load continues to increase, the pipe may progress to the
second stage, helical buckling. This phase marks a significant loss of axial stability
for the pipe. Under the influence of the heightened compression, the pipe can rapidly
transition into a twisted, spiral formation, which resembles a helix.

Understanding these buckling phenomena is crucial for mitigating potential com-
plications associated with the application of additional pushing force during casing
operations. With this knowledge, operators can design and implement measures to
manage these challenges effectively[3].

2.4 Extended reach wells
An extended reach well (ERW) is considered as a well with horizontal departure 2
times (or more) longer than true vertical depth (TVD). [3] Extended reach well’s
are often used nowadays to reach onshore and offshore oil and gas deposits in or-
der to minimize infrastructure and operational footprints. In 2022 the Abu Dhabi
National Oil Company (ADNOC) proudly announced their achievement of drilling
the world’s longest oil and gas well, located within its Upper Zakum Concession.
The well extends an impressive 15240 meters [12]. In the past decades, multilateral-
well technology has also matured. Today, technologies surrounding this topic have
significantly improved, paving the way for more efficient and effective oil and gas
production. Maximizing reservoir recovery is the primary benefit of drilling devi-
ated wells [13]. Horizontal wells and extended reach wells are considered crucial
tools for improved oil recovery. Modern horizontal wells have a higher inclination
than vertical wells, resulting in higher friction forces. This further emphasises the
necessity of a model capable of accurately predicting torque and drag forces along
drill string and casing string. A model such as this helps ensure wellbore stability
by allowing engineers to plan, design, and execute tripping operations with the ap-
propriate specifications for casing and mud in order to minimize risks. Secondly, by
predicting friction forces, operators can optimize drilling parameters such as weight
on bit (WOB).

2.5 Casing Selection

2.5.1 Size

The selection of appropriate casing sizes is central to a successful casing running op-
eration. The size of the casing string hinges on two key factors: the necessary inner
diameter of the production string, and the number of intermediate casing strings
needed to reach the target depth. [1]

To ensure the production casing reaches the intended depth, the drill bit size
utilized for the last segment needs to be slightly larger than the outer diameter of
the casing connectors. This provision is critical as it enables the mudcake on the
borehole wall and casing appliances such as centralizers to be accommodated. It
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also provides sufficient clearance beyond the outer diameter of the coupling, thereby
allowing for efficient casing operations. [1].

2.5.2 Weight, Grade, and Couplings

Upon determination of the casing’s size parameters, the design of the weight, grade,
and couplings for each string becomes feasible. As a general principle, every casing
string must be robust enough to bear the most intense load conditions anticipated
during its installation and throughout the well’s life cycle. Predominantly, load-
ing conditions such as burst, collapse, and tension are taken into account. When
necessary, conditions such as bending and buckling must also be evaluated. Inter-
estingly, a more cost-effective casing design can often be achieved by integrating
various weights, grades, and couplings within a single casing string. When select-
ing casing, it is crucial to consider the yield strength within a safety factor, which
signifies the safety margin between the applied load and design rating. Perhaps the
most significant aspect of casing selection is cost-efficiency. The chosen casing design
must meet the required design specifications based on the mentioned criteria while
being as cost-effective as possible. Typically, the most cost-effective design features
the minimum possible weight per meter in the minimum grade [1].
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Chapter 3

Mathematical modelling

3.1 Interpolating between survey stations

3.2 Torque and drag modelling
The torque and drag model is the standard drill string model in the oil and gas indus-
try, largely because of its simplicity and widespread accessibility. Despite its general
effectiveness, substantiated by field evidence, there have been reported instances of
the model under performing. This is particularly evident in its prediction of loads
for casing running in horizontal wells, where discrepancies between the model’s pre-
dictions and actual field data have been observed [2]. Drilling complicated wells
require precise planning to decrease friction forces and in order to accomplish set
goals. A torque and drag model is often utilized during the well planning stage in
order to assess whether the planned route is possible to drill to completion or not.
It’s also used in order to track torque and drag values in real-time. This makes it
possible for the driller to apply preventative measures when the values exceed the
permissible safety margins.

Over the past three decades, an array of computer models for the drill string have
been developed, with the torque and drag model, initially developed by Dawson and
Morehead, being the most prevalent [2]. Within these models, both torque and drag
are attributed exclusively to the sliding friction forces resulting from the drill string’s
contact with the wellbore. The direction of the friction forces is typically unknown,
as the drill string or casing can make contact with the wellbore at various points,
either in point or continuous contact. The friction coefficient between contacting
surfaces and the normal contact force are the two main factors influencing sliding
wellbore friction, with the dot product of these two factors yielding the sliding
friction force’s magnitude [7]. In order to combat this uncertainty the model assumes
that the drill string follows the same trajectory as the wellbore, with continuous
contact.

In the planning phase of the well construction process, torque and drag models
are applied in order to check the proposed well path. Forces along the trajectory are
analyzed, which are then used to determine equipment size, and rig capabilities. If it
is determined that the proposed well path is not possible to complete without failure
(issues such as stuck pipe, too much buckling forces), the trajectory design can be
optimized and changed in order to fit the operations required specifications. The
Minimum Curvature Method (MCM) is a common technique used to interpolate
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the well path between discrete survey points. While this method assumes that the
bending moment is discontinuous at these survey stations, it considers the drill string
or casing as a "single-force" beam, meaning the force is presumed to be tangent to
the well path trajectory. This approach is what characterizes the soft-string model,
which assumes a continuous adherence of the drill string or casing to the wellbore
trajectory [2].

Although these two concepts share similarities, they serve different roles. MCM
is primarily a survey interpolation technique used to map out the well path, whereas
the soft-string model is a torque and drag model used to evaluate the forces acting
on the drill string or casing. In the work presented here, we have combined these two
methods. We employed MCM to interpolate the well path and used a variation of
the soft-string model, taking the well path determined by MCM, to calculate torque
and drag. This approach optimizes the predictive capabilities of both methods[1].

There are several other torque and drag models that have been developed through-
out the years one of them is the stiff-string model, first presented by Ho in 1988,
improves on the soft-string model by introducing bending stiffness of the tubular
string into consideration [14]. Instead of simplifying the tubular string as a soft rope
with zero bending stiffness, the stiff-string model views the string as a thin elastic
rod, offering a more realistic representation especially in high dogleg severity wells.
This added complexity allows the model to better handle situations where signifi-
cant bending and contact forces are involved. Despite its increased accuracy under
certain conditions, the stiff-string model, much like the soft-string model, still as-
sumes that the drill string or casing maintains continuous contact with the wellbore,
which might not always be the case.[15]

In response to the limitations of the static models, a more advanced dynamic
torque and drag model has been proposed. Initially introduced by Miska et al. in
2015[16], this model incorporated the effects of velocity and acceleration, represent-
ing a significant leap from the static equilibrium approach. However, it assumed a
constant axial velocity across the entire tubular string, leading to some discrepancies
in the representation of complex mechanical behaviors of the tubular string[15].

The application of torque and drag model’s also allow wells to be monitored
in real-time. This allows problems to be detected during early stages, and allows
for correction in order to prevent a domino effect of smaller issues compounding
into major problems. During a real-time monitored operations the driller is able
to compare values calculated by the model with the real-time values, if the values
match it can indicate good wellbore stability and hole conditions. When values
deviate from each other this could indicate a problem downhole [7].

3.2.1 Interpolation between survey stations

The survey data received is from NORCE research’s Ullrigg test wells [6]. Interpo-
lating between survey stations as I have done in the code is not strictly necessary
in order to calculate drag forces, but is useful data to have available. The code
uses interpolated inclinations at every point, instead of interpolating directly in
z-component vector formulas. The interpolated inclination is given by:
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ϕ = arccos

{
cos(ϕ1) · cos [κ(s− s1)] +

cos(ϕ2)− cos(ϕ1) · cos(β)
sin(β)

· sin [κ(s− s1)]

}
(3.1)

In this equation, the variables are defined as follows:

• ϕ: This is the interpolated inclination at any point between two survey sta-
tions.

• ϕ1 and ϕ2: These represent the inclinations at the first and second survey
stations, respectively, providing the start and end inclinations for the segment
under consideration.

• θ1 and θ2: These represent the azimuths at the first and second survey sta-
tions, respectively, providing the start and end azimuths for the segment under
consideration.

• s: This represents the measured depth at any point within the span of the two
survey stations.

• s1: This represents the measured depth at the first survey station, serving as
the reference point from which the change in depth is calculated.

• β: This represents the dogleg severity or the total angular change in the bore-
hole direction between the two survey stations.

• κ: This represents the wellbore curvature per unit length, obtained by dividing
β by the distance between the two survey stations, s− s1.

In the process of interpolating between stations and determining wellbore coor-
dinates, the initial step involves calculating the dogleg angle (β) between the survey
stations, and the wellbore curvature κ. The dogleg angle proposed by Sawaryn [17]
is the preferred formula in this thesis. The distinct characteristic of this formula is
its generality; it does not make assumptions about the shape of the wellbore between
the stations. The dogleg β is given by:

β = 2 · arcsin

√(
sin

(
ϕ2 − ϕ1

2

))2

+ sin (ϕ1) · sin (ϕ2) ·
(
sin

(
θ2 − θ1

2

))2

(3.2)

Wellbore curvature κ is given by[1]:

κ =
β

s2 − s1
(3.3)

3.2.2 Torque and Drag modelling in three-dimensional well
profiles

The most well known method for analyzing torque and drag was developed by Jo-
hancsik [7]. The model developed has the following assumptions:
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• The drill string or casing is in continuous contact with the wellbore.

• The drill string or casing is "smooth", the effects of tool joints, couplings,
irregularities in the wellbore such as keyseatings are ignored.

• Intertial effects due to pipe sliding or rotation are ignored.

• Flow effects from fluids are ignored.

• The friction factor is modeled using Coulomb friction concept.

The model created in this paper is based on the soft-string sliding-pipe model,
which means the model assumes that the pipe behaves as a flexible cable with no
bending rigidity or shear forces acting on it. In the case of tripping a casing or
drill string, torque equals zero. Therefor only three force equilibrium formulas are
necessary [1]:

dF

ds
+ wbptz + w⃗d · t⃗ = 0 (3.4)

Fκ+ wbpnz + w⃗c · n⃗ = 0 (3.5)

wbpbz + w⃗c · b⃗ = 0 (3.6)

The term wbp denotes the buoyed weight per unit length of a wellbore segment,
taking into account the buoyancy effect of the drilling fluid. The vectors t⃗, n⃗, and
b⃗ represent the unit tangential, normal, and binormal vectors, respectively, defining
the wellbore’s trajectory. Their respective z-components are denoted as tz, nz, and
bz.

With these force balances in mind and the assumptions stated earlier it was
possible for Johanscik to create a differential formula for calculating axial drag force
acting on a segment during tripping operations[1]:

dF

ds
+ wbptz ± µ

√
(Fκ+ wbpnz)

2 + (wbpbz)
2 = 0 (3.7)

wc =

√
(Fκ+ wbpnz)

2 + (wbpbz)
2 (3.8)

dF
ds

is the change in force over the change in position, which could be approxi-
mated as dF = F2 − F1 where F2 and F1 are the forces at the top of the segment,
and the bottom of the segment respectively. Then the equation becomes[1]:

dF

ds
= −wbptz ± µ

√
(Fκ+ wbpnz)

2 + (wbpbz)
2 (3.9)

Solving for the change in force F2, using ds = 1. The equation becomes:

F2 − F1 + wbptz ± µ

√
(Fκ+ wbpnz)

2 + (wbpbz)
2 = 0 (3.10)

Solving for F2, we obtain:

F2 = F1 + wbptz ± µ

√
(Fκ+ wbpnz)

2 + (wbpbz)
2 (3.11)
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In equation (3.11), the ± sign in front of the term µ
√

(Fκ+ wbpnz)
2 + (wbpbz)

2

denotes the direction of the force being applied. The positive sign (+) corresponds
to hoisting while the negative sign (-) corresponds to lowering.

3.2.3 Friction coefficient

The coefficient of friction (µ) is a crucial parameter in wellbore operations, reflect-
ing the ratio of frictional forces that resist the movement between two surfaces in
contact to the normal force pressing these surfaces together [18]. During drilling op-
erations, µ is determined under borehole conditions, being a factor that correlates
the measured forces at the top of the hole. Assumptions on the friction coefficient
generally fall within a range of 0.2 to 0.4, this estimate is influenced by numerous
factors including the rock type and properties of the drilling fluid. However, it should
be noted that literature sources have reported friction factors as high as 0.8 under
certain conditions [7]. This thesis primarily focuses on the dynamic coefficient of
friction, which comes into play when the system is already in motion, as opposed to
the static coefficient, which is typically larger and pertains to initiating movement.
A thorough understanding of these coefficients, their variations, and their impacts
are pivotal in the precise planning and execution of drilling operations. [1]

3.2.4 Buoyed weight of segment

The buoyed weight of a segment wbp, is given by[19]:

BFwp (3.12)

Solving for buoyancy factor (BF) using the densities of mud ρm and steel ρs,
gives:

BF = (1− ρm
ρs

) (3.13)

If there is a disparity between the densities of fluids inside ρi, and outside ρo of
the segment for example after cementing, or during circulation of mud with different
mud weight, the buoyancy factor BF becomes:

BF = 1− ρoAo − ρiAi

ρs(Ao − Ai)
(3.14)

Where Ao, and Ai represent the outer, and inner area.
In this model the casing or drill string is assumed to be run into the well, with

mud of same density circulating. In the case of a real world scenario, there would
certainly be different densities. There are many situations where the mud weight
needs to be regulated, just to mention a few:

• drilling cuttings or weighting materials settling

• liquid or gas inflow into the wellbore

• surface fluid dilution
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As seen in formula 3.9 a torque and drag analysis typically consists of only three
external forces. The force due to the weight of the segment wbp multiplied by the
z-component of binormal vector bz, the force due to friction µ, and the force due
to the pipes normal force wc. It is therefor very important to have the correct unit
weight and selecting the correct mud weight. Heavier mud will tend to lower the
buoyed weight of a segment, leading to a decrease in pipe normal force wc, friction
and torque. Heavier mud will have more weighting material, which could lead to an
increase in friction µ.

3.2.5 Unit vectors

To correctly compute the drag forces along the wellbore trajectory, it is essential
to determine the z-components of the normal vector nz, binormal vector bz, and
tangent vector tz.
The tangent vector component tz is typically aligned with the wellbore’s tangent

Figure 3.1: Free body diagram of a sliding pipe - soft string model[1]
.

line and varies according to the wellbore’s inclination and the measured depth along
the wellbore. It is mathematically represented as[1]:

tz = cos(ϕ1) cos[κ(s− s1)] +
cos(ϕ2)− cos(ϕ1) cos(β)

sin(β)
sin[κ(s− s1)] (3.15)

The normal vector component nz usually points in the direction of the local
vertical (toward the Earth’s center) and is given by[1]:

nz = − cos(ϕ1) sin[κ(s− s1)] +
cos(ϕ2)− cos(ϕ1) cos(β)

sin(β)
cos[κ(s− s1)] (3.16)
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The binormal vector component bz typically points in the local horizontal plane,
varying with the azimuth. It is computed as[1]:

bz = sin(ϕ1) sin(ϕ2) sin(θ2 − θ1)/ sin(β) (3.17)

• ϕ1 and ϕ2: These represent the inclinations at the first and second survey
stations, respectively, providing the start and end inclinations for the segment
under consideration.

• θ1 and θ2: These represent the azimuths at the first and second survey sta-
tions, respectively, providing the start and end azimuths for the segment under
consideration.

• s: This represents the measured depth at any point within the span of the two
survey stations.

• s1: This represents the measured depth at the first survey station, serving as
the reference point from which the change in depth is calculated.

• β: This represents the dogleg severity or the total angular change in the bore-
hole direction between the two survey stations.

• κ: This represents the wellbore curvature per unit length, obtained by dividing
β by the distance between the two survey stations, s− s1.

These calculations are integral to accurately estimate the distribution of drag
forces along the wellbore trajectory.

In the wellbore trajectory analysis, the code incorporates a unique approach
where inclinations are interpolated at every meter of the survey station data prior
to the implementation of calculations for tz, nz, and bz. This interpolation tech-
nique enhances the accuracy and granularity of the data, thereby ensuring a holistic
understanding of the wellbore trajectory[1].

The mathematical formulas incorporated in this computational process are:

tz = cos(ϕ) (3.18)

nz = −sin(ϕ)

κ
· ∆ϕ

∆s
(3.19)

bz =
1

k
· sin2(ϕ) · ∆θ

∆s
(3.20)

Given the pre-calculated interpolated inclinations at each meter of the survey sta-
tion, the execution of these equations enables the efficient calculation of the z-
component vectors. The calculated vectors have a crucial role in providing a com-
prehensive illustration of the wellbore path, thereby enabling accurate estimation of
the drag forces influencing the trajectory.[1]

Through the integration of interpolated inclinations and the aforementioned
equations, the code demonstrates an efficient approach to calculating the z-component
vectors that form an integral part of drag force estimation. Thus, this methodology
significantly contributes to the precision of wellbore trajectory analysis in drilling
and completion operations, potentially informing adjustments to improve opera-
tional outcomes.
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3.2.6 Visual representation

The Ratio Factor (RF) in wellbore trajectory calculations is a geometric factor that
relates the incremental changes in the wellbore’s inclination and azimuth angles to
the corresponding incremental changes in the wellbore’s Cartesian coordinates (x,
y, z). The RF is specifically used in the application of the Tangential method and
the Average Angle method of calculating wellbore trajectory. It’s essential for these
methods because they apply simplifying assumptions to the curvature of the wellbore
path and use these assumptions to approximate the wellbore’s spatial trajectory[1].

The Ratio Factor is calculated using the formula:

RF =
d

∆θ
tan

(
∆θ

2

)
(3.21)

where d is the measured depth difference between two points along the wellbore and
∆θ is the change in angle (in radians) between these two points[1].

After calculating the Ratio Factor, it is possible to estimate the incremental
changes in the Cartesian coordinates of the wellbore trajectory, namely x, y, and z.
This is done using the following formulas[1]:

∆x = (sin θ1 cosϕ1 + sin θ2 cosϕ2) ·RF (3.22)

∆y = (sin θ1 sinϕ1 + sin θ2 sinϕ2) ·RF (3.23)

∆z = (cos θ1 + cos θ2) ·RF (3.24)

where θ1 and θ2 are the initial and final inclination angles of the wellbore segment,
ϕ1 and ϕ2 are the initial and final azimuth angles, and RF is the Ratio Factor
calculated earlier. These calculated increments ∆x, ∆y, and ∆z are then used to
update the wellbore’s position[1].

Consequently, visualization of the wellbore’s trajectory in 3D space provides
an invaluable tool for understanding the physical behavior of the casing or drill
string. The provided code snippet enables the creation of a 3D plot that accurately
displays the changes in inclination and azimuth angles along the wellbore’s path.
By coupling the derived equations for axial drag force with these visual aids, the
implemented solution allows for comprehensive exploration and interpretation of
drilling operations.

3.3 Minimum Curvature Method
The minimum curvature method is a widely accepted industry standard used for
modelling and planning of wellbore trajectory. It is a mathematical method used
to estimate the path of a wellbore between two survey stations. The essence of
this method is that two successive points on the trajectory are assumed to lie on a
circular arc, located in a plane. The arc is the smoothest possible curve connecting
the two points. The two survey points define the start and end point of the arc, and
the curvature (Dogleg angle) between the points on the segment is constant. The
method then uses the properties of the arc, its length, curvature, and the directions
at the end points to estimate the spatial coordinates of points along the trajectory.
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This method as mentioned widely accepted and used in the oil and gas industry.
However it is important to note that while the minimum curvature method is a
powerful tool, it is a generalization, and uses certain assumptions as discussed earlier.
Like any model, it might not fully represent the actual wellbore path in all situations.
[17] As illustrated in Figure 3.2, points 1, and 2 reside on the same plane, with a
constant curvature between points 1 and 2. The inclination and azimuth are denoted
as ϕ and θ respectively. The measured depth between points 1 and 2 is denoted as
∆s, while the radius of the circular arc connecting these points is represented by R.
The angle β is termed as the dogleg [1].

Figure 3.2: Schematic diagram of a wellbore segment for the minimum curvature
method[1]

.
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Chapter 4

Methodology

4.1 Python
Python is a widely used, high-level, and versatile programming language that has
gained immense popularity due to its efficiency, readability, and extensive library
support. In this project, Python was used to create a predictive model for esti-
mating friction forces on casing during well operations. Python was chosen as the
appropriate programming language for this project because of its ease of use, and
rich ecosystem of scientific computing libraries.

4.1.1 Libraries and Packages

To streamline the development process and leverage existing tools, a variety of
Python libraries are utilized in the project. The libraries used were NumPy, Pandas,
matplotlib, math, Welly, Lasio, and prettytable.

math

The math library is a standard Python module that provides mathematical functions
and operations. "Math" includes functions for trigonometry, logarithmic and expo-
nential operations, and other common mathematical calculations. Math was used
to perform trigonometric calculations when determining dogleg severity, wellbore
trajectory coordinates, and torque and drag. Functions such as "math.radians()",
"math.sin()", and "math.cos()" are used to convert angles to radians and to perform
sine and cosine operations, which are essential in calculating the wellbore trajectory
as well as torque and drag forces acting on the casing. One important thing to note
is that Python calculated trigonometric functions in radians by default, hence the
importance of using the proper built-in math functions to convert from radians to
degrees, and degrees to radians where necessary. [20]

matplotlib

"matplotlib" is a plotting library that allows for the creation of a wide variety of
static, animated, and interactive visualizations. "matplotlib" was used to visualize
the wellbore trajectory, and certain qualities of the calculated coordinates. "mat-
plotlib" and "mpl_toolkits.mplot3d" are used together to generate 2D and 3D plots
of the wellbore trajectory. The library offers a high level of customization which
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allowed customization of the plot to create a clear and informative visual represen-
tation of the wellbore data. The various plots shown in ?? provide insight into the
wellbore’s trajectory, lateral, and vertical movements. [21]

numpy

"Numpy" (Numerical Python) is a fundamental library for scientific computing in
Python. It provides support for multi-dimensional arrays and matrices, as well as a
collection of mathematical functions to operate these data structures. In this project
"numpy" is used to store and manipulate the calculated X,Y, and Z coordinates
of the wellbore trajectory points. By utilizing "numpy", the script can efficiently
perform calculations required for generating the wellbore trajectory [22]

Welly

The Welly package is a Python package developed for managing well data. Welly
offers a range of features to handle well log data, including loading, processing,
and visualizing data. One of the key capabilities is the ability to load well data
from LAS files. Additionally the package provides various functions for processing
well log data, including computing petrophysical properties, generating synthetic
seismograms, and correcting for missing or invalid data. Lastly, the package offers
ways to visualize well log data in a clear and organized way. Overall the package
provides a comprehensive set of tools to work with well data in Python. [23]

Lasio

Lasio is another package that was used in the code, Lasio is a package for Python
3.7 and above that allow the user to read and write Log ASCII Standard (LAS)
files, which are commonly used in the oil and gas industry. LAS files are used
for storing borehole data for geological, geophysical, and petrophysical logs. The
primary purpose of the Lasio package is to facilitate the reading and writing of
both data and metadata in LAS files. The package is designed to handle as many
LAS files as possible, even those with errors or non-standard formatting. While the
package can be used directly, there are other packages available that may be better
suited to specific needs. In this project Lasio is used to generate, and write a LAS
file, which is used to store data for the next steps in the code. [24]

prettytable

"Prettytable" is a library for creating simple and visually appealing tables. It allows
users to generate formatted table with various styles and alignments, making it easier
to display data in a clear and organized manner. In this project "prettytable" is
used to display the wellbore trajectory points in a formatted table, including MD,
inclination, azimuth, x, y, and z coordinates. The table provides an accessible
overview of the data, and makes it easier to analyze said data.[25]
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4.2 Code Description and Operation
This section provides a comprehensive description of the operational steps embedded
in the code and the underlying calculations.

Data Preprocessing and Unit Conversion

The algorithm begins by converting all units to radians to ensure consistency across
the board. This is crucial for mathematical operations that follow. Survey data is
manually filled in and used as input.

Distance Calculation and Dogleg Function

Next, the code constructs a list to store the distances between survey stations (de-
noted as s-s1), which are fundamental for subsequent calculations. The Dogleg
function is executed on the survey data, and the resulting dogleg values are also
stored in a separate list for further computation.

Wellbore Curvature and Ratio Factor

Utilizing the derived dogleg values and distance list, the wellbore curvature, denoted
by κ, is calculated and similarly stored in a list. Following this, the Ratio Factor is
determined using equation 3.20.

Wellbore Trajectory Coordinates

With these variables now readily available in lists, the code is able to compute the
coordinates of the wellbore trajectory using equations 3.21, 3.22, and 3.23. These
coordinates are then preserved in an array, enabling the construction of a 3D wellbore
trajectory plot. In the next part of this phase, a LAS file is initiated using the
LASFile function from the lasio library. This file serves as a standardized format
for storing and sharing well log data.

Adding Curves to LAS File

Subsequently, curves are added to the LAS file. These curves represent different data
variables, each with a designated unit of measurement and a brief description. They
include: Measured Depth (DEPT), Inclination (INCL), Azimuth (AZIM), and X, Y,
Z offsets. The data for these curves is taken from the array of calculated coordinates.

Writing and Loading LAS File

The populated LAS file is then saved in a designated location on the local storage,
and immediately loaded back into the program. This process effectively saves all the
data and calculation results in a LAS file, which can be accessed and manipulated
later as needed.
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3D Plot Construction

Following the data storage, the algorithm proceeds to visualize the wellbore trajec-
tory through 3D plotting. A 3D plot is generated, illustrating the X, Y, Z offsets,
which represent the well path. The start and end points of the well path are marked
distinctly. The plot’s labels and scales are set appropriately.

Additional Plots

In addition to the 3D plot, the code also generates three 2D plots to visualize the
relationships between different dimensions: X vs Y locations, X location vs TVD,
and Y location vs TVD. Each plot provides a different perspective on the wellbore
trajectory.

Data Interpolation and Storage

The code employs a segment length of s-s1 = 1 meter for the upcoming computations
as opposed to using the distance between survey stations. This approach ensures
accurate calculations and yields more detailed data points that may be utilized in
later operations. A Python function is devised to interpolate the survey data for
every meter of the total measured depth (MD) and saves this in an array of length
MD.

True Vertical Depth

To enhance the clarity of the data, the algorithm computes the True Vertical Depth
(TVD) using equation 3.23 and incorporates it into the array. Additionally, equa-
tions 3.17, 3.18, and 3.19 are applied to the interpolated inclinations to calculate tz,
nz, and bz respectively. These values are subsequently stored in the array.

Drag Force Calculation

Finally, the algorithm calculates the drag forces along the trajectory using equation
3.10. It’s crucial to note that these calculations start from the bottom of the casing
or drill string, given that the force at the bottom is known to be zero. The code
works its way upwards, incrementally by 1 meter, accumulating drag force along the
trajectory. The calculated forces are then saved in an array, which provides the drag
force at every depth, thereby offering valuable insights into wellbore conditions.

Creation of Well Plots

Finally, the algorithm facilitates the creation of well plots. These plots visualize the
calculated forces, allowing the user to observe the changes in drag force along the
wellbore trajectory. Notably, the code provides the flexibility to generate these plots
with different buoyed weight of segment (wbp) and friction factors. Varying these
parameters can lead to different output, providing a way to observe the influence
of these variables on the drag force. This flexibility could be crucial for optimizing
drilling operations, by providing an easy means to understand how changes in these
variables could affect the forces encountered in the wellbore.
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Chapter 5

Results and Discussion

This chapter embarks on an exploration of practical case studies of various wells,
with data obtained from Ullrigg Test Centre. Ullrigg Test Centre, managed by
NORCE Norwegian Research Centre AS, is a prominent facility that provides a
comprehensive archive of test wells [6]. The data from these wells offer valuable
real-world insights into the multifaceted nature of wellbore trajectory planning, de-
sign, and management. These case studies serve as the embodiment of the theoret-
ical principles and computational methodology outlined in the preceding chapters.
Specifically, we explore variations in the friction coefficient, spanning the standard
range of 0.2 to 0.4. By analyzing these cases, I am aiming to validate the developed
algorithm and demonstrate its effectiveness in varied real-world scenarios, while
highlighting any potential areas of enhancement.

A key focus of these case studies is an exploration of the impact of variations in
the friction coefficient. The analysis encompasses the standard range of 0.2 to 0.4,
and further delves into more extreme cases to test the robustness of the model. The
overarching objective of these case studies is not only to substantiate the algorithm
developed in this study but also to illustrate its versatility across different real-world
scenarios. Furthermore, these studies offer an opportunity to identify potential areas
for model refinement and enhancement.

Disclaimer: The well paths represented in the figures of this thesis is
generated from a 3D model in Python. It is essential to note that the
interactive nature of the model, including the capability to manipulate
and observe different perspectives of the well path, is not fully captured by
the static screenshots provided here. For a comprehensive understanding
of the well path dynamics, it is recommended to engage with the actual
interactive 3D model.
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5.1 Well U1
In this study, we turn our attention to Well U1, a wellbore with a total measured
depth (MD) of 1324 m. This well is structurally characterized by a casing shoe set
at 354 m MD. The casing is designed as a vertical 13 3/8" section, which boasts
a nominal weight (wbp) of 72 lb/ft, as specified by the Ullrig Test Centre [6]. This
weight is a crucial factor, as it significantly affects the overall stability and stress
resistance of the well structure.

Given the sensitivity of well performance to friction coefficients, we opted to
run simulations that encompassed a range of plausible scenarios. These included
the industry-standard friction coefficients range of 0.2 - 0.4, as well as an elevated
coefficient of 0.8 to explore the impact of extreme conditions on well integrity and
operational efficiency. Furthermore, we investigated the influence of varying the cas-
ing’s nominal weight wbp by comparing outcomes for different nominal weights of 13
3/8" casing, 72, 68, and 61 lb/ft. For the sake of consistency across all parameters
and calculations, the casing weight was converted to metric units, resulting in 107.2,
101.2, and 90.8 kg/m, respectively. It should be noted that these conversions were
rounded to the nearest tenth for simplicity and clarity.

The intent, through the simulation of these diverse scenarios, is to provide a
more holistic understanding of the dynamics within the well environment. By doing
so, we aim to delineate the parameters that have the greatest influence on well
performance and stability, thereby informing more effective design and operational
strategies for future well construction and management.

5.1.1 Results Well U1

The table 5.1 showcases Well U1’s survey data. This dataset, acquired from Ullrigg
Test Centre [6], delineates the along hole depth (AHD), inclination, and azimuth of
the well at various points. Through a detailed analysis of this data, we continue to
assess the performance and validity of the developed model.

The model-generated well path for Well U1 is illustrated in Figure 5.1. This vi-
sual representation encompasses multiple interrelated plots, illustrating the X-axis
and Y-axis locations against TVD (true vertical depth), as well as their compar-
ative positioning. This ensemble of graphics not only provides a comprehensive
spatial perspective of the well trajectory but also serves as a critical foundation for
subsequent analyses.
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AHD (M) INC (DEG) AZ (DEG)
0.0 0.0 0.0
50.0 1.5 143.7
100.0 4.4 154.2
150.0 6.3 153.3
200.0 7.0 150.7
250.0 5.5 151.0
300.0 5.2 155.9
350.0 4.7 175.7
400.0 1.7 175.9
450.0 1.3 173.6
500.0 1.4 -175.0
550.0 3.6 -170.4
600.0 4.5 -149.9
650.0 2.9 -132.9
700.0 1.1 -131.8
750.0 0.2 236.5
800.0 1.7 -127.8
850.0 1.8 -112.5
900.0 1.4 -47.5
950.0 2.4 50.5

Table 5.1: Survey Data for Well U1: MD (m), Inclination (degrees), Azimuth (de-
grees)

The investigation into Well U1 continues with an analysis of the influence of
varying friction coefficients, as given a nominal casing weight, wbp, of 90.8 kg/m.
This analysis illuminates an evident correlation between the friction coefficient (µ)
and the discrepancy between forces during tripping in and out operations.
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Figure 5.1: Model-generated well path for Well U1, featuring X-axis and Y-axis
locations plotted against TVD.

Figure 5.2: Impact of varying friction coefficients on drag forces for wbp of 90.8 kg/m,
tripping in, Well U1
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Figure 5.3: Impact of varying friction coefficients on drag forces for wbp of 90.8 kg/m,
tripping out, Well U1

This behavior can be rationalized by taking a look at Equation 3.10:

F2 = F1 + wbptz ± µ

√
(Fκ+ wbpnz)

2 + (wbpbz)
2 (5.1)

which quantifies the frictional force experienced by the casing during well oper-
ations. As µ escalates, the overall contribution of the frictional force component is
amplified, leading to an increased disparity between the forces experienced during
tripping in and out operations. It is crucial to note that a positive sign in this
equation corresponds to hoisting (tripping out) operations, whereas a negative sign
refers to lowering (tripping in) operations. The visual representation in Figure ??
substantiates this, revealing higher total force at MD = 0 during hoisting.

Moreover, it is worth noting that Well U1 exhibits a predominantly vertical tra-
jectory, as evidenced by the survey data (Table 5.1) and figure 5.1. The inclination
values are mostly below 10 degrees, indicating a significantly vertical well path. As
we proceed with the analysis of wells featuring higher inclinations, the influence of
inclination on wellbore forces, in tandem with friction coefficients, will be further
elaborated upon.
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5.2 Well U2
We now direct our attention to Well U2, which presents a different set of conditions.
This well extends to a total depth of 2020 m MD, with a 13 3/8" casing shoe po-
sitioned at 1520 m MD. The well employs a 13 3/8" casing with a nominal weight
(wbp) of 72 lb/ft, as dictated by the specifications provided by Ullrig Test Centre
[6]. Notably, Well U2 features a tangential section with an inclination ranging from
60 to 63 degrees, encountered at approximately 1650 m along hole depth (AHD).

Mirroring the analysis carried out for Well U1, the model for Well U2 is also
tested with varied nominal casing weights, specifically, 72, 68, and 61 lb/ft These
weights translate to 107.2, 101.2, and 90.8 kg/m, respectively, providing further
scenarios to test the flexibility and accuracy of the computational model.

5.2.1 Results Well U2

For Well U2, we have a markedly different well trajectory, with a higher degree of
horizontal displacement compared to Well U1. The survey data provided for Well
U2, illustrated in Table 5.2, reveals this distinction. While the well begins in a similar
vertical orientation as U1, the inclination values gradually increase, indicating the
well’s transition towards a more horizontal trajectory. The Azimuth (Az) values also
exhibit considerable variation, reflecting the well’s directional change. As we proceed
to analyze the impact of varying friction coefficients on Well U2, the influence of
these horizontal deviations will become more apparent.
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AHD (M) INC (DEG) AZ (DEG)
0.0 0.0 0.0
50.0 0.9 -29.7
100.0 0.4 -95.1
150.0 0.7 142.5
200.0 0.9 58.2
250.0 0.6 173.2
300.0 1.3 143.6
350.0 6.6 155.6
400.0 11.2 143.7
450.0 12.7 145.2
500.0 12.0 150.8
550.0 12.5 154.7
600.0 12.2 158.4
650.0 13.1 159.0
700.0 14.6 153.9
750.0 16.2 152.2
800.0 16.4 146.1
850.0 20.7 138.3
900.0 24.6 129.8
950.0 27.8 123.2
1000.0 31.0 119.2
1050.0 32.8 115.6
1100.0 36.5 113.7
1150.0 38.5 109.1
1200.0 40.3 106.5
1250.0 43.0 104.0
1300.0 46.2 104.0
1350.0 50.5 100.6
1400.0 52.3 102.4
1450.0 55.1 100.5
1500.0 58.6 100.2
1550.0 61.8 90.6
1600.0 61.9 88.8
1650.0 63.4 88.4
1700.0 60.1 91.7
1750.0 57.8 93.5
1800.0 57.6 98.9
1850.0 58.2 102.7
1900.0 59.9 105.8
1950.0 60.8 110.5
2000.0 61.3 116.6

Table 5.2: Survey Data for Well U2: AHD (m), Inclination (degrees), Azimuth
(degrees)

The planning and implementation of well trajectories have a profound effect
on the efficiency and success of a drilling operation. To further elucidate this, we
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present the model-generated well path for Well U2. In Figure 5.4, the well path’s
X-axis and Y-axis locations are plotted against True Vertical Depth (TVD). The
illustration provides a visual representation of the drilling trajectory, which offers
crucial insights into the geometric and spatial path of Well U2. Understanding the
intricacies of this path aids in foreseeing any potential challenges and opportunities
during drilling and completion operations.

Figure 5.4: Model-generated well path for Well U2, featuring X-axis and Y-axis
locations plotted against TVD.

As observed in Figure 5.4, the well path of Well U2 significantly differs from
that of Well U1, particularly due to a substantial horizontal section. Scrutiny of the
X location versus TVD plot discloses a marked change in the X offset at around a
TVD of 300m. Furthermore, the Y location versus TVD plot shows a substantial
increase in the Y offset at a TVD close to 800m, marking the commencement of a
significantly deviated section.
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Figure 5.5: Impact of varying friction coefficients on drag forces for wbp of 90.8 kg
m

Well U2

Figure 5.6: Impact of varying friction coefficients on drag forces for wbp of 90.8 kg
m

Well U2
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As shown in Figures 5.6, 5.5, there is a notable increase in drag forces around
these depths. This is even more apparent when looking at the plots with a higher
friction coefficient µ. As the normal force, an integral component of equation 3.11,
escalates this leads to a widening disparity between hoisting and lowering forces.
This suggests that the more deviated sections of Well U2’s trajectory might introduce
additional challenges during drilling operations.

5.3 Well U6B
The final well we delve into is Well U6B, a well that reaches 738 m AHD and
presents unique features, including a high dogleg severity of up to 14 degrees and
a substantial horizontal section. The horizontal section of the well commences at
approximately 439 m AHD and extends all the way to the total depth (TD) of 768
m AHD.

According to Ullrig Test Centre’s specifications, the well is furnished with two
casing shoes [6]: a 10 3/4" casing shoe with a weight of 60.7 lb

ft
of P-110 grade,

situated at 461 m MD, and a 13 3/8" casing shoe with a weight of 72 lb
ft

of N-80
grade, positioned at 37.5 m MD.

To further examine the model’s versatility and performance under varying con-
ditions, we explore scenarios with different nominal casing weights, specifically 79.2,
60.7, and 45.5 lb

ft
. These values correspond to casing weights of 117.8, 90.3, and 67.7

kg
m

, respectively. The evaluation of Well U6B rounds off our comprehensive study,
providing a broader perspective on the algorithm’s applicability across varied well
architectures and conditions.

5.3.1 Results U6B

The third and final well in this case study is Well U6B, which exhibits unique features
in comparison to Wells U1 and U2. Notably, Well U6B contains a substantial
horizontal section, much like Well U2, but with an even more pronounced dogleg
severity, as evidenced in the survey data presented in Table 5.3.

Well U6B reaches an Along Hole Depth (AHD) of 738 meters while maintaining a
relatively low True Vertical Depth (TVD) of 355 meters. This disparity underscores
the presence of an extensive horizontal section, a crucial aspect of the well trajectory.
A three-dimensional visualization of the well path, as shown in Figure 5.7, further
elucidates the well trajectory’s dynamic nature.

The X and Y offsets seen in the well path show consistent growth, beginning at
approximately 200 meters and extending up to the range of 300-350 meters. A rapid
surge in both X and Y offsets relative to TVD within this depth interval heralds the
commencement of the horizontal section.

Another salient feature of Well U6B is the notable discrepancy observed when
tripping in and out in conditions of increased friction coefficient. This is presented in
Figures 5.9,and 5.8, where it’s evident that an increase in inclination aligns with an
escalation in the friction coefficient. This observation aligns well with the theoretical
expectations and further accentuates the complexity of the operations in wells with

40



AHD (M) INC (DEG) AZI (DEG)
20 0.26 216.47
55 0.44 294.46
96 0.97 18.16
132 2.38 36.66
180 4.62 147.32
200 7.12 133.81
219 11.97 131.44
228 15.04 132.99
237 17.37 133.74
266 28.38 134.15
287 36.69 134.09
324 49.7 131.18
349 59.37 130.98
381 68.31 132.91
410 75.59 133.73
439 85.98 135.58
476 86.94 133.76
490 86.68 133.29
533 88.05 133.67
572 89.35 134.23
598 89.72 135.39
628 90.34 136.57
738 90.52 135.64

Table 5.3: Survey Data for Well U6B: AHD (m), Inclination (degrees), Azimuth
(degrees)

Figure 5.7: 3D well path for Well U6B

significant horizontal extensions.
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Figure 5.8: Impact of varying friction coefficients on drag forces for wbp of 67.7 kg/m,
tripping out, Well U6B

Figure 5.9: Impact of varying friction coefficients on drag forces for wbp of 67.7 kg/m,
tripping in, Well U6B
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5.4 Discussion
A selection of plots are included in the main body of this document to illustrate and
support our key findings. However, in order to provide a more comprehensive view
of the analysis, the rest of the generated plots from the case study is also included
in the Appendix. Refer to the appendix for a more detailed understanding of the
case studies and results.

Analysis of the results obtained from the distinct well trajectories in U1, U2,
and U6B has shed light on the influence of different well trajectories on the fric-
tional forces encountered during tripping operations. Well U1, characterized by a
predominantly vertical drilling path, contrasted significantly with U2 and U6B, both
of which exhibited deviated trajectories with pronounced horizontal sections. Inter-
pretation of these observations indicate a trend wherein deviated wells (specifically,
U2 and U6B) tend to be associated with heightened frictional forces during tripping
operations. This relationship becomes particularly pronounced at times of increased
inclination, thus underscoring a clear link between well trajectory and the opera-
tional challenges arising during drilling and completion operations. A noteworthy
instance of this relationship is seen in well U6B, which, given its distinct dogleg
and extensive horizontal section, presented a marked divergence between the forces
experienced during tripping in and out. This divergence was amplified when the
friction coefficient increased, thereby expanding the gap between tripping in, and
out plotted on the graph and thereby illustrating the significant influence of such
horizontal sections. [6]

These findings not only validate our initial hypotheses but also highlight the con-
siderable influence of well path geometry – especially variations in inclination and
azimuth – on the magnitude of frictional forces during well operations. Such insights
contribute significantly to our understanding of drilling dynamics, emphasizing the
crucial role of well path design in either mitigating or exacerbating operational chal-
lenges. Moreover, these results underscore the importance of employing predictive
models, such as the one developed in this thesis, in the planning, design, and exe-
cution of field operations. By incorporating these insights into future well planning
and execution, it is hoped that drilling and completions operations can be optimized
to minimize operational difficulties and maximize overall efficiency and safety.

While the model developed in this study presents a robust and accurate represen-
tation, it is important to acknowledge certain assumptions and limitations that may
influence its output. Initially, the model is built upon the principles of minimum cur-
vature and the soft-string pipe model as detailed in Section 3.2.2. Consequently, the
model may not provide entirely accurate results in all scenarios due to the inherent
assumptions of these methods. Variables influencing the drag forces during drilling
and completion operations might not be fully accounted for, even though these forces
primarily originate from the sliding friction between the drillstring/casing and the
wellbore wall [7].

In relation to these assumptions, it is crucial to recognize that the minimum
curvature method is an estimated parametrization of the wellbore path, and a real
drillstring may deviate from this path due to its own tendency to follow a different
curve. The model does not account for tortuosity or unevenness in the wellbore path
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resulting from the drilling process or drillstring steering. Moreover, the assumptions
within the torque and drag model, including soft string behavior and continuous
contact with the wellbore, might not always hold true.

A related point to consider is the representation of curvature in the model. The
minimum curvature method leads to a constant curvature between two survey sta-
tions, but this curvature changes abruptly as one traverses the survey list[1]. This
sudden change, rather than a smooth, continuous variation with depth, reflects the
limitations of the minimum curvature method and the idealization of the wellbore
path, rather than a true representation of physical reality.

Secondly, although this model has been extensively tested and validated through
problems outlined in ’Fundamentals of Drilling Engineering’ [1], there has been
no verification with official data from the Ullrig Test Centre. This is due to the
unavailability of such data and represents a potential limitation in terms of the
model’s validity.

Lastly, despite thorough testing, potential errors in the code used to build this
model may exist, thereby possibly affecting the output. Coding this model proved
to be the most challenging aspect of the project and any overlooked errors could
potentially impact its performance. The code, however, is readily available in the
Appendix for transparency and further validation.

In spite of these limitations, the model proves to be a valuable tool for under-
standing the impact of well path geometries on the frictional forces during drilling
operations. It reinforces the need for such models in the planning, design, and exe-
cution of drilling operations in order to mitigate potential operational challenges.

5.4.1 Future Work

In light of the findings and limitations of the present study, several directions for
future work emerge that could elevate the model’s performance and applicability.

To start with, a future iteration of this model could encompass a wider array of
physical parameters. Although the current model has made significant strides, there
remains an opportunity for further development. Variables such as different drilling
fluids, temperature and pressure variations along the wellbore, tool wear and tear,
and geological considerations could be incorporated to increase the model’s fidelity.

Moreover, validation of this model with real-world data from drilling operations
can significantly enhance its credibility. Despite rigorous testing with problems
from drilling engineering literature, a comparison with actual operational data could
reveal additional nuances that improve the model’s predictive power.

Investigation into the impact of various drilling technologies on frictional forces
also presents a promising direction for future research. Drilling techniques and tools,
such as rotary steerable systems (RSS), could have an influence on frictional forces
that is not currently captured by the model.

Furthermore, a comprehensive sensitivity analysis would identify which param-
eters most significantly impact the prediction of frictional forces. This could guide
future improvements to the model and help prioritize further research efforts.

In addition, the current model’s user interface could be improved for practical
use. As it stands, the model requires manual data input and occasional adjustments,
which could be streamlined with a more automated and user-friendly interface.

Lastly, integrating the model into broader well construction software would also
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be beneficial. The implementation of a model such as the one developed in this study,
specifically tailored for frictional force calculations, could provide additional value.
Future iterations could include features for buckling calculations and incorporate
variables like geological factors and build-up or drop-off points.

Through these enhancements and expansions, the model could potentially serve
as a valuable tool in the oil and gas industry, aiding in the planning, design, and
execution of drilling operations.
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Chapter 6

Conclusion

This thesis presented a computational model to evaluate the impact of well path
trajectory on frictional forces during well operations, with a specific focus on the
process of tripping in and out. The model, based on the minimum curvature method
and the soft-string model, has provided valuable insights into the dynamics of drilling
and the challenges associated with various well trajectories.

The analysis of three different well paths - U1, U2, and U6B - revealed dis-
tinct differences in frictional forces due to variations in their respective trajectories.
Specifically, wells with strong horizontal sections (U2 and U6B) demonstrated a
clear increase in frictional forces during operations, particularly during instances of
increased inclination. These findings validate the accuracy and usefulness of our
model for predicting operational challenges during well drilling and completion.

Understanding the relationship between well path design and operational fric-
tional forces can aid in the planning, design, and execution of efficient drilling oper-
ations. This study contributes to the field of drilling engineering by offering a tool
to aid in such an understanding.

Despite the insightful findings, the present study has limitations. The model
operates under certain assumptions, and while it captures the main dynamics of
friction in well operations, there are variables not accounted for in the current ver-
sion. Future work would benefit from incorporating these factors to enhance the
model’s accuracy and applicability in real-world scenarios.

In closing, the knowledge and insights gained from this study open up promising
avenues for future research, particularly in refining the model and validating it with
operational data from drilling sites. This could provide even more accurate and
insightful predictions, leading to safer and more efficient well operations.

In order to provide a detailed insight into the computational process underlying
my model, the complete code utilized in this study has been included in the Ap-
pendix. Readers who are interested in the specific coding details, or who wish to
further explore or replicate the work, are encouraged to refer to this section. The
reader is also encouraged to explore the additional plots provided in the Appendix
for a more comprehensive understanding of the case studies and insights gathered
in this study.
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.1 Appendix 1

.1.1 Additional Figures Well U1

Figure 1: Impact of varying friction coefficients on drag forces for wbp of 101.2 kg/m,
tripping in, Well U1
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Figure 2: Impact of varying friction coefficients on drag forces for wbp of 101.2 kg/m,
tripping out, Well U1

.1.2 Additional Figures Well U2
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Figure 3: Impact of varying friction coefficients on drag forces for wbp of 107.2 kg/m,
tripping in Well U1

.1.3 Additional Figures Well U6B
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Figure 4: Impact of varying friction coefficients on drag forces for wbp of 107.2 kg/m,
tripping out, Well U1

Figure 5: Impact of varying friction coefficients on drag forces for wbp of 101.2 kg/m,
tripping in, Well U2
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Figure 6: Impact of varying friction coefficients on drag forces for wbp of 101.2 kg/m,
tripping out, Well U2

Figure 7: Impact of varying friction coefficients on drag forces for wbp of 107.2 kg/m,
tripping in, Well U2
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Figure 8: Impact of varying friction coefficients on drag forces for wbp of 107.2 kg/m,
tripping out, Well U2

Figure 9: Impact of varying friction coefficients on drag forces for wbp of 90.3 kg/m,
tripping in, Well U6B
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Figure 10: Impact of varying friction coefficients on drag forces for wbp of 90.3 kg/m,
tripping out, Well U6B

Figure 11: Impact of varying friction coefficients on drag forces for wbp of 117.8
kg/m, tripping in, Well U6B
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Figure 12: Impact of varying friction coefficients on drag forces for wbp of 117.8
kg/m, tripping out, Well U6B
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.2 Appendix 2

.2.1 Python Code

calculate_points.py

1 import math
2

3

4 # Loop through each survey s t a t i o n and c a l c u l a t e the coo rd ina t e s
5 de f ca l cu l a t e_po in t s ( r f_ l i s t , i n c_ l i s t , a z i_ l i s t ) :
6 x1 = 0
7 y1 = 0
8 z1 = 0
9 x_coords = [ x1 ]

10 y_coords = [ y1 ]
11 z_coords = [ z1 ]
12

13 f o r i in range ( l en ( r f _ l i s t ) −1) :
14 inc1 = math . rad ians ( i n c_ l i s t [ i ] )
15 az i 1 = math . rad ians ( a z i_ l i s t [ i ] )
16 inc2 = math . rad ians ( i n c_ l i s t [ i + 1 ] )
17 az i 2 = math . rad ians ( a z i_ l i s t [ i + 1 ] )
18 r f = r f _ l i s t [ i ]
19

20 x2 = x1 + (math . s i n ( inc1 ) ∗ math . cos ( a z i 1 ) + math . s i n ( inc2 ) ∗
↪→ math . cos ( a z i 2 ) ) ∗ r f

21 y2 = y1 + (math . s i n ( inc1 ) ∗ math . s i n ( az i 1 ) + math . s i n ( inc2 ) ∗
↪→ math . s i n ( az i 2 ) ) ∗ r f

22 z2 = z1 + (math . cos ( inc1 ) + math . cos ( inc2 ) ) ∗ r f
23

24 x_coords . append ( x2 )
25 y_coords . append ( y2 )
26 z_coords . append ( z2 )
27

28 # Set the new s t a r t i n g po int to the end po int o f the prev ious
↪→ segment

29 x1 = x2
30 y1 = y2
31 z1 = z2
32

33

34 i n c = math . rad ians ( i n c_ l i s t [ −1])
35 a z i = math . rad ians ( a z i_ l i s t [ −1])
36 r f = r f _ l i s t [ −1]
37 x2 = x1 + math . s i n ( inc ) ∗ math . cos ( a z i ) ∗ r f
38 y2 = y1 + math . s i n ( inc ) ∗ math . s i n ( a z i ) ∗ r f
39 z2 = z1 + (math . cos ( inc1 ) + math . cos ( inc2 ) ) ∗ r f
40

41 x_coords . append ( x2 )
42 y_coords . append ( y2 )
43 z_coords . append ( z2 )
44

45

46

47 re turn x_coords , y_coords , z_coords
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Data - Copy.py

1 from torque_drag import nz
2 from torque_drag import bz
3 from DL_function import ca l cu l a t e_d l
4 from RF import c a l c u l a t e_r f
5 from ca l cu l a t e_po in t s import ca l cu l a t e_po in t s
6 from i n t e r p o l a t i o n import i n t e r p o l a t i o n
7 import math
8 import matp lo t l i b . pyplot as p l t
9 import numpy as np

10 from mpl_toolk i t s . mplot3d import Axes3D
11 from wel ly import Well
12 import l a s i o
13 import numpy as np
14 from mpl_toolk i t s . mplot3d import Axes3D
15 from matp lo t l i b . g r i d spe c import GridSpec
16 from pr e t t y t ab l e import PrettyTable
17 from torque_drag import interpolate_every_meter
18 from torque_drag import tz
19 from torque_drag import calculate_torque_drag_l
20 from torque_drag import calculate_torque_drag_h
21 from torque_drag import ca l cu la t e_r f_va lue s
22 from torque_drag import ca lcu late_wel lbore_curve
23 from torque_drag import ca lcu late_repeated_dl
24 from RF import calculate_rf_em
25 from torque_drag import get_wbp_changes
26 import matp lo t l i b . c o l o r s as mcolors
27

28 np . s e t_pr in topt i ons ( p r e c i s i o n =3, suppres s=True )
29

30 #Creat ing empty l i s t s , f i l l in data from survey s t a t i on s , az i , inc , md
31 d l_ l i s t = [ ]
32 r f _ l i s t = [ ]
33 po i n t s_ l i s t = [ ]
34 wel lbore_curve = [ ]
35 md_list= [ ]
36 d i s t a n c e_ l i s t = [ ]
37 i n c_ l i s t = [ ]
38 a z i_ l i s t = [ ]
39 i n c_l i s t_rad ians = [ math . rad ians ( inc ) f o r inc in i n c_ l i s t ]
40 az i_ l i s t_rad i an s = [ math . rad ians ( a z i ) f o r a z i in a z i_ l i s t ]
41

42 #cr ea t i n g d i s t ance l i s t , used in c a l c u l a t i o n s o f s1−s
43 f o r i in range ( l en ( md_list )−1) :
44 d i s t = md_list [ i +1] − md_list [ i ]
45 d i s t a n c e_ l i s t . append ( d i s t )
46

47 #cr ea t i n g dogleg l i s t
48 f o r i in range ( l en ( md_list )−1) :
49 dl = ca l cu l a t e_d l ( i n c_ l i s t [ i ] , a z i_ l i s t [ i ] , i n c_ l i s t [ i +1] , a z i_ l i s t

↪→ [ i +1] , d i s t a n c e_ l i s t [ i ] )
50 d l_ l i s t . append ( d l ) #Append to d l_ l i s t
51

52 #Creat ing l i s t f o r kappa
53 f o r i in range ( l en ( md_list )−1) :
54 constant_k = ( d l_ l i s t [ i ] / d i s t a n c e_ l i s t [ 1 ] )
55 wel lbore_curve . append ( constant_k )
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56

57 #Creat ing extended l i s t s f o r c a l c u l a t i o n s l a t e r
58 d l_l i s t_ext = [ ]
59 inc_l i s t_extended = [ ]
60 az i_l i s t_extended = [ ]
61 wellbore_curve_extended = [ ]
62

63 f o r i in range ( l en ( d i s t a n c e_ l i s t ) ) :
64 d l_l i s t_ext += l i s t (np . repeat ( d l_ l i s t [ i ] , d i s t a n c e_ l i s t [ i ] ) )
65 inc_l i s t_extended += l i s t (np . repeat ( inc_l i s t_rad ians [ i ] ,

↪→ d i s t a n c e_ l i s t [ i ] ) )
66 az i_l i s t_extended += l i s t (np . repeat ( a z i_ l i s t_rad i an s [ i ] ,

↪→ d i s t a n c e_ l i s t [ i ] ) )
67 wellbore_curve_extended += l i s t (np . repeat ( wel lbore_curve [ i ] ,

↪→ d i s t a n c e_ l i s t [ i ] ) )
68

69 #Creat ing Ratio f a c t o r l i s t
70 r f _ l i s t = ca l cu l a t e_r f ( d l_ l i s t , d i s t a n c e_ l i s t )
71

72 #Creat ing l i s t s with x o f f s e t , y o f f s e t , z coo rd ina t e s
73 x_coords , y_coords , z_coords = ca l cu l a t e_po in t s ( r f_ l i s t , i n c_ l i s t ,

↪→ a z i_ l i s t )
74 coo rd ina t e s = l i s t ( z ip ( x_coords , y_coords , z_coords ) )
75

76 z_coords = [ coord [ 2 ] f o r coord in coo rd ina t e s ]
77 z_coords = np . array ( z_coords )
78

79

80 #Creat ing a l l the new l i s t s . For l a t e r c a l c u l a t i o n
81 new_md_list , new_inc_list , new_azi_list , new_z_list = \
82 interpolate_every_meter ( i n c_ l i s t , a z i_ l i s t , d l_ l i s t , d i s t an c e_ l i s t ,

↪→ wellbore_curve , md_list , z_coords , inc_l i s t_rad ians ,
↪→ az i_l i s t_rad ians , d l_l i s t_rad ians , wanted_depth=None )

83

84 np . s e t_pr in topt i ons ( th r e sho ld=np . in f , edgeitems=np . i n f )
85 new_values = l i s t ( z ip ( new_md_list , new_inc_list , new_azi_list ,

↪→ new_z_list ) )
86 np_new_values = np . array ( new_values )
87

88

89 #Creat ing new l i s t s f o r f u r t h e r c a l c u l a t i o n
90

91 new_dl_list = ca lcu late_repeated_dl ( new_inc_list , new_azi_list ,
↪→ d i s t an c e_ l i s t , new_md_list )

92 new_wel lbore_l ist = ca lcu late_wel lbore_curve ( new_dl_list , new_md_list )
93

94

95 nz_l i s t = nz ( new_inc_list , wellbore_curve_extended , d l_l i s t_ext ,
↪→ new_md_list )

96 bz_list_1 = bz ( inc_l i s t_rad ians , az i_ l i s t_rad ians , d l_l i s t_rad ians ,
↪→ md_list , d i s t a n c e_ l i s t )

97 t z_ l i s t = tz ( new_inc_list , d l_l i s t_ext , new_wel lbore_l ist )
98 bz_l i s t = [ ]
99 f o r i in range ( l en ( d i s t a n c e_ l i s t ) ) :

100 bz_l i s t += l i s t (np . repeat ( bz_list_1 [ i ] , d i s t a n c e_ l i s t [ i ] ) )
101

102 new_rf_list = ca l cu la t e_r f_va lue s ( d l_ l i s t , new_md_list , d i s t a n c e_ l i s t )
103
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104

105 np_data2 = np . array ( [ new_z_list , new_inc_list , new_azi_list , nz_l i s t ,
↪→ bz_l i s t , t z_ l i s t , d l_l i s t_ext , wellbore_curve_extended ] , dtype =
↪→ f l o a t ) .T

106 headers = [ ’TVD’ , ’ I n c l i n a t i o n ( deg ) ’ , ’Azimuth ( deg ) ’ , ’ nz ’ , ’ bz ’ , ’ t z
↪→ ’ , ’ d l ’ , ’ k ’ ]

107 t ab l e = PrettyTable ( headers )
108

109 f o r row in np_data2 :
110 t ab l e . add_row( row )
111

112 rf_list_em = calculate_rf_em ( d l_ l i s t , d i s t a n c e_ l i s t )
113

114 #crea t e a numpy array
115 np_coordinates = np . array ( coo rd ina t e s )
116 np_data_coords = np_coordinates [ : , 0 : 3 ]
117

118 np_data = np . array ( [ md_list , i n c_ l i s t , a z i_ l i s t ] , dtype =f l o a t ) .T #
↪→ Creat ing NP array

119 np_data = np . hstack ( ( np_data , np_data_coords ) )
120 pr in t ( np_data . shape )
121

122 headers = [ ’MD (m) ’ , ’ I n c l i n a t i o n ( deg ) ’ , ’Azimuth ( deg ) ’ , ’X (m) ’ , ’Y
↪→ (m) ’ , ’Z (m) ’ ]

123 t ab l e = PrettyTable ( headers )
124

125 f o r row in np_data :
126 t ab l e . add_row( row )
127

128

129

130 #Create LAS f i l e
131 l a s = l a s i o . LASFile ( )
132

133 # add curves to LAS f i l e
134 l a s . add_curve ( ’DEPT’ , un i t=’M’ , de sc r=’ Measured Depth ’ , data =np_data

↪→ [ : , 0 ] )
135 l a s . add_curve ( ’INCL ’ , un i t=’DEG’ , de sc r=’ I n c l i n a t i o n ’ , data =np_data

↪→ [ : , 1 ] )
136 l a s . add_curve ( ’AZIM ’ , un i t=’DEG’ , de sc r=’Azimuth ’ , data = np_data [ : , 2 ] )
137 l a s . add_curve ( ’X ’ , un i t=’NA’ , de sc r=’X o f f s e t ’ , data =np_data [ : , 3 ] )
138 l a s . add_curve ( ’Y ’ , un i t=’NA’ , de sc r=’Y o f f s e t ’ , data =np_data [ : , 4 ] )
139 l a s . add_curve ( ’Z ’ , un i t=’NA’ , de sc r=’Z o f f s e t ’ , data = np_data [ : , 5 ] )
140

141 xs = l a s [ ’X ’ ]
142 ys = l a s [ ’Y ’ ]
143 zs = l a s [ ’Z ’ ]
144

145 # add data to curves
146 l a s [ ’DEPT’ ] = np_data [ : , 0 ]
147 l a s [ ’INCL ’ ] = np_data [ : , 1 ]
148 l a s [ ’AZIM ’ ] = np_data [ : , 2 ]
149 l a s [ ’X ’ ] = np_data [ : , 3 ]
150 l a s [ ’Y ’ ] = np_data [ : , 4 ]
151 l a s [ ’Z ’ ] = np_data [ : , 5 ]
152

153 # wri t e LAS f i l e
154 l a s . wr i t e ( ’ ’ ) #F i l l in d i r e c t o r y
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155

156 # Load LAS f i l e
157 l a s = Well . from_las ( ’ ’ ) # f i l l in d i r e c t o r y
158

159

160 # Load LAS f i l e
161 we l l = Well . from_las ( ’C: / Users / ed l a r /PycharmProjects / pythonProject /

↪→ Bachelor /well_1 . l a s ’ )
162

163 # Get curves
164 xs = we l l . data [ ’X ’ ] . va lue s
165 ys = we l l . data [ ’Y ’ ] . va lue s
166 zs = we l l . data [ ’Z ’ ] . va lue s
167 zs_inv = zs − zs . min ( ) # se t sha l l owe s t po int as zero and l e t the we l l

↪→ go downwards
168

169 # crea t e 3D p lo t
170 f i g = p l t . f i g u r e ( f i g s i z e =(14 , 8) )
171 gs = f i g . add_gridspec ( nrows=2, nco l s =4, width_rat ios =[4 , 4 , 4 , 4 ] )
172

173 ax1 = f i g . add_subplot ( gs [ : , : 2 ] , p r o j e c t i o n=’ 3d ’ )
174 ax1 . p l o t ( xs , ys , zs_inv , l i n ew id th =3)
175 ax1 . p l o t ( xs [ 0 ] , ys [ 0 ] , zs_inv [ 0 ] , marker =" . " , c o l o r="black " , ms=5)
176 ax1 . p l o t ( xs [ −1] , ys [ −1] , zs_inv [ −1] , marker ="∗" , c o l o r=" red " , ms=5)
177 ax1 . s e t_ t i t l e ( "3D Well path" )
178 ax1 . s e t_x labe l ( ’X o f f s e t (m) ’ )
179 ax1 . s e t_y labe l ( ’Y o f f s e t (m) ’ )
180 ax1 . s e t_z l abe l ( ’TVD (m) ’ )
181

182 # Create cubic bounding box to s imulate equal aspect r a t i o
183 max_range = np . array ( [ xs .max( )−xs . min ( ) , ys .max( )−ys . min ( ) , zs_inv .max

↪→ ( )−zs_inv . min ( ) ] ) .max( )
184 Xb = 0.5∗max_range∗np . mgrid [ −1 : 2 : 2 , −1 : 2 : 2 , −1 : 2 : 2 ] [ 0 ] . f l a t t e n ( ) + 0 . 5∗ (

↪→ xs .max( )+xs . min ( ) )
185 Yb = 0.5∗max_range∗np . mgrid [ −1 : 2 : 2 , −1 : 2 : 2 , −1 : 2 : 2 ] [ 1 ] . f l a t t e n ( ) + 0 . 5∗ (

↪→ ys .max( )+ys . min ( ) )
186 Zb = 0.5∗max_range∗np . mgrid [ −1 : 2 : 2 , −1 : 2 : 2 , −1 : 2 : 2 ] [ 2 ] . f l a t t e n ( ) + 0 . 5∗ (

↪→ zs_inv .max( )+zs_inv . min ( ) )
187

188 # Comment or uncomment f o l l ow i ng both l i n e s to t e s t the fake bounding
↪→ box :

189 f o r xb , yb , zb in z ip (Xb, Yb, Zb) :
190 ax1 . p l o t ( [ xb ] , [ yb ] , [ zb ] , ’w ’ )
191

192 ax2 = f i g . add_subplot ( gs [ 0 , 2 ] )
193 ax2 . p l o t ( xs , ys , lw=2)
194 ax2 . s e t_ t i t l e ( ’X Locat ion vs Y Locat ion ’ )
195 ax2 . s e t_x labe l ( ’X o f f s e t (m) ’ )
196 ax2 . s e t_y labe l ( ’Y o f f s e t (m) ’ )
197

198 ax3 = f i g . add_subplot ( gs [ 1 , 2 ] )
199 ax3 . p l o t ( xs , zs_inv , lw=2)
200 ax3 . s e t_ t i t l e ( ’X Locat ion vs TVD’ )
201 ax3 . s e t_x labe l ( ’X o f f s e t (m) ’ )
202 ax3 . s e t_y labe l ( ’TVD (m) ’ )
203

204 ax4 = f i g . add_subplot ( gs [ : , 3 ] )
205 ax4 . p l o t ( ys , zs_inv , lw=2)
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206 ax4 . s e t_ t i t l e ( ’Y Locat ion vs TVD’ )
207 ax4 . s e t_x labe l ( ’Y o f f s e t (m) ’ )
208 ax4 . s e t_y labe l ( ’TVD (m) ’ )
209

210 ax3 . inver t_yax i s ( )
211 ax4 . inver t_yax i s ( )
212

213 p l t . t ight_layout ( )
214 p l t . show ( )
215

216

217

218 # Enter t e s t va lue s here
219

220 f f_va lue s = [ 0 . 2 , 0 . 3 , 0 . 4 , 0 . 8 ] #used f r i c t i o n c o e f f i c e i n t 0 . 2 − 0 .4
221 wbp_values = [ ] #F i l l inn nominal weight o f segment
222

223

224 de f compare_plot ( tvd_values ) :
225 f o r j , wbp in enumerate ( wbp_values ) :
226 # Separate max and min f o r c e s f o r ’ Tripping in ’ and ’ Tripping

↪→ out ’
227 max_force_in = f l o a t ( ’−i n f ’ )
228 min_force_in = f l o a t ( ’ i n f ’ )
229 max_force_out = f l o a t ( ’−i n f ’ )
230 min_force_out = f l o a t ( ’ i n f ’ )
231

232 p l t . f i g u r e ( f i g s i z e =(10 ,5) ) # Create a new f i g u r e f o r each ’
↪→ Tripping in ’ at g iven wbp

233 f o r i , f f in enumerate ( f f_va lue s ) :
234 # Calcu la te fo rce_va lues f o r t r i pp i ng in
235 force_values_in = calculate_torque_drag_l (wbp , f f ,

↪→ new_md_list , wellbore_curve_extended , nz_l i s t ,
↪→ bz_l i s t , t z_ l i s t , new_inc_list , new_azi_list )

236 p l t . p l o t ( force_values_in , tvd_values , l a b e l=f ’ $\mu$={ f f } ’ )
237 # Get maximum and minimum f o r c e va lue s f o r s e t t i n g l im i t s
238 max_force_in = max( max_force_in , max( force_values_in ) )
239 min_force_in = min ( min_force_in , min ( force_values_in ) )
240

241 setup_plot ( max_force_in , min_force_in , tvd_values , f ’ Tripping
↪→ in , Wbp={wbp} kg/m’ )

242

243 p l t . f i g u r e ( f i g s i z e =(10 ,5) ) # Create a new f i g u r e f o r each ’
↪→ Tripping out ’ at g iven wbp

244 f o r i , f f in enumerate ( f f_va lue s ) :
245 # Calcu la te fo rce_va lues f o r t r i pp i ng out
246 force_values_out = calculate_torque_drag_h (wbp , f f ,

↪→ new_md_list , wellbore_curve_extended , nz_l i s t ,
↪→ bz_l i s t , t z_ l i s t , new_inc_list , new_azi_list )

247 p l t . p l o t ( force_values_out , tvd_values , l a b e l=f ’ $\mu$={ f f } ’ )
248 # Get maximum and minimum f o r c e va lue s f o r s e t t i n g l im i t s
249 max_force_out = max(max_force_out , max( force_values_out ) )
250 min_force_out = min ( min_force_out , min ( force_values_out ) )
251

252 setup_plot (max_force_out , min_force_out , tvd_values , f ’ Tripping
↪→ out , Wbp={wbp} kg/m’ )

253

254 de f setup_plot ( max_force , min_force , tvd_values , t i t l e ) :
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255 # Set up the r e s t o f the p l o t
256 p l t . gca ( ) . inver t_yax i s ( ) # Inve r t y−ax i s as depth i n c r e a s e s

↪→ downwards
257 p l t . x l ab e l ( ’ Tension ( kgf ) ’ )
258 p l t . y l ab e l ( ’ True v e r t i c a l depth (m) ’ )
259 p l t . t i t l e ( t i t l e )
260 p l t . l egend ( ) # Add a legend
261 p l t . g r i d (True ) # Show gr id
262 p l t . xl im ( [ min_force , max_force ] ) # Set x−ax i s l im i t s
263 p l t . yl im ( [max( tvd_values ) , min ( tvd_values ) ] ) # Set y−ax i s l im i t s
264

265 # Show the p lo t
266 p l t . t ight_layout ( )
267 p l t . show ( )
268

269 compare_plot ( new_z_list )

DL_function.py

1 import math
2

3 de f ca l cu l a t e_d l ( inc1 , az i1 , inc2 , az i2 , d i s t anc e ) :
4 # Convert the i n c l i n a t i o n and azimuth ang l e s to rad ians
5 inc1 = math . rad ians ( inc1 )
6 az i 1 = math . rad ians ( az i 1 )
7 inc2 = math . rad ians ( inc2 )
8 az i 2 = math . rad ians ( az i 2 )
9

10 # Calcu la te the d i r e c t i o n change between the po in t s
11 dir_change = abs ( inc2 − inc1 )
12

13 # Calcu la te the dog leg s e v e r i t y
14

15 #dl = math . degree s (math . acos (math . s i n ( inc1 ) ∗math . s i n ( inc2 ) ∗math . cos
↪→ ( az i1−az i 2 )+math . cos ( inc1 ) ∗math . cos ( inc2 ) ) )

16 dl = 2 ∗ math . a s in (math . s q r t ( (math . s i n ( ( inc2 − inc1 ) / 2) ) ∗∗2 +
↪→ math . s i n ( inc1 ) ∗ math . s i n ( inc2 ) ∗ (math . s i n ( ( a z i 2 − az i 1 ) /
↪→ 2) ) ∗∗2) )

17

18 re turn d l

interpolation.py

1 import math
2

3

4

5 de f i n t e r p o l a t i o n ( inc_l i s t_rad ians , az i_ l i s t_rad ians , d l_l i s t_rad ians ,
↪→ d i s t an c e_ l i s t , wel lbore_curve , wanted_depth , md_list ) :

6 i f wanted_depth < min( md_list ) or wanted_depth > max( md_list ) :
7 pr in t ( "Error : Depth i s ou t s i d e survey range . " )
8 re turn None
9

10 dist_from_start = None
11 f o r i in range ( l en ( md_list )−1) :
12 i f md_list [ i ] <= wanted_depth < md_list [ i +1] :
13 dist_from_start = wanted_depth − md_list [ i ]
14 break
15

61



16 i f d ist_from_start i s None :
17 dist_from_start = sum( d i s t a n c e_ l i s t )
18

19 cos_a = math . cos ( inc_l i s t_rad ians [ i ] ) ∗ math . cos ( wel lbore_curve [ i ]
↪→ ∗ dist_from_start )

20 i f d l_ l i s t_rad ians [ i ] == 0 :
21 cos_b = 0
22 e l s e :
23 cos_b = (math . cos ( inc_l i s t_rad ians [ i + 1 ] ) − (math . cos (

↪→ i n c_l i s t_rad ians [ i ] ) ∗ math . cos ( d l_ l i s t_rad ians [ i ] ) ) ) /
↪→ math . s i n ( d l_ l i s t_rad ians [ i ] )

24 cos_c_spl i t = wel lbore_curve [ i ] ∗ dist_from_start
25 cos_c = math . s i n ( cos_c_spl i t )
26 cos_d = cos_a + cos_b ∗ cos_c
27 des_inc = math . degree s (math . acos ( cos_d ) )
28

29 i f math . degree s ( inc_l i s t_rad ians [ i ] ) > math . degree s (
↪→ i n c_l i s t_rad ians [ i + 1 ] ) :

30 des_azi_value += math . p i
31

32 re turn "Des i red i n c l i n a t i o n " + s t r ( des_inc ) , "Des i red azimuth : "
↪→ + s t r ( des_azi_value ) , "Distance from s t a r t : " + s t r (
↪→ dist_from_start )

RF.py

1 import math
2

3 from DL_function import ca l cu l a t e_d l # import ca l cu l a t e_d l from
↪→ DL_function module

4

5

6 de f c a l c u l a t e_r f ( d l_ l i s t , d i s t a n c e_ l i s t ) :
7 # Calcu la te the r a t i o f a c t o r f o r each segment
8 r f _ l i s t = [ ]
9 f o r i in range ( l en ( d l_ l i s t ) ) :

10 dl_radians = math . rad ians ( d l_ l i s t [ i ] ) # Convert d l from degree s
↪→ to rad ians

11 i f d l_ l i s t [ i ] > 0 .001745 :
12 r f = ( d i s t a n c e_ l i s t [ i ] / dl_radians ) ∗ (math . tan ( dl_radians

↪→ / 2) )
13 e l s e :
14 r f = 1
15 r f _ l i s t . append ( r f )
16 re turn r f _ l i s t
17

18 de f calculate_rf_em ( d l_ l i s t , d i s t a n c e_ l i s t ) :
19 # Calcu la te the r a t i o f a c t o r f o r each segment
20 rf_list_em = [ ]
21 f o r i in range ( l en ( d l_ l i s t ) ) :
22 dl_radians = math . rad ians ( d l_ l i s t [ i ] ) # Convert d l from degree s

↪→ to rad ians
23 r f = ( d i s t a n c e_ l i s t [ i ] / dl_radians ) ∗ (math . tan ( dl_radians / 2)

↪→ )
24 rf_list_em . append ( r f )
25 re turn rf_list_em

torque_drag.py
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1 import math
2 from i n t e r p o l a t i o n import i n t e r p o l a t i o n
3 from RF import c a l c u l a t e_r f
4 import numpy as np
5 import math
6 from DL_function import ca l cu l a t e_d l
7 from RF import calculate_rf_em
8

9

10 #Function c a l c u l a t e s change in z−coo rd ina t e s
11 de f ca l cu la te_z2 ( new_inc_list , new_azi_list , r f_list_em ) :
12 z1 = 0
13 new_z_coords = [ z1 ]
14

15 f o r i in range ( l en ( new_inc_list ) −1) :
16 inc1 = math . rad ians ( new_inc_list [ i ] )
17 inc2 = math . rad ians ( new_inc_list [ i + 1 ] ) i f i + 1 < len (

↪→ new_inc_list ) e l s e inc1
18 r f = rf_list_em [ i % len ( rf_list_em ) ]
19

20 z2 = z1 + (math . cos ( inc1 ) + math . cos ( inc2 ) ) ∗ r f
21 new_z_coords . append ( z2 )
22

23 z1 = z2
24

25 re turn new_z_coords
26

27 #Function c a l c u l a t e s we l lbo r e curve with same index as max l en (MD_list )
28 de f ca lcu late_wel lbore_curve ( new_inc_list , new_azi_list ) :
29 wel lbore_curve = np . empty ( l en ( new_inc_list ) , dtype=f l o a t )
30

31 f o r i in range ( l en ( new_inc_list ) − 1) :
32 a z i_d i f f = math . rad ians ( new_azi_list [ i + 1 ] − new_azi_list [ i ] )
33 i n c_d i f f = math . rad ians ( new_inc_list [ i + 1 ] − new_inc_list [ i ] )
34 k = math . sq r t ( i n c_d i f f ∗∗2 + math . s i n (math . rad ians ( new_inc_list [

↪→ i ] ) ) ∗∗2 ∗ a z i_d i f f ∗∗2)
35

36 wel lbore_curve [ i ] = k
37 re turn wel lbore_curve
38

39 #Since the dogleg i s constant between two points , the d l_ l i s t had to be
↪→ extended to match l en ( new_md_list )

40 de f ca lcu late_repeated_dl ( new_inc_list , new_azi_list , d i s t an c e_ l i s t ,
↪→ new_md_list ) :

41 dl_values = [ ]
42 f o r i in range ( l en ( new_md_list ) − 1) :
43 inc1 = math . rad ians ( new_inc_list [ i ] )
44 az i 1 = math . rad ians ( new_azi_list [ i ] )
45 inc2 = math . rad ians ( new_inc_list [ i + 1 ] )
46 az i 2 = math . rad ians ( new_azi_list [ i + 1 ] )
47 d i s t ance = 1
48

49 dl = ca l cu l a t e_d l ( inc1 , az i1 , inc2 , az i2 , d i s t anc e )
50 dl_values . append ( d l )
51 re turn np . array ( dl_values )
52

53 #Since the RF i s constant between two points , the RF had to be extended
↪→ to match l en ( new_md_list )
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54 de f ca l cu la t e_r f_va lue s ( d l_ l i s t , new_md_list , d i s t a n c e_ l i s t ) :
55 r f_va lues = [ ]
56 t o ta l_d i s tance = 0
57 next_rf_distance = new_md_list [ 0 ]
58

59 f o r i in range ( l en ( d l_ l i s t ) ) :
60 t o ta l_d i s tance += new_md_list [ i ]
61

62 i f t o ta l_d i s tance >= next_rf_distance or i == len ( d l_ l i s t ) − 1 :
63 r f = calculate_rf_em ( [ d l_ l i s t [ i ] ] , d i s t a n c e_ l i s t ) [ 0 ]
64 r f_va lues . append ( r f )
65 next_rf_distance += 50
66 e l s e :
67 r f_va lues . append ( r f_va lues [ −1] i f r f_va lues e l s e r f )
68 re turn np . array ( r f_va lues )
69

70 #Creates a l i s t o f l en (max( md_list ) so that we can c a l c u l a t e drag
↪→ f o r c e s every meter .

71 de f interpolate_every_meter ( i n c_ l i s t , a z i_ l i s t , d l_ l i s t , d i s t anc e_ l i s t ,
↪→ wellbore_curve , md_list , z_coords , inc_l i s t_rad ians ,
↪→ az i_l i s t_rad ians , d l_l i s t_rad ians , wanted_depth ) :

72 start_depth = md_list [ 0 ] i f md_list [ 0 ] != 0 e l s e 1
73 end_depth = md_list [ −1]
74 new_md_list = np . arange ( start_depth , end_depth + 1)
75 new_inc_list = np . empty ( new_md_list . shape , dtype=f l o a t )
76 new_azi_list = np . empty ( new_md_list . shape , dtype=f l o a t )
77 new_z_list = np . empty ( new_md_list . shape , dtype=f l o a t )
78 z_coords = z_coords
79 new_rf_list = np . empty ( new_md_list . shape , dtype=f l o a t )
80

81 f o r depth_idx , depth in np . ndenumerate ( new_md_list ) :
82 r e s u l t = i n t e r p o l a t i o n ( inc_l i s t_rad ians , az i_ l i s t_rad ians ,

↪→ dl_l i s t_rad ians , d i s t an c e_ l i s t , wel lbore_curve , depth ,
↪→ md_list )

83 i f r e s u l t i s not None :
84 des_inc , des_azi , d istance_from_start = r e s u l t
85 des_inc = f l o a t ( des_inc . s p l i t ( ) [ −1])
86 des_azi = f l o a t ( des_azi . s p l i t ( ) [ −1])
87 new_inc_list [ depth_idx [ 0 ] ] = des_inc
88 new_azi_list [ depth_idx [ 0 ] ] = des_azi
89 i = 0
90 whi le i < l en ( md_list ) − 1 and depth > md_list [ i + 1 ] :
91 i += 1
92 r f = ca l cu la t e_r f_va lue s ( [ d l_ l i s t [ i ] ] , [ d i s t a n c e_ l i s t [ i ] ] ,

↪→ new_md_list ) [ 0 ]
93 new_rf_list [ depth_idx [ 0 ] ] = r f
94 new_z_list = ca l cu la te_z2 ( new_inc_list , new_azi_list , new_rf_list )
95 new_inc_list [ −1] = i n c_ l i s t [ −1]
96 new_azi_list [ −1] = a z i_ l i s t [ −1]
97 re turn new_md_list , new_inc_list , new_azi_list , new_z_list
98

99 #Calcu la te nz
100 de f nz ( new_inc_list , wellbore_curve_extended , d l_l i s t_ext , new_md_list )

↪→ :
101 nz_values = np . empty ( l en ( new_md_list ) , dtype=f l o a t )
102 f o r i in range ( l en ( new_md_list )−1) :
103 i f i < l en ( new_md_list ) :
104 distance_from_start = new_md_list [ i + 1 ] − new_md_list [ i ]
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105 nz_values [ i ] = −(1/wellbore_curve_extended [ i ] ) ∗ math . s i n (
↪→ math . rad ians ( new_inc_list [ i ] ) ) ∗ math . rad ians (
↪→ new_inc_list [ i +1] − new_inc_list [ i ] )

106 nz_values [ −1] = nz_values [−3 ]
107 nz_values [ −2] = nz_values [−3 ]
108 re turn nz_values
109

110 #ca l c u l a t e bz
111 de f bz ( inc_l i s t_rad ians , az i_ l i s t_rad ians , d l_l i s t_rad ians , md_list ,

↪→ d i s t a n c e_ l i s t ) :
112 bz_values = np . empty ( l en ( md_list ) −1, dtype=f l o a t )
113 f o r i in range ( l en ( md_list ) −1) :
114 bz = (math . s i n ( inc_l i s t_rad ians [ i ] ) ∗ math . s i n ( inc_l i s t_rad ians

↪→ [ i + 1 ] ) ∗ math . s i n ( a z i_ l i s t_rad i an s [ i + 1 ] −
↪→ az i_ l i s t_rad i an s [ i ] ) ) \

115 / math . s i n ( d l_ l i s t_rad ians [ i ] )
116 bz_values [ i ] = bz
117 re turn bz_values
118

119 #ca l c u l a t e tz
120 de f tz ( new_inc_list , new_dl_list , wellbore_curve_extended ) :
121 tz_values = np . empty ( l en ( new_inc_list ) , dtype=f l o a t )
122 f o r i in range ( l en ( new_inc_list )−1) :
123 i f i < l en ( new_inc_list ) :
124 tz_values [ i ] = math . cos (math . rad ians ( new_inc_list [ i ] ) )
125 tz_values [ −1] = tz_values [ −2]
126 re turn tz_values
127

128 #drag c a l c u l a t i o n f o r h o i s t i n g
129 de f calculate_torque_drag_h (wbp , f f , new_md_list ,

↪→ wellbore_curve_extended , nz_l i s t , bz_l i s t , t z_ l i s t , new_inc_list
↪→ , new_azi_list ) :

130 force_array = np . empty ( l en ( new_md_list ) , dtype=f l o a t )
131 f 1 = 0
132 new_md_list_reversed = new_md_list [ : : −1 ]
133 wel lbore_curve_reversed = wellbore_curve_extended [ : : −1 ]
134 nz_l i s t_rever sed = nz_l i s t [ : : −1 ]
135 bz_l i s t_rever sed = bz_l i s t [ : : −1 ]
136 t z_ l i s t_reve r s ed = t z_ l i s t [ : : −1 ]
137

138 # ca l c u l a t e i n i t i a l f o r c e
139 tz_value = tz_l i s t_reve r s ed [ 0 ]
140 nz_value = nz_l i s t_rever sed [ 0 ]
141 bz_value = bz_l i s t_rever sed [ 0 ]
142 wellbore_curve_value = wel lbore_curve_reversed [ 0 ]
143

144 cumulat ive_force = 0
145

146 f o r idx in range (0 , l en ( new_md_list_reversed ) ) :
147 tz_value = tz_l i s t_reve r s ed [ idx ]
148 nz_value = nz_l i s t_rever sed [ idx ]
149 bz_value = bz_l i s t_rever sed [ idx ]
150 wellbore_curve_value = wel lbore_curve_reversed [ idx ]
151

152 c f = np . sq r t ( ( cumulat ive_force ∗ wel lbore_curve_value + wbp ∗
↪→ nz_value ) ∗∗ 2 + (wbp ∗ bz_value ) ∗∗ 2)

153 a = wbp ∗ tz_value
154 de l ta_fo rce = ( a + f f ∗ c f )
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155 cumulat ive_force += de l ta_fo rce
156

157 force_array [− idx − 1 ] = cumulat ive_force
158

159 re turn force_array
160

161 #drag c a l c u l a t i o n f o r lower ing
162 de f calculate_torque_drag_l (wbp , f f , new_md_list ,

↪→ wellbore_curve_extended , nz_l i s t , bz_l i s t , t z_ l i s t , new_inc_list
↪→ , new_azi_list ) :

163 force_array = np . empty ( l en ( new_md_list ) , dtype=f l o a t )
164 f 1 = 0
165 new_md_list_reversed = new_md_list [ : : −1 ]
166 wel lbore_curve_reversed = wellbore_curve_extended [ : : −1 ]
167 nz_l i s t_rever sed = nz_l i s t [ : : −1 ]
168 bz_l i s t_rever sed = bz_l i s t [ : : −1 ]
169 t z_ l i s t_reve r s ed = t z_ l i s t [ : : −1 ]
170

171 # ca l c u l a t e i n i t i a l f o r c e
172 tz_value = tz_l i s t_reve r s ed [ 0 ]
173 nz_value = nz_l i s t_rever sed [ 0 ]
174 bz_value = bz_l i s t_rever sed [ 0 ]
175 wellbore_curve_value = wel lbore_curve_reversed [ 0 ]
176 cumulat ive_force = 0
177 f o r idx in range (0 , l en ( new_md_list_reversed ) ) :
178 tz_value = tz_l i s t_reve r s ed [ idx ]
179 nz_value = nz_l i s t_rever sed [ idx ]
180 bz_value = bz_l i s t_rever sed [ idx ]
181 wellbore_curve_value = wel lbore_curve_reversed [ idx ]
182 c f = np . sq r t ( ( cumulat ive_force ∗ wel lbore_curve_value + wbp ∗

↪→ nz_value ) ∗∗ 2 + (wbp ∗ bz_value ) ∗∗ 2)
183 a = wbp ∗ tz_value
184 de l ta_fo rce = ( a − f f ∗ c f )
185 cumulat ive_force += de l ta_fo rce
186

187 force_array [− idx − 1 ] = cumulat ive_force
188

189 re turn force_array
190

191 #This func t i on was c rea ted in the case that the re are d i f f e r e n t wbp
↪→ va lue s at d i f f e r e n t po in t s in the wel lbore ,

192 # fo r example i f used f o r a d r i l l s t r i n g ra the r than ca s ing and there
↪→ are d i f f e r e n t weights at d i f f e r e n t segments

193 de f get_wbp_changes ( new_z_list ) :
194 wbp_changes = [ ]
195 min_meter = min ( new_z_list )
196 max_meter = max( new_z_list )
197

198 start_wbp = input ( "Enter the s t a r t va lue o f WBP: " )
199 t ry :
200 start_wbp = f l o a t ( start_wbp )
201 except ValueError :
202 pr in t ( " Inva l i d input . P lease ente r a number f o r the s t a r t va lue

↪→ o f WBP. " )
203 re turn wbp_changes
204

205 wbp_changes . append ( ( 0 , start_wbp ) ) # add the s t a r t i n g po int wbp to
↪→ the l i s t
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206

207 whi le True :
208 meter = input ( "Enter the meter at which wbp changes , or ’ done ’

↪→ to f i n i s h : " )
209 i f meter . lower ( ) == ’ done ’ :
210 break
211 wbp = input ( "Enter the new wbp value at t h i s meter : " )
212 t ry :
213 meter_value = in t ( meter )
214 i f meter_value < min_meter or meter_value > max_meter :
215 pr in t ( f " I nva l i d input . The meter va lue must be between

↪→ {min_meter} and {max_meter } . " )
216 cont inue
217 wbp_changes . append ( ( meter_value , f l o a t (wbp) ) )
218 except ValueError :
219 pr in t ( " Inva l i d input . P lease ente r numbers only . " )
220

221 # so r t the l i s t o f t up l e s in descending order o f meter
222 wbp_changes . s o r t ( key=lambda x : x [ 0 ] , r e v e r s e=True )
223

224 re turn wbp_changes
225

226 de f f ind_neares t ( array , va lue ) :
227 array = np . asar ray ( array )
228 idx = (np . abs ( array − value ) ) . argmin ( )
229 re turn idx
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