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Abstract 

Real-time optimization of drilling processes is vital for the efficient and safe operation of the 

oil and gas industry. For this, fast and robust models are required to enable automation safety 

strategies. Many existing models are computationally intensive while requiring executions 

speeds decades faster than real-time for certain automation tasks. This thesis aims to understand 

what makes models computationally intensive, compare solutions and propose alternatives, as 

well as look at accuracy where simplifications are made.  

The research framework involves two models developed in MATLAB, by Alf Kristian Gjerstad 

and Kjell Kåre Fjelde, as a starting point. The primary tasks include analyzing the differences 

between the models mainly aimed at calculation of frictional pressure loss, evaluating the 

reasons for these differences, modifying the models to suit the needs of this thesis, and adding 

options for the calculations in the main model, by Alf Kristian Gjerstad. 

This thesis presents a thorough investigation of the discrepancies between the two models, 

along with implementations and modifications to the main model. A MacineLearning-based 

approach is proposed as an alternative to the more computationally intensive versions using 

Herschel-Bulkley and Bingham Plastic, to maintain real-time applicability while hopefully 

maintaining accuracy. The results demonstrate the potential of the proposed alternative.  
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ODE – Ordinary Differential Equation 

PDE – Partial Differential Equation 
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1 Introduction 

The oil and gas industry relies heavily on drilling processes to access and extract valuable 

resources from the earth. With the growing demand for energy and the increasing complexity 

of drilling operations, there is a pressing need for real-time optimization and automation of 

these processes. Real-time optimization can reduce operational costs, increase efficiency, and 

enhance safety for both equipment and personnel. To achieve this, fast, robust, and accurate 

models that can simulate these processes in real-time or faster is essential. 

Modern models for drilling process simulation often involve complex and computationally 

intensive calculations. While these models provide a high level of accuracy, their computational 

demands often make them unsuitable for real-time application. This has led to a growing 

interest in the development of computationally efficient models that can still provide accurate 

representations of the drilling processes.  

 

1.1 Objective 

This thesis aims to address the challenges of developing a simplified model for drilling process 

simulation, with a particular focus on the laminar case in an annulus using slot approximation 

for estimation. The model strives to balance computational efficiency with accuracy, primarily 

in the context of friction pressure loss calculations. The research will explore the differences 

between various models, including Newtonian, Power law, Bingham Plastic, and Herschel-

Bulkley, in their approach to these calculations. A machine learning model will be proposed as 

a potential solution to the computational intensity associated with these calculations. The 

performance of this machine learning model, in terms of both accuracy and efficiency, will be 

thoroughly evaluated.  
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1.2 The provide well simulation models 

In the appendices of my thesis, two distinct MATLAB models are presented: the Alf Kristian 

Gjerstad Model (Appendix A) and the Kjell Kåre Fjelde Model (Appendix B). Both models are 

designed to perform complex calculations related to well dynamics, but they employ different 

methods and functions to achieve their results. 

 

1.3 Alf Kristian Gjerstad Model (Appendix A) 

 

The Gjerstad Model is a comprehensive computational framework designed to simulate and 

analyze various aspects of well dynamics. It primarily utilizes an Ordinary Differential 

Equation (ODE) approach, providing a balance between computational efficiency and 

accuracy. The model includes key scripts for setting up and running the simulation, adjusting 

parameters, and generating results. These scripts handle tasks such as initializing the simulation, 

setting mud type parameters, solving the ODEs, calculating the rate of change of fluid flow and 

pressure, and advancing the simulation by one time step. The Gjerstad Model is a robust tool 

for understanding and predicting well dynamics. 

 

The model also includes a suite of functions for initializing and setting up the simulation 

(PipeFluGen_2xOrd_Init.m, PipeFluHrz_2xOrd_Setup.m), as well as functions for running the 

simulation and generating results (Solver_RK4_New.m, PipeFluHrz_Step.m). 

 

1.4 Kjell Kåre Fjelde Model (Appendix B) 

The Fjelde Model, in contrast, is a Partial Differential Equation (PDE) model that employs a 

distinct set of functions to achieve similar objectives. This model includes functions for 

calculating sound speed, frictional pressure drop, and liquid and gas densities. The use of a PDE 

approach allows the Fjelde Model to capture spatial variations in the system, providing a more 

detailed and accurate representation of the dynamics. However, it is generally more complex to 

solve numerically and may require more computational resources. 
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1.5 Comparison 

 

While both models aim to simulate and analyze well dynamics, they do so using different 

methods and functions. The Gjerstad Model seems to be more comprehensive, with a wider 

range of functions for different aspects of the simulation. The Fjelde Model, on the other hand, 

appears to be more focused on specific calculations related to flow parameters. 

 

The Gjerstad model, an Ordinary Differential Equation (ODE) model, simplifies the 

complexities of the system into a set of differential equations. These equations are then solved 

using the Runge-Kutta method, a powerful numerical technique that provides accurate solutions 

to the ODEs. This approach allows for a more straightforward numerical solution and 

interpretation. However, it may not capture all the intricate dynamics of the system, especially 

when spatial variations are significant. 

 

On the other hand, the Fjelde model is a Partial Differential Equation (PDE) model. It considers 

spatial variations in the system, providing a more detailed and accurate representation of the 

dynamics. However, PDE models are generally more complex to solve numerically and may 

require more computational resources. The choice between these models depends on the 

specific requirements of the study, such as the level of detail needed and the available 

computational resources. 

 

In conclusion, both models are complex and sophisticated tools for analyzing well dynamics. 

They each offer unique methods and functions that can be utilized to understand and predict the 

behavior of wells. 

1.6 Starting point 

In order to establish a solid starting point for the development and analysis of the models, it is 

crucial to identify and define the relevant parameters that influence the calculations of friction 

pressure loss. Table 1 lists these parameters, where they are found and the chosen initial value 

for comparison. 
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Table 1 Parameters for initial comparison 

Parameters Kjell Kåre Fjelde Line Alf Kristian Gjerstad  Line Value Units Comment 

Sim Time main17042023.m 59 MasterAlg_PipeHorizontal.m 42 300 [s]   

Length main17042023.m 34 MasterAlg_PipeHorizontal.m 119 4000 [m]   

Annular width main17042023.m 
161 and 
162 Tw_stringNewtonianLaminar 54 0.102 [m] 

Added to 
Tw_stringNewtonianLaminar 
for slot approximation 

Diameter main17042023.m 
161 and 
162 MasterAlg_PipeHorizontal.m 123 0.127 [m]   

Temperature main17042023.m 76 and 77 N/A N/A 15 [°C]   

Water density main17042023.m 97 and 109 SetPhysicsParam.m 12 1000 [kg/m^3]   

Pressure STC main17042023.m 
101 and 
110 SetPhysicsParam.m 10 0 [Pa]   

Temperature STC main17042023.m 
102 and 
111 N/A N/A 15 [°C]   

Viscosity main17042023.m 115 MasterAlg_PipeHorizontal.m 74 0.5 [Pa*s]   

Gravity main17042023.m 124 SetPhysicsParam.m 9 0 [m/s^2]   

Flowrate main17042023.m 336 PipeFluHrz_InputSignalGenerator.m 10 2000 [LPM]   

Yield point N/A N/A MasterAlg_PipeHorizontal.m 74 1 [Pa]   

Flow behavior index N/A N/A MasterAlg_PipeHorizontal.m 74 0.8 N/A   

Consistency index N/A N/A MasterAlg_PipeHorizontal.m 74 0.2 [Pa*s]   

 

In the subsequent sections, the simplified model will be further developed and analyzed, with 

a focus on understanding the impact of each parameter on the friction pressure loss calculation 

and the overall performance of the model. 

 

1.7 A More detailed look at the Gjerstad Model (Appendix A) 

A.1 MasterAlg_PipeHorizontal.m: 

This is the main script in the Gjerstad Model, it sets input parameters, executes the simulation, 

and plots the results. The script includes sections for setting boundary conditions, executing the 

simulation for different types of flow models (ODE and PDE), and plotting the results. The 

simulation results include flow, pressure, and density. The script also includes progress tracking 

and a completion message. 

 

A.5 fRampAndHold3.m: 

 This script adjusts the flow rate, pressure, and throttle input based on time. It then executes a 

step function for the PipeFluHrz object and updates the output vector and plot matrix. 

 

A.10 PipeFluGen_2xOrd_Init.m: 
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initializes a generic pipe object for the fluid inside it. This function sets up simulation constants, 

grid parameters, and fluid properties. It also prepares initial conditions for flow rate, pressure, 

and density. The function is designed to be wrapped by an outer function that provides specific 

parameters like initial conditions, inclination, and form of inputs/outputs. The reference frame 

for the fluid is the moving solid pipe, considering the solid string acceleration as a fictitious 

force. 

 

A.14 SelectMudTypeOrSetParameters.m:  

Sets the parameters for a given mud type. It takes in a mud name and either selects pre-set 

parameters for known mud types or sets custom parameters based on the inputs. The parameters 

include the consistency index, flow behavior index, and yield point. 

 

A.18 Solver_RK4_New.m:  

This function is a Runge-Kutta 4 solver for any ordinary differential equation (ODE) model. 

It's used for numerical integration to solve the ODEs. 

 

A.20 DsMain_Horizontal_2xOrd_ODE.m:  

This script defines a function that calculates the rate of change of fluid flow and pressure inside 

the drill string. It takes into account various factors such as the acceleration of the drill string, 

the pressure at the downstream end of the string, the flow rate at the upstream end, and the 

percentage of throttle closure. The function returns the rate of change of fluid flow and pressure 

as a vector. 

 

A.23 PipeFluHrz_2xOrd_Setup 

Sets up the parameters for the fluid flow simulation in a horizontal pipe. It takes as input the 

initial conditions, the fluid properties, and some global constants. The function then initializes 

the state variables (flow rate, pressure, and density) and sets up the parameters for the 

simulation. It also prepares the data for plotting the results of the simulation. 

 

A.24 PipeFluHrz_InputSignalGenerator.m:  

This function generates smooth input signals for the simulation, generating flow rate and 

throttle input signals. 

 

A.26 PipeFluHrz_Step.m:  
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This function advances the simulation by one time step. It takes the current state of the system 

and the inputs for the next time step, and uses a solver to compute the new state of the system. 

It also updates the state variables and computes additional simulation variables. 

 

A.27 Tw_stringNewtonianLaminar.m:  

This function is a placeholder or "dummy" function, designed to calculate the wall shear stress 

for Newtonian fluids in laminar flow in a pipe. Currently, it is set to return the negative of fluid 

velocity. However, it is intended to be replaced or modified with a more accurate or complex 

calculation as needed. 

 

The remaining scripts in the appendix are not central to the thesis. They perform tasks that are 

either not relevant or not utilized in the main discussion. While they contribute to the overall 

codebase, their specific roles do not directly influence the thesis outcomes. Therefore, they are 

not discussed in detail but are included in the appendix for reference. 

 

1.8 A More detailed look at the Fjelde Model (Appendix B) 

B.1 main17042023 

This is the main code for the Fjelde model, the code simulates two-phase (gas and liquid) flow 

in a wellbore. It starts by defining the physical and numerical parameters, such as fluid 

properties and wellbore geometry. It then initializes the variables for pressures, densities, and 

velocities. The code sets up a time-stepping loop, computing slope limiters to prevent spurious 

oscillations in the solution. The simulation calculates fluxes between cells and updates the 

conservative variables accordingly. It also computes source terms for effects like friction and 

hydrostatic pressure. After updating the variables, it computes physical variables from the 

conservative ones and calculates phase velocities. The code saves time-dependent variables for 

later analysis, providing a comprehensive understanding of two-phase flow behaviour in a 

wellbore. 

 

For this case, the gravitational constant is set to zero to model a horizontal well, and the gas 

flow is also set to zero. This simplifies the model by removing the influence of gravity and 

focusing solely on the liquid phase. The absence of gas flow reduces complexity, making it 

easier to study specific aspects of liquid flow dynamics in a horizontal wellbore setting. 
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B.2 csound.m:  

Calculates mixed sound velocity based on gas volume fraction, liquid density, and pressure. 

 

B.3 dpfric.m:  

Computes frictional pressure loss gradient for two-phase flow using mixture values. 

 

B.4 minmod.m:  

Determines slope using a minmod limiter function for stability in numerical methods. 

 

B.5 pm.m:  

Implements a flux limiter function for negative velocities. 

 

B.6 pp.m:  

Implements a flux limiter function for positive velocities. 

 

B.7 psim.m:  

Applies a flux limiter function for negative velocities with a tunable parameter. 

 

B.8 psip.m:  

Applies a flux limiter function for positive velocities with a tunable parameter. 

 

B.9 rholiq.m:  

Estimates liquid density based on pressure and temperature. 

 

B.10 rogas.m:  

Calculates gas density based on pressure and temperature. 
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2 Methodology 

This thesis focuses on the calculation of friction pressure loss in the laminar flow regime within 

an annulus in a horizontal well. The annulus, a space between two concentric cylinders, is a 

common scenario in drilling operations. However, due to its complex geometry, direct 

calculations can be challenging. To simplify this, a narrow slot approximation is used to 

estimate the annular space. This approximation transforms the annular space into a narrow slot 

with equivalent hydraulic properties, enabling the application of equations originally derived 

for simpler geometries. The following sections detail the methodologies employed in the 

Gjerstad and Fjelde models to calculate friction pressure loss under these conditions. 

2.1 The calculation of friction pressure  

The models created by Alf Kristian Gjerstad and Kjell Kåre Fjelde are multifaceted and serve 

various purposes. However, for the scope of this thesis, the focus is on their application in 

calculating friction pressure loss. In Gjerstad's model, the function A.27 

Tw_stringNewtonianLaminar.m is used, while in Fjelde's model, the function B.3 dpfric.m is 

employed. Both these functions utilize modified versions of the Hagen-Poiseuille equation. 

.∆𝑝 =  
8𝜇𝐿𝑄

𝜋𝑅4  

Equation 1 Hagen-Poiseuille Equation 

Where: 

• µ is the viscosity of the fluid, 

• L is the length of the pipe, 

• Q is the flowrate in the pipe, 

• R is the radius of the pipe and 

• ∆p is the pressure difference along the length 

 

In Gjerstad's model, the Hagen-Poiseuille equation is adapted to compute the average shear 

stress over the walls of the conduit, denoted as τw. On the other hand, Fjelde's model uses the 

equation to calculate the frictional pressure loss gradient, symbolized as ∆pf 
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Fjelde's model, specifically in the laminar case in B.3 dpfric.m, is based on the Darcy-Weisbach 

equation. This equation calculates pressure loss in a pipe, considering factors such as the friction 

factor, the length and diameter of the pipe, the fluid's density, and its velocity. 

∆𝑝 = 𝑓
𝐿

𝐷

𝜌𝑣2

2
 

Equation 2 

Where: 

• ρ is the density of the fluid, 

• v is the velocity of the fluid and 

• D is the diameter of the pipe 

The gradient formula in this model is derived from the Darcy-Weisbach equation and the 

relationship for laminar flow in annulus considered to be a narrow slot, 

𝑓 =
24

𝑅𝑒
  

Equation 3 

And raynolds number, 

𝑅𝑒 =
𝜎|𝑣|2( 𝑅𝑜𝑢𝑡𝑒𝑟−𝑅𝑖𝑛𝑛𝑒𝑟)

𝜇
, 

Equation 4 

Where: 

• Router is the outer diameter of the annulus and 

• Rinner  is the inner diameter of the annulus 

 

which originates from the Hagen-Poiseuille equation. This relationship involves the Reynolds 

number, a dimensionless quantity predicting flow patterns in different fluid flow situations. 

Giving us the gradient formula. 
 

∆𝑝𝑓 =
2𝑓𝜌𝑣|𝑣|

 𝑅𝑜𝑢𝑡𝑒𝑟 − 𝑅𝑖𝑛𝑛𝑒𝑟
 

Equation 5 

 

The process of deriving an equation for τw involves manipulating known equations and 

relationships from fluid dynamics, such as the Hagen-Poiseuille equation and the Darcy-
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Weisbach equation. These equations contain variables that are directly related to wall shear 

stress, such as fluid velocity, pipe diameter, and fluid viscosity. 

 

By rearranging these equations and isolating τw, you can express wall shear stress in terms of 

other known quantities. This algebraic manipulation allows you to calculate τw for a given set 

of conditions, which can be invaluable in predicting and understanding the behavior of fluid 

flow in a conduit or pipe. Combining equations 3, 4 and 5, we get: 

∆𝑝𝑓 =
12𝜇𝑣

  (𝑅𝑜𝑢𝑡𝑒𝑟 − 𝑅𝑖𝑛𝑛𝑒𝑟)2
 

 

∆𝑝𝑓 =
12𝜇𝑣 ∗ ( 𝑅𝑜𝑢𝑡𝑒𝑟 + 𝑅𝑖𝑛𝑛𝑒𝑟)

  (𝑅𝑜𝑢𝑡𝑒𝑟 − 𝑅𝑖𝑛𝑛𝑒𝑟)2 ∗ ( 𝑅𝑜𝑢𝑡𝑒𝑟 + 𝑅𝑖𝑛𝑛𝑒𝑟)
 

 

∆𝑝𝑓 =
12𝜇𝑣 ∗ ( 𝑅𝑜𝑢𝑡𝑒𝑟 + 𝑅𝑖𝑛𝑛𝑒𝑟) ∗ 𝜋

  (𝑅𝑜𝑢𝑡𝑒𝑟 − 𝑅𝑖𝑛𝑛𝑒𝑟)2 ∗ ( 𝑅𝑜𝑢𝑡𝑒𝑟 + 𝑅𝑖𝑛𝑛𝑒𝑟) ∗ 𝜋
 

∆𝑝𝑓 =
6𝜇𝑣 ∗ ( 𝑅𝑜𝑢𝑡𝑒𝑟 + 𝑅𝑖𝑛𝑛𝑒𝑟) ∗ 2𝜋

( 𝑅𝑜𝑢𝑡𝑒𝑟 − 𝑅𝑖𝑛𝑛𝑒𝑟)  ∗ ( 𝑅𝑜𝑢𝑡𝑒𝑟
2 − 𝑅𝑖𝑛𝑛𝑒𝑟

2) ∗ 𝜋
 

 
 

Equation 6 

When considering that Au, the surface area in contact with liquid, divided by the length is 

𝐴𝑢 = 2𝜋( 𝑅𝑜𝑢𝑡𝑒𝑟 + 𝑅𝑖𝑛𝑛𝑒𝑟), 

Equation 7 

And the cross-sectional area of the fluid is 

𝐴𝑓 =  𝜋 (𝑅𝑜𝑢𝑡𝑒𝑟
2 − 𝑅𝑖𝑛𝑛𝑒𝑟

2), 

Equation 8 

This results in: 

 

∆𝑝𝑓 =
𝐴𝑢

𝐴𝑓

6𝜇

 𝑅𝑜𝑢𝑡𝑒𝑟 − 𝑅𝑖𝑛𝑛𝑒𝑟
𝑣 

Equation 9 

Then use the relationship for shear stress and the pressure loss gradient, 
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∆𝑝𝑓 =
𝐴𝑢

𝐴𝑓
𝜏𝑤, (Gjerstad, 2014) 

Equation 10 

to show that this gives us the Newtonian narrow slot approximation for shear stress used in 

Error! Reference source not found. 

𝜏𝑤 =  −
6𝜇

 𝑅𝑜𝑢𝑡𝑒𝑟−𝑅𝑖𝑛𝑛𝑒𝑟
𝑣 (Gjerstad, 2014) 

Equation 11 

The negative sign in the equation for τw signifies this opposition to the fluid's velocity. It is a 

convention used to indicate the direction of the shear stress relative to the direction of flow. 

When calculating or analyzing fluid dynamics, it's essential to consider this negative sign to 

accurately represent the physical reality of the situation. 

 

To enable comparison, the Newtonian narrow slot approximation equation has been added to 

the model under A.27 Tw_stringNewtonianLaminar.m. This equation is a simplification often 

used for laminar flow in narrow annular spaces or slots, where the flow can be approximated 

as flow between parallel plates. This approximation provides a baseline for comparing the 

behavior of Newtonian fluids under similar conditions. 

 

The inclusion of this equation allows for an initial comparison between the Newtonian model 

and the newly incorporated non-Newtonian models (Power Law, Bingham Plastic, and 

Herschel-Bulkley). By comparing these models, we can better understand the differences in 

fluid behavior and the implications of these differences for practical applications. This 

comparison will also serve as a validation check, ensuring that the non-Newtonian models 

reduce to the Newtonian case under the appropriate conditions. 

 

2.2 Expanding the calculation of shear stress to include Non-Newtonian Fluids 

Shear stress is the force per unit area exerted by a fluid flowing over a surface, related to the 

rate of fluid velocity change. The current model for calculating the shear stress in an annular 

space is based on the principles of fluid dynamics and is influenced by the Hagen-Poiseuille 

equation, which describes the pressure loss due to viscous friction in a long, straight pipe. This 

model assumes a Newtonian fluid behavior, where the shear stress is directly proportional to 

the shear rate. The constant of proportionality is the viscosity of the fluid, a linear relationship 

first proposed by Sir Isaac Newton. While this model provides accurate predictions for 



 23 

Newtonian fluids like water and air, it falls short when applied to non-Newtonian fluids, which 

exhibit a change in viscosity with the rate of shear strain. 

 

To enhance the versatility and applicability of the model, particularly in industries like drilling 

or chemical processing where non-Newtonian fluids are commonly encountered, it is necessary 

to incorporate additional rheological models into the calculations. These include the Power 

Law, Bingham Plastic, and Herschel-Bulkley models. 

 

The Power Law model, also known as the Ostwald–de Waele relationship, is used for fluids 

that exhibit shear-thinning or shear-thickening behavior. This behavior is characterized by a 

decrease or increase in viscosity with the rate of shear strain. The Power Law model captures 

this behavior with just two parameters: the consistency index (K) and the flow behavior index 

(n). 

 

The Bingham Plastic model is used for fluids that behave like a solid under low shear stress but 

flow like a fluid under high shear stress. These fluids have a yield stress that must be exceeded 

before they start to flow. This model, developed by Eugene C. Bingham, is particularly useful 

for describing materials like toothpaste and mayonnaise. 

 

The Herschel-Bulkley model is a generalized version of the Bingham Plastic model that also 

captures shear-thinning or shear-thickening behavior. It adds an additional parameter (n) to the 

Bingham model, allowing it to describe a wider range of non-Newtonian fluids. This model is 

often used in the drilling industry to describe drilling muds. 

 

By incorporating these additional models into the shear stress calculations, the model's 

predictive capabilities will be significantly enhanced for a wider range of fluids. This expansion 

not only increases the model's accuracy but also its relevance in real-world applications where 

non-Newtonian fluids are frequently encountered. The following sections will delve into the 

mathematical formulation of these models and their implementation into the existing 

framework. 
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Table 2 Rheology model equations 

Rheology Model Poiseuille Flow (Stationary Walls) 

Newtonian 

𝜏𝑤 =  −
6𝜇

 𝑅𝑜𝑢𝑡𝑒𝑟 − 𝑅𝑖𝑛𝑛𝑒𝑟
𝑣 

Equation 10 

Power-law 

𝜏𝑤 =  ∓𝑘(
4𝑛 + 2

𝑛ℎ
|𝑣|)𝑛  

Equation 12 

Bingham plastic |𝜏𝑤| > 𝜏𝑦 ,  

𝑣 =
−ℎ

6𝜇𝑝
𝜏𝑤 [1 +

3

2

𝜏𝑦

|𝜏𝑤|
+

1

2
(

𝜏𝑦

|𝜏𝑤|
)3] 

Equation 13 

|𝜏𝑤| ≤ 𝜏𝑦 , 
𝑣 = 0 

 
Herschel Bulkley |𝜏𝑤| > 𝜏𝑦 ,  

𝑣 =
−ℎ

2𝑘𝑛𝜏𝑤
 
(|𝜏𝑤| − 𝜏𝑦)

𝑛+1

𝑛 + 1
[1 −

(|𝜏𝑤| − 𝜏𝑦)

(𝑛 + 2)|𝜏𝑤|
 

Equation 14 

|𝜏𝑤| ≤ 𝜏𝑦 , 
𝑣 = 0 

 

(Gjerstad, 2014) 

Table 2 presents the equations for different rheology models under Poiseuille flow with 

stationary walls. These models describe the behavior of different types of drilling fluids, and 

the equations represent the relationship between wall shear stress (τw) and fluid velocity (v). 

The parameters in these equations are as follows: 

 

• μ: viscosity in the Newtonian model. 

• Router and Rinner: Outer and inner radii of the annulus. 

• k and n: Consistency index and flow behavior index in the Power-law model. 

• τy: Yield stress in the Bingham plastic and Herschel-Bulkley models. 

• μp: Plastic viscosity in the Bingham plastic model. 
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• h: The distance between the walls of the annulus. 

• τw: Shear stress 

 

A defining characteristic of Bingham Plastic and Herschel-Bulkley fluids is the presence of a 

yield stress, denoted as τy. This yield stress is the minimum shear stress that must be applied to 

the fluid before it begins to flow. Below this threshold, the fluid behaves like a solid and does 

not flow, hence the fluid velocity is zero. 

 

The Bingham plastic and Herschel-Bulkley models, represented by equations 13 and 14, cannot 

be directly rewritten for wall shear stress (τw). This complexity makes it challenging to express 

these models directly in terms of τw, requiring advanced numerical methods or approximations 

for solutions. 

 

The concept of yield stress arises from the internal structure of these fluids. They consist of 

particles or structures that form a network, providing the fluid with a certain degree of internal 

resistance to flow. When the applied shear stress is less than the yield stress (τw ≤ τy), this 

network remains intact, and the fluid does not flow. It behaves more like a solid, maintaining 

its shape unless subjected to stress greater than the yield stress. 

 

In the context of the Bingham Plastic model, once the yield stress is exceeded, the fluid behaves 

like a Newtonian fluid with a constant viscosity. For the Herschel-Bulkley model, the fluid 

exhibits shear-thinning or shear-thickening behavior once the yield stress is exceeded, 

depending on the value of the flow behavior index. 

 

This behavior has significant implications for the flow of these fluids in pipes or annular spaces. 

If the shear stress applied by the pressure gradient is less than the yield stress, there will be no 

flow. This can lead to a plug of stationary fluid, which can be a challenge in applications like 

drilling or pumping of suspensions. Understanding and accurately modeling this behavior is 

crucial for the design and operation of processes involving Bingham Plastic or Herschel-

Bulkley fluids. 
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2.3 Machine learning 

Machine learning is a subset of artificial intelligence (AI) that provides systems the ability to 

automatically learn and improve from experience without being explicitly programmed. It 

focuses on the development of computer programs that can access data and use it to learn for 

themselves. 

 

The process of learning begins with observations or data, such as examples, direct experience, 

or instruction, in order to look for patterns in data and make better decisions in the future based 

on the examples that we provide. The primary aim is to allow the computers to learn 

automatically without human intervention or assistance and adjust actions accordingly. 

Machine learning algorithms are often categorized as supervised or unsupervised. 

 

The focus of this thesis will be on supervised machine learning, where algorithms can apply 

what has been learned in the past to new data using labeled examples to predict future events. 

Starting from the analysis of a known training dataset, the learning algorithm produces an 

inferred function to make predictions about the output values. The system is able to provide 

targets for any new input after sufficient training. 

(Wikipedia, 2023) 

 

2.4 Random Forest Regression 

Random Forest is a versatile machine learning method capable of performing both regression 

and classification tasks. It also undertakes dimensional reduction methods, treats missing 

values, outlier values, and other essential steps of the data exploration, and does a fairly good 

job. It is a type of ensemble learning method, where a group of weak models combine to form 

a powerful model. 

 

In Random Forest Regression, a dependent variable is predicted using multiple decision trees. 

Each decision tree is constructed by using a subset of the data and variables, and the average 

prediction of all the trees is considered as the final prediction. This method helps to overcome 

the problem of overfitting, which is a modelling error that occurs when a function is too closely 

fit to a limited set of data points, making it capture the noise in the data, which is common in 

decision tree models. 
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Random Forest Regression works in four basic steps: 

1. Selection of random samples from a given dataset. 

2. Construction of a decision tree for each sample and getting a prediction result from each 

decision tree. 

3. Voting for each predicted result. 

4. Select the prediction result with the most votes as the final prediction. 

(Wikipedia, 2023) 

 

2.4.1 Decision Trees 

A decision tree is a fundamental component of a random forest and is used as a predictive model 

in machine learning. It maps observations about an item to conclusions about the item's target 

value. Essentially, decision trees are used for making decisions and predictions by mapping out 

a set of rules that lead to a certain outcome based on input data. 

 

The decision tree model follows a set of if-then-else decision rules. The deeper the tree, the 

more complex the decision rules and the fitter the model. The structure of a decision tree 

includes nodes and branches. The topmost node, known as the root, represents the entire 

population or sample, and this gets divided into two or more homogeneous sets. The end nodes 

of the tree, known as leaves, represent the decisions or predictions. 

 

One of the main advantages of decision trees is their simplicity and interpretability - they can 

be easily visualized and understood. However, they can suffer from overfitting, where the 

model captures the noise in the data and becomes too complex, leading to poor predictive 

performance on unseen data. This is where Random Forest Regression comes in, using multiple 

decision trees and averaging their predictions to achieve a more robust and accurate model. 

2.4.2 Root Mean Square Error 

The Root Mean Square Error (RMSE) is a frequently used measure of the differences between 

values predicted by a model and the values actually observed. It is a standard way to measure 

the error of a model in predicting quantitative data. The RMSE represents the square root of the 

second sample moment of the differences between predicted values and observed values or the 

quadratic mean of these differences. These deviations, called residuals when the calculations 
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are performed over the data sample that was used for estimation, are also called prediction 

errors when computed out-of-sample. The RMSE serves to aggregate the magnitudes of the 

errors in predictions into a single measure of predictive power. A lower RMSE is indicative of 

a better fit to the data. 

 

The formula for RMSE is: 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑(𝑦𝑜 − 𝑦𝑝)^2

𝑛

𝑖=1

 

Equation 15 

Where: 

• n is the number of observations, 

• yo is the observed value, 

• yp is the predicted value. 

(Wikipedia, 2023) 
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3 Results and Discussion 

3.1 The implementation of the different shear stress calculations 

In this thesis, new code has been developed to implement various shear stress calculations. 

These calculations are integral to the simulation of fluid flow and pressure loss in the drilling 

process. The code incorporates different rheological models and applies the narrow slot 

approximation to estimate the annular space in a horizontal well. The implemented code is 

provided in Appendix C. 

3.1.1 Tw_NarrowSlotNewtonianLaminar.m 

In the Newtonian case, the shear stress calculations were performed using a narrow slot 

approximation for wall shear stress (τw) under laminar flow conditions. The calculation was 

implemented using the MATLAB code in C.1 Tw_NarrowSlotNewtonianLaminar.m. 

 

In this function, the wall shear stress (τw) is calculated based on the fluid viscosity (mu), the 

cross-sectional area of the geometry (AreaCrs calculated as shown in D.1 

PipeFluGen_2xOrd_Init.m), the flow rate, the pipe velocity (VelocityPipe which is set to 0 for 

all these functions for simplification), and the slot height (h). The fluid velocity is calculated 

by dividing the flowrate by the cross-sectional area.  

𝑉 =
𝑄

𝐴𝑓
 

Equation 16 

The wall shear stress is then calculated as -6 times the fluid viscosity divided by the slot height, 

all multiplied by the fluid velocity as shown in equation 10. 

 

The implementation of this function was straightforward due to the simplicity of the formula, 

which resulted in efficient calculations. The function was able to quickly calculate the wall 

shear stress for the Newtonian case under laminar flow conditions, demonstrating the efficiency 

of traditional methods for this case. 
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3.1.2 Tw_NarrowSlotPowerLawLaminar.m  

For the Power Law case, the shear stress calculations were also performed using a narrow slot 

approximation for wall shear stress (τw) under laminar flow conditions. However, the Power 

Law case involves a non-Newtonian fluid, which follows a different viscosity model. The 

calculation was implemented using the MATLAB function from C.2 

Tw_NarrowSlotPowerLawLaminar.m 

 

In this function, the wall shear stress (τw) is calculated based on the fluid viscosity (mu), the 

cross-sectional area of the geometry (AreaCrs), the flow rate, the slot height (h), the consistency 

index (k), and the flow behavior index (n). The fluid velocity is calculated using equation 12 

 

Similar to the Newtonian case, the implementation of this function was straightforward due to 

the simplicity of the formula, which resulted in efficient calculations. The function was able to 

quickly calculate the wall shear stress for the Power Law case under laminar flow conditions, 

demonstrating the efficiency of traditional methods for this case as well. 

 

3.1.3 Tw_NarrowSlotBinghamPlasticLaminar.m 

For the Bingham Plastic case, the shear stress calculations were more complex. This case 

involves a non-Newtonian fluid that exhibits a yield stress (τy), meaning it behaves like a solid 

until this yield stress is exceeded. A simplified version of the Bingham Plastic model was used 

for the initial guess, which could potentially introduce inaccuracies. Specifically, the wall shear 

stress (τw) might not always be higher than the yield stress, even though the simplified Bingham 

Plastic model assumes it to be, and vice versa. Furthermore, the simplified Bingham Plastic 

model was used when τw was less than or equal to τy, which could introduce noise into the 

calculations that does not completely correct itself until steady state is achieved. 

 

The calculation was implemented using C.3 Tw_NarrowSlotBinghamPlasticLaminar.m. In this 

function, the wall shear stress (τw) is calculated based on the yield stress (τy), the fluid viscosity 

(mu), the length per grid (L), the slot height (h), the cross-sectional area of the geometry 

(AreaCrs), and the flow rate. The fluid velocity is calculated by subtracting the pipe velocity 

from the flow rate divided by the cross-sectional area. 
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The initial guess for the wall shear stress is calculated using the simplified Bingham Plastic 

model, as shown in Equation 17. 

𝜏𝑤 =  𝜏𝑦 +
𝜇𝑝6𝑄

ℎ3
 

Equation 17 

Which is a simplification based on the bingham plastic model, 

𝜏𝑤 =  𝜏𝑦 + 𝜇𝑝�̇� 

Equation 18 

The shear rate γ̇, is defined as the rate of change of velocity with respect to the distance 

perpendicular to the flow direction. For a narrow slot or channel, this can be approximated as 

the average velocity divided by the half-height of the slot or channel. So, 

�̇� =
2𝑣𝑎𝑣𝑔

ℎ
=

2𝑄

𝑤ℎ2
 

Equation 19 

If we further assume that the width of the slot or channel is much larger than the height (which 

is often the case for a narrow slot or channel), then we can ignore w in the denominator, and 

the shear rate becomes approximately: 

�̇� =
6𝑄

ℎ3
 

Equation 20 

In this case, the initial guess should never be less than the yield stress (τy), unless the flow 

becomes negative. However, as this is one of the conditions for the calculation shown in Table 

2, the condition is kept in the function. If the absolute value of this initial guess is greater than 

the yield stress, the function solves an equation for τw using the fsolve function. 

 

The methodology used for the Bingham Plastic case, specifically the decision to set the wall 

shear stress (Tw) to the value calculated by the simplified Bingham Plastic model when Tw is 

less than or equal to the yield stress (τy), may not be the most accurate representation of the 

behaviour of a Bingham Plastic fluid. This approach assumes that the fluid behaves according 

to the simplified Bingham Plastic model under these conditions, which may not fully capture 

the behaviour of a Bingham Plastic fluid. As such, this methodology could introduce some 

inaccuracies into the calculations and results in a noisy output that does not completely correct 

itself until steady state is achieved. 
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While the current methodology provides a starting point for calculations, it doesn't fully capture 

the behavior of a Bingham Plastic fluid, which doesn't flow until the yield stress is exceeded. 

However, other areas of the model address this by setting the flow rate to zero when the wall 

shear stress is less than or equal to the yield stress. 

 

3.1.4 Tw_NarrowSlotHerschelBulkley.m 

The Herschel-Bulkley case, implemented using the C.4 

Tw_NarrowSlotHerschelBulkleyLaminar function, involves a more complex model due to the 

unique behavior of Herschel-Bulkley fluids. These fluids exhibit a yield stress (τy), behaving 

like a solid until this yield stress is exceeded. The initial guess for the wall shear stress (τw) is 

calculated using a simplified Bingham Plastic model, which assumes that τw is always greater 

than τy. However, this may not always be the case, potentially introducing inaccuracies into the 

calculations. 

 

The methodology used in this case sets τw to the value calculated by the simplified Bingham 

Plastic model when τw is less than or equal to τy. While this approach simplifies the calculations, 

it may not accurately represent the behavior of a Herschel-Bulkley fluid. This could result in a 

noisy output that does not completely correct itself until steady state is achieved. 

 

3.2 Efficiency and speed of simulations 

The efficiency and speed of the simulations were key considerations in this study. For the 

Newtonian and Power Law cases, the traditional methods of calculating shear stress proved to 

be highly efficient due to the simplicity of the formulas used. The MATLAB functions 

implemented for these cases were able to quickly perform the calculations, resulting in fast 

simulation times. Specifically, the Newtonian case averaged about 1.4 seconds per simulation 

run, while the Power Law case averaged slightly longer at about 1.6 seconds per run. These 

quick runtimes demonstrate the computational efficiency of these traditional methods in 

handling the calculations for these cases. 
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In order to evaluate the efficiency and accuracy of the developed models, it is beneficial to 

compare them with a well-established model in the field. The Fjelde model serves as an 

appropriate baseline for this comparison. 

 

When comparing the developed models with the Fjelde model, several key parameters should 

be considered: 

• Computational Speed: The time it takes for a simulation to run is a critical factor in real-time 

drilling operations. The faster the simulation, the more useful it is in making timely decisions. 

Therefore, the average runtime of the simulations for each model should be compared. The 

runtime is measured using the tic toc operator in MATLAB. Running on a 3.8 GHz machine 

• Accuracy: The accuracy of the models in predicting the friction pressure loss is crucial. The 

models should be compared in terms of how closely their predictions match the calculated 

steady states. The ramp will be evaluated visually. 

• Robustness: The models should be able to handle a variety of drilling conditions and fluid 

properties. They should be tested under different scenarios to see how well they perform and 

how stable their predictions are. 

By comparing the models in terms of these parameters, we can gain a better understanding of 

their strengths and weaknesses and identify areas for further improvement. 

 

3.2.1 The Fjelde Model 

Before comparing the developed models, it is essential to establish a baseline for comparison. 

This baseline is provided by the Fjelde model, a well-established model in the field of drilling 

process simulation. The Fjelde model was evaluated in terms of computational speed, accuracy, 

and robustness, using the initial values listed in Table 1. 

 

3.2.1.1 Computational Speed 

The Fjelde model's computational speed was assessed by recording the average runtime for 

simulations using the initial values from Table 1. This provides a benchmark against which the 

runtimes of the developed models can be compared. When running the Fjelde model, the 

average runtime sits at around 2 seconds, varying from about 1.95 seconds to about 2.1 seconds. 
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3.2.1.2 Accuracy 

 The accuracy of the Fjelde model was evaluated by comparing its predictions of friction 

pressure loss with actual measurements, using the initial values from Table 1. This comparison 

provides a measure of the model's predictive accuracy, which is crucial for effective drilling 

operations. Figure 1 is a plot of the friction pressure and flowrate.  

 

 

Figure 1 The Fjelde Model 

 

The friction pressure following a similar curve to the flowrate aligns with expected fluid 

dynamics behaviour. The steady state value of the flowrate aligns with the Hagen-Poiseuille 

equation, reinforcing the accuracy of the model in simulating laminar flow conditions. To show 

this, the equations in 2.1, which results in a pressure difference of about 10.48 bar, from a 

frictional loss gradient of about 262 [pa/m], which also coincides with what the model is 

providing through B.3 dpfric.m. 

 

 

3.2.1.3 Some values to display robustness 

The robustness of the Fjelde model was assessed by testing it under a variety of drilling 

conditions and fluid properties, using the initial values from Table 1. The model's performance 

under these different scenarios provides an indication of its stability and reliability. The 

condition for the tests of robustness are shown in Table 3 
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Table 3 Parameters for Robustness 

Figure Fjelde 
Model 

2 3 4 5 6 

Figure Gjerstad 
Model 

8 9 10 11 12 

Sim Time 300 100 100 100 1000 

Flowrate [LPM] 2000 10000 2000 2000 2000 

Length [m] 1000 4000 4000 4000 10000 

Diameter inner 
[m] 0.127 1 0.127 0.127 0.127 

Diameter outer 
[m] 0.331 2 0.331 0.13 0.331 

 

 

 

Figure 2 

Figure 2 reveals that the model struggles with shorter wells, exhibiting significant 

inaccuracies and inconsistencies in the simulation results for these cases. 
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Figure 3 

Figure 3 reveals that a large annular gap will reduce the frictional pressure gradient to 0, this is 

caused by Reynolds number, calculated in B.3 dpfric.m, never getting high enough, and is 

intended. For this case one could consider the liquid to never fill the annulus, rather flowing 

like an open river. 

 

 

Figure 4 

Figure 4 reveals that when the viscosity of the fluid is sufficiently low, the behavior of the fluid 

in the annulus changes significantly. The friction in the annulus decreases due to the reduced 

resistance to flow. This is because viscosity is a measure of a fluid's resistance to shear or flow, 

and a lower viscosity means the fluid can flow more easily. This is also a scenario where 

Reynolds number is too low for a frictional pressure to build. 
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Figure 5 

Figure 5 presents an intriguing observation. As anticipated, a smaller annular gap restricts fluid 

flow due to the reduced space. However, the results deviate from expectations, suggesting a 

potential limitation of the model. In reality, even with a very small annular gap, the frictional 

pressure would not be zero due to the fluid's viscosity and the surface roughness of the annulus. 

Furthermore, such a small annular gap is not typically encountered in practical drilling 

operations, adding another layer of complexity to the interpretation of these results. The model's 

inability to accurately simulate these conditions could be interpreted as a shortfall. 

 

 

Figure 6 

Figure 6 demonstrates a simple case, and as expected the model handles it as it should. 
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3.2.2 The Gjerstad Model 

In the development of the Gjerstad model, we will begin with the Newtonian case, utilizing the 

function C.1 Tw_NarrowSlotNewtonianLaminar. This function calculates the wall shear stress 

(τw) for a Newtonian fluid in a narrow slot under laminar flow conditions. Starting with the 

Newtonian case is a strategic choice, as it is expected to yield results that align with the Fjelde 

model. This is due to the fact that both models are based on the same fundamental principles of 

fluid dynamics and share the same assumptions for Newtonian fluids. Therefore, any 

discrepancies between the results of the two models can be attributed to differences in their 

implementation or the specific conditions under which they are applied, rather than differences 

in the underlying physics. This approach will provide a solid foundation for the development 

of the Gjerstad model and facilitate a meaningful comparison with the Fjelde model. 

 

In order to maintain consistency and facilitate a direct comparison with the Fjelde model, the 

initial conditions for the Gjerstad model are taken from Table 1. Which were used in the Fjelde 

model simulations. By using the same initial conditions, we can ensure that any differences 

observed in the results of the two models are due to the models themselves and not variations 

in the input parameters. This approach allows for a fair and accurate evaluation of the 

performance and accuracy of the Gjerstad model in comparison to the Fjelde model. 

 

3.2.2.1 Computational Speed 

The computational speed of the Gjerstad model was also evaluated using the same initial values 

from Table 1. This allowed for a direct comparison with the Fjelde model. The average runtime 

for the Gjerstad model was found to be approximately 1.87 seconds, with a range from about 

1.82 seconds to 1.95 seconds, when run to display 4 sections, as shown in Figure 7, and 

approximately 1.35 seconds with a range from about 1.32 seconds to 1.4 seconds, when run to 

display one section. 

 

The Gjerstad model, with its comprehensive framework as a representation of the drilling 

process, has a shorter average runtime than the Fjelde model. This is largely due to the physics 

simplifications inherent in its design as an Ordinary Differential Equation (ODE) model. These 

simplifications reduce the complexity of the calculations being executed, thereby enhancing 

computational efficiency. 
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On the other hand, the Fjelde model, being a Partial Differential Equation (PDE) model, offers 

a more detailed representation but at the cost of increased computational time. The choice 

between models ultimately depends on the balance between the need for computational 

efficiency and the level of detail required in the simulation. 

 

3.2.2.2 Accuracy 

The Gjerstad model, while employing simplified physics in its design as an Ordinary 

Differential Equation (ODE) model, still offers accuracy comparable to the Fjelde model. The 

simplifications in the Gjerstad model allow for efficient computations while maintaining a level 

of accuracy that is suitable for practical applications in drilling process simulations. 

 

The calculations outlined in Section 2.1 yield results that are consistent with those of both the 

Gjerstad model, and the Fjelde model, further supporting the accuracy of the Gjerstad model. 

This is evident when comparing the green line in the Gjerstad model's output, as shown in 

Figure 7, which represents the last section of the annular space, with the graphed pressure in 

the Fjelde model, as shown in Figure 1. The close alignment of these two lines indicates that 

the Gjerstad model is able to accurately replicate the results of the Fjelde model, while also 

providing additional detail and insights. 

 

 

Figure 7 

 

3.2.1.3 Some values to display robustness 

To further enhance the comparison between the Gjerstad and Fjelde models, the values from 

Table 3, which were used in the Fjelde model, will also be applied to the Gjerstad model. This 
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will provide a more direct comparison of the two models under the same conditions, allowing 

for a clearer assessment of their relative performance and robustness. 

 

The robustness of a model is a measure of its ability to produce reliable and accurate results 

under a variety of conditions. By applying the same parameters to both models, we can evaluate 

how well each model handles changes in the input values and whether they can maintain their 

accuracy and reliability under these different conditions. 

 

 
Figure 8 

In comparing the performance of the Gjerstad model in Figure 8 and the Fjelde model in Figure 

2, it appears that the Gjerstad model handles the conditions more effectively. This could be 

attributed to the specific parameters or conditions of the case in Figure 8, which may be more 

suited to the assumptions and calculations inherent in the Gjerstad model. This observation 

underscores the importance of understanding the strengths and limitations of each model and 

selecting the most appropriate model based on the specific requirements of the simulation. 

 

 

Figure 9 
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Figure 9 yields some unexpected results, but given the large annular gap, it's challenging to 

establish clear expectations. The parameters set for this case are far from typical drilling 

conditions, which makes it difficult to predict the behavior of the models. Both the Fjelde and 

Gjerstad models were designed to simulate more realistic scenarios, and their performance 

under these extreme conditions may not reflect their capabilities under normal drilling 

conditions. 

 

 

Figure 10 

 

In the case of extremely low viscosity, both models again produce unusual results. The 

Gjerstad model, as shown in Figure 10, tends to oscillate in response to these edge-case 

conditions, while the Fjelde model, as shown in Figure 4, tends to yield a result of zero. This 

pattern suggests that the Gjerstad model may be more sensitive to extreme conditions, causing 

it to oscillate when faced with such low viscosity values. On the other hand, the Fjelde model 

appears to simplify the situation, resulting in a zero value.  

 

 
Figure 11 
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The small annular gap presents another unrealistic situation that both models struggle to handle 

accurately. The results from the Fjelde model, as shown in Figure 5, are markedly different 

from those of the Gjerstad model, as shown in Figure 11. This discrepancy could be due to a 

number of factors, but likely the Gjerstad model, being more complex, may be more sensitive 

to extreme conditions such as a small annular gap. This could cause it to produce results that 

differ significantly from the simpler Fjelde model. 

 

 

Figure 12 

The final set of conditions presents a scenario that both models appear to handle well. As 

expected from the given conditions, the values displayed in Figure 12 from the Gjerstad model 

align closely with the pressure and ramp results from the Fjelde model, as shown in Figure 6. 

This agreement is particularly noteworthy given that the two models employ different methods 

for ramping up to their respective flower rates. 

 

This suggests that both models are capable of accurately simulating more typical well 

conditions, despite their differences in complexity and calculation methods. It also underscores 

the importance of using realistic parameters in well simulations, as both models demonstrate 

better alignment and potentially higher accuracy under these conditions. 
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3.3 The efficiency and accuracy of the different shear stress calculations 

3.3.1 Tw_NarrowSlotPowerLawLaminar.m 

The Power Law case was implemented using the MATLAB function C.2 

Tw_NarrowSlotPowerLawLaminar.m. The formula for the Power Law model is relatively 

simple, which makes it straightforward to implement and run. The average runtime for this case 

was approximately 2.5 seconds, which is slightly slower than the Newtonian case by about 0.6 

seconds. Despite this, the Power Law case still demonstrates a high level of computational 

efficiency. 

 

 

 

Figure 13 Power Law 

 

However, it's worth noting that the results for the Power Law case, as shown in Figure 13, 

simulated using the values from Table 1, exhibit oscillating values that are quite different from 

the other cases. This is likely due to the values of the flow behaviour index (n) and the 

consistency index (k) in the Power Law model, which can represent a fluid that behaves very 

differently from a Newtonian fluid. 

 

The calculated frictional pressure loss for the Power Law case, obtained using Equation 12 and 

the relationship in Equation 11, is approximately 2.32 bar. This value appears to be consistent 

with the plot in Figure 13, further validating the accuracy of the calculations for this case. Due 
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to the oscillations, it is difficult to tell if the Power Law model provides a reasonable 

approximation of the behaviour of non-Newtonian fluids under laminar flow conditions. 

 

3.3.2 Tw_NarrowSlotBinghamPlasticLaminar.m 

The Bingham Plastic model was implemented using the MATLAB function C.3 

Tw_NarrowSlotBinghamPlasticLaminar.m. This case involves a more complex model due to 

the unique behavior of Bingham Plastic fluids, which exhibit a yield stress and behave like a 

solid until this yield stress is exceeded. The average runtime for this case was significantly 

longer than the other cases, at approximately 47 seconds. This is due to the additional 

complexity of the Bingham Plastic model, which requires more computational resources to 

accurately simulate. 

 

Figure 14 Bingham Plastic 

The results for the Bingham Plastic case, as shown in Figure 14, indicate that the values at 

steady state are seemingly correct. By using Equation 13 and the relationship in Equation 11, 

we can calculate a value of approximately 11.6 bar at steady state, which aligns with the plot. 

However, it's important to note that the values while ramping the flowrate are likely inaccurate. 

This is because the current implementation of the Bingham Plastic model does not stop the flow 

when the yield stress is not overcome. This is a limitation of the current model and should be 

addressed in future work to improve the accuracy of the simulations. 
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3.3.3 Tw_NarrowSlotHerschelBulkley.m 

The Herschel-Bulkley model, while more complex, was implemented with an average runtime 

of approximately 67 seconds. This is noticeably longer than the Bingham Plastic case, which 

had an average runtime of about 47 seconds. This increase in computational time is likely due 

to the more complex nature of the Herschel-Bulkley model, which includesadditional 

parameters, the flow behavior index (n) and the consistency index (k), in its calculations. 

 

The Herschel-Bulkley model presents a unique aspect in that the equation used to calculate the 

wall shear stress (τw), as given by equation 14, is not always solvable. In such instances the 

function will result in imaginary values, which by default are ignored through the fsolve 

function, or the function resorts to using the simplified Bingham Plastic model, when there is 

no solution at all, to estimate τw. This situation introduces a degree of uncertainty over the 

model's accuracy, particularly during the ramping of the flow rate. This is because the use of 

the simplified Bingham Plastic model for cases where the wall shear stress (τw) is less than or 

equal to the yield stress (τy) could potentially introduce noise into the calculations. 

 

 

Figure 15 Herschel-Bulkley 

 

Despite this, it's important to note that these uncertainties should resolve at steady state. As 

shown in Figure 15, the Herschel-Bulkley model reaches a steady state with a frictional pressure 

of approximately 10 bar. This value aligns well with calculations made using equation 14 for 

τw and equation 11 for the relationship between frictional pressure and τw, suggesting that 
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despite potential inaccuracies during the ramping phase, the model's accuracy at steady state 

remains robust. 

3.4 Machine learning 

3.4.1 Random Forest Regression 

The machine learning model employed in this study is the Random Forest Regression model. 

This model is a type of ensemble learning method that constructs a multitude of decision trees 

during training and outputs the mean prediction of the individual trees. It is particularly 

effective in handling complex, non-linear relationships between variables, which makes it well-

suited for predicting parameters in fluid dynamics and well simulations. 

 

The Random Forest Regression model is based on calculations made by the C.5 

Tw_NarrowSlotBinghamPlasticWithFlow.m script. The data was collected using C.6 

TrainingDataCollector.m, and the model was trained using C.7 TrainingModel.m, resulting in 

the creation of C.8 Tw_NarrowSlotBPWithFlowML.m, to preload the model a line was added 

to A.1 MasterAlg_PipeHorizontal.m, see D.4 MasterAlg_PipeHorizontal.m. 

 

This script estimates the narrow slot approximation for wall shear stress (τw) with the Bingham 

Plastic model under laminar flow conditions. The script also has the capability to set the flow 

rate out of a section to zero when the wall shear stress is less than or equal to the yield stress, 

which is a key feature of Bingham Plastic fluids. While training it to do this is possible, it would 

in this case be better to simply ad a function to return the signal to turn of flow if the estimated 

shear stress is less than the yield stress. 
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Figure 166 100 Grown trees 

 

In the Random Forest Regression model, the number of trees grown, as shown in Figure 16, is 

a key parameter that can significantly influence the model's performance. Each tree in the forest 

is grown independently, and the final prediction is made by averaging the predictions of all the 

trees. Increasing the number of trees can improve the model's accuracy by reducing the variance 

of the predictions, but it also increases the computational cost and the time required to train the 

model. Conversely, reducing the number of trees can make the model faster to train and run, 

but it may also reduce the model's accuracy. Therefore, selecting the optimal number of trees 

is a crucial step in the model training process. 

 

3.4.2 Root Mean Square Error 
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Now, let's consider the application of RMSE in the context of our machine learning model and 

the C.5 Tw_NarrowSlotBinghamPlasticWithFlow.m script. 

 

 

 

Figure 177 Visual comparison of calculation versus machine learning 100 trees 

 

Figure 17 provides a visual comparison of the estimates made by the machine learning model 

and C.3 Tw_NarrowSlotBinghamPlasticLaminar.m when ran through the code designed for 

comparing, C.8 TestMLvsCalculations. The results from both methods are closely aligned, 

suggesting that the machine learning model is capable of accurately predicting the wall shear 

stress. Increasing the volume of data for training would likely enhance the accuracy of the 

machine learning model, and more closely fit the graphed curves. 

 

However, visual comparison alone is not sufficient to determine the accuracy of the machine 

learning model. It's crucial to calculate the RMSE between the predicted and actual values to 
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quantify the model's performance. The RMSE measures the average magnitude of the errors in 

a set of predictions, without considering their direction. It aggregates the residuals (differences 

between predicted and actual values) into a single measure of predictive power. A lower RMSE 

indicates a better fit to the data. 

 

By employing equation 15, as calculated in lines 37 to 40 in C.8 TestMLvsCalculations, we 

obtain a Root Mean Square Error (RMSE) of 0.2208. This value represents the standard 

deviation of the residuals, which are the prediction errors. Given that the range of the predicted 

values varies from -1 to -8.13, an RMSE of 0.2208 can be considered relatively low. This 

suggests that the machine learning model has a good fit to the data and is able to predict the 

wall shear stress with a reasonable level of accuracy. However, it's important to note that the 

acceptability of this RMSE value can be context-dependent and may vary based on specific 

application requirements. 

 

 

 

3.4.3 Increasing Efficiency 

In this particular case, reducing the number of trees in the Random Forest Regression model 

could be beneficial for improving computational efficiency. As shown in Figure 13, the model's 

accuracy does not significantly decrease when the number of trees is reduced. This suggests 

that a smaller forest could still provide reasonably accurate predictions while greatly reducing 

the computational cost and runtime. 

 

Currently, running 1000 simulations with the Random Forest Regression model takes about 90 

seconds on average, with 100 trees, which is significantly longer than the approximately 1 

second required for 1000 runs of the C.3 Tw_NarrowSlotBinghamPlasticLaminar.m script. By 

reducing the number of trees in the Random Forest Regression model, it may be possible to 

bring the runtime closer to that of the C.3 script without sacrificing much in terms of accuracy. 

 

In an effort to further optimize the computational efficiency of the Random Forest Regression 

model, the number of trees was reduced to 50. This adjustment resulted in a notable decrease 

in the average runtime for 1000 simulations, bringing it down to approximately 40 seconds. 

This is a significant improvement compared to the 90 seconds required when using 100 trees. 
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Figure 1818 Visual comparison of calculation versus machine learning 50 trees 

 

Although visually hart to tell from Figure 18, it's important to note that while reducing the 

number of trees can decrease runtime, it may also affect the model's predictive accuracy. In this 

case, the Root Mean Square Error (RMSE) increased slightly to 0.2793, up from 0.2208 with 

100 trees. 

 

While this increase in RMSE is relatively small, it does indicate a slight decrease in the model's 

predictive accuracy. However, given the substantial reduction in runtime, this trade-off may be 

acceptable depending on the specific requirements of the simulation. In scenarios where speed 

is a priority, the slight decrease in accuracy might be considered negligible. Conversely, in 

situations where the highest possible accuracy is required, it might be preferable to use a larger 

number of trees, despite the longer runtime.  
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4 Conclusion 

4.1 Comparison of the Models 

 

The Gjerstad and Fjelde models are both effective tools for simulating drilling processes, each 

with their unique strengths and applications. The Gjerstad model, due to its design as an 

Ordinary Differential Equation (ODE) model, offers faster computational speed. This is largely 

due to the physics simplifications inherent in its design, which reduce the complexity of the 

calculations being executed, thereby enhancing computational efficiency. 

 

Despite these simplifications, the Gjerstad model offers a more comprehensive framework for 

representing the drilling process. This robustness allows it to handle a wider variety of cases 

with accuracy, making it a valuable tool for scenarios where a more detailed and adaptable 

model is required. 

 

On the other hand, the Fjelde model, being a Partial Differential Equation (PDE) model, 

provides a more detailed representation of the drilling process. While this results in increased 

computational time compared to the Gjerstad model, it also allows for a high level of accuracy 

in the simulation results. 

 

Both models are flexible and can be tuned to handle most, if not all, physically possible cases. 

The simplicity of their codes allows for easy modifications, making them adaptable tools that 

can be adjusted to better suit specific needs. 

4.2 Implementation of Functions for Non-Newtonian Fluids 

The implementation of non-Newtonian fluid models presented varying levels of complexity 

and computational efficiency. The Power Law model was relatively straightforward to 

implement and provided accuracy comparable to the Newtonian model, albeit at a slightly 

slower computational speed. 

 

On the other hand, the Bingham Plastic and Herschel-Bulkley models were more complex to 

implement and required significantly more computational resources, resulting in significantly 
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slower runtimes. While these models are more representative of real-world drilling fluids, their 

increased complexity presents challenges in terms of computational efficiency and accuracy. 

 

In particular, the accuracy of the Herschel-Bulkley model during the ramp-up phase is difficult 

to evaluate due to the potential for the equation used to calculate wall shear stress (τw) to yield 

imaginary values. This introduces a degree of uncertainty into the calculations during this 

phase. However, it's important to note that these potential inaccuracies should resolve at steady 

state, as indicated by the model's performance under steady state conditions. 

 

Overall, the choice of model should be guided by the specific requirements of the simulation, 

including the desired balance between computational speed, accuracy, and the complexity of 

the fluid behaviour to be simulated. It's also worth noting that more accurate solutions for the 

Bingham Plastic and Herschel-Bulkley models likely exist, and further research and 

development in this area could lead to improved simulation results. 

 

4.2 Machine Learning 

The implementation of the Random Forest Regression model in this study provided valuable 

insights into the potential of machine learning for simulating drilling processes. However, the 

results also highlighted some significant challenges. 

 

The computational speed of the Random Forest Regression model was found to be considerably 

slower than the traditional models used in this study. Specifically, the runtime for the Random 

Forest Regression model was too long for practical applications, particularly for real-time use 

in drilling operations. This is a significant limitation, as one of the key requirements for a 

drilling simulation model is the ability to provide accurate results quickly enough to inform 

real-time decision-making. 

 

One potential solution to this issue could be to replace the entire drilling simulation model with 

a machine learning model, rather than just the calculations for wall shear stress (τw). This would 

involve training a machine learning model to simulate the entire drilling process, rather than 

just a specific aspect of it. However, this would be a substantial undertaking, requiring a large 

amount of high-quality training data and significant computational resources.  
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Appendix A Alf Kristian Gjerstad Model 

A.1 MasterAlg_PipeHorizontal.m 

% -------------------------------------------------------------------

--- 
% 
%               Main function  
% 
% Flow model of a horizontal pipe: 
%   - divided into a number of volumes of choice 
%   - based on ODE's, solved by own implementation of Runge-Kutta 4 / 

Euler 
%   - uses an explicit version of the Herschel-Bulkley rheology model  
% 
% -------------------------------------------------------------------

--- 

  

     
% Clearing memory: 
clear 

  
% Make space between console outputs 
disp('...');                        

  
% Add paths where library files are located 
NewLibraryPath = 'Library'; 
path(NewLibraryPath, path) 
NewLibraryPath = '../MatlabLibraryKG'; 
path(NewLibraryPath, path) 
%LibraryPath = 'd:/MatlabLibraryKG/FluidCalculations'; 
%path(LibraryPath, path) 
%LibraryPath = 'd:/MatlabLibraryKG/InputsPreparationsAndPlotting'; 
%path(LibraryPath, path) 

  

  
%% ----------- Setting Global constants -----------  

  
% Physical Parameters:  
GlobConstPhys = SetPhysicsParam(); 
GlobConstPhys = SetReynoldsNumberConstants(GlobConstPhys); 
GlobConstPhys.dFlowInMaxPrSecCms = 0.1;     % Check  

  

  

  
%% ---------- Simulation parameters ------------------- 
%GlobSimPar = SetSimParam(4880, 0.1, 'SimulationWellControlNickens'); 

  
SimulationTimeInit  = 100;              % in sec 
GlobalTimestep      = 0.1; %0.05; 0.5     
nGlobalSteps        = fix(SimulationTimeInit/GlobalTimestep); 
SimulationTime      = GlobalTimestep * nGlobalSteps; 
SimTimeVector       = 0:GlobalTimestep:SimulationTime-GlobalTimestep;  

  
% Put into global structure 
GlobalConstSim.GlobalTimeStep        = GlobalTimestep; 
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GlobalConstSim.nGlobalSteps          = nGlobalSteps; 
GlobalConstSim.nInternalStepPrGlobal = 1; 

  

  

  

  

     
%% ----------- Generating Input signals ----------- 
%  
% STUDENT: This can be skipped if you want to generate your own time 

series with input data  

  
[FlowrateInput_LPM, ThrottleInput_ClosePct] = 

PipeFluHrz_InputSignalGenerator(GlobalConstSim, GlobConstPhys); 

  

  

  

  
%% -----------       Initiating the fluid      -------------------- 

  
% Fluid setup/selection - independent of ODE model      - NOMINAL values  
FluidNom.Density                = 1500;                
FluidNom.BulkModulus            = GlobConstPhys.BulkModulusObm;     % 

or BulkModulusOil or BulkModulusWater  
FluidNom.PresRefPa              = GlobConstPhys.PresAtmPa;    

  
%FluidNom = SelectMudTypeOrSetParameters('HB1', FluidNom); 
FluidNom = SelectMudTypeOrSetParameters('', FluidNom, 0.2, 0.8, 0);     

% Three last arguments are rheology parameters HB / PL 

  

  
FluidNom.RheologyPipe = 

ComputeRheologyParametersPipe(FluidNom.Viscosity.FlowBehaviorIndex); % Here 

scalar input, but it may be a vector 
% The SmoothFactor is independent of other variables => use the Nominal 

value (% PUTTE SmoothFactor INN I ComputeRheologyParametersPipe)  
FluidNom.RheologyPipe.SmoothFactor = +1;    % Valid range is [-2, +3], 

where 0 is default, and optimal for moderate yp-values 
%                                           % Neagtive factor may be 

chosen to obtain sharper yp-effet (the treshold value is reduced by a decade 

when the factor is reduced by one).  
%                                           % Positive factor will make 

the yp effect smoother and increase computational speed (P_T = P_T_default 

.* 10.^SmoothFactor)   

  

  

  
%% -----------    Activating object models and plotting   _---------- 

  
PipeFluHrzODE_InUse         = 1; 
PlottingPipeFluHrzODE_InUse = 1; 

  
PipeFluHrzPDE_InUse         = 0; % 1 
PlottingPipeFluHrzPDE_InUse = 0; % 1 

  
PlottingInputs_InUse = 1; 
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%% ----------- Initiating the model PipeFluHrz -------------------- 

     
InitBoundaries.PresBoundDnStmBar = GlobConstPhys.PresAtmBar * 10;   % 

The pressure at the outlet 
InitBoundaries.FlowBoundUpStmLpm = 0;                               % 

The flowrate at the inlet (but will be changed...?) 

  

  
% Set the Pipe properties FROM LAST cell to the FIRST cell 
% - In the Future, Read from GUI/Config file and Align to chosen Grid-

structure  
% 
SetGridPropertiesIndividually = 0;      % Select how to set these 

  
if SetGridPropertiesIndividually == 1 
    Par.LengthPrGrid        = [1000, 800, 500, 800, 1000]; 
    Par.DiameterInnIn       = [4, 5, 5, 5, 4]; %[3, 4, 5, 6, 6]; 
    Par.ThrottleGridOrPoint = 1;  
    Par.ConstrictionOpenPst = [10, 100, 100, 100, 100]; 
    Par.ThrottleActive      = [0, 1, 0, 0, 0];              % Activate 

throttling - Might not work.. 
    Par.InclFromVrtDeg      = [90, 90, 90, 90, 90];  
    Par.nGrids              = length(Par.LengthPrGrid);         
else 
    LenTotal            = 3000; 
    Par.nGrids          = 4; % 100 
    UnityVectorGrids    = ones(1, Par.nGrids); 
    Par.LengthPrGrid    = LenTotal/Par.nGrids * UnityVectorGrids; 
    Par.DiameterInnIn       = 5 * UnityVectorGrids;     % Inches 
    %Par.DiameterInnIn       = 0.1 * 100 *1/2.54 * UnityVectorGrids; % 

m * m2cm * cm2In 
    Par.ThrottleGridOrPoint = 1;  
    Par.ConstrictionOpenPst = [100, 100*ones(1, Par.nGrids-1)]; 
    Par.ThrottleActive      = 0*UnityVectorGrids;   
    %Par.ThrottleActive(2)   = 1;                            % Activate 

throttling  
    Par.InclFromVrtDeg      = 90 * UnityVectorGrids;  
end 

  
disp(['Length total: ', num2str(LenTotal)]); 
disp('...'); 

  

  

  
% Call the Setup function, which Maps input units and forms to ODE 

units and forms, Establish variables for plotting and Calls Init function  
if PipeFluHrzODE_InUse     
    ObjectName = 'PipeWith1In2Out_Generic'; 
    [PipeFluHrzIntFc, PipeFluHrzObj] = 

PipeFluHrz_2xOrd_Setup(ObjectName, InitBoundaries, Par, FluidNom, 

GlobConstPhys, GlobalConstSim); 
end 
if PipeFluHrzPDE_InUse 
    ObjectName = 'PipeWith1In2Out_PDE1'; 
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    [PipeFluHrzPdeIntFc, PipeFluHrzPdeObj] = 

PipeFluHrz_SemiImplicitPde_Setup(ObjectName, InitBoundaries, Par, FluidNom, 

GlobConstPhys, GlobalConstSim); 
end     

     

  

  

  

  
%% 

  
% -------------------------------------------------------------------

----- 
%   Main time loop executing the ODE models, calculating additional  
%   variables and putting all outputs into time vectors 
% -------------------------------------------------------------------

----- 

  

  
for t = 1:1:nGlobalSteps-1     

  

  
    % --------------          Mapping inputs           --------------

---   

     
    if PipeFluHrzODE_InUse 
        PipeFluHrzIntFc.InputsPrev       = PipeFluHrzIntFc.Inputs;    % 

Storing old values  
        PipeFluHrzIntFc.Inputs.FlowUpStmLpm  = FlowrateInput_LPM(t);  
        PipeFluHrzIntFc.Inputs.PresDnStmBar  = 

InitBoundaries.PresBoundDnStmBar;  %PressureAtmosphereBar;    
        PipeFluHrzIntFc.Inputs.ThrottleClosePct = 

ThrottleInput_ClosePct(t);   
    end 
    if PipeFluHrzPDE_InUse 
        PipeFluHrzPdeIntFc.InputsPrev       = 

PipeFluHrzPdeIntFc.Inputs;    % Storing old values  
        PipeFluHrzPdeIntFc.Inputs.FlowUpStmLpm  = 

FlowrateInput_LPM(t);  
        PipeFluHrzPdeIntFc.Inputs.PresDnStmBar  = 

InitBoundaries.PresBoundDnStmBar;  %PressureAtmosphereBar;    
        PipeFluHrzPdeIntFc.Inputs.ThrottleClosePct = 

ThrottleInput_ClosePct(t);               
    end 

     

  

     

     

     
    % --------------            EXECUTING              --------------

---   

  
    if PipeFluHrzODE_InUse  % EXECUTING:    PipeFluHrz: 
        [Outputs, PipeFluHrzObj] = 

PipeFluHrz_Step(PipeFluHrzIntFc.Inputs, PipeFluHrzIntFc.InputsPrev, 

PipeFluHrzObj, GlobConstPhys, GlobalConstSim, "ODE"); 
        % Note this is MAtlab's way to do "CALLED BY REFERENCE"   
        OutputVector = [Outputs.Flow; Outputs.Pres; Outputs.Dens];      
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        PipeFluHrzIntFc.PlotMatrix(:,t+1) = OutputVector;      
        PipeFluHrzIntFc.Outputs = Outputs; 
    end 

  
    if PipeFluHrzPDE_InUse  % EXECUTING:    PipeFluHrz: 
        [Outputs, PipeFluHrzPdeObj] = 

PipeFluHrz_Step(PipeFluHrzPdeIntFc.Inputs, PipeFluHrzPdeIntFc.InputsPrev, 

PipeFluHrzPdeObj, GlobConstPhys, GlobalConstSim, "PDE"); 
        % Note this is MAtlab's way to do "CALLED BY REFERENCE"   
        OutputVector = [Outputs.Flow; Outputs.Pres; Outputs.Dens];      
        PipeFluHrzPdeIntFc.PlotMatrix(:,t+1) = OutputVector;      
        PipeFluHrzPdeIntFc.Outputs = Outputs; 
    end    % 

  

     

     
    % Show preogress by writing to console every 10 sec. 
    SimTimeSec = t*GlobalTimestep; 
    if (mod(SimTimeSec, 10) == 0) 
        display(['Simulated time (sec) = ', num2str(SimTimeSec), ' of 

', num2str(SimulationTimeInit)]) 
    end 

    

         
end 

  

  
disp('Simulation finised') 

  

  

  
% -------------------     Plotting      -------------------------   

  
if (PipeFluHrzODE_InUse || PipeFluHrzPDE_InUse)  %PipeFluHrz_InUse 
    PlotMultiPrSub(9, SimTimeVector, PipeFluHrzIntFc.PlotMatrix, 

PipeFluHrzIntFc.Par.OutputNames, 'Horizontal Pipe', 

PipeFluHrzIntFc.Par.PlotGrouping);   % Dll 
end 

  

  
if PlottingInputs_InUse == 1    % Collecting and plotting input signals: 
    if (PipeFluHrzODE_InUse || PipeFluHrzPDE_InUse)  %PipeFluHrz_InUse  
        InputVectors = [FlowrateInput_LPM'; ThrottleInput_ClosePct']; 
        InputVariableNames = {'Flowrate'; 'ThrottlingInput'}; 
    else 
        InputVectors = [FlowrateInput_LPM'; 

TravelBlockVelocityInput_0_1_ms'; ThrottleInput_ClosePct']; 
        InputVariableNames = {'Flowrate'; 'TravelBlockVelocity'; 

'ThrottlingInput'};      
    end 
    PlotSimple(1, SimTimeVector, InputVectors, InputVariableNames, 

'InputVariables');     
end 

  
 



 59 

A.2 AlignVectorsValuesToMultipleLength.m 

 

  
% Aligns values of vector of one length to another vector length when 

the  
% two vectors are multiples of each other   

  

  
function OutputVector = 

AlignVectorsValuesToMultipleLength(InputVector, LenOutputVec) 

  
    LenInputVec = length(InputVector); 
    OutputVector = zeros(LenOutputVec, 1); 

     
    if LenOutputVec < LenInputVec 
        nInputsPrOutput = LenInputVec/LenOutputVec; 
        OutputVectorSum = zeros(LenOutputVec, 1);  %nInputsPrOutput   
        for i=1:LenOutputVec 
           for j=1:nInputsPrOutput 
               OutputVectorSum(i) = OutputVectorSum(i) + 

InputVector(2*(i-1) +j); 
           end 
           OutputVector(i) = OutputVectorSum(i)/nInputsPrOutput; 
        end 

         
    elseif LenOutputVec > LenInputVec 
        nOutputsPrInput = LenOutputVec/LenInputVec; 
        j = 1; 
        for i=1:LenOutputVec         
            OutputVector(i) = InputVector(j); 
            if (i/j) == nOutputsPrInput 
                j=j+1; 
            end 
        end 
    else 
        OutputVector = InputVector; 
    end 

  
    %OuputVector = OutputVector; 
end 
  

A.3 CalcFluidDensityFromEqOfState.m 

% -------------------------------------------------------------------

-----  
% 
% Calculates the density of a Liquid from the Equation of state.  
% All numeric inputs may be vectors, but can also be scalars, or a mix. 
% If different fluid are present in a string or borehole, both Pressure,  
% DensityNominalVec and BulkModulus can be vectors with individual 

values  
% for each grid.   
% 
% -------------------------------------------------------------------

-----  
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function FluidDensity = CalcFluidDensityFromEqOfState(Pressure, 

PressureReference, DensityNom, BulkModulus) 

     
    PressureDifference = Pressure - PressureReference; 
    FluidDensity = DensityNom + DensityNom./BulkModulus .* 

PressureDifference; 

  
end 
  

 

A.4 ComputeRheologyParametersPipe.m 

 

% -------------------------------------------------------------------

------ 
% Parameters for explicit Herschel-Bulkley rheology model - ref paper:  
% - Kristian Gjerstad, Rune W. Time, B. Erik Ydstie and Knut S. 

Bjørkevoll.  
%   An Explicit and Continuously Differentiable Flow Equation for  
%   non-Newtonian Fluids in Pipes. SPE Journal 19 (1): 78-87. SPE-

165930-PA,  
%   2013.  
% -------------------------------------------------------------------

------ 

  

  
function RheologyPipe = 

ComputeRheologyParametersPipe(FlowBehaviorIndex) 

  
    RheologyPipe.xi     = 0.97 - 0.1 *FlowBehaviorIndex - 

0.11*FlowBehaviorIndex.^2;  
    RheologyPipe.sigma  = 0.20 + 0.45 *(FlowBehaviorIndex - 0.5).^2; 
    RheologyPipe.psi    = 0.82 + 0.8 *FlowBehaviorIndex.^3;     

  
    RheologyPipe.PT     = ( 1  + 45 .*(FlowBehaviorIndex+1).^(-5.4) ) 

* 0.0001;  
    RheologyPipe.Omega  = 1 ./ FlowBehaviorIndex;   
    RheologyPipe.SmoothFactor = 0;  % Valid range is [-2, +3], where 0 

is default, and optimal for moderate yp-values 
                                            % For high yp neagtive 

factor may be chosen to obtain sharper yp-effet (for low flow rates).  
                                            % For low yp, positive 

factor will increase computational speed.     
end 

  

A.5 fRampAndHold3.m 

 

% 

************************************************************************  
% 
% Function that returns a signal with one or several consecutive  
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% step changes filtered through a filter (1. or 2. order). 
% The integral of the signal, is also returned. 
%        
% 

************************************************************************  

  

  
% Improvement: 
% The functions return one row pr global timestep and one column pr 

internal 

  

  

  
function [SignalFinal, SignalIntegrated]  = 

fRampAndHold2(GlobalConstSim, filterOrder, filterTime, startValue, 

holdTimes, holdValues, ZeroLimit) 

     
    GlobalTimeStep          = GlobalConstSim.GlobalTimeStep; 
    nGlobalSteps            = GlobalConstSim.nGlobalSteps; 
    nInternalStepPrGlobal   = GlobalConstSim.nInternalStepPrGlobal; 

     
    T = GlobalTimeStep;     
    simTimeTotal = GlobalTimeStep * nGlobalSteps; 

     

     
    rampNumbers = length(holdValues); 
    if rampNumbers ~= length(holdTimes)  
        'The last two inputvectors must be of same length' 
        pause 
    end 

     
    if sum(holdTimes) > simTimeTotal 
        'Sum of holdTimes must be less than simTimeTotal' 
        pause 
    end         

     

     
    Signal  = startValue * ones(1, fix(holdTimes(1)/T));          % 

Signal values before first step    
    for i = 2:rampNumbers                                                       % 

Loop through the numbers of steps for the total input signal 
            signalHold_i = holdValues(i-1) * ones(1, 

fix(holdTimes(i)/T));          % Construct constant "hold-values" to be added 

after the step             
            Signal = [Signal  signalHold_i];                      % 

Combine the filtered step function with the constant hold-values for the 

current step   
    end 
    restSamples = nGlobalSteps - length(Signal); 
    Signal = [Signal   holdValues(rampNumbers) *ones(1, restSamples)]; 

     

     
    t               = 0;         
    y  = Signal; 

    
    if filterOrder == 0 
        y(i) = Signal(i);               % No filter 
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    elseif filterOrder == 1 
        alpha   =  GlobalTimeStep/(filterTime+GlobalTimeStep); 
        for i=2:nGlobalSteps 
            y(i) = (1-alpha) * y(i-1)  +  alpha*Signal(i);  % simple 

low pass filter 
            %t = [t, i*GlobalTimeStep]; 
        end 
    elseif filterOrder == 2 
        T  = GlobalTimeStep; 
        w0 = 1/filterTime;      % Undamped resonance frequency 
        % numerator: 
        a1 = w0^2*T^2; 
        a2 = 2*a1; 
        a3 = a1; 
        % denominator: 
        f1 = (w0*T + 2); 
        f2 = (w0*T - 2); 
        b1 = f1^2;          % = 4 + 4*w0*T + w0^2*T^2; 
        b2 = 2*f1*f2;       % = 2*w0^2*T^2 - 8; 
        b3 = f2^2;          % = 4 - 4*w0*T + w0^2*T^2; 
        %Parameters_tot = (a1+a2+a3-b2-b3)/b1;       % Always unity 

for unity amplification 

         
        for i=3:nGlobalSteps 
            y(i) = 1/b1 * ( -b2*y(i-1) -b3*y(i-2) + a1*Signal(i) + 

a2*Signal(i-1) + a3*Signal(i-2) );  % Critical damped 2. order filter (unity 

amplification) 
        end         
    else 
       'Filter type is missing'  
    end 

  
    for i=1:nGlobalSteps 
        if (exist ('ZeroLimit', 'var')) == 1 
            if y(i) < ZeroLimit 
                y(i) = 0; 
            end 
        end 
    end     

     
    SignalFinal         = y'; 
    SignalIntegrated    = cumtrapz(SignalFinal) * T;          % The 

integral 

  

        
end 
 

A.6 fReynoldsNumber.m 

 

% 

*************************************************************************  
% 
% Returns an equivalent Reynolds number (Re) for non-Newtonian flow  
% in pipes and annulus. The Reynoldsnumber is always positive. 
% 
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% To avoid problems of zero values in the denominator when the flow 

rate  
% is zero, a "net Reynoldsnumber" where the flow velocity is taken out 

is  
% also returned (this is ok since this flow velocity will cancel out 

in  
% subsequent computations).  
% 
% The value of the input parameter G determines whether the output is  
% valid for pipe or annulus. 
% 
% 

*************************************************************************  

  

  

  
function [Re Re_net] = fReynoldsNumber(v_tot, k, n, density, h, G)   

     
% Input vectors: 
    % v_tot     TOTAL effective velocity. For annulus it will be higher 

than effective Couette-Poiseulille velocity when ws>0. CONSIDER USING TAYLOR 

NUMBER.   
    %           For pipes it is the axial bulk flow velocity regardless 

of ws. CONSIDER INCLUDING AN EFFECT OF ROTATION INSIDE STRING IN THE FUTURE   
    % k, n,     Rheolgy parameters  
    % density   Density of fluid  
    % h         Equals R_well-R_pipe for annulus, and equals the radius 

for pipes   
    % G         Constant that is equal (1/(3n+1)^n) for pipes and 

(1/(4n+2)^n) for annulus  

  

     
    Re      = 8 * density ./ k .* (h.*n).^n  .* G .* abs(v_tot).^(2-

n);        
    Re_net  = 8 * density ./ k .* (h.*n).^n  .* G;   

  

     
end 
 

A.7 fTransition.m 

% 

*************************************************************************  
% 
% Function that determines the transition from laminar to turbulent 

flow 
% for PIPE and ANNULUS. Returns a transition number called FlowRegime 
% in the range [0 1]. 
% 
% Output: FlowRegime =  
%       1           -> Laminar,  
%       0           -> Fully turbulent,  
%       <0 1>       -> Transitional 
%  
% The critical Reynoldsnumber and "center Reynoldsnumber" are dependent 

on  
% the rheology parameter n.  
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% 
% Rotation of inner cylinder will not affect this transition function. 
% However, for the annulus there will be a higher Reynoldsnumber used 

as  
% input (computed in separate function), so that turbulence will start  
% earlier when the string rotates. For the pipe, string rotation does 

not  
% affect the transition at all. 
%     
% 

*************************************************************************  

  

  
function [FlowRegime, Re_cr, Re_ce] = fTransition(Re, n, Re_cr_nom, 

Re_tu_nom, Re_Delta_n0, Trns_minVal) 

  

  
% Input vectors: 
    % Re            Reynoldsnumber   
    % n             Flow behavior index   

  
% Scalar input variables:         
    % Re_cr_nom     = 2100;     Nominal value for critical Reynolds 

numnber when transition region starts - effective value depends on rheology 
    % Re_tu_nom     = 2900;     Nominal value for Reynolds numnber when 

100% turbulence is achieved (at the center of the Transitional region) - 

effective value depends on rheology 
    % Re_Delta_n0   = 1370;     Addition in critical Reynoldsnumber 

when n -> 0.  
    % Trns_minVal   = [5 10]    Value in % of transition function at 

critical Reynoldsnumber, Re_cr 

     

  

         
    % Reynoldsnumber values at start and center point for transition 

region:   
    Re_ce_nom   = (Re_cr_nom + Re_tu_nom)/2;            % Nominal 

center point  
    Re_cr       = Re_cr_nom + (1-n) *Re_Delta_n0;       % Start of 

transition region  
    Re_ce       = Re_ce_nom + (1-n) *Re_Delta_n0;       % Current 

center point for transition region  

  

     
    % Compoutes the exponential power in the laminar-turbuelent 

transition function   
    %   - gives the "slope" defined by input parameters { log_base(x) 

= log_10(x) / log_10(base) }   
    GAM     = log10((100-Trns_minVal)/Trns_minVal) 

./log10(Re_ce./Re_cr);    

                                                                             

  
    % The smooth transition between laminar and turbulent flow:  
    FlowRegime    = 1 ./ ( 1 + (Re ./ Re_ce).^GAM );              

         

        
end 
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A.8 NanAndInfCheck.m 

 

function IsNan = NanAndInfCheck(InputVector, VariableName) 

  
    IsNan = sum(isnan(InputVector));  
    if (IsNan) 
        disp(['A value in ', VariableName, ' is NaN']) 
    end 

  
    IsInf = sum(isinf(InputVector));  
    if (IsInf) 
        disp(['A value in ', VariableName, ' is Inf']) 
    end 

  
end 
 

A.9 PipeFlu_PdeGen_Init.m 

% -------------------------------------------------------------------

-----  
% 
% Building the Objects internal variables and parameters from prepared 

inputs 
% 
% 
% Initiating vaiables in a generic PDE-based object for the fluid inside  
% a Pipe. Parameers must have been configured alreay. 
% 
% This function must be wrapped by an outer function that sends inn  
% LengthPrGridTd, inclination, density and initial pressure and 

density. 

  
% Hence, this functin is Generic since variants related to initial  
% conditions, inclination, form of inputs/outputs etc are taken care 

of  
% by the outer wrapper.  
% 
% Geometry parameters and States are here set into a Structure to be 

used  
% by the PDEs. 
% 
% Preparing Outputs for input-mapping is not needed here since the 

outer  
% wrapper take care of this. Similarly; Other setup for plotting and  
% PlotMatrix are not needed. 
% 
% The reference frame for the fluid is the moving solid pipe. 
% Hence, the solid string acceleration gives a fictitious force.  
%             
% -------------------------------------------------------------------

-----  

  
function PipeFluObj = PipeFlu_PdeGen_Init(ObjectName, p, FlowInitLpm, 

PresInitBar, DensityInit, FluidNom)  
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    % Simulation constants:     
    c.ObjectName    = ObjectName;  
    c.T_max         = 0.01;             % Max Time step for PDE model 

when using ??? solver 

             

  
    % ---   Parameters   ---     

     
    % Grid parameters 
    p.nGridsDs       = length(p.LengthPrGrid);  
    p.LengthTotal = sum(p.LengthPrGrid);   

     
    % Grid-Vectors 
    p.ZeroVectorGrids   = zeros(1, p.nGridsDs);  
    p.UnityVectorGrids  = ones(1, p.nGridsDs);      

     
    % Height 
    dHeightVertical     = p.LengthPrGrid .* sin(p.InclHrzRad);   
    p.HeightVerticalSum = sum(dHeightVertical);         

     
    % Geometry vector parameters - These are constants during 

simulation (unless Events are build):  
    p.AreaCrs   = pi * p.RadiusInn.^2;   
    p.AreaSrf   = pi * 2*p.RadiusInn .* p.LengthPrGrid;   
    p.Volume    = p.AreaCrs .* p.LengthPrGrid;     
    p.ConstrArea    = p.ConstrictionOpenPst./100 .* p.AreaCrs;  % 

Additional constriction that can be used for Tool joint effect etc 
    p.ConstrDischarge = 0.90; 

     
    % Parameters that might be changes in Event Builder are stored in 

an "Org"-parameter to be able to manipulate the original pr timestep and 

restore it later  
    p.RadiusInnOrg  = p.RadiusInn; 
    p.AreaCrsOrg    = p.AreaCrs; 

     

     

     

     
    % ---   Initial conditions for variables  ---     
    FlowLpm     = FlowInitLpm';       
    PresBar     = PresInitBar';       

     
    % Establish total States and Output vectors: 
    StateVariables    = [FlowLpm; PresBar];  
    p.ModelOrder        = length(StateVariables(:,1));  

    

         

     
    % Fluid properties: 
    p.Fluid = SetFluidParametersPrGridDs(FluidNom, 

p.UnityVectorGrids); 

     

     
    % Combined parameters (fluid and solid): 
    p.Fluid.BulkModulusEff = p.Fluid.BulkModulus;   % Effective Bulk 

modulus/stiffness is now from NOMINAL fluid properties 



 67 

                                                    % LATER: = 

f(FluidNom.BulkModulus, BoundaryStiffness);   
                                                    % OR  

p.FluidSolid.BulkModulusEffective = f(FluidNom.BulkModulus, 

BoundaryStiffness); 

                                         

                                                 
    % --- Set the States and Outputs ---  

     
    PipeFluObj.States.Flow   = FlowLpm;   
    PipeFluObj.States.Pres   = PresBar;   

         
    PipeFluObj.Par = p;  
    PipeFluObj.Cst = c;  

                                                     
end 
 

A.10 PipeFluGen_2xOrd_Init.m 

 

% -------------------------------------------------------------------

-----  
% 
% Initiating of generic PIPE object for the fluid inside it. 
% 
% This function must be wrapped by an outer function that sends inn  
% LengthPrGridTd, inclination, density and initial pressure and 

density. 
% Hence, this functin is Generic since variants related to initial  
% conditions, inclination, form of inputs/outputs etc are taken care 

of  
% by the outer wrapper.  
% 
% Geometry parameters and States are here set into a Structure to be 

used  
% by the ODEs. 
% 
% Preparing Outputs for input-mapping is not needed here since the 

outer  
% wrapper take care of this. Similarly; Other setup for plotting and  
% PlotMatrix are not needed. 
% 
% The reference frame for the fluid is the moving solid pipe. 
% Hence, the solid string acceleration gives a fictitious force.  
%             
% -------------------------------------------------------------------

-----  

  
function PipeFluObj = PipeFluGen_2xOrd_Init(ObjectName, p, 

FlowInitLpm, PresInitBar, DensityInit, FluidNom)  

  

  

  
    % Simulation constants:     
    c.ObjectName    = ObjectName;  
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    c.T_max_RK4     = 0.025;            % Max Time step for ODE model 

when using RK4 solver 
    c.T_max_Euler   = 0.01;             % Max Time step for ODE model 

when using Euler solver 

             

  
    p.nGridsDs       = length(p.LengthPrGrid);  
    %p.LengthPrGridDs = LengthPrGrid;    
    p.LengthTotal = sum(p.LengthPrGrid);   

     

     
    % Global constants: 
    p.BiasFlowDs = 0; 
    p.BiasPresDs = p.nGridsDs; 
    p.BiasDensDs = p.nGridsDs*2; 

         

     
    % Vectors: 
    p.ZeroVectorGrids   = zeros(1, p.nGridsDs);  
    p.UnityVectorGrids  = ones(1, p.nGridsDs);      

     

  

     
    dHeightVertical     = p.LengthPrGrid .* sin(p.InclHrzRad);   
    p.HeightVerticalSum = sum(dHeightVertical);     

     

     

     
    % ---   Initial conditions   --- 

     
    FlowLpm     = FlowInitLpm';       
    PresBar     = PresInitBar';    

     
    % Establish total States and Output vectors: 
    StateVariables    = [FlowLpm; PresBar];  
    p.ModelOrder        = length(StateVariables(:,1));  

    
    % Output variables in addition to the States: 
    %OutputVariables = [DensityInit'];   
    %p.OutputOrder   = length(StateVariables(:,1)) + 

length(OutputVariables);   
    %PipeFluObj.OutputsInitial = [StateVariables; OutputVariables];  % 

Currently not in use, but maybe later  

     

     

     

     
    % ---   String and Fluid properties/Boundaries   ---  

  
    % Geometry vector parameters - These are constants during 

simulaiton (unless Events are build):  
    %p.RadiusInn = p.DiameterInn ./ 2; 
    p.AreaCrs   = pi * p.RadiusInn.^2;   
    p.AreaSrf   = pi * 2*p.RadiusInn .* p.LengthPrGrid;   
    p.Volume    = p.AreaCrs .* p.LengthPrGrid; 
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    p.ConstrArea    = p.ConstrictionOpenPst./100 .* p.AreaCrs;  % 

Additional constriction that can be used for Tool joint effect etc 
    p.ConstrDischarge = 0.90; 

     
    % Parameters that might be changes in Event Builder are stored in 

an "Org"-parameter to be able to manipulate the original pr timestep and 

restore it later  
    p.RadiusInnOrg  = p.RadiusInn; 
    p.AreaCrsOrg    = p.AreaCrs; 

     

     

     
    % Fluid properties: 
    p.Fluid = SetFluidParametersPrGridDs(FluidNom, 

p.UnityVectorGrids); 

     

     
    % Combined parameters (fluid and solid): 
    p.Fluid.BulkModulusEff = p.Fluid.BulkModulus;   % Effective Bulk 

modulus/stiffness is now from NOMINAL fluid properties 
                                                    % LATER: = 

f(FluidNom.BulkModulus, BoundaryStiffness);   
                                                    % OR  

p.FluidSolid.BulkModulusEffective = f(FluidNom.BulkModulus, 

BoundaryStiffness); 

                                         

                                                 
    % --- Set the States and Outputs ---  

     
    PipeFluObj.States.Flow   = FlowLpm;   
    PipeFluObj.States.Pres   = PresBar;   

         
    PipeFluObj.Par = p;  
    PipeFluObj.Cst = c;  

                                                     
end 

  
 

A.11 PlotMultiPrSub.m 

 

 
function EndCode = PlotMultiPrSub(fig, x, y, variableNames, ModelName, 

PlotGrouping)  
%xMin, xMax, yMin, yMax, Legends, XLab, YLab, xTickPos, xTickLab, 

xTickTxt, yTickPos, yTickTxt, yTickLab, fig, txtTitle, Log, LegBox, lineType, 

lineWidth, SubFig, LegPos) 

  
    FntSz0 = 6+2+1;     
    FntSz1 = 7+2+1; 
    FntSz2 = 8+2+1; 
    FntSz3 = 9+2+1; 
    FntNm  = 'Times'; 

     
    figure(fig);     
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    TotalSubPlotNumber = length(PlotGrouping); 
    graphsTotal = 0; 
    for subWindow = 1:TotalSubPlotNumber 
        subplot(TotalSubPlotNumber, 1, subWindow); 
        hold off 
        for graphsInSub=1:PlotGrouping(subWindow) 
            graphsTotal = graphsTotal + 1; 
            plot(x, y(graphsTotal,:)) 
            txtTitle = [ModelName, '.', variableNames{subWindow}];     

% 'State variables'; 
            title(txtTitle, 'FontSize',FntSz0, 'FontName',FntNm, 

'Interpreter','latex'); 
            grid on 
            hold on 
        end 
    end         
    EndCode = 1;  
end 

  
 

A.12 PlotSimple.m 

 

 
function EndCode = PlotSimple(fig, x, y, variableNames, ModelName)  
%xMin, xMax, yMin, yMax, Legends, XLab, YLab, xTickPos, xTickLab, 

xTickTxt, yTickPos, yTickTxt, yTickLab, fig, txtTitle, Log, LegBox, lineType, 

lineWidth, SubFig, LegPos) 

  
    FntSz0 = 6+2+1;     
    FntSz1 = 7+2+1; 
    FntSz2 = 8+2+1; 
    FntSz3 = 9+2+1; 
    FntNm  = 'Times'; 

     
    nVectors    = length(y(:,1));  

     
    figure(fig); 

     
    for i=1:nVectors            % Marching vertical through vectors 
        yv = y(i,:); 
        if length(x(:,1)) > 1 
            xv = x(i,:); 
        else 
            xv = x(1,:); 
        end 
        subplot(nVectors, 1, i); 
        plot(xv, yv) 
        txtTitle = [ModelName, '.', variableNames{i}];     % 'State 

variables'; 
        title(txtTitle, 'FontSize',FntSz0, 'FontName',FntNm, 

'Interpreter','latex'); 
        grid 
    end 
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    EndCode = 1; 

         
end 

  
 

A.13 PressureDropOverConstriction.m 

 

% -------------------------------------------------------------------

----- 
% 
% Returns pressure drop over a constriction (valve, nozzle or other) 

for  
% the FlowrateCms given as input. Can operate on scalar values or 

vectors. 
%  
% Opening percentage of the constriction, ThrottlingOpenPct, is another  
% input. If it is a scalar, all values in AreaConstr will be reduced 

by  
% this percentage. If it is avector, the reductions are individual. 
%  
% All variables are in SI units. 
% 
% Note: If the Flowrate is non-zero, a zero ThrottlingOpenPct will give  
% infinite DeltaPressureConstrictionPa. This is an impossible situation 

and  
% the calling function must make sure that Flowrate goes to zero when 

the 
% ThrottlingOpenPct approaches zero. For safety, we add an error-

handling 
% condition here. 
% 
%       RENAME TO: CalcDeltaPressureConstrictionPa 
% 
% -------------------------------------------------------------------

----- 

  
function DeltaPressureConstrictionPa = 

PressureDropOverConstriction(FlowrateCms, Density, Discharge, AreaConstr, 

ThrottlingOpenPct) 

     
    AreaConstrEffective = ThrottlingOpenPct./100 .* AreaConstr;  

     
    AreaConstrMin     = 1E-4; 
    if min(AreaConstrEffective) < AreaConstrMin 
        AreaConstrEffective = min(AreaConstrEffective, AreaConstrMin); 

% Operator works for both scalar and vector inputs, or one of each (=> only 

those elements below minimum will be increased)  
        'Error: ThrottlingOpenPct or AreaConstr is too low for the 

given Flowrate' 
    end 

     
   %if min(ThrottlingOpenPct) < 50 
   %    'stop' 
   %end 
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    DeltaPressureConstrictionPa = sign(FlowrateCms) .* Density ./ (2 

*Discharge.^2 .*AreaConstrEffective.^2) .* (FlowrateCms).^2;  

    
end 
 

A.14 SelectMudTypeOrSetParameters.m 

 

% -------------------------------------------------------------------

------ 
%  
% -------------------------------------------------------------------

------ 

  
% FluidNom bør inneholdew alt dette: 
%                Density: 1173 
%            BulkModulus: 1.6600e+09 
%              PresRefPa: 101000 
%              Viscosity: [1×1 struct] 
%     ReynoldsNmbTrnsPar: [1×1 struct] 
%           RheologyPipe: [1×1 struct] 

  
% + LEGE TIL EQUIV.NEWTONIAN?  

  

  
function FluidNom = SelectMudTypeOrSetParameters(MudName, FluidNom, 

ConsistencyIndex, FlowBehaviorIndex, YieldPoint) % + OBM/WBM? 

  
    switch MudName 

  
        case 'Mariner_12In' 
            FluidNom.Viscosity.ConsistencyIndex     = 0.343;   
            FluidNom.Viscosity.FlowBehaviorIndex    = 0.727;   
            FluidNom.Viscosity.YieldPoint           = 12.0;       

  
        case 'Mariner_09In'     % CHECK 
            FluidNom.Viscosity.ConsistencyIndex     = 0.3;   
            FluidNom.Viscosity.FlowBehaviorIndex    = 0.8;   
            FluidNom.Viscosity.YieldPoint           = 8.0;      

  
        case 'HB1' 
            FluidNom.Viscosity.ConsistencyIndex     = 0.281;   
            FluidNom.Viscosity.FlowBehaviorIndex    = 0.828;   
            FluidNom.Viscosity.YieldPoint           = 10.0;       

  
        case 'HB2' 
            FluidNom.Viscosity.ConsistencyIndex     = 0.5;   
            FluidNom.Viscosity.FlowBehaviorIndex    = 0.85;   
            FluidNom.Viscosity.YieldPoint           = 10.0;       

             
        case 'Newtonian1' 
            FluidNom.Viscosity.ConsistencyIndex     = 0.1;   
            FluidNom.Viscosity.FlowBehaviorIndex    = 1.0;   
            FluidNom.Viscosity.YieldPoint           = 0.0;               

  
        otherwise 
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            FluidNom.Viscosity.ConsistencyIndex     = ConsistencyIndex;        
            FluidNom.Viscosity.FlowBehaviorIndex    = 

FlowBehaviorIndex;     
            FluidNom.Viscosity.YieldPoint           = YieldPoint; 

  
    end 

  

                                         
end 
 

A.15 SetFluidParametersPrGridDs.m 

 

 
% Endre navn til: SetFluidParametersPrGridDs    (Ds på slutten) 

  

  
% Fluid parameters: 
    % -nominal values pr grid - May include depth dependencies later 

(TVD):  
    % -pressure and temperature dependencies cannot be included here 

since they are unknown at this stage 

  
function FluidParametersPrGrid = SetFluidParametersPrGridDs(FluidNom, 

UnityVectorGridsDsCur) 

  
    p.Fluid.DensityNom  = FluidNom.Density * UnityVectorGridsDsCur;       

% Nominal because density is also computed as an additional variable  
    p.Fluid.BulkModulus = FluidNom.BulkModulus * 

UnityVectorGridsDsCur;  
    p.Fluid.PresRefPa   = FluidNom.PresRefPa * UnityVectorGridsDsCur; 

     
    % Viscosity parameters: 
    p.Fluid.Viscosity.ConsistencyIndex = 

FluidNom.Viscosity.ConsistencyIndex * UnityVectorGridsDsCur;    % Should be 

dependent on depth (pressure)  
    p.Fluid.Viscosity.FlowBehaviorIndex     = 

FluidNom.Viscosity.FlowBehaviorIndex * UnityVectorGridsDsCur;   % Can be 

assumed independent of depth  
    p.Fluid.Viscosity.YieldPoint            = 

FluidNom.Viscosity.YieldPoint * UnityVectorGridsDsCur;          % Can be 

assumed independent of depth  
    % For testing: 
    %p.Fluid.Viscosity.YieldPoint            = UnityVectorGridsDsCur * 

0;   

     
    % For circular pipe geometry: 

     
    p.Fluid.RheologyPipe = 

ComputeRheologyParametersPipe(p.Fluid.Viscosity.FlowBehaviorIndex);  

     
    % The SmoothFactor is independent of other variables => use the 

Nominal value: 
    p.Fluid.RheologyPipe.SmoothFactor = 

FluidNom.RheologyPipe.SmoothFactor; 
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%     p.Fluid.RheologyPipe.xi     = FluidNom.RheologyPipe.xi * 

UnityVectorGridsDsCur; 
%     p.Fluid.RheologyPipe.sigma  = FluidNom.RheologyPipe.sigma * 

UnityVectorGridsDsCur; 
%     p.Fluid.RheologyPipe.psi    = FluidNom.RheologyPipe.psi * 

UnityVectorGridsDsCur; 
%     p.Fluid.RheologyPipe.PT           = FluidNom.RheologyPipe.PT * 

UnityVectorGridsDsCur; 
%     p.Fluid.RheologyPipe.Omega        = FluidNom.RheologyPipe.Omega 

* UnityVectorGridsDsCur; 
%     p.Fluid.RheologyPipe.SmoothFactor = 

FluidNom.RheologyPipe.SmoothFactor * UnityVectorGridsDsCur; 

     
    FluidParametersPrGrid = p.Fluid; 

     
end 
 

A.16 SetPhysicsParam.m 

 

%--------------------------------------------------------------------

------ 
% Physical constants and unit conversion factors are put into a common  
% structure  
%--------------------------------------------------------------------

------ 

  
function PhysicsParam = SetPhysicsParam() 

  
    % Physical constants 
    PhysicsParam.g                 = 9.81; 
    PhysicsParam.PresAtmPa         = 101000; 
    PhysicsParam.PresAtmBar        = 1.01; 
    PhysicsParam.BulkModulusWater  = 2.2E9; 
    PhysicsParam.BulkModulusOil    = 1.38E9; 
    PhysicsParam.BulkModulusObm    = 1.66E9; 
    PhysicsParam.GasConstIdeal     = 8.31446;  % Ideal gas constant 

8.3144598(48) J mol?1 K?1[1] 

  
    % Conversion factors 
    PhysicsParam.Bar2Pa     = 100000; 
    PhysicsParam.Pa2Bar     = 1/100000; 
    PhysicsParam.Lpm2Cms    = 1/60000; 
    PhysicsParam.Cms2Lpm    = 60000; 
    PhysicsParam.Deg2Rad    = pi/180; 
    PhysicsParam.Ft2m       = 0.3048; 
    PhysicsParam.In2m       = 0.0254; 
    PhysicsParam.Gal2L      = 3.7854; 
    PhysicsParam.Bbl2m3     = 0.1590; 
    PhysicsParam.Ibm2Kg     = 0.4536; 

  
    % Constants defining various zero-limits 
    PhysicsParam.ZeroLimit1 = 1E-3; 
    PhysicsParam.ZeroLimit2 = 1E-6; 
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    PhysicsParam.ZeroLimit3 = 1E-9; 
    PhysicsParam.ZeroLimit4 = 1E-12; 

                             
    PhysicsParam = orderfields(PhysicsParam); 

     
end 

 

A.17 SetReynoldsNumberConstants.m 

 

% 

*************************************************************************  
% 
% Set constants used for calculating frictional pressure loss for  
% turbulent flow and transition to turbulent flow - i.e., different  
% Reynolds number related constants  
%     
% 

*************************************************************************  

  

  
function [GlobalConstPhysic] = 

SetReynoldsNumberConstants(GlobalConstPhysic) 

  
    GlobalConstPhysic.ReNmbCstPipe.CritNom      = 2100;  % For pipes, 

Nominal value for critical Reynolds numnber when transition region starts - 

effective value depends on rheology 
    GlobalConstPhysic.ReNmbCstAnnu.CritNom      = 2100;  % For ANNULUS 
    GlobalConstPhysic.ReNmbCstPipe.TurbNom      = 2900;  % For pipes, 

Nominal value for Reynolds numnber when 100% turbulence is achieved, i.e. at 

the end of the Transitional region (or center?) - effective value depends on 

rheology 
    GlobalConstPhysic.ReNmbCstAnnu.TurbNom      = 2900;  % For ANNULUS 
    GlobalConstPhysic.ReNmbCstPipe.Delta_n0     = 1370;  % For pipes, 

Addition in critical Reynoldsnumber when flow behavior index n -> 0 (Herschel-

Bulkley / Bingham).  
    GlobalConstPhysic.ReNmbCstAnnu.Delta_n0     = 1370;  % For ANNULUS 
    GlobalConstPhysic.ReNmbCstPipe.TrnsMinVal   = 10;    % Value in % 

of transition function at critical Reynoldsnumber, Re_cr (typical values: 5 

- 10) 
    GlobalConstPhysic.ReNmbCstAnnu.TrnsMinVal   = 10;    % For ANNULUS  

        
end 
 

A.18 Solver_RK4_New.m 

 

% -------------------------------------------------------------------

-----  
% 
% Runge-Kutta 4 solver for any ODE-model on correct form. 
% 
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% NumericStabilizationMode is an optional input parameter that may be 

set  
% to one in order to remove ocsillations and change of sign between 

the   
% RK iterations. It is useful for models that are discontinous at zero  
% like a fluid with a yield point.  
% If such conditions occur, the values for RK-iteration 2-4  
% is set to zero instead of having sign opposite of the first iteration. 
% Hence, numerical instability around zero flow will be 

reduced/removed. 
%  
% -------------------------------------------------------------------

-----  

  

  
function x_nextLocal  =  Solver_RK4_New(Model_ODE, Inputs, 

InputsPrGrid, x_current, VarAdditional, Parameters, ConstGlobalPhysic, 

T_sim, NumericStabilizationMode) 

                         
    %global GlobalTimestep  
    %tStart      = 2;              % Value for first time iteration 

(Integer)      
    %ModelSetup = [ModelName & 'Setup'];     % ModelName = 

TankWithPipeOutlet (=>TankWithPipeOutlet_Setup) 
    %[U, xIC, p, MO, T_sim] = ModelSetup(); % 

=TankWithPipeOutlet_Setup(); 
    %xRK = xIC;      % Struktur bør være mulig her da.. 
    %ModelOrder  = length(x_current); 
    %xRK     = zeros(ModelOrder,1);          % State vector whose 

values are set for each iteration according to the RK-method 

  

  
    if (exist ('NumericStabilizationMode', 'var')) == 0 
        NumericStabilizationMode = 0; 
    end 

     
    zeroVector  = zeros(length(x_current),1); 
    x_nextLocal = zeroVector;  
    xRK         = zeroVector;  
    f           = zeros(length(x_current),4); 

      
    for r=1:4                          
        switch r 
            case 1 
                xRK(:) = x_current;     
            case 2 
                xRK(:) = x_current + T_sim/2 *f(:,1); 
            case 3 
                xRK(:) = x_current + T_sim/2 *f(:,2); 
            case 4 
                xRK(:) = x_current + T_sim *f(:,3); 
        end 

  
        f(:,r) = Model_ODE(Inputs, InputsPrGrid, xRK, VarAdditional, 

Parameters, ConstGlobalPhysic);  

          
    end 

  
    % Evaluation of next time-step of the whole state vector x:  
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    for j=1:length(f(:,1))    

         
        % if Solver == RK4:            

         
        if NumericStabilizationMode == 1 
            if x_current(j) < 1 
                if ( (f(j,1) * f(j,2) < 0) && (f(j,3) * f(j,4) < 0) && 

(f(j,1) * f(j,3) > 0) )     
                   f(j,2) = 0; 
                   f(j,4) = 0; 
                   %nOscillatingNeglections = nOscillatingNeglections 

+ 1; 
                   %display(['RK4 is neglecting oscillating 

derivatives for state variable ', num2str(j)]) 
                elseif (f(j,1) * f(j,2) * f(j,3) * f(j,4)) < 0 
                   f(j,2) = 0; 
                   f(j,3) = 0; 
                   f(j,4) = 0; 
                   %nSignNeglections = nSignNeglections + 1; 
                   %display(['RK4 is neglecting change of sign of 

derivatives for state variable ', num2str(j)]) 
                end 
            end 
        end 

         
        x_nextLocal(j) = x_current(j) + T_sim/6 * (f(j,1) +2*f(j,2) 

+2*f(j,3) +f(j,4));    

         

  
        if isnan(x_nextLocal(j))    
            'Variable in xNext is NaN' 
        end         

         
    end         

  
end 
 

A.19 TwPipeGeoLamTurb.m 

 

% 

*************************************************************************   
% 
% The function returns average wall shear stress values (Tw) for non- 
% Newtonian fluids in circular PIPES when the bulk flow rate (VelLiq) 

is the  
% dynamic input.  
% Outputs: 
%   Tw_HB_i:    Shear stress Herschel-Bulkley (HB) model, 

combined/total. 
%   Tw_it:      Shear stress HB model, turbulent component. 
%   Tw_HB_il:   Shear stress HB model, laminar component. 
%   Tw_PL_il:   Shear stress Power-law (PL) model, laminar component. 
%  
% If the flow behavior index n = 1, Tw_HB_il reduce to laminar flow 

for 
% Bingham plasic BP) fluids and Tw_PL_il reduces to laminar flow for  



 78 

% Newtonian fluids. 
%  
% Vectors where the elements represent each pipe segment/grid can be  
% provided as input => the output will be a vector. 
%  
% Tw is given explicitely as function of bulk flow rate, as opposed to 

the  
% theoretical analytic equation, which is implicit and requires an 

iterative  
% solution.  

  
% If SimMode == 1, the wall shear stress will be discontinuous at zero 

flow. 
% In all other cases, the discontinuity at zero flow is handled by 

smoothening.  
% For best accuracy, the SmoothFactor should be set to 0. 
% However, for non-zero yield points the function gets strongly non-

linear 
% around zero flow rate. This will slow down the ODE-solver if it is 

set up 
% to give a predefined accuracy. Therefore, the smoothening function 

can be  
% tuned to give faster respons by setting a value for the SmoothFactor  
% between zero and 1. The higher value, the faster response. 
% 
% Note:  
% The frictional pressure gradient (Pa/m) for HB fluids is given by: 
%   dp/dz_il =  2/RaIn * Tw_HB_il     
% The dimennsionless pressure gradient for HB fluids is given by: 
%   P_HB_il =  -Tw_HB_il / yp    
% 
%  
% by Kristian Gjerstad  
%  
%                   Version 1.0 - 2014.01.23 
%  
% 

*************************************************************************   

  

  

  
function  [Tw_HB_i, Tw_it, Tw_HB_il, Tw_PL_il] =  

TwPipeGeoLamTurb(VelLiq, Re_net, FlowRegime, GeometryPar, FluidPar, 

RheologyPar, SimMode)  

         
% Inputs (Note: Parameters here may be variables in calling functions):  

  

  
    % Fluid: 
    Dns         = FluidPar.Dns;             % Future: Bulk modulus, 

etc 
    ModelType   = RheologyPar.ModelType;    % Herschel Bulkley only 

for current version  
    k           = RheologyPar.ViscosityHb.k; 
    n           = RheologyPar.ViscosityHb.n; 
    yp          = RheologyPar.ViscosityHb.yp;   

     
    xi          = RheologyPar.ContinuousSimplified.xi;  
    sigma       = RheologyPar.ContinuousSimplified.sigma;  
    psi         = RheologyPar.ContinuousSimplified.psi;  
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    P_T_default = RheologyPar.ContinuousSimplified.P_T_default;  
    omega       = RheologyPar.ContinuousSimplified.omega; 
    SmoothFactor = RheologyPar.ContinuousSimplified.SmoothFactor; 

     
    % Geometry: 
    RaIn        = GeometryPar.RaIn; 
    %InclRad     = GeometryPar.InclRad; 

  

  
    if (exist ('SimMode', 'var')) == 0 
        SimMode = 0; 
    end     

     

  
% Vector parameters: 
    % k, n, yp,         Rheology parameters  
    % Dns               Fluid density                                                               

* New  
    % VelLiq,                Bulk flow velocity inside string RELATIVE 

to the string velocity   
    % RaIn,               Inner radius of the pipe 
    % xi, sigma, psi,   Parameters used in f_yp 
    % P_T_default, omega,   Parameters used in f_0  
    % Re_net,           The net Reynoldsnumber defined here as 

Re/VelLiq^(2-n),  
    %                   i.e. it is only dependent on the constant 

parameters k, n, Dns and R   

     
% Scalar parameters:   
    % FlowRegime        1 means 100% laminar, 0 means 100% turbulent 

in-between means transitional flow    
    % P_T_default,          A parameter in the smootening function for 

laminar flow, designed to give best accuracy   
    % SmoothFactor,     A factor in f_0, for increasing computational 

speed of the ODE-solver  
                      % Choosing 1 instead of 0 will slightly reduce 

the accuracy around zero flow rates. 

  

     
    % Laminar flow: 
        [Tw_HB_il Tw_PL_il] = Tw_stringLaminar(k, n, yp, VelLiq, RaIn, 

SmoothFactor, xi, sigma, psi, P_T_default, omega, SimMode); 

  
    % Turbulent flow: 
        Tw_it           = Tw_stringTurbulent(Re_net, n, VelLiq, Dns); 

  

                                                                                 
    % The combined solution:         
        Tw_HB_i     = Tw_HB_il  .* (FlowRegime)  + Tw_it  .* (1-

FlowRegime);    

         
end 

  

  

  
function [Tw_HB_il, Tw_PL_il] = Tw_stringLaminar(k, n, yp, VelLiq, 

RaIn, SmoothFactor, xi, sigma, psi, P_T_default, omega, SimMode) 
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% Computing the shear stress for laminar flow (with dimensions): 

  
    Tw_PL_il    = -sign(VelLiq) .* k .*( (3*n+1)./(n.*RaIn) 

.*abs(VelLiq) ).^n;                         % Shear stressfor PL fluids (i.e. 

without the yield point) 

  
    if yp == 0                  % When yp is 0, it reduces to PowerLaw 

rheology. This condition is necessary to avoid dividing with zero when both 

yp and VelLiq are zero. 
        Tw_HB_il = Tw_PL_il;    % - although not neede for nonzero 

VelLiq, it will be correct since PL and HB gives same results in this case.   

         
    elseif SimMode == 1     % 100% YP-effect 
        xi = 1; 
        f_yp    = 1 + n./(2*n+1) .*(1 -xi.*(sigma.*yp ./(sigma.*yp + 

abs(Tw_PL_il))).^psi);  % TODO: Denne er litt feil pga f0 kompensasjon - Finn 

eksakt (enklere)  
        Tw_HB_il = Tw_PL_il  +  sign(Tw_PL_il) .* yp .* f_yp;                                

% The complete function for HB fluids  

         
    else 
        f_yp    = 1 + n./(2*n+1) .*(1 -xi.*(sigma.*yp ./(sigma.*yp + 

abs(Tw_PL_il))).^psi);     % The yield point effect of HB-fluids     

  
        P_T     = P_T_default .* 10.^SmoothFactor;                                        

% SmoothFactor: Range: [-2, 3], Default: 0 
        P_frac  = (abs(Tw_PL_il)./P_T).^omega; 
        f_0     = sign(Tw_PL_il) .* P_frac ./ ( yp.^omega + P_frac );               

% The smoothening function  

  
        Tw_HB_il = (abs(Tw_PL_il) + yp .* f_yp) .* f_0;                             

% The complete function for HB fluids  
    end 

  
end 

  

  

  
function Tw_it = Tw_stringTurbulent(Re_net, n, VelLiq, Dns) 

     
% Computing the shear stress for Turbulent flow (with dimensions): 

  
    a       = (log10(n) +3.93)./50;     % Friction factor component 

for non_Newtonian turbulent flow (Blasius-like approximation) 
    b       = (1.75-log10(n))./7;       % Friction factor component 

for non_Newtonian turbulent flow (Blasius-like approximation) 

  

     
    Tw_it   = -1/2 * a./(Re_net.^b) .* Dns .*   sign(VelLiq) .* 

abs(VelLiq).^(2-2*b+n.*b); 

             

     

     
% Note, normally we would write: 
    % Re    = 8*Dns/k *(2*RaIn*n/(6*n+2))^n *abs(VelLiq)^(2-n);    % 

Reynoldsnumber  
    % f     = a/(Re^b)                                      % friction 

factor (Blasius)   
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    % Tw_it = -1/2 * f * Dns * VelLiq *abs(VelLiq);                   % 

Wall shear stress 

  
    % However, this will give infinite f for zero flow, and result in 

Tw_it=NaN.  
    % By rearranging and shortening the velocities, we get the correct 

value Tw_it=0 for VelLiq=0.   

            
end 

 

A.20 DsMain_Horizontal_2xOrd_ODE.m 

 

% -------------------------------------------------------------------

-----  
% ODE function for fluid inside the drillstring with 2 state variables 

pr grid and nGr grids (2*nGr order ++)  
%                             
% The drillstring is allowed to move and accelerate (velocityPipe > 

0). In that case, the fluid inside the string will be 
% in a moving reference frame. As a consequence, the reference frame 

will accelerate when the string is accelerating.  
% Hence, we have to include a 'fictitious' force of the fluid in the 

drill string when the string is accelerating.  

  
% The string motion used here as input should ideally be taken from 

the dynamic velocities for each solid element in a solid String model   
% However, only the velocity of the last element, giving bit velocity 

and depth, will be used as input here.    
%  
% One of the inputs is ThrottleClosePct, which is for throttling the 

flow area in the string or one 
% cell. This can be used for simulating scenarios like plugged drill 

string.   
% -------------------------------------------------------------------

-----  

  

  
function dxdt = DsMain_Horizontal_2xOrd_ODE(Inputs, InputsPrGrid, 

StateVector, Var, p, GlobCstPhysic)     

             
    % Global Constants: 
    g                   = GlobCstPhysic.g; 
    Bar2Pascal          = GlobCstPhysic.Bar2Pa; 
    Pascal2Bar          = GlobCstPhysic.Pa2Bar; 
    LPM2CMS             = GlobCstPhysic.Lpm2Cms; 
    CMS2LPM             = GlobCstPhysic.Cms2Lpm; 

     
    nGr = p.nGridsDs;   % Number of cells/grids 

     
    %ZeroFlowLimitLpm = 1E-34; 
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    % STUDENT: i HAVE Switch to LaminarOnly here. you must make the 

missing code below  
    % 
    FlowRegime          = 'LaminarOnly'; 
    %FlowRegime          = 'LaminarTurb'; 

      

     
    % Input variables - Scalars: 
    FlowUpStmLpm        = Inputs(1);     
    PresDnStmBar        = Inputs(2);     
    ThrottleClosePct    = Inputs(3);    % To be able to block/restrict 

flow area in a grid (here scalar).  

     
    % Input variables - Vectors:  
    %AccDsAxlCurr    = -InputsPrGrid(:,3);   % Inverted sign since 

fluid is positive down, while Solid string is positive up  
    AccDsAxlCalc    = -InputsPrGrid(:,5);   % Inverted sign since fluid 

is positive down, while Solid string is positive up  
    % 
    % Testing two different inputs for string accelerations:  TODO: 

Remove 'AccDsAxlCurr' - Keep only the one calculated in DsFlu_Step => No 

extra requirements on DsSol  
    AccelerationPipe = AccDsAxlCalc';   % If switching to other input 

- remember to also switch in BhaAndBit   

     

     

     
    % Prepare vectors of State variables and density  
    % (Extended vectors are vectors where an extra fictive cell is 

added at front or at the end for easier looping)  
    % 
    FlowLpm = StateVector(p.BiasFlowDs+1:p.BiasFlowDs+nGr); 
    FlowExtendedCms = [FlowLpm; FlowUpStmLpm]' * LPM2CMS;  % Adds the 

top boundary flow at the end of the vector  

     
    PresBar = StateVector(p.BiasPresDs+1:p.BiasPresDs+nGr);     
    PresPaExtended  = [PresDnStmBar; PresBar]' * Bar2Pascal; % Adds the 

downstream boundary flow at the beginning of the vector  

     
    DensityExtended = p.Fluid.DensityNom(1) *ones(1, nGr+1);  % TODO: 

Implement the function: Density = f(PressurePa)  % Inludes the dummy element  

     
    % Calculate delta-flow and delta-pressure over the grids 
    dFlowrateCms = p.ZeroVectorGridsDs;  % Flow in minus flow out for 

each grid 
    dPressurePa = p.ZeroVectorGridsDs;   % Pressure in curret grid 

minus pressure in downstream grid - for each grid  
    for i=1:nGr 
        dFlowrateCms(i) = -FlowExtendedCms(i) + FlowExtendedCms(i+1) 

*DensityExtended(i+1)/DensityExtended(i);  % Note: Dummies are added 
        dPressurePa(i) = PresPaExtended(i+1) - PresPaExtended(i);    % 

Note: The indexes in PressurePaExtended are shifted one up due to dummy  
    end     

     
    % Remove extra element in the extended vectors 
    FlowCms     = FlowExtendedCms(1:nGr);  
    Density     = DensityExtended(1:nGr);  
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    % Option for adding drillstring wash-out / leakage etc. 
    FlowLeakCms = p.ZeroVectorGridsDs;      % TODO: compute it from 

annulus pressure and inputs  

  

     

     
    % ############ The differential equation (ODE) for pressure 

(Conservation of Mass) ############    
    % 
    % Rate of change of Pressure in Drill string:  
    dDtPressureBar = Pascal2Bar *  p.Fluid.BulkModulus ./ p.Volume .* 

(dFlowrateCms - FlowLeakCms);  
    % 
    % 

###########################################################################

################## 

             

     

     

     

     
    % Calculate the extra pressure drop due to throttling the a cell 

or whole pipe: 
    % 
    if p.ThrottleGridOrPoint == 0         
        % Throttle only one cell by p.ThrottleActive 
        ThrottleOpenPctVct =  100 * p.UnityVectorGridsDs - 

(p.ThrottleActive .* ThrottleClosePct); 
    else                                     
        % Throttle the whole pipe  
        ThrottleOpenPctVct =  100 * p.UnityVectorGridsDs - 

ThrottleClosePct; 
    end     
    dPresConstrAbsPa = PressureDropOverConstriction(FlowCms, Density, 

p.ConstrDischarge, p.ConstrArea, ThrottleOpenPctVct);  % Positive since 

FlowCms always > 0      
    dPresConstrPa    = sign(FlowCms) .* dPresConstrAbsPa; 

     
    % Calculate the pressure forces 
    dPresEff = dPressurePa - dPresConstrPa;     % Effective pressure 

over each grid  
    Fp = p.AreaCrs .* dPresEff;                 % The pressure force 

over each grid  

     

  
    % Gravity forces:  
    Fg = g * p.Fluid.DensityNom .* p.LengthPrGrid .* p.AreaCrs .* 

sin(p.InclHrzRad); % TODO: Make and Call function that calculates current 

Density based on current pressure  

  

     
    % Fictitious force if the string is accelerating (since the pipe 

is the reference frame):  
    MassFluid   = p.Volume .* p.Fluid.DensityNom;          
    Ffic        = -MassFluid .* AccelerationPipe;    % Fictitious force 

has opposite sign as acceleration of reference frame (pipe) when 

signconvention is equal   
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    % Minor forces:     % Future: Add forces resulting from tool joints 

and other constrictions in the string/BHA  
    Fmin = p.ZeroVectorGridsDs; % = Kmina1 .* (velocity_fluid.^2); 

     

         
    % Wall shear stress for use in Friction forces:       
    % 
    if FlowRegime == 'LaminarOnly'  % STUDENT: USE THIS ONE 

                                            
        VelocityPipe = 0;   % Since the pipe motion is the reference 

frame  
        GeometryPar.RadiusInn = p.RadiusInn;  
        GeometryPar.AreaCrs   = p.AreaCrs;  

         
        % STUDENT: FINISH THIS FUNCTION  
        wallshearStressPipeLaminar = 

Tw_stringNewtonianLaminar(FlowCms, VelocityPipe, GeometryPar, p.Fluid);  

         
        Ff = wallshearStressPipeLaminar .* p.AreaSrf; 

                 

         

         
    elseif FlowRegime == 'LaminarTurb'  % STUDENT: DONT'USE THIS ONE 

     
        VelocityPipe = 0;   % Since the pipe motion is the reference 

frame      
        k  = p.Fluid.Viscosity.ConsistencyIndex; 
        n  = p.Fluid.Viscosity.FlowBehaviorIndex;     
        yp = p.Fluid.Viscosity.YieldPoint; 

         
        % For Turbulent vs Laminar flow: Computing Reynoldsnumber and 

weight-number for flow regime:   
        G_empty     = (1./(3*n+1)).^n;        % Parameter valid for 

empty hole below bit 
        G           = G_empty; 

  
        VelocityLiquid = FlowCms ./ p.AreaCrs - VelocityPipe; 
        [ReLam ReLamNet] = fReynoldsNumber(VelocityLiquid, k, n, 

p.Fluid.DensityNom, p.RadiusInn, G);   % TODO: p.Fluid.DensityNom = 

p.Fluid.DensityCur 
        [FlowRegime, Re_cr, Re_ce] = fTransition(ReLam, n, 

GlobCstPhysic.ReNmbCstPipe.CritNom, GlobCstPhysic.ReNmbCstPipe.TurbNom, 

GlobCstPhysic.ReNmbCstPipe.Delta_n0, ... 
                                     

GlobCstPhysic.ReNmbCstPipe.TrnsMinVal);  % TODO: Splitte i to funksjoner: 

fReCriticalNCenter og fTransition (Returnerer samme Re_cr og Re_ce hver gang)   
        Re_net      = ReLamNet; 

  
        FluidPar.Dns            = p.Fluid.DensityNom;         % TODO: 

Use p.Fluid.DensityCur;   
        RheologyPar.ModelType   = 'Herschel Bulkley';   
        RheologyPar.ViscosityHb.k   = k; 
        RheologyPar.ViscosityHb.n   = n; 
        RheologyPar.ViscosityHb.yp  = yp;   
        RheologyPar.ContinuousSimplified.xi         = 

p.Fluid.RheologyPipe.xi;  % RheologyPipe is comuted for all grids initially 
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        RheologyPar.ContinuousSimplified.sigma      = 

p.Fluid.RheologyPipe.sigma;  
        RheologyPar.ContinuousSimplified.psi        = 

p.Fluid.RheologyPipe.psi; 
        RheologyPar.ContinuousSimplified.P_T_default    = 

p.Fluid.RheologyPipe.PT; 
        RheologyPar.ContinuousSimplified.omega          = 

p.Fluid.RheologyPipe.Omega; 
        RheologyPar.ContinuousSimplified.SmoothFactor   = 

p.Fluid.RheologyPipe.SmoothFactor; 
        GeometryPar.RaIn = p.RadiusInn;         %GeometryPar.AreaCrs   

= p.AreaCrs;  

         
        SimMode = 1;    % Gives absolute YP 
        [wallshearStressPipeTotal, TwTurb, TwLam, TwPlLam] = 

TwPipeGeoLamTurb(VelocityLiquid, Re_net, FlowRegime, GeometryPar, FluidPar, 

RheologyPar, SimMode); 

         

         
        % Ensuring that the yp-force does not initiate flow when it 

comes to rest (due to dicrete time points)   
        % 
        Ff = p.ZeroVectorGridsDs; 
        for i = 1:nGr          
            if abs(FlowLpm(i)) == 0    % OK to test against 0 here 

because it i is set to zero  
                Fsum = Fp(i) + Fg(i) + Ffic(i) + Fmin(i);              
                if abs(wallshearStressPipeTotal(i)) > 0         % Will 

never happen 
                    'abs(wallshearStressPipeTotal(i)) > 0 - Will never 

happen' 
                else 
                    if yp(i) * p.AreaSrf(i) > abs(Fsum)     % If the 

yp has higher potensial than Fsum, it is reduced to Fsum  
                        Ff(i) = -Fsum;                      % Ff must 

be set directly here to avoid numerical round-off 
                        wallshearStressPipeTotal(i) =  

Ff(i)/p.AreaSrf(i); 
                        %wallshearStressPipeTotal(i) = -

Fsum/p.AreaSrf(i); 
                    else         
                        wallshearStressPipeTotal(i) = -yp(i) * 

sign(Fsum); 
                        Ff(i) = wallshearStressPipeTotal(i) .* 

p.AreaSrf(i);      
                    end 
                end                    
            else 
                Ff(i) = wallshearStressPipeTotal(i) .* p.AreaSrf(i);  
            end 
        end         

         
    else 
        'Flow regime type is missing' 
        pause 
    end 
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    % ############ Conservation of Momentum on fluid in Drill string 

###########  
    % 
    % The derivative dQdt in SI units: 
    dDtFlowLpm = CMS2LPM * p.AreaCrs ./ MassFluid .* (Fp + Ff + Fg + 

Ffic + Fmin);  % Sign of Ff (Tw) is negative when flow>0 
    % 
    % 

#####################################################################  

  

         

     
    % ####### Aligning the outputs into one vector that is returned 

#######  
    % 
    dxdt = [dDtFlowLpm'; dDtPressureBar'];     
    % 
    % 

#####################################################################  

     
end 
 

A.21 DsMain_Horizontal_2xOrd_OLD_ODE.m 

 

% -------------------------------------------------------------------

-----  
% 
% ODE function for fluid inside the drillstring with 2 state variables 

pr grid and nGr grids (2*nGr order ++)  
%                             
% The boundaries between the grids inside string can be different from 

borehole grids, and their lengths may be varying.  
% All grid boundaries follow the string motion, including the first 

one,  
% which may start at the hook or just below the Seabed (follows the 

hook or StringSolid.PosBot(1)). 
% 
% The reference frame of the fluid is the moving grids. As a 

consequence, the reference frame will accelerate when the string is 

accelerating.  
% Hence, we have to include a 'fictitious' force of the fluid in the 

drill string when the string is accelerating.  

  
% The string motion used here as input should ideally be taken from 

the dynamic velocities for each solid element in StringSolid.   
% However, only the velocity of the last element, giving bit velocity 

and depth, will be used here.    
%  
% The input ThrottlingOpenPct is for throttling the flow area in the 

BHA 
% (assuming there is additional resistance due to mud motor or similar) 
% Scenarios for plugges drill string should be simulated by directly  
% manipulating the AreaConstr for relevant grids.   
% 
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% -------------------------------------------------------------------

-----  

  

  
function dxdt = DsMain_Horizontal_2xOrd_ODE(Inputs, InputsPrGrid, 

StateVector, Var, p, GlobCstPhysic)     

             
    % Global Constants: 
    g                   = GlobCstPhysic.g; 
    %PresAtmospherePa    = GlobalConstPhysic.PresAtmPa;   % TODO: For 

use later when pipe is disconnected    
    Bar2Pascal          = GlobCstPhysic.Bar2Pa; 
    Pascal2Bar          = GlobCstPhysic.Pa2Bar; 
    LPM2CMS             = GlobCstPhysic.Lpm2Cms; 
    CMS2LPM             = GlobCstPhysic.Cms2Lpm; 

     
    %ZeroFlowLimitLpm = GlobCstPhysic.ZeroFlowLimitLpm; 
    %ZeroFlowLimitLpm = p.ZeroFlowLimitLpm; 
    ZeroFlowLimitLpm = 1E-34; 

     
    %p.AreaSrf     
    %MassFluid   = p.Volume .* p.Fluid.DensityNom;  
    %p.Fluid.Viscosity.YieldPoint; 

         

     

     
    %FlowRegime          = 'LaminarOnly'; 
    FlowRegime          = 'LaminarTurb'; 

      

     
    % Input variables - Scalars: 
    FlowUpStmLpm        = Inputs(1);     
    PresDnStmBar        = Inputs(2);     
    ThrottleClosePct    = Inputs(3);    % To be able to block/restrict 

flow area in a grid (here scalar).  

     
    % Input variables - Vectors:  
    %VelDsAxlCurr   = InputsPrGrid(:,1);  
    %VelDsAngCurr   = InputsPrGrid(:,2);  
    AccDsAxlCurr    = -InputsPrGrid(:,3);   % Inverted sign since fluid 

is positive down, while Solid string is positive up  
    %AccDsAngCurr   = InputsPrGrid(:,4);  
    AccDsAxlCalc    = -InputsPrGrid(:,5);   % Inverted sign since fluid 

is positive down, while Solid string is positive up  

     
    % Testing two different inputs for string accelerations:  TODO: 

Remove 'AccDsAxlCurr' - Keep only the one calculated in DsFlu_Step => No 

extra requirements on DsSol  
    %AccelerationPipe = AccDsAxlCurr';  
    AccelerationPipe = AccDsAxlCalc';   % If switching to other input 

- remember to also switch in BhaAndBit   

     

     

     
    % Parameters: 
    nGr = p.nGridsDs;   % = nBit = GridNumberBit; 

  
    FlowLpm = StateVector(p.BiasFlowDs+1:p.BiasFlowDs+nGr); 
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    %     if max(FlowLpm) > 1 
    %        'stop';  
    %     end 
    %for i = 1:nGr  
    %    if abs(FlowLpm(i)) > 0 && abs(FlowLpm(i)) < ZeroFlowLimitLpm 
    %        'Flow under Limit' 
    %    end 
    %end  
    FlowLpm_Test = FlowLpm .* (abs(FlowLpm) > ZeroFlowLimitLpm); 

  

     

  

     

     
    FlowExtendedCms = [FlowLpm; FlowUpStmLpm]' * LPM2CMS;  % Adds the 

top boundary flow at the end of the vector  
    PresPaExtended  = [PresDnStmBar; 

StateVector(p.BiasPresDs+1:p.BiasPresDs+nGr)]' * Bar2Pascal; % Adds the 

downstream boundary flow at the beginning of the vector  
    DensityExtended = p.Fluid.DensityNom(1) *ones(1, nGr+1);  % TODO: 

Implement the function: Density = f(PressurePa)  % Inludes the dummy element  

     
    FlowLeakCms = p.ZeroVectorGridsDs;   % For drillstring wash-out etc 

-  TODO: compute it from annulus pressure and inputs  

     
    dFlowrateCms = p.ZeroVectorGridsDs;  % Flow in minus flow out for 

each grid 
    dPressurePa = p.ZeroVectorGridsDs;   % Pressure in curret grid 

minus pressure in down stream grid - for each grid  
    for i=1:nGr 
        dFlowrateCms(i) = -FlowExtendedCms(i) + FlowExtendedCms(i+1) 

*DensityExtended(i+1)/DensityExtended(i);  % Note: Dummies are added 
        dPressurePa(i) = PresPaExtended(i+1) - PresPaExtended(i);    % 

Note: The indexes in PressurePaExtended are shifted one up due to dummy  
    end     

     
    FlowCms     = FlowExtendedCms(1:nGr);  
    %PressurePa  = PressurePaExtended(1:nGr);  
    Density     = DensityExtended(1:nGr);  

     

  

     

     
%   ############   Conservation of Mass on fluid in Drill string    

############    

  
    % Rate of change of Pressure in Drill string:  
    dDtPressureBar = Pascal2Bar *  p.Fluid.BulkModulus ./ p.Volume .* 

(dFlowrateCms - FlowLeakCms);  % There is no volume change here due to moving 

grids  

     

             

     

     
%   ############   Conservation of Momentum on fluid in Drill string    

############    
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    % Pressure forces:          

  
    if p.ThrottleGridOrPoint == 0         
        % Throttle at a point given by p.ThrottleActive 
        ThrottleOpenPctVct    =  100 * p.UnityVectorGridsDs - 

(p.ThrottleActive .* ThrottleClosePct); 
    else                                     
        % Throttle whole grid  
        ThrottleOpenPctVct    =  100 * p.UnityVectorGridsDs - 

ThrottleClosePct; 
    end                 

  
    dPresConstrAbsPa = PressureDropOverConstriction(FlowCms, Density, 

p.ConstrDischarge, p.ConstrArea, ThrottleOpenPctVct);  % Positive since 

FlowCms always > 0      
    dPresConstrPa    = sign(FlowCms) .* dPresConstrAbsPa; 
%     if min(dPresConstrPa) < 0 
%        'dPressureConstrictionPa < 0';  
%     elseif min(dPresConstrPa) > 0 
%         dPresConstrPa 
%     end 
    Fp = p.AreaCrs .* (dPressurePa - dPresConstrPa);  % Effective 

pressure over the grid  

  
    % Gravity forces:  
    Fg = g * p.Fluid.DensityNom .* p.LengthPrGrid .* p.AreaCrs .* 

sin(p.InclHrzRad); % TODO: Make and Call function that calculates current 

Density based on current pressure  

  
    % Fictitious force (since the pipe is the reference frame):  
    MassFluid   = p.Volume .* p.Fluid.DensityNom;          
    Ffic        = -MassFluid .* AccelerationPipe;    % Fictitious force 

has opposite sign as acceleration of reference frame (pipe) when 

signconvention is equal   

  
    % Minor forces:     % Future: Add forces resulting from tool joints 

and other constrictions in the string/BHA  
    Fmin = p.ZeroVectorGridsDs; % = Kmina1 .* (velocity_fluid.^2); 

     

     

     

  
    % Wall shear stress for use in Friction forces:       

     
    if FlowRegime == 'LaminarOnly' 

                                            
        VelocityPipe = 0;   % Since the pipe motion is the reference 

frame  
        GeometryPar.RadiusInn = p.RadiusInn;  
        GeometryPar.AreaCrs   = p.AreaCrs;  
        [wallshearStressPipeLaminar, Tw_PL_lam] = 

Tw_stringLaminarHBSimple(FlowCms, VelocityPipe, GeometryPar, p.Fluid);  
        wallshearStressPipeTotal = wallshearStressPipeLaminar 
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        %Ff = wallshearStressPipeLaminar .* p.AreaSrf; 

         
%     elseif FlowRegime == 'LaminarOnly_OLD' 
%  
%         VelocityPipe = 0;   % Since the pipe motion is the reference 

frame  
%         GeometryPar.RadiusInn = p.RadiusInn;  
%         GeometryPar.AreaCrs   = p.AreaCrs;  
%         [wallshearStressPipeLaminar, Tw_PL_lam] = 

Tw_stringLaminarHBSimple(FlowExtendedCms(1:nGr), VelocityPipe, GeometryPar, 

p.Fluid);  
%         Ff = wallshearStressPipeLaminar .* p.AreaSrf; 

         

  
% TA MED DETTE: 
        %[TwHbTot, TwHbTurb, TwHbLam, TwPlLam] =  

TwPipeGeoLamTurb(VelLiq, Re_net, FlowRegime, GeometryPar, FluidPar, 

RheologyPar)  
        %TwReal = TwHbTot, YpReal, Time, Q)      % For å gjøre den 

glatt men likevel med 100% YP-effekt med valgfri verdi ved Q->0.  
        %Ff = TwHbTot .* p.AreaSrf; 

         
    elseif FlowRegime == 'LaminarTurb' 

     
        VelocityPipe = 0;   % Since the pipe motion is the reference 

frame      
        k  = p.Fluid.Viscosity.ConsistencyIndex; 
        n  = p.Fluid.Viscosity.FlowBehaviorIndex;     
        yp = p.Fluid.Viscosity.YieldPoint; 

         
        % For Turbulent vs Laminar flow: Computing Reynoldsnumber and 

weight-number for flow regime:   
        %Ga          = (1./(4*na+2)).^na;        % Parameter valid for 

annulus  
        G_empty     = (1./(3*n+1)).^n;        % Parameter valid for 

empty hole below bit 
        %G           = [Ga(1:nBit);  G_empty(nBit+1:nBh)];  
        G           = G_empty; 

  
        VelocityLiquid = FlowCms ./ p.AreaCrs - VelocityPipe; 
        [ReLam ReLamNet] = fReynoldsNumber(VelocityLiquid, k, n, 

p.Fluid.DensityNom, p.RadiusInn, G);   % TODO: p.Fluid.DensityNom = 

p.Fluid.DensityCur 
        [FlowRegime, Re_cr, Re_ce] = fTransition(ReLam, n, 

GlobCstPhysic.ReNmbCstPipe.CritNom, GlobCstPhysic.ReNmbCstPipe.TurbNom, 

GlobCstPhysic.ReNmbCstPipe.Delta_n0, ... 
                                     

GlobCstPhysic.ReNmbCstPipe.TrnsMinVal);  % TODO: Splitte i to funksjoner: 

fReCriticalNCenter og fTransition (Returnerer samme Re_cr og Re_ce hver gang)   
        Re_net      = ReLamNet; 

  
        FluidPar.Dns            = p.Fluid.DensityNom;         % TODO: 

Use p.Fluid.DensityCur;   
        RheologyPar.ModelType   = 'Herschel Bulkley';   
        RheologyPar.ViscosityHb.k   = k; 
        RheologyPar.ViscosityHb.n   = n; 
        RheologyPar.ViscosityHb.yp  = yp;   
        RheologyPar.ContinuousSimplified.xi         = 

p.Fluid.RheologyPipe.xi;  % RheologyPipe is comuted for all grids initially 
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        RheologyPar.ContinuousSimplified.sigma      = 

p.Fluid.RheologyPipe.sigma;  
        RheologyPar.ContinuousSimplified.psi        = 

p.Fluid.RheologyPipe.psi; 
        RheologyPar.ContinuousSimplified.P_T_default    = 

p.Fluid.RheologyPipe.PT; 
        RheologyPar.ContinuousSimplified.omega          = 

p.Fluid.RheologyPipe.Omega; 
        RheologyPar.ContinuousSimplified.SmoothFactor   = 

p.Fluid.RheologyPipe.SmoothFactor; 
        GeometryPar.RaIn = p.RadiusInn;         %GeometryPar.AreaCrs   

= p.AreaCrs;  

         
        SimMode = 1;    % Gives absolute YP 
        [wallshearStressPipeTotal, TwTurb, TwLam, TwPlLam] = 

TwPipeGeoLamTurb(VelocityLiquid, Re_net, FlowRegime, GeometryPar, FluidPar, 

RheologyPar, SimMode); 

  

         
    else 
        'Flow regime type is missing' 
        pause 
    end 

  

  

  
    % Ensuring that the yp-force does not initiate flow when it comes 

to rest (due to dicrete time points)   
    Ff = p.ZeroVectorGridsDs; 
    for i = 1:nGr  
        %if abs(FlowLpm(i)) < ZeroFlowLimitLpm    % There is no flow  
        %    if abs(FlowLpm(i)) > 0          % Just checking 
        %        'stop' 
        %    end 

         
        if abs(FlowLpm(i)) == 0    % OK to test against 0 here because 

it i is set to zero  

             
            Fsum = Fp(i) + Fg(i) + Ffic(i) + Fmin(i);  

             
            if abs(wallshearStressPipeTotal(i)) > 0         % Will 

never happen 
                'abs(wallshearStressPipeTotal(i)) > 0 - Will never 

happen' 
            else 
                if yp(i) * p.AreaSrf(i) > abs(Fsum)     % If the yp 

has higher potensial than Fsum, it is reduced to Fsum  
                    Ff(i) = -Fsum;                      % Ff must be 

set directly here to avoid numerical round-off 
                    wallshearStressPipeTotal(i) =  Ff(i)/p.AreaSrf(i); 
                    %wallshearStressPipeTotal(i) = -Fsum/p.AreaSrf(i); 

                     
                else         
                    wallshearStressPipeTotal(i) = -yp(i) * sign(Fsum); 
                    Ff(i) = wallshearStressPipeTotal(i) .* 

p.AreaSrf(i);      
                end 
            end 
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            %if sign(Fsum) ~= sign(wallshearStressPipeTotal)  % burde 

hatt (i) 
            %    if abs(wallshearStressPipeTotal(i) * p.AreaSrf(i)) > 

abs(Fsum)    
            %        wallshearStressPipeTotal(i) = -Fsum/p.AreaSrf(i); 
            %    end 
            %end    
                        %Fsum = abs(Fp(i) + Fg(i) + Ffic(i) + Fmin(i));      

% All forces except friction 
                        %if yp(i) * p.AreaSrf(i) > Fsum  % Sjekk at 

Ffic skal være med her... 
            %             if abs(wallshearStressPipeTotal(i)) * 

p.AreaSrf(i) > Fsum      
            %                 wallshearStressPipeTotal(i) = -

Fsum/p.AreaSrf(i); 
            %             end 

                    
        else 
            Ff(i) = wallshearStressPipeTotal(i) .* p.AreaSrf(i);  
        end 
    end 
    %Ff = wallshearStressPipeTotal .* p.AreaSrf;         

  

  
    % The derivative dQdt in SI units: 
    dDtFlowLpm = CMS2LPM * p.AreaCrs ./ MassFluid .* (Fp + Ff + Fg + 

Ffic + Fmin);  % Sign of Ff (Tw) is negative when flow>0 

  

  

         

     
%   ############   Aligning the outputs    ############  

  
    dxdt = [dDtFlowLpm'; dDtPressureBar'];     

     

     
end 
 

A.22 PipeFlu_SemiImplicitPDE.m 

 

% -------------------------------------------------------------------

-----  
% 
% PDE function for fluid inside the drillstring with X variables pr 

grid and nGr grids  
%                             
% All grid boundaries follow the string motion, including the first 

one,  
% which may start at the hook or just below the Seabed (follows the 

hook or StringSolid.PosBot(1)). 
% 
% The reference frame of the fluid is the moving grids. As a 

consequence, the reference frame will accelerate when the string is 

accelerating.  
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% Hence, we have to include a 'fictitious' force of the fluid in the 

drill string when the string is accelerating.  

  
% The string motion used here as input should ideally be taken from 

the dynamic velocities for each solid element in StringSolid.   
% However, only the velocity of the last element, giving bit velocity 

and depth, will be used here.    
%  
% The input ThrottlingOpenPct is for throttling the flow area in the 

BHA 
% (assuming there is additional resistance due to mud motor or similar) 
% Scenarios for plugged drill string should be simulated by directly  
% manipulating the AreaConstr for relevant grids.   
% 
% -------------------------------------------------------------------

-----  

  

  
function dxdt = PipeFlu_SemiImplicitPDE(Inputs, InputsPrGrid, VelLiq, 

VelGas, Pres, Var, p, GlobCstPhysic, TsLocal) 
                                                      %(Inputs, 

InputsPrGrid, StateVector, Var, p, GlobCstPhysic)     

             
    % Global Constants: 
    g                   = GlobCstPhysic.g; 
    Bar2Pascal          = GlobCstPhysic.Bar2Pa; 
    Pascal2Bar          = GlobCstPhysic.Pa2Bar; 
    LPM2CMS             = GlobCstPhysic.Lpm2Cms; 
    CMS2LPM             = GlobCstPhysic.Cms2Lpm; 

     
    ZeroFlowLimitLpm = 1E-34;     

     
    %FlowRegime          = 'LaminarOnly'; 
    FlowRegime          = 'LaminarTurb'; 

      

     
    % Input variables - Scalars: 
    FlowUpStmLpm        = Inputs(1); 
    FlowUpStmGasLpm     = 0; 
    PresDnStmBar        = Inputs(2);     
    ThrottleClosePct    = Inputs(3);    % To be able to block/restrict 

flow area in a grid (here scalar).  

     
    % Input variables - Vectors:  
    %VelDsAxlCurr   = InputsPrGrid(:,1);  
    %VelDsAngCurr   = InputsPrGrid(:,2);  
    AccDsAxlCurr    = -InputsPrGrid(:,3);   % Inverted sign since fluid 

is positive down, while Solid string is positive up  
    %AccDsAngCurr   = InputsPrGrid(:,4);  
    AccDsAxlCalc    = -InputsPrGrid(:,5);   % Inverted sign since fluid 

is positive down, while Solid string is positive up  

     
    % Testing two different inputs for string accelerations:  TODO: 

Remove 'AccDsAxlCurr' - Keep only the one calculated in DsFlu_Step => No 

extra requirements on DsSol  
    %AccelerationPipe = AccDsAxlCurr';  
    AccelerationPipe = AccDsAxlCalc';   % If switching to other input 

- remember to also switch in BhaAndBit   
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    % Parameters: 
    nGr = p.nGridsDs;   % = nBit = GridNumberBit; 

  
    FlowLpm = VelLiq .* p.AreaCrs; 
    % Pres = StateVector(p.BiasPresDs+1:p.BiasPresDs+nGr) 
    %, VelGas, Pres 

     

     
    FlowExtendedCms = [FlowLpm; FlowUpStmLpm]' * LPM2CMS;  % Adds the 

top boundary flow at the end of the vector  
    PresPaExtended  = [PresDnStmBar; Pres]' * Bar2Pascal; % Adds the 

downstream boundary flow at the beginning of the vector  
    DensityExtended = p.Fluid.DensityNom(1) *ones(1, nGr+1);  % TODO: 

Implement the function: Density = f(PressurePa)  % Inludes the dummy element  

     
    FlowLeakCms = p.ZeroVectorGridsDs;   % For drillstring wash-out etc 

-  TODO: compute it from annulus pressure and inputs  

     
    dFlowrateCms = p.ZeroVectorGridsDs;  % Flow in minus flow out for 

each grid 
    dPressurePa = p.ZeroVectorGridsDs;   % Pressure in curret grid 

minus pressure in down stream grid - for each grid  
    for i=1:nGr 
        dFlowrateCms(i) = -FlowExtendedCms(i) + FlowExtendedCms(i+1) 

*DensityExtended(i+1)/DensityExtended(i);  % Note: Dummies are added 
        dPressurePa(i) = PresPaExtended(i+1) - PresPaExtended(i);    % 

Note: The indexes in PressurePaExtended are shifted one up due to dummy  
    end     

     
    FlowCms     = FlowExtendedCms(1:nGr);  
    %PressurePa  = PressurePaExtended(1:nGr);  
    Density     = DensityExtended(1:nGr);  

     

  

     

     
%   ############   Conservation of Mass on fluid in Drill string    

############    

  
    % Rate of change of Pressure in Drill string:  
    dDtPressureBar = Pascal2Bar *  p.Fluid.BulkModulus ./ p.Volume .* 

(dFlowrateCms - FlowLeakCms);  % There is no volume change here due to moving 

grids  

     

             

     

     
%   ############   Conservation of Momentum on fluid in Drill string    

############    

     
    % Pressure forces:          

  
    if p.ThrottleGridOrPoint == 0         
        % Throttle at a point given by p.ThrottleActive 
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        ThrottleOpenPctVct    =  100 * p.UnityVectorGridsDs - 

(p.ThrottleActive .* ThrottleClosePct); 
    else                                     
        % Throttle whole grid  
        ThrottleOpenPctVct    =  100 * p.UnityVectorGridsDs - 

ThrottleClosePct; 
    end                 
    dPresConstrAbsPa = PressureDropOverConstriction(FlowCms, Density, 

p.ConstrDischarge, p.ConstrArea, ThrottleOpenPctVct);  % Positive since 

FlowCms always > 0      
    dPresConstrPa    = sign(FlowCms) .* dPresConstrAbsPa; 
    Fp = p.AreaCrs .* (dPressurePa - dPresConstrPa);  % Effective 

pressure over the grid  

  
    % Gravity forces:  
    Fg = g * p.Fluid.DensityNom .* p.LengthPrGrid .* p.AreaCrs .* 

sin(p.InclHrzRad); % TODO: Make and Call function that calculates current 

Density based on current pressure  

  
    % Fictitious force (since the pipe is the reference frame):  
    MassFluid   = p.Volume .* p.Fluid.DensityNom;          
    Ffic        = -MassFluid .* AccelerationPipe;    % Fictitious force 

has opposite sign as acceleration of reference frame (pipe) when 

signconvention is equal   

  
    % Minor forces:     % Future: Add forces resulting from tool joints 

and other constrictions in the string/BHA  
    Fmin = p.ZeroVectorGridsDs; % = Kmina1 .* (velocity_fluid.^2); 

     

     

  
    % Wall shear stress for use in Friction forces:       
    if FlowRegime == 'LaminarOnly' 

                                            
        VelocityPipe = 0;   % Since the pipe motion is the reference 

frame  
        GeometryPar.RadiusInn = p.RadiusInn;  
        GeometryPar.AreaCrs   = p.AreaCrs;  
        [wallshearStressPipeLaminar, Tw_PL_lam] = 

Tw_stringLaminarHBSimple(FlowCms, VelocityPipe, GeometryPar, p.Fluid);  
        wallshearStressPipeTotal = wallshearStressPipeLaminar;         
        % TA MED DETTE: 
        %[TwHbTot, TwHbTurb, TwHbLam, TwPlLam] =  

TwPipeGeoLamTurb(VelLiq, Re_net, FlowRegime, GeometryPar, FluidPar, 

RheologyPar)  
        %TwReal = TwHbTot, YpReal, Time, Q)      % For å gjøre den 

glatt men likevel med 100% YP-effekt med valgfri verdi ved Q->0.  
        %Ff = TwHbTot .* p.AreaSrf; 

         
    elseif FlowRegime == 'LaminarTurb' 

     
        VelocityPipe = 0;   % Since the pipe motion is the reference 

frame      
        k  = p.Fluid.Viscosity.ConsistencyIndex; 
        n  = p.Fluid.Viscosity.FlowBehaviorIndex;     
        yp = p.Fluid.Viscosity.YieldPoint; 

         
        % For Turbulent vs Laminar flow: Computing Reynoldsnumber and 

weight-number for flow regime:   
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        %Ga          = (1./(4*na+2)).^na;        % Parameter valid for 

annulus  
        G_empty     = (1./(3*n+1)).^n;        % Parameter valid for 

empty hole below bit 
        %G           = [Ga(1:nBit);  G_empty(nBit+1:nBh)];  
        G           = G_empty; 

  
        VelocityLiquid = FlowCms ./ p.AreaCrs - VelocityPipe; 
        [ReLam ReLamNet] = fReynoldsNumber(VelocityLiquid, k, n, 

p.Fluid.DensityNom, p.RadiusInn, G);   % TODO: p.Fluid.DensityNom = 

p.Fluid.DensityCur 
        [FlowRegime, Re_cr, Re_ce] = fTransition(ReLam, n, 

GlobCstPhysic.ReNmbCstPipe.CritNom, GlobCstPhysic.ReNmbCstPipe.TurbNom, 

GlobCstPhysic.ReNmbCstPipe.Delta_n0, ... 
                                     

GlobCstPhysic.ReNmbCstPipe.TrnsMinVal);  % TODO: Splitte i to funksjoner: 

fReCriticalNCenter og fTransition (Returnerer samme Re_cr og Re_ce hver gang)   
        Re_net      = ReLamNet; 

  
        FluidPar.Dns            = p.Fluid.DensityNom;         % TODO: 

Use p.Fluid.DensityCur;   
        RheologyPar.ModelType   = 'Herschel Bulkley';   
        RheologyPar.ViscosityHb.k   = k; 
        RheologyPar.ViscosityHb.n   = n; 
        RheologyPar.ViscosityHb.yp  = yp;   
        RheologyPar.ContinuousSimplified.xi         = 

p.Fluid.RheologyPipe.xi;  % RheologyPipe is comuted for all grids initially 
        RheologyPar.ContinuousSimplified.sigma      = 

p.Fluid.RheologyPipe.sigma;  
        RheologyPar.ContinuousSimplified.psi        = 

p.Fluid.RheologyPipe.psi; 
        RheologyPar.ContinuousSimplified.P_T_default    = 

p.Fluid.RheologyPipe.PT; 
        RheologyPar.ContinuousSimplified.omega          = 

p.Fluid.RheologyPipe.Omega; 
        RheologyPar.ContinuousSimplified.SmoothFactor   = 

p.Fluid.RheologyPipe.SmoothFactor; 
        GeometryPar.RaIn = p.RadiusInn;         %GeometryPar.AreaCrs   

= p.AreaCrs;  

         
        SimMode = 1;    % Gives absolute YP 
        [wallshearStressPipeTotal, TwTurb, TwLam, TwPlLam] = 

TwPipeGeoLamTurb(VelocityLiquid, Re_net, FlowRegime, GeometryPar, FluidPar, 

RheologyPar, SimMode); 

  

         
    else 
        'Flow regime type is missing' 
        pause 
    end 

  

  

  
    % Ensuring that the yp-force does not initiate flow when it comes 

to rest (due to dicrete time points)   
    Ff = p.ZeroVectorGridsDs; 
    for i = 1:nGr  
        %if abs(FlowLpm(i)) < ZeroFlowLimitLpm    % There is no flow  
        %    if abs(FlowLpm(i)) > 0          % Just checking 
        %        'stop' 
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        %    end 

         
        if abs(FlowLpm(i)) == 0    % OK to test against 0 here because 

it i is set to zero  

             
            Fsum = Fp(i) + Fg(i) + Ffic(i) + Fmin(i);  

             
            if abs(wallshearStressPipeTotal(i)) > 0         % Will 

never happen 
                'abs(wallshearStressPipeTotal(i)) > 0 - Will never 

happen' 
            else 
                if yp(i) * p.AreaSrf(i) > abs(Fsum)     % If the yp 

has higher potensial than Fsum, it is reduced to Fsum  
                    Ff(i) = -Fsum;                      % Ff must be 

set directly here to avoid numerical round-off 
                    wallshearStressPipeTotal(i) =  Ff(i)/p.AreaSrf(i); 
                    %wallshearStressPipeTotal(i) = -Fsum/p.AreaSrf(i); 

                     
                else         
                    wallshearStressPipeTotal(i) = -yp(i) * sign(Fsum); 
                    Ff(i) = wallshearStressPipeTotal(i) .* 

p.AreaSrf(i);      
                end 
            end                    
        else 
            Ff(i) = wallshearStressPipeTotal(i) .* p.AreaSrf(i);  
        end 
    end 
    %Ff = wallshearStressPipeTotal .* p.AreaSrf;         

  

  
    % The derivative dQdt in SI units: 
    dDtFlowLpm = CMS2LPM * p.AreaCrs ./ MassFluid .* (Fp + Ff + Fg + 

Ffic + Fmin);  % Sign of Ff (Tw) is negative when flow>0 

  

  

         

     
%   ############   Aligning the outputs    ############  

  
    dxdt = [dDtFlowLpm'; dDtPressureBar'];     

     

     
end 
 

A.23 PipeFluHrz_2xOrd_Setup 

 

% -------------------------------------------------------------------

-----  
% 
% Setup for Simplified Horizontal Pipe. 
%  
% Maps input units and forms to ODE units and forms 
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% Establish variables for plotting. 
% Calls Init function to data object create structure. 
% 
% -------------------------------------------------------------------

-----  

  

  
function [PipeFluIf, PipeFluObj] = PipeFluHrz_2xOrd_Setup(ObjectName, 

InitBoundaries, ParIn, FluidNom, GlobalConstPhysic, GlobalConstSim)  

         
    % Global Constants:     
    nGlobalSteps = GlobalConstSim.nGlobalSteps; 
    GlobalTimeStep = GlobalConstSim.GlobalTimeStep; 

     
    Solver = 'RungeKutta4';     
    %Solver = 'EulerFirstOrder'; 

         

  

     
    if length(ParIn.LengthPrGrid) > 0 
        %'Use a predefined grid-length vector with possible variable 

length => Par.nGridsDsFluTotal is ignored' 
        % If total length is too long, it will be truncated. If total 

length is shorter than needed, a final grid will be added on top with the 

length of the residual - NO Wrong.  
        nGr                 = ParIn.nGrids;           
        p.LengthTotal       = sum(ParIn.LengthPrGrid); 
        p.GridLenDsUniform  = [];      
        p.LengthPrGrid    = ParIn.LengthPrGrid; 

         
    elseif length(ParIn.LengthPrGrid) == 0  % [] 
        % Divide the Pipe in a number of grids with equal lengths by 

using Par.nGridsDsFluTotal: 
        nGr                 = ParIn.nGridsDsFluTotal;            
        p.LengthTotal       = PosDsBoundTop - PosDsBoundBot;            
        p.GridLenDsUniform  = p.LengthTotal/nGr;   
        p.LengthPrGrid    = p.GridLenDsUniform * ones(1, nGr); 

  
    end 
    %p.nGridsDs  = nGr; 

     
    p.ZeroVectorGridsDs   = zeros(1, nGr);  
    p.UnityVectorGridsDs  = ones(1, nGr);  

  
    % Initial values of State variables set according to Boundaies: 
    FlowInitLpm = p.UnityVectorGridsDs * 

InitBoundaries.FlowBoundUpStmLpm; 
    PresInitBar = p.UnityVectorGridsDs .* 

InitBoundaries.PresBoundDnStmBar;  
    DensityInit = p.UnityVectorGridsDs .* FluidNom.Density; 
    %PresInitBar(nGr) = InitBoundaries.PresBoundTopBar; 

     
    % Flow contriction related 
    p.ConstrictionOpenPst   = ParIn.ConstrictionOpenPst;    
    p.ThrottleActive        = ParIn.ThrottleActive;  
    p.ThrottleGridOrPoint   = ParIn.ThrottleGridOrPoint; 

     
    p.FluidNom = FluidNom; 
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    % AVERAGE Drillstring inner diameter of each grid from bottom and 

up (Last to first): 
    p.RadiusInn     = ParIn.DiameterInnIn./2 * 2.54/100;  
    p.InclHrzRad    = (ParIn.InclFromVrtDeg - 90)/180 .* pi();  

     

     
    % Initiates the Generic Sub-model:   
    PipeFluObj = PipeFluGen_2xOrd_Init(ObjectName, p, FlowInitLpm, 

PresInitBar, DensityInit, FluidNom);  

  

     
% --- Set the Internal VAriables, Parameters and Constants ---      
    %PipeFluObj.Par = p;  
    PipeFluObj.Var = [];  

  

  

     
    if Solver == 'RungeKutta4' 
        PipeFluObj.Cst.Solver   = @Solver_RK4_New; 
        PipeFluObj.Cst.nTsLocal = 

ceil(GlobalTimeStep/PipeFluObj.Cst.T_max_RK4);        % Future: test on solver 

type  
        %PipeFluObj.Cst.tLocal          = 

GlobalTimeStep/PipeFluObj.Cst.nLocalTimeSteps;  
        PipeFluObj.Cst.NumStableMode =  1;  % Removes oscillaitons in 

RK-steps and delays change of sign of states   
        PipeFluObj.Cst.NumericStabilizationMode = 1; %optional input 

parameter that may be set to one in order to remove ocsillations and change 

of sign between the RK iterations 

         
    elseif Solver == 'EulerFirstOrder' 
        PipeFluObj.Cst.Solver   = @Euler1; 
        PipeFluObj.Cst.nTsLocal = 

ceil(GlobalTimeStep/PipeFluObj.Cst.T_max_Euler); 
        %PipeFluObj.Cst.tLocal          = 

GlobalTimeStep/PipeFluObj.Cst.nTsLocal;          
        PipeFluObj.Cst.NumStableMode =  1;  % Removes oscillaitons in 

RK-steps and delays change of sign of states   
        PipeFluObj.Cst.NumericStabilizationMode = 0;  
    end 
    PipeFluObj.Cst.TsLocal          = 

GlobalTimeStep/PipeFluObj.Cst.nTsLocal; 

     

     

         
    %ZeroFlowLimitLpm = GlobCstPhysic.ZeroFlowLimitLpm; 
    MassFluid   = PipeFluObj.Par.Volume .* 

PipeFluObj.Par.Fluid.DensityNom; 
    if 0 
        yp = PipeFluObj.Par.Fluid.Viscosity.YieldPoint; 
        ZeroFlowLimitCms = max(GlobalTimeStep .* 

PipeFluObj.Par.AreaCrs ./MassFluid .* yp .* PipeFluObj.Par.AreaSrf);  
    else     
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        dPresPrTimeStepPa = PipeFluObj.Par.Fluid.BulkModulus ./ 

PipeFluObj.Par.Volume .* GlobalConstPhysic.dFlowInMaxPrSecCms .* 

GlobalTimeStep; 
        dForcePrTimeStep  = dPresPrTimeStepPa .* 

PipeFluObj.Par.AreaCrs; 
        ZeroFlowLimitCms = max(GlobalTimeStep .* 

PipeFluObj.Par.AreaCrs ./MassFluid .* dForcePrTimeStep) / 1; 
    end 
    ZeroFlowLimitLpm = ZeroFlowLimitCms * 60000 / 10000; 
    disp(['ZeroFlowLimitLpm = ', num2str(ZeroFlowLimitLpm)]); 
    PipeFluObj.Par.ZeroFlowLimitLpm = ZeroFlowLimitLpm; 

     

     

     
    % Set the default Initial Inputs (needed for setting InputsPrev in 

first time step):       
    PipeFluIf.Inputs.FlowUpStmLpm   = 

InitBoundaries.FlowBoundUpStmLpm;   
    PipeFluIf.Inputs.PresDnStmBar   = 

InitBoundaries.PresBoundDnStmBar;  % Initialize with a boundary that gives 

steady conditions   
    PipeFluIf.Inputs.ThrottleClosePct = 0;   
    PipeFluIf.Inputs.VelDsAxl = 0; 
    PipeFluIf.Inputs.VelDsAng = 0; 
    PipeFluIf.Inputs.AccDsAxl = 0; 
    PipeFluIf.Inputs.AccDsAng = 0;         

     

     

     
    % States and additional variables in plot-order:  
    OutputsInitial = [PipeFluObj.States.Flow; 

PipeFluIf.Inputs.FlowUpStmLpm; PipeFluIf.Inputs.PresDnStmBar; 

PipeFluObj.States.Pres; DensityInit']; 
    pIntFc.OutputOrder   = length(OutputsInitial);    
    PipeFluIf.PlotMatrix = [OutputsInitial, zeros(pIntFc.OutputOrder, 

nGlobalSteps-1)];           

         

  

  
    % --- Setup for plotting ---  
    %pIntFc.PlotGrouping = [nGr+1, nGr+1, nGr];       % nGr+1 for P 

and Q? 
    %pIntFc.OutputNames  = {'Flow rates (LPM)','Pressure (Bar)', 

'Density'};   % , 'Wall shear stress', 'Frictional pressure drop' 
    pIntFc.PlotGrouping = [nGr+1, nGr+1];       % nGr+1 for P and Q? 
    pIntFc.OutputNames  = {'Flow rates (LPM)','Pressure (Bar)'};   

  

  
    % --- Set the Outputs ---  

  
    PipeFluIf.Par = pIntFc; 

  
    PipeFluIf.Outputs.Flow    = [PipeFluObj.States.Flow; 

PipeFluIf.Inputs.FlowUpStmLpm]; 
    PipeFluIf.Outputs.Pres    = [PipeFluIf.Inputs.PresDnStmBar; 

PipeFluObj.States.Pres];  
    PipeFluIf.Outputs.Dens    = p.ZeroVectorGridsDs';   
    %PipeFluIf.Outputs.FlowLeak    = p.ZeroVectorGridsDs'; 
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    %PipeFluIf.Outputs.ShearStressAxl = ShearStressAxl; 
    %PipeFluIf.Outputs.PresFrictionComp = PresFrictionComp;   

         

         
end 
 

A.24 PipeFluHrz_InputSignalGenerator.m 

 

%--------------------------------------------------------------------

------ 
% Generates smooth input signals from step/hold values 
% Smoothening can be done by a 1. order or 2. order filter 
%--------------------------------------------------------------------

------ 

  
function [FlowrateInput_1Order_0_2000_LPM, ThrottleInput_ClosePct] = 

PipeFluHrz_InputSignalGenerator(GlobalConstSim, GlobConstPhys) 

  

  
    % Generate Flowrate Input (from Main pump)   
    AmplNom         = 2000; 
    startValue      = 0; 
    holdTimes       = [1; 20];            
    holdValues      = [AmplNom; AmplNom];   
    filterOrder     = 2;  
    filterTime      = 1;   % Suitable for 2. order dynamics (w0 = 

1/filterTime) 
    [FlowrateInput_1Order_0_2000_LPM, 

FlowrateInput_1Order_0_2000_Integral] = fRampAndHold3(GlobalConstSim, 

filterOrder, filterTime, startValue, holdTimes, holdValues);      
    InputSignals.FlowrateIn = FlowrateInput_1Order_0_2000_LPM; 
    dFlowInMaxPrSecLpm = AmplNom/filterTime; 
    GlobConstPhys.dFlowInMaxPrSecCms = dFlowInMaxPrSecLpm / 60000; 

  

  

     
    % General Throttle/Constriction Input signal: 
    startValue  = 0; 
    holdTimes   = [45, 2];   
    holdValues  = [95, 0];  % Lavere enn 4 gir ustblit system ved bruk 

på DsMain (uavh av dT)  
    filterOrder = 1;  
    filterTime  = 0.25; 
    [ThrottleInput_ClosePct, ThrottlingInput_OpenPctIntegral] = 

fRampAndHold3(GlobalConstSim, filterOrder, filterTime, startValue, 

holdTimes, holdValues);      
    InputSignals.ThrottleValveClosePct = ThrottleInput_ClosePct;    

     

     

     
    % Flowrate Output (for Tank, Lift pump etc)   
    %startValue      = 0; 
    %holdTimes       = [20; 20];    
    %holdValues      = [4000; 0];  
    %filterOrder     = 2;  
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    %filterTime      = 2.5;   % 10 is Suitable for 1. ord. dyn; 2.5 is 

Suitable for 2. ord dyn. (w0 = 1/filterTime) 

     
    %[FlowOut_Dynamic_Lpm, FlowOut_Dynamic_Lpm_Integral] ... 
    %    = fRampAndHold3(GlobalConstSim, filterOrder, filterTime, 

startValue, holdTimes, holdValues);     

  

  
end 

 

A.25 PipeFluHrz_SemiImplicitPde_Setup.m 

 

% -------------------------------------------------------------------

-----  
% Setup for Simplified Horizontal Pipe. 
%  
% Maps input units and forms to ODE units and forms 
% Establish variables for plotting. 
% Calls Init function to data object create structure. 
% -------------------------------------------------------------------

-----  

  
function [PipeFluIf, PipeFluObj] = 

PipeFluHrz_SemiImplicitPde_Setup(ObjectName, InitBoundaries, ParIn, 

FluidNom, GlobalConstPhysic, GlobalConstSim)  
        % ExternalIfc, InternalObj 

         
    % Global Constants:     
    nGlobalSteps = GlobalConstSim.nGlobalSteps; 
    GlobalTimeStep = GlobalConstSim.GlobalTimeStep; 

     

     
    if length(ParIn.LengthPrGrid) > 0 
        %'Use a predefined grid-length vector with possible variable 

length => Par.nGridsDsFluTotal is ignored' 
        nGr                 = ParIn.nGrids;           
        p.LengthTotal       = sum(ParIn.LengthPrGrid); 
        p.GridLenDsUniform  = [];      
        p.LengthPrGrid    = ParIn.LengthPrGrid;         
    elseif length(ParIn.LengthPrGrid) == 0 
        ''; 
    end 

  

     
    p.ZeroVectorGridsDs   = zeros(1, nGr);  
    p.UnityVectorGridsDs  = ones(1, nGr);  

  
    % Initial values of State variables set according to Boundaies - 

Movw to INIT?  
    FlowInitLpm = p.UnityVectorGridsDs * 

InitBoundaries.FlowBoundUpStmLpm; 
    PresInitBar = p.UnityVectorGridsDs .* 

InitBoundaries.PresBoundDnStmBar;  
    DensityInit = p.UnityVectorGridsDs .* FluidNom.Density;    
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    % Flow contriction related 
    p.ConstrictionOpenPst   = ParIn.ConstrictionOpenPst;    
    p.ThrottleActive        = ParIn.ThrottleActive;  
    p.ThrottleGridOrPoint = ParIn.ThrottleGridOrPoint; 

     
    p.FluidNom = FluidNom; 

     
    % AVERAGE Drillstring inner diameter of each grid from bottom and 

up (Last to first): 
    p.RadiusInn     = ParIn.DiameterInnIn./2 * 2.54/100;  
    p.InclHrzRad    = (ParIn.InclFromVrtDeg - 90)/180 .* pi();  

     

     
     % Initiates variables i the Generic Pde based sub-model:  
    PipeFluObj = PipeFlu_PdeGen_Init(ObjectName, p, FlowInitLpm, 

PresInitBar, DensityInit, FluidNom);  

  

     
    % --- Set the Internal VAriables, Parameters and Constants ---      
    %PipeFluObj.Par = p;  
    PipeFluObj.Var = [];  

  

  
    % Set Solver etc 
    PipeFluObj.Cst.Solver   = @Solver_PdeSemiImplicit; 
    PipeFluObj.Cst.nTsLocal = ceil(GlobalTimeStep/1);  % 

PipeFluObj.Cst.T_max_RK4 
    %PipeFluObj.Cst.tLocal          = 

GlobalTimeStep/PipeFluObj.Cst.nLocalTimeSteps;          
    PipeFluObj.Cst.TsLocal          = 

GlobalTimeStep/PipeFluObj.Cst.nTsLocal; 

     

         
    %ZeroFlowLimitLpm = GlobCstPhysic.ZeroFlowLimitLpm; 
    MassFluid   = PipeFluObj.Par.Volume .* 

PipeFluObj.Par.Fluid.DensityNom; 
    if 0 
        yp = PipeFluObj.Par.Fluid.Viscosity.YieldPoint; 
        ZeroFlowLimitCms = max(GlobalTimeStep .* 

PipeFluObj.Par.AreaCrs ./MassFluid .* yp .* PipeFluObj.Par.AreaSrf);  
    else     
        dPresPrTimeStepPa = PipeFluObj.Par.Fluid.BulkModulus ./ 

PipeFluObj.Par.Volume .* GlobalConstPhysic.dFlowInMaxPrSecCms .* 

GlobalTimeStep; 
        dForcePrTimeStep  = dPresPrTimeStepPa .* 

PipeFluObj.Par.AreaCrs; 
        ZeroFlowLimitCms = max(GlobalTimeStep .* 

PipeFluObj.Par.AreaCrs ./MassFluid .* dForcePrTimeStep) / 1; 
    end 
    ZeroFlowLimitLpm = ZeroFlowLimitCms * 60000 / 10000; 
    disp(['ZeroFlowLimitLpm = ', num2str(ZeroFlowLimitLpm)]); 
    PipeFluObj.Par.ZeroFlowLimitLpm = ZeroFlowLimitLpm; 

     

     

     
    % Set the default Initial Inputs (needed for setting InputsPrev in 

first time step):       
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    PipeFluIf.Inputs.FlowUpStmLpm   = 

InitBoundaries.FlowBoundUpStmLpm;   
    PipeFluIf.Inputs.PresDnStmBar   = 

InitBoundaries.PresBoundDnStmBar;  % Initialize with a boundary that gives 

steady conditions   
    PipeFluIf.Inputs.ThrottleClosePct = 0;   
    PipeFluIf.Inputs.VelDsAxl = 0; 
    PipeFluIf.Inputs.VelDsAng = 0; 
    PipeFluIf.Inputs.AccDsAxl = 0; 
    PipeFluIf.Inputs.AccDsAng = 0;         

     

     

     
    % States and additional variables in plot-order:  
    OutputsInitial = [PipeFluObj.States.Flow; 

PipeFluIf.Inputs.FlowUpStmLpm; PipeFluIf.Inputs.PresDnStmBar; 

PipeFluObj.States.Pres; DensityInit']; 
    pIntFc.OutputOrder   = length(OutputsInitial);    
    PipeFluIf.PlotMatrix = [OutputsInitial, zeros(pIntFc.OutputOrder, 

nGlobalSteps-1)];           

         

  

  
    % --- Setup for plotting ---  
    %pIntFc.PlotGrouping = [nGr+1, nGr+1, nGr];       % nGr+1 for P 

and Q? 
    %pIntFc.OutputNames  = {'Flow rates (LPM)','Pressure (Bar)', 

'Density'};   % , 'Wall shear stress', 'Frictional pressure drop' 
    pIntFc.PlotGrouping = [nGr+1, nGr+1];       % nGr+1 for P and Q? 
    pIntFc.OutputNames  = {'Flow rates (LPM)','Pressure (Bar)'};   

  

  
    % --- Set the Outputs ---  
    PipeFluIf.Par = pIntFc; 

  
    PipeFluIf.Outputs.Flow    = [PipeFluObj.States.Flow; 

PipeFluIf.Inputs.FlowUpStmLpm]; 
    PipeFluIf.Outputs.Pres    = [PipeFluIf.Inputs.PresDnStmBar; 

PipeFluObj.States.Pres];  
    PipeFluIf.Outputs.Dens    = p.ZeroVectorGridsDs';   

         
end 

 

A 26 PipeFluHrz_Step.m 

 

% -------------------------------------------------------------------

-----  
% This function returns Output values for the next time step of a 

dynamic  
% model. It should be called directly from a Master algorithm that 

controls 
% the execution time (main time-loop). 
% 
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% The model may consist of Sub-models, and the outputs may be States 

from 
% ODE's or additional simulation variables computed from static 

equations  
% (typically with States as inputs).  
%  
% This Step function combines States and parameters of the Sub-models 

into 
% combined vectors and structures before calling a Solver with the 

Combined 
% ODE model as argument. I.e., the entire combined model is solved 
% simultaneously by the solver. 
% 
% The returning State values for the combined model are then splitted  
% into states for the Sub-models. And if additional simulation variables 
% are needed by the Master/other Sub-models, they are computed. Both 

States 
% and additional simulation variables are returnd in a separate Output 
% structure, while the Internal States are stored and updated in a 
% Structure whose internal structure is unknown for the Master. 
%  
% The Master also has to set the correct Inputs, including Inputs from  
% the previous time step. The latter is needed in order to compute  
% time-derivatives (for increased stability). This is done in a generic 

way 
% for all inputs. 
% 
% (The Master is responsible for pairing inputs and outputs 
% between all Sub-models based on confiruration of the total system.) 
%  
% NOTE for making scenarios by DSB: 
% When DSB modifies Parameters, the original values should be stored 

in a  
% copy structure and put back when scenario is finished. 
% The model will then recover naturally. Consider also storing States 

and 
% put these back for some special slow operations (instructor may 

decide) 
% 
% DelayedChangeOfSign is..  
% TODO: Include Turbulence 
% -------------------------------------------------------------------

-----      

     
function [Outputs, PipeFluObj] = PipeFluHrz_Step(Inputs, InputsPrev, 

PipeFluObj, GlobalConstPhysic, GlobalConstSim, SolverType)  

     

  
    GlobalTimeStep = GlobalConstSim.GlobalTimeStep;      
    TsLocal     = PipeFluObj.Cst.TsLocal; 
    nTsLocal    = PipeFluObj.Cst.nTsLocal; 

         
    Solver      = PipeFluObj.Cst.Solver;     

     

     
    EventBuilder = 0; 
    if EventBuilder == 1        % Flow restriciton (Pack-off etc) 
        PipeFluObj.Par.AreaCrs = PipeFluObj.Par.AreaCrsOrg - 

(PipeFluObj.Par.AreaCrsOrg .* PipeFluObj.Par.ThrottleActive .* 

Inputs.ThrottleClosePct/100); 
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        PipeFluObj.Par.RadiusInn = sqrt(PipeFluObj.Par.AreaCrs/pi);     
        PipeFluObj.Par.AreaSrf   = pi * 2*PipeFluObj.Par.RadiusInn .* 

PipeFluObj.Par.LengthPrGrid;   
        PipeFluObj.Par.Volume    = PipeFluObj.Par.AreaCrs .* 

PipeFluObj.Par.LengthPrGrid;         
    end    

     

     
    % ---   Preparing inputs - Note they are for total object (no 

splitting needed here)   ---  

   
    % Organize scalar inputs into vectors and find derivatives: 
    InputsScalarsCurr   = [Inputs.FlowUpStmLpm; Inputs.PresDnStmBar; 

Inputs.ThrottleClosePct];   
    InputsScalarsPrev   = [InputsPrev.FlowUpStmLpm; 

InputsPrev.PresDnStmBar; InputsPrev.ThrottleClosePct];  
    InputsScalarsDerv   = (InputsScalarsCurr - InputsScalarsPrev) ./ 

GlobalTimeStep;  % Computing derivatives  

     
    % Align VECTOR inputs to internal grid structure and find 

derivatives:  
    nGrTot  = PipeFluObj.Par.nGridsDs;  % = DsMainFluid.Par.nGridsDs + 

1; 
    VelDsAxlCurr    = 

AlignVectorsValuesToMultipleLength(Inputs.VelDsAxl, nGrTot); 
    VelDsAxlPrev    = 

AlignVectorsValuesToMultipleLength(InputsPrev.VelDsAxl, nGrTot);   
    VelDsAngCurr    = 

AlignVectorsValuesToMultipleLength(Inputs.VelDsAng, nGrTot); 
    VelDsAngPrev    = 

AlignVectorsValuesToMultipleLength(InputsPrev.VelDsAng, nGrTot);    

     
    AccDsAxlCurr    = 

AlignVectorsValuesToMultipleLength(Inputs.AccDsAxl, nGrTot); 
    AccDsAxlPrev    = 

AlignVectorsValuesToMultipleLength(InputsPrev.AccDsAxl, nGrTot);   
    AccDsAngCurr    = 

AlignVectorsValuesToMultipleLength(Inputs.AccDsAng, nGrTot); 
    AccDsAngPrev    = 

AlignVectorsValuesToMultipleLength(InputsPrev.AccDsAng, nGrTot); 

     
    % Assembling all input vectors in matrixes:  
    InputsPrGridCurr    = [VelDsAxlCurr, VelDsAngCurr, AccDsAxlCurr, 

AccDsAngCurr];  
    InputsPrGridPrev    = [VelDsAxlPrev, VelDsAngPrev, AccDsAxlPrev, 

AccDsAngPrev];  
    InputsPrGridDerv    = (InputsPrGridCurr - InputsPrGridPrev) ./ 

GlobalTimeStep;  % Computing derivatives  

     
    % Find Accelration of Ds based on derivative computed here and add 

to matrix of vectors: 
    AccDsAxlCalc = InputsPrGridDerv(:,1); 
    %InputsPrGridCurr = [InputsPrGridCurr, AccDsAxlCalc]; 
    InputsPrGridPrev = [InputsPrGridPrev, AccDsAxlCalc]; 
    InputsPrGridDerv = [InputsPrGridDerv, 

PipeFluObj.Par.ZeroVectorGridsDs'];     

     
    % Find first local inputs: 
    InputsScalarsLocal  = InputsScalarsPrev;     % Start with previous 

(Local increments are added before calling the Solver in the local time loop)  
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    InputsPrGridLocal   = InputsPrGridPrev;      % Start with previous 

(Local increments are added before calling the Solver in the local time loop)  

     

     
    % ---   Calling the solver and Step-function   --- 

     
    % ODE models 
    if strcmp(SolverType, "ODE") 
        NumStableMode = PipeFluObj.Cst.NumStableMode; 
        DelayedChangeOfSign = 0;    % Value 1 ensures that all variables 

go to zero before changing sign (reduces ocsillations for fluids with a yield 

point)  

         
        BiasFlowDs = PipeFluObj.Par.BiasFlowDs; 
        BiasPresDs = PipeFluObj.Par.BiasPresDs; 
        BiasDensDs = PipeFluObj.Par.BiasDensDs; 

         
        % Organizing States into one vector, and parameters of Sub-

models into one common Struct 
        StateVecLocal = [PipeFluObj.States.Flow; 

PipeFluObj.States.Pres];  

         
        % Keep the current flow for checking ChangeOfSign after Step() 
        FlowCurrent  = 

StateVecLocal(BiasFlowDs+1:BiasFlowDs+PipeFluObj.Par.nGridsDs); 

         
        for i = 1:nTsLocal 
            InputsScalarsLocal = InputsScalarsLocal + 

InputsScalarsDerv * TsLocal;     
            InputsPrGridLocal  = InputsPrGridLocal + InputsPrGridDerv 

* TsLocal;     
            StateVecLocal      = Solver(@DsMain_Horizontal_2xOrd_ODE, 

InputsScalarsLocal, InputsPrGridLocal, StateVecLocal, PipeFluObj.Var, 

PipeFluObj.Par, GlobalConstPhysic, TsLocal, NumStableMode);  

  

             
            % Error checking 
            if NanAndInfCheck(StateVecLocal, 'StateVecLocal 

DsFlu_Combined_ODE') 
                'NanAndInfCheck = True'; 
            end 
            % Error checking 
            if DelayedChangeOfSign == 1 
                FlowNew  = 

StateVecLocal(BiasFlowDs+1:BiasFlowDs+PipeFluObj.Par.nGridsDs); 
                ChangeOfSign = sign(FlowCurrent) .* sign(FlowNew); 
                for j=1:PipeFluObj.Par.nGridsDs 
                    if ChangeOfSign(j) < 0 
                        disp('Change Of Sign is delayed'); 

%nDelayedChangeOfSign = nDelayedChangeOfSign + 1; 
                    end 
                end 
                FlowToZeroOrNot = ChangeOfSign >= 0; 
                FlowNew = FlowNew .* FlowToZeroOrNot;  
                

StateVecLocal(BiasFlowDs+1:BiasFlowDs+PipeFluObj.Par.nGridsDs) = FlowNew; 
                FlowCurrent = FlowNew; 
            end 
        end 
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        % Error checking 
        if abs(InputsScalarsLocal - InputsScalarsCurr) > 1E-6 
            disp('Error in interpolating inputs') 
        end 

         
        %States are updated in the sub-object structures  
        PipeFluObj.States.Flow  = 

StateVecLocal(BiasFlowDs+1:BiasFlowDs+PipeFluObj.Par.nGridsDs); 
        PipeFluObj.States.Pres  = 

StateVecLocal(BiasPresDs+1:BiasPresDs+PipeFluObj.Par.nGridsDs); 

  

         
    % PDE models 
    elseif strcmp(SolverType, "PDE")  
        for i = 1:nTsLocal 
            VelLiq = PipeFluObj.States.Flow ./ PipeFluObj.Par.AreaCrs;  
            VelGas = PipeFluObj.States.Flow * 0; 
            Pres = PipeFluObj.States.Pres; 
            InputsScalarsLocal = InputsScalarsLocal + 

InputsScalarsDerv * TsLocal;     
            InputsPrGridLocal  = InputsPrGridLocal + InputsPrGridDerv 

* TsLocal;     
            [Pres, VelLiq, VelGas] = 

PipeFlu_SemiImplicitPDE(InputsScalarsLocal, InputsPrGridLocal, VelLiq, 

VelGas, Pres, ... 
                                                          

PipeFluObj.Var, PipeFluObj.Par, GlobalConstPhysic, TsLocal);  
            %StateVecLocal      = Solver(@DsMain_Horizontal_2xOrd_ODE, 

InputsScalarsLocal, InputsPrGridLocal, StateVecLocal, DsFluTotal.Var, 

DsFluTotal.Par, GlobalConstPhysic, TsLocal, NumStableMode);  
        end 

         
    else 
        ''; 
    end 

         

  
    VelocityPipe = 0;   % Since the pipe motion is the reference frame  
    PipeFluObj.Var.DensDyn = 

CalcFluidDensityFromEqOfState(PipeFluObj.States.Pres*GlobalConstPhysic.Bar2

Pa, PipeFluObj.Par.FluidNom.PresRefPa, PipeFluObj.Par.FluidNom.Density, 

PipeFluObj.Par.FluidNom.BulkModulus);      
    ThrottleOpenPctVct  =  100 * PipeFluObj.Par.UnityVectorGridsDs - 

(PipeFluObj.Par.ThrottleActive .* Inputs.ThrottleClosePct); 

            

     
    % Setting Outputs for Total model - Only these should be available 

for Master:  
    Outputs.Flow        = [PipeFluObj.States.Flow; Inputs.FlowUpStmLpm];  
    Outputs.Pres        = [Inputs.PresDnStmBar; PipeFluObj.States.Pres];  
    Outputs.Dens        = PipeFluObj.Var.DensDyn;    
    Outputs.ThrottleOpenPctVct = ThrottleOpenPctVct; 

     
end 

  

  
    % Determine internal time step (flytt fra StepGeneric) and 

interpolate inputs:  
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        % TODO: Copy from Old Step function but utilize derivatives (if 

non-zero)  

  

     
    % Call the Generic Step function with a Solver, Internal time step 

and ODE-Model as input:  
        % Repeate until a global time step is simulated   
        % Note: In case of several sub-models, it is the total model 

that 
        % is called here (decpoupling and coupling of variables are 

done in the Total ODE-Model) 
 

 

A.27 Tw_stringNewtonianLaminar.m 

 

% 

*************************************************************************   
% 
% The function returns average wall shear stress values (Tw) for  
% Newtonian fluids in circular PIPES in LAMINAR flow  
% when the bulk flow rate (v) is the dynamic input.  
%  
% Vectors where the elements represent each pipe segment/grid can be  
% provided as input => the output will be a vector.  
%  
% Future extensions:  
% Include laminar flow for Bingham plasic (BP) fluids and power law 

(PL) fluids. 
% 
% Note:  
% The frictional pressure gradient (Pa/m) is: dp/dz = 2/RaInn * Tw  
% - This can be derived from Eq. 3.2.8b in Gjerstad 2014 PhD thesis - 

Simplified Flow Equations for Single-Phase non-Newtonian Fluids in Couette-

Poiseuille Flow and in Pipes 
%  
% 

*************************************************************************   

  
%  
function [Tw] = Tw_stringNewtonianLaminar(Flowrate, velocityPipe, 

GeometryPar, FluidParameters) 

  
% If inputs are vectors, each parameter within the Structure must be a 

vector (not a vector of Structures) 

  

     
    RaInn   = GeometryPar.RadiusInn;    
    AreaCrs = GeometryPar.AreaCrs; 
    k       = FluidParameters.Viscosity.ConsistencyIndex; 
    %n       = FluidParameters.Viscosity.FlowBehaviorIndex; 
    %yp      = FluidParameters.Viscosity.YieldPoint; 

     

     
    %Flow inside string relative to string velocity (m/s): 
    velocityFluid = Flowrate./AreaCrs - velocityPipe;     
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    % Wall shear stress for Newtonian fluid in laminar flow: 
    % 
    Tw = -velocityFluid;   % STUDENT: THIS IS JUST A DUMMY FUNCTION -

> REPLACE THIS BY THE CORRECT FORMULA - USE HAGEN-POISEUILLE EQ +   
    %   REF Eqs. 3.2.5 - 3.2.8 in Gjerstad 2014 PhD thesis - Simplified 

Flow Equations for Single-Phase non-Newtonian Fluids in Couette-Poiseuille 

Flow and in Pipes 
    %   AND REPLACE THE AREAS BY RADIUS ETC.  

     
end 
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Appendix B Kjell Kåre Fjelde Model 

B.1 main17042023 

% Transient two-phase code based on AUSMV scheme: Gas and Water 
% The code assumes uniform geometry  

  
% time - Seconds 

  
% p - pressure at new time level (Pa) 
% dl - density of liquid at new time level (kg/m3) 
% dg - density of gas at new time level (kg/m3) 
% eg - phase volume fraction of gas at new time level (0-1) 
% ev - phase volume fraction of liquid at new time level (0-1) 
% vg - phase velocity of gas at new time level (m/s) 
% vl - phase velocity of liquid at new time level (m/s) 
% qv - conservative variables at new time level  ( 3 in each cell) 
% temp - temperature in well (K) 

  
% po - pressure at old time level (Pa) 
% dlo - density of liquid at old time level (kg/m3) 
% dgo - density of gas at new old level (kg/m3) 
% ego - phase volume fraction of gas at old time level (0-1) 
% evo - phase volume fraction of liquid at old time level (0-1) 
% vgo - phase velocity of gas at old time level (m/s) 
% vlo - phase velocity of liquid at old time level (m/s) 
% qvo - conservative variables at old  time level  ( 3 in each cell) 
% temp - temperature in well (K) 

  

  

  

  
clear; 
t = cputime 
tic, 

  
% Geometry data/ Must be specified 
welldepth = 4000; 
nobox = 25; %Number of boxes in the well 

  
% Note that one can use more refined grid, 50, 100 boxes. 
% When doing this, remember to reduce time step to keep the CFL number 
% fixed below 0.25.. dt < cfl x dx/ speed of sound in water. If boxes 

are 
% doubled, then half the time step. 

  
nofluxes = nobox+1;  % Number of cell boundaries 
dx = welldepth/nobox; % Boxlength 
%dt = 0.005; 

  
% Welldepth. Cell 1 start at bottom 
x(1)= -1.0*welldepth+0.5*dx; 
for i=1:nobox-1 
 x(i+1)=x(i)+ dx; 
end  
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% VERY IMPORTANT: BELOW THE TIMESTEP IS SET. MAKE SURE THAT THE 
% CFL CONDIDTION IS FULFILLED. IF NUMBER OF BOXES IS CHANGED. DX WILL 
% CHANGE AND DT HAS TO BE ADJUSTED TO KEEP THE CFL NUMBER FIXED. 

  
dt= 0.02;  % Timestep (seconds) 
dtdx = dt/dx; 
time = 0.0; % initial time. 
endtime = 300; % Time for ending simulation  (seconds) 
nosteps = endtime/dt;  %Number of total timesteps. Used in for loop. 
timebetweensavingtimedata = 0.1;  % How often in s we save data vs time 

for plotting. 
nostepsbeforesavingtimedata = timebetweensavingtimedata/dt; 

  
% Slip parameters used in the gas slip relation. vg =Kvmix+S 
k = 1.2; 
s = 0.55; 

  
% Boundary condition at outlet 
pbondout=1000000; % Pascal  (1 bar) 

  

  
% Initial temperature distribution. (Kelvin) 
% Note that this is only used if we use density models that depend on  
% temperature 

  
tempbot = 110+273;   
temptop = 50+273; 
tempgrad= (tempbot-temptop)/welldepth; 
tempo(1)=tempbot-dx/2*tempgrad; 
for i = 1:nobox-2 
  tempo(i+1)=tempo(i)-dx*tempgrad; 
end 
tempo(nobox)=tempo(nobox-1)-dx*tempgrad; 

  
temp = tempo; 

  
% Different fluid density parameters 
% Note how we switch between different models later. 
% These parameters are used when finding the  
% primitive variables pressure, densities in an analytical manner. 
% Changing parameters here, you must also change parameters inside the  
% density routines roliq and rogas. 

  
% Simple Water density model & Ideal Gas. See worknote Extension of 

AUSMV 
% scheme. 

  
rho0=1000;  % Water density at STC (Standard Condition) kg/m3 
Bheta=2.2*10^9; % Parameter that depend on the compressibility of water 
Alpha=0.000207; % Parameter related to thermal expansion/compression 
R = 286.9; % Ideal gas parameter 
P0=101000; % Pressure at STC (Pa) 
T0=15+273.15; % Temperature at STC (K) 

  

  

% Very simple models (PET510 compendium) 
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al = 1500; % Speed of sound in water.  
rt= 100000; % Ideal gas parameter in model rhog = p/rt  (rt = ag^2) 
rho0=1000; % Water density at STC (Standard Condition) kg/m3 
P0=101000; % Pressure at STC (Pa) 
T0=15+273.15; % Temperature at STC (K) 

  

  
% Viscosities (Pa*s)/Used in the frictional pressure loss model 

(dpfric).  
viscl = 0.5; % Liquid phase 
viscg = 0.0000182; % Gas phase 

  

  

  

   

  
% Gravity constant  

   
  g = 9.81; % Gravitational constant m/s2 

   
  g = 0; 

  
% Well opening. opening = 1, fully open well, opening = 0 (<0.01), the 

well 
% is fully closed. This variable will control what boundary conditions 

that 
% will apply at the outlet (both physical and numerical): We must change 
% this further below in the code if we want to change status on this. 

  
  wellopening = 1.0;  % This variable determines if  
%the well is closed or not, wellopening = 1.0 -> open. welllopening = 

0 
%-> Well is closed. This variable affects the boundary treatment. 

   
  bullheading = 0.0; % This variable can be set to 1.0 if we want to 

simulate 
% a bullheading operation. But the normal is to set this to zero.   

  

   
% Specify if the primitive variables shall be found either by 
% a numerical or analytical approach. If analytical = 1, analytical  
% solution is used. If analytical = 0. The numerical approach is used. 
% using the itsolver subroutine where the bisection numerical method 
% is used. We use analytical. 

  
  analytical = 1;  

  

   

  

  

  

  

  
% Initialization of rest of geometry. 
% Here we specify the outer and inner diameter and the flow area 
% We assume 12.25 x 5 inch annulus. But this can be modified. 
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   for i = 1:nobox 

  
    do(i)=0.331; 
    di(i) = 0.127; 

   
    area(i) = 3.14/4*(do(i)*do(i)- di(i)*di(i));      

     
   end 

    

   

     

  

    

    
% Initialization of slope limiters. These are used for  
% reducing numerical diffusion and will be calculated for each timestep. 
% They make the numerical scheme second order. 
  for i = 1:nobox 
    sl1(i)=0; 
    sl2(i)=0; 
    sl3(i)=0; 
    sl4(i)=0; 
    sl5(i)=0; 
    sl6(i)=0; 
  end 

   

     

  
% Now comes the intialization of the physical variables in the well. 
% First primitive variables, then the conservative ones. 

    

  

  

  

  
% Below we intialize pressure and fluid densities. We start from top 

of 
% the well and calculated downwards. The calculation is done twice with 
% updated values to get better approximation. Only hydrostatic 
% considerations since we start with a static well. 

  
for i = 1:nobox 
  eg(i)=0.0;  % Gas volume fraction 
  ev(i)=1-eg(i); % Liquid volume fraction 
end 

  
p(nobox)= pbondout+0.5*g*dx*... 
    (ev(nobox)*rholiq(P0,T0)+eg(nobox)*rogas(P0,T0));   % Pressure 

(Pa) 
dl(nobox)=rholiq(p(nobox),tempo(nobox));  % Liquid density kg/m3 
dg(nobox)=rogas(p(nobox),tempo(nobox));   % Gas density kg/m3 

  

  

  

  
for i=nobox-1:-1:1 
p(i)=p(i+1)+dx*g*(ev(i+1)*dl(i+1)+eg(i+1)*dg(i+1)); 



 115 

dl(i)=rholiq(p(i),tempo(i)); 
dg(i)=rogas(p(i),tempo(i));     
end  

  
 for i=nobox-1:-1:1 
  rhoavg1= (ev(i+1)*dl(i+1)+eg(i+1)*dg(i+1)); 
  rhoavg2= (ev(i)*dl(i)+eg(i)*dg(i));  
  p(i)=p(i+1)+dx*g*(rhoavg1+rhoavg2)*0.5; 
  dl(i)=rholiq(p(i),tempo(i)); 
  dg(i)=rogas(p(i),tempo(i)); 

  
 end  

  

% Intitialize phase velocities, volume fractions, conservative 

variables 
% and friction and hydrostatic gradients. 
% The basic assumption is static fluid, one phase liquid. 

  
for i = 1:nobox 
  vl(i)=0; % Liquid velocity new time level. 
  vg(i)=0; % Gas velocity at new time level 
  eg(i)=0.0;  % Gas volume fraction 
  ev(i)=1-eg(i); % Liquid volume fraction 
  qv(i,1)=dl(i)*ev(i)*area(i);  % Conservative variable for liquid mass 

(kg/m) 
  qv(i,2)=dg(i)*eg(i)*area(i);  % Conservative variable for gas mass 

(kg/m) 
  qv(i,3)=(dl(i)*ev(i)*vl(i)+dg(i)*eg(i)*vg(i))*area(i); % 

Conservative variable for mixture moementum 
  fricgrad(i)=0;   % Pa/m 
  hydgrad(i)=g*(dl(i)*ev(i)+eg(i)*dg(i));  % Pa/m 
end 

  

  
% Section where we also initialize values at old time level 

  

  
for i=1:nobox 
  dlo(i)=dl(i); 
  dgo(i)=dg(i); 
  po(i)=p(i); 
  ego(i)=eg(i); 
  evo(i)=ev(i); 
  vlo(i)=vl(i); 
  vgo(i)=vg(i); 
  qvo(i,1)=qv(i,1); 
  qvo(i,2)=qv(i,2); 
  qvo(i,3)=qv(i,3); 
end   

  

  
% Intialize fluxes between the cells/boxes 

  
for i = 1:nofluxes 
  for j =1:3    
   flc(i,j)=0.0; % Flux of liquid over box boundary 
   fgc(i,j)=0.0; % Flux of gas over box boundary 
   fp(i,j)= 0.0; % Pressure flux over box boundary 
  end     
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end     

  

  
%  Main program. Here we will progress in time. First som intializations 
% and definitions to take out results. The for loop below runs until 

the 
% simulation is finished. 

  
countsteps = 0; 
counter=0; 
printcounter = 1; 
pin(printcounter) = (p(1)+dx*0.5*hydgrad(1))/100000; % Pressure in bar 

at bottom for time storage 
pout(printcounter)= pbondout/100000; % Pressure at outlet of uppermost 

cell 
pnobox(printcounter)= p(nobox)/100000; % Pressure in middle of 

uppermost cell 
liquidmassrateout(printcounter) = 0;  % liquid mass rate at outlet kg/s 
gasmassrateout(printcounter)=0;   % gass mass rate at outlet kg/s 
timeplot(printcounter)=time;  % Array for time and plotting of 

variables vs time 
pitvolume=0; 
pitrate =0; 
pitgain(printcounter)=0; 

  
kickvolume=0; 
bullvolume=0; 

  

  
% The temperature is not updated but kept fixed according to the 
% initialization. 

  

  
% Now comes the for loop that runs forward in time. This is repeated 

for 
% every timestep. 

  
for i = 1:nosteps 
   countsteps=countsteps+1; 
   counter=counter+1; 
   time = time+dt;  % Step one timestep and update time. 

   

    

  

        
% Then a section where specify the boundary conditions.  
% Here we specify the inlet rates of the different phases at the  
% bottom of the pipe in kg/s. We interpolate to make things smooth. 
% It is also possible to change the outlet boundary status of the well 
% here. First we specify rates at the bottom and the pressure at the 

outlet 
% in case we have an open well. This is a place where we can change 

the 
% code to control simulations. If the well shall be close, wellopening 

must 
% be set to 0. It is also possible to reverse the flow (bullheading). 

  
% In the example below, we take a gas kick and then circulate this 
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% out of the well without closing the well. (how you not should perform 
% well control) 

  
% Note there are two variables wellopening and bullheading that can be 
% changed in the control structure below to close the well or start 
% reversing the flow i.e. pumping downwards. 

  
% Note that if we will change to bullheading throughout the control 

stucture,  
% the variable inletligmassrate 
% has to be defined as negative since pumping downwards at outlet will 

be 
% in negative direction (postive direction of flow has been chosen to 

be 
% upwards) 

  
% NB, NOTE THAT THIS IS ONE OF THE MAIN PLACES WHERE YOU HAVE TO ADJUST 

THE 
% CODE TO CONTROL THE SIMULATION SCENARIO. 

  
XX = 0; % Gasrate in kg/s 

  
YY= 2000*0.017; % Liquidrate in kg/s 

  
if (time < 10) 

   
  inletligmassrate=0.0; 
  inletgasmassrate=0.0;  

  
elseif ((time>=10) & (time < 20)) 
  inletligmassrate = YY*(time-10)/10;  % Interpolate the rate from 0 

to value wanted. 
  inletgasmassrate = XX*(time-10)/10; 

     
elseif ((time >=20) && (time<200))     
  inletligmassrate = YY; 
  inletgasmassrate = XX; 
elseif ((time >=200) & (time<210))  
%  inletligmassrate = YY-YY*(time-200)/10; 
  inletligmassrate = YY-YY*(time-200)/10; 
  inletgasmassrate = XX-XX*(time-200)/10;   
elseif (time > 210) 
  inletligmassrate=0;   
  inletgasmassrate=0;  

  
end   

  
% The commented code below are from some previous runs. It shows. e.g. 

how 
% we can close the well. 
%elseif((time>=500)&(time<510)) 
%   inletligmassrate = YY-YY*(time-500)/10; 
%   inletgasmassrate = XX-XX*(time-500)/10; 
% elseif(time>=510) 
%   inletligmassrate=0; 
%   inletgasmassrate=0; 
%   wellopening=0.0; 
% end 
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%XX = 4; 
% XX (kg/s) is a variable for introducing a kick in the well.  
%YY = 15; % Liquid flowrate (kg/s) (1 kg/s = 1 l/s approx) 
% if (time < 10) 
%    
%   inletligmassrate=0.0; 
%   inletgasmassrate=0.0;  
%  
% elseif ((time>=10) & (time < 20)) 
%   inletligmassrate = 0*(time-10)/10; 
%   inletgasmassrate = XX*(time-10)/10; 
%      
% elseif ((time >=20) & (time<110))     
%   inletligmassrate = 0; 
%   inletgasmassrate = XX; 
%   
% elseif ((time>=110)& (time<120)) 
%   inletligmassrate = 0; 
%   inletgasmassrate = XX-XX*(time-110)/10; 
% elseif ((time>=120&time<130)) 
%   inletligmassrate =0; 
%   inletgasmassrate =0; 
% elseif ((time>=130)&(time<300)) 
%   inletligmassrate =0; 
%   inletgasmassrate =0; 
% elseif ((time>=300)&(time<310)) 
%   inletligmassrate= YY*(time-300)/10; 
%   inletgasmassrate =0; 
% elseif((time>=310)) 
%   inletligmassrate= YY; 
%   inletgasmassrate =0; 
% end   

   
kickvolume = kickvolume+inletgasmassrate/dgo(1)*dt;  % Here we find the 

kickvolume  

  
% initially induced in the well. 

  

  

    

  

  
% Here we specify the physical outlet pressure. Here we have given the 

pressure as 
% constant. It would be possible to adjust it during openwell conditions 
% either by giving the wanted pressure directly (in the command lines 
% above) or by finding it indirectly through a chokemodel where the 

chokeopening 
% would have had to be  an input parameter. The chokeopening variable 

would equally had  
% to be adjusted inside the controle structure given above. 

  
 pressureoutlet = pbondout;  

  
% Based on these given physical boundary values combined with use  
% of extrapolations techniques 
% for the remaining unknowns at the boundaries, we will define the mass 

and  
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% momentum fluxes at the boundaries (inlet and outlet of pipe). 

  
% inlet/bottom fluxes first. 
   if (bullheading<=0) 
 % Here we pump from bottom        
     flc(1,1)= inletligmassrate/area(1); 
     flc(1,2)= 0.0; 
     flc(1,3)= flc(1,1)*vlo(1); 

  

      
     fgc(1,1)= 0.0; 
     fgc(1,2)= inletgasmassrate/area(1); 
     fgc(1,3)= fgc(1,2)*vgo(1); 

  
     fp(1,1)= 0.0; 
     fp(1,2)= 0.0;   

  
% Old way of treating the boundary      
%     fp(1,3)= po(1)+0.5*(po(1)-po(2)); %Interpolation used to find 

the  
% pressure at the inlet/bottom of the well. 

  
% New way of treating the boundary 
      fp(1,3)= po(1)... 
            +0.5*dx*(dlo(1)*evo(1)+dgo(1)*ego(1))*g... 
            +0.5*dx*fricgrad(1);  

  

      

  
   else 
     % Here we pump from the top. All masses are assumed to flow out 

of the 
     % well into the formation. We use first order extrapolation. 
     flc(1,1)=dlo(1)*evo(1)*vlo(1); 
     flc(1,2)=0.0; 
     flc(1,3)=flc(1,1)*vlo(1); 

      
     fgc(1,1)=0.0; 
     fgc(1,2)=dgo(1)*ego(1)*vgo(1); 
     fgc(1,3)=fgc(1,2)*vgo(1); 

      
     fp(1,1)=0.0; 
     fp(1,2)=0.0; 
     fp(1,3)=20000000;  (Pa) % This was a fixed pressure set at bottom 

when bullheading 
   end 

    

  

      

          
% Outlet fluxes (open & closed conditions) 

  
    if (wellopening>0.01) 

  
% Here open end condtions are given. We distinguish between bullheading 
% & normal circulation. 
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        if (bullheading<=0)  % Here we dont bullhead, i.e we circulate 

from bottom 

        
          % Here the is normal ciruclation and open well) 
            flc(nofluxes,1)= dlo(nobox)*evo(nobox)*vlo(nobox); 
            flc(nofluxes,2)= 0.0; 
            flc(nofluxes,3)= flc(nofluxes,1)*vlo(nobox); 

         

             
            fgc(nofluxes,1)= 0.0; 
            fgc(nofluxes,2)= dgo(nobox)*ego(nobox)*vgo(nobox); 
   %         fgc(nofluxes,2)=0; Activate if gas is sucked in!? 
            fgc(nofluxes,3)= fgc(nofluxes,2)*vgo(nobox); 

  
            fp(nofluxes,1)= 0.0; 
            fp(nofluxes,2)= 0.0; 
            fp(nofluxes,3)= pressureoutlet; 
        else 
            % Here we are bullheading. 
            flc(nofluxes,1)= inletligmassrate/area(nobox); 
            flc(nofluxes,2)= 0.0; 
            flc(nofluxes,3)= flc(nofluxes,1)*vlo(nobox); 

             
            fgc(nofluxes,1)=0.0; 
            fgc(nofluxes,2)=0.0; 
            fgc(nofluxes,3)=0.0; 

             
            fp(nofluxes,1)=0.0; 
            fp(nofluxes,2)=0.0; 
            fp(nofluxes,3)= po(nobox)... 
            -

0.5*dx*(dlo(nobox)*evo(nobox)+dgo(nobox)*ego(nobox))*g... 
            +0.5*dx*fricgrad(nobox); %check sign here on friction 
            % Physcially, the friction should be added when going from  
            % mid point in upper cell to outlet. But if fricgrad(nobox) 

is 
            % negative there should be a minus in front of the term to 

have 
            % + in the end. 
        end     
    else 

         

% Here closed end conditions are given 

  
         flc(nofluxes,1)= 0.0; 
         flc(nofluxes,2)= 0.0; 
         flc(nofluxes,3)= 0.0; 

         
         fgc(nofluxes,1)= 0.0; 
         fgc(nofluxes,2)= 0.0; 
         fgc(nofluxes,3)= 0.0; 

         
         fp(nofluxes,1)=0.0; 
         fp(nofluxes,2)=0.0; 

          
    %    Old way of treating the boundary      
    %     fp(nofluxes,3)= po(nobox)-0.5*(po(nobox-1)-po(nobox));        

     
    %    New way of treating the boundary 
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         fp(nofluxes,3)= po(nobox)... 
         -0.5*dx*(dlo(nobox)*evo(nobox)+dgo(nobox)*ego(nobox))*g; 
    %     -0.5*dx*fricgrad(nobox); % Neglect friction since well is 

closed.     
        end     

   

     
 % Implementation of slopelimiters. They are applied on the physical  
 % variables like phase densities, phase velocities and pressure. 

  
% It was found that if the slopelimiters were set to zero in 
% the boundary cells, the pressure in these became wrong. E.g. the 

upper 
% cell get an interior pressure that is higher than it should be e.g. 

when 
% being static (hydrostatic pressure was too high). The problem was 

reduced 
% by copying the slopelimiters from the interior cells. However, both 
% approaches seems to give the same BHP pressure vs time but the latter 
% approach give a more correct pressure vs depth profile. It is also 

better 
% to use when simulating pressure build up where the upper cell pressure 
% must be monitored. It should be checked more in detail before 

concluding. 
% BUT; there has been mass conservation problems with the scheme for 

the 
% case where the slopelimiters were copied (see master thesis of Keino) 
% A possible fix has been included below where the slopelimiter related 

to 
% the gas volume fraction is set to zero in the first cell. 

      
     for i=2:nobox-1 
      sl1(i)=minmod(dlo(i-1),dlo(i),dlo(i+1),dx); 
      sl2(i)=minmod(po(i-1),po(i),po(i+1),dx); 
      sl3(i)=minmod(vlo(i-1),vlo(i),vlo(i+1),dx); 
      sl4(i)=minmod(vgo(i-1),vgo(i),vgo(i+1),dx); 
      sl5(i)=minmod(ego(i-1),ego(i),ego(i+1),dx); 
      sl6(i)=minmod(dgo(i-1),dgo(i),dgo(i+1),dx); 
     end 

  
 % Slopelimiters in outlet boundary cell are set to zero!    
%      sl1(nobox)=0; 
%      sl2(nobox)=0; 
%      sl3(nobox)=0; 
%      sl4(nobox)=0; 
%      sl5(nobox)=0; 
%      sl6(nobox)=0; 

      
 % Slopelimiters in outlet boundary cell are copied from neighbour 

cell!  
     sl1(nobox)=sl1(nobox-1); 
     sl2(nobox)=sl2(nobox-1); 
     sl3(nobox)=sl3(nobox-1); 
     sl4(nobox)=sl4(nobox-1); 
     sl5(nobox)=sl5(nobox-1); 
     sl6(nobox)=sl6(nobox-1); 

       

% Slopelimiters in inlet boundary cell are set to zero!   
%      sl1(1)=0; 
%      sl2(1)=0; 
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%      sl3(1)=0; 
%      sl4(1)=0; 
%      sl5(1)=0; 
%      sl6(1)=0; 

  
% Slopelimiters in inlet boundary cell are copied from neighbour cell!   
     sl1(1)=sl1(2); 
     sl2(1)=sl2(2); 
     sl3(1)=sl3(2); 
     sl4(1)=sl4(2); 
     sl5(1)=sl5(2); 
     sl6(1)=sl6(2); 

   
% FIX FOR OMITTING THE GAS MASS CONSERVATION PROBLEM 
     sl5(1)=0; 

      

         
% Now we will find the fluxes between the different cells. 
% NB - IMPORTANE -  Note that if we change the compressibilities/sound 

velocities of  
% the fluids involved, we may need to do changes inside the csound 

function. 
% But the effect of this is unclear. 

  
     for j = 2:nofluxes-1       

   
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 % First order method is from here: If you want to test this, activate 

this 
 % and comment the second order code below. 
%        cl = csound(ego(j-1),po(j-1),dlo(j-1),k); 
%        cr = csound(ego(j),po(j),dlo(j),k); 
%        c = max(cl,cr);    
%        pll = psip(vlo(j-1),c,evo(j)); 
%        plr = psim(vlo(j),c,evo(j-1)); 
%        pgl = psip(vgo(j-1),c,ego(j)); 
%        pgr = psim(vgo(j),c,ego(j-1)); 
%        vmixr = vlo(j)*evo(j)+vgo(j)*ego(j); 
%        vmixl = vlo(j-1)*evo(j-1)+vgo(j-1)*ego(j-1); 
%         
%        pl = pp(vmixl,c); 
%        pr = pm(vmixr,c); 
%        mll= evo(j-1)*dlo(j-1); 
%        mlr= evo(j)*dlo(j); 
%        mgl= ego(j-1)*dgo(j-1); 
%        mgr= ego(j)*dgo(j); 
%         
%        flc(j,1)= mll*pll+mlr*plr; 
%        flc(j,2)= 0.0; 
%        flc(j,3)= mll*pll*vlo(j-1)+mlr*plr*vlo(j); 
%         
%        fgc(j,1)=0.0; 
%        fgc(j,2)= mgl*pgl+mgr*pgr; 
%        fgc(j,3)= mgl*pgl*vgo(j-1)+mgr*pgr*vgo(j); 
%         
%        fp(j,1)= 0.0; 
%        fp(j,2)= 0.0; 
%        fp(j,3)= pl*po(j-1)+pr*po(j); 
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 %  First order methods ends here 
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

        

        

  

       
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Second order method starts here: 
% Here slopelimiter is used on all variables except phase velocoties 

  
       psll = po(j-1)+dx/2*sl2(j-1); 
       pslr = po(j)-dx/2*sl2(j); 
       dsll = dlo(j-1)+dx/2*sl1(j-1); 
       dslr = dlo(j)-dx/2*sl1(j); 
       dgll = dgo(j-1)+dx/2*sl6(j-1); 
       dglr = dgo(j)-dx/2*sl6(j); 

        
       vlv = vlo(j-1)+dx/2*sl3(j-1); 
       vlh = vlo(j)-dx/2*sl3(j); 
       vgv = vgo(j-1)+dx/2*sl4(j-1); 
       vgh = vgo(j)-dx/2*sl4(j); 

        
       gvv = ego(j-1)+dx/2*sl5(j-1); 
       gvh = ego(j)-dx/2*sl5(j); 
       lvv = 1-gvv; 
       lvh = 1-gvh; 

        
       cl = csound(gvv,psll,dsll,k); 
       cr = csound(gvh,pslr,dslr,k); 
       c = max(cl,cr);  

       
       pll = psip(vlo(j-1),c,lvh); 
       plr = psim(vlo(j),c,lvv); 
       pgl = psip(vgo(j-1),c,gvh); 
       pgr = psim(vgo(j),c,gvv); 
       vmixr = vlo(j)*lvh+vgo(j)*gvh; 
       vmixl = vlo(j-1)*lvv+vgo(j-1)*gvv; 

        
       pl = pp(vmixl,c); 
       pr = pm(vmixr,c); 

  

  
      mll= lvv*dsll; 
      mlr= lvh*dslr; 
      mgl= gvv*dgll; 
      mgr= gvh*dglr; 

       
      flc(j,1)= mll*pll+mlr*plr; 
      flc(j,2)= 0.0; 
      flc(j,3)= mll*pll*vlo(j-1)+mlr*plr*vlo(j); 

   

       
      fgc(j,1)=0.0; 
      fgc(j,2)= mgl*pgl+mgr*pgr; 
      fgc(j,3)= mgl*pgl*vgo(j-1)+mgr*pgr*vgo(j); 
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      fp(j,1)= 0.0; 
      fp(j,2)= 0.0; 
      fp(j,3)= pl*psll+pr*pslr;     

       

  

       

  
%%% Second order method ends here 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
% Here sloplimiters is used on all variables. This 
% has not worked so well yet. Therefore it is commented away. 

  
%       psll = po(j-1)+dx/2*sl2(j-1); 
%       pslr = po(j)-dx/2*sl2(j); 
%       dsll = dlo(j-1)+dx/2*sl1(j-1); 
%       dslr = dlo(j)-dx/2*sl1(j); 
%       dgll = dgo(j-1)+dx/2*sl6(j-1); 
%       dglr = dgo(j)-dx/2*sl6(j); 
%        
%       vlv = vlo(j-1)+dx/2*sl3(j-1); 
%       vlh = vlo(j)-dx/2*sl3(j); 
%       vgv = vgo(j-1)+dx/2*sl4(j-1); 
%       vgh = vgo(j)-dx/2*sl4(j); 
%        
%       gvv = ego(j-1)+dx/2*sl5(j-1); 
%       gvh = ego(j)-dx/2*sl5(j); 
%       lvv = 1-gvv; 
%       lvh = 1-gvh; 
%        
%       cl = csound(gvv,psll,dsll,k); 
%       cr = csound(gvh,pslr,dslr,k); 
%       c = max(cl,cr);  
%        
%       pll = psip(vlv,c,lvh); 
%       plr = psim(vlh,c,lvv); 
%       pgl = psip(vgv,c,gvh); 
%       pgr = psim(vgh,c,gvv); 
%       vmixr = vlh*lvh+vgh*gvh; 
%       vmixl = vlv*lvv+vgv*gvv; 
%        
%       pl = pp(vmixl,c); 
%       pr = pm(vmixr,c); 
%       mll= lvv*dsll; 
%       mlr= lvh*dslr; 
%       mgl= gvv*dgll; 
%       mgr= gvh*dglr; 
%        
%       flc(j,1)= mll*pll+mlr*plr; 
%       flc(j,2)= 0.0; 
%       flc(j,3)= mll*pll*vlv+mlr*plr*vlh; 
%    
%        
%       fgc(j,1)=0.0; 
%       fgc(j,2)= mgl*pgl+mgr*pgr; 
%       fgc(j,3)= mgl*pgl*vgv+mgr*pgr*vgh; 
%        
%       fp(j,1)= 0.0; 
%       fp(j,2)= 0.0; 
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%       fp(j,3)= pl*psll+pr*pslr;     

  

  
     end 

  
% Fluxes have now been calculated. We will now update the conservative  
% variables in each of the numerical cells.  

  

  

  
% The source terms can be calculated by using a  
% for loop. 
% Note that the model is sensitive to how we treat the model 
% for low Reynolds numbers (possible discontinuity in the model) 
       for j=1:nobox 
        fricgrad(j)=dpfric(vlo(j),vgo(j),evo(j),ego(j),dlo(j),dgo(j), 

... 
          po(j),do(j),di(j),viscl,viscg); % Pa/m 
        hydgrad(j)=g*(dlo(j)*evo(j)+dgo(j)*ego(j)); % Pa/m 
       end   

    
      sumfric = 0; 
      sumhyd= 0; 

    
      for j=1:nobox  

   
     % Here we solve the three conservation laws for each cell and 

update 
     % the conservative variables qv 

        
       ar = area(j);        

  

                                 
      % Liquid mass conservation 
      qv(j,1)=qvo(j,1)-dtdx*((ar*flc(j+1,1)-ar*flc(j,1))... 
                            +(ar*fgc(j+1,1)-ar*fgc(j,1))... 
                            +(ar*fp(j+1,1)-ar*fp(j,1))); 

       
      % Gas mass conservation: 

       
      qv(j,2)=qvo(j,2)-dtdx*((ar*flc(j+1,2)-ar*flc(j,2))... 
                            +(ar*fgc(j+1,2)-ar*fgc(j,2))... 
                            +(ar*fp(j+1,2)-ar*fp(j,2))); 
      % Mixture momentum conservation: 

       
      qv(j,3)=qvo(j,3)-dtdx*((ar*flc(j+1,3)-ar*flc(j,3))... 
                            +(ar*fgc(j+1,3)-ar*fgc(j,3))... 
                            +(ar*fp(j+1,3)-ar*fp(j,3)))... 
                   -dt*ar*(fricgrad(j)+hydgrad(j)); 

                
%  Add up the hydrostatic pressure  and friction  in the whole well.    
      sumfric=sumfric+fricgrad(j)*dx; 
      sumhyd=sumhyd+hydgrad(j)*dx; 

                
      end 
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% Section where we find the physical variables (pressures, densities 

etc) 
% from the conservative variables. Some trickes to ensure stability. 

These 
% are induced to avoid negative masses. 

  

      

  
     gasmass=0; 
     liqmass=0; 

      
     for j=1:nobox  

  

          
% Remove the area from the conservative variables to find the 
% the primitive variables from the conservative ones. 

  
      qv(j,1)= qv(j,1)/area(j);    
      qv(j,2)= qv(j,2)/area(j);    

          
      if (qv(j,1)<0.00000001)  % Trick to avoid negative masses. 
        qv(j,1)=0.00000001; 
      end 

      
      if (qv(j,2)< 0.00000001)  % Trick to avoid negative masses. 
        qv(j,2)=0.00000001;  
      end 

      
 % Here we summarize the mass of gas and liquid in the well 

respectively.  
 % These variables are important to show that the scheme is conserving 
 % mass. (if e.g. gas leaks in our out of the well unintentionally in 

the simulation  
 % without being specified in the code,something fundamental is wrong. 

  
      gasmass = gasmass+qv(j,2)*area(j)*dx; 
      liqmass = liqmass+qv(j,1)*area(j)*dx; 

  
% Below, we find the primitive variables pressure and densities based 

on 
% the conservative variables q1,q2. One can choose between getting them 

by  
% analytical or numerical solution approach specified in the beginning 

of 
% the program. Ps. For more advanced density models, this must be 

changed. 

  

   
      if (analytical == 1)  
%       % Analytical solution:  

  
% here the simple density models used in PET 510 Wellflow modelling 
% compendium is used.  

  
       t1=rho0-P0/al^2; 
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%  Coefficients: 
       a = 1/(al*al); 
       b = t1-qv(j,1)-rt*qv(j,2)/(al*al); 
       c = -1.0*t1*rt*qv(j,2); 
%        

  
%       Note here we use the very simple models from the PET510 course 
        p(j)=(-b+sqrt(b*b-4*a*c))/(2*a);  % Pressure  
        dl(j)=rholiq(p(j),temp(j)); % Density of liquid 
        dg(j)=rogas(p(j),temp(j)); % Density of gas 

  
%     The code below can be activated if we want to switch to the other 

set 
%     of density models. Also then remember to do the changes inside 
%     functions rogas og rholiq if we change density models. 

         
%           x1=rho0-P0*rho0/Bheta-rho0*Alpha*(temp(j)-T0); 
%           x2=rho0/Bheta; 
%           x3=-qv(j,2)*R*temp(j); 

  
%           a = x2; 
%           b = x1+x2*x3-qv(j,1); 
%           c = x1*x3; 

           
%           p(j)=(-b+sqrt(b*b-4*a*c))/(2*a);  % Pressure  
%           dl(j)=rholiq(p(j),temp(j)); 
%           dg(j)=rogas(p(j),temp(j)); 
      else    

           

           
      %Numerical Solution: This might be used if we use more complex 
      %density models. Has not been used for years. 

       
       [p(j),error]=itsolver(po(j),qv(j,1),qv(j,2)); % Pressure 
       dl(j)=rholiq(p(j),temp(j)); % Density of liquid 
       dg(j)=rogas(p(j)); % Density of gas 

       
      % Incase a numerical solution is not found, the program will 

write out "error": 
       if error > 0 
          error 
       end 
      end   

  
%   Find phase volume fractions       
      eg(j)= qv(j,2)/dg(j); 
      ev(j)=1-eg(j); 

  
 %    Reset average conservative varibles in cells with area included 

in the variables.  

  
     qv(j,1)=qv(j,1)*area(j); 
     qv(j,2)=qv(j,2)*area(j);  

       
     end  % end of loop   
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 %    Below we find the phase velocities by combining the  
 %    conservative variable defined by the mixture momentum equation 
 %    with the gas slip relation.  
 %    At the same time we try to summarize the gas volume in the well. 

This 
 %    also measure the size of the kick. 

  

  
   gasvol=0; 

    
   for j=1:nobox 

   

        
   % The  interpolations introduced below are included  
   % to omit a singularity in the slip relation when the gas volume 
   % fraction becomes equal to 1/K. In additon, S is interpolated to  
   % zero when approaching one phase gas flow. In the transition to  
   % one phase gas flow, we have no slip condtions (K=1, S=0) 
   % We will let the k0,s0,k1,s1 be arrays to make it easier to 

incorporate 
   % different flow regimes later.  In that case, the slip parameters 

will 
   % vary from cell to cell and we must have slip parameter values for 

each 
   % cell. 

       
      ktemp=k; 
      stemp=s;       

    
      k0(j) = ktemp; 
      s0(j) = stemp; 

       
    % Interpolation to handle that (1-Kxgasvolumefraction) does not 

become zero   
      if ((eg(j)>=0.7) & (eg(j)<=0.8)) 
        xint = (eg(j)-0.7)/0.1;   
        k0(j) =1.0*xint+k*(1-xint); 
      elseif(eg(j)>0.8) 
        k0(j)=1.0;   
      end 

   

       
    % Interpolate S to zero in transition to pure gas phase   
       if ((eg(j)>=0.9) & (eg(j)<=1.0)) 
         xint = (eg(j)-0.9)/0.1;           
         s0(j) = 0.0*xint+s*(1-xint); 
       end 

  
  % Note that the interpolations above and below can be changed  
  % if numerical stability problems  
  % are encountered.  

  
  %       
      if (eg(j)>=0.999999)   
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       % Pure gas    
        k1(j) = 1.0; 
        s1(j) = 0.0; 
      else   
        %Two phase flow   
        k1(j) = (1-k0(j)*eg(j))/(1-eg(j)); 
        s1(j) = -1.0*s0(j)*eg(j)/(1-eg(j));  
      end 

  

       

       
      help1 = dl(j)*ev(j)*k1+dg(j)*eg(j)*k0; 
      help2 = dl(j)*ev(j)*s1+dg(j)*eg(j)*s0; 

  

  
      vmixhelpl = (qv(j,3)/area(j)-help2)/help1; 
      vg(j)=k0(j)*vmixhelpl+s0(j); 
      vl(j)=k1(j)*vmixhelpl+s1(j); 

       

    

       

       
      % Variable for summarizing the gas volume content in the well. 
      gasvol=gasvol+eg(j)*area(j)*dx; 

       

       
   end     

       

  
% Old values are now set equal to new values in order to prepare 
% computation of next time level. 

  

      
   po=p; 
   dlo=dl; 
   dgo=dg; 
   vlo=vl; 
   vgo=vg; 
   ego=eg; 
   evo=ev; 
   qvo=qv; 

    

  

     
% Section where we save some timedependent variables in arrays.  
% e.g. the bottomhole pressure. They will be saved for certain 
% timeintervalls defined in the start of the program in order to ensure 
% that the arrays do not get to long! 

    
  if (counter>=nostepsbeforesavingtimedata) 
    printcounter=printcounter+1; 
    time  % Write time to screen. 

   
    % Outlet massrates (kg/s) vs time 
    

liquidmassrateout(printcounter)=dl(nobox)*ev(nobox)*vl(nobox)*area(nobox); 
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gasmassrateout(printcounter)=dg(nobox)*eg(nobox)*vg(nobox)*area(nobox); 

     
    % Outlet flowrates (lpm) vs time 
    

liquidflowrateout(printcounter)=liquidmassrateout(printcounter)/... 
        rholiq(P0,T0)*1000*60; 
    gasflowrateout(printcounter)=gasmassrateout(printcounter)/... 
        rogas(P0,T0)*1000*60;  

     
    % Hydrostatic and friction pressure (bar) in well vs time 
    hyd(printcounter)=sumhyd/100000; 
    fric(printcounter)=sumfric/100000; 

     
    % Volume of gas in well vs time (m3). Also used for indicating kick 
    % size in well. 

     
    volgas(printcounter)=gasvol; 

     
    % Total phase masses (kg) in the well vs time 
    % Used for checking mass conservation. 

     
     massgas(printcounter)=gasmass; 
     massliq(printcounter)=liqmass; 

    

     
    % pout calculates the pressure at the outletboundary. I.e. upper 

edge 
    % of uppermost cell. Corresponds where the well ends at surface. 

The 
    % reason we do this is the fact than in AUSMV is all variables 

defined 
    % in the mid point of the numerical cells. 
    pout(printcounter)=(p(nobox)-0.5*dx*... 
    (dlo(nobox)*evo(nobox)+dgo(nobox)*ego(nobox))*g-

dx*0.5*fricgrad(nobox))/100000; 

  

  
    % pin (bar) defines the  pressure at the inlet boundary, I.e lower 

edge 
    % of the lowermost cell. Corresponds to TD of well. 
    pin(printcounter)= 

(p(1)+0.5*dx*(dlo(1)*evo(1)+dgo(1)*ego(1))*g+0.5*dx*fricgrad(1))/100000; 

     
    % Pressure in the middle of top box (bar).  
    pnobox(printcounter)=p(nobox)/100000;  %  

  

  

     
    % Time variable 
    timeplot(printcounter)=time; 

     
    counter = 0; 

     

     

  end   
end     
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% end of stepping forward in time. 

  

  

  

  
% Printing of resultssection 

  

  
countsteps % Marks number of simulation steps. 

  

  
% Plot commands for variables vs time. The commands can also 
% be copied to command screen where program is run for plotting other 
% variables. 

  
toc, 
e = cputime-t 

  
% Plot bottomhole pressure 
plot(timeplot,pin) 

  
% Show cfl number used. 
disp('cfl') 
cfl = al*dt/dx 

  
 plot(timeplot,pin) 
%plot(timeplot,hyd) 
%plot(timeplot,fric) 
%plot(timeplot,liquidmassrateout) 
%plot(timeplot,gasmassrateout) 
%plot(timeplot,volgas) 
%plot(timeplot,liquidflowrateout) 
%plot(timeplot,gasflowrateout) 
%plot(timeplot,massgas) 
%plot(timeplot,massliq) 
%plot(timeplot,pout) 
%plot(timeplot,pnobox) 

  
%Plot commands for variables vs depth/Only the last simulated 
%values at endtime is visualised 

  

%plot(vl,x); 
%plot(vg,x); 
%plot(eg,x); 
%plot(p,x); 
%plot(dl,x); 
%plot(dg,x); 

 

B.2 csound.m 

function mixsoundvelocity = csound(gvo,po,dlo,k) 
% Note that at this time k is set to 1.0 (should maybe be 
% included below 

  
temp= gvo*dlo*(1.0-gvo); 
a=1; 
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if (temp < 0.01) 
  temp = 0.01; 
end 

  
cexpr = sqrt(po/temp); 

  
if (gvo <= 0.5) 
 mixsoundvelocity = min(cexpr,1500);    
else     
 mixsoundvelocity = min(cexpr,316);    
end     

     

  
%mixsoundvelocity = 1500*(1-gvo)+6000*gvo; 

 

B.3 dpfric.m 

function friclossgrad = 

dpfric(vlo,vgo,evo,ego,dlo,dgo,pressure,do,di,viscl,viscg) 

  
%friclossgrad = 
%dpfric(vlo,vgo,evo,ego,dlo,dgo,pressure,do,di,viscl,viscg) 
% Works for two phase flow. The one phase flow model is used but mixture  
 % values are introduced. 

  
%  rhol = dlo; 
%  rhog = dgo; 
%  vmixfric = vlo.*evo+vgo.*ego; 
%  viscmix =  viscl.*evo+viscg.*ego; 
%  densmix = dlo.*evo+dgo.*ego; 
%  
%  % Calculate mix reynolds number 
%  Re = ((densmix.*abs(vmixfric).*(do-di))./viscmix); 
%   
%  % Calculate friction factor. For Re > 3000, the flow is turbulent.  
%  % For Re < 2000, the flow is laminar. Interpolate in between. 
%   
%  if (Re<0.001) 
%    f=0.0; 
%  else     
%   if (Re >= 3000) 
%    f = 0.052*Re.^(-0.19); 
%   elseif ( (Re<3000) & (Re > 2000)) 
%    f1 = 24./Re; 
%    f2 = 0.052*Re.^(-0.19); 
%    xint = (Re-2000)./1000.0; 
%    f = (1.0-xint).*f1+xint.*f2; 
%   else  
%    f = 24./Re; 
%   end  
%  end 
%    
%   friclossgrad = ((2*f.*densmix.*vmixfric.*abs(vmixfric))./(do-di)); 

  

  
 vmixfric = vlo*evo+vgo*ego; 
 viscmix =  viscl*evo+viscg*ego; 
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 densmix = dlo*evo+dgo*ego; 

  
 % Calculate mix reynolds number 
 Re = ((densmix*abs(vmixfric)*(do-di))/viscmix); 

  
 % Calculate friction factor. For Re > 3000, the flow is turbulent.  
 % For Re < 2000, the flow is laminar. Interpolate in between. 

  
 if (Re<0.001) 
   f=0.0; 
 else     
  if (Re >= 3000) 
   f = 0.052*Re^(-0.19); 
  elseif ( (Re<3000) & (Re > 2000)) 
   f1 = 24/Re; 
   f2 = 0.052*Re^(-0.19); 
   xint = (Re-2000)/1000.0; 
   f = (1.0-xint)*f1+xint*f2; 
  else  
   f = 24/Re; 
  end  
 end 

  
% if (Re<100) 
%  f = 0.0;    
% else  
%   if (Re<200) 
%    f1 = 0;    
%    f2 = 24/Re; 
%    xint = (Re-0)/200;   
%    f = (1-xint)*f1+xint*f2; 
%      
%   elseif ((Re>=200)&(Re<2000)) 
%    f = 24/Re; 
%     
%   elseif ((Re>=2000)&(Re<3000))     
%    f1 = 24/Re; 
%    f2 = 0.052*Re^(-0.19); 
%    xint = (Re-2000)/1000.0; 
%    f = (1.0-xint)*f1+xint*f2; 
%   else  
%    f = 0.052*Re^(-0.19); 
%   end  
% end 

  

  

  
  friclossgrad = ((2*f*densmix*vmixfric*abs(vmixfric))/(do-di)); 

  
%     if (friclossgrad <0) 
%       friclossgrad = 0; 
%     end   
end  
 

B.4 minmod.m 

function [ slope ] = minmod(x1,x2,x3,dx) 
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%UNTITLED Summary of this function goes here 
%   Detailed explanation goes here 

  
a = x2-x1; 
b = x3-x2; 

  
if (a*b)<=0 
 slope = 0; 
else 
  if (abs(a)<abs(b))   
   slope = a; 
  else 
   slope = b; 
  end 
end 

  
slope = slope/dx;   

  

  
end 
 

B.5 pm.m 

 

function pmvalue = pm(v,c) 

  

  
  if (abs(v)<=c)  
    pmvalue = -1.0*(v-c)*(v-c)/(4*c)*(-2.0-v/c)/c; 
  else   
    pmvalue = 0.5*(v-abs(v))/v; 
  end   
end 
 

 

B.6 pp.m 

 

function pmvalue = pp(v,c) 

  
  if (abs(v)<=c)  
    pmvalue = (v+c)*(v+c)/(4*c)*(2.0-v/c)/c; 
  else   
    pmvalue = 0.5*(v+abs(v))/v; 
  end   
end 
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B.7 psim.m 

 

function pmvalue = psim(v,c,alpha) 

  
  if (abs(v)<=c)  
    pmvalue = -1.0*alpha*(v-c)*(v-c)/(4*c)+(1-alpha)*(v-abs(v))/2; 
  else   
    pmvalue = 0.5*(v-abs(v)); 
  end   
end 

  

    

B.8 psip.m 

 

function pmvalue = psip(v,c,alpha) 

  

  
  if (abs(v)<=c)  
    pmvalue = alpha*(v+c)*(v+c)/(4*c)+(1-alpha)*(v+abs(v))/2; 
  else   
    pmvalue = 0.5*(v+abs(v)); 
  end   
end 

  
    

B.9 rholiq.m 

 

function [rhol] = rholiq(pressure,temperature) 
%Simple model for liquid density 
% p0 = 100000.0; % Assumed 
% t0 = 20+273.15; 
%  
% beta = 2.2*10^9; 
% alpha = 0.000207; 
% rho0 = 1000; 
%  
% %rhol = 1000.0 + (pressure-p0)/(1500.0*1500.0); 
% rhol = rho0+((rho0/beta)*(pressure-p0))-(rho0*alpha*(temperature-

t0)); 

  
% SIMPLE PET 510 Model below: 

  
if (pressure < 100000) 
 pressure = 100000; 
end  

  
rhol = 1000+ (pressure-100000)/1500^2; 
end 
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B.10 rogas.m 

 

function rhog = rogas(pressure,temp) 

  
%Simple gas density model. Temperature is neglected. 
% rhogas = pressure / (velocity of sound in the gas phase)^2 = pressure 

/ 
% rT --> gas sound velcoity = SQRT(rT) 

  
 % rhog = 4200; 
%  R = 286.9; 
%  rhog = pressure/(R*temp); 

  
% SIMPLE PET 510 model below: 

  
if (pressure < 100000) 
 pressure = 100000; 
end 

     
rhog = pressure/100000; 
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Appendix C New Code 

C.1 Tw_NarrowSlotNewtonianLaminar.m 

function [Tw] = Tw_NarrowSlotPowerLawLaminar(Flowrate, VelocityPipe, GeometryPar, 
FluidParameters) 
% This function calculates the narrow slot approximation  
% for Tw using Newtonian laminar flow 
 
    mu = FluidParameters.Viscosity.mu; 
    AreaCrs = GeometryPar.AreaCrs; 
    velocityFluid = Flowrate ./ AreaCrs - VelocityPipe; 
    h = GeometryPar.h; 
 
     
    Tw = -6 * mu ./ h .* velocityFluid; 
end 

 

C.2 Tw_NarrowSlotPowerLawLaminar.m 

function [Tw] = Tw_NarrowSlotPowerLawLaminar(Flowrate, VelocityPipe, 

GeometryPar, FluidParameters) 
% This function calculates the narrow slot approximation 
% for Tw using power-law laminar     

  

  
    mu = FluidParameters.Viscosity.mu; 
    AreaCrs = GeometryPar.AreaCrs; 
    velocityFluid = Flowrate ./ AreaCrs - VelocityPipe; 
    h = GeometryPar.h; 
    k = FluidParameters.Viscosity.ConsistencyIndex; 
    n = FluidParameters.Viscosity.FlowBehaviorIndex; 

     
    Tw = -abs(k.*((4*n+2)./(n*h).*abs(velocityFluid)).^n); 

  
end 

 

C.3 Tw_NarrowSlotBinghamPlasticLaminar.m 

function [Tw] = Tw_NarrowSlotBinghamPlasticLaminar(Flowrate, VelocityPipe, 
GeometryPar, FluidParameters) 
% This function calculates the narrow slot approximation 
% for Tw using power-law laminar   
 
    Ty = FluidParameters.Viscosity.YieldPoint; 
    mu = FluidParameters.Viscosity.mu; 
    L = GeometryPar.LengthPrGrid; 
    h = GeometryPar.h; 
    k = FluidParameters.Viscosity.ConsistencyIndex; 
    n = FluidParameters.Viscosity.FlowBehaviorIndex; 
    AreaCrs = GeometryPar.AreaCrs; 
    velocityFluid = Flowrate ./ AreaCrs - VelocityPipe; 
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    % Simplified bingham plastic for initial guess 
    Tw_initial_guess = -abs(Ty + mu*6.*Flowrate./(h^3)); 
 
    if abs(Tw_initial_guess) > Ty 
        % Define the equation to be solved 
        eqn = @(Tw) velocityFluid + h./(6*mu).*Tw.*(1-
3/2*Ty./abs(Tw)+1/2*(Ty./abs(Tw)).^3); 
 
        % Use fsolve to find the solution 
        options = optimoptions('fsolve','Display','off'); 
        Tw = fsolve(eqn, Tw_initial_guess, options); 
    else 
        Tw = Tw_initial_guess; 
    end 
     
end 
 

 

 

C.4 Tw_NarrowSlotHerschelBulkley.m 

 
function [Tw] = Tw_NarrowSlotHerschelBulkleyLaminar(Flowrate, VelocityPipe, 
GeometryPar, FluidParameters) 
% This function calculates the narrow slot approximation 
% for Tw using Herschel Bulkley laminar   
 
 
    Ty = FluidParameters.Viscosity.YieldPoint; 
    mu = FluidParameters.Viscosity.mu; 
    L = GeometryPar.LengthPrGrid; 
    h = GeometryPar.h; 
    k = FluidParameters.Viscosity.ConsistencyIndex; 
    n = FluidParameters.Viscosity.FlowBehaviorIndex; 
    AreaCrs = GeometryPar.AreaCrs; 
    velocityFluid = Flowrate ./ AreaCrs - VelocityPipe; 
 
    % Simplified bingham plastic for initial guess 
    Tw_initial_guess = -abs(Ty + mu*6.*Flowrate./(h^3)); 
 
    if abs(Tw_initial_guess) > Ty 
        try 
            % Define the equation to be solved 
            eqn = @(Tw) velocityFluid + h./(2*k.^n.*Tw).*(abs(Tw)-
Ty).^(n+1)./(n+1).*(1-(abs(Tw)-Ty)./((n+2).*abs(Tw))); 
     
            % Use fsolve to find the solution 
            options = optimoptions('fsolve','Display','off'); 
            Tw = fsolve(eqn, Tw_initial_guess, options); 
        catch 
            Tw = Tw_initial_guess; 
        end 
    else 
        Tw = Tw_initial_guess; 
    end 
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end 
 

 

 

C.5 TrainingDataCollector.m 

% Define the ranges for the parameters 
tic 
variations = 10; 
flowrate_range = linspace(0, 3000/60000, 40); % convert lpm to m^3/s 
Ty_range = linspace(0, 10, variations); 
mu_range = linspace(0.2, 0.6, variations); 
n_range = 0.5; %linspace(0.5, 1, variations); 
k_range = 0.5; %linspace(0.1, 0.5, variations); 
L_range = linspace(2000, 6000, variations); 
d_outer_range = linspace(7.5*0.0254, 15*0.0254, variations); % convert inches to 
meters 
failures = 0; 
attempts = 0; 
% Iteration counter to track progress 
total_iterations = length(flowrate_range) * length(Ty_range) * ... 
    length(mu_range) * length(n_range)* length(k_range) ... 
    * length(d_outer_range) * length(L_range); 
% Initialize arrays to store the inputs and outputs 
inputs = []; 
outputs = []; 
 
% Loop over all combinations of parameters 
for flowrate = flowrate_range 
    for Ty = Ty_range 
        for mu = mu_range 
            for n = n_range 
                for k = k_range 
                    for d_outer = d_outer_range 
                        for L = L_range 
                            attempts = attempts + 1; 
                            % Calculate the remaining parameters 
                            FluidParameters.Viscosity.YieldPoint = Ty; 
                            FluidParameters.Viscosity.mu = mu; 
                            FluidParameters.Viscosity.FlowBehaviorIndex = n; 
                            FluidParameters.Viscosity.ConsistencyIndex = k; 
                            GeometryPar.LengthPrGrid = L; 
 
                            d = 5*0.0254; % convert inches to meters for a 
constand inner diameter of 5 inches 
                            GeometryPar.h = d_outer - d; 
                            R_inner = d/2; 
                            R_outer = d_outer/2; 
                            GeometryPar.AreaCrs = pi * (R_outer^2 - R_inner^2); 
 
                            % Calculate the output 
                            try 
                                Tw = Tw_NarrowSlotBinghamPlasticWithFlow(flowrate, 
0, GeometryPar, FluidParameters); 
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                                % Append the input parameters and 
                                % output to the arrays  
                                inputs = [inputs; [flowrate, Ty, mu, 
GeometryPar.h]];%n, k, GeometryPar.h]];   
                                outputs = [outputs; Tw];   
 
                            catch 
                                failures = failures + 1; 
                            end 
                        end 
                    end 
                end 
            end 
        end 
        percentage = attempts / total_iterations * 100; 
        fprintf('Simulating %.2f%%\n', percentage); 
    end 
    toc 
end 
disp(size(inputs)); 
disp(size(outputs)); 
attempts 
failures 
ValidResults = attempts-failures 
% Save the inputs and outputs to a .mat file 
save('training_dataBPFlow.mat', 'inputs', 'outputs'); 
toc 

 

C.6 TrainingModel.m 

% Load the data 
load('training_dataBPFlow.mat') 
 
% Split the data into a training set and a test set 
m = size(inputs, 1); 
idx = randperm(m); 
mTrain = floor(0.7 * m); 
trainIdx = idx(1:mTrain); 
testIdx = idx(mTrain+1:end); 
 
inputsTrain = inputs(trainIdx, :); 
outputsTrain = outputs(trainIdx, 1); 
inputsTest = inputs(testIdx, :); 
outputsTest = outputs(testIdx, 1); 
 
% Train the Random Forest model 
numTrees = 100; % Number of trees in the forest 
mdl = TreeBagger(numTrees, inputsTrain, outputsTrain, 'Method', 'regression', 
'OOBPrediction', 'on'); 
% Print out-of-bag error over the number of grown trees 
oobErrorBaggedEnsemble = oobError(mdl); 
figure; 
plot(oobErrorBaggedEnsemble); 
xlabel 'Number of grown trees'; 
ylabel 'Out-of-bag classification error'; 
 
% Save the trained model 
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save('trainedModelBPFlow.mat', 'mdl'); 

 

 

C.7 Tw_NarrowSlotBPWithFlowML.m 

function [Tw] = Tw_NarrowSlotBinghamPlasticBPWithFlowML(Flowrate, VelocityPipe, 
GeometryPar, FluidParameters) 
% This function calculates the narrow slot approximation 
% for Tw using bingham plastic laminar based machine learning   
 
    Ty = FluidParameters.Viscosity.YieldPoint; 
    mu = FluidParameters.Viscosity.mu; 
    L = GeometryPar.LengthPrGrid; 
    h = GeometryPar.h; 
    k = FluidParameters.Viscosity.ConsistencyIndex; 
    n = FluidParameters.Viscosity.FlowBehaviorIndex; 
    AreaCrs = GeometryPar.AreaCrs; 
    velocityFluid = Flowrate ./ AreaCrs - VelocityPipe; 
    Tw = []; 
    Result = []; 
    StopFlow = ones(1,length(Flowrate)); 
    global trainedModel 
    mdl = trainedModel; 
    % Use the model to make predictions on new data 
    for i = 1:length(Ty) 
        newInputs = [Flowrate(i), Ty(i), mu(i), h];% n(i), k(i), h]; 
        Result = predict(mdl, newInputs); 
        Tw = [Tw, Result(1)]; 
        if Result <= Ty(i) && i > 1 
            StopFlow(i-1) = 0; 
        end 
    end 
    Tw = [Tw, StopFlow]; 
end 

 

C.8 TestMLvsCalculation.m 

% Testing of machine learning vs calculation 
clear 
clc 
 
FluidParameters.Viscosity.YieldPoint = 1; 
FluidParameters.Viscosity.mu = 0.5; 
GeometryPar.LengthPrGrid = 1000; 
GeometryPar.h = 0.204; 
FluidParameters.Viscosity.ConsistencyIndex = 0.2; 
FluidParameters.Viscosity.FlowBehaviorIndex = 0.8; 
di = 0.127; % Inner diameter, 0.127 meters = 5 inches 
do = 0.331; % Outer diameter, 0.331 meters ~ 13 inches 
GeometryPar.AreaCrs = pi * (do^2 - di^2) / 4; 
VelocityPipe = 0; 
TwMachineLearning = []; 
TwCalculation = []; 
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Flowrate = []; 
 
global trainedModel; 
load('trainedModelBPFlow.mat'); 
trainedModel = mdl; 
 
for i = 1:1000 
    Flowrate = [Flowrate , 1/(30*(1+exp(-0.01*(i-500))))]; 
end 
tic 
for i = 1:1000 
    TwMachineLearning = [TwMachineLearning; 
Tw_NarrowSlotBPWithFlowML(Flowrate(i)*ones(4), VelocityPipe, GeometryPar, 
FluidParameters)]; 
    i 
end 
toc 
tic 
for i = 1:1000 
    TwCalculation = [TwCalculation; 
Tw_NarrowSlotBinghamPlasticWithFlow(Flowrate(i), VelocityPipe, GeometryPar, 
FluidParameters)]; 
end 
toc 
RMSE = 0; 
for i = 1:length(TwCalculation) 
    RMSE = RMSE + (TwCalculation(i)-TwMachineLearning(i))^2; 
end 
RMSE = sqrt(1/length(TwMachineLearning)*RMSE) 
 
% Plot the vectors 
x = linspace(0, 999, 1000); 
disp(length(x)); 
disp(length(TwCalculation(:, 1))); 
figure; % This creates a new figure window 
plot(x, TwCalculation(:, 1)); % This plots y1 versus x 
 
hold on; % This allows the next plot to be overlaid on the same figure 
 
plot(x, TwMachineLearning(:,1),'--r'); % This plots y2 versus x 
 
save('RandomForestResults.mat', 'TwMachineLearning', 'TwCalculation'); 
 
% Add labels and title 
xlabel('i'); 
ylabel('Tw'); 
 

 

Appendix D Changelog for Alf Kristian Gjerstad Model 

D.1 PipeFluGen_2xOrd_Init.m 

Added at line 80 to use annular space, while commenting out the similar section used for pipe 

from line 76 to line 78. 
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    % Geometry vector parameters - Annulus (Vegard) 
    di = 0.127; % Inner diameter, 0.127 meters = 5 inches 
    do = 0.331; % Outer diameter, 0.331 meters ~ 13 inches 
    p.AreaCrs   = pi * (do^2 - di^2) / 4; 
    p.AreaSrf   = pi * (do + di) .* p.LengthPrGrid; 
    p.Volume    = p.AreaCrs .* p.LengthPrGrid; 
    p.h         = (do - di)/2;  % h brukt for narrow slot approximation 

 

D.2 DsMain_Horizontal_2xOrd_ODE 

Added to line 129 to bring h from PipeFluGen_2xOrd_Init.m to the different Tw calculation 

functions 

    GeometryPar.h   = p.h; 

 

Added to Line 134 for the use of shear stress calculation functions  

        switch c 
            case 1 
                wallshearStressPipeLaminar = Tw_stringNewtonianLaminar(FlowCms, 
VelocityPipe, GeometryPar, p.Fluid); 
            case 2 
                wallshearStressPipeLaminar = 
Tw_NarrowSlotNewtonianLaminar(FlowCms, VelocityPipe, GeometryPar, p.Fluid); 
            case 3 
                wallshearStressPipeLaminar = Tw_NarrowSlotPowerLawLaminar(FlowCms, 
VelocityPipe, GeometryPar, p.Fluid); 
            case 4 
                wallshearStressPipeLaminar = 
Tw_NarrowSlotBinghamPlasticLaminar(FlowCms, VelocityPipe, GeometryPar, p.Fluid); 
            case 5 
                wallshearStressPipeLaminar = Tw_NarrowSlotHerschelBulkley(FlowCms, 
VelocityPipe, GeometryPar, p.Fluid); 
            case 6 
                wallshearStressPipeLaminar = 
Tw_NarrowSlotBinghamPlasticMachineLearning(FlowCms, VelocityPipe, GeometryPar, 
p.Fluid); 
            case 7 
                % shear stress functions that stop flow when Tw <= Ty 
                wallshearStressPipeLaminar = 
Tw_NarrowSlotBinghamPlasticWithFlow(FlowCms, VelocityPipe, GeometryPar, p.Fluid); 
        end 
 

 

D.3 MasterAlg_PipeHorizontal.m 

Added to line 29 to allow for preloading of the machine learning model. 

% Loading Machine Learning model 
global trainedModel 
load('trainedModelBPFlow.mat'); 
trainedModel = mdl; 

 


