

Faculty of Science and Technology

MASTER’S THESIS

Study program/ Specialization:

Spring semester, 20......

Open / Restricted access

Writer:

…………………………………………

(Writer’s signature)
Faculty supervisor:

External supervisor(s):

Thesis title:

Credits (ECTS):

Key words:

 Pages: …………………

 + enclosure: …………

 Stavanger, ………………..
 Date/year

Front page for master thesis
Faculty of Science and Technology

Decision made by the Dean October 30th 2009

Faculty of Science and Technology
Department of Electrical Engineering and Computer Science

Developing the SHPIA 2.0 Architecture
for the Raspberry Pi

Master’s Thesis in Robotics and Signal Processing
by

Lars-Erik Nes Panengstuen

Internal Supervisors

Florenc Demrozi

June 15, 2023

Abstract

Sensors and electronic devices has invaded out daily lives. These devices provides an
opportunity to collect invaluable data for research purposes. This research has the ability
to give us an insight into lifestyle illnesses and allow us to more accurately target decease
through preventative measures. The SHPIA architecture uses inexpensive Bluetooth
devices along with a raspberry pi micro-computer to provide researches with a versatile
platform for gathering this invaluable information.

Acknowledgements

I would like to thank my supervisors for their fantastic enthusiasm and help with writing
this thesis.

iv

Contents

Abstract iii

Acknowledgements iv

1 Introduction 1
1.1 Background and Motivation . 1
1.2 Objectives . 2
1.3 Approach and Contributions . 3
1.4 Outline . 3

2 Related Work 5

3 Approach 7
3.1 Overview . 8
3.2 API . 8

3.2.1 User Creation . 9
3.2.2 User Authentication . 9
3.2.3 Data Organization . 11
3.2.4 Receiving Data . 12
3.2.5 Database . 14

3.3 Front-End . 15
3.3.1 Registration/Login . 15
3.3.2 Environments . 16
3.3.3 Viewing the data . 18

3.4 Raspberry Pi . 19
3.4.1 Sensor Device Connection . 19
3.4.2 UI . 20

4 Experimental Evaluation 21
4.1 Experimental Setup . 21
4.2 Experimental Results and Analysis . 22

5 Conclusions 25
5.1 Future Directions . 26

v

A Test setup video 27

B back-end github repositoriy 29

C Front-end github repositoriy 31

Bibliography 33

Chapter 1

Introduction

1.1 Background and Motivation

In recent years, there has been a growing interest in smart-home devices like smartwatches,
smartphones and digital assistants to aid in daily task and monitor peoples habits. These
devices have the ability to gather invaluable data for lifestyle-research purposes. Lifestyle
data refers to information about an individual’s habits and behaviors, including their
physical activity, sleep quality, and dietary habits. This type of research have a couple
of factors that makes it extremely hard to get accurate data on. Lifestyle is a complex
and multifaceted concept that encompasses a broad range of behaviors, habits, and
choices that can vary widely between individuals, cultures, and socioeconomic groups.
Because of the nature of lifestyle diseases, they can take years or even decades to develop,
meaning the studies have to monitor subjects for a very long time to get accurate data.
Additionally, there is often no way of eliminating variables. People are going to live their
life, and getting someone to change one aspect of their life for extended period of time
can be extremely costly or sometimes impossible. This means that researches rely on
more data to be able to isolate the variable since there often is no way to control for it.
These factors has meant that lifestyle research has been extremely costly and often result
in inconclusive conclusions. This is the primary reason we hear that egg, wine, exercise
and coffee is good for you one week and bad for you the next.[1]

Traditional methods of collecting this data each have their own issues. Cameras pose
a huge privacy issue, as well as cost associated with installation, storing and analyzing
video.

Self-reporting methods such as surveys and diaries are prone to biases as well as requiring
some work from the subjects.

1

2 Chapter 1 Introduction

Smart homes have the ability to offer a more objective and accurate way to collect this
data by using sensors and devices to automatically capture information about daily
routines and behaviors.

However in order to gather enough data for research, the smart-home solution needs to
be adopted in many homes or care facilities. The only way this is going to happen is if
the barriers to entry like cost, tech-literacy requirement and installation work, are kept
low.

Research into lifestyles have the potential to provide a better understanding of human
behavior and aid in making environments and policies to promote healthy lifestyles
through preventative measures.

1.2 Objectives

The goal of this paper is to develop a complete system to collect data from sensors in an
environment and makes it available in a simple, secure and efficient way.

in order to achieve this the system needs:

• Create a program that allows a microcomputer like a raspberry pi to connect to
Bluetooth sensor devices, log data from the devices and upload it to a central
server.

• A central server with a web-based API is needed to receive the data from all base-
stations, store them in an organized fashion and make it available to researchers.
This API needs a couple of features in order to complete this objective:

– An ability to create and login to a user in order to control the data being
collected.

– An intuitive way for the user to classify and keep track of the different logging
devices.

– An ability to automatically receive and store the data from the research
environment.

– a way of classifying the data from the raspberry pi as belonging to a user.

– a way of sharing the data between accounts.

– a way of extracting that data to be used for research.

• It is important that the configuration of devices is both intuitive and simple. A
website running on the local network hosted by the pi would allow the user to
configure logging devices through any device with a browser.

Chapter 1 Introduction 3

• Adding the ability to measure the signal strength of the Bluetooth connection could
prove useful to estimate the location of the device relative to the base station. This
could provide an extra tool when conducting research.

• Add compatibility with all devices in the SHPIA architecture.

1.3 Approach and Contributions

This paper expands the SHPIA framework described in [2] with the ability to run
on a microcomputer like raspberry pi rather than a Android device. The previous
SHPIA solution was designed for the android devices and could therefor not be used
with microcomputers. A new server as well as a website was made with no prior
code. The microcomputer had some python code which allowed the microcomputer
to connect to the thingy devices [3]. This code was expanded to work with the
server and website [4].

1.4 Outline

Chapter 2 covers previous work and explores the feasibility of smart home for
research.

Chapter 3 start by giving a general overview over the whole system and how the
different parts of the system relates to each other. The subsequent sub chapters in
chapter 3 goes through each part of the system in more detail.

Chapter 4 covers the setup used to evaluate the system and the results of these
evaluations.

Chapter 5 Concludes the paper by summing up the successes of the paper as well
as the potential improvements for future work.

Chapter 2

Related Work

The Smart home literature is way to vast to cover completely in this section. The
smart home space can be divided into two groups, Commercial and research focused.
Since SHPIA is a research focused smart home solutions it makes sense to look at
other research focused solutions. The first thing to consider in smart home research
is weather the smart home sensors used is even sufficient to accurately monitor
activities of daily life.

The CASAS platform[5]. uses a base-station that communicates to the senors
wirelessly through the zigbee protocol to collect data from an environment. The
devices collected data on light, motion, temperature and the positions of doors in
the environment. From this data, the authors were able to recognize ten different
Activities of daily life with a 60% accuracy.

Another paper was published in 2012 [6], where the authors used different human
activities recognition models to recognize twelve activities with a 50 to 60% accuracy.
They did this with a combination of motion and door sensors placed in the
environment.

In [7] a sensor network was installed in an eldercare facility to monitor cognitive
health changes in patients. The system used motion, video and bed sensors to
gather data. The authors lay out different ways this data can be used to monitor
daily activities of elderly like sleep quality and forgetfulness to catch early signs of
cognitive decline.

In [8] the authors present smart home system running on a single personal smart-
phone. A combination of the motions sensors and the WiFi-data is used to monitor
the activities of elderly patients.

[9] goes through 55 papers on non intrusive smart home solutions. The paper is a
comprehensive deep dive into the different sensors and communication protocols
used to monitor different activities. The paper makes a couple of assertions.

5

6 Chapter 2 Related Work

– The authors concludes that a comprehensive long term study, convincingly
proving the efficacy of smart home solutions is still lacking.

– While behavioral data can be easily acquired, unobtrusive ways of collecting
reliable psychological data is still lacking.

– Most papers does not mention any considerations for the privacy concern of
the subjects. This could be a contributing factor for the lack of a long term
comprehensive studies.

From these studies we can conclude that motion, temperature and light sensors
can give a valuable insight into activities of daily life of research subjects.

The smart home solution that this paper will be working with is SHPIA(Smart
Home Platform for Intelligent Applications)[2]. This smart home solution uses an
android device as the base-station and uses Bluetooth low energy to communicate
with sensor devices. SHPIA currently support 4 sensor devices: Estimote Locator,
Estimote Sticker, Estimote global tag and the Nordic Thingy 52.

The Nordic thingy 52 is a compact multi-sensor device designed to collect a range
of data of various types. The sensors in the Thingy 52 include: accelerometer,
Magnetometer, gyroscope, thermometer, barometer, light sensor, hygrometer and
carbon dioxide meter. The Thingy 52 uses a two-side BLE communication. This
puts a limit on how many devices can be used with one base-station.

Chapter 3

Approach

When designing a an online system. The first thing to consider is what frameworks
to use. There are usually thousands of frameworks to choose from and they all are
capable of the same results. The difference often lies in things like coding language,
speed, supported features.

The .Net framework was chosen for the back end server. The reasons for choosing
.Net were.

– .Net is made and supported by Microsoft since 2002. This gives it great
compatibility with other Microsoft services like Visual Studio and Microsoft
SQL

– .Net core is one of the most popular back-end frameworks. Which greatly
increases the ability to find resources online

– .Net is uses the programming language C#which makes it one of the fastest
back-end frameworks.

These factors mean that the .Net framework will give more streamlined development
as well as good prospects for future development.

For the database management system the Microsoft SQL system was used due to
its integration into visual studio.

The primary deciding factor when choosing a front-end frame work was popularity
since this will determine the amount of online resources available in development.
The most popular front-end frameworks are Angular and React. Although react is
more popular, the Angular framework was chosen due to its modularity.

7

8 Chapter 3 Approach

3.1 Overview

The whole system can be divided into three main parts.

– Raspberry pi: Where the data is being collected.

– The API: The central server where the data is being processed and stored.

– The Front-end application/ UI: The way users interact with the data.

The Raspberry pi is in the environment where devices are collecting the data
and communicates with them via Bluetooth. The raspberry pi is simultaneously
running a website on the local network, allowing it to be configured via a web
browser on any device connected to the same local area network. The raspberry
pi stores the data locally for a set amount of time before sending it to the central
API to be stored on an SQL-database. The front-end allows the user to make or
delete environments as well as extract the data from the servers.

3.2 API

The API acts as a intermediary between the database and any user or device.

Having a web-API handle the database comes with a number of advantages.

– The server can receive data from any device with an internet connection,
meaning that anyone can make programs that interfaces with this ecosystem.

– The API handles all security and account management. This make developing
a user interface much easier.

Chapter 3 Approach 9

The API can be divided into Two main parts, the user management and data
handling.

3.2.1 User Creation

The simplest way of user creation, would be to ask the user to fill in a username
and a password and create the user from that. However would allow anyone to
create a user, or a thousand, or a million users for that matter. This could quickly
bog down the system, making the user experience worse and creating unnecessary
strain on the server. In order to deal with this we need to verify that the user is
authentic. To do this we need something from the user that everyone has access to,
but it would be hard for an attacker to get millions of. The most common industry
standard, is to use a valid Email address. To do this the username is exchanged
with an email-address. When a user is created the user is not immediately activated,
but rather an activation token is created on the server. The server then sends an
activation link to the specified Email-address containing the activation token. When
the user follows the link sent to their Email, the server receives the activation token
from the user, letting the server know that the email is valid and authenticating the
user. A demo of this can be seen in [C] at around 00:30. A similar system is used
to reset password. When a request to reset a password is received from the server
a password reset token is created and a link containing that token is sent to the
users Email. When the user follows the link sent to their email, it lets the server
know that the person contacting the server has access to the user email, and allows
them to change the password for that user. The password-reset feature is currently
working on the back-end. However there is currently no way of interfacing with
this endpoint through the front-end application.

3.2.2 User Authentication

When a person creates a user on the server, they provide an Email as well as a
password. In order to later authenticate the user, we have to store the Email and
password on the server. However storing a user’s password directly is not a good
idea. Anyone with access to the database would be able to see the password of any
user.

Passwords getting leaked is a huge concern when running user databases. A study
from google in 2019 [10] showed that only 35% of people use different passwords
on all sites, and as much as 15% uses the same password on all sites. A leak of
passwords can not only lead to the leak of information on the site of the leak, but
also on other sites that might contain even more sensitive information.

10 Chapter 3 Approach

To deal with this, each password is encrypted using the SHA512 algorithm. SHA512
is a one-way encryption algorithm. This means that the hash can be calculated
from any password very easily, but calculating the password from a hash is virtually
impossible. SHA512 encrypts the password and stores the hash in the database.
When the user wants to login, the server can take their password, run it through
the SHA512 algorithm and see if the resulting hash matches the stored hash.

One problem with this solution is that if the whole database was leaked and an
attacker had access to all hashes, anyone with the same password would also have
the same hash. This means that if the attacker has a large list of known password
hashes, they can cross-reference the hashes of those two lists and get the passwords
of users using the most common passwords. In order to prevent this, salt is added
to each password. Salt is a random string that is added to the password during
encryption to make sure that the same passwords will not lead to the same hash.
All of these measures are taken to protect the user’s password.

Every time the users sends a request to the server the server needs to verify that
the user actuality has the authority to make the request. To do this the user could
login for each action, but this leads to a very bad user experience. That’s why once
the user has logged in, the server needs another way of authenticating the user for
each subsequent action. To do this a JWT(JSON Web Token) is used. A JWT is
an encrypted key that contains information about the user in a JSON format. This
can contain any information like user id, access passes, admin status, etc. When a
user logs in, the server creates a JWT using a secret encryption key stored on the
server, and sends it back to the user. The program the user is using(typically a
website) then stores this token containing the credentials of the user. When the
user wants to post subsequent requests that require validation to the server, the
JWT is sent along the request to validate it. The server can then simply look at
the JWT and check if the credentials on the JWT has the authority to perform
the action. The JWT contains a signature at the bottom which is tied to the
information in the token, which can only be made using the secret encryption key.
This ensures that a potential attacker cannot simply swap out credentials in the
JWT to gain access to other accounts.

Chapter 3 Approach 11

3.2.3 Data Organization

In order for the data to be stored in a contextualized and organized manner without
the need for the user to invent a complex naming scheme, the data-points are stored
in containers called environments on the server. Environments can be created and
deleted by the user using the web interface. The environment can also have several
sub-environments and sub-sub-environments etc. Here is an example of how this
could be implemented in a house.

Figure 3.1: Create primary environment

Here we have a diagram showing the physical layout of the second floor in a house,
as well as a diagram showing the structure of environments in the database. The
user has created a primary/ top-level environment for the house itself which has
two sub environments, first-floor and second floor. The second floor is then further
divided into living-room, kitchen and hallway. If the user wanted to log the amount
of air particles coming from the stove, they could add a device called "stove" to the
kitchen environment. Additionally if they wanted to measure the amount of air
particles coming from their automatic vacuum cleaner, they could attach a device
to the vacuum, and make it log to the second floor environment, since it will be
moving between rooms but not between floors. If the house had a second vacuum
cleaner in the first floor, a device could be added to the first floor environment,
also called vacuum cleaner. This lets the user name devices based on what they are
and let the environments handle the differentiation of devices. This helps eliminate
naming-schemes like "vacuum_cleaner_first_floor" and gives an intuitive way of
organizing devices.

12 Chapter 3 Approach

3.2.4 Receiving Data

When the API is receiving data there is a few things that has to go along with the
raw data itself. The server knows the type of data based on what endpoint is being
hit. For example, when the server gets a post request on the "/raw_data" endpoint
it knows that the data is raw data from the motion sensor and the device making
the post request has to make sure the data is in the correct format to be written
into the database. But the server also needs to know what environment to file the
data under, and that the user making the request has the authority to write to that
environment. To do this, the server uses a similar approach to the login method.

In the following diagram the figure to the left represents the central API server,
the screen in the middle represents the browser the user is using, and the raspberry
on the right is representing the raspberry pi, logging the data.

When the user first logs into the website, the website gets the login token for the
user. 3.2

Figure 3.2: User Login

Chapter 3 Approach 13

When the user wants to add or configure a device to a specified environment, they
press the "configure device" option on the environment in the browser. This will
open a new window hosted by the pi, where they can configure the device. However
before the website opens this window, it sends a request for a JWT for the specified
environment to the server. The server check that the specified environment belongs
to the user making the request, and returns a JWT to the website.3.3

Figure 3.3: Getting Environment Token

When the website opens the window on the pi it simultaneously passes the environ-
ment token. The Pi then stores this token along with any device configured in the
window.3.4

Figure 3.4: Passing the environment token

When the device has logged data onto the pi and the pi is ready to upload the
data, it passes the environment token it got when the device was configured, along
the data in the header.3.5

14 Chapter 3 Approach

Figure 3.5: Uploading data to the server

The server can then log the data under the environment specified in the environment
token and be sure that the data came from a device configured by an authorized
user.

3.2.5 Database

In the SQL database the data is divided into tables. SQL tables can relate to
each other in one of four ways. These are, "one to one", "one to many", "many to
one", and "many to many". In this project "only one to many" relationships are
used for data-tables. When two tables have a one to many relationship it means
that records from table B can reference or belong to exactly one record in table A,
but records in table A can reference an unlimited amount of records from table
B. The way this is done is that a column is added to table B containing the Id of
the record in table A. For instance if a data-point belongs to an environment, the
environment ID is stored in an environment ID column of the data-point table.

Figure 3.6 shows the configurations of the SQL database. The diagram shows the
relations of the different tables. The pressure, gas and humidity table is not shown
in the diagram to keep it simple. The pressure, gas and humidity table are identical
to the temperature table. The gas table contains a Co2_value and a TVOC_value
instead of a single gas_value.

Chapter 3 Approach 15

Figure 3.6: SQL Database diagram

3.3 Front-End

The front end is a website that allows the user to interface with the database from
anywhere with an internet connection through a browser. The website is built
using Angular. The website has the following functions.

– Allow the registration and login of users.

– Allowing the user to create and delete environments.

– Allowing the user to view, access and download the data collected by their
devices.

– Working as a gateway to configure the pi on their local network.

3.3.1 Registration/Login

Registering works like most other websites. When the register button is pressed the
user will be prompted to input an email and password, as well as confirming the
password. When the users presses the register button an email will be sent to the
email specified by the user. This email contains a link to confirm the user. Once
the user has followed the link, the user can login using the email and password
they specified. A demo of this is shown in [C] at 00:30.

16 Chapter 3 Approach

3.3.2 Environments

Once the user is logged in, all primary-environments belonging to the user will
be displayed in the environment-tree on the left side. To create a new primary
environment the user can click the three dots next to the environments header and
click "Create environment". This will prompt the user to input a name for the
environment. Once the "Create" button is hit, the environment will be added to
the server and the environment will have been created.

Figure 3.7: Create primary environment

Every environment has three dots next to them, with a drop-down menu, allowing
the user to create a sub-environment, delete the environment or configure devices
under the selected environment. Using this we can create the House environment
from figure 3.1

Figure 3.8

When the user wants to configure a device to write to a particular environment, if
they are on the same local area network as the raspberry pi, they can select the

Chapter 3 Approach 17

"configure device" option on the menu for the environment they want to write to.
This will open a window to the right of the environment-tree view, that is hosted
on the raspberry pi.

Figure 3.9: The window in the red square is hosted by the Raspberry pi

This window allows the user to configure and connect devices on the raspberry
pi.(the red square itself is only on the picture and does not show up on the website)
The "Device" column shows the devices already configured under the current
environment in the Pi, as well as an "add new devices" option. This is described
further in the raspberry pi section.

18 Chapter 3 Approach

Figure 3.10

3.3.3 Viewing the data

When a device has logged data to an environment, the device will show up under
that environment with at special icon as shown in figure 3.10. In order to see
the data, the devices of interest can be checked with the checkbox to the right
of the device. When a device is checked a graph as well as two inputs are shown
in the right window as shown in 3.10. In order to see the data from the checked
devices, the user can input a start and end date into the first input as well as a
datatype into the second input. When the view button is hit the website will load
all available data of the specified type within the time window specified in the date
input.

Chapter 3 Approach 19

3.4 Raspberry Pi

The raspberry pi is the base station in the research environment. The pi has three
main functions:

– Connect and collect data from sensor devices.

– Serve the UI to let the user configure sensor devices.

– Interface with the central API to automatically upload data periodically.

3.4.1 Sensor Device Connection

The starting point for the raspberry pi code can be seen in [3]. This code worked
by scanning all Bluetooth devices every 30 seconds. It would then look for any mac
address that matched a mac address in the devices.json file. If there was a device
available, the code would start a separate thread to connect and communicate with
that device. This thread would continue until the code was shut down.

In order to make this code controllable through a UI. Each function a user needed
to use had to be separated into a standalone function that could be ran at any time,
in any order. The main four functions that the user needs access to through the
UI are: connect device, disconnect device, start device recording and stop device
recording. The functions were also modified to take inputs based on what sensors
to activate. When a device is configured by the user, the name and environment id
of the device is automatically stored by the python code.

For each package received from a sensor module, a code called a delegate is ran.
This takes the data received from the device as an input. A number code at the
start of the data from the device determines what sensor the data is coming from.
Based on this number-code, the received data is passed on to a function which
converts it to a string and stores it until it can be uploaded. In order to keep the
RAM clear this data should be written to a file. However, opening and closing a
file can be quite resource intensive, especially if we consider that each device can
be transmitting at up to 200Hz. Instead each data-point is put in a dictionary
based on the type and environment. Once every 2 seconds a separate thread loops
through all data and writes it to the appropriate .csv files.

Another loop that runs every 10 seconds then loops through all active environments
and tries to upload every .csv file to the server. When the server returns a 200
code, indicating that the data was received. The python loop deletes the .csv files.
If the server returns an error or nothing at all, the thread continues and tries again
the next cycle.

20 Chapter 3 Approach

3.4.2 UI

In order to minimize the amount of tech-literacy required by the user to configure
the SHPIA-system, the pi needed a UI that does not require the user to know
python or how to interact with the terminal.

In order to make the system controllable trough a web interface. A server had to
be hosted on the raspberry pi. The Flask Framework was selected to run the server
due to its Built-in development server and debugger. Flask is also a python based
framework, allowing it to easily interface with existing python code. This greatly
increases the user experience and opens the system up to a lot more users.

If the raspberry pi is setup in the home of the user, with the Flask-server running.
Whenever the "configure device" option is pressed on an environment, the website
requests the environment-token for that environment and adds that token to the
URL of the raspberry pi Flask server, shown in the red square in 3.9. The Flask
server then decrypts the token to figure out the environment ID of the environment.
The token is then stored in a dictionary under that environmentID. Whenever a
device is configured in this window, an object is added to a list of devices. The
environment ID of the environment token in the URL is stored as a parameter in
this object. This way, when the data from that device needs to be uploaded. The
token which needs to be included with the data is available.

Chapter 4

Experimental Evaluation

4.1 Experimental Setup

In order to test the system, the API was run in development mode on a personal
computer. The router in the apartment of that computer was configured to route
all incoming data that was not automatically rerouted, to the API port on that
computer. This was done with DMZ-hosting function in the router. The IPV4
address of the router was then used as the URL of the API.

The Flask server on the pi was ran in development mode through the "flask run"
command. This creates a development server on the local pi which can be accessed
if the computer accessing the web-page has a secure shell connection(ssh) to the pi.
Alternatives to this ssh approach is discussed further in the future work section.

The front-end app is hosted using the build in angular function "ng serve" to host
the app on localhost:4200.

Five Thingy 52 devices were setup in the apartment and set to record pressure,
temperature and humidity once every 10 seconds. As shown in 4.1, one device was
setup on the balcony, this was to measure the pressure which we can hopefully
compare to the local weather station measurements to get a validation of the data.
Another device was set in the window next to the balcony, this would hopefully
resemble the temperature data from the device on the balcony. Three devices was
placed in the bathroom as far away from the pi as possible, this would test the
reliability of the Bluetooth connection in less favorable conditions.

This test was left to run from 12:25 June 5. to 14:44 June 7. During this time the
computer and Pi was monitored to see if the system slowed down or the memory
filled up. This test was mostly setup to test the reliability of the system.

In addition to the reliability the test also gave an insight into the usability of the
system. The setup from user creation to fully setup system can be seen in [C]

21

22 Chapter 4 Experimental Evaluation

Figure 4.1: Apartment Test Diagram(red squares are devices)

4.2 Experimental Results and Analysis

Figure 4.2 shows the data collected from five sensors during the two day test. All
plots shown in the experimental section was downloaded from the front-end website.

Figure 4.2: Data captured during two days test

The point of these test is not really to test the accuracy of the data collected, more
so that the system worked and collected data over a period of time. We can see
from the plot that the three devices that were placed in the bathroom logged a
consistent temperature over the duration of the test, while the window and balcony
temperature changed quite a bit when exposed to direct sunlight. During the test
a brief internet outage caused an unhandled error in the python thread responsible
for periodically uploading the data, causing it to shut down. This caused the pi to
stop uploading the data at around 23:13 6. July 2023.

Chapter 4 Experimental Evaluation 23

Figure 4.3: Temperature upload error

Figure 4.4: Pi system downtime

figure 4.3 shows the individual data-points of the temperature table. Above the red
line the upload time is only a couple of seconds behind the logged time. However at
around 23:13 the uploader stopped working. This was not noticed by anyone until
the day after. However, due to the redundancy in the system, the pi continued
to log the data locally. Once the error was noticed at around 12:30 the day after.
The python code was stopped and restarted. The uploader then uploaded all local
data-points to the server.

Although the zoomed out plot seems to show no downtime, if we zoom in at around
13:00 we can see that there was a period of around 3-4 minutes where the python
code was stopped and restarted. Shown in-between the two blue lines in 4.4.

Note that the upload time in figure 4.3 show that the data was uploaded at 13:00:38.
That is at the beginning of the supposed downtime in figure 4.4. This is because,
once the code bug was noticed, it was fixed on another computer while the pi as
still running. This meant that once the pi was shutdown it could instantly get the
updated code and get back up running. When the code is restarted the devices has
to be reconnected. The uploader on the other hand will instantly upload any data
stored on the pi. This error served as a good test of the system and proved that
even if the internet were to go out for a day the system would still keep running
and gathering data.

Chapter 5

Conclusions

This paper presented a new system for logging data from smart home devices. The
result is a complete system with three parts that work together whilst requiring
very little technical knowledge from the user.

The server can automatically collect data from thingy 52 devices, through a
raspberry pi devices over the internet in a secure and efficient manner. The front-
end application allows users to collect, manage and view data in a single simple
interface using browsers which most people are very familiar with.

The raspberry pi allows for easy configurations whilst hiding the complex system
need to gather and transmit data in secure manner from the user. The environment
feature allows the data to be sorted in an organized fashion.

The Bluetooth strength signal was abandoned once it was discovered that the
bluepy library does not have the capability to measure the rssi value of devices
that are paired to the pi. Adding all Bluetooth devices to the Pi was also deemed
outside the scope of this paper due to time constraints. However this paper goes a
long way in integrating these other devices into the system. Since the system is
focused on generalization, once the python code for the pi is created where the pi
can connect to the other devices. The other devices can simply put the data into
the same .csv file that the existing code uses and it will automatically upload it as
if it was coming from a thingy 52 device.

25

26 Chapter 5 Conclusions

5.1 Future Directions

– The next logical step in the progression is to add the remaining devices outlined
in the SHPIA architecture [2]. This would give the users more tools to more
accurately monitor the activities of subjects.

– The addition of devices using beacon Bluetooth mode rather than a pairing
mode would also open up the possibility to monitor the signal strength of the
device while gathering data.

– The raspberry pi server running of the flask development server is not ideal
as it is not designed to be used in production. Alternatives to this approach
was looked into but other solutions required a lot of configurations of the
pi itself, which would greatly increase the tech-literacy requirement of the
system. A solution where and image of a pi with this configuration preinstalled
would solve both these problems but might require a lot of development to
get working.

– Currently the SQL database is being under-utilized. SQL has incredibly
powerful search algorithms which could be extremely useful for researchers
when looking for patterns in data. However currently the only queering the
server allows is sorting based on date. If the server could open up the query
algorithm in a secure and usable manner this could provide a invaluable tool
for researchers.

– Adding a table to the SQL database allowing the users to specify other users
they want to give access to their environment would allow people to share data.
currently only the person who was logged in when the device was configured
has access to the data.

– The Front-end although more than useful is still a bit rough around the edges.
There are a few quality of life improvements that would make the website
more user friendly. Some examples of this is, missing logout button, missing
refresh environment tree button, no support for cookies which means users
needs to login every time the site refreshes. These are not detrimental to the
function of the website but does lead to a worse user experience.

– There is currently a bug in the bluepy code which does not allow the thingy
52 to send gas data to the pi. The error specifies that the data received from
the device is too long.

Appendix A

Test setup video

https://www.youtube.com/watch?v=AJ-FKfqY0XYabchannel = LarsPan

27

https://www.youtube.com/watch?v=AJ-FKfqY0XY&ab_channel=LarsPan

Appendix B

back-end github repositoriy

https://github.com/ghettolash/smarthomeAPI2

29

https://github.com/ghettolash/smarthomeAPI2

Appendix C

Front-end github repositoriy

https://github.com/ghettolash/SHPIA-frontend/tree/master

31

https://github.com/ghettolash/SHPIA-frontend/tree/master

Bibliography

[1] Mara Z. Vitolins1 and Talsi L. Case2. What Makes Nutrition Research So
Difficult to Conduct and Interpret? — ncbi.nlm.nih.gov. https://www.ncbi.

nlm.nih.gov/pmc/articles/PMC7228817/, 2020. [Accessed 08-Jun-2023].

[2] Florenc Demrozi and Graziano Pravadelli. SHPIA: A Low-Cost Multi-purpose
Smart Home Platform for Intelligent Applications, pages 217–234. 10 2022.
ISBN 978-3-031-18871-8. doi: 10.1007/978-3-031-18872-5_13.

[3] Christian Turetta. Wearable-data-collector. https://github.com/

CristianTuretta/Wearable-Data-Collector/tree/dev-cristian, 2023.

[4] Lars-Erik Nes Panengstuen. Wearable-data-collector. https://github.com/

CristianTuretta/Wearable-Data-Collector/tree/dev-lars, 2023.

[5] Diane Cook, Aaron Crandall, Brian Thomas, and Narayanan Krishnan. Casas:
A smart home in a box. Computer, 46, 07 2013. doi: 10.1109/MC.2012.328.

[6] Narayanan Krishnan and Diane Cook. Activity recognition on streaming
sensor data. Pervasive and mobile computing, 10:138–154, 02 2014. doi:
10.1016/j.pmcj.2012.07.003.

[7] Marjorie Skubic, Gregory Alexander, Mihail Popescu, Marilyn Rantz, and
James Keller. A smart home application to eldercare: Current status and
lessons learned. Technology and health care : official journal of the European
Society for Engineering and Medicine, 17:183–201, 02 2009. doi: 10.3233/
THC-2009-0551.

[8] Jiaxuan Wu, Yunfei Feng, and Peng Sun. Sensor fusion for recognition of
activities of daily living. Sensors, 11, 11 2018. doi: 10.3390/s18114029.

[9] Ju Wang, Nicolai Spicher, Joana M. Warnecke, Mostafa Haghi, Jonas
Schwartze, and Thomas Deserno. Unobtrusive health monitoring in private
spaces: The smart home. Sensors, 21:864, 01 2021. doi: 10.3390/s21030864.

[10] Online security survey google % harris poll%2019, F eb2019.URL.

33

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7228817/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7228817/
https://github.com/CristianTuretta/Wearable-Data-Collector/tree/dev-cristian
https://github.com/CristianTuretta/Wearable-Data-Collector/tree/dev-cristian
https://github.com/CristianTuretta/Wearable-Data-Collector/tree/dev-lars
https://github.com/CristianTuretta/Wearable-Data-Collector/tree/dev-lars
https://services.google.com/fh/files/blogs/google_security_infographic.pdf

	Abstract
	Acknowledgements
	1 Introduction
	1.1 Background and Motivation
	1.2 Objectives
	1.3 Approach and Contributions
	1.4 Outline

	2 Related Work
	3 Approach
	3.1 Overview
	3.2 API
	3.2.1 User Creation
	3.2.2 User Authentication
	3.2.3 Data Organization
	3.2.4 Receiving Data
	3.2.5 Database

	3.3 Front-End
	3.3.1 Registration/Login
	3.3.2 Environments
	3.3.3 Viewing the data

	3.4 Raspberry Pi
	3.4.1 Sensor Device Connection
	3.4.2 UI

	4 Experimental Evaluation
	4.1 Experimental Setup
	4.2 Experimental Results and Analysis

	5 Conclusions
	5.1 Future Directions

	A Test setup video
	B back-end github repositoriy
	C Front-end github repositoriy
	Bibliography

