

FACULTY OF SCIENCE AND TECHNOLOGYFOR

SIDE

BACHELOR’S THESIS

 Study programme/specialization:

Bachelor of Science in Energy &

Petroleum Engineering

Spring semester, 2023.

Open access

 Author:

 Vegard Berg Harlem

(Author’s signature)

 Supervisor(s):

 Alf Kristian Gjerstad

 Title of bachelor’s thesis:

Comparative Analysis and Enhancement of Simplified Drilling Process Simulation

Models and Exploring Machine Learning for Real-Time Optimization

 Credits: 20 ECTS

 Keywords:

Herschel-Bulkley

Power-Law

Bingham Plastic

Newtonian

Shear Stress

Yield Point

 Number of pages: XI + 53

 + supplemental material/other: 89

Stavanger, 12th June 2023

 II

Comparative Analysis and Enhancement of Simplified Drilling Process

Simulation Models and Exploring Machine Learning for Real-Time

Optimization

By

Vegard Berg Harlem

Bachelor’s Thesis

Presented to the Faculty of Science and Technology

The University of Stavanger

THE UNIVERSITY OF STAVANGER

JUNE 2023

 III

Acknowledgement

I would like to extend my deepest gratitude to my supervisor, A. Kristian Gjerstad, for his

unwavering support, guidance, invaluable insights, and expertise throughout my academic

journey.

Additionally, I would like to convey my heartfelt thanks to my classmates and colleagues for

creating a nurturing and positive atmosphere at the workspace. Their support and collective

enthusiasm have fostered an environment conducive to collaboration and the nurturing of

personal development.

Finally, I am grateful to the University of Stavanger that supported this academic venture,

providing the necessary resources for its successful completion.

 IV

Abstract

Real-time optimization of drilling processes is vital for the efficient and safe operation of the

oil and gas industry. For this, fast and robust models are required to enable automation safety

strategies. Many existing models are computationally intensive while requiring executions

speeds decades faster than real-time for certain automation tasks. This thesis aims to understand

what makes models computationally intensive, compare solutions and propose alternatives, as

well as look at accuracy where simplifications are made.

The research framework involves two models developed in MATLAB, by Alf Kristian Gjerstad

and Kjell Kåre Fjelde, as a starting point. The primary tasks include analyzing the differences

between the models mainly aimed at calculation of frictional pressure loss, evaluating the

reasons for these differences, modifying the models to suit the needs of this thesis, and adding

options for the calculations in the main model, by Alf Kristian Gjerstad.

This thesis presents a thorough investigation of the discrepancies between the two models,

along with implementations and modifications to the main model. A MacineLearning-based

approach is proposed as an alternative to the more computationally intensive versions using

Herschel-Bulkley and Bingham Plastic, to maintain real-time applicability while hopefully

maintaining accuracy. The results demonstrate the potential of the proposed alternative.

 V

Acronyms

ODE – Ordinary Differential Equation

PDE – Partial Differential Equation

RMSE – Root Mean Square Error

 VI

List of Contents

Acknowledgement ... iii

Abstract ... iv

Acronyms ... v

List of Contents ... vi

List of Figures .. x

List of Tables ... xi

1 Introduction ... 12

1.1 Objective .. 12

1.2 The provide well simulation models .. 13

1.3 Alf Kristian Gjerstad Model (Appendix A) ... 13

1.4 Kjell Kåre Fjelde Model (Appendix B) .. 13

1.5 Comparison .. 14

1.6 Starting point .. 14

1.7 A More detailed look at the Gjerstad Model (Appendix A) 15

1.8 A More detailed look at the Fjelde Model (Appendix B) 17

2 Methodology ... 19

2.1 The calculation of friction pressure .. 19

2.2 Expanding the calculation of shear stress to include Non-Newtonian Fluids 22

2.3 Machine learning .. 26

2.4 Random Forest Regression ... 26

2.4.1 Decision Trees ... 27

2.4.2 Root Mean Square Error ... 27

3 Results and Discussion .. 29

3.1 The implementation of the different shear stress calculations 29

3.1.1 Tw_NarrowSlotNewtonianLaminar.m .. 29

3.1.2 Tw_NarrowSlotPowerLawLaminar.m .. 30

 VII

3.1.3 Tw_NarrowSlotBinghamPlasticLaminar.m .. 30

3.1.4 Tw_NarrowSlotHerschelBulkley.m .. 32

3.2 Efficiency and speed of simulations ... 32

3.2.1 The Fjelde Model .. 33

3.2.1.1 Computational Speed ... 33

3.2.1.2 Accuracy ... 34

3.2.1.3 Some values to display robustness ... 34

3.2.2 The Gjerstad Model ... 38

3.2.2.1 Computational Speed ... 38

3.2.2.2 Accuracy ... 39

3.2.1.3 Some values to display robustness ... 39

3.3 The efficiency and accuracy of the different shear stress calculations 43

3.3.1 Tw_NarrowSlotPowerLawLaminar.m .. 43

3.3.2 Tw_NarrowSlotBinghamPlasticLaminar.m .. 44

3.3.3 Tw_NarrowSlotHerschelBulkley.m .. 45

3.4 Machine learning .. 46

3.4.1 Random Forest Regression .. 46

3.4.2 Root Mean Square Error ... 47

3.4.3 Increasing Efficiency ... 49

4 Conclusion ... 51

4.1 Comparison of the Models ... 51

4.2 Implementation of Functions for Non-Newtonian Fluids 51

4.2 Machine Learning .. 52

5 References ... 53

Appendix A Alf Kristian Gjerstad Model .. 54

A.1 MasterAlg_PipeHorizontal.m .. 54

A.2 AlignVectorsValuesToMultipleLength.m ... 59

 VIII

A.3 CalcFluidDensityFromEqOfState.m ... 59

A.4 ComputeRheologyParametersPipe.m .. 60

A.5 fRampAndHold3.m ... 60

A.6 fReynoldsNumber.m ... 62

A.7 fTransition.m ... 63

A.8 NanAndInfCheck.m .. 65

A.9 PipeFlu_PdeGen_Init.m .. 65

A.10 PipeFluGen_2xOrd_Init.m .. 67

A.11 PlotMultiPrSub.m .. 69

A.12 PlotSimple.m ... 70

A.13 PressureDropOverConstriction.m ... 71

A.14 SelectMudTypeOrSetParameters.m .. 72

A.15 SetFluidParametersPrGridDs.m .. 73

A.16 SetPhysicsParam.m ... 74

A.17 SetReynoldsNumberConstants.m .. 75

A.18 Solver_RK4_New.m ... 75

A.19 TwPipeGeoLamTurb.m ... 77

A.20 DsMain_Horizontal_2xOrd_ODE.m .. 81

A.21 DsMain_Horizontal_2xOrd_OLD_ODE.m .. 86

A.22 PipeFlu_SemiImplicitPDE.m .. 92

A.23 PipeFluHrz_2xOrd_Setup ... 97

A.24 PipeFluHrz_InputSignalGenerator.m .. 101

A.25 PipeFluHrz_SemiImplicitPde_Setup.m .. 102

A 26 PipeFluHrz_Step.m ... 104

A.27 Tw_stringNewtonianLaminar.m ... 109

Appendix B Kjell Kåre Fjelde Model .. 111

B.1 main17042023 ... 111

 IX

B.2 csound.m .. 131

B.3 dpfric.m .. 132

B.4 minmod.m .. 133

B.5 pm.m .. 134

B.6 pp.m ... 134

B.7 psim.m ... 135

B.8 psip.m .. 135

B.9 rholiq.m .. 135

B.10 rogas.m .. 136

Appendix C New Code .. 137

C.1 Tw_NarrowSlotNewtonianLaminar.m .. 137

C.2 Tw_NarrowSlotPowerLawLaminar.m .. 137

C.3 Tw_NarrowSlotBinghamPlasticLaminar.m .. 137

C.4 Tw_NarrowSlotHerschelBulkley.m .. 138

C.5 TrainingDataCollector.m ... 139

C.6 TrainingModel.m ... 140

C.7 Tw_NarrowSlotBPWithFlowML.m .. 141

C.8 TestMLvsCalculation.m .. 141

Appendix D Changelog for Alf Kristian Gjerstad Model .. 142

D.1 PipeFluGen_2xOrd_Init.m .. 142

D.2 DsMain_Horizontal_2xOrd_ODE ... 143

D.3 MasterAlg_PipeHorizontal.m .. 143

 X

List of Figures

Figure 1 The Fjelde Model ... 34

Figure 2 .. 35

Figure 3 .. 36

Figure 4 .. 36

Figure 5 .. 37

Figure 6 .. 37

Figure 7 .. 39

Figure 8 .. 40

Figure 9 .. 40

Figure 10 .. 41

Figure 11 .. 41

Figure 12 .. 42

Figure 13 Power Law ... 43

Figure 14 Bingham Plastic ... 44

Figure 15 Herschel-Bulkley ... 45

Figure 16 100 Grown trees ... 47

Figure 17 Visual comparison of calculation versus machine learning 100 trees 48

Figure 18 Visual comparison of calculation versus machine learning 50 trees 50

 XI

List of Tables

Table 1 Parameters for initial comparison ... 15

Table 2 Rheology model equations .. 24

Table 3 Parameters for Robustness .. 35

 12

1 Introduction

The oil and gas industry relies heavily on drilling processes to access and extract valuable

resources from the earth. With the growing demand for energy and the increasing complexity

of drilling operations, there is a pressing need for real-time optimization and automation of

these processes. Real-time optimization can reduce operational costs, increase efficiency, and

enhance safety for both equipment and personnel. To achieve this, fast, robust, and accurate

models that can simulate these processes in real-time or faster is essential.

Modern models for drilling process simulation often involve complex and computationally

intensive calculations. While these models provide a high level of accuracy, their computational

demands often make them unsuitable for real-time application. This has led to a growing

interest in the development of computationally efficient models that can still provide accurate

representations of the drilling processes.

1.1 Objective

This thesis aims to address the challenges of developing a simplified model for drilling process

simulation, with a particular focus on the laminar case in an annulus using slot approximation

for estimation. The model strives to balance computational efficiency with accuracy, primarily

in the context of friction pressure loss calculations. The research will explore the differences

between various models, including Newtonian, Power law, Bingham Plastic, and Herschel-

Bulkley, in their approach to these calculations. A machine learning model will be proposed as

a potential solution to the computational intensity associated with these calculations. The

performance of this machine learning model, in terms of both accuracy and efficiency, will be

thoroughly evaluated.

 13

1.2 The provide well simulation models

In the appendices of my thesis, two distinct MATLAB models are presented: the Alf Kristian

Gjerstad Model (Appendix A) and the Kjell Kåre Fjelde Model (Appendix B). Both models are

designed to perform complex calculations related to well dynamics, but they employ different

methods and functions to achieve their results.

1.3 Alf Kristian Gjerstad Model (Appendix A)

The Gjerstad Model is a comprehensive computational framework designed to simulate and

analyze various aspects of well dynamics. It primarily utilizes an Ordinary Differential

Equation (ODE) approach, providing a balance between computational efficiency and

accuracy. The model includes key scripts for setting up and running the simulation, adjusting

parameters, and generating results. These scripts handle tasks such as initializing the simulation,

setting mud type parameters, solving the ODEs, calculating the rate of change of fluid flow and

pressure, and advancing the simulation by one time step. The Gjerstad Model is a robust tool

for understanding and predicting well dynamics.

The model also includes a suite of functions for initializing and setting up the simulation

(PipeFluGen_2xOrd_Init.m, PipeFluHrz_2xOrd_Setup.m), as well as functions for running the

simulation and generating results (Solver_RK4_New.m, PipeFluHrz_Step.m).

1.4 Kjell Kåre Fjelde Model (Appendix B)

The Fjelde Model, in contrast, is a Partial Differential Equation (PDE) model that employs a

distinct set of functions to achieve similar objectives. This model includes functions for

calculating sound speed, frictional pressure drop, and liquid and gas densities. The use of a PDE

approach allows the Fjelde Model to capture spatial variations in the system, providing a more

detailed and accurate representation of the dynamics. However, it is generally more complex to

solve numerically and may require more computational resources.

 14

1.5 Comparison

While both models aim to simulate and analyze well dynamics, they do so using different

methods and functions. The Gjerstad Model seems to be more comprehensive, with a wider

range of functions for different aspects of the simulation. The Fjelde Model, on the other hand,

appears to be more focused on specific calculations related to flow parameters.

The Gjerstad model, an Ordinary Differential Equation (ODE) model, simplifies the

complexities of the system into a set of differential equations. These equations are then solved

using the Runge-Kutta method, a powerful numerical technique that provides accurate solutions

to the ODEs. This approach allows for a more straightforward numerical solution and

interpretation. However, it may not capture all the intricate dynamics of the system, especially

when spatial variations are significant.

On the other hand, the Fjelde model is a Partial Differential Equation (PDE) model. It considers

spatial variations in the system, providing a more detailed and accurate representation of the

dynamics. However, PDE models are generally more complex to solve numerically and may

require more computational resources. The choice between these models depends on the

specific requirements of the study, such as the level of detail needed and the available

computational resources.

In conclusion, both models are complex and sophisticated tools for analyzing well dynamics.

They each offer unique methods and functions that can be utilized to understand and predict the

behavior of wells.

1.6 Starting point

In order to establish a solid starting point for the development and analysis of the models, it is

crucial to identify and define the relevant parameters that influence the calculations of friction

pressure loss. Table 1 lists these parameters, where they are found and the chosen initial value

for comparison.

 15

Table 1 Parameters for initial comparison

Parameters Kjell Kåre Fjelde Line Alf Kristian Gjerstad Line Value Units Comment

Sim Time main17042023.m 59 MasterAlg_PipeHorizontal.m 42 300 [s]

Length main17042023.m 34 MasterAlg_PipeHorizontal.m 119 4000 [m]

Annular width main17042023.m
161 and
162 Tw_stringNewtonianLaminar 54 0.102 [m]

Added to
Tw_stringNewtonianLaminar
for slot approximation

Diameter main17042023.m
161 and
162 MasterAlg_PipeHorizontal.m 123 0.127 [m]

Temperature main17042023.m 76 and 77 N/A N/A 15 [°C]

Water density main17042023.m 97 and 109 SetPhysicsParam.m 12 1000 [kg/m^3]

Pressure STC main17042023.m
101 and
110 SetPhysicsParam.m 10 0 [Pa]

Temperature STC main17042023.m
102 and
111 N/A N/A 15 [°C]

Viscosity main17042023.m 115 MasterAlg_PipeHorizontal.m 74 0.5 [Pa*s]

Gravity main17042023.m 124 SetPhysicsParam.m 9 0 [m/s^2]

Flowrate main17042023.m 336 PipeFluHrz_InputSignalGenerator.m 10 2000 [LPM]

Yield point N/A N/A MasterAlg_PipeHorizontal.m 74 1 [Pa]

Flow behavior index N/A N/A MasterAlg_PipeHorizontal.m 74 0.8 N/A

Consistency index N/A N/A MasterAlg_PipeHorizontal.m 74 0.2 [Pa*s]

In the subsequent sections, the simplified model will be further developed and analyzed, with

a focus on understanding the impact of each parameter on the friction pressure loss calculation

and the overall performance of the model.

1.7 A More detailed look at the Gjerstad Model (Appendix A)

A.1 MasterAlg_PipeHorizontal.m:

This is the main script in the Gjerstad Model, it sets input parameters, executes the simulation,

and plots the results. The script includes sections for setting boundary conditions, executing the

simulation for different types of flow models (ODE and PDE), and plotting the results. The

simulation results include flow, pressure, and density. The script also includes progress tracking

and a completion message.

A.5 fRampAndHold3.m:

 This script adjusts the flow rate, pressure, and throttle input based on time. It then executes a

step function for the PipeFluHrz object and updates the output vector and plot matrix.

A.10 PipeFluGen_2xOrd_Init.m:

 16

initializes a generic pipe object for the fluid inside it. This function sets up simulation constants,

grid parameters, and fluid properties. It also prepares initial conditions for flow rate, pressure,

and density. The function is designed to be wrapped by an outer function that provides specific

parameters like initial conditions, inclination, and form of inputs/outputs. The reference frame

for the fluid is the moving solid pipe, considering the solid string acceleration as a fictitious

force.

A.14 SelectMudTypeOrSetParameters.m:

Sets the parameters for a given mud type. It takes in a mud name and either selects pre-set

parameters for known mud types or sets custom parameters based on the inputs. The parameters

include the consistency index, flow behavior index, and yield point.

A.18 Solver_RK4_New.m:

This function is a Runge-Kutta 4 solver for any ordinary differential equation (ODE) model.

It's used for numerical integration to solve the ODEs.

A.20 DsMain_Horizontal_2xOrd_ODE.m:

This script defines a function that calculates the rate of change of fluid flow and pressure inside

the drill string. It takes into account various factors such as the acceleration of the drill string,

the pressure at the downstream end of the string, the flow rate at the upstream end, and the

percentage of throttle closure. The function returns the rate of change of fluid flow and pressure

as a vector.

A.23 PipeFluHrz_2xOrd_Setup

Sets up the parameters for the fluid flow simulation in a horizontal pipe. It takes as input the

initial conditions, the fluid properties, and some global constants. The function then initializes

the state variables (flow rate, pressure, and density) and sets up the parameters for the

simulation. It also prepares the data for plotting the results of the simulation.

A.24 PipeFluHrz_InputSignalGenerator.m:

This function generates smooth input signals for the simulation, generating flow rate and

throttle input signals.

A.26 PipeFluHrz_Step.m:

 17

This function advances the simulation by one time step. It takes the current state of the system

and the inputs for the next time step, and uses a solver to compute the new state of the system.

It also updates the state variables and computes additional simulation variables.

A.27 Tw_stringNewtonianLaminar.m:

This function is a placeholder or "dummy" function, designed to calculate the wall shear stress

for Newtonian fluids in laminar flow in a pipe. Currently, it is set to return the negative of fluid

velocity. However, it is intended to be replaced or modified with a more accurate or complex

calculation as needed.

The remaining scripts in the appendix are not central to the thesis. They perform tasks that are

either not relevant or not utilized in the main discussion. While they contribute to the overall

codebase, their specific roles do not directly influence the thesis outcomes. Therefore, they are

not discussed in detail but are included in the appendix for reference.

1.8 A More detailed look at the Fjelde Model (Appendix B)

B.1 main17042023

This is the main code for the Fjelde model, the code simulates two-phase (gas and liquid) flow

in a wellbore. It starts by defining the physical and numerical parameters, such as fluid

properties and wellbore geometry. It then initializes the variables for pressures, densities, and

velocities. The code sets up a time-stepping loop, computing slope limiters to prevent spurious

oscillations in the solution. The simulation calculates fluxes between cells and updates the

conservative variables accordingly. It also computes source terms for effects like friction and

hydrostatic pressure. After updating the variables, it computes physical variables from the

conservative ones and calculates phase velocities. The code saves time-dependent variables for

later analysis, providing a comprehensive understanding of two-phase flow behaviour in a

wellbore.

For this case, the gravitational constant is set to zero to model a horizontal well, and the gas

flow is also set to zero. This simplifies the model by removing the influence of gravity and

focusing solely on the liquid phase. The absence of gas flow reduces complexity, making it

easier to study specific aspects of liquid flow dynamics in a horizontal wellbore setting.

 18

B.2 csound.m:

Calculates mixed sound velocity based on gas volume fraction, liquid density, and pressure.

B.3 dpfric.m:

Computes frictional pressure loss gradient for two-phase flow using mixture values.

B.4 minmod.m:

Determines slope using a minmod limiter function for stability in numerical methods.

B.5 pm.m:

Implements a flux limiter function for negative velocities.

B.6 pp.m:

Implements a flux limiter function for positive velocities.

B.7 psim.m:

Applies a flux limiter function for negative velocities with a tunable parameter.

B.8 psip.m:

Applies a flux limiter function for positive velocities with a tunable parameter.

B.9 rholiq.m:

Estimates liquid density based on pressure and temperature.

B.10 rogas.m:

Calculates gas density based on pressure and temperature.

 19

2 Methodology

This thesis focuses on the calculation of friction pressure loss in the laminar flow regime within

an annulus in a horizontal well. The annulus, a space between two concentric cylinders, is a

common scenario in drilling operations. However, due to its complex geometry, direct

calculations can be challenging. To simplify this, a narrow slot approximation is used to

estimate the annular space. This approximation transforms the annular space into a narrow slot

with equivalent hydraulic properties, enabling the application of equations originally derived

for simpler geometries. The following sections detail the methodologies employed in the

Gjerstad and Fjelde models to calculate friction pressure loss under these conditions.

2.1 The calculation of friction pressure

The models created by Alf Kristian Gjerstad and Kjell Kåre Fjelde are multifaceted and serve

various purposes. However, for the scope of this thesis, the focus is on their application in

calculating friction pressure loss. In Gjerstad's model, the function A.27

Tw_stringNewtonianLaminar.m is used, while in Fjelde's model, the function B.3 dpfric.m is

employed. Both these functions utilize modified versions of the Hagen-Poiseuille equation.

.∆𝑝 =
8𝜇𝐿𝑄

𝜋𝑅4

Equation 1 Hagen-Poiseuille Equation

Where:

• µ is the viscosity of the fluid,

• L is the length of the pipe,

• Q is the flowrate in the pipe,

• R is the radius of the pipe and

• ∆p is the pressure difference along the length

In Gjerstad's model, the Hagen-Poiseuille equation is adapted to compute the average shear

stress over the walls of the conduit, denoted as τw. On the other hand, Fjelde's model uses the

equation to calculate the frictional pressure loss gradient, symbolized as ∆pf

 20

Fjelde's model, specifically in the laminar case in B.3 dpfric.m, is based on the Darcy-Weisbach

equation. This equation calculates pressure loss in a pipe, considering factors such as the friction

factor, the length and diameter of the pipe, the fluid's density, and its velocity.

∆𝑝 = 𝑓
𝐿

𝐷

𝜌𝑣2

2

Equation 2

Where:

• ρ is the density of the fluid,

• v is the velocity of the fluid and

• D is the diameter of the pipe

The gradient formula in this model is derived from the Darcy-Weisbach equation and the

relationship for laminar flow in annulus considered to be a narrow slot,

𝑓 =
24

𝑅𝑒

Equation 3

And raynolds number,

𝑅𝑒 =
𝜎|𝑣|2(𝑅𝑜𝑢𝑡𝑒𝑟−𝑅𝑖𝑛𝑛𝑒𝑟)

𝜇
,

Equation 4

Where:

• Router is the outer diameter of the annulus and

• Rinner is the inner diameter of the annulus

which originates from the Hagen-Poiseuille equation. This relationship involves the Reynolds

number, a dimensionless quantity predicting flow patterns in different fluid flow situations.

Giving us the gradient formula.

∆𝑝𝑓 =
2𝑓𝜌𝑣|𝑣|

 𝑅𝑜𝑢𝑡𝑒𝑟 − 𝑅𝑖𝑛𝑛𝑒𝑟

Equation 5

The process of deriving an equation for τw involves manipulating known equations and

relationships from fluid dynamics, such as the Hagen-Poiseuille equation and the Darcy-

 21

Weisbach equation. These equations contain variables that are directly related to wall shear

stress, such as fluid velocity, pipe diameter, and fluid viscosity.

By rearranging these equations and isolating τw, you can express wall shear stress in terms of

other known quantities. This algebraic manipulation allows you to calculate τw for a given set

of conditions, which can be invaluable in predicting and understanding the behavior of fluid

flow in a conduit or pipe. Combining equations 3, 4 and 5, we get:

∆𝑝𝑓 =
12𝜇𝑣

 (𝑅𝑜𝑢𝑡𝑒𝑟 − 𝑅𝑖𝑛𝑛𝑒𝑟)2

∆𝑝𝑓 =
12𝜇𝑣 ∗ (𝑅𝑜𝑢𝑡𝑒𝑟 + 𝑅𝑖𝑛𝑛𝑒𝑟)

 (𝑅𝑜𝑢𝑡𝑒𝑟 − 𝑅𝑖𝑛𝑛𝑒𝑟)2 ∗ (𝑅𝑜𝑢𝑡𝑒𝑟 + 𝑅𝑖𝑛𝑛𝑒𝑟)

∆𝑝𝑓 =
12𝜇𝑣 ∗ (𝑅𝑜𝑢𝑡𝑒𝑟 + 𝑅𝑖𝑛𝑛𝑒𝑟) ∗ 𝜋

 (𝑅𝑜𝑢𝑡𝑒𝑟 − 𝑅𝑖𝑛𝑛𝑒𝑟)2 ∗ (𝑅𝑜𝑢𝑡𝑒𝑟 + 𝑅𝑖𝑛𝑛𝑒𝑟) ∗ 𝜋

∆𝑝𝑓 =
6𝜇𝑣 ∗ (𝑅𝑜𝑢𝑡𝑒𝑟 + 𝑅𝑖𝑛𝑛𝑒𝑟) ∗ 2𝜋

(𝑅𝑜𝑢𝑡𝑒𝑟 − 𝑅𝑖𝑛𝑛𝑒𝑟) ∗ (𝑅𝑜𝑢𝑡𝑒𝑟
2 − 𝑅𝑖𝑛𝑛𝑒𝑟

2) ∗ 𝜋

Equation 6

When considering that Au, the surface area in contact with liquid, divided by the length is

𝐴𝑢 = 2𝜋(𝑅𝑜𝑢𝑡𝑒𝑟 + 𝑅𝑖𝑛𝑛𝑒𝑟),

Equation 7

And the cross-sectional area of the fluid is

𝐴𝑓 = 𝜋 (𝑅𝑜𝑢𝑡𝑒𝑟
2 − 𝑅𝑖𝑛𝑛𝑒𝑟

2),

Equation 8

This results in:

∆𝑝𝑓 =
𝐴𝑢

𝐴𝑓

6𝜇

 𝑅𝑜𝑢𝑡𝑒𝑟 − 𝑅𝑖𝑛𝑛𝑒𝑟
𝑣

Equation 9

Then use the relationship for shear stress and the pressure loss gradient,

 22

∆𝑝𝑓 =
𝐴𝑢

𝐴𝑓
𝜏𝑤, (Gjerstad, 2014)

Equation 10

to show that this gives us the Newtonian narrow slot approximation for shear stress used in

Error! Reference source not found.

𝜏𝑤 = −
6𝜇

 𝑅𝑜𝑢𝑡𝑒𝑟−𝑅𝑖𝑛𝑛𝑒𝑟
𝑣 (Gjerstad, 2014)

Equation 11

The negative sign in the equation for τw signifies this opposition to the fluid's velocity. It is a

convention used to indicate the direction of the shear stress relative to the direction of flow.

When calculating or analyzing fluid dynamics, it's essential to consider this negative sign to

accurately represent the physical reality of the situation.

To enable comparison, the Newtonian narrow slot approximation equation has been added to

the model under A.27 Tw_stringNewtonianLaminar.m. This equation is a simplification often

used for laminar flow in narrow annular spaces or slots, where the flow can be approximated

as flow between parallel plates. This approximation provides a baseline for comparing the

behavior of Newtonian fluids under similar conditions.

The inclusion of this equation allows for an initial comparison between the Newtonian model

and the newly incorporated non-Newtonian models (Power Law, Bingham Plastic, and

Herschel-Bulkley). By comparing these models, we can better understand the differences in

fluid behavior and the implications of these differences for practical applications. This

comparison will also serve as a validation check, ensuring that the non-Newtonian models

reduce to the Newtonian case under the appropriate conditions.

2.2 Expanding the calculation of shear stress to include Non-Newtonian Fluids

Shear stress is the force per unit area exerted by a fluid flowing over a surface, related to the

rate of fluid velocity change. The current model for calculating the shear stress in an annular

space is based on the principles of fluid dynamics and is influenced by the Hagen-Poiseuille

equation, which describes the pressure loss due to viscous friction in a long, straight pipe. This

model assumes a Newtonian fluid behavior, where the shear stress is directly proportional to

the shear rate. The constant of proportionality is the viscosity of the fluid, a linear relationship

first proposed by Sir Isaac Newton. While this model provides accurate predictions for

 23

Newtonian fluids like water and air, it falls short when applied to non-Newtonian fluids, which

exhibit a change in viscosity with the rate of shear strain.

To enhance the versatility and applicability of the model, particularly in industries like drilling

or chemical processing where non-Newtonian fluids are commonly encountered, it is necessary

to incorporate additional rheological models into the calculations. These include the Power

Law, Bingham Plastic, and Herschel-Bulkley models.

The Power Law model, also known as the Ostwald–de Waele relationship, is used for fluids

that exhibit shear-thinning or shear-thickening behavior. This behavior is characterized by a

decrease or increase in viscosity with the rate of shear strain. The Power Law model captures

this behavior with just two parameters: the consistency index (K) and the flow behavior index

(n).

The Bingham Plastic model is used for fluids that behave like a solid under low shear stress but

flow like a fluid under high shear stress. These fluids have a yield stress that must be exceeded

before they start to flow. This model, developed by Eugene C. Bingham, is particularly useful

for describing materials like toothpaste and mayonnaise.

The Herschel-Bulkley model is a generalized version of the Bingham Plastic model that also

captures shear-thinning or shear-thickening behavior. It adds an additional parameter (n) to the

Bingham model, allowing it to describe a wider range of non-Newtonian fluids. This model is

often used in the drilling industry to describe drilling muds.

By incorporating these additional models into the shear stress calculations, the model's

predictive capabilities will be significantly enhanced for a wider range of fluids. This expansion

not only increases the model's accuracy but also its relevance in real-world applications where

non-Newtonian fluids are frequently encountered. The following sections will delve into the

mathematical formulation of these models and their implementation into the existing

framework.

 24

Table 2 Rheology model equations

Rheology Model Poiseuille Flow (Stationary Walls)

Newtonian

𝜏𝑤 = −
6𝜇

 𝑅𝑜𝑢𝑡𝑒𝑟 − 𝑅𝑖𝑛𝑛𝑒𝑟
𝑣

Equation 10

Power-law

𝜏𝑤 = ∓𝑘(
4𝑛 + 2

𝑛ℎ
|𝑣|)𝑛

Equation 12

Bingham plastic |𝜏𝑤| > 𝜏𝑦 ,

𝑣 =
−ℎ

6𝜇𝑝
𝜏𝑤 [1 +

3

2

𝜏𝑦

|𝜏𝑤|
+

1

2
(

𝜏𝑦

|𝜏𝑤|
)3]

Equation 13

|𝜏𝑤| ≤ 𝜏𝑦 ,
𝑣 = 0

Herschel Bulkley |𝜏𝑤| > 𝜏𝑦 ,

𝑣 =
−ℎ

2𝑘𝑛𝜏𝑤

(|𝜏𝑤| − 𝜏𝑦)

𝑛+1

𝑛 + 1
[1 −

(|𝜏𝑤| − 𝜏𝑦)

(𝑛 + 2)|𝜏𝑤|

Equation 14

|𝜏𝑤| ≤ 𝜏𝑦 ,
𝑣 = 0

(Gjerstad, 2014)

Table 2 presents the equations for different rheology models under Poiseuille flow with

stationary walls. These models describe the behavior of different types of drilling fluids, and

the equations represent the relationship between wall shear stress (τw) and fluid velocity (v).

The parameters in these equations are as follows:

• μ: viscosity in the Newtonian model.

• Router and Rinner: Outer and inner radii of the annulus.

• k and n: Consistency index and flow behavior index in the Power-law model.

• τy: Yield stress in the Bingham plastic and Herschel-Bulkley models.

• μp: Plastic viscosity in the Bingham plastic model.

 25

• h: The distance between the walls of the annulus.

• τw: Shear stress

A defining characteristic of Bingham Plastic and Herschel-Bulkley fluids is the presence of a

yield stress, denoted as τy. This yield stress is the minimum shear stress that must be applied to

the fluid before it begins to flow. Below this threshold, the fluid behaves like a solid and does

not flow, hence the fluid velocity is zero.

The Bingham plastic and Herschel-Bulkley models, represented by equations 13 and 14, cannot

be directly rewritten for wall shear stress (τw). This complexity makes it challenging to express

these models directly in terms of τw, requiring advanced numerical methods or approximations

for solutions.

The concept of yield stress arises from the internal structure of these fluids. They consist of

particles or structures that form a network, providing the fluid with a certain degree of internal

resistance to flow. When the applied shear stress is less than the yield stress (τw ≤ τy), this

network remains intact, and the fluid does not flow. It behaves more like a solid, maintaining

its shape unless subjected to stress greater than the yield stress.

In the context of the Bingham Plastic model, once the yield stress is exceeded, the fluid behaves

like a Newtonian fluid with a constant viscosity. For the Herschel-Bulkley model, the fluid

exhibits shear-thinning or shear-thickening behavior once the yield stress is exceeded,

depending on the value of the flow behavior index.

This behavior has significant implications for the flow of these fluids in pipes or annular spaces.

If the shear stress applied by the pressure gradient is less than the yield stress, there will be no

flow. This can lead to a plug of stationary fluid, which can be a challenge in applications like

drilling or pumping of suspensions. Understanding and accurately modeling this behavior is

crucial for the design and operation of processes involving Bingham Plastic or Herschel-

Bulkley fluids.

 26

2.3 Machine learning

Machine learning is a subset of artificial intelligence (AI) that provides systems the ability to

automatically learn and improve from experience without being explicitly programmed. It

focuses on the development of computer programs that can access data and use it to learn for

themselves.

The process of learning begins with observations or data, such as examples, direct experience,

or instruction, in order to look for patterns in data and make better decisions in the future based

on the examples that we provide. The primary aim is to allow the computers to learn

automatically without human intervention or assistance and adjust actions accordingly.

Machine learning algorithms are often categorized as supervised or unsupervised.

The focus of this thesis will be on supervised machine learning, where algorithms can apply

what has been learned in the past to new data using labeled examples to predict future events.

Starting from the analysis of a known training dataset, the learning algorithm produces an

inferred function to make predictions about the output values. The system is able to provide

targets for any new input after sufficient training.

(Wikipedia, 2023)

2.4 Random Forest Regression

Random Forest is a versatile machine learning method capable of performing both regression

and classification tasks. It also undertakes dimensional reduction methods, treats missing

values, outlier values, and other essential steps of the data exploration, and does a fairly good

job. It is a type of ensemble learning method, where a group of weak models combine to form

a powerful model.

In Random Forest Regression, a dependent variable is predicted using multiple decision trees.

Each decision tree is constructed by using a subset of the data and variables, and the average

prediction of all the trees is considered as the final prediction. This method helps to overcome

the problem of overfitting, which is a modelling error that occurs when a function is too closely

fit to a limited set of data points, making it capture the noise in the data, which is common in

decision tree models.

 27

Random Forest Regression works in four basic steps:

1. Selection of random samples from a given dataset.

2. Construction of a decision tree for each sample and getting a prediction result from each

decision tree.

3. Voting for each predicted result.

4. Select the prediction result with the most votes as the final prediction.

(Wikipedia, 2023)

2.4.1 Decision Trees

A decision tree is a fundamental component of a random forest and is used as a predictive model

in machine learning. It maps observations about an item to conclusions about the item's target

value. Essentially, decision trees are used for making decisions and predictions by mapping out

a set of rules that lead to a certain outcome based on input data.

The decision tree model follows a set of if-then-else decision rules. The deeper the tree, the

more complex the decision rules and the fitter the model. The structure of a decision tree

includes nodes and branches. The topmost node, known as the root, represents the entire

population or sample, and this gets divided into two or more homogeneous sets. The end nodes

of the tree, known as leaves, represent the decisions or predictions.

One of the main advantages of decision trees is their simplicity and interpretability - they can

be easily visualized and understood. However, they can suffer from overfitting, where the

model captures the noise in the data and becomes too complex, leading to poor predictive

performance on unseen data. This is where Random Forest Regression comes in, using multiple

decision trees and averaging their predictions to achieve a more robust and accurate model.

2.4.2 Root Mean Square Error

The Root Mean Square Error (RMSE) is a frequently used measure of the differences between

values predicted by a model and the values actually observed. It is a standard way to measure

the error of a model in predicting quantitative data. The RMSE represents the square root of the

second sample moment of the differences between predicted values and observed values or the

quadratic mean of these differences. These deviations, called residuals when the calculations

 28

are performed over the data sample that was used for estimation, are also called prediction

errors when computed out-of-sample. The RMSE serves to aggregate the magnitudes of the

errors in predictions into a single measure of predictive power. A lower RMSE is indicative of

a better fit to the data.

The formula for RMSE is:

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑦𝑜 − 𝑦𝑝)^2

𝑛

𝑖=1

Equation 15

Where:

• n is the number of observations,

• yo is the observed value,

• yp is the predicted value.

(Wikipedia, 2023)

 29

3 Results and Discussion

3.1 The implementation of the different shear stress calculations

In this thesis, new code has been developed to implement various shear stress calculations.

These calculations are integral to the simulation of fluid flow and pressure loss in the drilling

process. The code incorporates different rheological models and applies the narrow slot

approximation to estimate the annular space in a horizontal well. The implemented code is

provided in Appendix C.

3.1.1 Tw_NarrowSlotNewtonianLaminar.m

In the Newtonian case, the shear stress calculations were performed using a narrow slot

approximation for wall shear stress (τw) under laminar flow conditions. The calculation was

implemented using the MATLAB code in C.1 Tw_NarrowSlotNewtonianLaminar.m.

In this function, the wall shear stress (τw) is calculated based on the fluid viscosity (mu), the

cross-sectional area of the geometry (AreaCrs calculated as shown in D.1

PipeFluGen_2xOrd_Init.m), the flow rate, the pipe velocity (VelocityPipe which is set to 0 for

all these functions for simplification), and the slot height (h). The fluid velocity is calculated

by dividing the flowrate by the cross-sectional area.

𝑉 =
𝑄

𝐴𝑓

Equation 16

The wall shear stress is then calculated as -6 times the fluid viscosity divided by the slot height,

all multiplied by the fluid velocity as shown in equation 10.

The implementation of this function was straightforward due to the simplicity of the formula,

which resulted in efficient calculations. The function was able to quickly calculate the wall

shear stress for the Newtonian case under laminar flow conditions, demonstrating the efficiency

of traditional methods for this case.

 30

3.1.2 Tw_NarrowSlotPowerLawLaminar.m

For the Power Law case, the shear stress calculations were also performed using a narrow slot

approximation for wall shear stress (τw) under laminar flow conditions. However, the Power

Law case involves a non-Newtonian fluid, which follows a different viscosity model. The

calculation was implemented using the MATLAB function from C.2

Tw_NarrowSlotPowerLawLaminar.m

In this function, the wall shear stress (τw) is calculated based on the fluid viscosity (mu), the

cross-sectional area of the geometry (AreaCrs), the flow rate, the slot height (h), the consistency

index (k), and the flow behavior index (n). The fluid velocity is calculated using equation 12

Similar to the Newtonian case, the implementation of this function was straightforward due to

the simplicity of the formula, which resulted in efficient calculations. The function was able to

quickly calculate the wall shear stress for the Power Law case under laminar flow conditions,

demonstrating the efficiency of traditional methods for this case as well.

3.1.3 Tw_NarrowSlotBinghamPlasticLaminar.m

For the Bingham Plastic case, the shear stress calculations were more complex. This case

involves a non-Newtonian fluid that exhibits a yield stress (τy), meaning it behaves like a solid

until this yield stress is exceeded. A simplified version of the Bingham Plastic model was used

for the initial guess, which could potentially introduce inaccuracies. Specifically, the wall shear

stress (τw) might not always be higher than the yield stress, even though the simplified Bingham

Plastic model assumes it to be, and vice versa. Furthermore, the simplified Bingham Plastic

model was used when τw was less than or equal to τy, which could introduce noise into the

calculations that does not completely correct itself until steady state is achieved.

The calculation was implemented using C.3 Tw_NarrowSlotBinghamPlasticLaminar.m. In this

function, the wall shear stress (τw) is calculated based on the yield stress (τy), the fluid viscosity

(mu), the length per grid (L), the slot height (h), the cross-sectional area of the geometry

(AreaCrs), and the flow rate. The fluid velocity is calculated by subtracting the pipe velocity

from the flow rate divided by the cross-sectional area.

 31

The initial guess for the wall shear stress is calculated using the simplified Bingham Plastic

model, as shown in Equation 17.

𝜏𝑤 = 𝜏𝑦 +
𝜇𝑝6𝑄

ℎ3

Equation 17

Which is a simplification based on the bingham plastic model,

𝜏𝑤 = 𝜏𝑦 + 𝜇𝑝�̇�

Equation 18

The shear rate γ̇, is defined as the rate of change of velocity with respect to the distance

perpendicular to the flow direction. For a narrow slot or channel, this can be approximated as

the average velocity divided by the half-height of the slot or channel. So,

�̇� =
2𝑣𝑎𝑣𝑔

ℎ
=

2𝑄

𝑤ℎ2

Equation 19

If we further assume that the width of the slot or channel is much larger than the height (which

is often the case for a narrow slot or channel), then we can ignore w in the denominator, and

the shear rate becomes approximately:

�̇� =
6𝑄

ℎ3

Equation 20

In this case, the initial guess should never be less than the yield stress (τy), unless the flow

becomes negative. However, as this is one of the conditions for the calculation shown in Table

2, the condition is kept in the function. If the absolute value of this initial guess is greater than

the yield stress, the function solves an equation for τw using the fsolve function.

The methodology used for the Bingham Plastic case, specifically the decision to set the wall

shear stress (Tw) to the value calculated by the simplified Bingham Plastic model when Tw is

less than or equal to the yield stress (τy), may not be the most accurate representation of the

behaviour of a Bingham Plastic fluid. This approach assumes that the fluid behaves according

to the simplified Bingham Plastic model under these conditions, which may not fully capture

the behaviour of a Bingham Plastic fluid. As such, this methodology could introduce some

inaccuracies into the calculations and results in a noisy output that does not completely correct

itself until steady state is achieved.

 32

While the current methodology provides a starting point for calculations, it doesn't fully capture

the behavior of a Bingham Plastic fluid, which doesn't flow until the yield stress is exceeded.

However, other areas of the model address this by setting the flow rate to zero when the wall

shear stress is less than or equal to the yield stress.

3.1.4 Tw_NarrowSlotHerschelBulkley.m

The Herschel-Bulkley case, implemented using the C.4

Tw_NarrowSlotHerschelBulkleyLaminar function, involves a more complex model due to the

unique behavior of Herschel-Bulkley fluids. These fluids exhibit a yield stress (τy), behaving

like a solid until this yield stress is exceeded. The initial guess for the wall shear stress (τw) is

calculated using a simplified Bingham Plastic model, which assumes that τw is always greater

than τy. However, this may not always be the case, potentially introducing inaccuracies into the

calculations.

The methodology used in this case sets τw to the value calculated by the simplified Bingham

Plastic model when τw is less than or equal to τy. While this approach simplifies the calculations,

it may not accurately represent the behavior of a Herschel-Bulkley fluid. This could result in a

noisy output that does not completely correct itself until steady state is achieved.

3.2 Efficiency and speed of simulations

The efficiency and speed of the simulations were key considerations in this study. For the

Newtonian and Power Law cases, the traditional methods of calculating shear stress proved to

be highly efficient due to the simplicity of the formulas used. The MATLAB functions

implemented for these cases were able to quickly perform the calculations, resulting in fast

simulation times. Specifically, the Newtonian case averaged about 1.4 seconds per simulation

run, while the Power Law case averaged slightly longer at about 1.6 seconds per run. These

quick runtimes demonstrate the computational efficiency of these traditional methods in

handling the calculations for these cases.

 33

In order to evaluate the efficiency and accuracy of the developed models, it is beneficial to

compare them with a well-established model in the field. The Fjelde model serves as an

appropriate baseline for this comparison.

When comparing the developed models with the Fjelde model, several key parameters should

be considered:

• Computational Speed: The time it takes for a simulation to run is a critical factor in real-time

drilling operations. The faster the simulation, the more useful it is in making timely decisions.

Therefore, the average runtime of the simulations for each model should be compared. The

runtime is measured using the tic toc operator in MATLAB. Running on a 3.8 GHz machine

• Accuracy: The accuracy of the models in predicting the friction pressure loss is crucial. The

models should be compared in terms of how closely their predictions match the calculated

steady states. The ramp will be evaluated visually.

• Robustness: The models should be able to handle a variety of drilling conditions and fluid

properties. They should be tested under different scenarios to see how well they perform and

how stable their predictions are.

By comparing the models in terms of these parameters, we can gain a better understanding of

their strengths and weaknesses and identify areas for further improvement.

3.2.1 The Fjelde Model

Before comparing the developed models, it is essential to establish a baseline for comparison.

This baseline is provided by the Fjelde model, a well-established model in the field of drilling

process simulation. The Fjelde model was evaluated in terms of computational speed, accuracy,

and robustness, using the initial values listed in Table 1.

3.2.1.1 Computational Speed

The Fjelde model's computational speed was assessed by recording the average runtime for

simulations using the initial values from Table 1. This provides a benchmark against which the

runtimes of the developed models can be compared. When running the Fjelde model, the

average runtime sits at around 2 seconds, varying from about 1.95 seconds to about 2.1 seconds.

 34

3.2.1.2 Accuracy

 The accuracy of the Fjelde model was evaluated by comparing its predictions of friction

pressure loss with actual measurements, using the initial values from Table 1. This comparison

provides a measure of the model's predictive accuracy, which is crucial for effective drilling

operations. Figure 1 is a plot of the friction pressure and flowrate.

Figure 1 The Fjelde Model

The friction pressure following a similar curve to the flowrate aligns with expected fluid

dynamics behaviour. The steady state value of the flowrate aligns with the Hagen-Poiseuille

equation, reinforcing the accuracy of the model in simulating laminar flow conditions. To show

this, the equations in 2.1, which results in a pressure difference of about 10.48 bar, from a

frictional loss gradient of about 262 [pa/m], which also coincides with what the model is

providing through B.3 dpfric.m.

3.2.1.3 Some values to display robustness

The robustness of the Fjelde model was assessed by testing it under a variety of drilling

conditions and fluid properties, using the initial values from Table 1. The model's performance

under these different scenarios provides an indication of its stability and reliability. The

condition for the tests of robustness are shown in Table 3

 35

Table 3 Parameters for Robustness

Figure Fjelde
Model

2 3 4 5 6

Figure Gjerstad
Model

8 9 10 11 12

Sim Time 300 100 100 100 1000

Flowrate [LPM] 2000 10000 2000 2000 2000

Length [m] 1000 4000 4000 4000 10000

Diameter inner
[m] 0.127 1 0.127 0.127 0.127

Diameter outer
[m] 0.331 2 0.331 0.13 0.331

Figure 2

Figure 2 reveals that the model struggles with shorter wells, exhibiting significant

inaccuracies and inconsistencies in the simulation results for these cases.

 36

Figure 3

Figure 3 reveals that a large annular gap will reduce the frictional pressure gradient to 0, this is

caused by Reynolds number, calculated in B.3 dpfric.m, never getting high enough, and is

intended. For this case one could consider the liquid to never fill the annulus, rather flowing

like an open river.

Figure 4

Figure 4 reveals that when the viscosity of the fluid is sufficiently low, the behavior of the fluid

in the annulus changes significantly. The friction in the annulus decreases due to the reduced

resistance to flow. This is because viscosity is a measure of a fluid's resistance to shear or flow,

and a lower viscosity means the fluid can flow more easily. This is also a scenario where

Reynolds number is too low for a frictional pressure to build.

 37

Figure 5

Figure 5 presents an intriguing observation. As anticipated, a smaller annular gap restricts fluid

flow due to the reduced space. However, the results deviate from expectations, suggesting a

potential limitation of the model. In reality, even with a very small annular gap, the frictional

pressure would not be zero due to the fluid's viscosity and the surface roughness of the annulus.

Furthermore, such a small annular gap is not typically encountered in practical drilling

operations, adding another layer of complexity to the interpretation of these results. The model's

inability to accurately simulate these conditions could be interpreted as a shortfall.

Figure 6

Figure 6 demonstrates a simple case, and as expected the model handles it as it should.

 38

3.2.2 The Gjerstad Model

In the development of the Gjerstad model, we will begin with the Newtonian case, utilizing the

function C.1 Tw_NarrowSlotNewtonianLaminar. This function calculates the wall shear stress

(τw) for a Newtonian fluid in a narrow slot under laminar flow conditions. Starting with the

Newtonian case is a strategic choice, as it is expected to yield results that align with the Fjelde

model. This is due to the fact that both models are based on the same fundamental principles of

fluid dynamics and share the same assumptions for Newtonian fluids. Therefore, any

discrepancies between the results of the two models can be attributed to differences in their

implementation or the specific conditions under which they are applied, rather than differences

in the underlying physics. This approach will provide a solid foundation for the development

of the Gjerstad model and facilitate a meaningful comparison with the Fjelde model.

In order to maintain consistency and facilitate a direct comparison with the Fjelde model, the

initial conditions for the Gjerstad model are taken from Table 1. Which were used in the Fjelde

model simulations. By using the same initial conditions, we can ensure that any differences

observed in the results of the two models are due to the models themselves and not variations

in the input parameters. This approach allows for a fair and accurate evaluation of the

performance and accuracy of the Gjerstad model in comparison to the Fjelde model.

3.2.2.1 Computational Speed

The computational speed of the Gjerstad model was also evaluated using the same initial values

from Table 1. This allowed for a direct comparison with the Fjelde model. The average runtime

for the Gjerstad model was found to be approximately 1.87 seconds, with a range from about

1.82 seconds to 1.95 seconds, when run to display 4 sections, as shown in Figure 7, and

approximately 1.35 seconds with a range from about 1.32 seconds to 1.4 seconds, when run to

display one section.

The Gjerstad model, with its comprehensive framework as a representation of the drilling

process, has a shorter average runtime than the Fjelde model. This is largely due to the physics

simplifications inherent in its design as an Ordinary Differential Equation (ODE) model. These

simplifications reduce the complexity of the calculations being executed, thereby enhancing

computational efficiency.

 39

On the other hand, the Fjelde model, being a Partial Differential Equation (PDE) model, offers

a more detailed representation but at the cost of increased computational time. The choice

between models ultimately depends on the balance between the need for computational

efficiency and the level of detail required in the simulation.

3.2.2.2 Accuracy

The Gjerstad model, while employing simplified physics in its design as an Ordinary

Differential Equation (ODE) model, still offers accuracy comparable to the Fjelde model. The

simplifications in the Gjerstad model allow for efficient computations while maintaining a level

of accuracy that is suitable for practical applications in drilling process simulations.

The calculations outlined in Section 2.1 yield results that are consistent with those of both the

Gjerstad model, and the Fjelde model, further supporting the accuracy of the Gjerstad model.

This is evident when comparing the green line in the Gjerstad model's output, as shown in

Figure 7, which represents the last section of the annular space, with the graphed pressure in

the Fjelde model, as shown in Figure 1. The close alignment of these two lines indicates that

the Gjerstad model is able to accurately replicate the results of the Fjelde model, while also

providing additional detail and insights.

Figure 7

3.2.1.3 Some values to display robustness

To further enhance the comparison between the Gjerstad and Fjelde models, the values from

Table 3, which were used in the Fjelde model, will also be applied to the Gjerstad model. This

 40

will provide a more direct comparison of the two models under the same conditions, allowing

for a clearer assessment of their relative performance and robustness.

The robustness of a model is a measure of its ability to produce reliable and accurate results

under a variety of conditions. By applying the same parameters to both models, we can evaluate

how well each model handles changes in the input values and whether they can maintain their

accuracy and reliability under these different conditions.

Figure 8

In comparing the performance of the Gjerstad model in Figure 8 and the Fjelde model in Figure

2, it appears that the Gjerstad model handles the conditions more effectively. This could be

attributed to the specific parameters or conditions of the case in Figure 8, which may be more

suited to the assumptions and calculations inherent in the Gjerstad model. This observation

underscores the importance of understanding the strengths and limitations of each model and

selecting the most appropriate model based on the specific requirements of the simulation.

Figure 9

 41

Figure 9 yields some unexpected results, but given the large annular gap, it's challenging to

establish clear expectations. The parameters set for this case are far from typical drilling

conditions, which makes it difficult to predict the behavior of the models. Both the Fjelde and

Gjerstad models were designed to simulate more realistic scenarios, and their performance

under these extreme conditions may not reflect their capabilities under normal drilling

conditions.

Figure 10

In the case of extremely low viscosity, both models again produce unusual results. The

Gjerstad model, as shown in Figure 10, tends to oscillate in response to these edge-case

conditions, while the Fjelde model, as shown in Figure 4, tends to yield a result of zero. This

pattern suggests that the Gjerstad model may be more sensitive to extreme conditions, causing

it to oscillate when faced with such low viscosity values. On the other hand, the Fjelde model

appears to simplify the situation, resulting in a zero value.

Figure 11

 42

The small annular gap presents another unrealistic situation that both models struggle to handle

accurately. The results from the Fjelde model, as shown in Figure 5, are markedly different

from those of the Gjerstad model, as shown in Figure 11. This discrepancy could be due to a

number of factors, but likely the Gjerstad model, being more complex, may be more sensitive

to extreme conditions such as a small annular gap. This could cause it to produce results that

differ significantly from the simpler Fjelde model.

Figure 12

The final set of conditions presents a scenario that both models appear to handle well. As

expected from the given conditions, the values displayed in Figure 12 from the Gjerstad model

align closely with the pressure and ramp results from the Fjelde model, as shown in Figure 6.

This agreement is particularly noteworthy given that the two models employ different methods

for ramping up to their respective flower rates.

This suggests that both models are capable of accurately simulating more typical well

conditions, despite their differences in complexity and calculation methods. It also underscores

the importance of using realistic parameters in well simulations, as both models demonstrate

better alignment and potentially higher accuracy under these conditions.

 43

3.3 The efficiency and accuracy of the different shear stress calculations

3.3.1 Tw_NarrowSlotPowerLawLaminar.m

The Power Law case was implemented using the MATLAB function C.2

Tw_NarrowSlotPowerLawLaminar.m. The formula for the Power Law model is relatively

simple, which makes it straightforward to implement and run. The average runtime for this case

was approximately 2.5 seconds, which is slightly slower than the Newtonian case by about 0.6

seconds. Despite this, the Power Law case still demonstrates a high level of computational

efficiency.

Figure 13 Power Law

However, it's worth noting that the results for the Power Law case, as shown in Figure 13,

simulated using the values from Table 1, exhibit oscillating values that are quite different from

the other cases. This is likely due to the values of the flow behaviour index (n) and the

consistency index (k) in the Power Law model, which can represent a fluid that behaves very

differently from a Newtonian fluid.

The calculated frictional pressure loss for the Power Law case, obtained using Equation 12 and

the relationship in Equation 11, is approximately 2.32 bar. This value appears to be consistent

with the plot in Figure 13, further validating the accuracy of the calculations for this case. Due

 44

to the oscillations, it is difficult to tell if the Power Law model provides a reasonable

approximation of the behaviour of non-Newtonian fluids under laminar flow conditions.

3.3.2 Tw_NarrowSlotBinghamPlasticLaminar.m

The Bingham Plastic model was implemented using the MATLAB function C.3

Tw_NarrowSlotBinghamPlasticLaminar.m. This case involves a more complex model due to

the unique behavior of Bingham Plastic fluids, which exhibit a yield stress and behave like a

solid until this yield stress is exceeded. The average runtime for this case was significantly

longer than the other cases, at approximately 47 seconds. This is due to the additional

complexity of the Bingham Plastic model, which requires more computational resources to

accurately simulate.

Figure 14 Bingham Plastic

The results for the Bingham Plastic case, as shown in Figure 14, indicate that the values at

steady state are seemingly correct. By using Equation 13 and the relationship in Equation 11,

we can calculate a value of approximately 11.6 bar at steady state, which aligns with the plot.

However, it's important to note that the values while ramping the flowrate are likely inaccurate.

This is because the current implementation of the Bingham Plastic model does not stop the flow

when the yield stress is not overcome. This is a limitation of the current model and should be

addressed in future work to improve the accuracy of the simulations.

 45

3.3.3 Tw_NarrowSlotHerschelBulkley.m

The Herschel-Bulkley model, while more complex, was implemented with an average runtime

of approximately 67 seconds. This is noticeably longer than the Bingham Plastic case, which

had an average runtime of about 47 seconds. This increase in computational time is likely due

to the more complex nature of the Herschel-Bulkley model, which includesadditional

parameters, the flow behavior index (n) and the consistency index (k), in its calculations.

The Herschel-Bulkley model presents a unique aspect in that the equation used to calculate the

wall shear stress (τw), as given by equation 14, is not always solvable. In such instances the

function will result in imaginary values, which by default are ignored through the fsolve

function, or the function resorts to using the simplified Bingham Plastic model, when there is

no solution at all, to estimate τw. This situation introduces a degree of uncertainty over the

model's accuracy, particularly during the ramping of the flow rate. This is because the use of

the simplified Bingham Plastic model for cases where the wall shear stress (τw) is less than or

equal to the yield stress (τy) could potentially introduce noise into the calculations.

Figure 15 Herschel-Bulkley

Despite this, it's important to note that these uncertainties should resolve at steady state. As

shown in Figure 15, the Herschel-Bulkley model reaches a steady state with a frictional pressure

of approximately 10 bar. This value aligns well with calculations made using equation 14 for

τw and equation 11 for the relationship between frictional pressure and τw, suggesting that

 46

despite potential inaccuracies during the ramping phase, the model's accuracy at steady state

remains robust.

3.4 Machine learning

3.4.1 Random Forest Regression

The machine learning model employed in this study is the Random Forest Regression model.

This model is a type of ensemble learning method that constructs a multitude of decision trees

during training and outputs the mean prediction of the individual trees. It is particularly

effective in handling complex, non-linear relationships between variables, which makes it well-

suited for predicting parameters in fluid dynamics and well simulations.

The Random Forest Regression model is based on calculations made by the C.5

Tw_NarrowSlotBinghamPlasticWithFlow.m script. The data was collected using C.6

TrainingDataCollector.m, and the model was trained using C.7 TrainingModel.m, resulting in

the creation of C.8 Tw_NarrowSlotBPWithFlowML.m, to preload the model a line was added

to A.1 MasterAlg_PipeHorizontal.m, see D.4 MasterAlg_PipeHorizontal.m.

This script estimates the narrow slot approximation for wall shear stress (τw) with the Bingham

Plastic model under laminar flow conditions. The script also has the capability to set the flow

rate out of a section to zero when the wall shear stress is less than or equal to the yield stress,

which is a key feature of Bingham Plastic fluids. While training it to do this is possible, it would

in this case be better to simply ad a function to return the signal to turn of flow if the estimated

shear stress is less than the yield stress.

 47

Figure 166 100 Grown trees

In the Random Forest Regression model, the number of trees grown, as shown in Figure 16, is

a key parameter that can significantly influence the model's performance. Each tree in the forest

is grown independently, and the final prediction is made by averaging the predictions of all the

trees. Increasing the number of trees can improve the model's accuracy by reducing the variance

of the predictions, but it also increases the computational cost and the time required to train the

model. Conversely, reducing the number of trees can make the model faster to train and run,

but it may also reduce the model's accuracy. Therefore, selecting the optimal number of trees

is a crucial step in the model training process.

3.4.2 Root Mean Square Error

 48

Now, let's consider the application of RMSE in the context of our machine learning model and

the C.5 Tw_NarrowSlotBinghamPlasticWithFlow.m script.

Figure 177 Visual comparison of calculation versus machine learning 100 trees

Figure 17 provides a visual comparison of the estimates made by the machine learning model

and C.3 Tw_NarrowSlotBinghamPlasticLaminar.m when ran through the code designed for

comparing, C.8 TestMLvsCalculations. The results from both methods are closely aligned,

suggesting that the machine learning model is capable of accurately predicting the wall shear

stress. Increasing the volume of data for training would likely enhance the accuracy of the

machine learning model, and more closely fit the graphed curves.

However, visual comparison alone is not sufficient to determine the accuracy of the machine

learning model. It's crucial to calculate the RMSE between the predicted and actual values to

 49

quantify the model's performance. The RMSE measures the average magnitude of the errors in

a set of predictions, without considering their direction. It aggregates the residuals (differences

between predicted and actual values) into a single measure of predictive power. A lower RMSE

indicates a better fit to the data.

By employing equation 15, as calculated in lines 37 to 40 in C.8 TestMLvsCalculations, we

obtain a Root Mean Square Error (RMSE) of 0.2208. This value represents the standard

deviation of the residuals, which are the prediction errors. Given that the range of the predicted

values varies from -1 to -8.13, an RMSE of 0.2208 can be considered relatively low. This

suggests that the machine learning model has a good fit to the data and is able to predict the

wall shear stress with a reasonable level of accuracy. However, it's important to note that the

acceptability of this RMSE value can be context-dependent and may vary based on specific

application requirements.

3.4.3 Increasing Efficiency

In this particular case, reducing the number of trees in the Random Forest Regression model

could be beneficial for improving computational efficiency. As shown in Figure 13, the model's

accuracy does not significantly decrease when the number of trees is reduced. This suggests

that a smaller forest could still provide reasonably accurate predictions while greatly reducing

the computational cost and runtime.

Currently, running 1000 simulations with the Random Forest Regression model takes about 90

seconds on average, with 100 trees, which is significantly longer than the approximately 1

second required for 1000 runs of the C.3 Tw_NarrowSlotBinghamPlasticLaminar.m script. By

reducing the number of trees in the Random Forest Regression model, it may be possible to

bring the runtime closer to that of the C.3 script without sacrificing much in terms of accuracy.

In an effort to further optimize the computational efficiency of the Random Forest Regression

model, the number of trees was reduced to 50. This adjustment resulted in a notable decrease

in the average runtime for 1000 simulations, bringing it down to approximately 40 seconds.

This is a significant improvement compared to the 90 seconds required when using 100 trees.

 50

Figure 1818 Visual comparison of calculation versus machine learning 50 trees

Although visually hart to tell from Figure 18, it's important to note that while reducing the

number of trees can decrease runtime, it may also affect the model's predictive accuracy. In this

case, the Root Mean Square Error (RMSE) increased slightly to 0.2793, up from 0.2208 with

100 trees.

While this increase in RMSE is relatively small, it does indicate a slight decrease in the model's

predictive accuracy. However, given the substantial reduction in runtime, this trade-off may be

acceptable depending on the specific requirements of the simulation. In scenarios where speed

is a priority, the slight decrease in accuracy might be considered negligible. Conversely, in

situations where the highest possible accuracy is required, it might be preferable to use a larger

number of trees, despite the longer runtime.

 51

4 Conclusion

4.1 Comparison of the Models

The Gjerstad and Fjelde models are both effective tools for simulating drilling processes, each

with their unique strengths and applications. The Gjerstad model, due to its design as an

Ordinary Differential Equation (ODE) model, offers faster computational speed. This is largely

due to the physics simplifications inherent in its design, which reduce the complexity of the

calculations being executed, thereby enhancing computational efficiency.

Despite these simplifications, the Gjerstad model offers a more comprehensive framework for

representing the drilling process. This robustness allows it to handle a wider variety of cases

with accuracy, making it a valuable tool for scenarios where a more detailed and adaptable

model is required.

On the other hand, the Fjelde model, being a Partial Differential Equation (PDE) model,

provides a more detailed representation of the drilling process. While this results in increased

computational time compared to the Gjerstad model, it also allows for a high level of accuracy

in the simulation results.

Both models are flexible and can be tuned to handle most, if not all, physically possible cases.

The simplicity of their codes allows for easy modifications, making them adaptable tools that

can be adjusted to better suit specific needs.

4.2 Implementation of Functions for Non-Newtonian Fluids

The implementation of non-Newtonian fluid models presented varying levels of complexity

and computational efficiency. The Power Law model was relatively straightforward to

implement and provided accuracy comparable to the Newtonian model, albeit at a slightly

slower computational speed.

On the other hand, the Bingham Plastic and Herschel-Bulkley models were more complex to

implement and required significantly more computational resources, resulting in significantly

 52

slower runtimes. While these models are more representative of real-world drilling fluids, their

increased complexity presents challenges in terms of computational efficiency and accuracy.

In particular, the accuracy of the Herschel-Bulkley model during the ramp-up phase is difficult

to evaluate due to the potential for the equation used to calculate wall shear stress (τw) to yield

imaginary values. This introduces a degree of uncertainty into the calculations during this

phase. However, it's important to note that these potential inaccuracies should resolve at steady

state, as indicated by the model's performance under steady state conditions.

Overall, the choice of model should be guided by the specific requirements of the simulation,

including the desired balance between computational speed, accuracy, and the complexity of

the fluid behaviour to be simulated. It's also worth noting that more accurate solutions for the

Bingham Plastic and Herschel-Bulkley models likely exist, and further research and

development in this area could lead to improved simulation results.

4.2 Machine Learning

The implementation of the Random Forest Regression model in this study provided valuable

insights into the potential of machine learning for simulating drilling processes. However, the

results also highlighted some significant challenges.

The computational speed of the Random Forest Regression model was found to be considerably

slower than the traditional models used in this study. Specifically, the runtime for the Random

Forest Regression model was too long for practical applications, particularly for real-time use

in drilling operations. This is a significant limitation, as one of the key requirements for a

drilling simulation model is the ability to provide accurate results quickly enough to inform

real-time decision-making.

One potential solution to this issue could be to replace the entire drilling simulation model with

a machine learning model, rather than just the calculations for wall shear stress (τw). This would

involve training a machine learning model to simulate the entire drilling process, rather than

just a specific aspect of it. However, this would be a substantial undertaking, requiring a large

amount of high-quality training data and significant computational resources.

 53

5 References

Gjerstad, A. K. (2014). Simplified flow equations for single-phase non-Newtonian fluids in

Couette-Poiseuille flow and in pipes : for dynamic modeling of surge and swab pressure

in oil well drilling operations. Universitetet i Stavanger Det teknisk-naturvitenskapelige

fakultet.

Saasen, A., Ytrehus, J., & Lund, B. (2020). Annular Frictional Pressure Losses for Drilling

Fluids. International Conference on Offshore Mechanics and Arctic Engineering.

Wikipedia. (2023, June). Machine Learning. Hentet fra Wikipedia:

https://en.wikipedia.org/wiki/Machine_learning

Wikipedia. (2023, June). Random Forest. Hentet fra Wikipeia:

https://en.wikipedia.org/wiki/Random_forest

Wikipedia. (2023, June). Root-mean-square deviation. Hentet fra Wikipedia:

https://en.wikipedia.org/wiki/Root-mean-square_deviation

 54

Appendix A Alf Kristian Gjerstad Model

A.1 MasterAlg_PipeHorizontal.m

% ---

%
% Main function
%
% Flow model of a horizontal pipe:
% - divided into a number of volumes of choice
% - based on ODE's, solved by own implementation of Runge-Kutta 4 /

Euler
% - uses an explicit version of the Herschel-Bulkley rheology model
%
% ---

% Clearing memory:
clear

% Make space between console outputs
disp('...');

% Add paths where library files are located
NewLibraryPath = 'Library';
path(NewLibraryPath, path)
NewLibraryPath = '../MatlabLibraryKG';
path(NewLibraryPath, path)
%LibraryPath = 'd:/MatlabLibraryKG/FluidCalculations';
%path(LibraryPath, path)
%LibraryPath = 'd:/MatlabLibraryKG/InputsPreparationsAndPlotting';
%path(LibraryPath, path)

%% ----------- Setting Global constants -----------

% Physical Parameters:
GlobConstPhys = SetPhysicsParam();
GlobConstPhys = SetReynoldsNumberConstants(GlobConstPhys);
GlobConstPhys.dFlowInMaxPrSecCms = 0.1; % Check

%% ---------- Simulation parameters -------------------
%GlobSimPar = SetSimParam(4880, 0.1, 'SimulationWellControlNickens');

SimulationTimeInit = 100; % in sec
GlobalTimestep = 0.1; %0.05; 0.5
nGlobalSteps = fix(SimulationTimeInit/GlobalTimestep);
SimulationTime = GlobalTimestep * nGlobalSteps;
SimTimeVector = 0:GlobalTimestep:SimulationTime-GlobalTimestep;

% Put into global structure
GlobalConstSim.GlobalTimeStep = GlobalTimestep;

 55

GlobalConstSim.nGlobalSteps = nGlobalSteps;
GlobalConstSim.nInternalStepPrGlobal = 1;

%% ----------- Generating Input signals -----------
%
% STUDENT: This can be skipped if you want to generate your own time

series with input data

[FlowrateInput_LPM, ThrottleInput_ClosePct] =

PipeFluHrz_InputSignalGenerator(GlobalConstSim, GlobConstPhys);

%% ----------- Initiating the fluid --------------------

% Fluid setup/selection - independent of ODE model - NOMINAL values
FluidNom.Density = 1500;
FluidNom.BulkModulus = GlobConstPhys.BulkModulusObm; %

or BulkModulusOil or BulkModulusWater
FluidNom.PresRefPa = GlobConstPhys.PresAtmPa;

%FluidNom = SelectMudTypeOrSetParameters('HB1', FluidNom);
FluidNom = SelectMudTypeOrSetParameters('', FluidNom, 0.2, 0.8, 0);

% Three last arguments are rheology parameters HB / PL

FluidNom.RheologyPipe =

ComputeRheologyParametersPipe(FluidNom.Viscosity.FlowBehaviorIndex); % Here

scalar input, but it may be a vector
% The SmoothFactor is independent of other variables => use the Nominal

value (% PUTTE SmoothFactor INN I ComputeRheologyParametersPipe)
FluidNom.RheologyPipe.SmoothFactor = +1; % Valid range is [-2, +3],

where 0 is default, and optimal for moderate yp-values
% % Neagtive factor may be

chosen to obtain sharper yp-effet (the treshold value is reduced by a decade

when the factor is reduced by one).
% % Positive factor will make

the yp effect smoother and increase computational speed (P_T = P_T_default

.* 10.^SmoothFactor)

%% ----------- Activating object models and plotting _----------

PipeFluHrzODE_InUse = 1;
PlottingPipeFluHrzODE_InUse = 1;

PipeFluHrzPDE_InUse = 0; % 1
PlottingPipeFluHrzPDE_InUse = 0; % 1

PlottingInputs_InUse = 1;

 56

%% ----------- Initiating the model PipeFluHrz --------------------

InitBoundaries.PresBoundDnStmBar = GlobConstPhys.PresAtmBar * 10; %

The pressure at the outlet
InitBoundaries.FlowBoundUpStmLpm = 0; %

The flowrate at the inlet (but will be changed...?)

% Set the Pipe properties FROM LAST cell to the FIRST cell
% - In the Future, Read from GUI/Config file and Align to chosen Grid-

structure
%
SetGridPropertiesIndividually = 0; % Select how to set these

if SetGridPropertiesIndividually == 1
 Par.LengthPrGrid = [1000, 800, 500, 800, 1000];
 Par.DiameterInnIn = [4, 5, 5, 5, 4]; %[3, 4, 5, 6, 6];
 Par.ThrottleGridOrPoint = 1;
 Par.ConstrictionOpenPst = [10, 100, 100, 100, 100];
 Par.ThrottleActive = [0, 1, 0, 0, 0]; % Activate

throttling - Might not work..
 Par.InclFromVrtDeg = [90, 90, 90, 90, 90];
 Par.nGrids = length(Par.LengthPrGrid);
else
 LenTotal = 3000;
 Par.nGrids = 4; % 100
 UnityVectorGrids = ones(1, Par.nGrids);
 Par.LengthPrGrid = LenTotal/Par.nGrids * UnityVectorGrids;
 Par.DiameterInnIn = 5 * UnityVectorGrids; % Inches
 %Par.DiameterInnIn = 0.1 * 100 *1/2.54 * UnityVectorGrids; %

m * m2cm * cm2In
 Par.ThrottleGridOrPoint = 1;
 Par.ConstrictionOpenPst = [100, 100*ones(1, Par.nGrids-1)];
 Par.ThrottleActive = 0*UnityVectorGrids;
 %Par.ThrottleActive(2) = 1; % Activate

throttling
 Par.InclFromVrtDeg = 90 * UnityVectorGrids;
end

disp(['Length total: ', num2str(LenTotal)]);
disp('...');

% Call the Setup function, which Maps input units and forms to ODE

units and forms, Establish variables for plotting and Calls Init function
if PipeFluHrzODE_InUse
 ObjectName = 'PipeWith1In2Out_Generic';
 [PipeFluHrzIntFc, PipeFluHrzObj] =

PipeFluHrz_2xOrd_Setup(ObjectName, InitBoundaries, Par, FluidNom,

GlobConstPhys, GlobalConstSim);
end
if PipeFluHrzPDE_InUse
 ObjectName = 'PipeWith1In2Out_PDE1';

 57

 [PipeFluHrzPdeIntFc, PipeFluHrzPdeObj] =

PipeFluHrz_SemiImplicitPde_Setup(ObjectName, InitBoundaries, Par, FluidNom,

GlobConstPhys, GlobalConstSim);
end

%%

% ---

% Main time loop executing the ODE models, calculating additional
% variables and putting all outputs into time vectors
% ---

for t = 1:1:nGlobalSteps-1

 % -------------- Mapping inputs --------------

 if PipeFluHrzODE_InUse
 PipeFluHrzIntFc.InputsPrev = PipeFluHrzIntFc.Inputs; %

Storing old values
 PipeFluHrzIntFc.Inputs.FlowUpStmLpm = FlowrateInput_LPM(t);
 PipeFluHrzIntFc.Inputs.PresDnStmBar =

InitBoundaries.PresBoundDnStmBar; %PressureAtmosphereBar;
 PipeFluHrzIntFc.Inputs.ThrottleClosePct =

ThrottleInput_ClosePct(t);
 end
 if PipeFluHrzPDE_InUse
 PipeFluHrzPdeIntFc.InputsPrev =

PipeFluHrzPdeIntFc.Inputs; % Storing old values
 PipeFluHrzPdeIntFc.Inputs.FlowUpStmLpm =

FlowrateInput_LPM(t);
 PipeFluHrzPdeIntFc.Inputs.PresDnStmBar =

InitBoundaries.PresBoundDnStmBar; %PressureAtmosphereBar;
 PipeFluHrzPdeIntFc.Inputs.ThrottleClosePct =

ThrottleInput_ClosePct(t);
 end

 % -------------- EXECUTING --------------

 if PipeFluHrzODE_InUse % EXECUTING: PipeFluHrz:
 [Outputs, PipeFluHrzObj] =

PipeFluHrz_Step(PipeFluHrzIntFc.Inputs, PipeFluHrzIntFc.InputsPrev,

PipeFluHrzObj, GlobConstPhys, GlobalConstSim, "ODE");
 % Note this is MAtlab's way to do "CALLED BY REFERENCE"
 OutputVector = [Outputs.Flow; Outputs.Pres; Outputs.Dens];

 58

 PipeFluHrzIntFc.PlotMatrix(:,t+1) = OutputVector;
 PipeFluHrzIntFc.Outputs = Outputs;
 end

 if PipeFluHrzPDE_InUse % EXECUTING: PipeFluHrz:
 [Outputs, PipeFluHrzPdeObj] =

PipeFluHrz_Step(PipeFluHrzPdeIntFc.Inputs, PipeFluHrzPdeIntFc.InputsPrev,

PipeFluHrzPdeObj, GlobConstPhys, GlobalConstSim, "PDE");
 % Note this is MAtlab's way to do "CALLED BY REFERENCE"
 OutputVector = [Outputs.Flow; Outputs.Pres; Outputs.Dens];
 PipeFluHrzPdeIntFc.PlotMatrix(:,t+1) = OutputVector;
 PipeFluHrzPdeIntFc.Outputs = Outputs;
 end %

 % Show preogress by writing to console every 10 sec.
 SimTimeSec = t*GlobalTimestep;
 if (mod(SimTimeSec, 10) == 0)
 display(['Simulated time (sec) = ', num2str(SimTimeSec), ' of

', num2str(SimulationTimeInit)])
 end

end

disp('Simulation finised')

% ------------------- Plotting -------------------------

if (PipeFluHrzODE_InUse || PipeFluHrzPDE_InUse) %PipeFluHrz_InUse
 PlotMultiPrSub(9, SimTimeVector, PipeFluHrzIntFc.PlotMatrix,

PipeFluHrzIntFc.Par.OutputNames, 'Horizontal Pipe',

PipeFluHrzIntFc.Par.PlotGrouping); % Dll
end

if PlottingInputs_InUse == 1 % Collecting and plotting input signals:
 if (PipeFluHrzODE_InUse || PipeFluHrzPDE_InUse) %PipeFluHrz_InUse
 InputVectors = [FlowrateInput_LPM'; ThrottleInput_ClosePct'];
 InputVariableNames = {'Flowrate'; 'ThrottlingInput'};
 else
 InputVectors = [FlowrateInput_LPM';

TravelBlockVelocityInput_0_1_ms'; ThrottleInput_ClosePct'];
 InputVariableNames = {'Flowrate'; 'TravelBlockVelocity';

'ThrottlingInput'};
 end
 PlotSimple(1, SimTimeVector, InputVectors, InputVariableNames,

'InputVariables');
end

 59

A.2 AlignVectorsValuesToMultipleLength.m

% Aligns values of vector of one length to another vector length when

the
% two vectors are multiples of each other

function OutputVector =

AlignVectorsValuesToMultipleLength(InputVector, LenOutputVec)

 LenInputVec = length(InputVector);
 OutputVector = zeros(LenOutputVec, 1);

 if LenOutputVec < LenInputVec
 nInputsPrOutput = LenInputVec/LenOutputVec;
 OutputVectorSum = zeros(LenOutputVec, 1); %nInputsPrOutput
 for i=1:LenOutputVec
 for j=1:nInputsPrOutput
 OutputVectorSum(i) = OutputVectorSum(i) +

InputVector(2*(i-1) +j);
 end
 OutputVector(i) = OutputVectorSum(i)/nInputsPrOutput;
 end

 elseif LenOutputVec > LenInputVec
 nOutputsPrInput = LenOutputVec/LenInputVec;
 j = 1;
 for i=1:LenOutputVec
 OutputVector(i) = InputVector(j);
 if (i/j) == nOutputsPrInput
 j=j+1;
 end
 end
 else
 OutputVector = InputVector;
 end

 %OuputVector = OutputVector;
end

A.3 CalcFluidDensityFromEqOfState.m

% ---

%
% Calculates the density of a Liquid from the Equation of state.
% All numeric inputs may be vectors, but can also be scalars, or a mix.
% If different fluid are present in a string or borehole, both Pressure,
% DensityNominalVec and BulkModulus can be vectors with individual

values
% for each grid.
%
% ---

 60

function FluidDensity = CalcFluidDensityFromEqOfState(Pressure,

PressureReference, DensityNom, BulkModulus)

 PressureDifference = Pressure - PressureReference;
 FluidDensity = DensityNom + DensityNom./BulkModulus .*

PressureDifference;

end

A.4 ComputeRheologyParametersPipe.m

% ---

% Parameters for explicit Herschel-Bulkley rheology model - ref paper:
% - Kristian Gjerstad, Rune W. Time, B. Erik Ydstie and Knut S.

Bjørkevoll.
% An Explicit and Continuously Differentiable Flow Equation for
% non-Newtonian Fluids in Pipes. SPE Journal 19 (1): 78-87. SPE-

165930-PA,
% 2013.
% ---

function RheologyPipe =

ComputeRheologyParametersPipe(FlowBehaviorIndex)

 RheologyPipe.xi = 0.97 - 0.1 *FlowBehaviorIndex -

0.11*FlowBehaviorIndex.^2;
 RheologyPipe.sigma = 0.20 + 0.45 *(FlowBehaviorIndex - 0.5).^2;
 RheologyPipe.psi = 0.82 + 0.8 *FlowBehaviorIndex.^3;

 RheologyPipe.PT = (1 + 45 .*(FlowBehaviorIndex+1).^(-5.4))

* 0.0001;
 RheologyPipe.Omega = 1 ./ FlowBehaviorIndex;
 RheologyPipe.SmoothFactor = 0; % Valid range is [-2, +3], where 0

is default, and optimal for moderate yp-values
 % For high yp neagtive

factor may be chosen to obtain sharper yp-effet (for low flow rates).
 % For low yp, positive

factor will increase computational speed.
end

A.5 fRampAndHold3.m

%

**
%
% Function that returns a signal with one or several consecutive

 61

% step changes filtered through a filter (1. or 2. order).
% The integral of the signal, is also returned.
%
%

**

% Improvement:
% The functions return one row pr global timestep and one column pr

internal

function [SignalFinal, SignalIntegrated] =

fRampAndHold2(GlobalConstSim, filterOrder, filterTime, startValue,

holdTimes, holdValues, ZeroLimit)

 GlobalTimeStep = GlobalConstSim.GlobalTimeStep;
 nGlobalSteps = GlobalConstSim.nGlobalSteps;
 nInternalStepPrGlobal = GlobalConstSim.nInternalStepPrGlobal;

 T = GlobalTimeStep;
 simTimeTotal = GlobalTimeStep * nGlobalSteps;

 rampNumbers = length(holdValues);
 if rampNumbers ~= length(holdTimes)
 'The last two inputvectors must be of same length'
 pause
 end

 if sum(holdTimes) > simTimeTotal
 'Sum of holdTimes must be less than simTimeTotal'
 pause
 end

 Signal = startValue * ones(1, fix(holdTimes(1)/T)); %

Signal values before first step
 for i = 2:rampNumbers %

Loop through the numbers of steps for the total input signal
 signalHold_i = holdValues(i-1) * ones(1,

fix(holdTimes(i)/T)); % Construct constant "hold-values" to be added

after the step
 Signal = [Signal signalHold_i]; %

Combine the filtered step function with the constant hold-values for the

current step
 end
 restSamples = nGlobalSteps - length(Signal);
 Signal = [Signal holdValues(rampNumbers) *ones(1, restSamples)];

 t = 0;
 y = Signal;

 if filterOrder == 0
 y(i) = Signal(i); % No filter

 62

 elseif filterOrder == 1
 alpha = GlobalTimeStep/(filterTime+GlobalTimeStep);
 for i=2:nGlobalSteps
 y(i) = (1-alpha) * y(i-1) + alpha*Signal(i); % simple

low pass filter
 %t = [t, i*GlobalTimeStep];
 end
 elseif filterOrder == 2
 T = GlobalTimeStep;
 w0 = 1/filterTime; % Undamped resonance frequency
 % numerator:
 a1 = w0^2*T^2;
 a2 = 2*a1;
 a3 = a1;
 % denominator:
 f1 = (w0*T + 2);
 f2 = (w0*T - 2);
 b1 = f1^2; % = 4 + 4*w0*T + w0^2*T^2;
 b2 = 2*f1*f2; % = 2*w0^2*T^2 - 8;
 b3 = f2^2; % = 4 - 4*w0*T + w0^2*T^2;
 %Parameters_tot = (a1+a2+a3-b2-b3)/b1; % Always unity

for unity amplification

 for i=3:nGlobalSteps
 y(i) = 1/b1 * (-b2*y(i-1) -b3*y(i-2) + a1*Signal(i) +

a2*Signal(i-1) + a3*Signal(i-2)); % Critical damped 2. order filter (unity

amplification)
 end
 else
 'Filter type is missing'
 end

 for i=1:nGlobalSteps
 if (exist ('ZeroLimit', 'var')) == 1
 if y(i) < ZeroLimit
 y(i) = 0;
 end
 end
 end

 SignalFinal = y';
 SignalIntegrated = cumtrapz(SignalFinal) * T; % The

integral

end

A.6 fReynoldsNumber.m

%

%
% Returns an equivalent Reynolds number (Re) for non-Newtonian flow
% in pipes and annulus. The Reynoldsnumber is always positive.
%

 63

% To avoid problems of zero values in the denominator when the flow

rate
% is zero, a "net Reynoldsnumber" where the flow velocity is taken out

is
% also returned (this is ok since this flow velocity will cancel out

in
% subsequent computations).
%
% The value of the input parameter G determines whether the output is
% valid for pipe or annulus.
%
%

function [Re Re_net] = fReynoldsNumber(v_tot, k, n, density, h, G)

% Input vectors:
 % v_tot TOTAL effective velocity. For annulus it will be higher

than effective Couette-Poiseulille velocity when ws>0. CONSIDER USING TAYLOR

NUMBER.
 % For pipes it is the axial bulk flow velocity regardless

of ws. CONSIDER INCLUDING AN EFFECT OF ROTATION INSIDE STRING IN THE FUTURE
 % k, n, Rheolgy parameters
 % density Density of fluid
 % h Equals R_well-R_pipe for annulus, and equals the radius

for pipes
 % G Constant that is equal (1/(3n+1)^n) for pipes and

(1/(4n+2)^n) for annulus

 Re = 8 * density ./ k .* (h.*n).^n .* G .* abs(v_tot).^(2-

n);
 Re_net = 8 * density ./ k .* (h.*n).^n .* G;

end

A.7 fTransition.m

%

%
% Function that determines the transition from laminar to turbulent

flow
% for PIPE and ANNULUS. Returns a transition number called FlowRegime
% in the range [0 1].
%
% Output: FlowRegime =
% 1 -> Laminar,
% 0 -> Fully turbulent,
% <0 1> -> Transitional
%
% The critical Reynoldsnumber and "center Reynoldsnumber" are dependent

on
% the rheology parameter n.

 64

%
% Rotation of inner cylinder will not affect this transition function.
% However, for the annulus there will be a higher Reynoldsnumber used

as
% input (computed in separate function), so that turbulence will start
% earlier when the string rotates. For the pipe, string rotation does

not
% affect the transition at all.
%
%

function [FlowRegime, Re_cr, Re_ce] = fTransition(Re, n, Re_cr_nom,

Re_tu_nom, Re_Delta_n0, Trns_minVal)

% Input vectors:
 % Re Reynoldsnumber
 % n Flow behavior index

% Scalar input variables:
 % Re_cr_nom = 2100; Nominal value for critical Reynolds

numnber when transition region starts - effective value depends on rheology
 % Re_tu_nom = 2900; Nominal value for Reynolds numnber when

100% turbulence is achieved (at the center of the Transitional region) -

effective value depends on rheology
 % Re_Delta_n0 = 1370; Addition in critical Reynoldsnumber

when n -> 0.
 % Trns_minVal = [5 10] Value in % of transition function at

critical Reynoldsnumber, Re_cr

 % Reynoldsnumber values at start and center point for transition

region:
 Re_ce_nom = (Re_cr_nom + Re_tu_nom)/2; % Nominal

center point
 Re_cr = Re_cr_nom + (1-n) *Re_Delta_n0; % Start of

transition region
 Re_ce = Re_ce_nom + (1-n) *Re_Delta_n0; % Current

center point for transition region

 % Compoutes the exponential power in the laminar-turbuelent

transition function
 % - gives the "slope" defined by input parameters { log_base(x)

= log_10(x) / log_10(base) }
 GAM = log10((100-Trns_minVal)/Trns_minVal)

./log10(Re_ce./Re_cr);

 % The smooth transition between laminar and turbulent flow:
 FlowRegime = 1 ./ (1 + (Re ./ Re_ce).^GAM);

end

 65

A.8 NanAndInfCheck.m

function IsNan = NanAndInfCheck(InputVector, VariableName)

 IsNan = sum(isnan(InputVector));
 if (IsNan)
 disp(['A value in ', VariableName, ' is NaN'])
 end

 IsInf = sum(isinf(InputVector));
 if (IsInf)
 disp(['A value in ', VariableName, ' is Inf'])
 end

end

A.9 PipeFlu_PdeGen_Init.m

% ---

%
% Building the Objects internal variables and parameters from prepared

inputs
%
%
% Initiating vaiables in a generic PDE-based object for the fluid inside
% a Pipe. Parameers must have been configured alreay.
%
% This function must be wrapped by an outer function that sends inn
% LengthPrGridTd, inclination, density and initial pressure and

density.

% Hence, this functin is Generic since variants related to initial
% conditions, inclination, form of inputs/outputs etc are taken care

of
% by the outer wrapper.
%
% Geometry parameters and States are here set into a Structure to be

used
% by the PDEs.
%
% Preparing Outputs for input-mapping is not needed here since the

outer
% wrapper take care of this. Similarly; Other setup for plotting and
% PlotMatrix are not needed.
%
% The reference frame for the fluid is the moving solid pipe.
% Hence, the solid string acceleration gives a fictitious force.
%
% ---

function PipeFluObj = PipeFlu_PdeGen_Init(ObjectName, p, FlowInitLpm,

PresInitBar, DensityInit, FluidNom)

 66

 % Simulation constants:
 c.ObjectName = ObjectName;
 c.T_max = 0.01; % Max Time step for PDE model

when using ??? solver

 % --- Parameters ---

 % Grid parameters
 p.nGridsDs = length(p.LengthPrGrid);
 p.LengthTotal = sum(p.LengthPrGrid);

 % Grid-Vectors
 p.ZeroVectorGrids = zeros(1, p.nGridsDs);
 p.UnityVectorGrids = ones(1, p.nGridsDs);

 % Height
 dHeightVertical = p.LengthPrGrid .* sin(p.InclHrzRad);
 p.HeightVerticalSum = sum(dHeightVertical);

 % Geometry vector parameters - These are constants during

simulation (unless Events are build):
 p.AreaCrs = pi * p.RadiusInn.^2;
 p.AreaSrf = pi * 2*p.RadiusInn .* p.LengthPrGrid;
 p.Volume = p.AreaCrs .* p.LengthPrGrid;
 p.ConstrArea = p.ConstrictionOpenPst./100 .* p.AreaCrs; %

Additional constriction that can be used for Tool joint effect etc
 p.ConstrDischarge = 0.90;

 % Parameters that might be changes in Event Builder are stored in

an "Org"-parameter to be able to manipulate the original pr timestep and

restore it later
 p.RadiusInnOrg = p.RadiusInn;
 p.AreaCrsOrg = p.AreaCrs;

 % --- Initial conditions for variables ---
 FlowLpm = FlowInitLpm';
 PresBar = PresInitBar';

 % Establish total States and Output vectors:
 StateVariables = [FlowLpm; PresBar];
 p.ModelOrder = length(StateVariables(:,1));

 % Fluid properties:
 p.Fluid = SetFluidParametersPrGridDs(FluidNom,

p.UnityVectorGrids);

 % Combined parameters (fluid and solid):
 p.Fluid.BulkModulusEff = p.Fluid.BulkModulus; % Effective Bulk

modulus/stiffness is now from NOMINAL fluid properties

 67

 % LATER: =

f(FluidNom.BulkModulus, BoundaryStiffness);
 % OR

p.FluidSolid.BulkModulusEffective = f(FluidNom.BulkModulus,

BoundaryStiffness);

 % --- Set the States and Outputs ---

 PipeFluObj.States.Flow = FlowLpm;
 PipeFluObj.States.Pres = PresBar;

 PipeFluObj.Par = p;
 PipeFluObj.Cst = c;

end

A.10 PipeFluGen_2xOrd_Init.m

% ---

%
% Initiating of generic PIPE object for the fluid inside it.
%
% This function must be wrapped by an outer function that sends inn
% LengthPrGridTd, inclination, density and initial pressure and

density.
% Hence, this functin is Generic since variants related to initial
% conditions, inclination, form of inputs/outputs etc are taken care

of
% by the outer wrapper.
%
% Geometry parameters and States are here set into a Structure to be

used
% by the ODEs.
%
% Preparing Outputs for input-mapping is not needed here since the

outer
% wrapper take care of this. Similarly; Other setup for plotting and
% PlotMatrix are not needed.
%
% The reference frame for the fluid is the moving solid pipe.
% Hence, the solid string acceleration gives a fictitious force.
%
% ---

function PipeFluObj = PipeFluGen_2xOrd_Init(ObjectName, p,

FlowInitLpm, PresInitBar, DensityInit, FluidNom)

 % Simulation constants:
 c.ObjectName = ObjectName;

 68

 c.T_max_RK4 = 0.025; % Max Time step for ODE model

when using RK4 solver
 c.T_max_Euler = 0.01; % Max Time step for ODE model

when using Euler solver

 p.nGridsDs = length(p.LengthPrGrid);
 %p.LengthPrGridDs = LengthPrGrid;
 p.LengthTotal = sum(p.LengthPrGrid);

 % Global constants:
 p.BiasFlowDs = 0;
 p.BiasPresDs = p.nGridsDs;
 p.BiasDensDs = p.nGridsDs*2;

 % Vectors:
 p.ZeroVectorGrids = zeros(1, p.nGridsDs);
 p.UnityVectorGrids = ones(1, p.nGridsDs);

 dHeightVertical = p.LengthPrGrid .* sin(p.InclHrzRad);
 p.HeightVerticalSum = sum(dHeightVertical);

 % --- Initial conditions ---

 FlowLpm = FlowInitLpm';
 PresBar = PresInitBar';

 % Establish total States and Output vectors:
 StateVariables = [FlowLpm; PresBar];
 p.ModelOrder = length(StateVariables(:,1));

 % Output variables in addition to the States:
 %OutputVariables = [DensityInit'];
 %p.OutputOrder = length(StateVariables(:,1)) +

length(OutputVariables);
 %PipeFluObj.OutputsInitial = [StateVariables; OutputVariables]; %

Currently not in use, but maybe later

 % --- String and Fluid properties/Boundaries ---

 % Geometry vector parameters - These are constants during

simulaiton (unless Events are build):
 %p.RadiusInn = p.DiameterInn ./ 2;
 p.AreaCrs = pi * p.RadiusInn.^2;
 p.AreaSrf = pi * 2*p.RadiusInn .* p.LengthPrGrid;
 p.Volume = p.AreaCrs .* p.LengthPrGrid;

 69

 p.ConstrArea = p.ConstrictionOpenPst./100 .* p.AreaCrs; %

Additional constriction that can be used for Tool joint effect etc
 p.ConstrDischarge = 0.90;

 % Parameters that might be changes in Event Builder are stored in

an "Org"-parameter to be able to manipulate the original pr timestep and

restore it later
 p.RadiusInnOrg = p.RadiusInn;
 p.AreaCrsOrg = p.AreaCrs;

 % Fluid properties:
 p.Fluid = SetFluidParametersPrGridDs(FluidNom,

p.UnityVectorGrids);

 % Combined parameters (fluid and solid):
 p.Fluid.BulkModulusEff = p.Fluid.BulkModulus; % Effective Bulk

modulus/stiffness is now from NOMINAL fluid properties
 % LATER: =

f(FluidNom.BulkModulus, BoundaryStiffness);
 % OR

p.FluidSolid.BulkModulusEffective = f(FluidNom.BulkModulus,

BoundaryStiffness);

 % --- Set the States and Outputs ---

 PipeFluObj.States.Flow = FlowLpm;
 PipeFluObj.States.Pres = PresBar;

 PipeFluObj.Par = p;
 PipeFluObj.Cst = c;

end

A.11 PlotMultiPrSub.m

function EndCode = PlotMultiPrSub(fig, x, y, variableNames, ModelName,

PlotGrouping)
%xMin, xMax, yMin, yMax, Legends, XLab, YLab, xTickPos, xTickLab,

xTickTxt, yTickPos, yTickTxt, yTickLab, fig, txtTitle, Log, LegBox, lineType,

lineWidth, SubFig, LegPos)

 FntSz0 = 6+2+1;
 FntSz1 = 7+2+1;
 FntSz2 = 8+2+1;
 FntSz3 = 9+2+1;
 FntNm = 'Times';

 figure(fig);

 70

 TotalSubPlotNumber = length(PlotGrouping);
 graphsTotal = 0;
 for subWindow = 1:TotalSubPlotNumber
 subplot(TotalSubPlotNumber, 1, subWindow);
 hold off
 for graphsInSub=1:PlotGrouping(subWindow)
 graphsTotal = graphsTotal + 1;
 plot(x, y(graphsTotal,:))
 txtTitle = [ModelName, '.', variableNames{subWindow}];

% 'State variables';
 title(txtTitle, 'FontSize',FntSz0, 'FontName',FntNm,

'Interpreter','latex');
 grid on
 hold on
 end
 end
 EndCode = 1;
end

A.12 PlotSimple.m

function EndCode = PlotSimple(fig, x, y, variableNames, ModelName)
%xMin, xMax, yMin, yMax, Legends, XLab, YLab, xTickPos, xTickLab,

xTickTxt, yTickPos, yTickTxt, yTickLab, fig, txtTitle, Log, LegBox, lineType,

lineWidth, SubFig, LegPos)

 FntSz0 = 6+2+1;
 FntSz1 = 7+2+1;
 FntSz2 = 8+2+1;
 FntSz3 = 9+2+1;
 FntNm = 'Times';

 nVectors = length(y(:,1));

 figure(fig);

 for i=1:nVectors % Marching vertical through vectors
 yv = y(i,:);
 if length(x(:,1)) > 1
 xv = x(i,:);
 else
 xv = x(1,:);
 end
 subplot(nVectors, 1, i);
 plot(xv, yv)
 txtTitle = [ModelName, '.', variableNames{i}]; % 'State

variables';
 title(txtTitle, 'FontSize',FntSz0, 'FontName',FntNm,

'Interpreter','latex');
 grid
 end

 71

 EndCode = 1;

end

A.13 PressureDropOverConstriction.m

% ---

%
% Returns pressure drop over a constriction (valve, nozzle or other)

for
% the FlowrateCms given as input. Can operate on scalar values or

vectors.
%
% Opening percentage of the constriction, ThrottlingOpenPct, is another
% input. If it is a scalar, all values in AreaConstr will be reduced

by
% this percentage. If it is avector, the reductions are individual.
%
% All variables are in SI units.
%
% Note: If the Flowrate is non-zero, a zero ThrottlingOpenPct will give
% infinite DeltaPressureConstrictionPa. This is an impossible situation

and
% the calling function must make sure that Flowrate goes to zero when

the
% ThrottlingOpenPct approaches zero. For safety, we add an error-

handling
% condition here.
%
% RENAME TO: CalcDeltaPressureConstrictionPa
%
% ---

function DeltaPressureConstrictionPa =

PressureDropOverConstriction(FlowrateCms, Density, Discharge, AreaConstr,

ThrottlingOpenPct)

 AreaConstrEffective = ThrottlingOpenPct./100 .* AreaConstr;

 AreaConstrMin = 1E-4;
 if min(AreaConstrEffective) < AreaConstrMin
 AreaConstrEffective = min(AreaConstrEffective, AreaConstrMin);

% Operator works for both scalar and vector inputs, or one of each (=> only

those elements below minimum will be increased)
 'Error: ThrottlingOpenPct or AreaConstr is too low for the

given Flowrate'
 end

 %if min(ThrottlingOpenPct) < 50
 % 'stop'
 %end

 72

 DeltaPressureConstrictionPa = sign(FlowrateCms) .* Density ./ (2

*Discharge.^2 .*AreaConstrEffective.^2) .* (FlowrateCms).^2;

end

A.14 SelectMudTypeOrSetParameters.m

% ---

%
% ---

% FluidNom bør inneholdew alt dette:
% Density: 1173
% BulkModulus: 1.6600e+09
% PresRefPa: 101000
% Viscosity: [1×1 struct]
% ReynoldsNmbTrnsPar: [1×1 struct]
% RheologyPipe: [1×1 struct]

% + LEGE TIL EQUIV.NEWTONIAN?

function FluidNom = SelectMudTypeOrSetParameters(MudName, FluidNom,

ConsistencyIndex, FlowBehaviorIndex, YieldPoint) % + OBM/WBM?

 switch MudName

 case 'Mariner_12In'
 FluidNom.Viscosity.ConsistencyIndex = 0.343;
 FluidNom.Viscosity.FlowBehaviorIndex = 0.727;
 FluidNom.Viscosity.YieldPoint = 12.0;

 case 'Mariner_09In' % CHECK
 FluidNom.Viscosity.ConsistencyIndex = 0.3;
 FluidNom.Viscosity.FlowBehaviorIndex = 0.8;
 FluidNom.Viscosity.YieldPoint = 8.0;

 case 'HB1'
 FluidNom.Viscosity.ConsistencyIndex = 0.281;
 FluidNom.Viscosity.FlowBehaviorIndex = 0.828;
 FluidNom.Viscosity.YieldPoint = 10.0;

 case 'HB2'
 FluidNom.Viscosity.ConsistencyIndex = 0.5;
 FluidNom.Viscosity.FlowBehaviorIndex = 0.85;
 FluidNom.Viscosity.YieldPoint = 10.0;

 case 'Newtonian1'
 FluidNom.Viscosity.ConsistencyIndex = 0.1;
 FluidNom.Viscosity.FlowBehaviorIndex = 1.0;
 FluidNom.Viscosity.YieldPoint = 0.0;

 otherwise

 73

 FluidNom.Viscosity.ConsistencyIndex = ConsistencyIndex;
 FluidNom.Viscosity.FlowBehaviorIndex =

FlowBehaviorIndex;
 FluidNom.Viscosity.YieldPoint = YieldPoint;

 end

end

A.15 SetFluidParametersPrGridDs.m

% Endre navn til: SetFluidParametersPrGridDs (Ds på slutten)

% Fluid parameters:
 % -nominal values pr grid - May include depth dependencies later

(TVD):
 % -pressure and temperature dependencies cannot be included here

since they are unknown at this stage

function FluidParametersPrGrid = SetFluidParametersPrGridDs(FluidNom,

UnityVectorGridsDsCur)

 p.Fluid.DensityNom = FluidNom.Density * UnityVectorGridsDsCur;

% Nominal because density is also computed as an additional variable
 p.Fluid.BulkModulus = FluidNom.BulkModulus *

UnityVectorGridsDsCur;
 p.Fluid.PresRefPa = FluidNom.PresRefPa * UnityVectorGridsDsCur;

 % Viscosity parameters:
 p.Fluid.Viscosity.ConsistencyIndex =

FluidNom.Viscosity.ConsistencyIndex * UnityVectorGridsDsCur; % Should be

dependent on depth (pressure)
 p.Fluid.Viscosity.FlowBehaviorIndex =

FluidNom.Viscosity.FlowBehaviorIndex * UnityVectorGridsDsCur; % Can be

assumed independent of depth
 p.Fluid.Viscosity.YieldPoint =

FluidNom.Viscosity.YieldPoint * UnityVectorGridsDsCur; % Can be

assumed independent of depth
 % For testing:
 %p.Fluid.Viscosity.YieldPoint = UnityVectorGridsDsCur *

0;

 % For circular pipe geometry:

 p.Fluid.RheologyPipe =

ComputeRheologyParametersPipe(p.Fluid.Viscosity.FlowBehaviorIndex);

 % The SmoothFactor is independent of other variables => use the

Nominal value:
 p.Fluid.RheologyPipe.SmoothFactor =

FluidNom.RheologyPipe.SmoothFactor;

 74

% p.Fluid.RheologyPipe.xi = FluidNom.RheologyPipe.xi *

UnityVectorGridsDsCur;
% p.Fluid.RheologyPipe.sigma = FluidNom.RheologyPipe.sigma *

UnityVectorGridsDsCur;
% p.Fluid.RheologyPipe.psi = FluidNom.RheologyPipe.psi *

UnityVectorGridsDsCur;
% p.Fluid.RheologyPipe.PT = FluidNom.RheologyPipe.PT *

UnityVectorGridsDsCur;
% p.Fluid.RheologyPipe.Omega = FluidNom.RheologyPipe.Omega

* UnityVectorGridsDsCur;
% p.Fluid.RheologyPipe.SmoothFactor =

FluidNom.RheologyPipe.SmoothFactor * UnityVectorGridsDsCur;

 FluidParametersPrGrid = p.Fluid;

end

A.16 SetPhysicsParam.m

%--

% Physical constants and unit conversion factors are put into a common
% structure
%--

function PhysicsParam = SetPhysicsParam()

 % Physical constants
 PhysicsParam.g = 9.81;
 PhysicsParam.PresAtmPa = 101000;
 PhysicsParam.PresAtmBar = 1.01;
 PhysicsParam.BulkModulusWater = 2.2E9;
 PhysicsParam.BulkModulusOil = 1.38E9;
 PhysicsParam.BulkModulusObm = 1.66E9;
 PhysicsParam.GasConstIdeal = 8.31446; % Ideal gas constant

8.3144598(48) J mol?1 K?1[1]

 % Conversion factors
 PhysicsParam.Bar2Pa = 100000;
 PhysicsParam.Pa2Bar = 1/100000;
 PhysicsParam.Lpm2Cms = 1/60000;
 PhysicsParam.Cms2Lpm = 60000;
 PhysicsParam.Deg2Rad = pi/180;
 PhysicsParam.Ft2m = 0.3048;
 PhysicsParam.In2m = 0.0254;
 PhysicsParam.Gal2L = 3.7854;
 PhysicsParam.Bbl2m3 = 0.1590;
 PhysicsParam.Ibm2Kg = 0.4536;

 % Constants defining various zero-limits
 PhysicsParam.ZeroLimit1 = 1E-3;
 PhysicsParam.ZeroLimit2 = 1E-6;

 75

 PhysicsParam.ZeroLimit3 = 1E-9;
 PhysicsParam.ZeroLimit4 = 1E-12;

 PhysicsParam = orderfields(PhysicsParam);

end

A.17 SetReynoldsNumberConstants.m

%

%
% Set constants used for calculating frictional pressure loss for
% turbulent flow and transition to turbulent flow - i.e., different
% Reynolds number related constants
%
%

function [GlobalConstPhysic] =

SetReynoldsNumberConstants(GlobalConstPhysic)

 GlobalConstPhysic.ReNmbCstPipe.CritNom = 2100; % For pipes,

Nominal value for critical Reynolds numnber when transition region starts -

effective value depends on rheology
 GlobalConstPhysic.ReNmbCstAnnu.CritNom = 2100; % For ANNULUS
 GlobalConstPhysic.ReNmbCstPipe.TurbNom = 2900; % For pipes,

Nominal value for Reynolds numnber when 100% turbulence is achieved, i.e. at

the end of the Transitional region (or center?) - effective value depends on

rheology
 GlobalConstPhysic.ReNmbCstAnnu.TurbNom = 2900; % For ANNULUS
 GlobalConstPhysic.ReNmbCstPipe.Delta_n0 = 1370; % For pipes,

Addition in critical Reynoldsnumber when flow behavior index n -> 0 (Herschel-

Bulkley / Bingham).
 GlobalConstPhysic.ReNmbCstAnnu.Delta_n0 = 1370; % For ANNULUS
 GlobalConstPhysic.ReNmbCstPipe.TrnsMinVal = 10; % Value in %

of transition function at critical Reynoldsnumber, Re_cr (typical values: 5

- 10)
 GlobalConstPhysic.ReNmbCstAnnu.TrnsMinVal = 10; % For ANNULUS

end

A.18 Solver_RK4_New.m

% ---

%
% Runge-Kutta 4 solver for any ODE-model on correct form.
%

 76

% NumericStabilizationMode is an optional input parameter that may be

set
% to one in order to remove ocsillations and change of sign between

the
% RK iterations. It is useful for models that are discontinous at zero
% like a fluid with a yield point.
% If such conditions occur, the values for RK-iteration 2-4
% is set to zero instead of having sign opposite of the first iteration.
% Hence, numerical instability around zero flow will be

reduced/removed.
%
% ---

function x_nextLocal = Solver_RK4_New(Model_ODE, Inputs,

InputsPrGrid, x_current, VarAdditional, Parameters, ConstGlobalPhysic,

T_sim, NumericStabilizationMode)

 %global GlobalTimestep
 %tStart = 2; % Value for first time iteration

(Integer)
 %ModelSetup = [ModelName & 'Setup']; % ModelName =

TankWithPipeOutlet (=>TankWithPipeOutlet_Setup)
 %[U, xIC, p, MO, T_sim] = ModelSetup(); %

=TankWithPipeOutlet_Setup();
 %xRK = xIC; % Struktur bør være mulig her da..
 %ModelOrder = length(x_current);
 %xRK = zeros(ModelOrder,1); % State vector whose

values are set for each iteration according to the RK-method

 if (exist ('NumericStabilizationMode', 'var')) == 0
 NumericStabilizationMode = 0;
 end

 zeroVector = zeros(length(x_current),1);
 x_nextLocal = zeroVector;
 xRK = zeroVector;
 f = zeros(length(x_current),4);

 for r=1:4
 switch r
 case 1
 xRK(:) = x_current;
 case 2
 xRK(:) = x_current + T_sim/2 *f(:,1);
 case 3
 xRK(:) = x_current + T_sim/2 *f(:,2);
 case 4
 xRK(:) = x_current + T_sim *f(:,3);
 end

 f(:,r) = Model_ODE(Inputs, InputsPrGrid, xRK, VarAdditional,

Parameters, ConstGlobalPhysic);

 end

 % Evaluation of next time-step of the whole state vector x:

 77

 for j=1:length(f(:,1))

 % if Solver == RK4:

 if NumericStabilizationMode == 1
 if x_current(j) < 1
 if ((f(j,1) * f(j,2) < 0) && (f(j,3) * f(j,4) < 0) &&

(f(j,1) * f(j,3) > 0))
 f(j,2) = 0;
 f(j,4) = 0;
 %nOscillatingNeglections = nOscillatingNeglections

+ 1;
 %display(['RK4 is neglecting oscillating

derivatives for state variable ', num2str(j)])
 elseif (f(j,1) * f(j,2) * f(j,3) * f(j,4)) < 0
 f(j,2) = 0;
 f(j,3) = 0;
 f(j,4) = 0;
 %nSignNeglections = nSignNeglections + 1;
 %display(['RK4 is neglecting change of sign of

derivatives for state variable ', num2str(j)])
 end
 end
 end

 x_nextLocal(j) = x_current(j) + T_sim/6 * (f(j,1) +2*f(j,2)

+2*f(j,3) +f(j,4));

 if isnan(x_nextLocal(j))
 'Variable in xNext is NaN'
 end

 end

end

A.19 TwPipeGeoLamTurb.m

%

%
% The function returns average wall shear stress values (Tw) for non-
% Newtonian fluids in circular PIPES when the bulk flow rate (VelLiq)

is the
% dynamic input.
% Outputs:
% Tw_HB_i: Shear stress Herschel-Bulkley (HB) model,

combined/total.
% Tw_it: Shear stress HB model, turbulent component.
% Tw_HB_il: Shear stress HB model, laminar component.
% Tw_PL_il: Shear stress Power-law (PL) model, laminar component.
%
% If the flow behavior index n = 1, Tw_HB_il reduce to laminar flow

for
% Bingham plasic BP) fluids and Tw_PL_il reduces to laminar flow for

 78

% Newtonian fluids.
%
% Vectors where the elements represent each pipe segment/grid can be
% provided as input => the output will be a vector.
%
% Tw is given explicitely as function of bulk flow rate, as opposed to

the
% theoretical analytic equation, which is implicit and requires an

iterative
% solution.

% If SimMode == 1, the wall shear stress will be discontinuous at zero

flow.
% In all other cases, the discontinuity at zero flow is handled by

smoothening.
% For best accuracy, the SmoothFactor should be set to 0.
% However, for non-zero yield points the function gets strongly non-

linear
% around zero flow rate. This will slow down the ODE-solver if it is

set up
% to give a predefined accuracy. Therefore, the smoothening function

can be
% tuned to give faster respons by setting a value for the SmoothFactor
% between zero and 1. The higher value, the faster response.
%
% Note:
% The frictional pressure gradient (Pa/m) for HB fluids is given by:
% dp/dz_il = 2/RaIn * Tw_HB_il
% The dimennsionless pressure gradient for HB fluids is given by:
% P_HB_il = -Tw_HB_il / yp
%
%
% by Kristian Gjerstad
%
% Version 1.0 - 2014.01.23
%
%

function [Tw_HB_i, Tw_it, Tw_HB_il, Tw_PL_il] =

TwPipeGeoLamTurb(VelLiq, Re_net, FlowRegime, GeometryPar, FluidPar,

RheologyPar, SimMode)

% Inputs (Note: Parameters here may be variables in calling functions):

 % Fluid:
 Dns = FluidPar.Dns; % Future: Bulk modulus,

etc
 ModelType = RheologyPar.ModelType; % Herschel Bulkley only

for current version
 k = RheologyPar.ViscosityHb.k;
 n = RheologyPar.ViscosityHb.n;
 yp = RheologyPar.ViscosityHb.yp;

 xi = RheologyPar.ContinuousSimplified.xi;
 sigma = RheologyPar.ContinuousSimplified.sigma;
 psi = RheologyPar.ContinuousSimplified.psi;

 79

 P_T_default = RheologyPar.ContinuousSimplified.P_T_default;
 omega = RheologyPar.ContinuousSimplified.omega;
 SmoothFactor = RheologyPar.ContinuousSimplified.SmoothFactor;

 % Geometry:
 RaIn = GeometryPar.RaIn;
 %InclRad = GeometryPar.InclRad;

 if (exist ('SimMode', 'var')) == 0
 SimMode = 0;
 end

% Vector parameters:
 % k, n, yp, Rheology parameters
 % Dns Fluid density

* New
 % VelLiq, Bulk flow velocity inside string RELATIVE

to the string velocity
 % RaIn, Inner radius of the pipe
 % xi, sigma, psi, Parameters used in f_yp
 % P_T_default, omega, Parameters used in f_0
 % Re_net, The net Reynoldsnumber defined here as

Re/VelLiq^(2-n),
 % i.e. it is only dependent on the constant

parameters k, n, Dns and R

% Scalar parameters:
 % FlowRegime 1 means 100% laminar, 0 means 100% turbulent

in-between means transitional flow
 % P_T_default, A parameter in the smootening function for

laminar flow, designed to give best accuracy
 % SmoothFactor, A factor in f_0, for increasing computational

speed of the ODE-solver
 % Choosing 1 instead of 0 will slightly reduce

the accuracy around zero flow rates.

 % Laminar flow:
 [Tw_HB_il Tw_PL_il] = Tw_stringLaminar(k, n, yp, VelLiq, RaIn,

SmoothFactor, xi, sigma, psi, P_T_default, omega, SimMode);

 % Turbulent flow:
 Tw_it = Tw_stringTurbulent(Re_net, n, VelLiq, Dns);

 % The combined solution:
 Tw_HB_i = Tw_HB_il .* (FlowRegime) + Tw_it .* (1-

FlowRegime);

end

function [Tw_HB_il, Tw_PL_il] = Tw_stringLaminar(k, n, yp, VelLiq,

RaIn, SmoothFactor, xi, sigma, psi, P_T_default, omega, SimMode)

 80

% Computing the shear stress for laminar flow (with dimensions):

 Tw_PL_il = -sign(VelLiq) .* k .*((3*n+1)./(n.*RaIn)

.*abs(VelLiq)).^n; % Shear stressfor PL fluids (i.e.

without the yield point)

 if yp == 0 % When yp is 0, it reduces to PowerLaw

rheology. This condition is necessary to avoid dividing with zero when both

yp and VelLiq are zero.
 Tw_HB_il = Tw_PL_il; % - although not neede for nonzero

VelLiq, it will be correct since PL and HB gives same results in this case.

 elseif SimMode == 1 % 100% YP-effect
 xi = 1;
 f_yp = 1 + n./(2*n+1) .*(1 -xi.*(sigma.*yp ./(sigma.*yp +

abs(Tw_PL_il))).^psi); % TODO: Denne er litt feil pga f0 kompensasjon - Finn

eksakt (enklere)
 Tw_HB_il = Tw_PL_il + sign(Tw_PL_il) .* yp .* f_yp;

% The complete function for HB fluids

 else
 f_yp = 1 + n./(2*n+1) .*(1 -xi.*(sigma.*yp ./(sigma.*yp +

abs(Tw_PL_il))).^psi); % The yield point effect of HB-fluids

 P_T = P_T_default .* 10.^SmoothFactor;

% SmoothFactor: Range: [-2, 3], Default: 0
 P_frac = (abs(Tw_PL_il)./P_T).^omega;
 f_0 = sign(Tw_PL_il) .* P_frac ./ (yp.^omega + P_frac);

% The smoothening function

 Tw_HB_il = (abs(Tw_PL_il) + yp .* f_yp) .* f_0;

% The complete function for HB fluids
 end

end

function Tw_it = Tw_stringTurbulent(Re_net, n, VelLiq, Dns)

% Computing the shear stress for Turbulent flow (with dimensions):

 a = (log10(n) +3.93)./50; % Friction factor component

for non_Newtonian turbulent flow (Blasius-like approximation)
 b = (1.75-log10(n))./7; % Friction factor component

for non_Newtonian turbulent flow (Blasius-like approximation)

 Tw_it = -1/2 * a./(Re_net.^b) .* Dns .* sign(VelLiq) .*

abs(VelLiq).^(2-2*b+n.*b);

% Note, normally we would write:
 % Re = 8*Dns/k *(2*RaIn*n/(6*n+2))^n *abs(VelLiq)^(2-n); %

Reynoldsnumber
 % f = a/(Re^b) % friction

factor (Blasius)

 81

 % Tw_it = -1/2 * f * Dns * VelLiq *abs(VelLiq); %

Wall shear stress

 % However, this will give infinite f for zero flow, and result in

Tw_it=NaN.
 % By rearranging and shortening the velocities, we get the correct

value Tw_it=0 for VelLiq=0.

end

A.20 DsMain_Horizontal_2xOrd_ODE.m

% ---

% ODE function for fluid inside the drillstring with 2 state variables

pr grid and nGr grids (2*nGr order ++)
%
% The drillstring is allowed to move and accelerate (velocityPipe >

0). In that case, the fluid inside the string will be
% in a moving reference frame. As a consequence, the reference frame

will accelerate when the string is accelerating.
% Hence, we have to include a 'fictitious' force of the fluid in the

drill string when the string is accelerating.

% The string motion used here as input should ideally be taken from

the dynamic velocities for each solid element in a solid String model
% However, only the velocity of the last element, giving bit velocity

and depth, will be used as input here.
%
% One of the inputs is ThrottleClosePct, which is for throttling the

flow area in the string or one
% cell. This can be used for simulating scenarios like plugged drill

string.
% ---

function dxdt = DsMain_Horizontal_2xOrd_ODE(Inputs, InputsPrGrid,

StateVector, Var, p, GlobCstPhysic)

 % Global Constants:
 g = GlobCstPhysic.g;
 Bar2Pascal = GlobCstPhysic.Bar2Pa;
 Pascal2Bar = GlobCstPhysic.Pa2Bar;
 LPM2CMS = GlobCstPhysic.Lpm2Cms;
 CMS2LPM = GlobCstPhysic.Cms2Lpm;

 nGr = p.nGridsDs; % Number of cells/grids

 %ZeroFlowLimitLpm = 1E-34;

 82

 % STUDENT: i HAVE Switch to LaminarOnly here. you must make the

missing code below
 %
 FlowRegime = 'LaminarOnly';
 %FlowRegime = 'LaminarTurb';

 % Input variables - Scalars:
 FlowUpStmLpm = Inputs(1);
 PresDnStmBar = Inputs(2);
 ThrottleClosePct = Inputs(3); % To be able to block/restrict

flow area in a grid (here scalar).

 % Input variables - Vectors:
 %AccDsAxlCurr = -InputsPrGrid(:,3); % Inverted sign since

fluid is positive down, while Solid string is positive up
 AccDsAxlCalc = -InputsPrGrid(:,5); % Inverted sign since fluid

is positive down, while Solid string is positive up
 %
 % Testing two different inputs for string accelerations: TODO:

Remove 'AccDsAxlCurr' - Keep only the one calculated in DsFlu_Step => No

extra requirements on DsSol
 AccelerationPipe = AccDsAxlCalc'; % If switching to other input

- remember to also switch in BhaAndBit

 % Prepare vectors of State variables and density
 % (Extended vectors are vectors where an extra fictive cell is

added at front or at the end for easier looping)
 %
 FlowLpm = StateVector(p.BiasFlowDs+1:p.BiasFlowDs+nGr);
 FlowExtendedCms = [FlowLpm; FlowUpStmLpm]' * LPM2CMS; % Adds the

top boundary flow at the end of the vector

 PresBar = StateVector(p.BiasPresDs+1:p.BiasPresDs+nGr);
 PresPaExtended = [PresDnStmBar; PresBar]' * Bar2Pascal; % Adds the

downstream boundary flow at the beginning of the vector

 DensityExtended = p.Fluid.DensityNom(1) *ones(1, nGr+1); % TODO:

Implement the function: Density = f(PressurePa) % Inludes the dummy element

 % Calculate delta-flow and delta-pressure over the grids
 dFlowrateCms = p.ZeroVectorGridsDs; % Flow in minus flow out for

each grid
 dPressurePa = p.ZeroVectorGridsDs; % Pressure in curret grid

minus pressure in downstream grid - for each grid
 for i=1:nGr
 dFlowrateCms(i) = -FlowExtendedCms(i) + FlowExtendedCms(i+1)

*DensityExtended(i+1)/DensityExtended(i); % Note: Dummies are added
 dPressurePa(i) = PresPaExtended(i+1) - PresPaExtended(i); %

Note: The indexes in PressurePaExtended are shifted one up due to dummy
 end

 % Remove extra element in the extended vectors
 FlowCms = FlowExtendedCms(1:nGr);
 Density = DensityExtended(1:nGr);

 83

 % Option for adding drillstring wash-out / leakage etc.
 FlowLeakCms = p.ZeroVectorGridsDs; % TODO: compute it from

annulus pressure and inputs

 % ############ The differential equation (ODE) for pressure

(Conservation of Mass) ############
 %
 % Rate of change of Pressure in Drill string:
 dDtPressureBar = Pascal2Bar * p.Fluid.BulkModulus ./ p.Volume .*

(dFlowrateCms - FlowLeakCms);
 %
 %

###

##################

 % Calculate the extra pressure drop due to throttling the a cell

or whole pipe:
 %
 if p.ThrottleGridOrPoint == 0
 % Throttle only one cell by p.ThrottleActive
 ThrottleOpenPctVct = 100 * p.UnityVectorGridsDs -

(p.ThrottleActive .* ThrottleClosePct);
 else
 % Throttle the whole pipe
 ThrottleOpenPctVct = 100 * p.UnityVectorGridsDs -

ThrottleClosePct;
 end
 dPresConstrAbsPa = PressureDropOverConstriction(FlowCms, Density,

p.ConstrDischarge, p.ConstrArea, ThrottleOpenPctVct); % Positive since

FlowCms always > 0
 dPresConstrPa = sign(FlowCms) .* dPresConstrAbsPa;

 % Calculate the pressure forces
 dPresEff = dPressurePa - dPresConstrPa; % Effective pressure

over each grid
 Fp = p.AreaCrs .* dPresEff; % The pressure force

over each grid

 % Gravity forces:
 Fg = g * p.Fluid.DensityNom .* p.LengthPrGrid .* p.AreaCrs .*

sin(p.InclHrzRad); % TODO: Make and Call function that calculates current

Density based on current pressure

 % Fictitious force if the string is accelerating (since the pipe

is the reference frame):
 MassFluid = p.Volume .* p.Fluid.DensityNom;
 Ffic = -MassFluid .* AccelerationPipe; % Fictitious force

has opposite sign as acceleration of reference frame (pipe) when

signconvention is equal

 84

 % Minor forces: % Future: Add forces resulting from tool joints

and other constrictions in the string/BHA
 Fmin = p.ZeroVectorGridsDs; % = Kmina1 .* (velocity_fluid.^2);

 % Wall shear stress for use in Friction forces:
 %
 if FlowRegime == 'LaminarOnly' % STUDENT: USE THIS ONE

 VelocityPipe = 0; % Since the pipe motion is the reference

frame
 GeometryPar.RadiusInn = p.RadiusInn;
 GeometryPar.AreaCrs = p.AreaCrs;

 % STUDENT: FINISH THIS FUNCTION
 wallshearStressPipeLaminar =

Tw_stringNewtonianLaminar(FlowCms, VelocityPipe, GeometryPar, p.Fluid);

 Ff = wallshearStressPipeLaminar .* p.AreaSrf;

 elseif FlowRegime == 'LaminarTurb' % STUDENT: DONT'USE THIS ONE

 VelocityPipe = 0; % Since the pipe motion is the reference

frame
 k = p.Fluid.Viscosity.ConsistencyIndex;
 n = p.Fluid.Viscosity.FlowBehaviorIndex;
 yp = p.Fluid.Viscosity.YieldPoint;

 % For Turbulent vs Laminar flow: Computing Reynoldsnumber and

weight-number for flow regime:
 G_empty = (1./(3*n+1)).^n; % Parameter valid for

empty hole below bit
 G = G_empty;

 VelocityLiquid = FlowCms ./ p.AreaCrs - VelocityPipe;
 [ReLam ReLamNet] = fReynoldsNumber(VelocityLiquid, k, n,

p.Fluid.DensityNom, p.RadiusInn, G); % TODO: p.Fluid.DensityNom =

p.Fluid.DensityCur
 [FlowRegime, Re_cr, Re_ce] = fTransition(ReLam, n,

GlobCstPhysic.ReNmbCstPipe.CritNom, GlobCstPhysic.ReNmbCstPipe.TurbNom,

GlobCstPhysic.ReNmbCstPipe.Delta_n0, ...

GlobCstPhysic.ReNmbCstPipe.TrnsMinVal); % TODO: Splitte i to funksjoner:

fReCriticalNCenter og fTransition (Returnerer samme Re_cr og Re_ce hver gang)
 Re_net = ReLamNet;

 FluidPar.Dns = p.Fluid.DensityNom; % TODO:

Use p.Fluid.DensityCur;
 RheologyPar.ModelType = 'Herschel Bulkley';
 RheologyPar.ViscosityHb.k = k;
 RheologyPar.ViscosityHb.n = n;
 RheologyPar.ViscosityHb.yp = yp;
 RheologyPar.ContinuousSimplified.xi =

p.Fluid.RheologyPipe.xi; % RheologyPipe is comuted for all grids initially

 85

 RheologyPar.ContinuousSimplified.sigma =

p.Fluid.RheologyPipe.sigma;
 RheologyPar.ContinuousSimplified.psi =

p.Fluid.RheologyPipe.psi;
 RheologyPar.ContinuousSimplified.P_T_default =

p.Fluid.RheologyPipe.PT;
 RheologyPar.ContinuousSimplified.omega =

p.Fluid.RheologyPipe.Omega;
 RheologyPar.ContinuousSimplified.SmoothFactor =

p.Fluid.RheologyPipe.SmoothFactor;
 GeometryPar.RaIn = p.RadiusInn; %GeometryPar.AreaCrs

= p.AreaCrs;

 SimMode = 1; % Gives absolute YP
 [wallshearStressPipeTotal, TwTurb, TwLam, TwPlLam] =

TwPipeGeoLamTurb(VelocityLiquid, Re_net, FlowRegime, GeometryPar, FluidPar,

RheologyPar, SimMode);

 % Ensuring that the yp-force does not initiate flow when it

comes to rest (due to dicrete time points)
 %
 Ff = p.ZeroVectorGridsDs;
 for i = 1:nGr
 if abs(FlowLpm(i)) == 0 % OK to test against 0 here

because it i is set to zero
 Fsum = Fp(i) + Fg(i) + Ffic(i) + Fmin(i);
 if abs(wallshearStressPipeTotal(i)) > 0 % Will

never happen
 'abs(wallshearStressPipeTotal(i)) > 0 - Will never

happen'
 else
 if yp(i) * p.AreaSrf(i) > abs(Fsum) % If the

yp has higher potensial than Fsum, it is reduced to Fsum
 Ff(i) = -Fsum; % Ff must

be set directly here to avoid numerical round-off
 wallshearStressPipeTotal(i) =

Ff(i)/p.AreaSrf(i);
 %wallshearStressPipeTotal(i) = -

Fsum/p.AreaSrf(i);
 else
 wallshearStressPipeTotal(i) = -yp(i) *

sign(Fsum);
 Ff(i) = wallshearStressPipeTotal(i) .*

p.AreaSrf(i);
 end
 end
 else
 Ff(i) = wallshearStressPipeTotal(i) .* p.AreaSrf(i);
 end
 end

 else
 'Flow regime type is missing'
 pause
 end

 86

 % ############ Conservation of Momentum on fluid in Drill string

###########
 %
 % The derivative dQdt in SI units:
 dDtFlowLpm = CMS2LPM * p.AreaCrs ./ MassFluid .* (Fp + Ff + Fg +

Ffic + Fmin); % Sign of Ff (Tw) is negative when flow>0
 %
 %

 % ####### Aligning the outputs into one vector that is returned

#######
 %
 dxdt = [dDtFlowLpm'; dDtPressureBar'];
 %
 %

end

A.21 DsMain_Horizontal_2xOrd_OLD_ODE.m

% ---

%
% ODE function for fluid inside the drillstring with 2 state variables

pr grid and nGr grids (2*nGr order ++)
%
% The boundaries between the grids inside string can be different from

borehole grids, and their lengths may be varying.
% All grid boundaries follow the string motion, including the first

one,
% which may start at the hook or just below the Seabed (follows the

hook or StringSolid.PosBot(1)).
%
% The reference frame of the fluid is the moving grids. As a

consequence, the reference frame will accelerate when the string is

accelerating.
% Hence, we have to include a 'fictitious' force of the fluid in the

drill string when the string is accelerating.

% The string motion used here as input should ideally be taken from

the dynamic velocities for each solid element in StringSolid.
% However, only the velocity of the last element, giving bit velocity

and depth, will be used here.
%
% The input ThrottlingOpenPct is for throttling the flow area in the

BHA
% (assuming there is additional resistance due to mud motor or similar)
% Scenarios for plugges drill string should be simulated by directly
% manipulating the AreaConstr for relevant grids.
%

 87

% ---

function dxdt = DsMain_Horizontal_2xOrd_ODE(Inputs, InputsPrGrid,

StateVector, Var, p, GlobCstPhysic)

 % Global Constants:
 g = GlobCstPhysic.g;
 %PresAtmospherePa = GlobalConstPhysic.PresAtmPa; % TODO: For

use later when pipe is disconnected
 Bar2Pascal = GlobCstPhysic.Bar2Pa;
 Pascal2Bar = GlobCstPhysic.Pa2Bar;
 LPM2CMS = GlobCstPhysic.Lpm2Cms;
 CMS2LPM = GlobCstPhysic.Cms2Lpm;

 %ZeroFlowLimitLpm = GlobCstPhysic.ZeroFlowLimitLpm;
 %ZeroFlowLimitLpm = p.ZeroFlowLimitLpm;
 ZeroFlowLimitLpm = 1E-34;

 %p.AreaSrf
 %MassFluid = p.Volume .* p.Fluid.DensityNom;
 %p.Fluid.Viscosity.YieldPoint;

 %FlowRegime = 'LaminarOnly';
 FlowRegime = 'LaminarTurb';

 % Input variables - Scalars:
 FlowUpStmLpm = Inputs(1);
 PresDnStmBar = Inputs(2);
 ThrottleClosePct = Inputs(3); % To be able to block/restrict

flow area in a grid (here scalar).

 % Input variables - Vectors:
 %VelDsAxlCurr = InputsPrGrid(:,1);
 %VelDsAngCurr = InputsPrGrid(:,2);
 AccDsAxlCurr = -InputsPrGrid(:,3); % Inverted sign since fluid

is positive down, while Solid string is positive up
 %AccDsAngCurr = InputsPrGrid(:,4);
 AccDsAxlCalc = -InputsPrGrid(:,5); % Inverted sign since fluid

is positive down, while Solid string is positive up

 % Testing two different inputs for string accelerations: TODO:

Remove 'AccDsAxlCurr' - Keep only the one calculated in DsFlu_Step => No

extra requirements on DsSol
 %AccelerationPipe = AccDsAxlCurr';
 AccelerationPipe = AccDsAxlCalc'; % If switching to other input

- remember to also switch in BhaAndBit

 % Parameters:
 nGr = p.nGridsDs; % = nBit = GridNumberBit;

 FlowLpm = StateVector(p.BiasFlowDs+1:p.BiasFlowDs+nGr);

 88

 % if max(FlowLpm) > 1
 % 'stop';
 % end
 %for i = 1:nGr
 % if abs(FlowLpm(i)) > 0 && abs(FlowLpm(i)) < ZeroFlowLimitLpm
 % 'Flow under Limit'
 % end
 %end
 FlowLpm_Test = FlowLpm .* (abs(FlowLpm) > ZeroFlowLimitLpm);

 FlowExtendedCms = [FlowLpm; FlowUpStmLpm]' * LPM2CMS; % Adds the

top boundary flow at the end of the vector
 PresPaExtended = [PresDnStmBar;

StateVector(p.BiasPresDs+1:p.BiasPresDs+nGr)]' * Bar2Pascal; % Adds the

downstream boundary flow at the beginning of the vector
 DensityExtended = p.Fluid.DensityNom(1) *ones(1, nGr+1); % TODO:

Implement the function: Density = f(PressurePa) % Inludes the dummy element

 FlowLeakCms = p.ZeroVectorGridsDs; % For drillstring wash-out etc

- TODO: compute it from annulus pressure and inputs

 dFlowrateCms = p.ZeroVectorGridsDs; % Flow in minus flow out for

each grid
 dPressurePa = p.ZeroVectorGridsDs; % Pressure in curret grid

minus pressure in down stream grid - for each grid
 for i=1:nGr
 dFlowrateCms(i) = -FlowExtendedCms(i) + FlowExtendedCms(i+1)

*DensityExtended(i+1)/DensityExtended(i); % Note: Dummies are added
 dPressurePa(i) = PresPaExtended(i+1) - PresPaExtended(i); %

Note: The indexes in PressurePaExtended are shifted one up due to dummy
 end

 FlowCms = FlowExtendedCms(1:nGr);
 %PressurePa = PressurePaExtended(1:nGr);
 Density = DensityExtended(1:nGr);

% ############ Conservation of Mass on fluid in Drill string

############

 % Rate of change of Pressure in Drill string:
 dDtPressureBar = Pascal2Bar * p.Fluid.BulkModulus ./ p.Volume .*

(dFlowrateCms - FlowLeakCms); % There is no volume change here due to moving

grids

% ############ Conservation of Momentum on fluid in Drill string

############

 89

 % Pressure forces:

 if p.ThrottleGridOrPoint == 0
 % Throttle at a point given by p.ThrottleActive
 ThrottleOpenPctVct = 100 * p.UnityVectorGridsDs -

(p.ThrottleActive .* ThrottleClosePct);
 else
 % Throttle whole grid
 ThrottleOpenPctVct = 100 * p.UnityVectorGridsDs -

ThrottleClosePct;
 end

 dPresConstrAbsPa = PressureDropOverConstriction(FlowCms, Density,

p.ConstrDischarge, p.ConstrArea, ThrottleOpenPctVct); % Positive since

FlowCms always > 0
 dPresConstrPa = sign(FlowCms) .* dPresConstrAbsPa;
% if min(dPresConstrPa) < 0
% 'dPressureConstrictionPa < 0';
% elseif min(dPresConstrPa) > 0
% dPresConstrPa
% end
 Fp = p.AreaCrs .* (dPressurePa - dPresConstrPa); % Effective

pressure over the grid

 % Gravity forces:
 Fg = g * p.Fluid.DensityNom .* p.LengthPrGrid .* p.AreaCrs .*

sin(p.InclHrzRad); % TODO: Make and Call function that calculates current

Density based on current pressure

 % Fictitious force (since the pipe is the reference frame):
 MassFluid = p.Volume .* p.Fluid.DensityNom;
 Ffic = -MassFluid .* AccelerationPipe; % Fictitious force

has opposite sign as acceleration of reference frame (pipe) when

signconvention is equal

 % Minor forces: % Future: Add forces resulting from tool joints

and other constrictions in the string/BHA
 Fmin = p.ZeroVectorGridsDs; % = Kmina1 .* (velocity_fluid.^2);

 % Wall shear stress for use in Friction forces:

 if FlowRegime == 'LaminarOnly'

 VelocityPipe = 0; % Since the pipe motion is the reference

frame
 GeometryPar.RadiusInn = p.RadiusInn;
 GeometryPar.AreaCrs = p.AreaCrs;
 [wallshearStressPipeLaminar, Tw_PL_lam] =

Tw_stringLaminarHBSimple(FlowCms, VelocityPipe, GeometryPar, p.Fluid);
 wallshearStressPipeTotal = wallshearStressPipeLaminar

 90

 %Ff = wallshearStressPipeLaminar .* p.AreaSrf;

% elseif FlowRegime == 'LaminarOnly_OLD'
%
% VelocityPipe = 0; % Since the pipe motion is the reference

frame
% GeometryPar.RadiusInn = p.RadiusInn;
% GeometryPar.AreaCrs = p.AreaCrs;
% [wallshearStressPipeLaminar, Tw_PL_lam] =

Tw_stringLaminarHBSimple(FlowExtendedCms(1:nGr), VelocityPipe, GeometryPar,

p.Fluid);
% Ff = wallshearStressPipeLaminar .* p.AreaSrf;

% TA MED DETTE:
 %[TwHbTot, TwHbTurb, TwHbLam, TwPlLam] =

TwPipeGeoLamTurb(VelLiq, Re_net, FlowRegime, GeometryPar, FluidPar,

RheologyPar)
 %TwReal = TwHbTot, YpReal, Time, Q) % For å gjøre den

glatt men likevel med 100% YP-effekt med valgfri verdi ved Q->0.
 %Ff = TwHbTot .* p.AreaSrf;

 elseif FlowRegime == 'LaminarTurb'

 VelocityPipe = 0; % Since the pipe motion is the reference

frame
 k = p.Fluid.Viscosity.ConsistencyIndex;
 n = p.Fluid.Viscosity.FlowBehaviorIndex;
 yp = p.Fluid.Viscosity.YieldPoint;

 % For Turbulent vs Laminar flow: Computing Reynoldsnumber and

weight-number for flow regime:
 %Ga = (1./(4*na+2)).^na; % Parameter valid for

annulus
 G_empty = (1./(3*n+1)).^n; % Parameter valid for

empty hole below bit
 %G = [Ga(1:nBit); G_empty(nBit+1:nBh)];
 G = G_empty;

 VelocityLiquid = FlowCms ./ p.AreaCrs - VelocityPipe;
 [ReLam ReLamNet] = fReynoldsNumber(VelocityLiquid, k, n,

p.Fluid.DensityNom, p.RadiusInn, G); % TODO: p.Fluid.DensityNom =

p.Fluid.DensityCur
 [FlowRegime, Re_cr, Re_ce] = fTransition(ReLam, n,

GlobCstPhysic.ReNmbCstPipe.CritNom, GlobCstPhysic.ReNmbCstPipe.TurbNom,

GlobCstPhysic.ReNmbCstPipe.Delta_n0, ...

GlobCstPhysic.ReNmbCstPipe.TrnsMinVal); % TODO: Splitte i to funksjoner:

fReCriticalNCenter og fTransition (Returnerer samme Re_cr og Re_ce hver gang)
 Re_net = ReLamNet;

 FluidPar.Dns = p.Fluid.DensityNom; % TODO:

Use p.Fluid.DensityCur;
 RheologyPar.ModelType = 'Herschel Bulkley';
 RheologyPar.ViscosityHb.k = k;
 RheologyPar.ViscosityHb.n = n;
 RheologyPar.ViscosityHb.yp = yp;
 RheologyPar.ContinuousSimplified.xi =

p.Fluid.RheologyPipe.xi; % RheologyPipe is comuted for all grids initially

 91

 RheologyPar.ContinuousSimplified.sigma =

p.Fluid.RheologyPipe.sigma;
 RheologyPar.ContinuousSimplified.psi =

p.Fluid.RheologyPipe.psi;
 RheologyPar.ContinuousSimplified.P_T_default =

p.Fluid.RheologyPipe.PT;
 RheologyPar.ContinuousSimplified.omega =

p.Fluid.RheologyPipe.Omega;
 RheologyPar.ContinuousSimplified.SmoothFactor =

p.Fluid.RheologyPipe.SmoothFactor;
 GeometryPar.RaIn = p.RadiusInn; %GeometryPar.AreaCrs

= p.AreaCrs;

 SimMode = 1; % Gives absolute YP
 [wallshearStressPipeTotal, TwTurb, TwLam, TwPlLam] =

TwPipeGeoLamTurb(VelocityLiquid, Re_net, FlowRegime, GeometryPar, FluidPar,

RheologyPar, SimMode);

 else
 'Flow regime type is missing'
 pause
 end

 % Ensuring that the yp-force does not initiate flow when it comes

to rest (due to dicrete time points)
 Ff = p.ZeroVectorGridsDs;
 for i = 1:nGr
 %if abs(FlowLpm(i)) < ZeroFlowLimitLpm % There is no flow
 % if abs(FlowLpm(i)) > 0 % Just checking
 % 'stop'
 % end

 if abs(FlowLpm(i)) == 0 % OK to test against 0 here because

it i is set to zero

 Fsum = Fp(i) + Fg(i) + Ffic(i) + Fmin(i);

 if abs(wallshearStressPipeTotal(i)) > 0 % Will

never happen
 'abs(wallshearStressPipeTotal(i)) > 0 - Will never

happen'
 else
 if yp(i) * p.AreaSrf(i) > abs(Fsum) % If the yp

has higher potensial than Fsum, it is reduced to Fsum
 Ff(i) = -Fsum; % Ff must be

set directly here to avoid numerical round-off
 wallshearStressPipeTotal(i) = Ff(i)/p.AreaSrf(i);
 %wallshearStressPipeTotal(i) = -Fsum/p.AreaSrf(i);

 else
 wallshearStressPipeTotal(i) = -yp(i) * sign(Fsum);
 Ff(i) = wallshearStressPipeTotal(i) .*

p.AreaSrf(i);
 end
 end

 92

 %if sign(Fsum) ~= sign(wallshearStressPipeTotal) % burde

hatt (i)
 % if abs(wallshearStressPipeTotal(i) * p.AreaSrf(i)) >

abs(Fsum)
 % wallshearStressPipeTotal(i) = -Fsum/p.AreaSrf(i);
 % end
 %end
 %Fsum = abs(Fp(i) + Fg(i) + Ffic(i) + Fmin(i));

% All forces except friction
 %if yp(i) * p.AreaSrf(i) > Fsum % Sjekk at

Ffic skal være med her...
 % if abs(wallshearStressPipeTotal(i)) *

p.AreaSrf(i) > Fsum
 % wallshearStressPipeTotal(i) = -

Fsum/p.AreaSrf(i);
 % end

 else
 Ff(i) = wallshearStressPipeTotal(i) .* p.AreaSrf(i);
 end
 end
 %Ff = wallshearStressPipeTotal .* p.AreaSrf;

 % The derivative dQdt in SI units:
 dDtFlowLpm = CMS2LPM * p.AreaCrs ./ MassFluid .* (Fp + Ff + Fg +

Ffic + Fmin); % Sign of Ff (Tw) is negative when flow>0

% ############ Aligning the outputs ############

 dxdt = [dDtFlowLpm'; dDtPressureBar'];

end

A.22 PipeFlu_SemiImplicitPDE.m

% ---

%
% PDE function for fluid inside the drillstring with X variables pr

grid and nGr grids
%
% All grid boundaries follow the string motion, including the first

one,
% which may start at the hook or just below the Seabed (follows the

hook or StringSolid.PosBot(1)).
%
% The reference frame of the fluid is the moving grids. As a

consequence, the reference frame will accelerate when the string is

accelerating.

 93

% Hence, we have to include a 'fictitious' force of the fluid in the

drill string when the string is accelerating.

% The string motion used here as input should ideally be taken from

the dynamic velocities for each solid element in StringSolid.
% However, only the velocity of the last element, giving bit velocity

and depth, will be used here.
%
% The input ThrottlingOpenPct is for throttling the flow area in the

BHA
% (assuming there is additional resistance due to mud motor or similar)
% Scenarios for plugged drill string should be simulated by directly
% manipulating the AreaConstr for relevant grids.
%
% ---

function dxdt = PipeFlu_SemiImplicitPDE(Inputs, InputsPrGrid, VelLiq,

VelGas, Pres, Var, p, GlobCstPhysic, TsLocal)
 %(Inputs,

InputsPrGrid, StateVector, Var, p, GlobCstPhysic)

 % Global Constants:
 g = GlobCstPhysic.g;
 Bar2Pascal = GlobCstPhysic.Bar2Pa;
 Pascal2Bar = GlobCstPhysic.Pa2Bar;
 LPM2CMS = GlobCstPhysic.Lpm2Cms;
 CMS2LPM = GlobCstPhysic.Cms2Lpm;

 ZeroFlowLimitLpm = 1E-34;

 %FlowRegime = 'LaminarOnly';
 FlowRegime = 'LaminarTurb';

 % Input variables - Scalars:
 FlowUpStmLpm = Inputs(1);
 FlowUpStmGasLpm = 0;
 PresDnStmBar = Inputs(2);
 ThrottleClosePct = Inputs(3); % To be able to block/restrict

flow area in a grid (here scalar).

 % Input variables - Vectors:
 %VelDsAxlCurr = InputsPrGrid(:,1);
 %VelDsAngCurr = InputsPrGrid(:,2);
 AccDsAxlCurr = -InputsPrGrid(:,3); % Inverted sign since fluid

is positive down, while Solid string is positive up
 %AccDsAngCurr = InputsPrGrid(:,4);
 AccDsAxlCalc = -InputsPrGrid(:,5); % Inverted sign since fluid

is positive down, while Solid string is positive up

 % Testing two different inputs for string accelerations: TODO:

Remove 'AccDsAxlCurr' - Keep only the one calculated in DsFlu_Step => No

extra requirements on DsSol
 %AccelerationPipe = AccDsAxlCurr';
 AccelerationPipe = AccDsAxlCalc'; % If switching to other input

- remember to also switch in BhaAndBit

 94

 % Parameters:
 nGr = p.nGridsDs; % = nBit = GridNumberBit;

 FlowLpm = VelLiq .* p.AreaCrs;
 % Pres = StateVector(p.BiasPresDs+1:p.BiasPresDs+nGr)
 %, VelGas, Pres

 FlowExtendedCms = [FlowLpm; FlowUpStmLpm]' * LPM2CMS; % Adds the

top boundary flow at the end of the vector
 PresPaExtended = [PresDnStmBar; Pres]' * Bar2Pascal; % Adds the

downstream boundary flow at the beginning of the vector
 DensityExtended = p.Fluid.DensityNom(1) *ones(1, nGr+1); % TODO:

Implement the function: Density = f(PressurePa) % Inludes the dummy element

 FlowLeakCms = p.ZeroVectorGridsDs; % For drillstring wash-out etc

- TODO: compute it from annulus pressure and inputs

 dFlowrateCms = p.ZeroVectorGridsDs; % Flow in minus flow out for

each grid
 dPressurePa = p.ZeroVectorGridsDs; % Pressure in curret grid

minus pressure in down stream grid - for each grid
 for i=1:nGr
 dFlowrateCms(i) = -FlowExtendedCms(i) + FlowExtendedCms(i+1)

*DensityExtended(i+1)/DensityExtended(i); % Note: Dummies are added
 dPressurePa(i) = PresPaExtended(i+1) - PresPaExtended(i); %

Note: The indexes in PressurePaExtended are shifted one up due to dummy
 end

 FlowCms = FlowExtendedCms(1:nGr);
 %PressurePa = PressurePaExtended(1:nGr);
 Density = DensityExtended(1:nGr);

% ############ Conservation of Mass on fluid in Drill string

############

 % Rate of change of Pressure in Drill string:
 dDtPressureBar = Pascal2Bar * p.Fluid.BulkModulus ./ p.Volume .*

(dFlowrateCms - FlowLeakCms); % There is no volume change here due to moving

grids

% ############ Conservation of Momentum on fluid in Drill string

############

 % Pressure forces:

 if p.ThrottleGridOrPoint == 0
 % Throttle at a point given by p.ThrottleActive

 95

 ThrottleOpenPctVct = 100 * p.UnityVectorGridsDs -

(p.ThrottleActive .* ThrottleClosePct);
 else
 % Throttle whole grid
 ThrottleOpenPctVct = 100 * p.UnityVectorGridsDs -

ThrottleClosePct;
 end
 dPresConstrAbsPa = PressureDropOverConstriction(FlowCms, Density,

p.ConstrDischarge, p.ConstrArea, ThrottleOpenPctVct); % Positive since

FlowCms always > 0
 dPresConstrPa = sign(FlowCms) .* dPresConstrAbsPa;
 Fp = p.AreaCrs .* (dPressurePa - dPresConstrPa); % Effective

pressure over the grid

 % Gravity forces:
 Fg = g * p.Fluid.DensityNom .* p.LengthPrGrid .* p.AreaCrs .*

sin(p.InclHrzRad); % TODO: Make and Call function that calculates current

Density based on current pressure

 % Fictitious force (since the pipe is the reference frame):
 MassFluid = p.Volume .* p.Fluid.DensityNom;
 Ffic = -MassFluid .* AccelerationPipe; % Fictitious force

has opposite sign as acceleration of reference frame (pipe) when

signconvention is equal

 % Minor forces: % Future: Add forces resulting from tool joints

and other constrictions in the string/BHA
 Fmin = p.ZeroVectorGridsDs; % = Kmina1 .* (velocity_fluid.^2);

 % Wall shear stress for use in Friction forces:
 if FlowRegime == 'LaminarOnly'

 VelocityPipe = 0; % Since the pipe motion is the reference

frame
 GeometryPar.RadiusInn = p.RadiusInn;
 GeometryPar.AreaCrs = p.AreaCrs;
 [wallshearStressPipeLaminar, Tw_PL_lam] =

Tw_stringLaminarHBSimple(FlowCms, VelocityPipe, GeometryPar, p.Fluid);
 wallshearStressPipeTotal = wallshearStressPipeLaminar;
 % TA MED DETTE:
 %[TwHbTot, TwHbTurb, TwHbLam, TwPlLam] =

TwPipeGeoLamTurb(VelLiq, Re_net, FlowRegime, GeometryPar, FluidPar,

RheologyPar)
 %TwReal = TwHbTot, YpReal, Time, Q) % For å gjøre den

glatt men likevel med 100% YP-effekt med valgfri verdi ved Q->0.
 %Ff = TwHbTot .* p.AreaSrf;

 elseif FlowRegime == 'LaminarTurb'

 VelocityPipe = 0; % Since the pipe motion is the reference

frame
 k = p.Fluid.Viscosity.ConsistencyIndex;
 n = p.Fluid.Viscosity.FlowBehaviorIndex;
 yp = p.Fluid.Viscosity.YieldPoint;

 % For Turbulent vs Laminar flow: Computing Reynoldsnumber and

weight-number for flow regime:

 96

 %Ga = (1./(4*na+2)).^na; % Parameter valid for

annulus
 G_empty = (1./(3*n+1)).^n; % Parameter valid for

empty hole below bit
 %G = [Ga(1:nBit); G_empty(nBit+1:nBh)];
 G = G_empty;

 VelocityLiquid = FlowCms ./ p.AreaCrs - VelocityPipe;
 [ReLam ReLamNet] = fReynoldsNumber(VelocityLiquid, k, n,

p.Fluid.DensityNom, p.RadiusInn, G); % TODO: p.Fluid.DensityNom =

p.Fluid.DensityCur
 [FlowRegime, Re_cr, Re_ce] = fTransition(ReLam, n,

GlobCstPhysic.ReNmbCstPipe.CritNom, GlobCstPhysic.ReNmbCstPipe.TurbNom,

GlobCstPhysic.ReNmbCstPipe.Delta_n0, ...

GlobCstPhysic.ReNmbCstPipe.TrnsMinVal); % TODO: Splitte i to funksjoner:

fReCriticalNCenter og fTransition (Returnerer samme Re_cr og Re_ce hver gang)
 Re_net = ReLamNet;

 FluidPar.Dns = p.Fluid.DensityNom; % TODO:

Use p.Fluid.DensityCur;
 RheologyPar.ModelType = 'Herschel Bulkley';
 RheologyPar.ViscosityHb.k = k;
 RheologyPar.ViscosityHb.n = n;
 RheologyPar.ViscosityHb.yp = yp;
 RheologyPar.ContinuousSimplified.xi =

p.Fluid.RheologyPipe.xi; % RheologyPipe is comuted for all grids initially
 RheologyPar.ContinuousSimplified.sigma =

p.Fluid.RheologyPipe.sigma;
 RheologyPar.ContinuousSimplified.psi =

p.Fluid.RheologyPipe.psi;
 RheologyPar.ContinuousSimplified.P_T_default =

p.Fluid.RheologyPipe.PT;
 RheologyPar.ContinuousSimplified.omega =

p.Fluid.RheologyPipe.Omega;
 RheologyPar.ContinuousSimplified.SmoothFactor =

p.Fluid.RheologyPipe.SmoothFactor;
 GeometryPar.RaIn = p.RadiusInn; %GeometryPar.AreaCrs

= p.AreaCrs;

 SimMode = 1; % Gives absolute YP
 [wallshearStressPipeTotal, TwTurb, TwLam, TwPlLam] =

TwPipeGeoLamTurb(VelocityLiquid, Re_net, FlowRegime, GeometryPar, FluidPar,

RheologyPar, SimMode);

 else
 'Flow regime type is missing'
 pause
 end

 % Ensuring that the yp-force does not initiate flow when it comes

to rest (due to dicrete time points)
 Ff = p.ZeroVectorGridsDs;
 for i = 1:nGr
 %if abs(FlowLpm(i)) < ZeroFlowLimitLpm % There is no flow
 % if abs(FlowLpm(i)) > 0 % Just checking
 % 'stop'

 97

 % end

 if abs(FlowLpm(i)) == 0 % OK to test against 0 here because

it i is set to zero

 Fsum = Fp(i) + Fg(i) + Ffic(i) + Fmin(i);

 if abs(wallshearStressPipeTotal(i)) > 0 % Will

never happen
 'abs(wallshearStressPipeTotal(i)) > 0 - Will never

happen'
 else
 if yp(i) * p.AreaSrf(i) > abs(Fsum) % If the yp

has higher potensial than Fsum, it is reduced to Fsum
 Ff(i) = -Fsum; % Ff must be

set directly here to avoid numerical round-off
 wallshearStressPipeTotal(i) = Ff(i)/p.AreaSrf(i);
 %wallshearStressPipeTotal(i) = -Fsum/p.AreaSrf(i);

 else
 wallshearStressPipeTotal(i) = -yp(i) * sign(Fsum);
 Ff(i) = wallshearStressPipeTotal(i) .*

p.AreaSrf(i);
 end
 end
 else
 Ff(i) = wallshearStressPipeTotal(i) .* p.AreaSrf(i);
 end
 end
 %Ff = wallshearStressPipeTotal .* p.AreaSrf;

 % The derivative dQdt in SI units:
 dDtFlowLpm = CMS2LPM * p.AreaCrs ./ MassFluid .* (Fp + Ff + Fg +

Ffic + Fmin); % Sign of Ff (Tw) is negative when flow>0

% ############ Aligning the outputs ############

 dxdt = [dDtFlowLpm'; dDtPressureBar'];

end

A.23 PipeFluHrz_2xOrd_Setup

% ---

%
% Setup for Simplified Horizontal Pipe.
%
% Maps input units and forms to ODE units and forms

 98

% Establish variables for plotting.
% Calls Init function to data object create structure.
%
% ---

function [PipeFluIf, PipeFluObj] = PipeFluHrz_2xOrd_Setup(ObjectName,

InitBoundaries, ParIn, FluidNom, GlobalConstPhysic, GlobalConstSim)

 % Global Constants:
 nGlobalSteps = GlobalConstSim.nGlobalSteps;
 GlobalTimeStep = GlobalConstSim.GlobalTimeStep;

 Solver = 'RungeKutta4';
 %Solver = 'EulerFirstOrder';

 if length(ParIn.LengthPrGrid) > 0
 %'Use a predefined grid-length vector with possible variable

length => Par.nGridsDsFluTotal is ignored'
 % If total length is too long, it will be truncated. If total

length is shorter than needed, a final grid will be added on top with the

length of the residual - NO Wrong.
 nGr = ParIn.nGrids;
 p.LengthTotal = sum(ParIn.LengthPrGrid);
 p.GridLenDsUniform = [];
 p.LengthPrGrid = ParIn.LengthPrGrid;

 elseif length(ParIn.LengthPrGrid) == 0 % []
 % Divide the Pipe in a number of grids with equal lengths by

using Par.nGridsDsFluTotal:
 nGr = ParIn.nGridsDsFluTotal;
 p.LengthTotal = PosDsBoundTop - PosDsBoundBot;
 p.GridLenDsUniform = p.LengthTotal/nGr;
 p.LengthPrGrid = p.GridLenDsUniform * ones(1, nGr);

 end
 %p.nGridsDs = nGr;

 p.ZeroVectorGridsDs = zeros(1, nGr);
 p.UnityVectorGridsDs = ones(1, nGr);

 % Initial values of State variables set according to Boundaies:
 FlowInitLpm = p.UnityVectorGridsDs *

InitBoundaries.FlowBoundUpStmLpm;
 PresInitBar = p.UnityVectorGridsDs .*

InitBoundaries.PresBoundDnStmBar;
 DensityInit = p.UnityVectorGridsDs .* FluidNom.Density;
 %PresInitBar(nGr) = InitBoundaries.PresBoundTopBar;

 % Flow contriction related
 p.ConstrictionOpenPst = ParIn.ConstrictionOpenPst;
 p.ThrottleActive = ParIn.ThrottleActive;
 p.ThrottleGridOrPoint = ParIn.ThrottleGridOrPoint;

 p.FluidNom = FluidNom;

 99

 % AVERAGE Drillstring inner diameter of each grid from bottom and

up (Last to first):
 p.RadiusInn = ParIn.DiameterInnIn./2 * 2.54/100;
 p.InclHrzRad = (ParIn.InclFromVrtDeg - 90)/180 .* pi();

 % Initiates the Generic Sub-model:
 PipeFluObj = PipeFluGen_2xOrd_Init(ObjectName, p, FlowInitLpm,

PresInitBar, DensityInit, FluidNom);

% --- Set the Internal VAriables, Parameters and Constants ---
 %PipeFluObj.Par = p;
 PipeFluObj.Var = [];

 if Solver == 'RungeKutta4'
 PipeFluObj.Cst.Solver = @Solver_RK4_New;
 PipeFluObj.Cst.nTsLocal =

ceil(GlobalTimeStep/PipeFluObj.Cst.T_max_RK4); % Future: test on solver

type
 %PipeFluObj.Cst.tLocal =

GlobalTimeStep/PipeFluObj.Cst.nLocalTimeSteps;
 PipeFluObj.Cst.NumStableMode = 1; % Removes oscillaitons in

RK-steps and delays change of sign of states
 PipeFluObj.Cst.NumericStabilizationMode = 1; %optional input

parameter that may be set to one in order to remove ocsillations and change

of sign between the RK iterations

 elseif Solver == 'EulerFirstOrder'
 PipeFluObj.Cst.Solver = @Euler1;
 PipeFluObj.Cst.nTsLocal =

ceil(GlobalTimeStep/PipeFluObj.Cst.T_max_Euler);
 %PipeFluObj.Cst.tLocal =

GlobalTimeStep/PipeFluObj.Cst.nTsLocal;
 PipeFluObj.Cst.NumStableMode = 1; % Removes oscillaitons in

RK-steps and delays change of sign of states
 PipeFluObj.Cst.NumericStabilizationMode = 0;
 end
 PipeFluObj.Cst.TsLocal =

GlobalTimeStep/PipeFluObj.Cst.nTsLocal;

 %ZeroFlowLimitLpm = GlobCstPhysic.ZeroFlowLimitLpm;
 MassFluid = PipeFluObj.Par.Volume .*

PipeFluObj.Par.Fluid.DensityNom;
 if 0
 yp = PipeFluObj.Par.Fluid.Viscosity.YieldPoint;
 ZeroFlowLimitCms = max(GlobalTimeStep .*

PipeFluObj.Par.AreaCrs ./MassFluid .* yp .* PipeFluObj.Par.AreaSrf);
 else

 100

 dPresPrTimeStepPa = PipeFluObj.Par.Fluid.BulkModulus ./

PipeFluObj.Par.Volume .* GlobalConstPhysic.dFlowInMaxPrSecCms .*

GlobalTimeStep;
 dForcePrTimeStep = dPresPrTimeStepPa .*

PipeFluObj.Par.AreaCrs;
 ZeroFlowLimitCms = max(GlobalTimeStep .*

PipeFluObj.Par.AreaCrs ./MassFluid .* dForcePrTimeStep) / 1;
 end
 ZeroFlowLimitLpm = ZeroFlowLimitCms * 60000 / 10000;
 disp(['ZeroFlowLimitLpm = ', num2str(ZeroFlowLimitLpm)]);
 PipeFluObj.Par.ZeroFlowLimitLpm = ZeroFlowLimitLpm;

 % Set the default Initial Inputs (needed for setting InputsPrev in

first time step):
 PipeFluIf.Inputs.FlowUpStmLpm =

InitBoundaries.FlowBoundUpStmLpm;
 PipeFluIf.Inputs.PresDnStmBar =

InitBoundaries.PresBoundDnStmBar; % Initialize with a boundary that gives

steady conditions
 PipeFluIf.Inputs.ThrottleClosePct = 0;
 PipeFluIf.Inputs.VelDsAxl = 0;
 PipeFluIf.Inputs.VelDsAng = 0;
 PipeFluIf.Inputs.AccDsAxl = 0;
 PipeFluIf.Inputs.AccDsAng = 0;

 % States and additional variables in plot-order:
 OutputsInitial = [PipeFluObj.States.Flow;

PipeFluIf.Inputs.FlowUpStmLpm; PipeFluIf.Inputs.PresDnStmBar;

PipeFluObj.States.Pres; DensityInit'];
 pIntFc.OutputOrder = length(OutputsInitial);
 PipeFluIf.PlotMatrix = [OutputsInitial, zeros(pIntFc.OutputOrder,

nGlobalSteps-1)];

 % --- Setup for plotting ---
 %pIntFc.PlotGrouping = [nGr+1, nGr+1, nGr]; % nGr+1 for P

and Q?
 %pIntFc.OutputNames = {'Flow rates (LPM)','Pressure (Bar)',

'Density'}; % , 'Wall shear stress', 'Frictional pressure drop'
 pIntFc.PlotGrouping = [nGr+1, nGr+1]; % nGr+1 for P and Q?
 pIntFc.OutputNames = {'Flow rates (LPM)','Pressure (Bar)'};

 % --- Set the Outputs ---

 PipeFluIf.Par = pIntFc;

 PipeFluIf.Outputs.Flow = [PipeFluObj.States.Flow;

PipeFluIf.Inputs.FlowUpStmLpm];
 PipeFluIf.Outputs.Pres = [PipeFluIf.Inputs.PresDnStmBar;

PipeFluObj.States.Pres];
 PipeFluIf.Outputs.Dens = p.ZeroVectorGridsDs';
 %PipeFluIf.Outputs.FlowLeak = p.ZeroVectorGridsDs';

 101

 %PipeFluIf.Outputs.ShearStressAxl = ShearStressAxl;
 %PipeFluIf.Outputs.PresFrictionComp = PresFrictionComp;

end

A.24 PipeFluHrz_InputSignalGenerator.m

%--

% Generates smooth input signals from step/hold values
% Smoothening can be done by a 1. order or 2. order filter
%--

function [FlowrateInput_1Order_0_2000_LPM, ThrottleInput_ClosePct] =

PipeFluHrz_InputSignalGenerator(GlobalConstSim, GlobConstPhys)

 % Generate Flowrate Input (from Main pump)
 AmplNom = 2000;
 startValue = 0;
 holdTimes = [1; 20];
 holdValues = [AmplNom; AmplNom];
 filterOrder = 2;
 filterTime = 1; % Suitable for 2. order dynamics (w0 =

1/filterTime)
 [FlowrateInput_1Order_0_2000_LPM,

FlowrateInput_1Order_0_2000_Integral] = fRampAndHold3(GlobalConstSim,

filterOrder, filterTime, startValue, holdTimes, holdValues);
 InputSignals.FlowrateIn = FlowrateInput_1Order_0_2000_LPM;
 dFlowInMaxPrSecLpm = AmplNom/filterTime;
 GlobConstPhys.dFlowInMaxPrSecCms = dFlowInMaxPrSecLpm / 60000;

 % General Throttle/Constriction Input signal:
 startValue = 0;
 holdTimes = [45, 2];
 holdValues = [95, 0]; % Lavere enn 4 gir ustblit system ved bruk

på DsMain (uavh av dT)
 filterOrder = 1;
 filterTime = 0.25;
 [ThrottleInput_ClosePct, ThrottlingInput_OpenPctIntegral] =

fRampAndHold3(GlobalConstSim, filterOrder, filterTime, startValue,

holdTimes, holdValues);
 InputSignals.ThrottleValveClosePct = ThrottleInput_ClosePct;

 % Flowrate Output (for Tank, Lift pump etc)
 %startValue = 0;
 %holdTimes = [20; 20];
 %holdValues = [4000; 0];
 %filterOrder = 2;

 102

 %filterTime = 2.5; % 10 is Suitable for 1. ord. dyn; 2.5 is

Suitable for 2. ord dyn. (w0 = 1/filterTime)

 %[FlowOut_Dynamic_Lpm, FlowOut_Dynamic_Lpm_Integral] ...
 % = fRampAndHold3(GlobalConstSim, filterOrder, filterTime,

startValue, holdTimes, holdValues);

end

A.25 PipeFluHrz_SemiImplicitPde_Setup.m

% ---

% Setup for Simplified Horizontal Pipe.
%
% Maps input units and forms to ODE units and forms
% Establish variables for plotting.
% Calls Init function to data object create structure.
% ---

function [PipeFluIf, PipeFluObj] =

PipeFluHrz_SemiImplicitPde_Setup(ObjectName, InitBoundaries, ParIn,

FluidNom, GlobalConstPhysic, GlobalConstSim)
 % ExternalIfc, InternalObj

 % Global Constants:
 nGlobalSteps = GlobalConstSim.nGlobalSteps;
 GlobalTimeStep = GlobalConstSim.GlobalTimeStep;

 if length(ParIn.LengthPrGrid) > 0
 %'Use a predefined grid-length vector with possible variable

length => Par.nGridsDsFluTotal is ignored'
 nGr = ParIn.nGrids;
 p.LengthTotal = sum(ParIn.LengthPrGrid);
 p.GridLenDsUniform = [];
 p.LengthPrGrid = ParIn.LengthPrGrid;
 elseif length(ParIn.LengthPrGrid) == 0
 '';
 end

 p.ZeroVectorGridsDs = zeros(1, nGr);
 p.UnityVectorGridsDs = ones(1, nGr);

 % Initial values of State variables set according to Boundaies -

Movw to INIT?
 FlowInitLpm = p.UnityVectorGridsDs *

InitBoundaries.FlowBoundUpStmLpm;
 PresInitBar = p.UnityVectorGridsDs .*

InitBoundaries.PresBoundDnStmBar;
 DensityInit = p.UnityVectorGridsDs .* FluidNom.Density;

 103

 % Flow contriction related
 p.ConstrictionOpenPst = ParIn.ConstrictionOpenPst;
 p.ThrottleActive = ParIn.ThrottleActive;
 p.ThrottleGridOrPoint = ParIn.ThrottleGridOrPoint;

 p.FluidNom = FluidNom;

 % AVERAGE Drillstring inner diameter of each grid from bottom and

up (Last to first):
 p.RadiusInn = ParIn.DiameterInnIn./2 * 2.54/100;
 p.InclHrzRad = (ParIn.InclFromVrtDeg - 90)/180 .* pi();

 % Initiates variables i the Generic Pde based sub-model:
 PipeFluObj = PipeFlu_PdeGen_Init(ObjectName, p, FlowInitLpm,

PresInitBar, DensityInit, FluidNom);

 % --- Set the Internal VAriables, Parameters and Constants ---
 %PipeFluObj.Par = p;
 PipeFluObj.Var = [];

 % Set Solver etc
 PipeFluObj.Cst.Solver = @Solver_PdeSemiImplicit;
 PipeFluObj.Cst.nTsLocal = ceil(GlobalTimeStep/1); %

PipeFluObj.Cst.T_max_RK4
 %PipeFluObj.Cst.tLocal =

GlobalTimeStep/PipeFluObj.Cst.nLocalTimeSteps;
 PipeFluObj.Cst.TsLocal =

GlobalTimeStep/PipeFluObj.Cst.nTsLocal;

 %ZeroFlowLimitLpm = GlobCstPhysic.ZeroFlowLimitLpm;
 MassFluid = PipeFluObj.Par.Volume .*

PipeFluObj.Par.Fluid.DensityNom;
 if 0
 yp = PipeFluObj.Par.Fluid.Viscosity.YieldPoint;
 ZeroFlowLimitCms = max(GlobalTimeStep .*

PipeFluObj.Par.AreaCrs ./MassFluid .* yp .* PipeFluObj.Par.AreaSrf);
 else
 dPresPrTimeStepPa = PipeFluObj.Par.Fluid.BulkModulus ./

PipeFluObj.Par.Volume .* GlobalConstPhysic.dFlowInMaxPrSecCms .*

GlobalTimeStep;
 dForcePrTimeStep = dPresPrTimeStepPa .*

PipeFluObj.Par.AreaCrs;
 ZeroFlowLimitCms = max(GlobalTimeStep .*

PipeFluObj.Par.AreaCrs ./MassFluid .* dForcePrTimeStep) / 1;
 end
 ZeroFlowLimitLpm = ZeroFlowLimitCms * 60000 / 10000;
 disp(['ZeroFlowLimitLpm = ', num2str(ZeroFlowLimitLpm)]);
 PipeFluObj.Par.ZeroFlowLimitLpm = ZeroFlowLimitLpm;

 % Set the default Initial Inputs (needed for setting InputsPrev in

first time step):

 104

 PipeFluIf.Inputs.FlowUpStmLpm =

InitBoundaries.FlowBoundUpStmLpm;
 PipeFluIf.Inputs.PresDnStmBar =

InitBoundaries.PresBoundDnStmBar; % Initialize with a boundary that gives

steady conditions
 PipeFluIf.Inputs.ThrottleClosePct = 0;
 PipeFluIf.Inputs.VelDsAxl = 0;
 PipeFluIf.Inputs.VelDsAng = 0;
 PipeFluIf.Inputs.AccDsAxl = 0;
 PipeFluIf.Inputs.AccDsAng = 0;

 % States and additional variables in plot-order:
 OutputsInitial = [PipeFluObj.States.Flow;

PipeFluIf.Inputs.FlowUpStmLpm; PipeFluIf.Inputs.PresDnStmBar;

PipeFluObj.States.Pres; DensityInit'];
 pIntFc.OutputOrder = length(OutputsInitial);
 PipeFluIf.PlotMatrix = [OutputsInitial, zeros(pIntFc.OutputOrder,

nGlobalSteps-1)];

 % --- Setup for plotting ---
 %pIntFc.PlotGrouping = [nGr+1, nGr+1, nGr]; % nGr+1 for P

and Q?
 %pIntFc.OutputNames = {'Flow rates (LPM)','Pressure (Bar)',

'Density'}; % , 'Wall shear stress', 'Frictional pressure drop'
 pIntFc.PlotGrouping = [nGr+1, nGr+1]; % nGr+1 for P and Q?
 pIntFc.OutputNames = {'Flow rates (LPM)','Pressure (Bar)'};

 % --- Set the Outputs ---
 PipeFluIf.Par = pIntFc;

 PipeFluIf.Outputs.Flow = [PipeFluObj.States.Flow;

PipeFluIf.Inputs.FlowUpStmLpm];
 PipeFluIf.Outputs.Pres = [PipeFluIf.Inputs.PresDnStmBar;

PipeFluObj.States.Pres];
 PipeFluIf.Outputs.Dens = p.ZeroVectorGridsDs';

end

A 26 PipeFluHrz_Step.m

% ---

% This function returns Output values for the next time step of a

dynamic
% model. It should be called directly from a Master algorithm that

controls
% the execution time (main time-loop).
%

 105

% The model may consist of Sub-models, and the outputs may be States

from
% ODE's or additional simulation variables computed from static

equations
% (typically with States as inputs).
%
% This Step function combines States and parameters of the Sub-models

into
% combined vectors and structures before calling a Solver with the

Combined
% ODE model as argument. I.e., the entire combined model is solved
% simultaneously by the solver.
%
% The returning State values for the combined model are then splitted
% into states for the Sub-models. And if additional simulation variables
% are needed by the Master/other Sub-models, they are computed. Both

States
% and additional simulation variables are returnd in a separate Output
% structure, while the Internal States are stored and updated in a
% Structure whose internal structure is unknown for the Master.
%
% The Master also has to set the correct Inputs, including Inputs from
% the previous time step. The latter is needed in order to compute
% time-derivatives (for increased stability). This is done in a generic

way
% for all inputs.
%
% (The Master is responsible for pairing inputs and outputs
% between all Sub-models based on confiruration of the total system.)
%
% NOTE for making scenarios by DSB:
% When DSB modifies Parameters, the original values should be stored

in a
% copy structure and put back when scenario is finished.
% The model will then recover naturally. Consider also storing States

and
% put these back for some special slow operations (instructor may

decide)
%
% DelayedChangeOfSign is..
% TODO: Include Turbulence
% ---

function [Outputs, PipeFluObj] = PipeFluHrz_Step(Inputs, InputsPrev,

PipeFluObj, GlobalConstPhysic, GlobalConstSim, SolverType)

 GlobalTimeStep = GlobalConstSim.GlobalTimeStep;
 TsLocal = PipeFluObj.Cst.TsLocal;
 nTsLocal = PipeFluObj.Cst.nTsLocal;

 Solver = PipeFluObj.Cst.Solver;

 EventBuilder = 0;
 if EventBuilder == 1 % Flow restriciton (Pack-off etc)
 PipeFluObj.Par.AreaCrs = PipeFluObj.Par.AreaCrsOrg -

(PipeFluObj.Par.AreaCrsOrg .* PipeFluObj.Par.ThrottleActive .*

Inputs.ThrottleClosePct/100);

 106

 PipeFluObj.Par.RadiusInn = sqrt(PipeFluObj.Par.AreaCrs/pi);
 PipeFluObj.Par.AreaSrf = pi * 2*PipeFluObj.Par.RadiusInn .*

PipeFluObj.Par.LengthPrGrid;
 PipeFluObj.Par.Volume = PipeFluObj.Par.AreaCrs .*

PipeFluObj.Par.LengthPrGrid;
 end

 % --- Preparing inputs - Note they are for total object (no

splitting needed here) ---

 % Organize scalar inputs into vectors and find derivatives:
 InputsScalarsCurr = [Inputs.FlowUpStmLpm; Inputs.PresDnStmBar;

Inputs.ThrottleClosePct];
 InputsScalarsPrev = [InputsPrev.FlowUpStmLpm;

InputsPrev.PresDnStmBar; InputsPrev.ThrottleClosePct];
 InputsScalarsDerv = (InputsScalarsCurr - InputsScalarsPrev) ./

GlobalTimeStep; % Computing derivatives

 % Align VECTOR inputs to internal grid structure and find

derivatives:
 nGrTot = PipeFluObj.Par.nGridsDs; % = DsMainFluid.Par.nGridsDs +

1;
 VelDsAxlCurr =

AlignVectorsValuesToMultipleLength(Inputs.VelDsAxl, nGrTot);
 VelDsAxlPrev =

AlignVectorsValuesToMultipleLength(InputsPrev.VelDsAxl, nGrTot);
 VelDsAngCurr =

AlignVectorsValuesToMultipleLength(Inputs.VelDsAng, nGrTot);
 VelDsAngPrev =

AlignVectorsValuesToMultipleLength(InputsPrev.VelDsAng, nGrTot);

 AccDsAxlCurr =

AlignVectorsValuesToMultipleLength(Inputs.AccDsAxl, nGrTot);
 AccDsAxlPrev =

AlignVectorsValuesToMultipleLength(InputsPrev.AccDsAxl, nGrTot);
 AccDsAngCurr =

AlignVectorsValuesToMultipleLength(Inputs.AccDsAng, nGrTot);
 AccDsAngPrev =

AlignVectorsValuesToMultipleLength(InputsPrev.AccDsAng, nGrTot);

 % Assembling all input vectors in matrixes:
 InputsPrGridCurr = [VelDsAxlCurr, VelDsAngCurr, AccDsAxlCurr,

AccDsAngCurr];
 InputsPrGridPrev = [VelDsAxlPrev, VelDsAngPrev, AccDsAxlPrev,

AccDsAngPrev];
 InputsPrGridDerv = (InputsPrGridCurr - InputsPrGridPrev) ./

GlobalTimeStep; % Computing derivatives

 % Find Accelration of Ds based on derivative computed here and add

to matrix of vectors:
 AccDsAxlCalc = InputsPrGridDerv(:,1);
 %InputsPrGridCurr = [InputsPrGridCurr, AccDsAxlCalc];
 InputsPrGridPrev = [InputsPrGridPrev, AccDsAxlCalc];
 InputsPrGridDerv = [InputsPrGridDerv,

PipeFluObj.Par.ZeroVectorGridsDs'];

 % Find first local inputs:
 InputsScalarsLocal = InputsScalarsPrev; % Start with previous

(Local increments are added before calling the Solver in the local time loop)

 107

 InputsPrGridLocal = InputsPrGridPrev; % Start with previous

(Local increments are added before calling the Solver in the local time loop)

 % --- Calling the solver and Step-function ---

 % ODE models
 if strcmp(SolverType, "ODE")
 NumStableMode = PipeFluObj.Cst.NumStableMode;
 DelayedChangeOfSign = 0; % Value 1 ensures that all variables

go to zero before changing sign (reduces ocsillations for fluids with a yield

point)

 BiasFlowDs = PipeFluObj.Par.BiasFlowDs;
 BiasPresDs = PipeFluObj.Par.BiasPresDs;
 BiasDensDs = PipeFluObj.Par.BiasDensDs;

 % Organizing States into one vector, and parameters of Sub-

models into one common Struct
 StateVecLocal = [PipeFluObj.States.Flow;

PipeFluObj.States.Pres];

 % Keep the current flow for checking ChangeOfSign after Step()
 FlowCurrent =

StateVecLocal(BiasFlowDs+1:BiasFlowDs+PipeFluObj.Par.nGridsDs);

 for i = 1:nTsLocal
 InputsScalarsLocal = InputsScalarsLocal +

InputsScalarsDerv * TsLocal;
 InputsPrGridLocal = InputsPrGridLocal + InputsPrGridDerv

* TsLocal;
 StateVecLocal = Solver(@DsMain_Horizontal_2xOrd_ODE,

InputsScalarsLocal, InputsPrGridLocal, StateVecLocal, PipeFluObj.Var,

PipeFluObj.Par, GlobalConstPhysic, TsLocal, NumStableMode);

 % Error checking
 if NanAndInfCheck(StateVecLocal, 'StateVecLocal

DsFlu_Combined_ODE')
 'NanAndInfCheck = True';
 end
 % Error checking
 if DelayedChangeOfSign == 1
 FlowNew =

StateVecLocal(BiasFlowDs+1:BiasFlowDs+PipeFluObj.Par.nGridsDs);
 ChangeOfSign = sign(FlowCurrent) .* sign(FlowNew);
 for j=1:PipeFluObj.Par.nGridsDs
 if ChangeOfSign(j) < 0
 disp('Change Of Sign is delayed');

%nDelayedChangeOfSign = nDelayedChangeOfSign + 1;
 end
 end
 FlowToZeroOrNot = ChangeOfSign >= 0;
 FlowNew = FlowNew .* FlowToZeroOrNot;

StateVecLocal(BiasFlowDs+1:BiasFlowDs+PipeFluObj.Par.nGridsDs) = FlowNew;
 FlowCurrent = FlowNew;
 end
 end

 108

 % Error checking
 if abs(InputsScalarsLocal - InputsScalarsCurr) > 1E-6
 disp('Error in interpolating inputs')
 end

 %States are updated in the sub-object structures
 PipeFluObj.States.Flow =

StateVecLocal(BiasFlowDs+1:BiasFlowDs+PipeFluObj.Par.nGridsDs);
 PipeFluObj.States.Pres =

StateVecLocal(BiasPresDs+1:BiasPresDs+PipeFluObj.Par.nGridsDs);

 % PDE models
 elseif strcmp(SolverType, "PDE")
 for i = 1:nTsLocal
 VelLiq = PipeFluObj.States.Flow ./ PipeFluObj.Par.AreaCrs;
 VelGas = PipeFluObj.States.Flow * 0;
 Pres = PipeFluObj.States.Pres;
 InputsScalarsLocal = InputsScalarsLocal +

InputsScalarsDerv * TsLocal;
 InputsPrGridLocal = InputsPrGridLocal + InputsPrGridDerv

* TsLocal;
 [Pres, VelLiq, VelGas] =

PipeFlu_SemiImplicitPDE(InputsScalarsLocal, InputsPrGridLocal, VelLiq,

VelGas, Pres, ...

PipeFluObj.Var, PipeFluObj.Par, GlobalConstPhysic, TsLocal);
 %StateVecLocal = Solver(@DsMain_Horizontal_2xOrd_ODE,

InputsScalarsLocal, InputsPrGridLocal, StateVecLocal, DsFluTotal.Var,

DsFluTotal.Par, GlobalConstPhysic, TsLocal, NumStableMode);
 end

 else
 '';
 end

 VelocityPipe = 0; % Since the pipe motion is the reference frame
 PipeFluObj.Var.DensDyn =

CalcFluidDensityFromEqOfState(PipeFluObj.States.Pres*GlobalConstPhysic.Bar2

Pa, PipeFluObj.Par.FluidNom.PresRefPa, PipeFluObj.Par.FluidNom.Density,

PipeFluObj.Par.FluidNom.BulkModulus);
 ThrottleOpenPctVct = 100 * PipeFluObj.Par.UnityVectorGridsDs -

(PipeFluObj.Par.ThrottleActive .* Inputs.ThrottleClosePct);

 % Setting Outputs for Total model - Only these should be available

for Master:
 Outputs.Flow = [PipeFluObj.States.Flow; Inputs.FlowUpStmLpm];
 Outputs.Pres = [Inputs.PresDnStmBar; PipeFluObj.States.Pres];
 Outputs.Dens = PipeFluObj.Var.DensDyn;
 Outputs.ThrottleOpenPctVct = ThrottleOpenPctVct;

end

 % Determine internal time step (flytt fra StepGeneric) and

interpolate inputs:

 109

 % TODO: Copy from Old Step function but utilize derivatives (if

non-zero)

 % Call the Generic Step function with a Solver, Internal time step

and ODE-Model as input:
 % Repeate until a global time step is simulated
 % Note: In case of several sub-models, it is the total model

that
 % is called here (decpoupling and coupling of variables are

done in the Total ODE-Model)

A.27 Tw_stringNewtonianLaminar.m

%

%
% The function returns average wall shear stress values (Tw) for
% Newtonian fluids in circular PIPES in LAMINAR flow
% when the bulk flow rate (v) is the dynamic input.
%
% Vectors where the elements represent each pipe segment/grid can be
% provided as input => the output will be a vector.
%
% Future extensions:
% Include laminar flow for Bingham plasic (BP) fluids and power law

(PL) fluids.
%
% Note:
% The frictional pressure gradient (Pa/m) is: dp/dz = 2/RaInn * Tw
% - This can be derived from Eq. 3.2.8b in Gjerstad 2014 PhD thesis -

Simplified Flow Equations for Single-Phase non-Newtonian Fluids in Couette-

Poiseuille Flow and in Pipes
%
%

%
function [Tw] = Tw_stringNewtonianLaminar(Flowrate, velocityPipe,

GeometryPar, FluidParameters)

% If inputs are vectors, each parameter within the Structure must be a

vector (not a vector of Structures)

 RaInn = GeometryPar.RadiusInn;
 AreaCrs = GeometryPar.AreaCrs;
 k = FluidParameters.Viscosity.ConsistencyIndex;
 %n = FluidParameters.Viscosity.FlowBehaviorIndex;
 %yp = FluidParameters.Viscosity.YieldPoint;

 %Flow inside string relative to string velocity (m/s):
 velocityFluid = Flowrate./AreaCrs - velocityPipe;

 110

 % Wall shear stress for Newtonian fluid in laminar flow:
 %
 Tw = -velocityFluid; % STUDENT: THIS IS JUST A DUMMY FUNCTION -

> REPLACE THIS BY THE CORRECT FORMULA - USE HAGEN-POISEUILLE EQ +
 % REF Eqs. 3.2.5 - 3.2.8 in Gjerstad 2014 PhD thesis - Simplified

Flow Equations for Single-Phase non-Newtonian Fluids in Couette-Poiseuille

Flow and in Pipes
 % AND REPLACE THE AREAS BY RADIUS ETC.

end

 111

Appendix B Kjell Kåre Fjelde Model

B.1 main17042023

% Transient two-phase code based on AUSMV scheme: Gas and Water
% The code assumes uniform geometry

% time - Seconds

% p - pressure at new time level (Pa)
% dl - density of liquid at new time level (kg/m3)
% dg - density of gas at new time level (kg/m3)
% eg - phase volume fraction of gas at new time level (0-1)
% ev - phase volume fraction of liquid at new time level (0-1)
% vg - phase velocity of gas at new time level (m/s)
% vl - phase velocity of liquid at new time level (m/s)
% qv - conservative variables at new time level (3 in each cell)
% temp - temperature in well (K)

% po - pressure at old time level (Pa)
% dlo - density of liquid at old time level (kg/m3)
% dgo - density of gas at new old level (kg/m3)
% ego - phase volume fraction of gas at old time level (0-1)
% evo - phase volume fraction of liquid at old time level (0-1)
% vgo - phase velocity of gas at old time level (m/s)
% vlo - phase velocity of liquid at old time level (m/s)
% qvo - conservative variables at old time level (3 in each cell)
% temp - temperature in well (K)

clear;
t = cputime
tic,

% Geometry data/ Must be specified
welldepth = 4000;
nobox = 25; %Number of boxes in the well

% Note that one can use more refined grid, 50, 100 boxes.
% When doing this, remember to reduce time step to keep the CFL number
% fixed below 0.25.. dt < cfl x dx/ speed of sound in water. If boxes

are
% doubled, then half the time step.

nofluxes = nobox+1; % Number of cell boundaries
dx = welldepth/nobox; % Boxlength
%dt = 0.005;

% Welldepth. Cell 1 start at bottom
x(1)= -1.0*welldepth+0.5*dx;
for i=1:nobox-1
 x(i+1)=x(i)+ dx;
end

 112

% VERY IMPORTANT: BELOW THE TIMESTEP IS SET. MAKE SURE THAT THE
% CFL CONDIDTION IS FULFILLED. IF NUMBER OF BOXES IS CHANGED. DX WILL
% CHANGE AND DT HAS TO BE ADJUSTED TO KEEP THE CFL NUMBER FIXED.

dt= 0.02; % Timestep (seconds)
dtdx = dt/dx;
time = 0.0; % initial time.
endtime = 300; % Time for ending simulation (seconds)
nosteps = endtime/dt; %Number of total timesteps. Used in for loop.
timebetweensavingtimedata = 0.1; % How often in s we save data vs time

for plotting.
nostepsbeforesavingtimedata = timebetweensavingtimedata/dt;

% Slip parameters used in the gas slip relation. vg =Kvmix+S
k = 1.2;
s = 0.55;

% Boundary condition at outlet
pbondout=1000000; % Pascal (1 bar)

% Initial temperature distribution. (Kelvin)
% Note that this is only used if we use density models that depend on
% temperature

tempbot = 110+273;
temptop = 50+273;
tempgrad= (tempbot-temptop)/welldepth;
tempo(1)=tempbot-dx/2*tempgrad;
for i = 1:nobox-2
 tempo(i+1)=tempo(i)-dx*tempgrad;
end
tempo(nobox)=tempo(nobox-1)-dx*tempgrad;

temp = tempo;

% Different fluid density parameters
% Note how we switch between different models later.
% These parameters are used when finding the
% primitive variables pressure, densities in an analytical manner.
% Changing parameters here, you must also change parameters inside the
% density routines roliq and rogas.

% Simple Water density model & Ideal Gas. See worknote Extension of

AUSMV
% scheme.

rho0=1000; % Water density at STC (Standard Condition) kg/m3
Bheta=2.2*10^9; % Parameter that depend on the compressibility of water
Alpha=0.000207; % Parameter related to thermal expansion/compression
R = 286.9; % Ideal gas parameter
P0=101000; % Pressure at STC (Pa)
T0=15+273.15; % Temperature at STC (K)

% Very simple models (PET510 compendium)

 113

al = 1500; % Speed of sound in water.
rt= 100000; % Ideal gas parameter in model rhog = p/rt (rt = ag^2)
rho0=1000; % Water density at STC (Standard Condition) kg/m3
P0=101000; % Pressure at STC (Pa)
T0=15+273.15; % Temperature at STC (K)

% Viscosities (Pa*s)/Used in the frictional pressure loss model

(dpfric).
viscl = 0.5; % Liquid phase
viscg = 0.0000182; % Gas phase

% Gravity constant

 g = 9.81; % Gravitational constant m/s2

 g = 0;

% Well opening. opening = 1, fully open well, opening = 0 (<0.01), the

well
% is fully closed. This variable will control what boundary conditions

that
% will apply at the outlet (both physical and numerical): We must change
% this further below in the code if we want to change status on this.

 wellopening = 1.0; % This variable determines if
%the well is closed or not, wellopening = 1.0 -> open. welllopening =

0
%-> Well is closed. This variable affects the boundary treatment.

 bullheading = 0.0; % This variable can be set to 1.0 if we want to

simulate
% a bullheading operation. But the normal is to set this to zero.

% Specify if the primitive variables shall be found either by
% a numerical or analytical approach. If analytical = 1, analytical
% solution is used. If analytical = 0. The numerical approach is used.
% using the itsolver subroutine where the bisection numerical method
% is used. We use analytical.

 analytical = 1;

% Initialization of rest of geometry.
% Here we specify the outer and inner diameter and the flow area
% We assume 12.25 x 5 inch annulus. But this can be modified.

 114

 for i = 1:nobox

 do(i)=0.331;
 di(i) = 0.127;

 area(i) = 3.14/4*(do(i)*do(i)- di(i)*di(i));

 end

% Initialization of slope limiters. These are used for
% reducing numerical diffusion and will be calculated for each timestep.
% They make the numerical scheme second order.
 for i = 1:nobox
 sl1(i)=0;
 sl2(i)=0;
 sl3(i)=0;
 sl4(i)=0;
 sl5(i)=0;
 sl6(i)=0;
 end

% Now comes the intialization of the physical variables in the well.
% First primitive variables, then the conservative ones.

% Below we intialize pressure and fluid densities. We start from top

of
% the well and calculated downwards. The calculation is done twice with
% updated values to get better approximation. Only hydrostatic
% considerations since we start with a static well.

for i = 1:nobox
 eg(i)=0.0; % Gas volume fraction
 ev(i)=1-eg(i); % Liquid volume fraction
end

p(nobox)= pbondout+0.5*g*dx*...
 (ev(nobox)*rholiq(P0,T0)+eg(nobox)*rogas(P0,T0)); % Pressure

(Pa)
dl(nobox)=rholiq(p(nobox),tempo(nobox)); % Liquid density kg/m3
dg(nobox)=rogas(p(nobox),tempo(nobox)); % Gas density kg/m3

for i=nobox-1:-1:1
p(i)=p(i+1)+dx*g*(ev(i+1)*dl(i+1)+eg(i+1)*dg(i+1));

 115

dl(i)=rholiq(p(i),tempo(i));
dg(i)=rogas(p(i),tempo(i));
end

 for i=nobox-1:-1:1
 rhoavg1= (ev(i+1)*dl(i+1)+eg(i+1)*dg(i+1));
 rhoavg2= (ev(i)*dl(i)+eg(i)*dg(i));
 p(i)=p(i+1)+dx*g*(rhoavg1+rhoavg2)*0.5;
 dl(i)=rholiq(p(i),tempo(i));
 dg(i)=rogas(p(i),tempo(i));

 end

% Intitialize phase velocities, volume fractions, conservative

variables
% and friction and hydrostatic gradients.
% The basic assumption is static fluid, one phase liquid.

for i = 1:nobox
 vl(i)=0; % Liquid velocity new time level.
 vg(i)=0; % Gas velocity at new time level
 eg(i)=0.0; % Gas volume fraction
 ev(i)=1-eg(i); % Liquid volume fraction
 qv(i,1)=dl(i)*ev(i)*area(i); % Conservative variable for liquid mass

(kg/m)
 qv(i,2)=dg(i)*eg(i)*area(i); % Conservative variable for gas mass

(kg/m)
 qv(i,3)=(dl(i)*ev(i)*vl(i)+dg(i)*eg(i)*vg(i))*area(i); %

Conservative variable for mixture moementum
 fricgrad(i)=0; % Pa/m
 hydgrad(i)=g*(dl(i)*ev(i)+eg(i)*dg(i)); % Pa/m
end

% Section where we also initialize values at old time level

for i=1:nobox
 dlo(i)=dl(i);
 dgo(i)=dg(i);
 po(i)=p(i);
 ego(i)=eg(i);
 evo(i)=ev(i);
 vlo(i)=vl(i);
 vgo(i)=vg(i);
 qvo(i,1)=qv(i,1);
 qvo(i,2)=qv(i,2);
 qvo(i,3)=qv(i,3);
end

% Intialize fluxes between the cells/boxes

for i = 1:nofluxes
 for j =1:3
 flc(i,j)=0.0; % Flux of liquid over box boundary
 fgc(i,j)=0.0; % Flux of gas over box boundary
 fp(i,j)= 0.0; % Pressure flux over box boundary
 end

 116

end

% Main program. Here we will progress in time. First som intializations
% and definitions to take out results. The for loop below runs until

the
% simulation is finished.

countsteps = 0;
counter=0;
printcounter = 1;
pin(printcounter) = (p(1)+dx*0.5*hydgrad(1))/100000; % Pressure in bar

at bottom for time storage
pout(printcounter)= pbondout/100000; % Pressure at outlet of uppermost

cell
pnobox(printcounter)= p(nobox)/100000; % Pressure in middle of

uppermost cell
liquidmassrateout(printcounter) = 0; % liquid mass rate at outlet kg/s
gasmassrateout(printcounter)=0; % gass mass rate at outlet kg/s
timeplot(printcounter)=time; % Array for time and plotting of

variables vs time
pitvolume=0;
pitrate =0;
pitgain(printcounter)=0;

kickvolume=0;
bullvolume=0;

% The temperature is not updated but kept fixed according to the
% initialization.

% Now comes the for loop that runs forward in time. This is repeated

for
% every timestep.

for i = 1:nosteps
 countsteps=countsteps+1;
 counter=counter+1;
 time = time+dt; % Step one timestep and update time.

% Then a section where specify the boundary conditions.
% Here we specify the inlet rates of the different phases at the
% bottom of the pipe in kg/s. We interpolate to make things smooth.
% It is also possible to change the outlet boundary status of the well
% here. First we specify rates at the bottom and the pressure at the

outlet
% in case we have an open well. This is a place where we can change

the
% code to control simulations. If the well shall be close, wellopening

must
% be set to 0. It is also possible to reverse the flow (bullheading).

% In the example below, we take a gas kick and then circulate this

 117

% out of the well without closing the well. (how you not should perform
% well control)

% Note there are two variables wellopening and bullheading that can be
% changed in the control structure below to close the well or start
% reversing the flow i.e. pumping downwards.

% Note that if we will change to bullheading throughout the control

stucture,
% the variable inletligmassrate
% has to be defined as negative since pumping downwards at outlet will

be
% in negative direction (postive direction of flow has been chosen to

be
% upwards)

% NB, NOTE THAT THIS IS ONE OF THE MAIN PLACES WHERE YOU HAVE TO ADJUST

THE
% CODE TO CONTROL THE SIMULATION SCENARIO.

XX = 0; % Gasrate in kg/s

YY= 2000*0.017; % Liquidrate in kg/s

if (time < 10)

 inletligmassrate=0.0;
 inletgasmassrate=0.0;

elseif ((time>=10) & (time < 20))
 inletligmassrate = YY*(time-10)/10; % Interpolate the rate from 0

to value wanted.
 inletgasmassrate = XX*(time-10)/10;

elseif ((time >=20) && (time<200))
 inletligmassrate = YY;
 inletgasmassrate = XX;
elseif ((time >=200) & (time<210))
% inletligmassrate = YY-YY*(time-200)/10;
 inletligmassrate = YY-YY*(time-200)/10;
 inletgasmassrate = XX-XX*(time-200)/10;
elseif (time > 210)
 inletligmassrate=0;
 inletgasmassrate=0;

end

% The commented code below are from some previous runs. It shows. e.g.

how
% we can close the well.
%elseif((time>=500)&(time<510))
% inletligmassrate = YY-YY*(time-500)/10;
% inletgasmassrate = XX-XX*(time-500)/10;
% elseif(time>=510)
% inletligmassrate=0;
% inletgasmassrate=0;
% wellopening=0.0;
% end

 118

%XX = 4;
% XX (kg/s) is a variable for introducing a kick in the well.
%YY = 15; % Liquid flowrate (kg/s) (1 kg/s = 1 l/s approx)
% if (time < 10)
%
% inletligmassrate=0.0;
% inletgasmassrate=0.0;
%
% elseif ((time>=10) & (time < 20))
% inletligmassrate = 0*(time-10)/10;
% inletgasmassrate = XX*(time-10)/10;
%
% elseif ((time >=20) & (time<110))
% inletligmassrate = 0;
% inletgasmassrate = XX;
%
% elseif ((time>=110)& (time<120))
% inletligmassrate = 0;
% inletgasmassrate = XX-XX*(time-110)/10;
% elseif ((time>=120&time<130))
% inletligmassrate =0;
% inletgasmassrate =0;
% elseif ((time>=130)&(time<300))
% inletligmassrate =0;
% inletgasmassrate =0;
% elseif ((time>=300)&(time<310))
% inletligmassrate= YY*(time-300)/10;
% inletgasmassrate =0;
% elseif((time>=310))
% inletligmassrate= YY;
% inletgasmassrate =0;
% end

kickvolume = kickvolume+inletgasmassrate/dgo(1)*dt; % Here we find the

kickvolume

% initially induced in the well.

% Here we specify the physical outlet pressure. Here we have given the

pressure as
% constant. It would be possible to adjust it during openwell conditions
% either by giving the wanted pressure directly (in the command lines
% above) or by finding it indirectly through a chokemodel where the

chokeopening
% would have had to be an input parameter. The chokeopening variable

would equally had
% to be adjusted inside the controle structure given above.

 pressureoutlet = pbondout;

% Based on these given physical boundary values combined with use
% of extrapolations techniques
% for the remaining unknowns at the boundaries, we will define the mass

and

 119

% momentum fluxes at the boundaries (inlet and outlet of pipe).

% inlet/bottom fluxes first.
 if (bullheading<=0)
 % Here we pump from bottom
 flc(1,1)= inletligmassrate/area(1);
 flc(1,2)= 0.0;
 flc(1,3)= flc(1,1)*vlo(1);

 fgc(1,1)= 0.0;
 fgc(1,2)= inletgasmassrate/area(1);
 fgc(1,3)= fgc(1,2)*vgo(1);

 fp(1,1)= 0.0;
 fp(1,2)= 0.0;

% Old way of treating the boundary
% fp(1,3)= po(1)+0.5*(po(1)-po(2)); %Interpolation used to find

the
% pressure at the inlet/bottom of the well.

% New way of treating the boundary
 fp(1,3)= po(1)...
 +0.5*dx*(dlo(1)*evo(1)+dgo(1)*ego(1))*g...
 +0.5*dx*fricgrad(1);

 else
 % Here we pump from the top. All masses are assumed to flow out

of the
 % well into the formation. We use first order extrapolation.
 flc(1,1)=dlo(1)*evo(1)*vlo(1);
 flc(1,2)=0.0;
 flc(1,3)=flc(1,1)*vlo(1);

 fgc(1,1)=0.0;
 fgc(1,2)=dgo(1)*ego(1)*vgo(1);
 fgc(1,3)=fgc(1,2)*vgo(1);

 fp(1,1)=0.0;
 fp(1,2)=0.0;
 fp(1,3)=20000000; (Pa) % This was a fixed pressure set at bottom

when bullheading
 end

% Outlet fluxes (open & closed conditions)

 if (wellopening>0.01)

% Here open end condtions are given. We distinguish between bullheading
% & normal circulation.

 120

 if (bullheading<=0) % Here we dont bullhead, i.e we circulate

from bottom

 % Here the is normal ciruclation and open well)
 flc(nofluxes,1)= dlo(nobox)*evo(nobox)*vlo(nobox);
 flc(nofluxes,2)= 0.0;
 flc(nofluxes,3)= flc(nofluxes,1)*vlo(nobox);

 fgc(nofluxes,1)= 0.0;
 fgc(nofluxes,2)= dgo(nobox)*ego(nobox)*vgo(nobox);
 % fgc(nofluxes,2)=0; Activate if gas is sucked in!?
 fgc(nofluxes,3)= fgc(nofluxes,2)*vgo(nobox);

 fp(nofluxes,1)= 0.0;
 fp(nofluxes,2)= 0.0;
 fp(nofluxes,3)= pressureoutlet;
 else
 % Here we are bullheading.
 flc(nofluxes,1)= inletligmassrate/area(nobox);
 flc(nofluxes,2)= 0.0;
 flc(nofluxes,3)= flc(nofluxes,1)*vlo(nobox);

 fgc(nofluxes,1)=0.0;
 fgc(nofluxes,2)=0.0;
 fgc(nofluxes,3)=0.0;

 fp(nofluxes,1)=0.0;
 fp(nofluxes,2)=0.0;
 fp(nofluxes,3)= po(nobox)...
 -

0.5*dx*(dlo(nobox)*evo(nobox)+dgo(nobox)*ego(nobox))*g...
 +0.5*dx*fricgrad(nobox); %check sign here on friction
 % Physcially, the friction should be added when going from
 % mid point in upper cell to outlet. But if fricgrad(nobox)

is
 % negative there should be a minus in front of the term to

have
 % + in the end.
 end
 else

% Here closed end conditions are given

 flc(nofluxes,1)= 0.0;
 flc(nofluxes,2)= 0.0;
 flc(nofluxes,3)= 0.0;

 fgc(nofluxes,1)= 0.0;
 fgc(nofluxes,2)= 0.0;
 fgc(nofluxes,3)= 0.0;

 fp(nofluxes,1)=0.0;
 fp(nofluxes,2)=0.0;

 % Old way of treating the boundary
 % fp(nofluxes,3)= po(nobox)-0.5*(po(nobox-1)-po(nobox));

 % New way of treating the boundary

 121

 fp(nofluxes,3)= po(nobox)...
 -0.5*dx*(dlo(nobox)*evo(nobox)+dgo(nobox)*ego(nobox))*g;
 % -0.5*dx*fricgrad(nobox); % Neglect friction since well is

closed.
 end

 % Implementation of slopelimiters. They are applied on the physical
 % variables like phase densities, phase velocities and pressure.

% It was found that if the slopelimiters were set to zero in
% the boundary cells, the pressure in these became wrong. E.g. the

upper
% cell get an interior pressure that is higher than it should be e.g.

when
% being static (hydrostatic pressure was too high). The problem was

reduced
% by copying the slopelimiters from the interior cells. However, both
% approaches seems to give the same BHP pressure vs time but the latter
% approach give a more correct pressure vs depth profile. It is also

better
% to use when simulating pressure build up where the upper cell pressure
% must be monitored. It should be checked more in detail before

concluding.
% BUT; there has been mass conservation problems with the scheme for

the
% case where the slopelimiters were copied (see master thesis of Keino)
% A possible fix has been included below where the slopelimiter related

to
% the gas volume fraction is set to zero in the first cell.

 for i=2:nobox-1
 sl1(i)=minmod(dlo(i-1),dlo(i),dlo(i+1),dx);
 sl2(i)=minmod(po(i-1),po(i),po(i+1),dx);
 sl3(i)=minmod(vlo(i-1),vlo(i),vlo(i+1),dx);
 sl4(i)=minmod(vgo(i-1),vgo(i),vgo(i+1),dx);
 sl5(i)=minmod(ego(i-1),ego(i),ego(i+1),dx);
 sl6(i)=minmod(dgo(i-1),dgo(i),dgo(i+1),dx);
 end

 % Slopelimiters in outlet boundary cell are set to zero!
% sl1(nobox)=0;
% sl2(nobox)=0;
% sl3(nobox)=0;
% sl4(nobox)=0;
% sl5(nobox)=0;
% sl6(nobox)=0;

 % Slopelimiters in outlet boundary cell are copied from neighbour

cell!
 sl1(nobox)=sl1(nobox-1);
 sl2(nobox)=sl2(nobox-1);
 sl3(nobox)=sl3(nobox-1);
 sl4(nobox)=sl4(nobox-1);
 sl5(nobox)=sl5(nobox-1);
 sl6(nobox)=sl6(nobox-1);

% Slopelimiters in inlet boundary cell are set to zero!
% sl1(1)=0;
% sl2(1)=0;

 122

% sl3(1)=0;
% sl4(1)=0;
% sl5(1)=0;
% sl6(1)=0;

% Slopelimiters in inlet boundary cell are copied from neighbour cell!
 sl1(1)=sl1(2);
 sl2(1)=sl2(2);
 sl3(1)=sl3(2);
 sl4(1)=sl4(2);
 sl5(1)=sl5(2);
 sl6(1)=sl6(2);

% FIX FOR OMITTING THE GAS MASS CONSERVATION PROBLEM
 sl5(1)=0;

% Now we will find the fluxes between the different cells.
% NB - IMPORTANE - Note that if we change the compressibilities/sound

velocities of
% the fluids involved, we may need to do changes inside the csound

function.
% But the effect of this is unclear.

 for j = 2:nofluxes-1

 %%%
 %%%
 % First order method is from here: If you want to test this, activate

this
 % and comment the second order code below.
% cl = csound(ego(j-1),po(j-1),dlo(j-1),k);
% cr = csound(ego(j),po(j),dlo(j),k);
% c = max(cl,cr);
% pll = psip(vlo(j-1),c,evo(j));
% plr = psim(vlo(j),c,evo(j-1));
% pgl = psip(vgo(j-1),c,ego(j));
% pgr = psim(vgo(j),c,ego(j-1));
% vmixr = vlo(j)*evo(j)+vgo(j)*ego(j);
% vmixl = vlo(j-1)*evo(j-1)+vgo(j-1)*ego(j-1);
%
% pl = pp(vmixl,c);
% pr = pm(vmixr,c);
% mll= evo(j-1)*dlo(j-1);
% mlr= evo(j)*dlo(j);
% mgl= ego(j-1)*dgo(j-1);
% mgr= ego(j)*dgo(j);
%
% flc(j,1)= mll*pll+mlr*plr;
% flc(j,2)= 0.0;
% flc(j,3)= mll*pll*vlo(j-1)+mlr*plr*vlo(j);
%
% fgc(j,1)=0.0;
% fgc(j,2)= mgl*pgl+mgr*pgr;
% fgc(j,3)= mgl*pgl*vgo(j-1)+mgr*pgr*vgo(j);
%
% fp(j,1)= 0.0;
% fp(j,2)= 0.0;
% fp(j,3)= pl*po(j-1)+pr*po(j);

 123

 % First order methods ends here
 %%
 %%

%%
%%
% Second order method starts here:
% Here slopelimiter is used on all variables except phase velocoties

 psll = po(j-1)+dx/2*sl2(j-1);
 pslr = po(j)-dx/2*sl2(j);
 dsll = dlo(j-1)+dx/2*sl1(j-1);
 dslr = dlo(j)-dx/2*sl1(j);
 dgll = dgo(j-1)+dx/2*sl6(j-1);
 dglr = dgo(j)-dx/2*sl6(j);

 vlv = vlo(j-1)+dx/2*sl3(j-1);
 vlh = vlo(j)-dx/2*sl3(j);
 vgv = vgo(j-1)+dx/2*sl4(j-1);
 vgh = vgo(j)-dx/2*sl4(j);

 gvv = ego(j-1)+dx/2*sl5(j-1);
 gvh = ego(j)-dx/2*sl5(j);
 lvv = 1-gvv;
 lvh = 1-gvh;

 cl = csound(gvv,psll,dsll,k);
 cr = csound(gvh,pslr,dslr,k);
 c = max(cl,cr);

 pll = psip(vlo(j-1),c,lvh);
 plr = psim(vlo(j),c,lvv);
 pgl = psip(vgo(j-1),c,gvh);
 pgr = psim(vgo(j),c,gvv);
 vmixr = vlo(j)*lvh+vgo(j)*gvh;
 vmixl = vlo(j-1)*lvv+vgo(j-1)*gvv;

 pl = pp(vmixl,c);
 pr = pm(vmixr,c);

 mll= lvv*dsll;
 mlr= lvh*dslr;
 mgl= gvv*dgll;
 mgr= gvh*dglr;

 flc(j,1)= mll*pll+mlr*plr;
 flc(j,2)= 0.0;
 flc(j,3)= mll*pll*vlo(j-1)+mlr*plr*vlo(j);

 fgc(j,1)=0.0;
 fgc(j,2)= mgl*pgl+mgr*pgr;
 fgc(j,3)= mgl*pgl*vgo(j-1)+mgr*pgr*vgo(j);

 124

 fp(j,1)= 0.0;
 fp(j,2)= 0.0;
 fp(j,3)= pl*psll+pr*pslr;

%%% Second order method ends here
%%
%%

% Here sloplimiters is used on all variables. This
% has not worked so well yet. Therefore it is commented away.

% psll = po(j-1)+dx/2*sl2(j-1);
% pslr = po(j)-dx/2*sl2(j);
% dsll = dlo(j-1)+dx/2*sl1(j-1);
% dslr = dlo(j)-dx/2*sl1(j);
% dgll = dgo(j-1)+dx/2*sl6(j-1);
% dglr = dgo(j)-dx/2*sl6(j);
%
% vlv = vlo(j-1)+dx/2*sl3(j-1);
% vlh = vlo(j)-dx/2*sl3(j);
% vgv = vgo(j-1)+dx/2*sl4(j-1);
% vgh = vgo(j)-dx/2*sl4(j);
%
% gvv = ego(j-1)+dx/2*sl5(j-1);
% gvh = ego(j)-dx/2*sl5(j);
% lvv = 1-gvv;
% lvh = 1-gvh;
%
% cl = csound(gvv,psll,dsll,k);
% cr = csound(gvh,pslr,dslr,k);
% c = max(cl,cr);
%
% pll = psip(vlv,c,lvh);
% plr = psim(vlh,c,lvv);
% pgl = psip(vgv,c,gvh);
% pgr = psim(vgh,c,gvv);
% vmixr = vlh*lvh+vgh*gvh;
% vmixl = vlv*lvv+vgv*gvv;
%
% pl = pp(vmixl,c);
% pr = pm(vmixr,c);
% mll= lvv*dsll;
% mlr= lvh*dslr;
% mgl= gvv*dgll;
% mgr= gvh*dglr;
%
% flc(j,1)= mll*pll+mlr*plr;
% flc(j,2)= 0.0;
% flc(j,3)= mll*pll*vlv+mlr*plr*vlh;
%
%
% fgc(j,1)=0.0;
% fgc(j,2)= mgl*pgl+mgr*pgr;
% fgc(j,3)= mgl*pgl*vgv+mgr*pgr*vgh;
%
% fp(j,1)= 0.0;
% fp(j,2)= 0.0;

 125

% fp(j,3)= pl*psll+pr*pslr;

 end

% Fluxes have now been calculated. We will now update the conservative
% variables in each of the numerical cells.

% The source terms can be calculated by using a
% for loop.
% Note that the model is sensitive to how we treat the model
% for low Reynolds numbers (possible discontinuity in the model)
 for j=1:nobox
 fricgrad(j)=dpfric(vlo(j),vgo(j),evo(j),ego(j),dlo(j),dgo(j),

...
 po(j),do(j),di(j),viscl,viscg); % Pa/m
 hydgrad(j)=g*(dlo(j)*evo(j)+dgo(j)*ego(j)); % Pa/m
 end

 sumfric = 0;
 sumhyd= 0;

 for j=1:nobox

 % Here we solve the three conservation laws for each cell and

update
 % the conservative variables qv

 ar = area(j);

 % Liquid mass conservation
 qv(j,1)=qvo(j,1)-dtdx*((ar*flc(j+1,1)-ar*flc(j,1))...
 +(ar*fgc(j+1,1)-ar*fgc(j,1))...
 +(ar*fp(j+1,1)-ar*fp(j,1)));

 % Gas mass conservation:

 qv(j,2)=qvo(j,2)-dtdx*((ar*flc(j+1,2)-ar*flc(j,2))...
 +(ar*fgc(j+1,2)-ar*fgc(j,2))...
 +(ar*fp(j+1,2)-ar*fp(j,2)));
 % Mixture momentum conservation:

 qv(j,3)=qvo(j,3)-dtdx*((ar*flc(j+1,3)-ar*flc(j,3))...
 +(ar*fgc(j+1,3)-ar*fgc(j,3))...
 +(ar*fp(j+1,3)-ar*fp(j,3)))...
 -dt*ar*(fricgrad(j)+hydgrad(j));

% Add up the hydrostatic pressure and friction in the whole well.
 sumfric=sumfric+fricgrad(j)*dx;
 sumhyd=sumhyd+hydgrad(j)*dx;

 end

 126

% Section where we find the physical variables (pressures, densities

etc)
% from the conservative variables. Some trickes to ensure stability.

These
% are induced to avoid negative masses.

 gasmass=0;
 liqmass=0;

 for j=1:nobox

% Remove the area from the conservative variables to find the
% the primitive variables from the conservative ones.

 qv(j,1)= qv(j,1)/area(j);
 qv(j,2)= qv(j,2)/area(j);

 if (qv(j,1)<0.00000001) % Trick to avoid negative masses.
 qv(j,1)=0.00000001;
 end

 if (qv(j,2)< 0.00000001) % Trick to avoid negative masses.
 qv(j,2)=0.00000001;
 end

 % Here we summarize the mass of gas and liquid in the well

respectively.
 % These variables are important to show that the scheme is conserving
 % mass. (if e.g. gas leaks in our out of the well unintentionally in

the simulation
 % without being specified in the code,something fundamental is wrong.

 gasmass = gasmass+qv(j,2)*area(j)*dx;
 liqmass = liqmass+qv(j,1)*area(j)*dx;

% Below, we find the primitive variables pressure and densities based

on
% the conservative variables q1,q2. One can choose between getting them

by
% analytical or numerical solution approach specified in the beginning

of
% the program. Ps. For more advanced density models, this must be

changed.

 if (analytical == 1)
% % Analytical solution:

% here the simple density models used in PET 510 Wellflow modelling
% compendium is used.

 t1=rho0-P0/al^2;

 127

% Coefficients:
 a = 1/(al*al);
 b = t1-qv(j,1)-rt*qv(j,2)/(al*al);
 c = -1.0*t1*rt*qv(j,2);
%

% Note here we use the very simple models from the PET510 course
 p(j)=(-b+sqrt(b*b-4*a*c))/(2*a); % Pressure
 dl(j)=rholiq(p(j),temp(j)); % Density of liquid
 dg(j)=rogas(p(j),temp(j)); % Density of gas

% The code below can be activated if we want to switch to the other

set
% of density models. Also then remember to do the changes inside
% functions rogas og rholiq if we change density models.

% x1=rho0-P0*rho0/Bheta-rho0*Alpha*(temp(j)-T0);
% x2=rho0/Bheta;
% x3=-qv(j,2)*R*temp(j);

% a = x2;
% b = x1+x2*x3-qv(j,1);
% c = x1*x3;

% p(j)=(-b+sqrt(b*b-4*a*c))/(2*a); % Pressure
% dl(j)=rholiq(p(j),temp(j));
% dg(j)=rogas(p(j),temp(j));
 else

 %Numerical Solution: This might be used if we use more complex
 %density models. Has not been used for years.

 [p(j),error]=itsolver(po(j),qv(j,1),qv(j,2)); % Pressure
 dl(j)=rholiq(p(j),temp(j)); % Density of liquid
 dg(j)=rogas(p(j)); % Density of gas

 % Incase a numerical solution is not found, the program will

write out "error":
 if error > 0
 error
 end
 end

% Find phase volume fractions
 eg(j)= qv(j,2)/dg(j);
 ev(j)=1-eg(j);

 % Reset average conservative varibles in cells with area included

in the variables.

 qv(j,1)=qv(j,1)*area(j);
 qv(j,2)=qv(j,2)*area(j);

 end % end of loop

 128

 % Below we find the phase velocities by combining the
 % conservative variable defined by the mixture momentum equation
 % with the gas slip relation.
 % At the same time we try to summarize the gas volume in the well.

This
 % also measure the size of the kick.

 gasvol=0;

 for j=1:nobox

 % The interpolations introduced below are included
 % to omit a singularity in the slip relation when the gas volume
 % fraction becomes equal to 1/K. In additon, S is interpolated to
 % zero when approaching one phase gas flow. In the transition to
 % one phase gas flow, we have no slip condtions (K=1, S=0)
 % We will let the k0,s0,k1,s1 be arrays to make it easier to

incorporate
 % different flow regimes later. In that case, the slip parameters

will
 % vary from cell to cell and we must have slip parameter values for

each
 % cell.

 ktemp=k;
 stemp=s;

 k0(j) = ktemp;
 s0(j) = stemp;

 % Interpolation to handle that (1-Kxgasvolumefraction) does not

become zero
 if ((eg(j)>=0.7) & (eg(j)<=0.8))
 xint = (eg(j)-0.7)/0.1;
 k0(j) =1.0*xint+k*(1-xint);
 elseif(eg(j)>0.8)
 k0(j)=1.0;
 end

 % Interpolate S to zero in transition to pure gas phase
 if ((eg(j)>=0.9) & (eg(j)<=1.0))
 xint = (eg(j)-0.9)/0.1;
 s0(j) = 0.0*xint+s*(1-xint);
 end

 % Note that the interpolations above and below can be changed
 % if numerical stability problems
 % are encountered.

 %
 if (eg(j)>=0.999999)

 129

 % Pure gas
 k1(j) = 1.0;
 s1(j) = 0.0;
 else
 %Two phase flow
 k1(j) = (1-k0(j)*eg(j))/(1-eg(j));
 s1(j) = -1.0*s0(j)*eg(j)/(1-eg(j));
 end

 help1 = dl(j)*ev(j)*k1+dg(j)*eg(j)*k0;
 help2 = dl(j)*ev(j)*s1+dg(j)*eg(j)*s0;

 vmixhelpl = (qv(j,3)/area(j)-help2)/help1;
 vg(j)=k0(j)*vmixhelpl+s0(j);
 vl(j)=k1(j)*vmixhelpl+s1(j);

 % Variable for summarizing the gas volume content in the well.
 gasvol=gasvol+eg(j)*area(j)*dx;

 end

% Old values are now set equal to new values in order to prepare
% computation of next time level.

 po=p;
 dlo=dl;
 dgo=dg;
 vlo=vl;
 vgo=vg;
 ego=eg;
 evo=ev;
 qvo=qv;

% Section where we save some timedependent variables in arrays.
% e.g. the bottomhole pressure. They will be saved for certain
% timeintervalls defined in the start of the program in order to ensure
% that the arrays do not get to long!

 if (counter>=nostepsbeforesavingtimedata)
 printcounter=printcounter+1;
 time % Write time to screen.

 % Outlet massrates (kg/s) vs time

liquidmassrateout(printcounter)=dl(nobox)*ev(nobox)*vl(nobox)*area(nobox);

 130

gasmassrateout(printcounter)=dg(nobox)*eg(nobox)*vg(nobox)*area(nobox);

 % Outlet flowrates (lpm) vs time

liquidflowrateout(printcounter)=liquidmassrateout(printcounter)/...
 rholiq(P0,T0)*1000*60;
 gasflowrateout(printcounter)=gasmassrateout(printcounter)/...
 rogas(P0,T0)*1000*60;

 % Hydrostatic and friction pressure (bar) in well vs time
 hyd(printcounter)=sumhyd/100000;
 fric(printcounter)=sumfric/100000;

 % Volume of gas in well vs time (m3). Also used for indicating kick
 % size in well.

 volgas(printcounter)=gasvol;

 % Total phase masses (kg) in the well vs time
 % Used for checking mass conservation.

 massgas(printcounter)=gasmass;
 massliq(printcounter)=liqmass;

 % pout calculates the pressure at the outletboundary. I.e. upper

edge
 % of uppermost cell. Corresponds where the well ends at surface.

The
 % reason we do this is the fact than in AUSMV is all variables

defined
 % in the mid point of the numerical cells.
 pout(printcounter)=(p(nobox)-0.5*dx*...
 (dlo(nobox)*evo(nobox)+dgo(nobox)*ego(nobox))*g-

dx*0.5*fricgrad(nobox))/100000;

 % pin (bar) defines the pressure at the inlet boundary, I.e lower

edge
 % of the lowermost cell. Corresponds to TD of well.
 pin(printcounter)=

(p(1)+0.5*dx*(dlo(1)*evo(1)+dgo(1)*ego(1))*g+0.5*dx*fricgrad(1))/100000;

 % Pressure in the middle of top box (bar).
 pnobox(printcounter)=p(nobox)/100000; %

 % Time variable
 timeplot(printcounter)=time;

 counter = 0;

 end
end

 131

% end of stepping forward in time.

% Printing of resultssection

countsteps % Marks number of simulation steps.

% Plot commands for variables vs time. The commands can also
% be copied to command screen where program is run for plotting other
% variables.

toc,
e = cputime-t

% Plot bottomhole pressure
plot(timeplot,pin)

% Show cfl number used.
disp('cfl')
cfl = al*dt/dx

 plot(timeplot,pin)
%plot(timeplot,hyd)
%plot(timeplot,fric)
%plot(timeplot,liquidmassrateout)
%plot(timeplot,gasmassrateout)
%plot(timeplot,volgas)
%plot(timeplot,liquidflowrateout)
%plot(timeplot,gasflowrateout)
%plot(timeplot,massgas)
%plot(timeplot,massliq)
%plot(timeplot,pout)
%plot(timeplot,pnobox)

%Plot commands for variables vs depth/Only the last simulated
%values at endtime is visualised

%plot(vl,x);
%plot(vg,x);
%plot(eg,x);
%plot(p,x);
%plot(dl,x);
%plot(dg,x);

B.2 csound.m

function mixsoundvelocity = csound(gvo,po,dlo,k)
% Note that at this time k is set to 1.0 (should maybe be
% included below

temp= gvo*dlo*(1.0-gvo);
a=1;

 132

if (temp < 0.01)
 temp = 0.01;
end

cexpr = sqrt(po/temp);

if (gvo <= 0.5)
 mixsoundvelocity = min(cexpr,1500);
else
 mixsoundvelocity = min(cexpr,316);
end

%mixsoundvelocity = 1500*(1-gvo)+6000*gvo;

B.3 dpfric.m

function friclossgrad =

dpfric(vlo,vgo,evo,ego,dlo,dgo,pressure,do,di,viscl,viscg)

%friclossgrad =
%dpfric(vlo,vgo,evo,ego,dlo,dgo,pressure,do,di,viscl,viscg)
% Works for two phase flow. The one phase flow model is used but mixture
 % values are introduced.

% rhol = dlo;
% rhog = dgo;
% vmixfric = vlo.*evo+vgo.*ego;
% viscmix = viscl.*evo+viscg.*ego;
% densmix = dlo.*evo+dgo.*ego;
%
% % Calculate mix reynolds number
% Re = ((densmix.*abs(vmixfric).*(do-di))./viscmix);
%
% % Calculate friction factor. For Re > 3000, the flow is turbulent.
% % For Re < 2000, the flow is laminar. Interpolate in between.
%
% if (Re<0.001)
% f=0.0;
% else
% if (Re >= 3000)
% f = 0.052*Re.^(-0.19);
% elseif ((Re<3000) & (Re > 2000))
% f1 = 24./Re;
% f2 = 0.052*Re.^(-0.19);
% xint = (Re-2000)./1000.0;
% f = (1.0-xint).*f1+xint.*f2;
% else
% f = 24./Re;
% end
% end
%
% friclossgrad = ((2*f.*densmix.*vmixfric.*abs(vmixfric))./(do-di));

 vmixfric = vlo*evo+vgo*ego;
 viscmix = viscl*evo+viscg*ego;

 133

 densmix = dlo*evo+dgo*ego;

 % Calculate mix reynolds number
 Re = ((densmix*abs(vmixfric)*(do-di))/viscmix);

 % Calculate friction factor. For Re > 3000, the flow is turbulent.
 % For Re < 2000, the flow is laminar. Interpolate in between.

 if (Re<0.001)
 f=0.0;
 else
 if (Re >= 3000)
 f = 0.052*Re^(-0.19);
 elseif ((Re<3000) & (Re > 2000))
 f1 = 24/Re;
 f2 = 0.052*Re^(-0.19);
 xint = (Re-2000)/1000.0;
 f = (1.0-xint)*f1+xint*f2;
 else
 f = 24/Re;
 end
 end

% if (Re<100)
% f = 0.0;
% else
% if (Re<200)
% f1 = 0;
% f2 = 24/Re;
% xint = (Re-0)/200;
% f = (1-xint)*f1+xint*f2;
%
% elseif ((Re>=200)&(Re<2000))
% f = 24/Re;
%
% elseif ((Re>=2000)&(Re<3000))
% f1 = 24/Re;
% f2 = 0.052*Re^(-0.19);
% xint = (Re-2000)/1000.0;
% f = (1.0-xint)*f1+xint*f2;
% else
% f = 0.052*Re^(-0.19);
% end
% end

 friclossgrad = ((2*f*densmix*vmixfric*abs(vmixfric))/(do-di));

% if (friclossgrad <0)
% friclossgrad = 0;
% end
end

B.4 minmod.m

function [slope] = minmod(x1,x2,x3,dx)

 134

%UNTITLED Summary of this function goes here
% Detailed explanation goes here

a = x2-x1;
b = x3-x2;

if (a*b)<=0
 slope = 0;
else
 if (abs(a)<abs(b))
 slope = a;
 else
 slope = b;
 end
end

slope = slope/dx;

end

B.5 pm.m

function pmvalue = pm(v,c)

 if (abs(v)<=c)
 pmvalue = -1.0*(v-c)*(v-c)/(4*c)*(-2.0-v/c)/c;
 else
 pmvalue = 0.5*(v-abs(v))/v;
 end
end

B.6 pp.m

function pmvalue = pp(v,c)

 if (abs(v)<=c)
 pmvalue = (v+c)*(v+c)/(4*c)*(2.0-v/c)/c;
 else
 pmvalue = 0.5*(v+abs(v))/v;
 end
end

 135

B.7 psim.m

function pmvalue = psim(v,c,alpha)

 if (abs(v)<=c)
 pmvalue = -1.0*alpha*(v-c)*(v-c)/(4*c)+(1-alpha)*(v-abs(v))/2;
 else
 pmvalue = 0.5*(v-abs(v));
 end
end

B.8 psip.m

function pmvalue = psip(v,c,alpha)

 if (abs(v)<=c)
 pmvalue = alpha*(v+c)*(v+c)/(4*c)+(1-alpha)*(v+abs(v))/2;
 else
 pmvalue = 0.5*(v+abs(v));
 end
end

B.9 rholiq.m

function [rhol] = rholiq(pressure,temperature)
%Simple model for liquid density
% p0 = 100000.0; % Assumed
% t0 = 20+273.15;
%
% beta = 2.2*10^9;
% alpha = 0.000207;
% rho0 = 1000;
%
% %rhol = 1000.0 + (pressure-p0)/(1500.0*1500.0);
% rhol = rho0+((rho0/beta)*(pressure-p0))-(rho0*alpha*(temperature-

t0));

% SIMPLE PET 510 Model below:

if (pressure < 100000)
 pressure = 100000;
end

rhol = 1000+ (pressure-100000)/1500^2;
end

 136

B.10 rogas.m

function rhog = rogas(pressure,temp)

%Simple gas density model. Temperature is neglected.
% rhogas = pressure / (velocity of sound in the gas phase)^2 = pressure

/
% rT --> gas sound velcoity = SQRT(rT)

 % rhog = 4200;
% R = 286.9;
% rhog = pressure/(R*temp);

% SIMPLE PET 510 model below:

if (pressure < 100000)
 pressure = 100000;
end

rhog = pressure/100000;

 137

Appendix C New Code

C.1 Tw_NarrowSlotNewtonianLaminar.m

function [Tw] = Tw_NarrowSlotPowerLawLaminar(Flowrate, VelocityPipe, GeometryPar,
FluidParameters)
% This function calculates the narrow slot approximation
% for Tw using Newtonian laminar flow

 mu = FluidParameters.Viscosity.mu;
 AreaCrs = GeometryPar.AreaCrs;
 velocityFluid = Flowrate ./ AreaCrs - VelocityPipe;
 h = GeometryPar.h;

 Tw = -6 * mu ./ h .* velocityFluid;
end

C.2 Tw_NarrowSlotPowerLawLaminar.m

function [Tw] = Tw_NarrowSlotPowerLawLaminar(Flowrate, VelocityPipe,

GeometryPar, FluidParameters)
% This function calculates the narrow slot approximation
% for Tw using power-law laminar

 mu = FluidParameters.Viscosity.mu;
 AreaCrs = GeometryPar.AreaCrs;
 velocityFluid = Flowrate ./ AreaCrs - VelocityPipe;
 h = GeometryPar.h;
 k = FluidParameters.Viscosity.ConsistencyIndex;
 n = FluidParameters.Viscosity.FlowBehaviorIndex;

 Tw = -abs(k.*((4*n+2)./(n*h).*abs(velocityFluid)).^n);

end

C.3 Tw_NarrowSlotBinghamPlasticLaminar.m

function [Tw] = Tw_NarrowSlotBinghamPlasticLaminar(Flowrate, VelocityPipe,
GeometryPar, FluidParameters)
% This function calculates the narrow slot approximation
% for Tw using power-law laminar

 Ty = FluidParameters.Viscosity.YieldPoint;
 mu = FluidParameters.Viscosity.mu;
 L = GeometryPar.LengthPrGrid;
 h = GeometryPar.h;
 k = FluidParameters.Viscosity.ConsistencyIndex;
 n = FluidParameters.Viscosity.FlowBehaviorIndex;
 AreaCrs = GeometryPar.AreaCrs;
 velocityFluid = Flowrate ./ AreaCrs - VelocityPipe;

 138

 % Simplified bingham plastic for initial guess
 Tw_initial_guess = -abs(Ty + mu*6.*Flowrate./(h^3));

 if abs(Tw_initial_guess) > Ty
 % Define the equation to be solved
 eqn = @(Tw) velocityFluid + h./(6*mu).*Tw.*(1-
3/2*Ty./abs(Tw)+1/2*(Ty./abs(Tw)).^3);

 % Use fsolve to find the solution
 options = optimoptions('fsolve','Display','off');
 Tw = fsolve(eqn, Tw_initial_guess, options);
 else
 Tw = Tw_initial_guess;
 end

end

C.4 Tw_NarrowSlotHerschelBulkley.m

function [Tw] = Tw_NarrowSlotHerschelBulkleyLaminar(Flowrate, VelocityPipe,
GeometryPar, FluidParameters)
% This function calculates the narrow slot approximation
% for Tw using Herschel Bulkley laminar

 Ty = FluidParameters.Viscosity.YieldPoint;
 mu = FluidParameters.Viscosity.mu;
 L = GeometryPar.LengthPrGrid;
 h = GeometryPar.h;
 k = FluidParameters.Viscosity.ConsistencyIndex;
 n = FluidParameters.Viscosity.FlowBehaviorIndex;
 AreaCrs = GeometryPar.AreaCrs;
 velocityFluid = Flowrate ./ AreaCrs - VelocityPipe;

 % Simplified bingham plastic for initial guess
 Tw_initial_guess = -abs(Ty + mu*6.*Flowrate./(h^3));

 if abs(Tw_initial_guess) > Ty
 try
 % Define the equation to be solved
 eqn = @(Tw) velocityFluid + h./(2*k.^n.*Tw).*(abs(Tw)-
Ty).^(n+1)./(n+1).*(1-(abs(Tw)-Ty)./((n+2).*abs(Tw)));

 % Use fsolve to find the solution
 options = optimoptions('fsolve','Display','off');
 Tw = fsolve(eqn, Tw_initial_guess, options);
 catch
 Tw = Tw_initial_guess;
 end
 else
 Tw = Tw_initial_guess;
 end

 139

end

C.5 TrainingDataCollector.m

% Define the ranges for the parameters
tic
variations = 10;
flowrate_range = linspace(0, 3000/60000, 40); % convert lpm to m^3/s
Ty_range = linspace(0, 10, variations);
mu_range = linspace(0.2, 0.6, variations);
n_range = 0.5; %linspace(0.5, 1, variations);
k_range = 0.5; %linspace(0.1, 0.5, variations);
L_range = linspace(2000, 6000, variations);
d_outer_range = linspace(7.5*0.0254, 15*0.0254, variations); % convert inches to
meters
failures = 0;
attempts = 0;
% Iteration counter to track progress
total_iterations = length(flowrate_range) * length(Ty_range) * ...
 length(mu_range) * length(n_range)* length(k_range) ...
 * length(d_outer_range) * length(L_range);
% Initialize arrays to store the inputs and outputs
inputs = [];
outputs = [];

% Loop over all combinations of parameters
for flowrate = flowrate_range
 for Ty = Ty_range
 for mu = mu_range
 for n = n_range
 for k = k_range
 for d_outer = d_outer_range
 for L = L_range
 attempts = attempts + 1;
 % Calculate the remaining parameters
 FluidParameters.Viscosity.YieldPoint = Ty;
 FluidParameters.Viscosity.mu = mu;
 FluidParameters.Viscosity.FlowBehaviorIndex = n;
 FluidParameters.Viscosity.ConsistencyIndex = k;
 GeometryPar.LengthPrGrid = L;

 d = 5*0.0254; % convert inches to meters for a
constand inner diameter of 5 inches
 GeometryPar.h = d_outer - d;
 R_inner = d/2;
 R_outer = d_outer/2;
 GeometryPar.AreaCrs = pi * (R_outer^2 - R_inner^2);

 % Calculate the output
 try
 Tw = Tw_NarrowSlotBinghamPlasticWithFlow(flowrate,
0, GeometryPar, FluidParameters);

 140

 % Append the input parameters and
 % output to the arrays
 inputs = [inputs; [flowrate, Ty, mu,
GeometryPar.h]];%n, k, GeometryPar.h]];
 outputs = [outputs; Tw];

 catch
 failures = failures + 1;
 end
 end
 end
 end
 end
 end
 percentage = attempts / total_iterations * 100;
 fprintf('Simulating %.2f%%\n', percentage);
 end
 toc
end
disp(size(inputs));
disp(size(outputs));
attempts
failures
ValidResults = attempts-failures
% Save the inputs and outputs to a .mat file
save('training_dataBPFlow.mat', 'inputs', 'outputs');
toc

C.6 TrainingModel.m

% Load the data
load('training_dataBPFlow.mat')

% Split the data into a training set and a test set
m = size(inputs, 1);
idx = randperm(m);
mTrain = floor(0.7 * m);
trainIdx = idx(1:mTrain);
testIdx = idx(mTrain+1:end);

inputsTrain = inputs(trainIdx, :);
outputsTrain = outputs(trainIdx, 1);
inputsTest = inputs(testIdx, :);
outputsTest = outputs(testIdx, 1);

% Train the Random Forest model
numTrees = 100; % Number of trees in the forest
mdl = TreeBagger(numTrees, inputsTrain, outputsTrain, 'Method', 'regression',
'OOBPrediction', 'on');
% Print out-of-bag error over the number of grown trees
oobErrorBaggedEnsemble = oobError(mdl);
figure;
plot(oobErrorBaggedEnsemble);
xlabel 'Number of grown trees';
ylabel 'Out-of-bag classification error';

% Save the trained model

 141

save('trainedModelBPFlow.mat', 'mdl');

C.7 Tw_NarrowSlotBPWithFlowML.m

function [Tw] = Tw_NarrowSlotBinghamPlasticBPWithFlowML(Flowrate, VelocityPipe,
GeometryPar, FluidParameters)
% This function calculates the narrow slot approximation
% for Tw using bingham plastic laminar based machine learning

 Ty = FluidParameters.Viscosity.YieldPoint;
 mu = FluidParameters.Viscosity.mu;
 L = GeometryPar.LengthPrGrid;
 h = GeometryPar.h;
 k = FluidParameters.Viscosity.ConsistencyIndex;
 n = FluidParameters.Viscosity.FlowBehaviorIndex;
 AreaCrs = GeometryPar.AreaCrs;
 velocityFluid = Flowrate ./ AreaCrs - VelocityPipe;
 Tw = [];
 Result = [];
 StopFlow = ones(1,length(Flowrate));
 global trainedModel
 mdl = trainedModel;
 % Use the model to make predictions on new data
 for i = 1:length(Ty)
 newInputs = [Flowrate(i), Ty(i), mu(i), h];% n(i), k(i), h];
 Result = predict(mdl, newInputs);
 Tw = [Tw, Result(1)];
 if Result <= Ty(i) && i > 1
 StopFlow(i-1) = 0;
 end
 end
 Tw = [Tw, StopFlow];
end

C.8 TestMLvsCalculation.m

% Testing of machine learning vs calculation
clear
clc

FluidParameters.Viscosity.YieldPoint = 1;
FluidParameters.Viscosity.mu = 0.5;
GeometryPar.LengthPrGrid = 1000;
GeometryPar.h = 0.204;
FluidParameters.Viscosity.ConsistencyIndex = 0.2;
FluidParameters.Viscosity.FlowBehaviorIndex = 0.8;
di = 0.127; % Inner diameter, 0.127 meters = 5 inches
do = 0.331; % Outer diameter, 0.331 meters ~ 13 inches
GeometryPar.AreaCrs = pi * (do^2 - di^2) / 4;
VelocityPipe = 0;
TwMachineLearning = [];
TwCalculation = [];

 142

Flowrate = [];

global trainedModel;
load('trainedModelBPFlow.mat');
trainedModel = mdl;

for i = 1:1000
 Flowrate = [Flowrate , 1/(30*(1+exp(-0.01*(i-500))))];
end
tic
for i = 1:1000
 TwMachineLearning = [TwMachineLearning;
Tw_NarrowSlotBPWithFlowML(Flowrate(i)*ones(4), VelocityPipe, GeometryPar,
FluidParameters)];
 i
end
toc
tic
for i = 1:1000
 TwCalculation = [TwCalculation;
Tw_NarrowSlotBinghamPlasticWithFlow(Flowrate(i), VelocityPipe, GeometryPar,
FluidParameters)];
end
toc
RMSE = 0;
for i = 1:length(TwCalculation)
 RMSE = RMSE + (TwCalculation(i)-TwMachineLearning(i))^2;
end
RMSE = sqrt(1/length(TwMachineLearning)*RMSE)

% Plot the vectors
x = linspace(0, 999, 1000);
disp(length(x));
disp(length(TwCalculation(:, 1)));
figure; % This creates a new figure window
plot(x, TwCalculation(:, 1)); % This plots y1 versus x

hold on; % This allows the next plot to be overlaid on the same figure

plot(x, TwMachineLearning(:,1),'--r'); % This plots y2 versus x

save('RandomForestResults.mat', 'TwMachineLearning', 'TwCalculation');

% Add labels and title
xlabel('i');
ylabel('Tw');

Appendix D Changelog for Alf Kristian Gjerstad Model

D.1 PipeFluGen_2xOrd_Init.m

Added at line 80 to use annular space, while commenting out the similar section used for pipe

from line 76 to line 78.

 143

 % Geometry vector parameters - Annulus (Vegard)
 di = 0.127; % Inner diameter, 0.127 meters = 5 inches
 do = 0.331; % Outer diameter, 0.331 meters ~ 13 inches
 p.AreaCrs = pi * (do^2 - di^2) / 4;
 p.AreaSrf = pi * (do + di) .* p.LengthPrGrid;
 p.Volume = p.AreaCrs .* p.LengthPrGrid;
 p.h = (do - di)/2; % h brukt for narrow slot approximation

D.2 DsMain_Horizontal_2xOrd_ODE

Added to line 129 to bring h from PipeFluGen_2xOrd_Init.m to the different Tw calculation

functions

 GeometryPar.h = p.h;

Added to Line 134 for the use of shear stress calculation functions

 switch c
 case 1
 wallshearStressPipeLaminar = Tw_stringNewtonianLaminar(FlowCms,
VelocityPipe, GeometryPar, p.Fluid);
 case 2
 wallshearStressPipeLaminar =
Tw_NarrowSlotNewtonianLaminar(FlowCms, VelocityPipe, GeometryPar, p.Fluid);
 case 3
 wallshearStressPipeLaminar = Tw_NarrowSlotPowerLawLaminar(FlowCms,
VelocityPipe, GeometryPar, p.Fluid);
 case 4
 wallshearStressPipeLaminar =
Tw_NarrowSlotBinghamPlasticLaminar(FlowCms, VelocityPipe, GeometryPar, p.Fluid);
 case 5
 wallshearStressPipeLaminar = Tw_NarrowSlotHerschelBulkley(FlowCms,
VelocityPipe, GeometryPar, p.Fluid);
 case 6
 wallshearStressPipeLaminar =
Tw_NarrowSlotBinghamPlasticMachineLearning(FlowCms, VelocityPipe, GeometryPar,
p.Fluid);
 case 7
 % shear stress functions that stop flow when Tw <= Ty
 wallshearStressPipeLaminar =
Tw_NarrowSlotBinghamPlasticWithFlow(FlowCms, VelocityPipe, GeometryPar, p.Fluid);
 end

D.3 MasterAlg_PipeHorizontal.m

Added to line 29 to allow for preloading of the machine learning model.

% Loading Machine Learning model
global trainedModel
load('trainedModelBPFlow.mat');
trainedModel = mdl;

