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Abstract

Magnetic resonance (MR) spectroscopy (MRS) modalities provide non-invasive
and non-ionization in vivo imaging tools for preclinical and clinical examinations.
Brain examinations’ standard clinical MR protocols comprise several anatomical
imaging techniques. This work describes the principal physics behind clinical
MRS, spectral analysis paradigm, and MRS applications in clinical routines. The
excellent contrast from the brain’s anatomy partly relies on water’s hydrogen nuclei
relaxation time differences in tissues. Peak fitting and a linear combination of
simulated metabolites are standard algorithms to estimate metabolite intensities
from MR spectra. This thesis aims to implement two popular algorithms on in vivo
clinical MR spectra and compare the quantification estimations of two methods.

Abbreviations: MR, magnetic resonance; MRS, magnetic resonance spectroscopy;
NMR, nuclear magnetic resonance; FWHM, full width at half maximum; T1, spin
lattice; T2, spin-spin; PPM, parts per million; T, tesla; PRESS, point-resolved
spectroscopy; FID, free induction decay; FT, Fourier transformation; RF, ra-
diofrequency field; AMARES, Advanced Method for Accurate, Robust, and Effi-
cient Spectra; MRSI, magnetic resonance spectroscopy imaging; Cr, creatine; PCr,
Phosphocreatine; GPC, Glycerylphosphocholine; NAAG, N-Acetylaspartylglutamate;
SNR, signal to noise ratio; SD, standard deviation.

Keywords: magnetic resonance spectroscopy, fitting, quantification, metabolites,
chemical shifts, brain chemistry.
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Chapter 1

Introduction

1.1 Introduction

This thesis aims to examine the reproducibility of previously acquired MRS data on
either 3 Tesla (T) or 1.5T Point RESolved Spectroscopy (PRESS) pulse sequence
and the reproducibility of the fitting outcomes. This will be done using magnetic
resonance spectroscopy (MRS) specialized software to produce a table including
quantified concentrations of selected metabolites. Furthermore, there will also be
a brief section on the clinical applications and history of MRS. [14]

1.2 History

MSR slowly started in the 1940s and was a result of the research regarding atomic
nuclei behaviour around magnetic fields. It was in 1946 that Felix Bloch and
Edward Purcell independently discovered the phenomenon of NMR when atomic
nuclei were placed in a magnetic field while being exposed to a specific frequency
of electromagnetic radiation.

This led the early work of NMR to explore the chemical and physical properties
of molecules and materials. In 1952 one of the biggest breakthroughs in NMR
was made by Erwin Hahn and his technique called spin echo spectroscopy. This
technique greatly improved the accuracy of NMR measurements and paved the
way for more sophisticated applications.
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8 Chapter 1 Introduction

In the 1970s and 1980s, several advances in computer technology, new magnetic
materials and hardware led to rapid progress in NMR and other related techniques
such as MRI and MRS. This time in history is especially important because the
focus and application of these techniques started to shift towards chemical com-
position of biological tissues and how it could be possible to obtain information
about diseases and metabolic processes. [9]

1.3 NMR versus MRS

Nuclear Magnetic Resonance (NMR) is a versatile analytical technique used in
chemistry to identify molecules and determine their structure. This is done by
making a spectrum of radio frequencies of each atom’s nuclei resonate to the
strong magnetic field that affects them. In clinical applications, the technique is
referred to as MRS, with the main difference being that MRS is concerned with
both identifying the molecule or metabolite and measuring its concentration. [7]

While NMR and MRS share the same underlying principle, the use of the term
"nuclear" in NMR can be misleading, as it is not associated with nuclear ionizing
radiation. This has led to the adoption of the term MRS to avoid confusion.
The sensitivity of MRS to detect and measure metabolites makes it a valuable
tool for observing subtle changes in tissue metabolites, which can be indicative of
disease onset or progression. This is especially important in clinical research and
practice where accurate quantification of metabolites can help in the diagnosis and
monitoring of various diseases, including neurodegenerative disorders, cancers, and
cardiovascular diseases. [8]

Overall, the use of MRS in clinical research and practice offers promising potential
for the development of biomarkers and new insights into disease mechanisms which
makes it a valuable tool for clinical research and practice, particularly in the fields
of neurology, oncology, and cardiology.

1.4 MRS reproducibility and fitting

MRI and MRS technology have been available for over 30 years and show great
possibilities, but they have yet to be widely adopted. The main causes are gen-
erally found to be the low spatial resolution of MRS compared to other imaging
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modalities, long acquisition times required for obtaining high-quality MRS data,
quality of data, inadequate analysis techniques and a general lack of awareness
and appreciation from the clinical community. [17]

Simply put the key challenge is the reproducibility and consistency of MRS mea-
surements and data. In practice problems often arise because of different hardware,
software, and analysis methods, which then undermines the reliability of MRS as
a resource in a clinical setting. Therefore, efforts have been made to develop stan-
dardized protocols and quality control measures to improve the reproducibility
and consistency of MRS data and analysis.

The aim of these efforts is to promote wider adoption of MRS technology in clinical
research and practice by providing reliable and consistent data that can be used to
improve diagnostic accuracy, treatment planning, and monitoring of disease pro-
gression. As such, the development and implementation of standardized protocols
and quality control measures are essential for unlocking the full potential of MRS
technology in clinical practice.

This thesis aims to evaluate the different aspects of MRS data fitting, including
hardware and software variations, acquisition methods, and analysis techniques,
with the goal of enhancing reproducibility and consistency. By identifying areas
of improvement and proposing solutions, this research aims to contribute to the
wider adoption and utilization of MRS technology in clinical research and practice
[1].

1.5 Outline

This thesis is divided into 5 chapters. Chapter 1 is the introduction which covers
the history, the current state of MRS research, core concepts, limitations and the
overall structure of this thesis. Chapter 2 builds upon the background, introduces
the theory of the thesis, gives a general understanding of the different software,
the biochemistry and fundamental physics of MRS. Chapter 3 Gives an in dept
explanation of how the different softwares were used in this work. Chapter 4 is
were the results are presented and a suggestion of these results are made. And
finally, Chapter 5 looks at the results as a whole, discussing accuracy and success
of the reproducibility, possible errors or improvements and the possible future of
MRS research.
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Chapter 4 - Results
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Chapter 2

Background

2.1 Fitting method and theory

In the process of quantifying MRS data it is important to handle the given data
properly. Meaning that a proper framework of fitting methods and analyzing is
implemented. This section is therefor dedicated to exploring the most common
fitting methods and their role in enhancing data interpolation and quality.

For spectral fitting there are mainly two mathematical methods that are used, the
Lorentzian and Gaussian method [20]. In equation (2.1) and (2.2) F represents
the Full width at half maximum (FWHM), E represents mean of the curve and h
represents the height or amplitude:

G(x;F,E, h) = h · exp
[
−4 ln 2

(x− E)2

F 2

]
(2.1)

L(x;F,E, h) =
h

1 + 4 · (x−E)2

F 2

(2.2)

The Gaussian lineshape distinguishes itself with its bell-shaped curve that is sym-
metric and smoothly decays to zero. In the context of MRS this method is best
applied to data that is well-resolved with low levels of signal loss, distortion, or
asymmetry. Meaning that the width determined by the standard deviation (SD) is
particularly accurate at displaying concentration values of metabolites if the signal
to noise ratio (SNR) is high with a well-defined signal. Because of this there may

11



12 Chapter 2 Background

be some scenarios where Gaussian distribution is not ideal for the data, and it
might be necessary to add asymmetry for a better fit.

While both Gaussian and Lorentzian lineshapes have a symmetrical curve, Lorentzian
distinguishes itself with its more peaked curve and broader tail when comparing it
to Gaussian. In principle this makes Lorentzian a better candidate for data that
is distorted, asymmetric or with overlap between different peaks of metabolites.
FWHM is the reason for these characteristics when using Lorentzian distribution.
FWHM is the ratio between width of the peak and the maximum intensity, mean-
ing that data with overlapping peaks due to asymmetric reading or a lower SNR
can still be distinguished from one another [20].

For this reason while using both jMRUI and LCModel the SD is shown for each
metabolite and for the residue. This enabels the user to choose an appropriate
approach to quantifying the data and the certainty of the result. That being said
LCModel does not directly use Gaussian or Lorentzian distrubution like jMRUI
does, but rather a predefined basis set.

2.2 LCModel

LCModel (Linear Combination of Model spectra) is a commonly used software
tool for analyzing MRS data and accurately quantifying metabolites concentra-
tions. LCModel can analyze MRS data from nuclear magnetic resonance (NMR)
or in vivo clinical or preclinical MRI systems.

LCModel employs a mathematical model representing the observed spectrum as
a linear combination of basis spectra, which are representative of the individual
metabolites. Combining different non-linear fitting algorithms, the model can es-
timate the contribution of each metabolite to the given MR spectrum. It enables
the identification of overlapping peaks and estimation of metabolite concentra-
tions. The platform incorporates several advanced tools to improve the analysis
accuracy, such as eddy current correction, water suppression algorithms, spectral
artifacts correction, and macromolecule estimations.
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LCModel is used to quantitatively analyze spectra acquired from the brain, mus-
cles, liver, prostate, and other tissues. It enables quantitative estimates of the
concentrations of various metabolites in the tissue. For example, in the brain in-
vestigation, metabolites of interest include compounds such as N-acetyl-aspartate
(NAA), choline-containing compounds (total Cho), creatine and phosphocreatine
(tCr), glutamine, glutamate, γ-Aminobutyric acid (GABA), 2-hydroxyglutarate,
lactate, and Myo-inositol. [18]

Figure 2.1: Basis set displaying spectra for different metabolites separately
(Obtained from ResearchGate [12]).

To illustrate, an example basis set with simulated spectra for several common
metabolites, including NAA, choline, creatine, and lactate is shown in Figure 1.
These simulated spectra represent the unique spectral profiles of each metabolite,
including their chemical shifts, linewidths, and amplitudes.

The basis set used by LCModel depends on the specific MRS acquisition param-
eters, such as the magnetic field strength, time, and vendor. LCModel includes
several built-in basis sets for common metabolites, but users can also create cus-
tom basis sets for specific experimental conditions such as different organs, species
or if the metabolite in question does not exist in the basis set.
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2.3 jMRUI platform

jMRUI (Java-based Magnetic Resonance User Interface) is a easily accessible soft-
ware for MRS processing. It provides a user-friendly interface, with versitile tools
for singel- and multivoxel MR spctrsocpy analysis, NMR signal processing, and
simulation options. It is also capable of handling different sets of raw MRS data,
such as Siemens, Phillips, Dicom data and many other common formats. The
platform is widely used in both research and clinical settings for studying brain
metabolism, cancer studies, and other applications in the field of magnetic reso-
nance. [19]

Figure 2.2: Overview of jMRUI platform displaying the 9 functions of the
software.

Advanced Method for Accurate, Robust, and Efficient Spectral (AMARES) fitting
is a quantitative toolbox offered in the jMRUI platform. AMARES can estimate
metabolite concentrations from MR spectra acquired from various tissues and
from different MRI vendors. The toolbox employs a non-linear fitting algorithm
that models the acquired spectrum as a sum of individual metabolite resonances.
The algorithm iteratively adjusts the metabolite model parameters to improve the
fitting and find the least residuals of the experimental spectra and fitted ones.

The fitting process in AMARES considers several factors that can affect the accu-
racy and reliability of the results. It incorporates knowledge about the metabolite
resonances’ line shapes, frequencies, FWHM, and coupling patterns. Also, the
algorithm includes methods to correct spectral artifacts, baseline distortion, and
water, macromolecules, and lipid contaminations. There is also a section called
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"prior knowledge" which allows the user to adjust frequencies, magnitude and line
width from previously acquired knowledge for a better fit.

Figure 2.3: Example of fitting from raw MRS data processed by jMRUI where
peak named 1 is NAA and the peak named 2 is Cr.

Figure 2.3 shows an example of jMRUI platform that enables the user to opti-
mize different settings for better data visualization. It is possible to zoom, pick
desired peaks and spectral fit data. This makes it a useful resource for uncovering
patterns and extracting valuable information from data sets that might otherwise
go unnoticed. In this particular example it is possible to see that metabolites are
not properly fitted. This is especially the case when looking at NAA, there is
negative spike in the residue that is clearly visible. For a better fit adjustments
would have to be made in order to cancel out the negative signal in the residue.
This could be achieved by further defining the frequency of NAA, and possibly
making som sort of soft constraint. The same it true for Cr, the metabolites in
between and the water signal itself.

As previously mentioned jMRUI harnesses the power of both Lorentzian and Gaus-
sian distributions in quantifying data alongside a predefined model of spectra.
This unique combination equips jMRUI with the ability to yield accurate results
even from distorted or seemingly "random" data sets, setting it apart from other
software options. However, this process demands a comprehensive understanding
of data manipulation techniques to ensure that the results remain interpretable
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without sacrificing data readability. Striking the right balance between manipula-
tion and data integrity is crucial when working with jMRUI.

2.4 In vivo MRS

When dealing with tissue experiments prior knowledge of different metabolite con-
centrations is important. This is due to knowing a rough estimate of the ratio
between metabolites when analyzing results, but also for detecting abnormalities
in clinical use. Another important thing to point out is dealing with the water
signal. Since around 60% of the human body is water the signal feedback from
MRS is dominated by the water signal [3]. It is therefor important when in this
case dealing with magnetic resonance spectroscopy imaging (MRSI) of the brain
to cancel out the water signal.

2.4.1 Metabolites

Producing an MRS spectra can be done by using a multitude of metbolites such
as 1H, 31P, 13C and 23Na each of which will generate a somewhat sensible spectra
[11]. However, 1H is considered being superior to work with because the hydrogen
nucleus 1H is highly sensitive to the magnetic resonance phenomenon, availability
and concentration of it as a metabolite within the body. Moreover the equipment
needed for this is readily available within most facilities that facilitates MR-scans.

Firstly it is important to define what a metabolite is in the context of the body.
Metabolites are small molecules that play crucial roles in the metabolic processes
of living organisms. They participate in various biochemical pathways and serve as
important components for the formation of larger molecules, regulators of cellular
activities, and molecules involved in intercellular communication. Metabolites en-
compass a diverse array of compounds, including sugars, amino acids, nucleotides,
fatty acids, vitamins, hormones, and other organic substances.

Understanding the functions and roles of metabolites is vital for comprehend-
ing the intricate workings of cellular processes, discovering markers for diseases,
and developing targeted therapeutic approaches. Analyzing metabolites provides
a comprehensive perspective on the metabolic state of an organism, furnishing
valuable information about its physiological and biochemical condition.
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2.4.2 Metabolite biomarkers

The most common field strength in this application is considered to be between
1.5 and 3.0 tesla. 3.0 Tesla is generally seen as the better option when it comes to
brain scans because of its higher image quality and shorter acquisition time. That
being said, there are also some studies suggesting that 3.0 Tesla might give lesser
results than 1.5 Tesla, this was espacially found to be the case when imaging the
liver [16].

When it comes to the subject of selecting metabolites, it is estimated to be between
2,000 and 20,000 metabolites present in the body [2], of these there are especially 3
of interest, N-acetylaspartate(NAA), creatine (Cr) and choline(Cho). The reason
for this is both the important processes of which each metabolite takes part in, but
also the expected concentration of these at any given time. For example is NAA
considered to be of high importance in the cells mitochondria. An unexpected
increase or decrease could suggest something more sinister taking place where the
abnormality is detected.

Tumor cells exhibit distinct metabolic profiles compared to their normal counter-
parts, reflecting adaptations that support their uncontrolled growth and survival.
For example, the metabolic phenomenon known as the Warburg effect [13], where
tumors exhibit altered glucose metabolism, is commonly observed. This effect
involves increased glucose uptake and lactate production even in the presence
of oxygen. Additionally, various other metabolites including amino acids, lipids,
nucleotides, and intermediates of metabolic pathways are implicated in tumor
metabolism [5].

By utilizing methods such as Magnetic Resonance Spectroscopy, researchers can
explore these metabolic differences without invasive procedures. This allows for the
analysis and characterization of specific metabolites in tumor tissues or biofluids,
providing valuable insights into the rewired metabolism of cancer cells.

The spectral characteristics is also an important component when choosing a
metabolite to quantify. Meaning that the metabolite in question should be easily
distinguishable from other metabolites. When producing a spectra for lipids this
is espacially the case, they are not as well defined as NAA is on a spectra and have
a much wider signal (ppm). Figure 1 illustrates this by showing how some of the
metabolits like NAA have much more prominent peaks than Glutamine (Gln).
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2.5 MRS physics

Nuclear resonance is the process of measuring the energy absorbed in a given
environment. To understand this we first have to look at what is meant by changes
of energy on a atomic level. When looking at a isotope from a common element,
a magnetic moment is present. Magnetic moment can be referred to as ’spin’,
meaning its rotational movement around its own axis. This property is what is
effected and measured in a magnetic field. When the isotope nuclei is subjected to
a constant magnetic field it might get excited, which is dependent to the orientation
of the nucleus and the field. This causes the isotope to fluctuate between different
energy levels. The rate of released energy from this fluctuation is the reaction that
is being measured [6].

In equation (2.3) "v" represents the velocity or intensity of the frequency, "γ"
represents the gyromagnetic ratio which is specific to a particular nucleus and
"B0" represents the applied magnetic field:

v =
γ

2π
·B0 (2.3)

2.5.1 Magnetic fields

In MRS experiments, a robust and uniform magnetic field is applied to the sample
under investigation. This field aligns the nuclear spins of specific atoms found in
biological molecules, such as hydrogen (1H) or carbon-13 (13C). The alignment of
these spins creates an overall magnetization parallel to the magnetic field direction.
By introducing a second magnetic field, known as the radiofrequency field (RF),
perpendicular to the primary magnetic field, the system can be perturbed. The
RF field has the ability to excite the aligned nuclear spins, causing them to rotate
around the magnetic field direction [10].

The rate of rotation, often referred to as the Larmor frequency, depends on the
strength of the magnetic field and the inherent gyromagnetic properties of the
observed nucleus. The gyromagnetic ratio, an intrinsic property of the nucleus,
governs its sensitivity to the applied magnetic field.
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The reliability and precision of MRS measurements rely on maintaining a stable
and uniform magnetic field. Any fluctuations or non-uniformities in the magnetic
field can introduce distortions in the spectra, consequently impacting the accurate
quantification and interpretation of the signals related to metabolites.

2.5.2 Chemical shifts

When dealing with 1H, the Chemical shifts can be explained as the magnetic field a
proton is subjected to in its environment. The most relevant forces that applies to
this is motion and density of surrounding electrons. Meaning that the composition
of a molecule and how shielded the proton is by the surrounding electrons effects
the chemical shift. For example, if the proton is shielded by a significant amount
of electrons the frequency will be shifted ’up field’, producing a frequency that is
of a lower chemical shift. Whereas the opposite is true if the proton is shielded to
a lesser degree.

When analysing MRS results one metabolite may have two different peaks. This
appearance is due to an effect called Spin-Spin (T2) Coupling. As previously
mentioned each proton is affected by its local environment, this is not only relevant
to electrons, but also other protons. The spin of a proton caused by its local
environment can also effect another proton by making its magnetic moment to
be slightly weaker or stronger. When examining this effect on a larger scale it
becomes evident that roughly half of the neighboring protons are parallel and
half perpendicular to the encompassing magnetic field. That is why the peaks
on a spectrum can appear split, where the smaller peak appears to be shifted
downstream somewhat. With this knowledge more precise measurements of each
metabolite concentration can be made.

2.5.3 Spectrum and signal production

A core concept in signal formation is spin lattice (T1) relaxation time and T2

relaxtion time. T1 can be described as the time it takes for the nuclear spins
to return to their equilibrium relative to the environment. Meaning the time it
takes for the longitudinal magnetization parallel to the affecting magnetic field to
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recover from an external excitation. T2 relaxtion time reffers to the time it takes
for the transverse magnetization component to return to their equilibrium.

To achieve resonance for the purpose of detecting a characteristic signal, the weak
oscillating field B1 is superimposed onto the B0 field. This works by creating a
momentary high pulse similar to the frequency of the sample in question, which
then will get amplified by oscillation and emitted by the sample temporarily until
the system return to a equilibrium. From this process a signal is created called free
induction decay (FID). After haveing obtained the FID signal a process known as
Fourier transformation (FT).

F (ω) =

∫ ∞

−∞
f(t) · e−iωtdt (2.4)

f(t) =
1

2π

∫ ∞

−∞
F (ω) · eiωtdω (2.5)

Figure 2.4: Illustration of how the obtained FID signal is decoded by using
Fourier transformation (FT) to provide MR spectrum in frequency domain.
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Materials and Methods

3.1 MR Spectroscopy Data

We retrieved data from an openly available source provided by Archibald J. and
colleagues [4]. This dataset includes MRS data for 15 participants undergoing a
pain paradigm. The data were obtained using a 3 T Philips Achieva scanner (Best,
Netherlands) with a single-channel Transmit-Receive head coil. Proton MRS data
were acquired using PRESS localization sequence with the following parameters:
echo time of 22 ms, repetition time of 4000 ms, 16 averages, a total scan time of
22 min and 4 sec, voxel size of 30× 25× 15 mm3, 2nd order shimming, and 16-step
phase cycle with water suppression using the Excitation option.

3.2 Data Analysis Using jMRUI

JMRUI supports various file formats commonly used in MRS, allowing users to
import and export data from different MRI systems. When working with the
single-voxel MRS data, 1D/Time Series is chosen (Figure 2.2). The data was
acquired on Phillips MR-scan resulting in the use of the Phillips format option in
jMRUI.

Creatine peak was used as reference pivot to adjust the frequency range in ppm
(Figure 3.1). Other metabolites were assigned with regards to the defined ref-
erence at 3.02 ppm. The line width (Hz) was automatically selected by the "Au-
topick" function in AMARES.

21
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Figure 3.1: An example of MRS spectrum acquired from a healthy human
brain. Abbreviation: tNAA, total N-acetyl aspartate; tCr, total creatine; tCho,

total choline.

Figure 3.2: Starting values for NAA, Cr, and Cho in AMARES quantification.

Figures 3.2 and 3.3 illustrates the adjustments that were made to get a better fit.
This was done for this particular data set, while other adjustments were made for
separate data sets depending on their starting values. A trail and error approach
was used when adjusting the fit for each individual MRS data set. Lorentzian and
Gaussian distribution was used for all data sets.
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Figure 3.3: Prior knowledge section before any modifications.

Figure 3.4: Prior knowledge section after modifications to NAA line width,
NAA frequency, Cr line width, and Cr frequency.
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(Figure 3.4) demonstrates how prior knowledge is an important factor in the suc-
cess of quantification. Here, minor adjustments are made to the three metabolites
in focus. This was done gradually until the damp was within a reasonable range
and the residue had no significant peaks. This however is not always a straight
forward process, and some adjustments may harm the end result. Therefor an
understanding of the technical aspect to MRS as well as the biochemistry in the
brain is crucial. Even though the results may look decent from a puerly technical
point of wiev, the results may be unrealistic when looking at the ratio between
certain metabolites. For example is NAA concentration expected to be higher than
Cho concentration in a healthy brain. A deviation from this would be unexpected
or potentially a sign of disease [15].

3.3 Preparation for LCModel analysis

In this study, LCModel was used to quantify MR spectra acquired from healthy
brains. We set to investigate three important metabolites NAA, choline, and
creatine. One essential requirement is preparation of suitable basis-set for the
dataset. A conventional PRESS-sequence basis set with an echo time of 30 ms
for a field strength of 3.0 T was selected. This basis-set provides an optimal prior
knowledge for quantification of our data, simply because it would fit with the echo
time and field strength of the acquisition setup. All spectra were analyzed from 0.8
to 4.2 ppm range to include metabolites of interest up to the water signal (Figure
3.5).

Because of the T1 relaxation time and T2 relaxtion time effect some metabolites
can be located around more than one peak. It is also possible that a metabolite is
bounded in more than one way, meaning that the signal may come from multiple
peaks. For example was both Cr and Phosphocreatine (PCr) peaks counted when
estimating the concentration. Another factor was the SD, which one of many
factors that would indicate the accuracy of the result
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Figure 3.5: LCModels pre-render page displaying different settings and options
for MRS quantification.

Figure 3.6: LCModels results, a multitude of metabolites, their concentration
and SD.





Chapter 4

Results

4.1 Fitting Outcome Using jMRUI

Figure 4.1: Result section in jMRUI with four spectra; residue, indivdual
components, estimate and original. Peak 1 represents NAA, peak 2 is Cr and

peak 3 Cho.

(Figure 4.6)

27
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Figure 4.2: Quantification in
jMRUI using Gaussian distru-

bution

Figure 4.3: Quantification in
jMRUI using Lorentzian distru-

bution

(Figure 4.2 and 4.3) Is an example showing how the use of two different distru-
bution methods impacted the result. In this case the use of Gaussian distribution
benefited the accuracy of the result. This can be seen in the Damp(Hz) section
where the spread is smaller when using Gaussian.

Figure 4.4: Quantification in
jMRUI using Gaussian distru-

bution

Figure 4.5: Quantification in
jMRUI using Lorentzian distru-

bution

(Figure 4.4 and 4.5) Illustrates the effect of distribution method visually. It
becomes apparent that the width of the peaks are affected. In the example above
it is what separates peak 2 and 3.

4.2 Fitting Outcome Using LCModel

From Figure 3.6 Glycerylphosphocholine (GPC), NAA+N-Acetylaspartylglutamate
(NAAG) and Cr+PCr was used to estimate concentrations. The blue color indi-
cates a good fit based on SD. To set a reference point the difference between,
the measured NAA concentration in subject 1 using jMRUI determined the ratio
found in NAA concentration using LCModel. This ratio difference was then used
on the other subjects and the metabolites in focus. By doing this it was possible
to compare the results of jMRUI and LCModel.
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Figure 4.6: Result page in LCModel with multiple metabolites, SD and con-
centrations.

4.3 Fitting Outcome Comparison

Tests jMRUI conc(E-04). LCModel conc(E-04). Total Deviation(%)
NAA Cr Cho NAA Cr Cho %

1 7.55 2.49 2.12 7.55 2.28 2.59 3
2 4.35 2.37 1.84 4.35 1.98 1.42 17
3 3.73 1.97 1.37 3.73 2.00 1.13 7
4 3.31 2.61 7.19 3.31 2.00 7.28 10
5 4.77 2.29 1.66 4.77 2.48 1.33 6
6 2.67 2.33 2.38 4.08 2.34 2.74 16
7 2.75 1.89 1.65 2.75 2.68 7.41 31
8 2.85 1.54 1.27 2.65 2.20 7.41 16
9 2.11 3.02 2.92 2.53 2.39 5.48 247
10 3.59 2.74 2.12 2.83 2.77 7.06 75
11 3.86 2.59 2.31 3.37 1.97 8.04 78
12 2.62 2.42 1.68 2.96 3.08 4.46 81
13 3.08 3.02 2.75 1.57 4.16 3.23 59
14 2.87 2.06 1.65 2.99 2.04 7.27 41
15 2.91 1.33 2.58 2.42 2.22 3.33 318

The table above shows all the different concentrations estimated in jMRUI and
LCModel for NAA, Cr and Cho for all the 15 subjects. The right most bracket
compares the deviation between jMRUI concentration estimates and LCModel
concentration estimates. This was done by first comparing each metabolite to
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itslef across the two softwares. After this was done for all three the joint deviation
was summed up and divided by 3 to get the final total deviation. The colors
indicate the goodness of the fit, were values with no colors are decent, yellow
colored values are bad and red colored values are unusable because of the large
discrepancy between the concentrations. The color scale that is purposed was
inspired by the research article "Comparison of seven modelling algorithms for γ-
aminobutyric acid–edited proton magnetic resonance spectroscopy", but with the
scale range being even larger due to Cho fitting. [1]

4.4 Conclusion

The results from the fitting outcome comparison shows similar deviations with a
few exceptions. When looking at the average deviation the result shows 67%, but
by removing the deviation numbers marked in red we get 34% deviation, and by
removing the deviation marked in yellow we get 21% deviation.

When analyzing each individual metabolite the results indicate that NAA was
overall the best fitted metabolite closely followed by Cr. By looking at the goodness
of the fit between the first two (NAA and Cr) metabolites and the third metabolite
(Cho) it is obvious that Cho is fitted the worst, by far.
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Discussion and Conclusion

As mentioned in the result section of this thesis it is obvious that Cho is poorly
fitted. It is so poorly fitted when comparing it to the two different software that
the data would be unusable any kind of data of fitting analyzing. Factors that
might have caused this seems to be connected to LCModel. This suspicion is based
on some of the metabolite ratios found in LCModel, whereas the source of an error
was easier to identify when working with jMRUI because the visual representation
of residue and personally picking peaks from a known refrence point. A viable
solution to this problem might be to change the basis set. Although I found many
basis sets, I could not find a basis set that matched the ET perfectly. This may
have caused the misleading concentration results of the metabolites, which affected
Cho in particular.

To identify the source of the problem different quantification methods could also
have been used, as it is hard evaluating the origin of the mistake when only having
two sources. Multiple quantification methods would possibly have made it easier
to uncover if the mistake was due to choosing the wrong basis set or if the error
was caused by the user.

On the subject of having to choose between multiple basis sets, problems of imple-
menting MRS in a clinical setting may arise. When dealing with different ET and
field strengths it might be difficult to choose the right basis set without having
a good understanding of the technical aspects of MRS. On the other side lacking
knowledge about biochemistry and metabolomics might also lead to complications
when dealing with MRS data.

Therefor I wish to highlight this possible problem so that the potential of MRS
can be utilized. There are few techniques that can collect valuable data from

31
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tissues like the brain whilst being non-invasive. Its potential in both uncovering
small changes in metabolic activity, but also the metabolic activity in reaction to
a stimuli makes it applicable for learning purposes about the brain as a whole.
Due to some of the obstacles I have discussed in this thesis the method of MRS
has gone unnoticed by the clinical community and as a result been underused, not
reaching its possible potential. In the future, it is therefor important to further
implement more standardized techniques.
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