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Abstract 
 

The subsea shuttle tanker (SST) is the next-generation autonomous submarine designed to 

transport liquid CO2 from land/offshore facilities to the smaller fields for injection. Unlike normal 

shuttle tankers, which are highly weather dependent, the SST can carry out freight operations in 

all weather conditions because it travels underwater between 40 m and 70 m water depth.   

The first part of the thesis proposes a fast, efficient and reliable multi-body approach to determine 

the bending moment response of the SST hull at 40 m and 70 m water depth. The chosen approach 

is based on the discrete-module-beam bending-based hydroelasticity principle. The flexible hull 

of the vessel is divided into several multi-body rigid modules. All the hydrodynamic and 

hydrostatic forces are applied to the center of gravity of each rigid module. The parametric models, 

like the state-space model system, are used to compute the free-surface memory effect more 

effectively. The multi-body equation of motion is solved to determines the bending moment 

response of an interconnected multi-body rigid module. The numerical model is prepared using 

Matlab Simulink to study the dynamics of the vessel.  A convergence study is conducted to select 

the optimal number of bodies needed to perform this study. The result shows that the lower number 

of bodies (i.e., three and five bodies) does not have enough points to capture all the wave encounter 

frequencies, thus underestimating the bending moment. Therefore, seven-body SST is used to 

carry out a further assessment. The bending moment standard deviation is reduced by 

approximately 50 % when SST travels at 70 m water depth instead of 40 m.  

The second part of the thesis presents the fatigue assessment of the SST hull, considering the 

stiffeners' local details. Two FE models (2D axisymmetric and 3D shell element models) 

representing the local detail of the flooded-mid body of the SST are prepared to determine the 

stress concentration factor (SCF). The resultant SCF can be given using the superposition concept 

by taking the product of the SCF for the individual models. The Rainflow counting method and 

Palmgren-Miner rule are used to calculate the accumulated fatigue damage and fatigue life. The 

numerical results show that the impact of long waves has contributed to the most damage to the 

vessel. The minimum fatigue life at the flooded-mid section is 13 and 19 years for the 40 m and 

70 m water depths, respectively. The results also shows that fatigue life due to the change in 

hydrostatic pressure during dive-in and dive-out is five years.   
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1. Chapter 1 – Introduction 
 

1.1.  Motivation and Background 

 

The global carbon dioxide (CO2) emissions in the earth's atmosphere are one of the primary causes 

of global warming and climate change. Since the beginning of the twenty-first century, global CO2 

emissions have steadily climbed from 12,165 million tons (MT) in 1990 to 38,016 MT in 2019. 

Based on the Emission Database for Global Atmospheric Research (Crippa et al., 2020), this 

considerable increase in CO2, around 70%, is caused by the combustion of fossil fuels and 

extensive deforestation. According to the experts and climate advisory, CO2 emissions must be 

reduced by 2030; or the globe will ensure permanent losses. The world's most sensitive ecosystem 

would be in jeopardy (Allen et al., 2019; Masson-Delmotte et al., 2018).  

Global warming and CO2 emissions have emerged as a crucial topic of discussion in the Paris 

agreement (United Nation, 2015), which aims to limit global warming by 1.5 oC. According to the 

agreement, greenhouse gas (GHG) emissions (i.e., mainly CO2) must be lowered by at least 55 

percent by 2030 compared to 1990. Carbon capture and storage (CCS) technology is crucial in 

meeting this goal by capturing CO2 emissions from various sources and transporting them to safe 

and secure sites, such as subsea wells. CO2 emissions from different industrial processes may now 

be collected and stored in significant quantities (Carbon Capture and Storage Association, 2020). 

As a result, any strategy that increases overall global CCS storage capacity in an economically 

feasible way is crucial for limiting the growing trend in the earth's mean temperature rise.  

Pipelines transfer most offshore oil and gas production from host facilities to onshore facilities for 

further processing (Fullenbaum et al., 2013). Since the first subsea pipeline was installed during 

World War II in the United Kingdom, pipeline installation techniques have improved significantly 

and are now considered mature technology (Palmer & King, 2008). Transporting hydrocarbon 

using pipelines comes with some economic and technical limitations. One key limitation is 

installation cost which might be prohibitively expensive for a remotely located small field. 

Furthermore, pipeline inspection, maintenance, and repair become very challenging and costly, 

especially for deep water remote marginal fields. This suggests that the pipeline favours big fields 

with small step-outs and high-profit margins (Wilson, 2008).  
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Shuttle tankers are frequently deployed as an alternative to pipelines due to their ability to operate 

flexibly on demand (Vestereng, 2019). Since the tanker ships are floating structures subjected to 

enormous dynamic load effects from winds and waves, their operations are very weather-

dependent and cannot be carried out in rough and extreme sea states. Various autonomous vehicles 

such as subsea gliders and freight submarines (Xing, 2021), are being developed as an alternative 

solution to the abovementioned problems. As an innovative solution, the idea of a Subsea Shuttle 

Tanker (SST) was introduced by Equinor in two research disclosure in 2019. The SST is a 34000-

tonne novel sizeable autonomous vessel used to transport liquid CO2 from onshore-offshore 

facilities to subsea wells, see Figure 1.1. The primary design consideration for SST was 

investigated by Xing et al., (2020) to make it economically feasible. Later, the baseline design for 

SST is presented by Ma et al., (2021).    

 

 

Figure 1.1: Subsea Shuttle Tanker (Ma et al., 2021) 

 

During operation, the SST travels at the speed of 6 knots for best energy efficiency at the nominal 

diving depth of 70 m to reduce the wave impacts (Ma et al., 2021). At the stated water depth, the 

wave-induced loads on the external hull of the SST are decreased significantly. However, to 
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accurately estimate the structural performance of the SST hull, it is still necessary to explain and 

quantify this decrease in wave-induced loads in the given operating condition. These wave-induced 

loads, dynamic external pressure, and internal pressure loads (dynamic pressure from liquid cargo 

or ballast water) can potentially cause fatigue damage to the external pressure hull of the vessel. 

Furthermore, because the SST has a significant length-to-beam ratio, the external hull of the vessel 

can be deformed by a combination of wave loads and non-uniform buoyancy and weight 

distribution. The dynamic pressure variation with the water depth that has a positive value under 

the wave crest and a negative value under the wave trough is shown in Figure 1.2.    

 

 

Figure 1.2: Environmental loading on the external hull of the SST 
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1.2.  Objectives of the thesis 

 

The thesis proposes a reliable and efficient multibody approach for a structural assessment of the 

SST external hull. The structural assessment is carried out in two different parts as mentioned 

below: 

1. A multibody approach is used to model and analyze the bending moment in the SST under 

the effect of waves. The aim is to develop the multibody seakeeping planar model using 

Matlab Simulink. The bending moment responses are obtained under hydrodynamic loads, 

considering hydroelectricity and connection stiffness.    

2. The objective of second half of the thesis is fatigue damage assessment of the SST external 

hull using the Rainflow counting approach and Palmgren-Miner rule considering local 

structural detail.  

 

1.3.  Outline 

 

• Chapter 1: Introduction 

Background of the Subsea Shuttle Tanker and its applicability, problem statement and the 

objective of the thesis. 

• Chapter 2: Literature review and methodology 

Discuss the past research related to the topic. A detailed explanation of the multi-body 

concept, multi-body equation of motion, potential flow theory, hydrodynamic and 

hydrostatic forces, and fatigue assessment methods. 

• Chapter 3: Approach 

Properties of the parametric model and different methods to identify the parametric model. 

Justification for selecting the FDI toolbox for this thesis. 

• Chapter 4: Subsea Shuttle Tanker (SST) planar model design 

A 2D planar Simulink model and an explaination for selecting the PID controller for the 

analysis are presented. Introduce the design input data used in the analysis. 

• Chapter 5: Bending moment assessment using the multibody approach 
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Introduction to the bending moment assessment and analysis procedure. Carry out 

convergence study, time-domain and frequency-domain analysis and study the effect of 

water depth. 

• Chapter 6: Fatigue assessment of the Subsea Shuttle Tanker hull 

Introduction to fatigue assessment and analysis procedure. Finite element (FE) analysis to 

determine stress concentration factor (SCF). Discuss fatigue response due to waves and 

change in hydrostatic pressure due to dive-in and dive-out. 

• Chapter 7: Conclusions and recommendations for future work 

Discuss the main results of the thesis and propose future work.  
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2. Chapter 2 – Literature review and methodology 
 

2.1.  Previous work 

 

Much research has already been done on Very Large Floating Structures (VLFSs) such as terminal 

airports, passenger and cargo ships, emergency bases, bridges, and so on (Lu et al., 2019). 

However, very little work has been done regarding reliable and efficient structural assessment on 

large autonomous submarines. In this thesis, the author has extended the previous works on VLFSs 

and suggested a reliable and efficient multibody approach to determine the bending moment 

responses and fatigue damage assessment using the frequency-time domain method under the 

influence of wave-induced loads. 

Understanding the interaction between the external hull of SST and fluid fields is very important. 

The classical hydrodynamic approach assumes a rigid body assumption. It overlooks the influence 

of structural deformation and provides inaccurate hydrodynamic response estimation. The hydro-

elastic theory accurately determines the large floating structures' response. It combines the 

hydrodynamic equations and structural dynamics, accounting for the interaction between inertia, 

hydrodynamic and elastic forces (Lu et al., 2019). These theories and multibody analysis methods 

are used to study several VLFSs. Hong, Kim, Cho, et al., (2003) numerically investigated global 

and local motion responses of multibody VLFSs such as side-by-side moored shuttle tanker and 

floating production storage and offloading (FPSO) systems. The latter results were compared with 

the model test results. Choi & Hong, (2002) studied the hydrodynamic interaction of a floating 

multibody system using the higher-order boundary element method (HOBEM). The findings are 

examined for two distinct unloading configurations, side-by-side and tandem. Yu et al., (2004) 

analyze the reactions and connection forces of a multibody movable offshore base system by 

numerically assuming bodies to be rigid. Several approaches have been used to analyze hydro-

elastic responses of the offshore structures, including the mode superposition method (Hong et al., 

2001; Humamoto & Fujita, 2002; Masashi, 1997), the direct method (Sim, 1998; Yasuzawa et al., 

1997) and the eigenfunction expansion method (Hong, Kim, Shin, et al., 2003; Sim, 1998). Using 

the multibody equation of motion, Kim et al., (2007) analyze the shear forces, bending moment, 

and stresses at the VLFS connections. Adding all hydrodynamic responses at each node determines 

the total structural motions. However, because of the non-uniform shape or stiffness, achieving 
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these responses in each mode is difficult. As a result, the direct technique is utilized to investigate 

structures whose modes are very challenging to determine. 

Fatigue damage is one of the most common causes of damage to most fixed and floating offshore 

structures. Cumulative fatigue damage is the most commonly used approach, which was first 

proposed by Palmgren and later modified and refined by Miner. The latter approach is not yet fully 

resolved and comes with uncertainties (Wirsching et al., 2006; Wirsching & Light, 1980). The 

most commonly used fatigue assessment methods in practice are the deterministic method, the 

spectral method, and the time-domain analysis method (Arıduru, 2004) based on the Rainflow 

counting approach (Matsuishi & Endo, 1968; Rychlik, 1987). This chapter's later section briefly 

describes the fatigue assessment methods. 

Low & Cheung, (2012) proposed a new tailored approach based on a multi-peaked third-order 

asymptotic approximation. Zhao, (2012) suggested a practicable approach with intermediate 

accuracy for predicting fatigue life, including Super Long Life Regime (SLLR) and fatigue 

reliability. For the fatigue damage analysis of the offshore wind turbine (OWT), a novel statistical 

simplified technique based on a multivariate linear statistical approach is suggested (Zwick & 

Muskulus, 2016). The maximum error of the last-mentioned approach was only around 6.4% 

compared to the time-domain fatigue analysis. Robles et al., (2000) proposed a method to 

determine the fatigue damage of the submarine pressure hull using linear elastic fracture mechanics 

and the paris equation. The geometry functions would be very beneficial for approximating the 

fatigue crack growth rate in the fracture mechanics technique (Haselibozchaloee et al., 2022). 

However, most fatigue assessment methods are associated with complex expressions. These limit 

their implementation in the actual design and can only be used to certain scenarios (Du et al., 

2015). Furthermore, several of these new approaches are associated with uncertainties. The 

uncertainties associated with wave-induced fatigue loads and how they affect the crack growth of 

various offshore structures are studied by (Dong et al., 2022).  
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2.2.  Multibody concept 

 

The SST's continuous flexible hull is divided into multibody rigid modules with no deformation, 

see Figure 2.1. Each subsequent neighboring body is connected using a flexible spring. Each body 

has six-degree of freedom (DOF) motion. The motion of each body is influenced by the 

hydrodynamic interaction with its neighboring body. For bending moment analysis and fatigue 

damage assessment, linear wave theory assumptions are used to address the hydrodynamic 

characteristics i.e., incompressible, non-viscous, irrotational flow and small wave steepness waves. 

Then, based on the potential flow theory, hydrodynamic coefficients (added mass, damping, 

response amplitude operators RAOs etc.) are obtained for the multibody SST. The potential flow 

theory divides the structural load into the radiation and wave excitation effects. Finally, bending 

moment responses of the multibody SST are obtained by solving the multibody equation of motion 

in the presence of waves. The bending stiffness of the spring is considered only in pitch direction. 

It is because the work is limited to the 2-D planar model of the SST. Eq. (2.1). provides the bending 

stiffness of the spring in the pitch direction.   

 𝐾𝜃 =
4𝐸𝐼

𝐿
 (2.1) 

 

where, 𝐾𝜃 is the bending stiffness in pitch direction, 𝐼 is the moment of inertia around y-axis, 𝐸 is 

Young's modulus, and 𝐿 is the length of each rigid module.   
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Figure 2.1: Multibody SST 

 

2.3.  Wave theory 

 

It is essential to understand the ocean waves and their interactions with the SST hull during its 

motion. The theory of ocean waves and how they interact with a moving SST are discussed in this 

section.  

When the wind blows over the ocean, it generates ocean waves by forcing the water's surface to 

move. Other origins of the ocean waves include earthquakes and Coriolis force. The SST is 

subjected to both regular and irregular waves in this thesis. Regular waves are sinusoidal and are 

generated when the constant wind blows for a long duration. On the other hand, irregular waves 

are composed of the superposition of many regular waves with different frequencies or periods. 

 

2.3.1. Linear wave theory      

 

In this section, the fluid particle's equation of motion and pressure is derived using Linear wave 

theory, also called Airy wave theory (Falnes & Kurniawan, 2002). Wave motion is described as a 

velocity potential using a few assumptions and approximations. This theory assumes fluid to be 

incompressible (constant density), non-viscous, and irrotational.  
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We start by looking at the two fundamental fluid dynamic equations: the Continuity and the 

Navier-Stokes equation (Kundu et al., 2015). The continuity equation for an incompressible flow 

is given as follows 

 𝛻 ∙ 𝑉 = 0 (2.2) 

    

where 𝑉 is the velocity vector (x, y, z).  

The simplified Navier-Stokes equation, also known as the Euler equation (Kundu et al., 2015), is 

given by 

 𝜌
𝐷𝑉

𝐷𝑡
= 𝜌 (

𝜕𝑉

𝜕𝑡
+ (𝑉 ∙ 𝛻)𝑉) = −𝛻𝑝 + 𝑓 (2.3) 

 

where  
𝐷𝑉

𝐷𝑡
 is the material derivative of the velocity, 𝑝 is the fluid's total pressure, and 𝑓 is any 

external force acting on the fluid (for example, gravitational restoring force). 

Velocity potential 

The ocean water is assumed inviscid, irrotational, and incompressible. The velocity vector V(x, y, 

z, t) = (u, v, w) can be described with a velocity potential ∅ (Faltinsen, 1993) 

 𝑉 = 𝛻∅ = 𝑖
𝜕∅

𝜕𝑥
+ 𝑗

𝜕∅

𝜕𝑦
+ 𝑘

𝜕∅

𝜕𝑧
 (2.4) 

    

where, i, j and k are unit vectors along the x, y, and z axes in the cartesian coordinate system, 

respectively. There is no physical meaning of a velocity potential, but it is often used to analyze 

irrotational fluid motion. When the vorticity vector (𝜔 = ∇ × 𝑉) is zero, the fluid is said to be 

irrotational. Also, it is assumed that water is incompressible (i.e., ∇ ∙ 𝑉 = 0), then the velocity 

potential ∅ must satisfy the Laplace equation (Faltinsen, 1993)  

 
𝜕2∅

𝜕𝑥2
+

𝜕2∅

𝜕𝑦2
+

𝜕2∅

𝜕𝑧2
= 0 (2.5) 
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The solution of the Laplace equation with appropriate boundary conditions on the fluid is used to 

determine the velocity potential of incompressible and irrotational fluid motion. The boundary 

conditions are covered in the later part of the section. 

The pressure 𝑝 is given using Bernoulli's equation. If we assume the z-axis to be vertical and 

positive upwards (Faltinsen, 1993), we can write 

 𝑝 + 𝜌𝑔𝑧 + 𝜌
𝜕∅

𝜕𝑡
+

𝜌

2
𝑉 ∙ 𝑉 = 𝐶 (2.6) 

 

where C is a constant. Eq. (2.6) assumes only gravity as an external force field and is valid for 

inviscid, unsteady and irrotational fluid motion.  

Boundary conditions 

Bottom boundary condition (BBC): The fluid velocity at the sea bottom (𝑧 = −ℎ) is zero. We are 

considering a flat bottom, where h is the water depth (Faltinsen, 1993).  

 𝑧̇ =
𝜕∅

𝜕𝑧
= 0, 𝑤ℎ𝑒𝑛 𝑧 = −ℎ (2.7) 

 

Kinematic free surface boundary condition (KBC): The vertical velocity of the fluid particle at the 

free surface must be the same as the vertical velocity of the free surface in the same direction 

(Faltinsen, 1993).  

 
𝜕∅

𝜕𝑧
=

𝜕𝜂

𝜕𝑡
+

𝜕𝜂

𝜕𝑥
∙
𝜕∅

𝜕𝑥
 (2.8) 

 

where 𝜂(𝑥, 𝑡) is the free surface of the water. 

Dynamic free surface boundary condition (DBC): Fluid pressure along the free surface must be 

constant and equal to the atmospheric pressure (Faltinsen, 1993). Using . Eq. (2.6)  at the surface, 

we have 𝑝 = 𝑝0 and 𝑧 = 𝜂 which gives   

 𝑔𝜂 +
𝜕∅

𝜕𝑡
+

1

2
∙ (

𝜕∅2

𝜕𝑥
+

𝜕∅2

𝜕𝑧
) = 0 (2.9) 
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It is challenging to obtain the analytical solution to the problem because boundary conditions at 

the free surface 𝜂(𝑥, 𝑡) are nonlinear and the governing equation of the free surface is missing. 

Mathematical simplification is needed. The following boundary conditions can be linearized 

(disregard the square terms) by assuming small wave steepness and thus 𝜂 can be neglected from 

the equations (apply KBC and DBC at 𝑧 = 0 instead of 𝑧 = 𝜂) (Faltinsen, 1993). The 

approximated and simplified KBC and DBC are given as 

KBC 
𝜕∅

𝜕𝑧
=

𝜕𝜂

𝜕𝑡
 , 𝑎𝑡 𝑧 = 0 (2.10) 

DBC 
𝜕2∅

𝜕𝑥2
+ 𝑔 ∙

𝜕𝜂

𝜕𝑡
= 0 , 𝑎𝑡 𝑧 = 0 

(2.11) 

 

No flow is permitted through the outer hull of the SST. Therefore, velocity of the fluid particles 

perpendicular to the SST surface is equal to the normal component of the SST velocity 𝑣𝑛 (Falnes 

& Kurniawan, 2002)   

 
𝜕∅

𝜕𝑛
= 𝑣𝑛 (2.12) 

 

 

2.3.2. Ocean waves 

 

Ocean waves are typically irregular waves and composed of the superposition of many regular 

waves with different amplitudes and frequencies. The surface elevation of the ocean waves as a 

function of time for regular and irregular waves is illustrated in Figure 2.2. 
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Figure 2.2: Example of regular waves (left) and irregular waves (right) 

 

Regular waves 

Regular waves are sinusoidal and are generated when the constant wind blows for a long duration 

in deep water condition. A sinusoidal function can be used to describe the surface elevation of the 

regular waves propagating in the x direction at the given time instance t (Faltinsen, 1993).     

 𝜂(𝑥, 𝑡) =
𝐻

2
𝑐𝑜𝑠 (𝜔𝑡 − 𝑘𝑥) (2.13) 

 

where 𝐻/2 is the amplitude of the regular waves (m), 𝜔 is the wave frequency (rad/sec), k is the 

wave number which is defined as 𝑘 = 2𝜋/𝜆 and 𝜆 is the wavelength (m). 

Irregular waves 

The significant wave height 𝐻𝑠 and spectral peak period 𝑇𝑃 are the most important characteristics 

of irregular waves. 𝐻𝑠 is defined as the average value of the one-third highest wave height of the 

incoming waves. 𝑇𝑃 is defined as the wave period where we have the maximum value of the 

frequency spectrum. 

The surface elevation of irregular waves is given as a superposition of many individual regular 

waves components.  

 𝜂(𝑥, 𝑡) = ∑ 𝐴𝑛𝑐𝑜𝑠 (𝜔𝑛𝑡 − 𝑘𝑛𝑥 + 𝜃𝑛)

𝑀

𝑛=1

 (2.14) 
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where 𝐴𝑛, 𝜔𝑛, 𝑘𝑛, and 𝜃𝑛 is the amplitude, frequency, wave number, and phase shift of the 𝑛𝑡ℎ 

wave, respectively. The phase shift is generated randomly between [0,2𝜋].  

Sea spectrum model 

Sea spectrum models are empirical. They are built using real-time ocean wave measurements data, 

measured over long periods. The most often used spectrums are the Pierson-Moskowitz (PM), 

ISSC, and Joint North Sea Wave Project (JONSWAP) models. These models show the amount of 

energy transported in the waves over the frequency range. These models are used to estimate the 

various critical responses of offshore structures. The energy density spectrum depends on the 

significant wave height 𝐻𝑠 and spectral peak period 𝑇𝑃. The 𝐻𝑠 and 𝑇𝑃 values depend on the long-

term sea states of a particular geographical location (Chakrabarti, 2005). Table 2.1 proposes which 

model to adopt in various regions throughout the world.  

 

Table 2.1: Different spectral models for different regions (Chakrabarti, 2005) 

Location Operational Survival 

North Sea JONSWAP JONSWAP 

Northern North Sea JONSWAP JONSWAP 

Gulf of Mexico PM PM or JONSWAP 

Offshore Brazil PM PM  or JONSWAP 

West Africa PM PM 

Western Australia PM PM 

Offshore Newfoundland PM PM or JONSWAP 

 

Pierson-Moscowitz model 

The Pierson-Moscowitz (PM) spectrum was developed using the measurements taken in the North 

Atlantic Ocean. The spectrum describes the wave elevation for a fully developed sea at infinite 

fetch. The following formula describes the PM spectrum (DNV, 2010c) 

 𝑆𝑃𝑀(𝜔) =
5

16
𝐻𝑆

2𝜔𝑃
4𝜔−5𝑒𝑥𝑝(−

5

4
(

𝜔

𝜔𝑝
)

−4

) (2.15) 
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where 𝜔𝑝 = 2𝜋/𝑇𝑝 and 𝜔 is the frequency (rad/sec) 

Joint North Sea Wave Project (JONSWAP) models 

JONSWAP spectrum was developed using the measurements done in the Southern North Sea. 

Under specific wind conditions, this spectrum represents sea states that have not fully developed. 

The JONSWAP model is an updated version of the PM model with a peak enhancement factor 

controlled by a peak shape parameter 𝛾 (DNV, 2010c). JONSWAP spectrum is given as follows  

 
𝑆𝐽(𝜔) = 𝐴𝛾𝑆𝑃𝑀(𝜔)𝛾

𝑒𝑥𝑝(−0.5(
𝜔−𝜔𝑝

𝜎𝜔𝑝
))

 
(2.16) 

 

where 𝛾 is a peak shape parameter, 𝜎 is a spectral width parameter (𝜎 = 𝜎𝑎 for 𝜔 ≤ 𝜔𝑝 and 𝜎 =

𝜎𝑏 for 𝜔 ≥ 𝜔𝑝), and 𝐴𝛾 = 1 − 0.287ln (γ) is a normalizing factor. Figure 2.3 illustrates a 

comparison between the PM and the JONSWAP spectrum. The time series of the wave elevation 

can be generated from the energy spectrum using Fast Fourier Transformation (FFT). On the other 

hand, the wave elevation time series can be converted to the frequency domain using inverse 

Fourier Transformation.  
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Figure 2.3: Comparision between PM and JONSWAP spectrum 

 

This thesis uses the Joint North Sea Wave Project (JONSWAP) spectrum to model irregular waves.                  

 

2.4.  Hydrodynamic forces 

 

For any marine vessels and offshore structures, the equation of motion can be given as 

 𝑀𝑅𝐵𝜉̈ = 𝜏 
(2.17) 

 

where 𝑀𝑅𝐵 is the rigid body mass matrix, 𝜉 is the displacement vector with respect to the global 

coordinate system and 𝜏 is force and moment vector in a body-fixed coordinate system.  

 𝜏 = 𝜏𝑒𝑥𝑡 + 𝜏𝑟𝑒𝑠 + 𝜏𝑣𝑖𝑠𝑐 + 𝜏𝑟𝑎𝑑 (2.18) 
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where 𝜏𝑒𝑥𝑡 is the excitation force by incident waves (Froude Krilov (FK) force and Diffraction 

force), 𝜏𝑟𝑒𝑠 is the restoring force (gravity and buoyancy), 𝜏𝑣𝑖𝑠𝑐 is the viscous force and 𝜏𝑟𝑎𝑑 is the 

radiation force due to a change in momentum of the water particles.    

We saw in section 2.3.1 that a velocity potential ∅ represents fluid motion. The velocity potential 

is divided into three different potentials (Faltinsen, 1993):  

 ∅ = ∅0 + ∅𝑑 + ∅𝑟𝑎𝑑 (2.19) 

 

where ∅0 is the undisturbed wave potential, ∅𝑑 is the diffraction potential due to the presence of 

fixed structures in incoming waves and ∅𝑟𝑎𝑑 is the radiation potential when the structure is forced 

to oscillate with an arbitrary amplitude in calm water. The different velocity potential allows us to 

calculate the individual forces acting on the structure (Faltinsen, 1993). The velocity potential ∅ 

for time-varying sinusoidal waves can be given as 

 ∅(𝑥, 𝑡) = 𝑅𝑒[∅̂(𝑟)𝑒𝑖𝜔𝑡] (2.20) 

 

where ∅̂(𝑟) is the space-dependent complex amplitude, 𝜔 is the wave frequency and 𝑡 is the time 

instant.  

The forces on any marine and offshore structures are obtained from the pressure exerted by the 

fluid on the wetted surface S. Using Bernoulli equation (Eq. (2.6)) and velocity potentials (Eq. 

(2.19)), the pressure can be obtained (Faltinsen, 1993)  

 𝑝 = −𝜌
𝜕∅

𝜕𝑡
− 𝜌𝑔𝑧 = −𝜌𝑅𝑒[𝑖𝜔(∅̂0 + ∅̂𝑑 + ∅̂𝑟𝑎𝑑)] − 𝜌𝑔𝑧 

(2.21) 

 

Knowing the velocity potentials, calculating resulting forces (F) and moments (M) is 

straightforward just by integrating pressure over the surface S: 

 𝐹 = ∬ (𝑝 ∙ 𝑛̅)𝑑𝑆
0

𝑆

 (2.22) 

 𝑀 = ∬ 𝑝(𝑟̅ × 𝑛̅)𝑑𝑆
0

𝑆

 (2.23) 

 



 

18 

 

where 𝑛 is the normal vector to the surface S and 𝑟 is the location vector. Table 2.2 shows the 

summary of different hydrodynamic and hydrostatic forces acting on any marine and offshore 

structures. 

 

Table 2.2: Summary of hydrodynamic and hydrostatic forces 

Forces Wave 

Excitation force 

Restoring force Viscous force Radiation force 

Abbreviation 𝜏𝑒𝑥𝑡 𝜏𝑟𝑒𝑠 𝜏𝑣𝑖𝑠𝑐 𝜏𝑟𝑎𝑑 

Origin ∅̂0, ∅̂𝑑 −𝜌𝑔𝑧  ∅̂𝑟𝑎𝑑 

Description Forces on the 

structure when it 

is fixed in the 

incident waves 

Hydrostatic 

restoring force 

Forces due to the 

water friction 

(added 

externally to 

obtain the 

accurate 

structure 

response) 

Forces on the 

body when it 

oscillates in 

water with no 

waves. 

 

 

2.4.1. Excitation force 

 

The excitation force on the marine and offshore structures can be calculated using undisturbed 

wave potential ∅̂0 and diffraction potential ∅̂𝑑 (Faltinsen, 1993) 

 𝜏𝑒𝑥𝑡 = −𝜌 ∬ 𝑛̅𝑅𝑒[𝑖𝜔(∅̂0 +
0

𝑆

∅̂𝑑)𝑒𝑖𝜔𝑡]𝑑𝑠 (2.24) 
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2.4.2. Radiation force 

 

Time-domain model 

Cummin's equation is used to represent time-domain radiation force (Cummins et al., 1962) 

 𝜏𝑟𝑎𝑑 = −𝐴∞𝜉̈ − ∫ 𝐾(𝑡 − 𝑡′)𝜉(𝑡′)𝑑𝑡′̇
𝑡

0

 (2.25) 

 

where 𝐴∞ and 𝐾 are the infinite frequency added mass and retardation function, respectively. The 

first term in Cummin's equation is the pressure force caused by the structure's acceleration. The 

following term in the equation represents energy transfer from the structure's motion to radiation 

waves. It shows the fluid memory model. The memory function's matrix is the kernel of the 

concolution term.  

Using Eq. (2.17), (2.18) and (2.25), the equation of motion in time domain for any marine and 

offshore structures can be represented as (Cummins et al., 1962) 

 (𝑀𝑅𝐵 + 𝐴∞)𝜉̈ + ∫ 𝐾(𝑡 − 𝑡′)𝜉(𝑡′)𝑑𝑡′̇
𝑡

0

+ 𝐺𝜉 = 𝜏𝑒𝑥𝑐 (2.26) 

 

Frequency-domain model 

The radiation force in the frequency domain is as follows (Faltinsen, 1993; Newman, 2018) 

 𝜏𝑟𝑎𝑑(𝑗𝜔) = −𝐴(𝜔)𝜉̈(𝑗𝜔) − 𝐵(𝜔)𝜉(𝑗𝜔) 
(2.27) 

 

where 𝐴(𝜔) and 𝐵(𝜔) are the frequency-dependent added mass and damping, respectively. The 

Eq. (2.26) can be rewritten in the frequency domain as  

 [−𝜔2[𝑀 + 𝐴(𝜔)] + 𝑗𝜔𝐵(𝜔) + 𝐺]𝜉(𝑗𝜔) = 𝜏𝑒𝑥𝑐(𝑗𝜔) (2.28) 

 

Ogilvie, (1964) uses the Fourier transform to demonstrate the link between added mass and 

damping coefficients in the time and frequency domains.   
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 𝐴(𝜔) = 𝐴∞ −
1

𝜔
∫ 𝐾(𝑡) sin(𝜔𝑡) 𝑑𝑡

∞

0

 (2.29) 

 𝐵(𝜔) = ∫ 𝐾(𝑡) cos(𝜔𝑡) 𝑑𝑡
∞

0

 (2.30) 

 

Again, using Fourier transform, the frequency domain retardation function is as follows: 

 𝐾(𝑗𝜔) = 𝐵(𝜔) + 𝑗𝜔[𝐴(𝜔) − 𝐴∞] (2.31) 

 

The hydrodynamic coefficients are found utilizing hydrodynamic codes (WADAM) for a finite set 

of frequencies. These codes are based on the potential flow theory.  

To sum up, the equation of motion for the multibody SST in the frequency domain is presented as 

follows: 

 [−𝜔2[𝑀𝑘 + 𝐴𝑘𝑘] + 𝑗𝜔𝐵𝑘𝑘 + 𝐺]𝜉 + ∑ [−𝜔2𝐴𝑘𝑗 + 𝑗𝜔𝐵𝑘𝑗]𝜉

𝑛

𝑗=1,𝑗≠𝑘

= 𝜏𝑒𝑥𝑐(𝑗𝜔) (2.32) 

 

where 𝑀𝑘 is the rigid mass matrix of the SST, 𝐴𝑘𝑘 is the added mass matrix of the 𝑘𝑡ℎ body caused 

by the motion itself, 𝐵𝑘𝑘 is the damping matrix caused by the motion of the 𝑘𝑡ℎ body itself, 𝐺 is 

restoring or hydrostatic force, 𝜉 is the displacement vector, 𝑛 is the number of rigid modules, 𝐴𝑘𝑗 

and 𝐵𝑘𝑗 is the added mass matrix and damping matrix of the 𝑘𝑡ℎ body caused by the motion of the 

𝑗𝑡ℎ body. The total number of equations equals the total number of bodies.  

Identification of the Radiation-force model 

A simulation model based on the Cummin equation (Cummins et al., 1962) can be built using a 

non-parametric fluid memory model. The latter approach requires knowing the previous time step's 

data to calculate the convolution integral. This can be very time consuming and extremely 

challenging to implement. Therefore, to overcome this problem, the linear time-invariant 

parametric model is used to solve the fluid memory model.  

 𝜇𝑖𝑗 = ∫ 𝐾𝑖𝑗(𝑡 − 𝑡′)𝜉̇(𝑡′)𝑑𝑡′̇
𝑡

0

        ≈ 
𝑥̇𝑖𝑗 = 𝐴̂𝑖𝑗𝑥𝑖𝑗 + 𝐵̂𝑖𝑗𝜉̇𝑗 

𝜇̂ = 𝐶̂𝑖𝑗𝑥𝑖𝑗 
(2.33) 
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where 𝐴̂, 𝐵̂ and 𝐶̂ are the states of the system and 𝑥 is the fluid memory effect or state vector.  

Eq. (2.33) can be presented in the frequency domain as 

 𝐾(𝑗𝜔) ≈ 𝐾̂(𝑗𝜔) = 𝐶̂(𝑗𝜔𝐼 − 𝐴̂)−1𝐵̂ 
(2.34) 

 

where 𝐾̂(𝑠) is the transfer function. Estimating the transfer function by canonical realization yields 

a state-space model Eq. (2.33).   

 

2.5.  Preliminaries of fatigue analysis 

 

The preliminaries of fatigue analysis, including the S-N curve approach, the rain-flow counting 

approach and the Palmgren-Miner rule are explained briefly in this section.  

 

2.5.1. S-N curve approach 

 

The stress-cycles (S-N) curve approach is used to calculate nominal stress fatigue life (American 

Bureau of Shipping, 2003). These curves are obtained using the results of the experiments. A 

typical two-segment S-N curve is seen in Figure 2.4 (Du et al., 2015).  

 

Figure 2.4: Typical two-segment S-N curve (Du et al., 2015) 
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 𝑁 = 𝐴𝑆−𝑚 (2.35) 

 

where 𝑆 is the stress range, 𝑁 is the no. of cycles to failure for a constant stress range, 𝑚 is the 

fatigue strength exponent, and 𝐴 is the fatigue strength coefficient. 𝑚 and 𝐴 can be empirically 

determined from the fatigue experiments. Three types of S-N curves correspond to the different 

operating conditions for different structures: 'A' is for in air condition, 'FC' is for 'free corrosion,' 

and 'CP' is for cathodic protection (DNV, 2010a). Because corrosion protection measures are 

usually employed for marine and offshore structures, the S-N curves under the 'CP' condition are 

used in this thesis's fatigue study. 

 

2.5.2. Rain-flow counting method 

 

The cycle counting approach is used to describe irregular stress-time series by quantifying the 

number of cycles of varying sizes. The number of cycles can be provided using different methods, 

such as peak counting, level-crossing counting, range-pair counting, simple-range counting and 

rain-flow counting. Among all the cycle counting approaches which are mentioned earlier, 

(Matsuishi & Endo, 1968) introduced the Rainflow counting method, which is based on the notion 

of hysteresis owing to a random fluctuation of loadings and ignores the sequence of stress series. 

Furthermore, the stress cycles range related to low and high frequency, and wave frequency 

components are identified using the rain-flow counting approach. Many research studies show that 

the Rainflow counting approach produces reliable fatigue damage (Dowling, 1971).  

Figure 2.5 (left) illustrates the stress time series and its 90o rotation on the right. The rules of this 

method are summarized below (American Bureau of Shipping, 2003): 

1) Suppose there is a source of water for each trough illustrated in Figure 2.5 (right). The 

water moves downward along the path off the trough or “roof”. 

2) When the water path reaches a more negative trough (e.g., point 5 in Figure 2.5 (right)) 

than the original starting point (e.g., point 1 in Figure 2.5 (right)), this defines a one stress 

range called 𝑆1, which includes the mean value of the stress cycle. 
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3) When the path starts from a certain point (e.g., point 3 in Figure 2.5 (right)), it comes to an 

end when it hits another path. This results in another stress range 𝑆2. 

4) The same procedure is followed for the entire stress time series.  

5) The procedure mentioned above can also be performed by considering the crest of water 

source. The obtained stress cycles must match the cycles of the trough generated process. 

        

 

Figure 2.5: Rain-flow counting method (American Bureau of Shipping, 2003) 

 

2.5.3. Palmgren-miner rule 

 

The fatigue damage caused by the structural stress can be calculated as a ratio of the actual number 

of cycles (𝑛) of that stress range to the number of cycles (𝑁) that will result in the fatigue damage 

at that stress range. The number of cycles to failure (𝑁) is determined using the S-N curve. The 

Palmgren-Miner Rule (Miner, 2021) states that cumulative or total fatigue damage is the 

summation of the individual damage from all stress range intervals. The following formula can be 

used to calculate the annual fatigue damage acquired in a single state (American Bureau of 

Shipping, 2003) 
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 𝐷𝑖 =
365 × 24 × 3600 × 𝑝𝑖

𝑑𝑖
∑

𝑛𝑖𝑗

𝑁𝑗
𝑗

 (2.36) 

 

where 𝐷𝑖 is the accumulated or total fatigue damage in the 𝑖𝑡ℎ sea state, 𝑑𝑖 is the duration of the 

dynamic simulation of the 𝑖𝑡ℎ sea state, 𝑝𝑖 is the probability of the occurrence of the 𝑖𝑡ℎ sea state, 

𝑛𝑖𝑗 is the actual number of cycles of that stress range 𝑗  in the 𝑖𝑡ℎ sea state, 𝑁𝑗 is the number of 

cycles that result in fatigue damage at the stress range 𝑗 determined using the S-N curve. 

 

2.6.  Fatigue assessment methods 

 

This section briefly describes the most widely used fatigue assessment methods. 

 

2.6.1. Deterministic method 

 

For many years, the deterministic method has proven to be reliable for dynamically insensitive 

structures. This method is more suitable where all fatigue waves have considerably longer wave 

periods to prevent peaks and valleys in the transfer function of the structure. The given method 

does not use transfer function or wave spectra to determine stress range values but performs a 

small number of discrete wave analyses (Rohith & Jayalekshmi, 2017).  

An appropriate number of deterministic periodic waves with the specified wave height 𝐻𝑖 and 

wave period 𝑇𝑖 must be selected to define the relationship between stress range and wave height, 

where 𝑖 represents the specific sea states in the wave scatter. The analysis procedure considers the 

number of occurrences of each wave and corresponding stress ranges to determine the annual 

fatigue damage is as follows  (Du et al., 2015): 

1) Determine the number of times the 𝑖𝑡ℎ sea state has occurred. 

 𝑛𝑖 =
365 × 24 × 3600 × 𝑝𝑖

𝑇𝑖
 (2.37) 

 

where 𝑝𝑖 is the probability of the occurrence of the 𝑖𝑡ℎ sea state. 
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2) Calculate the stress range 𝑦𝑖 on the marine and offshore structures applied by the wave 

force of the 𝑖𝑡ℎ sea state. 

3) Based on the S-N curve and Eq. (2.35), compute the number of cycles to failure 𝑁𝑖 for the 

stress range 𝑦𝑖. 

4) Finally, using Palmgren-Miner Rule, calculate the total or cumulative fatigue damage.  

The main disadvantage of the deterministic method includes the inability to account for the actual 

distribution of energy across the entire wave frequency range. Furthermore, the actual relationship 

between the transfer function cannot be considered. This is because this method ignores the 

random nature of the irregular waves. As a result, the wave's stochastic characteristics are ignored. 

Also, it is quite sensitive to the choice of waves and their associated period (Rohith & Jayalekshmi, 

2017).  

 

2.6.2. Spectra fatigue damage method 

 

The long-term sea state can be represented during the design of marine and offshore structures by 

a series of discrete short-term sea states that are regarded as stationary Gaussian stochastic 

processes. The sea states are usually described using the wave scatter diagram. It is assumed that 

wave-induced stress variation on any marine and offshore structures is a narrow-band Gaussian 

process in a particular sea state (American Bureau of Shipping, 2003). Therefore, for each short-

term sea state, the peak value of stresses (𝑦) would follow the Rayleigh distribution.  

 𝑓(𝑦) =
𝑦

𝜎𝑦
2
exp (−

𝑦2

2𝜎𝑦
2
) (2.38) 

 𝑓(𝑆) =
𝑆

𝜎𝑦
2
exp (−

𝑆2

8𝜎𝑦
2
) (2.39) 

 

where 𝑦, 𝑆 and 𝜎𝑦 are the stress amplitude, range (double amplitude, 𝑆 = 2𝑦) and standard 

deviation of stress, respectively. The spectral density function of the stress response is the square 

of the stress RAOs times the wave spectrum.  
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 𝐺𝑦(𝜔|𝐻𝑆, 𝑇𝑍, 𝜃) = |𝐻𝜎(𝜔|𝜃)|2 × 𝐺𝜂𝜂(𝜔|𝐻𝑆, 𝑇𝑍) (2.40) 

    

where 𝐺𝑦(𝜔|𝐻𝑆, 𝑇𝑍, 𝜃) is the sprectral density function of the stress response, |𝐻𝜎(𝜔|𝜃)| is the 

stress RAOs, 𝐺𝜂𝜂(𝜔|𝐻𝑆, 𝑇𝑍) is the wave spectrum, 𝐻𝑆 is the significant wave height, 𝑇𝑍 is the zero 

up-crossing period and 𝜃 is the wave angle of the incident waves. The stress RAOs are defined as 

the stress amplitude of the marine and offshore structures induced by the wave loads per unit wave 

amplitude.  

Following the acquisition of the spectral density function of the stress response, its zeroth, second 

and fourth order moment (𝑚0, 𝑚2, 𝑚4) and standard deviation of the stress series range 𝜎𝑦  can be 

represented as 

 𝑚𝑟 = ∫ 𝜔𝑟𝐺𝑦(𝜔|𝐻𝑆, 𝑇𝑍, 𝜃)𝑑𝜔
+∞

0

   (𝑟 = 0, 2, 4) (2.41) 

 𝜎𝑦 = √𝑚0 = √∫ 𝐺𝑦(𝜔|𝐻𝑆, 𝑇𝑍, 𝜃)𝑑𝜔
∞

0

 
(2.42) 

 

Using the above equations (Eq. (2.38) - (2.42)), the annual cumulative fatigue damage in the 𝑖𝑡ℎ 

sea state can be computed as follows  (American Bureau of Shipping, 2003): 

 𝐷𝑖 =
𝑛𝑖

𝑁𝑖
= ∫

365 × 24 × 3600𝑝𝑖𝑓0𝑖𝑓𝑖(𝑆)

𝐴/𝑆𝑚
𝑑𝑆

∞

0

 (2.43) 

 

where 𝑓0𝑖 and 𝑓𝑖 is the zero up-crossing frequency in Hz and probability density function of the 

stress range in the 𝑖𝑡ℎ sea state, respectively, where 𝑓0 = (1/2𝜋)√𝑚2/𝑚0. 

The cumulative fatigue damage to the marine and offshore structures can be determined by 

summing up the short-term damage over all available sea states in the particular wave scatter 

diagram (American Bureau of Shipping, 2003).  

 𝐷 = ∑𝐷𝑖

𝑖

= ∑∫
365 × 24 × 3600𝑝𝑖𝑓0𝑖𝑓𝑖(𝑆)

𝐴/𝑆𝑚
𝑑𝑆

∞

0𝑖

 (2.44) 
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As mentioned earlier, this method uses the Rayleigh distribution assumption that only considers 

narrow band Gaussian process when the bandwidth parameter is less than 0.5 (Gao & Moan, 2008). 

However, in real life, the stress response of any marine and offshore structures under the 

combination of wind, waves, and ocean currents is considered a wide-banded process (Hu et al., 

2009). Wirsching & Light, (1980) propose a cycle counting correction factor to overcome this 

limitation. The ABS (American Bureau of Shipping, 2003) codes recommend this approach 

because it is simpler and more efficient than other factors (Benasciutti & Tovo, 2006). The cycle 

counting correction factor is given as   

 𝜆(𝑚, 𝜀𝑖) = 𝑎(𝑚) + [1 − 𝑎(𝑚)][1 − 𝜀𝑖]
𝑏(𝑚) 

(2.45) 

 𝑎(𝑚) = 0.926 − 0.033𝑚   𝑎𝑛𝑑   𝑏(𝑚) = 1.587𝑚 − 2.323 (2.46) 

 

where 𝜆(𝑚, 𝜀𝑖), 𝑚 and 𝜀𝑖 are the cycle counting factor, fatigue strength exponent and spectral 

bandwidth, respectively. The spectral bandwidth 𝜀𝑖 can be defined as 

 𝜀 = √1 −
𝑚2

2

𝑚0𝑚4
 

(2.47) 

 

The corrected formula for the cumulative fatigue damage after considering the cycle counting 

correction factor can be expressed as 

 𝐷 = ∑𝐷𝑖

𝑖

= ∑∫
365 × 24 × 3600𝑝𝑖𝑓0𝑖𝑓𝑖(𝑆)

𝐴/𝑆𝑚
𝑑𝑆𝜆(𝑚, 𝜀𝑖)

∞

0𝑖

 (2.48) 

 

 

2.6.3. Time domain method 

 

As previously stated, both the deterministic and spectra fatigue damage methods have limitations. 

The former method does not account for the random nature of the irregular waves, while the latter 

method calculates the accumulated fatigue damage using the Rayleigh distribution assumption. On 

the other hand, the time-domain method uses coupled dynamic analysis and the Rainflow counting 
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method to calculate the accumulated fatigue damage of any marine and offshore structures 

(American Bureau of Shipping, 2003).  

The time-domain method uses a time series of wave kinematics for over a short duration obtained 

from a specific wave spectrum. Hydrodynamic forces, which might incorporate nonlinear effects, 

are estimated and applied to the offshore structural model. As a result, in marine engineering 

simulations, one response history curve will always last for 3-hours. Stress responses are estimated 

using a time-domain approach. After obtaining a stress history, the Rainflow counting method is 

used to estimate the number of stress cycles 𝑛𝑠 corresponding to the stress range 𝑠 and generate a 

stress histogram. If the probability of the occurrence 𝑝𝑖 of the 𝑖𝑡ℎ sea state is known then using 

Palmgren-Miner Rule fatigue damage caused by the the 𝑖𝑡ℎ sea state is expressed as (Du et al., 

2015)  

 𝐷𝑖 = ∑(
365 × 24 × 𝑝𝑖

3

𝑛𝑆

𝑁𝑆
)

𝑆

 (2.49) 

 

where 𝐷𝑖 is the fatigue damage caused by the the 𝑖𝑡ℎ sea state, 𝑛𝑆 is the number of cycles obtained 

using the rain-flow counting method at the stress range 𝑠, 𝑁𝑆 is the number of the cycle to fail at 

the stress range 𝑠. The annual accumulated fatigue damage can be calculated in the same way as 

the spectral damage method (Du et al., 2015) 

 𝐷 = ∑𝐷𝑖

𝑖

= ∑∑ (
365 × 24 × 𝑝𝑖

3

𝑛𝑆

𝑁𝑆
)

𝑆𝑖

 (2.50) 

 

Because the given method directly evaluates the full time history, time-domain simulation is 

always regarded as a benchmark (Low, 2011). Like the other methods discussed earlier, the time-

domain method also comes with some limitations. The calculation process is highly sophisticated 

because it is used for both load and corresponding structural analyses. Due to this, complicated 

structures sometimes require a very long computation time (Du et al., 2015). 

The standard procedure of the time-domain approach for any marine structures is illustrated in 

Figure 2.6.  
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Figure 2.6: General approach of the Time-Domain method (American Bureau of Shipping, 2003) 

 

2.6.4. Fatigue assessment based on fracture mechanics 

 

Most of the time, S-N fatigue strength characterizations are typically used to calculate and evaluate 

the cumulative fatigue damage. But in some cases, the above methods become ineffective when 

the flaw is discovered. The fracture mechanics approach is used to determine the remaining life of 

the structure once a fault or crack is discovered. This method is advantageous for assessing fatigue 

crack propagation and is further used to create and improve inspection programs (American 

Bureau of Shipping, 2003). 

This method is very effective in the case where S-N approach is inadequate or has to be modified 

or verified, for example (American Bureau of Shipping, 2003): 
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1) When determining the fitness for the purpose of joint/detail that is known to have defects, 

these defects are expensive and/or complex to repair, and 'repair/no repair choice must be 

taken. 

2) When joint/detail is exceptional or exposed to various complicated stress concentrations, 

the standard S-N classification cannot fully describe it. ABS (American Bureau of 

Shipping, 2003) may necessitate extra fracture mechanics-based research in these 

exceptional circumstances.  

3) When determining an aged structure's remaining fatigue life 

4) When creating and revising in-service inspection planning strategies. 

Comparison with the S-N technique may be used to base or calibrate the assumptions for the 

fracture mechanics analysis model. The crack growth rate 𝑑𝑎/𝑑𝑁 and stress intensity factor range 

∆𝐾 is used to characterize the Fatigue crack growth (American Bureau of Shipping, 2003).  

Crack models 

The length and depth of their enclosing rectangles are used to characterize the planar defects or 

cracks. The given method assumes that such defects or cracks are sharp-tipped cracks. Figure 2.7 

illustrates the four different crack models (American Bureau of Shipping, 2003): 

• A surface crack having a depth 𝑎 and length 2𝑐 

• A corner crack with length or depth 𝑎 and 𝑐 

• Through thickness crack with length 2𝑎 

• Embedded crack with depth 2𝑎 and length 2𝑐 

 

 
 

 

a) Surface crack 
 

b) Corner crack 
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c) Through thickness crack 

 
 

d) Embedded crack 

Figure 2.7: Different crack models (American Bureau of Shipping, 2003) 

 

The Paris Law 

The Paris Law gives the growth rate of the fatigue crack. The crack growth equation is expressed 

as (American Bureau of Shipping, 2003) 

 

𝑑𝑎

𝑑𝑁
= 𝐶(∆𝐾)𝑚    𝑓𝑜𝑟 ∆𝐾 > ∆𝐾𝑡ℎ 

 
𝑑𝑎

𝑑𝑁
= 0 

(2.51) 

 

where 𝑎 is the crack size (length and/or depth), 𝑑𝑎/𝑑𝑁 is the crack growth rate, ∆𝐾 is the stress 

intensity factor range, ∆𝐾𝑡ℎ is the threshold value of stress intensity factor range, 𝐶 and 𝑚 are the 

Paris coefficient and Paris exponent.  

The material and applied factors such as environment, stress ratio, waveform in the test and load 

frequency of the test, affect the Paris parameters 𝐶 and 𝑚. The data applicable to the specific 

material under service circumstances should be utilized wherever feasible, and if there is any doubt 

about the influence of the environment, such data should also be gathered.   

The crack propagation for two-parameter (𝑎 and 𝑐) elliptical or semi-elliptical cracks must be 

calculated for each size. The path of the fatigue crack growth is assumed to be perpendicular to 

the principal stress direction (American Bureau of Shipping, 2003).  

Stress intensity factor range 

The maximum principal stress should serve as a basis for the stress range. The stress intensity 

factor range ∆𝐾 depends on the crack shape and size (see Figure 2.7), stress range, and structural 

geometry (American Bureau of Shipping, 2003). It can be calculated using following equation 
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 ∆𝐾 = 𝑌𝑆√𝜋𝑎 (2.52) 

 

where 𝑆 is the stress range and 𝑌 is the stress intensity correction factor. 𝑌𝑆 typically depends on 

loading and geometry, which also takes into account the contributions of primary stresses and 

secondary stresses. It is calculated using BS 7910 (British Standard, 2019). The accepted solution 

from the other sources can also be used as an alternative. 

At the critical position, the cumulative impact of residual stresses and other secondary stresses 

such as thermal stresses must be considered. Refer to BS 7910 (British Standard, 2019) for a more 

detailed calculation procedure. 

Life prediction – Crack size and number of cycles 

The main objective is to find the crack size associated with the given life of the structure or, 

alternatively the number of cycles until failure. This is based on the assumption that real cracks 

may be modeled as sharp-tipped cracks (American Bureau of Shipping, 2003).  

From Eq. (2.53), it is possible to calculate the number of cycles 𝑁 needed for a crack to grow from 

its initial size 𝑎𝑖 to its final size 𝑎 (American Bureau of Shipping, 2003). 

 𝑁𝑆𝑚 =
1

𝐶
∫

1

[𝑌(𝑥)]𝑚(𝜋𝑥)𝑚/2
𝑑𝑥

𝑎

𝑎𝑖

 (2.53) 

 

The failure is assumed when 𝑎 = 𝑎𝑐, the critical crack size.  

Determination of initial flaw size 

The given methodology is significantly dependent on the initial crack size 𝑎𝑖. Several non-

destructive testing (NDT) inspection methods can estimate the initial crack size during 

manufacturing. The correctness of the crack size strongly depends on the accuracy of NDT 

techniques (American Bureau of Shipping, 2003).  

It is essential to assume an initial crack size in the design context. The maximum crack size will 

be considered in the calculation, taking into consideration the defect size for different geometries, 

fabrication welds and inspection accuracy. Suppose in case no relevant data on crack depth are 
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available, in that case, a crack depth of 0.5 mm may be assumed for surface cracks beginning at 

the weld/base material transition (American Bureau of Shipping, 2003).       
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3. Chapter 3 – Approach 
 

Developing a control system for a maritime system is extremely difficult without an appropriate 

mathematical model. The Marine Systems Simulator (MSS) (Perez et al., 2006) includes the most 

frequently used hydrodynamic codes. Using the geometrical parameter of the SST and its loading 

conditions, these codes calculates hydrodynamic and hydrostatic coefficients (added mass, 

damping and restoring coefficients), body motion and excitation force transfer function (motion-

RAOs and force-RAOs), mean-drift forces and moments.  

 

3.1.  Identification of the convolution integral using a parametric model 

 

Adopting a parametric model to approximate the convolution term in the Cummins equation 

(Eq.(2.25)) is feasible way to compute the free-surface memory effect more effectively. This can 

be accomplished using a state-space model given by Eq. (2.33).  

The given approach identifies the state-space system using the matrices 𝐴̂, 𝐵̂ and 𝐶̂. One of the 

benefits of the chosen approach is the Markovian property of the state-space model, which assures 

that every future state of the system relies solely on the current value of the system states. In other 

words, unlike the convolution approach, no previous information has to be kept because the whole 

memory effect is included in the state vector 𝑥 (Duarte, 2012).   

Several methods for performing this system identification have been proposed in the literature, 

including (Hjulstad et al., 2004; Jordán & Beltrán-Aguedo, 2004; Kristiansen et al., 2005; McCabe 

et al., 2005; Perez & Fossen, 2009). 

Using a hydrodynamic code “WADAM”, the frequency-dependent added mass and damping 

matrices is computed to obtain the state-space system represented by Eq. (2.33). The frequency 

domain retardation function is easily computed using Eq. (2.31), and the frequency response can 

be used to find the corresponding linear state-space model. Frequency-domain identification is the 

term given to this. However, the impulse-response function of the retardation function can be 

found directly using the inverse Fourier Transform of the retardation function or Eq. (2.29) and 

Eq. (2.30). With this Time-domain identification, the state-space model with the corresponding 

impulse-response can be found (Duarte, 2012).  
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In this thesis, the frequency-domain retardation function is computed to determine the radiation 

force. Figure 3.1 illustrates the step-by-step procedure to implement radiation force, Froude-

Krylov (FK), and diffraction force in the Simulink.  

 

 

Figure 3.1: Maine hydro capabilities: Calculation of radiation force using a state-space model 

 

3.2.  Properties of the parametric model 

 

For each item of the retardation matrix, a parametric model or transfer function is fitted with the 

appropriate order (Duarte, 2012): 

 𝐾̃𝑖𝑗(𝑠, 𝜃) =
𝑃(𝑠, 𝜃)

𝑄(𝑠, 𝜃)
=

𝑝𝑚𝑠𝑚 + 𝑝𝑚−1𝑠
𝑚−1 + ⋯+ 𝑝0

𝑠𝑛 + 𝑞𝑛−1𝑠𝑛−1 + ⋯+ 𝑞0
 

(3.1) 

 

where 𝜃 = [𝑝𝑚, … , 𝑝0, 𝑞𝑛−1, … , 𝑞0 ] is a vector containing the various parameters of the numerator 

and denominator, 𝐾̃𝑖𝑗 is the entry of the retardation matrix and 𝑠 = 𝑗𝜔. The parametric models or 

transfer functions should satisfy certain established properties. These properties were derived 

using radiation potential presented in (Perez & Fossen, 2009). 
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3.2.1. Low-frequency asymptotic value 

 

The asymptotic value at low frequencies is given by (Duarte, 2012): 

 𝑙𝑖𝑚
𝜔→0

𝐾(𝜔) = 0 (3.2) 

 

This assertion is founded on the notion that no structure can emit zero-frequency waves. If Eq. 

(2.30) is used to estimate the retardation function, then the function must have a zero at 𝜔 = 0. 

This implies that 𝑝0 must be zero (Duarte, 2012). 

 

3.2.2. High-frequency asymptotic value 

 

The high-frequency limit of the retardation function must be 0 (Duarte, 2012): 

 𝑙𝑖𝑚
𝜔→∞

𝐾(𝜔) = 0 (3.3) 

 

Eq. (2.31) is used to demonstrate this. Because the structure cannot emit waves of infinite 

frequency, the damping limit must be zero and the 𝐴𝑖𝑗(𝜔) − 𝐴∞ will tend to zero when 𝜔 → ∞. 

For detailed information, see (Falnes & Kurniawan, 2002). 

To ensure this property, 𝑑𝑒𝑔{𝑄(𝑠, 𝜃)} > 𝑑𝑒𝑔{𝑃(𝑠, 𝜃)}. This shows that the denominator increases 

faster than the numerator with 𝜔, and because of this, the function goes to zero when the frequency 

tends to be infinite (Duarte, 2012). 

 

3.2.3. Initial time value 

 

The time-domain retardation function must start with a value other than zero. This is demonstrated 

by Eq. (2.30) (Duarte, 2012): 

 𝑙𝑖𝑚
𝑡→0

𝐾𝑖𝑗(𝑡) = 𝑙𝑖𝑚
𝑡→0

2

𝜋
∫ 𝐵(𝜔)𝑐𝑜𝑠(𝜔𝑡)𝑑𝜔

∞

0

=
2

𝜋
∫ 𝐵(𝜔)𝑑𝜔

∞

0

≠ 0 (3.4) 
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Using Laplace transformation to Eq. (3.4): 

 𝑙𝑖𝑚
𝑡→0

𝐾𝑖𝑗(𝑡) = 𝑙𝑖𝑚
𝑠→∞

 𝑠𝐾𝑖𝑗(𝑠) = 𝑙𝑖𝑚
𝑠→∞

 𝑠
𝑃(𝑠)

𝑄(𝑠)
=

𝑝𝑚𝑠𝑚+1

𝑠𝑛
 

(3.5) 

 

Eq. (3.5) shows that the relative order of the denominator and numerator must be one (𝑛 = 𝑚 + 1) 

to cause the limit to be finite and different from 0 (Duarte, 2012).  

When this condition is combined with the requirements of the first property described, it is simple 

to deduce that the minimal order function is second order. This can be represented as (Duarte, 

2012): 

 𝐾̃𝑖𝑗
𝑚𝑖𝑛(𝑠) =

𝑝1𝑠

𝑠2 + 𝑞1𝑠 + 𝑞0
 (3.6) 

 

 

3.2.4. Final time value 

 

When the time approaches infinity, the response of a stable system tends to zero. The limit 

specified in this property ensures that the radiation system is stable for inputs and outputs that are 

within certain bounds (Duarte, 2012): 

 𝑙𝑖𝑚
𝑡→0

𝐾𝑖𝑗(𝑡) = 𝑙𝑖𝑚
𝑡→0

2

𝜋
∫ 𝐵(𝜔)𝑐𝑜𝑠(𝜔𝑡)𝑑𝜔

∞

0

= 0 (3.7) 

 

As a result, the poles of the transfer function 𝐾𝑖𝑗(𝑠), which are the zeros of the denominator must 

have a negative real part (Duarte, 2012). 

 

3.2.5. Passivity 

  

The characteristic of systems that can store and discharge energy but cannot produce it is described 

as passivity. The Cummins equation can be expressed for a floating body with no external force 

or incident waves as (Duarte, 2012): 
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 𝑀𝜉̈𝑖 + 𝐶𝑖𝑗
ℎ𝑦𝑑𝑟𝑜𝑠𝑡𝑎𝑡𝑖𝑐

𝜉 = 𝐹𝑖
𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛 (3.8) 

 

The change in energy of this system becomes: 

 𝐸(𝑇) − 𝐸(0) = ∫𝐹𝑖
𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛

𝑇

0

𝜉̇𝑖𝑑𝑡 
(3.9) 

 

As a result, the convolution term of the radiation force is passive. More detailed information can 

be given in (Perez & Fossen, 2009). Passivity can be assured for linear and time-invariant systems 

if the retardation matrix is real and positively defined in the frequency domain (Duarte, 2012): 

 ℜ𝑒{𝐾̃𝑖𝑗(𝑠, 𝜃)} = ℜ𝑒 {
𝑃𝑖𝑖(𝑠, 𝜃)

𝑄𝑖𝑖(𝑠, 𝜃)
} > 0 (3.10) 

 

 

3.3.  Different methods to identify parametric model 

 

Four methods can be used to identify the parametric model. The methods are as follows (Duarte, 

2012): 

• Frequency-domain identification methods 

1) FREQ 

2) FDI toolbox 

• Time-domain identification methods 

1) Least squares method 

2) Realization theory 

Among all the methods given above, the FDI toolbox based on the frequency-domain identification 

method is used in this thesis to identify the parametric model. The following section will explain 

the FDI toolbox method in detail. A description of the other methods is not provided in this thesis. 

However, detailed information can be found in the ssfitting manual (Duarte, 2012).  
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3.3.1. Frequency-domain identification method 

 

With the frequency-response of the convolution integral obtained using Eq. (2.31), a parametric 

model with the proper order for each element of the retardation matrix can be fitted (Duarte, 2012): 

 𝐾̃𝑖𝑗(𝑠, 𝜃) =
𝑃(𝑠, 𝜃)

𝑄(𝑠, 𝜃)
=

𝑝𝑚𝑠𝑚 + 𝑝𝑚−1𝑠
𝑚−1 + ⋯+ 𝑝0

𝑠𝑛 + 𝑞𝑛−1𝑠𝑛−1 + ⋯+ 𝑞0
 

(3.11) 

 𝜃 = [𝑝𝑚, … , 𝑝0, 𝑞𝑛−1, … , 𝑞0 ] 
(3.12) 

 

Using the Least Square (LS) method, there is an optimization problem involved in finding the 

approximate model 𝐾̃𝑖𝑗(𝑠, 𝜃) and 𝜃 (Duarte, 2012): 

 𝜃 = 𝑎𝑟𝑔𝑚𝑖𝑛 ∑(𝐾𝑖𝑗(𝑠) − 𝐾̃𝑖𝑗(𝑠, 𝜃))
2

𝑙

 (3.13) 

 

This problem is solved using the FDI toolbox, with is presented in the following section. 

 

3.3.2. FDI Toolbox 

 

The Frequency Domain Identification (FDI) Toolbox is created by Perez and Fossen (Perez & 

Fossen, 2009). The Matlab function invfreqs is used to solve the Least Square (LS) method. The 

optimization problem (Eq. (3.13)) is made linear by the utilization of weight factors for the 

frequency range that is considered to be the most significant: 

 𝜃 = 𝑎𝑟𝑔𝑚𝑖𝑛 ∑𝑤𝑙 (𝐾𝑖𝑗(𝑠) − 𝐾̃𝑖𝑗(𝑠, 𝜃))
2

𝑙

 (3.14) 

 

where 𝑤𝑙 is the weight factor ranging from 0 to 1 for each frequency. The approach is based on 

the Levy method (Levy, 1959) and is solved interactively (Sanathanan & Koerner, 1963). The 

optimization problem (Eq. (3.14)) can be solved using three different approaches (Duarte, 2012): 

1) The first approach uses linearized LS minimization. This approach is similar to the FREQ 

method 
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2) The second approach solves an iterative linear LS problem using previous denominator 

values as a weight factor. 

3) The third approach uses a Gauss-Newton algorithm to solve the non-linear LS problem.  

All of the previous approaches make use of the function invfreqs. According to (Perez & Fossen, 

2009), the iterative linear LS problem has the most optimal computing time/accuracy ratio. 

Therefore, the second approach is chosen for this thesis. To account for the properties of the 

retardation functions, the toolbox employes the following algorithm: 

1) Configure the appropriate frequency range based on the user-defined weight variables. 

2) Scale the data: 

 𝐾̃𝑖𝑗
′ = 𝛼𝐾̃𝑖𝑗;      𝛼 =

1

𝑚𝑎𝑥|𝐾𝑖𝑗|
 (3.15) 

 

3) Choose the approximation order 𝑛 = 𝑑𝑒𝑔 (𝑄̃𝑖𝑗(𝑠, 𝜃)). The starting point of the order is 2.  

4) The iterative LS method is used to estimate the parameter 𝜃.  

 𝜃𝑝 = 𝑎𝑟𝑔 𝑚𝑖𝑛 ∑|
𝐾𝑖𝑗(𝑠)

𝑠
−

𝑃̃𝑖𝑗(𝑠, 𝜃)

𝑄̃𝑖𝑗(𝑠, 𝜃)
|

𝑙

 (3.16) 

 

5) Verify for stability by calculating the poles or roots of 𝑄̃𝑖𝑗(𝑠, 𝜃) and changing the real part 

of these poles or roots from positive to negative. 

6) Scale the appropriate transfer function and include the 𝑠 factor in the numerator 

 𝐾̃𝑖𝑗
′ = 𝛼

𝑠𝑃̃𝑖𝑗(𝑠, 𝜃)

𝑄̃𝑖𝑗(𝑠, 𝜃)
 (3.17) 

 

7) Determine the added mass and damping by utilizing the identified parametric 

approximation and compare it with 𝐴(𝜔) and 𝐵(𝜔) obtained by the 3D 

diffraction/radiation algorithm. If the fitting is unacceptable, increase the approximation 

order and repeat step 3. 

8) If required, check for passivity ℜ𝑒{𝐾̃𝑖𝑗(𝑠, 𝜃)} > 0 
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The method's fourth step guarantees that the parametric model's first property is satisfied. The 

second and third properties are also met by ensuring that the functions always have a relative order 

of one. Fifth step forces system stability, while the eighth step verifies passivity. By incorporating 

this prior knowledge into the fitted functions, this method guarantees that most of the properties 

of the parametric model are satisfied. This results in a lower-order transfer function that is more 

accurate. The state-space model can be easily derived from the transfer function (tf2ss.m) (Duarte, 

2012). The Matlab code of frequency-domain identification of radiation model is provided in 

Appendix B  

 

3.4.  Matrix assembly 

 

The collection of state-space systems is derived for each significant entry of the retardation matrix 

𝐾 using the method described in the previous section. Several state-space systems are obtained 

using Eq. (2.33).  

 𝜇𝑖𝑗 = ∫ 𝐾𝑖𝑗(𝑡 − 𝑡′)𝜉̇(𝑡′)𝑑𝑡′̇
𝑡

0

        ≈ 
𝑥̇𝑖𝑗 = 𝐴̂𝑖𝑗𝑥𝑖𝑗 + 𝐵̂𝑖𝑗𝜉̇𝑗 

𝜇̂ = 𝐶̂𝑖𝑗𝑥𝑖𝑗 
(2.33) 

 

where 𝑖 and  𝑗 vary from 1 to 𝑚 and 𝑚 is the number of degrees of freedom of rigid-body. This 

and the following equations do not use Einstein notation. The size of the retardation matrix 𝐾 is 

𝑚 × 𝑚. Only the main diagonal values and a few off-diagonal values of the retardation matrix are 

non-negligible for most of the floating bodies. The size of each matrix is as follows: 𝐴̂𝑖𝑗 =

[𝑛𝑖𝑗 × 𝑛𝑖𝑗],  𝐵̂𝑖𝑗 = [𝑛𝑖𝑗 × 1], 𝐶̂𝑖𝑗 = [1 × 𝑛𝑖𝑗] and 𝑥𝑖𝑗 = [𝑛𝑖𝑗 × 1], where 𝑛𝑖𝑗 is the number of states 

used to approximate the entry 𝐾𝑖𝑗 (Duarte, 2012).     

Each of the matrices 𝐴̂𝑖𝑗, 𝐵̂𝑖𝑗 and 𝐶̂𝑖𝑗 must be assembled into a global state-space system to obtain 

the complete state-space system. The assembly can be done in following ways (Duarte, 2012): 

 
𝑥̇𝑟 = 𝐴𝑟𝑥𝑟 + 𝐵𝑟𝜉̇ 

𝜇 = 𝐶𝑟𝑥𝑟 
(3.18) 
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𝐴𝑟 = [𝑛 × 𝑛] =

[
 
 
 
 
 
 
 
 
 
 
 
𝐴11

⋱
𝐴1𝑚

𝐴22

𝐴21

⋱
𝐴2𝑚

⋱
𝐴𝑚𝑚

⋱
𝐴𝑚𝑚−1]

 
 
 
 
 
 
 
 
 
 
 

 (3.19) 

 

 𝐵𝑟 = [𝑛 × 𝑚] =

[
 
 
 
 
 
 
 
 
 
 
 
𝐵11

⋮
𝐵1𝑚

𝐵22

𝐵21

⋮
𝐵2𝑚

⋱
𝐵𝑚𝑚

𝐵𝑚1

⋮
𝐵𝑚𝑚−1]

 
 
 
 
 
 
 
 
 
 
 

 (3.20) 

 

𝐶𝑟 = [𝑚 × 𝑛] =

[
 
 
 
 
 
𝐶11

𝐶12

⋱

𝐶1𝑚

𝐶22

𝐶21

𝐶23

⋱

𝐶2𝑚

…

𝐶𝑚𝑚

𝐶1𝑚

⋱

   𝐶𝑚𝑚−1

]
 
 
 
 
 

 (3.21) 
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𝑥𝑟 = [𝑛 × 1] =

[
 
 
 
 
 
 
 
 
 

𝑥11

⋮
𝑥1𝑚

𝑥22
𝑥21

⋮
𝑥2𝑚

𝑥𝑚𝑚
𝑥𝑚1

⋮
𝑥𝑚𝑚−1]

 
 
 
 
 
 
 
 
 

               𝜉̇ = [𝑚 × 1] =

[
 
 
 
𝜉̇1

𝜉̇2

⋮
𝜉̇𝑚]

 
 
 

 (3.22) 

 

where 𝑛 is the total number of radiation states and 𝑚 is the total degree of freedom of the rigid 

body. The matrices are arranged by the first subscript and the diagonal term [𝑥𝑖𝑖] comes first, 

followed by the remaining cross-term with the same index [𝑥𝑖𝑗]. The negative sign in front of 𝐶𝑟 

matrix represents the negative sign on the memory term in Eq. (2.25).       

The Matlab code to determine a state-space model to compare free-surface memory effect is 

provided in Appendix C.  
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4. Chapter 4 – Subsea Shuttle Tanker (SST) planar model design 
 

The Finite element (FE) technique is adopted to determine the structural performance of many 

marine and offshore structures in many practical cases. FE analysis on a huge structure like SST 

comes with high computation time and expenses. Therefore, this thesis presents a more efficient 

and reliable multibody approach. The proposed methodology is based on the discrete-module-

beam bending-based hydroelasticity method.     

This chapter describes the modelling and dynamics of the Subsea Shuttle Tanker (SST). First, the 

vessel's design parameters and dry weight and volume distribution are presented. Later, a planar 

seakeeping multibody model is prepared using Matlab Simulink (Simscape Multibody toolbox), 

which is an alternative to FEM analysis to determine the bending moment response of the SST 

hull. The SST is designed using several blocks (see, Figure 4.4) and simulated in Matlab, allowing 

the dynamics of the SST to be recorded and finally represented. Several studies on SST have been 

done in past using Matlab Simulink, including developing depth control modelling of SST (Ma et 

al., 2021), determining the safety envelope and trajectory envelope of a SST (Ma et al., 2022; Ma 

& Xing, 2022), and modelling of SST hovering in ocean currents (Xing et al., 2022). When 

designing an autonomous underwater vehicle like SST, it is essential to ensure that the vessel stays 

in its intended position. Several controllers, like Linear Quadratic Regulator (LQR) (Ma et al., 

2022) and Proportional Integral Derivative (PID) controllers (Ma et al., 2021), can be used to 

maintain the position-keeping ability of the vessel in the waves. 

 

4.1.  Design parameters of the SST 

 

The main parameters of the novel sizeable autonomous vehicle are given by (Ma et al., 2021), see 

Table 4.1. The SST is a 33,619-ton autonomous submarine vessel with length and beam 

measurements of 164 and 17 meters, respectively. It's cargo-carrying capacity is up to 16,362 m3 

of CO2 and has a range of approximately 400 km at a speed of 6 knots (Ma et al., 2021).  

In this thesis, the author has not focused more on the individual aspect of the baseline design of 

the vessel. Detailed information can be found in (Ma et al., 2021).  
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Table 4.1: SST’s design parameter (Ma et al., 2021) 

Parameter Unit Value 

Length m 164 

Beam m 17 

Total mass (m) kg 3.36×107 

Pitch moment of inertia (Iyy) kg∙m2 3.63×109 

Centre of buoyancy [𝑥𝑏, 𝑦𝑏, 

z𝑏] 

m [0, 0, -0.41] 

Skeg position (xs) m 67 

Skeg area (𝐴s) m 40 

Carbon dioxide capacity kg 1.7×106 

 

 

4.2.  General arrangements 

 

The following section briefly explains the various compartment arrangement, weight and space 

distribution inside the SST.   

 

4.2.1. Compartments 

 

Figure 4.1 illustrates the general arrangements of the various tanks in the SST. Two watertight 

bulkheads, as illustrated in Figure 4.1, separate the SST into three compartments (Ma et al., 2021): 

- Free flooding bow compartment: It includes radio, sensors, forward trim and compensation 

tank, control station, sonar, and offloading pumps. 

- Flooded mid-body: It is the longest compartment. It includes piping, buoyancy, and cargo 

tanks. 

- Free flooding aft compartment: It includes several moisture-sensitive equipment such as 

rudder controls, motor, battery, gearbox, aft trim, and compensation tanks. 
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Figure 4.1: General arrangements of compartments (A: flooded mid-body, B: free flooding bow 

compartment, C: free flooding aft compartment, and D: bulkhead-buoyancy tank connection (Ma 

et al., 2021) 

 

4.2.2. Weights and spaces distribution 

 

The dry weights, centers of gravity and volume distribution of the main components of the SST 

are illustrated in Table 4.2. The centroid of the flooded mid-body is set as the origin of the 

coordinate system. Figure 4.2 illustrates the Flounder diagram of the vessel. The Flounder diagram 

is used to analyze the volume distribution as described in Table 4.2. It illustrates the SST space 

distribution over the vessel length without considering the precise design. The lateral axis 

represents the longitudinal location of the SST, while the vertical axis defines the cross-section 

area (Ma et al., 2021). The space requirement of individual volume components is represented in 

the diagram, see Figure 4.2. 
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Table 4.2: Dry weight and volume distribution of various components (Ma et al., 2021) 

Components Weight [ton] Center of gravity 

[m] 

Volume [m3] 

External hull 2666 (-7.1, 0.0, 0.0) 32,799 

Auxilary cargo tank 1 171 (0.0, -7.1, 0.0) 475 

Auxilary cargo tank 2 171 (0.0, 6.2, -3.6) 475 

Auxilary cargo tank 3 171 (0.0, 6.2, 3.6) 475 

Auxilary cargo tank 4 171 (0.0, 7.1, 0.0) 475 

Auxilary cargo tank 5 171 (0.0, -6.2, 3.6) 475 

Auxilary cargo tank 6 171 (0.0, -6.2, -3.6) 475 

Main cargo tank 1 681 (0.0, 0.0, 0.0) 1931 

Main cargo tank 2 681 (0.0, 5.0, 0.0) 1931 

Main cargo tank 3 681 (0.0, 2.5, 4.3) 1931 

Main cargo tank 4 681 (0.0, -2.5, 4.3) 1931 

Main cargo tank 5 681 (0.0, -5.0, 0.0) 1931 

Main cargo tank 6 681 (0.0, -2.5, -4.3) 1931 

Main cargo tank 7 681 (0.0, 2.5, -4.3) 1931 

Buoyancy tank 1 46 (0.0, -7.5, 2.1) 123 

Buoyancy tank 2 46 (0.0, -7.5, -2.1) 123 

Buoyancy tank 3 46 (0.0, -5.6, -5.4) 123 

Buoyancy tank 4 46 (0.0, -1.9, -7.5) 123 

Buoyancy tank 5 46 (0.0, 1.9, -7.5) 123 

Buoyancy tank 6 46 (0.0, 5.6, -5.4) 123 

Buoyancy tank 7 46 (0.0, 7.5, -2.1) 123 

Buoyancy tank 8 46 (0.0, 7.5, 2.1) 123 

Fwd bulkhead 147 (50.0, 0.0, 0.0) - 

Aft bulkhead 147 (-50.0, 0.0, 0.0) - 

Fwd compensation 

tank 

100 (65.3, 0.0, 5.0) 800 

Aft compensation 

tank 

100 (-65.3, 0.0, 5.0) 800 
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Mid-body bulkhead 1 10 (25.0, 0.0, 0.0) - 

Mid-body bulkhead 2 10 (-25.0, 0.0, 0.0) - 

Fwd trim tank 35 (67.8, 0.0, 5.0) 200 

Aft trim tank 35 (-67.8, 0.0, 5.0) 200 

Machinery 1000 (-33.7, 0.0, 6.0) 8288 

Permanent ballast 997 (4.0, 0.0, 8.0)  

             

Table 4.3: SST external hull dimensions (Ma et al., 2021) 

Parameter Free flooding bow 

compartment 

Flooded mid-body Free flooding aft 

compartment 

Length [m] 23.75 100.0 40.25 

Thickness [m] 0.041 0.025 0.041 

Steel weight [ton] 521 1374 771 

Frame spacing [m] 1.0 1.5 1.0 

 

Table 4.4: Internal tank properties of the SST (Ma et al., 2021) 

Tanks Number of 

tanks 

Length [m] Diameter [m] Wall 

thickness [m] 

Auxiliary cargo 

tank 

6 97.5 2.5 0.029 

Main cargo tank 7 100 5 0.057 

Buoyancy tank 8 100 1.25 0.015 

Compensation 

tank 

2 15 8 0.015 

Trim tank 2 5 7 0.015 
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Figure 4.2: Flounder diagram of the SST (Ma et al., 2021) 

 

4.3.  Seakeeping model 

 

4.3.1. Coordinate system 

 

The SST's global coordinate system, seakeeping coordinate system, and body-fixed coordinate 

system are illustrated in Figure 4.3. The earth-fixed or global coordinate system (on, xn, yn, zn) is 

considered an inertial frame of reference. It is also represented as North, East, and down. The 

seakeeping coordinate system (oh, xh, yh, zh) follows the SST path and travels at the same velocity 

as the SST. The wave-induced motion causes the SST to oscillate regarding the seakeeping frame 

when SST travels at a constant speed (including the zero-speed scenario). Like an earth-fixed 

coordinate system, a seakeeping reference frame sometimes refers to an inertial frame. The body-

fixed coordinate system (ob, xb, yb, zb) moves relative to the earth-fixed coordinate system and is 

located at the center of gravity (CoG) of the SST. The vessel's center of gravity (CoG) is located 

directly below the center of Buoyancy (CoB).  
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Figure 4.3: SST coordinate SST 

 

4.3.2. Plant model        

      

The SST's equation of motion can be presented as 

Inertia forces                                  𝑀𝑅𝐵𝜐̇ + 𝑀𝐴𝜐̇ 

(4.1) 
Damping forces                        +(𝐷𝑝 + 𝐷𝑣)𝜐𝑟 + 𝜇𝑟 

Restoring forces                                        +𝐺𝜂 + 𝑔0 

Wave forces                                                      = 𝜏𝑤𝑎𝑣𝑒𝑠 

 

where 𝑀𝐴 is the added mass matrix, 𝑀𝑅𝐵 is the mass matrix, 𝐷𝑝 and 𝐷𝑣 are the linear potential 

damping and viscous damping, respectively, 𝐺𝜂 + 𝑔0 is the restoring force and ballast force and 

𝜏𝑤𝑎𝑣𝑒𝑠 is the wave-induced forces (Froude-Krylov (FK) and diffraction forces). 

 

4.3.3. Actuator model 

 

The fore and aft skegs are the primary actuator used on the SST for the bending moment and 

fatigue analysis. The following section provides some background information on the skegs model. 
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Skegs 

The skegs on the starboard and port sides of the bow and aft are implemented in the model to 

control the vessel's depth and pitch motion. When the SST has to descend or ascend, two skegs 

(either bow or aft) turn at the same time to avoid motion coupling (for example, an undesirable 

roll motion during vessel pitch, for instance). The SST is designed using Bower's airfoil profile 

(Bowers et al., 2016). The lift force generated by the skeg is expressed as 

 𝜏𝑠 = 0.5𝜌𝐶𝐿𝑆𝑠𝑘𝑒𝑔(𝛿𝑠 − 𝜃)𝑢2 (4.2) 

 

where 𝐶𝐿 is the skeg's lift coefficient (𝐶𝐿 = 6.1 𝑟𝑎𝑑−1), 𝑆𝑠𝑘𝑒𝑔 is the area of skeg (𝑆𝑠𝑘𝑒𝑔 = 50 𝑚2 

for bow skeg and 𝑆𝑠𝑘𝑒𝑔 = 40 𝑚2 for the aft skeg), 𝜌 is the seawater density (𝜌 = 1025 𝑘𝑔/𝑚3), 

𝜃 is the angle of attack and 𝛿𝑠 is the skeg angle. For the given study, we assume SST is traveling 

at the constant water depth, therefore 𝛿𝑠 = 0.   

 

4.4.  Simulink implementation 

 

The 2-D planar multibody Simulink model for the SST is developed using the abovementioned 

mathematical framework, see Figure 4.4. The given model is based on the multibody equation of 

motion. The bending moment responses are obtained using time-domain simulation under different 

load cases. The stress time series are later obtained with the aid of bending moment response, 

which is further used to perform the fatigue assessment of the SST hull.  
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Figure 4.4: SST 2-D planar Simulink model (7 bodies) 
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The Simulink model is divided into two blocks: 

- Plant block: This block is used to describe the SST in the Simulink environment. This block 

implements all the equations of motion of the SST body. This is accomplished by 

investigating the hydrodynamic forces (including added mass and damping), the 

hydrofoil's lift force, and the hydrostatic force of the vessel. The number of plant models 

is the same as the number of bodies. 

- Actuator block: The actuator blocks consist of bow and aft skegs. The actuator block is 

used to maintain the constant position of the vessel at the given water depth. 

Finally, the numerical simulations are performed for the different sea states using Simulink. The 

main idea is to define the stiffness in joints, see Figure 4.4. The SST should behave exactly like a 

single rigid body if the connection strength is infinite.   

 

4.5.  Control system design – Proportional-Integral-Derivative Controller 

 

Proportional-Integral-Derivative (PID) type Controller is used to transform the open-loop control 

system of the vessel into a closed-loop control system. It regulates the motion and accomplishes 

the appropriate performance for the system being evaluated due to its great popularity in marine 

operation discipline and among autonomous underwater vehicles (AUVs) (Schjølberg & Utne, 

2015).   

The control loop block layout to keep the vessel at the desired depth/position is illustrated in Figure 

4.5. A PID controller receives the error e(t) between the measured and reference values. The 

closed-loop diagram shows how the actuator influences the PID controller's input 𝑢. The input 𝑢 

is multiplied by some correction factors (proportional gain 𝐾𝑃, integral gain 𝐾𝐼 and derivative gain 

𝐾𝐷) and is fed into the SST plant model to obtain the output 𝑦. The control system's performance 

can be enhanced by carefully tweaking these gains. The PID controller is expressed as 

 𝑢(𝑡) = 𝐾𝑃𝑒(𝑡) + 𝐾𝐼 ∫ 𝑒(𝑡)𝑑𝑡 + 𝐾𝐷

𝑑𝑒(𝑡)

𝑑𝑡

𝑡

0

 (4.3) 

 

where 𝐾𝑃, 𝐾𝐼 and 𝐾𝐷 are the proportional, integral, and derivative gains, respectively and 𝑒(𝑡) is 

the difference between the reference value and the measured value.  
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Figure 4.5: SST's control system block 

 

For the bending moment analysis in the thesis, SST should travel at a constant water depth. 

Therefore, the most critical motion is the heave motion. The 𝑒(𝑡) is the error between the measured 

heave response and the desired heave. The output from the controller controls the bow and aft 

hydroplane angle to keep the SST at the desired water depth. 
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5. Chapter 5 – Bending moment assessment using the multibody 

approach 
 

In the first phase of the thesis, the bending moment assessment of the SST hull due to wave effect 

is carried out using the multibody approach. The main focus of this chapter is to present a 

multibody methodology that can be used as an alternative to the traditional finite element method. 

The procedure for the analysis is presented in the following way: 

• Selecting the load cases for the assessment (𝐻𝑠 and 𝑇𝑝) 

• Defining the case study 

• Controller tunning 

• Convergence study  

• Determination of time-domain and power spectral density (PSDs) responses 

• Effect of water depth 

Many scenarios with various model fidelity, wave characteristics, and operating depths are studied 

to examine the bending moment's influence. 

 

5.1.  Design load cases 

 

Table 5.1 shows the various significant wave heights (𝐻𝑠) and spectral peak periods (𝑇𝑝) that are 

obtained using North Sea hindcast data measured for a period of 10 years (from 2001 to 2010). 

The three relative load cases are selected to simulate the SST's highly probabilistic operational 

condition. The Joint North Sea Wave Project (JONSWAP) spectrum is used to model the time-

varying irregular waves  using the given 𝐻𝑠 and 𝑇𝑝 values. Each simulation is run for 1 hour.  
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Table 5.1: Load cases for simulation 

Load cases 𝑯𝒔 (m) 𝑻𝒑 (sec) Wave direction 

(deg) 

Simulation 

length (sec) 

LC1 1.9 11.7 180 3600 

LC2 2.5 12.1 180 3600 

LC3 3.2 12.7 180 3600 

 

 

5.2.  Case studies 

 

The SST hull is divided into three, five, seven and nine rigid modules to analyze the influence of 

model fidelity and above load conditions on the bending moment. Ma et al., (2021) presented the 

depth definition for the SST. The depth definition is as follows: safety depth (40 m), nominal 

diving depth (70 m) and test diving depth (105 m). Based on the given depth definition, the 

operating depth range for the vessel is between 40 m and 70 m. When the baseline design was 

proposed by Ma et al., (2021), it is mentioned that it travels at the nominal water depth of 70 m at 

the slow speed of 6 knots for maximum energy efficiency.  

Using the multibody approach, considering the model fidelity, depth definition and operating 

speed, various case studies are presented to perform the bending moment assessment on the SST 

hull. The torpedo shape of the SST consists of a hemispherical bowl with a radius of 8.5 m at the 

fore, a cylindrical mid-body section 130.5 m long, and a conical aft section of 25 m long (Ma et 

al., 2021). This makes a relatively simple geometry for the vessel. Because of the simple geometry 

shape, the author of the thesis decided to use the hull's simplified cylindrical shape when 

performing the convergence study to decide the minimum number of bodies/modules required. 

The different case studies are presented in Table 5.2.  
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Table 5.2: A case study for the bending moment assessment 

Case study 
Hull 

geometry 
No. of bodies 

Operating 

depth (m) 

Operating 

speed 

(knots) 

Controller 

type 

cyl-3-70-6-tu 
Simplified 

cylindrical 

hull 

Three 70 6 Tuned 

cyl-5-70-6-tu Five 70 6 Tuned 

cyl-7-70-6-tu Seven 70 6 Tuned 

cyl-9-70-6-tu Nine 70 6 Tuned 

tor-7-40-6-tu Torpedo 

shape hull 

Seven 40 6 Tuned 

tor-7-70-6-tu Seven 70 6 Tuned 

 

 

5.3.  PID controller tuning 

 

The PID controller is tuned using the Matlab transfer function-based PID tuner app. The 

fundamental tuning idea for the chosen PID controller is given by Åström et al., (2006). The system 

model linearization is applied at an operational point to tune the PID controller. By modifying the 

phase margin settings and frequency domain's bandwidth, the tuner will automatically compute 

the appropriate controller gains and map out the system impulse response. The most optimal PID 

controller gains for the cases mentioned above are given in Table 5.3. 

It is important to note that the main focus of the study is on the multibody concept rather than the 

PID controller tunning. 
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Table 5.3:PID controller gains 

Hull geometry No. of bodies 𝑲𝑷 𝑲𝑰 𝑲𝑫 

Simplified 

cylindrical hull 

Three -4.62 -1.5×10-4 -97.63 

Five -3.44 -1.4×10-4 -115.17 

Seven -6.14 -1.5×10-4 -200.57 

Nine -5.92 -1.4×10-4 -137.98 

Torpedo shape 

hull 
Seven -0.404 -6.820×10-4 -59.418 

 

 

5.4.  Convergence study  

 

A full-fledged convergence study is carried out on the simplified cylindrical hull geometry. The 

main aim of this study is to determine the minimum number of bodies required for performing a 

bending moment assessment. The hydrodynamic forces, which consist of excitation force and 

radiation force, are applied to the center of each body. The response of each body can be obtained 

by solving the multibody equation of motion, see Eq. 2.28. The number of bodies determines the 

accuracy of the results: the more bodies, the more reliable and accurate the bending moment results 

for the SST hull. 

For the convergence study, the bending moment results for the three, five, seven and nine bodies 

are compared and plotted against each other at different longitudinal locations on the hull. The 

simulation is carried out in regular wave conditions with the wave amplitude and wave period set 

to 1 m and 10 secs. The results are obtained for the 70 m water depth, and the optimal gains are 

used to tune the PID controller. The convergence study results are illustrated in Figure 5.1. The 

bending moment response for the five, seven and nine bodies at a different longitudinal location 

are very close to each, while the three-body SST underestimates the bending moment. One reason 

could be that the three bodies might not have enough points to capture all the wave encounter 

frequencies.       

     



 

59 

 

 

Figure 5.1: Bending moment convergence study (Regular waves: H = 1 m and T = 10 secs) 

 

Figure 5.2 shows the comparison of the heave and pitch response for the different bodies in the 

regular wave condition with the wave amplitude of 1 m and wave period of 10 secs. The time 

series responses of the heave and pitch at the 70 m water depth are used for the comparison. It can 

be seen from the results that the heave response for three, five, seven and nine bodies are almost 0 

m, which means the controller is very efficient and effective in maintaining the depth. On the other 

hand, some small oscillations are observed in the pitch response with different frequencies. These 

minor irregularities or peaks might be caused by small oscillating frequencies in joints while 

connecting two bodies in Matlab Simulink.   

To further determine the ideal number of bodies among the five, seven and nine, the bending 

moment responses at three particular time instances (i.e. at 520 secs, 525 secs and 530 secs) are 

determined and plotted, see Figure 5.3. The simulation conditions (i.e. regular waves, water depth 

and controller gains) are the same as mentioned above.  
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Figure 5.2: Time series response of heave and pitch for different numbers of bodies (Regular 

waves: H = 1 m and T = 10 secs) 
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(a) 

 
(b) 

 
(c) 

 

Figure 5.3: Bending moment response at (a) 520 secs, (b) 525 secs and (c) 530 secs 

 

Figure 5.3 illustrates that the bending moment response at three different time instances fits very 

well for seven and nine bodies. In contrast, for five bodies, the responses vary greatly. An 

explanation given earlier for the three-body SST can also be applied on five bodies, i.e. five bodies 

might not be enough to capture all the wave encounter frequencies.  

After performing a convergence study, the author of the thesis decided to use seven bodies to 

present further results. All the further results in this chapter and the following chapters of this 

thesis are presented for the seven-body actual torpedo-shape SST hull. 
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5.5.  Time-domain and power spectral density response 

 

Figure 5.4. illustrates the time-domain bending moment response at the different longitudinal 

locations for the seven-body torpedo-shape SST. The time-series response is obtained for the LC1 

load case. The power spectral density response of the same for all the load cases is presented in 

Figure 5.5. All the simulation is performed at 70 m water depth. 

 

 

Figure 5.4: Time series response (LC1 load case) 

 

It can be concluded from the result that the dynamic part of the bending moment response is crucial 

since the static bending moment response is significantly small. This is due to the wave-induced 

pitch excitation moment, which has high oscillations but a lower mean value, dominating the 

bending moment effect on the multibody SST hull. Table 5.4 shows a statistical overview of the 

bending moment for the various load case scenarios. Since both ends of the multibody SST are 

free, the bending moment at x/L = 0 and x/L = 1 is zero.   
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Table 5.4: Statistical summary for bending moment for LC1, LC2 and LC3 load cases 

x/L 

Mean 

value, 

LC1 

(MNm) 

Mean 

value, 

LC2 

(MNm) 

Mean 

value, 

LC3 

(MNm) 

Standard 

deviation, 

LC1 

(MNm) 

Standard 

deviation, 

LC2 

(MNm) 

Standard 

deviation, 

LC3 

(MNm) 

0.14 0.0421 0.116 0.184 5.35 7.76 11.46 

0.28 0.0722 0.132 0.254 7.12 10.18 13.7 

0.42 0.0643 0.143 0.231 8.18 11.91 16.11 

0.57 0.0478 0.165 0.187 7.96 11.70 15.79 

0.71 0.0286 0.164 0.128 6.77 9.88 13.25 

0.85 0.0147 0.0725 0.081 4.10 5.90 7.8 
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Figure 5.5: Power spectral desnity at different location for LC1, LC2 and LC3 load cases 

 

The power spectral density (PSD) distribution shows the multibody SST's dynamic properties. 

Because the multibody SST hull is predominantly exposed to hydrodynamic forces and moments, 

waves are the main excitation source. Low-frequency waves are primarily responsible for the 

dynamic bending moment response of the multibody SST. A strong grasp of dynamic behaviour 

is also required to enhance the vessel's design and obtain extreme values.  

 

5.6.  Effect of water depth 

 

The operating range for the SST is between 40 m and 70 m. Therefore, it is necessary to quantify 

the effect of bending moment at 40 m water depth to better understand the wave effect. The 

simulation is performed for all load cases. The statistical results for the 40 m water depth are 

compared to those obtained for the 70 m water depth. It is found that the standard deviation for the 

40 m water depth is approximately 0 to 50% higher than the 70 m water depth. This can greatly 

impact the SST hull's structural performance and cause a higher amount of fatigue damage at 40 

m water depth. Table 5.5 shows the statistical comparison of the bending moment for the LC1 load 

case at 40 m and 70 m water depths. 
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Table 5.5: Statistical comparison for bending moment for LC1, LC2 and LC3 at 40 m and 70 m 

water depth 

x/L Mean value, 40 

m depth 

(MNm) 

Mean value, 70 

m depth 

(MNm) 

Standard 

deviation, 40 m 

depth (MNm) 

Standard 

deviation, 70 m 

depth (MNm) 

LC1 

0.14 0.0584 0.0421 6.09 5.35 

0.28 0.111 0.0722 8.39 7.12 

0.42 0.117 0.0643 8.21 8.18 

0.57 0.0708 0.0478 7.25 7.96 

0.71 0.0280 0.0286 6.84 6.77 

0.85 0.0253 0.0147 5.00 4.10 

     

LC2 

0.14 0.0367 0.116 10.04 7.76 

0.28 0.142 0.132 11.26 10.18 

0.42 0.359 0.143 12.22 11.91 

0.57 0.451 0.165 11.60 11.70 

0.71 0.180 0.164 10.13 9.88 

0.85 0.0604 0.0725 6.60 5.90 

     

LC3 

0.14 0.176 0.184 14.21 11.46 

0.28 0.243 0.254 17.67 13.7 

0.42 0.269 0.231 24.59 16.11 

0.57 0.206 0.187 23.20 15.79 

0.71 0.144 0.128 20.14 13.25 

0.85 0.109 0.081 12.96 7.8 
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6. Chapter 6 – Fatigue assessment of the Subsea Shuttle Tanker hull 
 

Fatigue damage is a gradual localized plastic deformation process in a material subjected to 

fluctuating or cyclic loads and strain at high-stress concentration regions. This can lead to cracks 

or complete fractures after a certain number of fluctuations. This type of stress is known as "fatigue 

stress," and it is substantially lower than yield or tensile stress (Xin, 2013). SST undergoes an 

oscillatory motion because of unpredictable waves, currents, and vessel motion in the offshore 

environment, as discussed in Chapter 5. This is the main cause of fatigue damage. The fatigue data 

on these offshore structures generally exhibits statistical variations due to the high cycle fatigue 

(HCF) conditions placed on them, see Figure 6.1.  

 

Figure 6.1: Statistical behaviour of fatigue life (Xin, 2013) 

 

The preliminary study conducted by the author shows that the dynamic pressure between 40-70 m 

water depth is around 3-6 % of the hydrostatic pressure. Even though dynamic pressure is very 

low compared to hydrostatic pressure contribution, it is necessary to quantify and justify the 

damage while investigating the structural performance of the SST hull, as fatigue is nothing but 

the sum of damages.    
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6.1.  Fatigue analysis methodology 

 

Typically, the fatigue assessment consists of three major steps. First, the determination of stresses 

caused by the cyclic loading induced by the waves. The stress time series can be derived using the 

bending moment values obtained in Chapter 5. Second, Local stresses in structural details (i.e. 

stiffener welds) are determined using the stress concentration factor (SCF). Little variation in the 

SCF can cause a significant difference in the fatigue damage outcome and life prediction. Third, 

the "Rainflow counting" method to determine the stress cycles and stress range. Finally, the 

accumulated damage is determined using the "Palmgren-Miner" rule (Sen, 2006). A detailed 

explanation of the "Rainflow counting" method and "Palmgren-Miner" rule is given in Chapter-2 

section 2.5.2, 2.5.3, 2.6.3. 

The inverse of fatigue damage gives the fatigue life. Because of the various uncertainty involved, 

the fatigue life process is quite difficult. These key uncertainties are as below (Sen, 2006): 

• The statistical scatter is applied to the S-N curves (i.e., the component's life varies even 

when subjected to the same load history). 

• SST hull thickness is not uniform. 

• Uncertainty associated with the Miner's rule. 

• Eccentricity during the manufacturing and fabrication process. 

• Uncertainty associated with the hindcast data. 

• Uncertainty associated with the numerical modelling.  

• Uncertainty in SCF calculation for the local details.   

 

6.2.  Overview of local stress calculation 

 

Because of the influence of the geometric change, the structural stress differs from the nominal 

stress in places with structural discontinuities. It is frequently associated with geometric or hotspot 

stress in the fatigue assessment. The notch stress is the overall stress at the root, including local 

effects due to the weld toe and stress increase owing to the weld geometry and connections, see 

Figure 6.2 (DNV, 2010b).  
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Figure 6.2: Definition of different stresses (DNV, 2010b) 

 

The increase in the stress in the local details is normally expected to be proportional to the nominal 

stress. The geometric stress at the hot spot is calculated as nominal stress times stress concentration 

factor (SCF). When calculating SCF, it is common practice to compute the nominal and local 

structure stress using basic recommendations. The SCF is given by: 

 𝑆𝐶𝐹 =
𝜎𝑙

𝜎𝑛
 (6.1) 

 

where 𝜎𝑙 is the geometric stress at the hot spot, which is generally obtained using finite element 

(FE) analysis and 𝜎𝑛 is the nominal stress calculated using either global FE analysis or beam 

theory. The change in relative stiffness of the local structure affects the SCF. The SCF computation 

often requires just the local structural detail (DNV, 2010b). 

 

6.3.  FEA modelling of local detail 

 

This section provides the detail and step-by-step explaination of the FEA modelling of local weld 

details at Stiffeners.  
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6.3.1. Analysis model 

 

The finite element model of the mid-body section of the SST is created using Ansys mechanical 

workbench 2020R1. The layout of the mid-body section and the circumferential stiffeners 

supporting the external hull is presented in Figure 6.3.  The effective cross-section of the stiffeners 

and the stiffener properties are presented in Figure 6.4 and Table 6.1, respectively.   

 

Figure 6.3: The 3-D model of the mid-body section 

 

 

(a) 
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(b) 

Figure 6.4: (a) Cross-section of the external hull stiffener (DNV, 2018); (b) Weld details 

 

Table 6.1: Properties of stiffeners (Ma et al., 2021) 

Parameter Free flooding compartment Flooded compartment 

Frame web height, ℎ𝑤 0.300 m 0.300 m 

Frame web thickness, 𝑠𝑤 0.030 m 0.030 m 

Flange width, 𝑏𝑓 0.100 m 0.100 m 

Flange thickness, 𝑠𝑓 0.033 m 0.033 m 

Frame spacing, 𝐿𝐹 1 m 1.5 m 

Frame cross-sectional area, 

𝐴𝐹 
0.012 m2 0.012 m2 

Inner radius to the flange of 

the frame, 𝑅𝑓 
6.138 m 6.138 m 

 

Two different types of loading: external pressure and bending moment, are acting on the external 

hull of the SST. The external pressure problem is modelled in 2D for an axisymmetric analysis 
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because of their symmetric geometry and loading. This will lower the number of elements and 

greatly reducing computational time. The bending moment problem is modelled as a shell element.   

 

6.3.2. Material properties 

 

The local detail model used in this study uses linear elastic analysis to calculate the stress 

concentration factor. Table 6.2 shows the material properties applied in the linear FE analysis for 

cylindrical shells and stiffeners. The material properties of cylindrical shell and stiffeners are the 

same. 

 

Table 6.2: Material properties of the SST section (Ma et al., 2021) 

Material VL-D47 

Young’s modulus 206 GPa 

Yield strength 460 MPa 

Tensile strength 550 MPa 

Poisson’s ratio 0.3 

 

 

6.3.3. Mesh details 

 

The element types used for this study are quadrilateral for both 2D axisymmetric and 3D analysis. 

In the critical locations of interest, triangular and tetrahedral elements are avoided because they 

are comparably stiffer and do not capture bending accurately unless the mesh is extremely fine 

(Skotny, 2019). Second-order elements are used at the hot spot near the welds to capture realistic 

deformation.  

The Linear elements can be used in the area of less interest, provided the mesh quality, accuracy 

and model stiffness in the geometric representation are taken care of. Table 6.3 represents the 

element types used for this study's analyses. It is very important to examine mesh for convergence 

using the mesh convergence criteria specified in DNV-RP-F112, regardless of the type of 

elements, size and order (DNV, 2019). 



 

72 

 

Table 6.3: Summary of elements type 

Model Mesh area ANSYS terminology Element type 

2D Entire model PLANE 183 
2D 8-node plane 

(second order) 

3D Entire model SHELL 181 
3D 4-node shell 

(second order) 

 

 

6.3.4. Mesh convergence study 

 

If the mesh convergence of a FE analysis is not verified properly, the results cannot be regarded 

as reliable. The mesh size influences the results of an FEA. Therefore, it is crucial to refine the 

mesh to the point where further refinement won’t significantly alter the results and converge to a 

solution.  

Figure 6.5 illustrates a mesh convergence study for the 2D axisymmetric model at the weld toe. 

This study analyzes four different mesh sizes on the weld toe, starting with coarse, intermediate, 

fine and very fine mesh refinement. It should be noted that even though an all-quad-free face mesh 

type was applied, very few triangles were created during meshing.   

 

Coarse mesh refinement 

 
 
 
 
 

 

𝜎𝑒𝑞 𝑚𝑎𝑥 = 325.7 𝑀𝑃𝑎 
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Intermediate mesh refinement 

 
 

𝜎𝑒𝑞 𝑚𝑎𝑥 = 413.4 𝑀𝑃𝑎 

 

Fine mesh refinement 

 
 

𝜎𝑒𝑞 𝑚𝑎𝑥 = 432.3 𝑀𝑃𝑎 

 

Very-fine mesh refinement 

 

𝜎𝑒𝑞 𝑚𝑎𝑥 = 433.2 𝑀𝑃𝑎 

 
Figure 6.5: Mesh convergence study for 2D axisymmetry model - Mesh refinement model and 

corresponding max. equivalent stress at welds 

 

The maximum equivalent stress is obtained and plotted for four different mesh refinements at the 

weld toe. According to the DNV-RP-F112 (DNV, 2019), the convergence error for linear analysis 

should be less than 3%.  Figure 6.6 shows that the maximum equivalent stress at the weld toe 

converges at a very fine mesh for the 2D axisymmetry model. Figure 6.7 shows that maximum 

equivalent stress at the welds converges at the fine mesh for the 3D model. Because the mesh has 
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already converged at the very fine mesh and fine mesh for the 2D and 3D models, respectively, 

the results of any subsequent mesh refinement are legitimate according to the mesh convergence 

criterion. Therefore, fine mesh refinement is used to obtain the SCF for both the models.    

 

 
Figure 6.6: Plot of mesh convergence study of 2D axisymmetric model 
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Figure 6.7: Plot of mesh convergence study of 3D model 

 

 
Figure 6.8: 3D ANSYS model showing fine mesh 
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6.3.5. Loads and boundary conditions 

 

Figure 6.9 illustrates the load and boundary conditions and the selected direction for the imposed 

action. For this study, the 2D model is loaded with external pressure (A, on the left figure) of 7.04 

bar on the cylindrical shell's outer surface, and the shell model is loaded with the bending moment 

(A, on the right model) of 50000 Nm about z-axis on the free end. Another end of the model is 

rigidly fixed (B).  

 

 

Figure 6.9: Load and boundary condition for 2D axisymmetric model (Left) and shell model 

(Right) 

 

6.3.6. FE analysis results: SCF 

 

The models are subjected to different loadings (i.e. external pressure and bending moment) to 

compute the stress concentration factor in the details. It was anticipated that any effects from the 

boundary conditions are assumed to be insignificant enough to be ignored because the main focus 

of the study is the local weld details at the stiffeners. The two different models (2D and 3D) of the 
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sub-structure are shown in Figure 6.10. All the quadrilateral elements use a 4-node shell element 

for the 3D model and an 8-node plane element for the 2D axisymmetric model, and the local 

maximum stress is determined at the welds. The stress concentration factor at the local detail is 

found using Eq. (6.1) and shown in Table 6.4.   

 

 

Figure 6.10: Equivalent stress plot: 3D model loaded with bending moment (a) and 2D 

axisymmetry model loaded with external pressure (b) 

 

Table 6.4: SCF calculated using ANSYS for different models and different loadings 

Applied load SCF 

External pressure 1.81 

Bending moment 1.24 

 

Furthermore, the 3D surface model will be unable to capture the weld's local detail very efficiently 

and will underestimate the weld's local stresses. The 2D model can provide the actual 
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representation of the welds, but only axisymmetric loading can be analyzed. Therefore, finding the 

method of evaluating SCF accurately at the local weld details is necessary.  

One way is to create a 3D solid model of the sub-section to represent the local weld details, but 

this is not considered the most appropriate way because of the computational efforts. Another 

approach can be to model the weld as a solid element, and the rest of the geometry can be modelled 

as a shell. This will require a precise meshing approach to connect two different element types. 

Many studies have examined and linked the key factors encountered in evaluating SCF at the local 

details (Peterson, 1953). These factors include various types of loads, physical parameters, stress 

raisers, and material susceptibility.  

However, some studies have considered the SCF resulting from the superposition of the 

discontinuities (Paul Jr & Faucett, 1962). Paul Jr & Faucett, (1962) proposed a methodology for 

integrating the two different SCF determined from two stress raisers (i.e. notch). They showed that 

when the two stress raisers are superposed, the resulting SCF will depend on the SCF from stress 

raiser 1 and SCF from stress raiser 2. The resulting SCF can be determined by taking the product 

of the SCF for the individual notches.  

 𝑆𝐶𝐹𝑠𝑢𝑝 = 𝑆𝐶𝐹1 × 𝑆𝐶𝐹2 (6.2) 

 

where 𝑆𝐶𝐹𝑠𝑢𝑝 is the resultant stress concentration factor for the superposed geometry, 𝑆𝐶𝐹1 and 

𝑆𝐶𝐹2 is the individual stress concentration factor derived from two different geometry notches.  

Mowbray Jr, (1950) investigated the same problem experimentally with strain gages and proposed 

that 𝑆𝐶𝐹sup_𝑒𝑥𝑝 was slightly less than the product of the 𝑆𝐶𝐹1 and 𝑆𝐶𝐹2. 

 𝑆𝐶𝐹𝑠𝑢𝑝 _𝑒𝑥𝑝 ≤ 𝑆𝐶𝐹1 × 𝑆𝐶𝐹2 (6.3) 

 

Based on Eq. (6.2), the resultant SCF, which is used for determining the fatigue damage of the 

SST hull, can be determined by the product of individual SCF corresponding to external pressure 

and bending moment. A conservative approach like the one mentioned above is reasonable to use 

for the subsea autonomous vehicle like SST. The detailed information regarding the current 

approach can be found in (Paul Jr & Faucett, 1962; Vicentini, 1967).  
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Table 6.5: Resultant SCF from combined external pressure and bending 

𝑺𝑪𝑭𝒓𝒆𝒔 𝟏. 𝟖𝟏 × 𝟏. 𝟐𝟒 = 𝟐. 𝟐𝟒 

 

      

6.4.  Wave-induced fatigue 

 

The operational depth of the SST mainly governs wave-induced fatigue. The operational depth of 

40 m and 70 m is used for the fatigue assessment. DNV-RP-C203 (DNV, 2010a) is the 

recommended practice for the fatigue assessment on the SST hull. The study approach is based on 

S-N curves. The S-N curves in DNV-RP-C203 (DNV, 2010a) are based on the mean-minus-two 

standard deviation obtained from the specimens' laboratory fatigue testing. The S-N curves have a 

97.7% chance of surviving during the design life.  

The basic design S-N curve is represented as (DNV, 2010a)  

 𝑙𝑜𝑔𝑁 = 𝑙𝑜𝑔𝑎̅ − 𝑚 ∙ 𝑙𝑜𝑔 (∆𝜎) (6.4) 

       

where 𝑁 is the number of cycles to failure for the stress range ∆𝜎, 𝑙𝑜𝑔𝑎̅ is the intercept of 𝑙𝑜𝑔𝑁 

axis by the S-N curve (see Eq. (6.3)), 𝑚 is the slope of the S-N curve, and  ∆𝜎 is the stress range 

in MPa (see Eq. (6.5)).  

 ∆𝜎 = ∆𝜎0 ∙ 𝑆𝐶𝐹 (
𝑡

𝑡𝑟𝑒𝑓
)

𝑘

 
(6.5) 

 

where ∆𝜎0 is the nominal stress range, 𝑆𝐶𝐹 is the stress concentration factor, 𝑡𝑟𝑒𝑓 reference wall 

thickness for welded connection (DNV, 2010a), 𝑡 is the wall thickness of the SST, 𝑘 is the 

thickness exponent on fatigue strength.      

 𝑙𝑜𝑔𝑎̅ = 𝑙𝑜𝑔𝑎 − 2 ∙ 𝑆𝑙𝑜𝑔𝑁 (6.6) 
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where 𝑙𝑜𝑔𝑎 is the intercept of the mean S-N curve with the 𝑙𝑜𝑔𝑁 axis and 𝑆𝑙𝑜𝑔𝑁 is the standard 

deviation of 𝑙𝑜𝑔𝑁. 

For the fatigue assessment on the SST hull, the S-N curves derived from fatigue experiments and 

approved by the DNV-GL class guidelines are used (DNV, 2015). The chosen S-N curve is suitable 

for both normal and high-strength steel. The hot spot C2 curve is used together with stress data to 

show the welded details. A thickness effect and additional stress concentration may be necessary 

to portray true welds details accurately, but this thesis does not consider it. The S-N curve 

corresponding to C2 is presented in Figure 6.11.    

 

Table 6.6: S-N curve parameters for C1 

S-N Curve Material 𝑵 ≤ 𝟏𝟎𝟕 𝑵 ≥ 𝟏𝟎𝟕 

  𝑙𝑜𝑔𝑎̅ 𝑚 𝑙𝑜𝑔𝑎̅ 𝑚 

C2 Welded joint 13.301 3.5 16.902 5.5 

  

Many researchers (Gaidai et al., 2020; Gemilang & Karunakaran, 2017; Legras et al., 2013; 

Orimolade et al., 2015) have demonstrated that these curves are helpful for the efficient fatigue 

assessment of the various structures in offshore conditions.   
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Figure 6.11: S-N curves in seawater with cathodic protection(CP) (DNV, 2015) 

 

The cumulative fatigue life of the SST hull at different longitudinal locations is calculated based 

on the S-N curves by assuming linear cumulative damage using the Palmgren-Minor rule (Miner, 

2021) (see Chapter-2, section 2.5.3 and Eq. (2.36)).   

In Norway, it is recommended to use seawater S-N curve with cathodic protection and a high 

Design Fatigue Factor (DFF), especially for the splash zones (DNV, 2015). In this thesis, DFF 

equal to 10 is considered due to the high consequence of the failure. A high DFF is used because 

inspection and maintenance in some critical areas of the welds are regarded as challenging. This 

means the fatigue cracking probability is reduced (DNV, 2010a). For instance, DFF equal to 10 

indicates that the fatigue crack probability throughout the lifespan becomes very low (accumulated 

probability less than 10-4 and annually less than 10-5 the final year in operation).     

 

6.5.  Environmental conditions 

 

The wave conditions are based on location in the North Sea with a water depth of 300 m (DNV, 

2010c). Table 6.7 summarizes all environmental parameters (𝐻𝑠 and 𝑇𝑝) and their probability of 
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occurence for the 20 load cases used in this study. All the load cases are the sea state that will 

occur most often during its operation for the whole service life. The Joint North Sea Wave Project 

(JONSWAP) spectrum is used to model the time-varying irregular waves  using the given 𝐻𝑠 and 

𝑇𝑝 values. All the simulations are run for 1 hour.  

 

Table 6.7: Representative sea states and their probability of occurrence 

Load case 
Wave height 𝑯𝒔 

(m) 

Peak period 𝑻𝒑 

(secs) 

Probabilities 

(%) 

Exposure/year 

(Hrs) 

1 1.5 8 4.16 364.21 

2 1.5 9 4.62 405.07 

3 1.5 10 5.65 495.29 

4 1.5 11 6.80 595.53 

5 1.5 12 4.36 382.20 

6 2 9 4.72 413.81 

7 2 10 6.75 591.68 

8 2 11 6.78 594.25 

9 2 12 5.66 495.81 

10 2 13 6.48 567.52 

11 2 14 6.02 527.42 

12 2.5 11 6.57 575.23 

13 2.5 14 7.46 653.36 

14 3 11 5.06 443.11 

15 3 12 4.19 366.78 

16 3 13 3.94 345.19 

17 4 9 1.46 127.74 

18 4.5 14 4.48 392.48 

19 5 10 1.27 111.04 

20 5 14 3.56 312.29 
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The stress time series is obtained by calculating the bending moment for each sea state given in 

Table 6.7. The multibody approach presented in Chapter-4 and Chapter-5 is used to calculate the 

bending moment. Later, Python script is formulated to calculate the fatigue damage using the 

Rainflow counting approach (Matsuishi & Endo, 1968) (see Chapter-2 section 2.5.2, 2.5.3, and 

2.6.3). The Rainflow counting approach evaluates fatigue data by compressing a spectrum of 

variable stresses into a collection of stress reversals. As a result, the Palmgren-Minor rule (Miner, 

2021)  can be used to evaluate the fatigue life of a structure under a complicated load. The total 

damage is estimated at the six different longitudinal locations of the multi-body SST hull.  

All the simulations are performed for the seven-body actual torpedo-shape SST hull. 

 

6.6.  Fatigue assessment results – Hydrodynamics vs Hydrostatic 

 

This section shows the results of accumulated fatigue damage and fatigue life of the SST due to 

wave-induced loads and changes in hydrostatic pressure due to dive-in and dive-out.  

 

6.6.1. Wave-induced fatigue 

 

Figure 6.12 and Figure 6.13 illustrates the fatigue damage and fatigue life over the longitudinal 

locations of the seven-body SST hull. For both the water depth, the critical locations for the damage 

are almost identical, with the most considerable fatigue damage occurring in the flooded-mid body 

of the SST. The uneven weight and buoyancy distribution in the vessel and high length to the width 

ratio results in the maximum bending stress at the mid-section of the vessel.  

The major contributor of the damages are the effect from long waves (𝐻𝑠 above 2 m and 𝑇𝑝 above 

12 secs). The fatigue life increases up to 30 % when the SST travels at the water depth of 70 m, 

compared to the 40 m water depth. This means that going deep into the sea, decreases the effect of 

the long waves. This is why 70 m water depth is chosen as a nominal diving depth during operation. 

The summary of the fatigue damage and fatigue life is presented in Table 6.8.      
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Figure 6.12: Fatigue damage at different longitudinal locations 
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Figure 6.13: Fatigue life (years) at different longitudinal locations 

 

Table 6.8: Summary of wave-induced fatigue at 40 m and 70 m water depth 

40 m water depth 

x/L 0.142 0.283 0.425 0.566 0.708 0.849 

Damage 0.0235 0.0662 0.0779 0.0518 0.0307 0.00398 

Life 

(years) 
42 15 13 19 33 251 

 



 

86 

 

70 m water depth 

x/L 0.142 0.283 0.425 0.566 0.708 0.849 

Damage 0.0106 0.0186 0.0523 0.0405 0.0151 0.00092 

Life 

(years) 
94 53 19 25 66 1090 

 

 

6.6.2. Fatigue due to hydrostatic pressure 

 

The hoop stress is determined using a hydrostatic pressure of 0.703 MPa (nominal diving depth of 

SST, i.e., 70 m) applied on the external face of the SST pressure hull. Thus, a simple hand 

calculation is carried out to get a contribution of fatigue damage due to changes in hydrostatic 

pressure during dive-in and dive-out.  

The SST can perform two weekly trips up to 70 m water depth (Xing et al., 2022). Therefore, the 

number of cycles in a year will become 104.28. Due to the high consequences of failure, DFF is 

chosen as 10. The summary of the fatigue life estimation due to hydrostatic pressure is presented 

in Table 6.9. Generally, the SST hull is flooded with water, and there are internal pressure vessels 

to compensate for the effect of the hydrostatic pressure, but they are not considered in this study. 

Therefore, fatigue life can be significantly increased if the latter conditions are considered. 

 

Table 6.9: Summary of fatigue life due to hydrostatic pressure 

𝝈𝒉𝒐𝒐𝒑 239.314 MPa 

𝑛 104.28 

𝑁 5520.66 

𝐴𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑 𝑑𝑎𝑚𝑎𝑔𝑒 (𝑜𝑛𝑒 𝑦𝑒𝑎𝑟) 0.188 

𝐹𝑎𝑡𝑖𝑔𝑢𝑒 𝑙𝑖𝑓𝑒 (𝑦𝑒𝑎𝑟𝑠) 5 
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7. Chapter 7 – Conclusion and recommendations for future work 
 

7.1.  Conclusion 

 

The thesis is divided into two main parts. The first part of the thesis proposed a reliable and 

efficient multi-body approach to determine the bending moment of the SST under the effect of 

waves. The proposed approach is based on the discrete-module-beam bending-based 

hydroelasticity method. A continuous SST is divided into several multi-body rigid modules, and a 

planar sea-keeping model is established in Matlab Simulink based on the multi-body equation of 

the motion. The forces, which include hydrostatic restoring forces, waves excitation forces and 

radiation forces, are exerted on the center of gravity of each rigid module. The Cummins equation's 

convolution term is effectively solved using a state-space model. The convergence study is carried 

out by defining the stiffness in the connection joints to determine the most optimal number of 

bodies needed to perform the bending moment assessment. The accuracy of the dynamic response 

and bending moment is influenced by the number of decomposed bodies (i.e. the higher number 

of bodies, the higher the accuracy). The results show that a lower number of bodies (i.e., three and 

five) underestimates the bending moment at the given time instance even though the motion 

response converges for the heave and pitch direction. The less accurate response for the three and 

five-body SST can be because they may not have enough points to capture all wave encounter 

frequencies. 

The second part of the thesis is the fatigue assessment of the SST hull, considering the effect of 

the local stresses at the welds. The finite element model of the flooded-mid body of the SST is 

prepared using the Ansys mechanical workbench 2020R1, followed by the mesh convergence 

study. Two different types of loading (i.e., external pressure and bending moment) are applied on 

the external hull of the SST to compute the SCF at the critical location. A 2D axisymmetric model 

is prepared to represent the external pressure problem, and the bending moment problem is 

modelled in 3D using shell elements. The resultant SCF is determined using the superposition 

approach. This approach indicates that the resultant SCF can be found by multiplication of the 

SCF obtained from the two individual models, provided that the stresses are linearly related to the 

loads. The fatigue assessment is based on the North Sea scatter diagram data. The analysis 

considers 20 load cases, and the simulation time for each load is one hour. The fatigue life of the 
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multi-body SST is then calculated using the Palmgren-Miner rule and the Rainflow counting 

approach based on the stress history. This method is capable of accurately and quickly assessing 

structural fatigue damage. The main contribution of the fatigue damage is expected due to long 

waves effect. The fatigue life at the flooded-mid body of the SST increases with the operation 

depth. This is because the effect from the long waves decreases with the depth resulting in less 

damage. However, there is significantly less contribution from the shorter waves. The minimum 

fatigue life observed is 13 and 19 years at the x/L = 0.425 at the 40 m and 70 m water depth, 

respectively. The fatigue life due to changes in hydrostatic pressure during dive-in and dive-out is 

five years. The average operation life of a military submarine is around 25-30 years. This low 

fatigue life of SST in this study is due to the high DFF consideration, thin-wall hull structure and 

stiffeners frames associated with a submarine, unless the numerous stiffeners and/or thick walls 

are used. Generally, the SST hull is flooded with water, and there are internal pressure vessels to 

compensate for the effect of the hydrostatic pressure, but they are not considered in this study. 

Therefore, fatigue life can be significantly increased if the latter conditions are considered. 

 

7.2.  Recommendations for future work 

 

The following research studies are identified by the author for further study:   

• The uncertainty associated with the stress concentration factor (SCF) value and how to 

reduce SCF to increase the fatigue life.  

• Buckling assessment of the SST hull under the effect of hydrostatic pressure considering 

surface imperfection and stiffeners. The author provides the preliminary work (draft) 

(see Appendix G – Appended papers 2), and the approach is tested on the cylindrical 

shells to check the accuracy and correctness of the method. The numerical results show 

a good agreement with the experimental results.     

.         
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Appendix A – The stiffness matrix [𝑲𝒊𝒋] 

 

[𝐾] = 

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝐸𝐴

𝑙

0
12𝐸𝐼𝑧

𝑙3
𝑠 𝑦 𝑚 𝑚

0 0
12𝐸𝐼𝑦

𝑙3
𝑒 𝑡 𝑟 𝑦

0 0 0
𝐺𝐼𝜌

𝑙

0 0 −
6𝐸𝐼𝑦

𝑙2
0

4𝐸𝐼𝑦

𝑙

0
6𝐸𝐼𝑧
𝑙2

0 0 0
4𝐸𝐼𝑧

𝑙

−
𝐸𝐴

𝑙
0 0 0 0 0

𝐸𝐴

𝑙

0 −
12𝐸𝐼𝑧

𝑙3
0 0 0 −

6𝐸𝐼𝑧
𝑙2

0
12𝐸𝐼𝑧

𝑙3

0 0 −
12𝐸𝐼𝑦

𝑙3
0

6𝐸𝐼𝑦

𝑙2
0 0 0

12𝐸𝐼𝑦

𝑙3

0 0 0 −
𝐺𝐼𝜌

𝑙
0 0 0 0 0

𝐺𝐼𝜌

𝑙

0 0 −
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𝑙2
0

2𝐸𝐼𝑦

𝑙
0 0 0 0 0

4𝐸𝐼𝑦

𝑙

0
6𝐸𝐼𝑧
𝑙2

0 0 0
2𝐸𝐼𝑧

𝑙
0 −

6𝐸𝐼𝑧
𝑙2

0 0 0
4𝐸𝐼𝑧

𝑙 ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

where 𝐴 is the cross-section area, 𝐸 is the elastic modulus, 𝐺 is the shear modulus, 𝐼𝑦, 𝐼𝑧 and 𝐼𝜌 

are the vertical, horizontal and torsional moment of inertia, respectively 

𝐺 =
𝐸

2(1 + 𝜇)
 

where 𝜇 is the Poisson’s ratio 
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Appendix B – MATLAB code of frequency-domain identification of 

radiation model 
 

Use of FDI toolbox to identify a parametric model of the seven-body SST based on hydrodynamic 

data, including infinite-frequency added mass. 

clear all; 
addpath('../FDIToolbox'); 
 
%Load data of the SST (structure vessel) 
load vessel.mat 
  
Dof_cases = [1 1; 1 5; 1 7; 1 11; 1 13; 1 17; 1 19; 1 23; 1 25; 1 29; 1 31; 1 35; 1     
37; 1 41; 3 3; 3 9; 3 15; 3 21; 3 27; 3 33; 3 39; 5 5; 5 7; 5 11; 5 13; 5 17; 5 19; 5 
23; 5 25; 5 29; 5 31; 5 35; 5 37; 5 41; 7 7; 7 11; 7 13; 7 17; 7 19; 7 23; 7 25; 7 29; 
7 31; 7 35; 7 37; 7 41; 9 9; 9 15; 9 21; 9 27; 9 33; 9 39; 11 11; 11 13; 11 17; 11 19; 
11 23; 11 25; 11 29; 11 31; 11 35; 11 37; 11 41; 13 13; 13 17; 13 19; 13 23; 13 25; 13 
29; 13 31; 13 35; 13 37; 13 41; 15 15; 15 21; 15 27; 15 33; 15 39; 17 17; 17 19; 17 
23; 17 25; 17 29; 17 31; 17 35; 17 37; 17 41; 19 19; 19 23; 19 25; 19 29; 19 31; 19 
35; 19 37; 19 41; 21 21; 21 27; 21 33; 21 39; 23 23; 23 25; 23 29; 23 31; 23 35; 23 
37; 23 41; 25 25; 25 29; 25 31; 25 35; 25 37; 25 41; 27 27; 27 33; 27 39; 29 29; 29 
31; 29 35; 29 37; 29 41; 31 31; 31 35; 31 37; 31 41; 33 33; 33 39; 35 35; 35 37; 35 
41; 37 37; 37 41; 39 39; 41 41]; 
  
for i = 1:size(Dof_cases,1) 
 
%Extract the data from the vessel structure 
Dof = [Dof_cases(i,1),Dof_cases(i,2)]; %1-surge, 2-heave, 3-pitch 
Nf = length(vessel.freqs); 
W=vessel.freqs(1:Nf-1)'; 
Ainf=vessel.A(Dof(1),Dof(2),Nf); 
 
A = reshape(vessel.A(Dof(1),Dof(2),1:Nf-1),1,length(W))'; 
B = reshape(vessel.B(Dof(1),Dof(2),1:Nf-1),1,length(W))'; 
 
%Define the structure with identification algorithm options 
FDIopt.OrdMax     = 20; 
FDIopt.AinfFlag   = 1; 
FDIopt.Method     = 2; 
FDIopt.Iterations = 20; 
FDIopt.PlotFlag   = 0; 
FDIopt.LogLin     = 1; 
FDIopt.wsFactor   = 0.1;   
FDIopt.wminFactor = 0.1; 
FDIopt.wmaxFactor = 5; 
 
%call idenfication routine 
[Krad,Ainf_hat]=FDIRadMod(W,A,Ainf,B,FDIopt,Dof); 
filename = sprintf('SST_Krad%d%d.mat',Dof_cases(i,1),Dof_cases(i,2)); 
save(filename,'Krad'); 
end 
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Appendix C – MATLAB code to determine a state-space model to 

compute free-surface memory effect for seven body SST 
 

clear all; 
model = 'SST';  
 
% from hydro model 
 
Dof_cases = [1 1; 1 5; 1 7; 1 11; 1 2; 1 17; 1 19; 1 23; 1 25; 1 29; 1 31; 1 35; 1 8; 
1 41; 3 3; 3 9; 3 15; 3 21; 3 27; 3 33; 3 39; 5 1; 5 5; 5 7; 5 11; 5 2; 5 17; 5 19; 5 
23; 5 25; 5 29; 5 8; 5 35; 5 37; 5 41; 7 1; 7 5; 7 7; 7 2; 7 13; 7 17; 7 19; 7 23; 7 
25; 7 29; 7 31; 7 35; 7 37; 7 41; 9 3; 9 9; 9 15; 9 21; 9 27; 9 33; 9 39; 11 1; 11 5; 
2 7; 11 11; 11 13; 11 17; 11 19; 11 23; 11 25; 11 29; 11 31; 11 35; 11 37; 11 41; 2 1; 
2 5; 13 7; 13 11; 13 13; 13 17; 13 19; 13 23; 13 25; 13 29; 13 31; 13 35; 13 37; 13 
41; 15 3; 15 9; 15 15; 15 21; 15 27; 15 33; 15 39; 17 1; 17 5; 17 7; 17 11; 17 13; 17 
17; 17 19; 17 23; 17 25; 17 29; 17 31; 17 35; 17 37; 17 41; 19 1; 19 5; 19 7; 19 11; 
19 13; 19 17; 19 19; 19 23; 19 25; 19 29; 19 31; 19 35; 19 37; 19 41; 21 3; 21 9; 21 
15; 21 21; 21 27; 21 33; 21 39; 23 1; 23 5; 23 7; 23 11; 23 13; 23 17; 23 19; 23 23; 
23 25; 23 29; 23 31; 23 35; 23 37; 23 41; 25 1; 25 5; 25 7; 25 11; 25 13; 25 17; 25 
19; 25 23; 25 25; 25 29; 25 31; 25 35; 25 37; 25 41; 27 3; 27 9; 27 15; 27 21; 27 27; 
27 33; 27 39; 29 1; 29 5; 29 7; 29 11; 29 13; 29 17; 29 19; 29 23; 29 25; 29 29; 29 
31; 29 35; 29 37; 29 41; 31 1; 31 5; 31 7; 31 11; 31 13; 31 17; 31 19; 31 23; 31 25; 
31 29; 31 31; 31 35; 31 37; 31 41; 33 3; 33 9; 33 15; 33 21; 33 27; 33 33; 33 39; 35 
1; 35 5; 35 7; 35 11; 35 13; 35 17; 35 19; 35 23; 35 25; 35 29; 35 31; 35 35; 35 37; 
35 41; 8 1; 37 5; 37 7; 37 11; 37 13; 37 17; 37 19; 37 23; 37 25; 37 29; 37 31; 37 35; 
37 37; 37 41; 39 3; 39 9; 39 15; 39 21; 39 27; 39 33; 39 39; 41 1; 41 5; 41 7; 41 11; 
41 13; 41 17; 41 19; 41 23; 41 25; 41 29; 41 31; 41 35; 41 37; 41 41];  
 
 
% dof in simulink model             
             
Order = [1 1; 1 3; 1 1; 1 3; 1 1; 1 3; 1 1; 1 3; 1 1; 1 3; 1 1; 1 3; 1 1; 1 3; 2 2; 2 
2; 2 2; 2 2; 2 2; 2 2; 2 2; 3 1; 3 3; 3 1; 3 3; 3 1; 3 3; 3 1; 3 3; 3 1; 3 3; 3 1; 3 
3; 3 1; 3 3]; 
   
Dr = zeros(1,1); 
 
m = 35;  
 
ki = 1; 
kj = 1; 
for curr = 1:m 
 
i = order(curr,1); 
j = order(curr,2); 
i2 = Dof_cases(curr,1); 
j2 = Dof_cases(curr,2); 
 
if i >= j 
    filename = sprintf('%s_Krad%d%d.mat',model,j2,i2); 
else 
    filename = sprintf('%s_Krad%d%d.mat',model,i2,j2); 
end 
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load(filename); 
ssrad = ss(Krad); % Forming SS matrix 
A = ssrad.A; 
B = ssrad.B; 
C = ssrad.C; 
D = ssrad.D; 
 
n = size(A,1); 
 
Ar(kj:n+kj-1,kj:n+kj-1) = A; 
Br(kj:n+kj-1,i) = B; 
Cr(i,kj:n+kj-1) = -C; 
 
ki = ki + 1; 
kj = kj + n; 
 
end 
 
  
ss_model6 = ss(Ar,Br,Cr,Dr); 
 
save('SST_ss_model6.mat','ss_model6'); 
 
load('vessel.mat'); 
vessel.ss_model6 = ss_model6; 
save('SST_vessel6.mat', 'vessel'); 
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Appendix D – Python code for Rainflow counting method 
 

""" 
from numpy import fabs as fabs 
import numpy as np 
 
def rainflow(array_ext, 
             flm=0, l_ult=1e16, uc_mult=0.5): 
    """ Rainflow counting of a signal's turning points with Goodman correction 
     
        Args: 
            array_ext (numpy.ndarray): array of turning points 
         
        Keyword Args: 
            flm (float): fixed-load mean [opt, default=0] 
            l_ult (float): ultimate load [opt, default=1e16] 
            uc_mult (float): partial-load scaling [opt, default=0.5] 
             
        Returns: 
            array_out (numpy.ndarray): (5 x n_cycle) array of rainflow values: 
                                        1) load range 
                                        2) range mean 
                                        3) Goodman-adjusted range 
                                        4) cycle count 
                                        5) Goodman-adjusted range with flm = 0 
             
    """ 
     
    flmargin = l_ult - fabs(flm)            # fixed load margin 
    tot_num = array_ext.size                # total size of input array 
    array_out = np.zeros((5, tot_num-1))    # initialize output array 
     
    pr = 0                                  # index of input array 
    po = 0                                  # index of output array 
    j = -1                                  # index of temporary array "a" 
    a  = np.empty(array_ext.shape)          # temporary array for algorithm 
     
    # loop through each turning point stored in input array 
    for i in range(tot_num): 
         
        j += 1                  # increment "a" counter 
        a[j] = array_ext[pr]    # put turning point into temporary array 
        pr += 1                 # increment input array pointer 
         
        while ((j >= 2) & (fabs( a[j-1] - a[j-2] ) <= \ 
                fabs( a[j] - a[j-1]) ) ): 
            lrange = fabs( a[j-1] - a[j-2] ) 
               
            # partial range 
            if j == 2: 
                mean      = ( a[0] + a[1] ) / 2. 
                adj_range = lrange * flmargin / ( l_ult - fabs(mean) ) 
                adj_zero_mean_range = lrange * l_ult / ( l_ult - fabs(mean) ) 
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                a[0]=a[1] 
                a[1]=a[2] 
                j=1 
                if (lrange > 0): 
                    array_out[0,po] = lrange 
                    array_out[1,po] = mean 
                    array_out[2,po] = adj_range 
                    array_out[3,po] = uc_mult 
                    array_out[4,po] = adj_zero_mean_range 
                    po += 1 
                 
            # full range 
            else: 
                mean      = ( a[j-1] + a[j-2] ) / 2. 
                adj_range = lrange * flmargin / ( l_ult - fabs(mean) ) 
                adj_zero_mean_range = lrange * l_ult / ( l_ult - fabs(mean) ) 
                a[j-2]=a[j] 
                j=j-2 
                if (lrange > 0): 
                    array_out[0,po] = lrange 
                    array_out[1,po] = mean 
                    array_out[2,po] = adj_range 
                    array_out[3,po] = 1.00 
                    array_out[4,po] = adj_zero_mean_range 
                    po += 1 
                     
    # partial range 
    for i in range(j): 
        lrange    = fabs( a[i] - a[i+1] ); 
        mean      = ( a[i] + a[i+1] ) / 2. 
        adj_range = lrange * flmargin / ( l_ult - fabs(mean) ) 
        adj_zero_mean_range = lrange * l_ult / ( l_ult - fabs(mean) ) 
        if (lrange > 0): 
            array_out[0,po] = lrange 
            array_out[1,po] = mean 
            array_out[2,po] = adj_range 
            array_out[3,po] = uc_mult 
            array_out[4,po] = adj_zero_mean_range 
            po += 1   
             
    # get rid of unused entries 
    array_out = array_out[:,:po] 
 
    return array_out 
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Appendix E – Python code for fatigue calculator 
 

import matplotlib.pyplot 
import rainflow 
import numpy as np 
import pandas as pd 
 
 
# definition of the stress ranges 
a = 
np.array([5.0,10.0,15.0,20.0,25.0,30.0,35.0,40.0,45.0,50.0,55.0,60.0,65.0,70.0,75.0,8
0.0]) 
b = np.array([0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0]) 
c = np.array([0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0]) 
d = np.array([0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0]) 
 
# number of sea states 
s = 20 
q = 0 
 
while q<s: 
     
    # reading of the input data 
     
    data = pd.read_excel (r'C:\Users\268054\OneDrive - Universitetet I       
Stavanger\General\Fatigue and buckling inperfection\Python code for 
fatigue\70m\stress_joint6_70m.xlsx') 
    df = pd.DataFrame(data, columns= [q+1]) 
    data = pd.read_excel (r'C:\Users\268054\OneDrive - Universitetet i 
Stavanger\General\Fatigue and buckling inperfection\Python code for 
fatigue\70m\test.xlsx') 
    dg = pd.DataFrame(data, columns= ['zeros']) 
    
    new_array = np.array(df) 
    ext_array = np.array(dg) 
     
    k=0 
    h=0 
    c = np.array([0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0]) 
     
    while k<(new_array.size-1): 
        if new_array[k]<new_array[k-1] and new_array[k]<new_array[k+1]: 
            ext_array[h] = new_array[k] 
            h+=1 
        if new_array[k]>new_array[k-1] and new_array[k]>new_array[k+1]: 
            ext_array[h] = new_array[k] 
            h+=1 
        k+=1 
     
    print(ext_array) 
 
    # rainflow analysis 
    from rainflow import rainflow   
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    out_array = rainflow(ext_array) 
     
    print("Rainflow Output:") 
    print(out_array) 
 
    # cycle counting 
    i = 0 
    while i<(out_array.size)/5: 
        if out_array[0,i]<=5.5: 
            b[0]=b[0]+out_array[3,i] 
        if out_array[0,i]>5.5 and out_array[0,i]<=10.5: 
            b[1]=b[1]+out_array[3,i] 
        if out_array[0,i]>10.5 and out_array[0,i]<=15.5: 
            b[2]=b[2]+out_array[3,i] 
        if out_array[0,i]>15.5 and out_array[0,i]<=20.5: 
            b[3]=b[3]+out_array[3,i] 
        if out_array[0,i]>20.5 and out_array[0,i]<=25.5: 
            b[4]=b[4]+out_array[3,i] 
        if out_array[0,i]>25.5 and out_array[0,i]<=30.5: 
            b[5]=b[5]+out_array[3,i] 
        if out_array[0,i]>30.5 and out_array[0,i]<=35.5: 
            b[6]=b[6]+out_array[3,i] 
        if out_array[0,i]>35.5 and out_array[0,i]<=40.5: 
            b[7]=b[7]+out_array[3,i] 
        if out_array[0,i]>40.5 and out_array[0,i]<=45.5: 
            b[8]=b[8]+out_array[3,i] 
        if out_array[0,i]>45.5 and out_array[0,i]<=50.5: 
            b[9]=b[9]+out_array[3,i] 
        if out_array[0,i]>50.5 and out_array[0,i]<=55.5: 
            b[10]=b[10]+out_array[3,i] 
        if out_array[0,i]>55.5 and out_array[0,i]<=60.5: 
            b[11]=b[11]+out_array[3,i] 
        if out_array[0,i]>60.5 and out_array[0,i]<=65.5: 
            b[12]=b[12]+out_array[3,i] 
        if out_array[0,i]>65.5 and out_array[0,i]<=70.5: 
            b[13]=b[13]+out_array[3,i] 
        if out_array[0,i]>70.5 and out_array[0,i]<=75.5: 
            b[14]=b[14]+out_array[3,i] 
        if out_array[0,i]>75.5: 
            b[15]=b[15]+out_array[3,i] 
 
 
        i+=1 
 
     # probability inclusion 
    date = pd.read_excel (r'C:\Users\268054\OneDrive - Universitetet i 
Stavanger\General\Fatigue and buckling inperfection\Python code for 
fatigue\70m\prob_test_DFF.xlsx') 
    prob = pd.DataFrame(date, columns= ['Probability']) 
    Scat = np.array(prob) 
      
    Scatter = Scat[q] 
    c = b*Scatter    
 
    #Accumulated cycles calclulation 



 

106 

 

    
d[0]=d[0]+c[0]+c[1]+c[2]+c[3]+c[4]+c[5]+c[6]+c[7]+c[8]+c[9]+c[10]+c[11]+c[12]+c[13]+c
[14]+c[15]     
    
d[1]=d[1]+c[1]+c[2]+c[3]+c[4]+c[5]+c[6]+c[7]+c[8]+c[9]+c[10]+c[11]+c[12]+c[13]+c[14]+
c[15] 
    
d[2]=d[2]+c[2]+c[3]+c[4]+c[5]+c[6]+c[7]+c[8]+c[9]+c[10]+c[11]+c[12]+c[13]+c[14]+c[15] 
    d[3]=d[3]+c[3]+c[4]+c[5]+c[6]+c[7]+c[8]+c[9]+c[10]+c[11]+c[12]+c[13]+c[14]+c[15] 
    d[4]=d[4]+c[4]+c[5]+c[6]+c[7]+c[8]+c[9]+c[10]+c[11]+c[12]+c[13]+c[14]+c[15] 
    d[5]=d[5]+c[5]+c[6]+c[7]+c[8]+c[9]+c[10]+c[11]+c[12]+c[13]+c[14]+c[15] 
    d[6]=d[6]+c[6]+c[7]+c[8]+c[9]+c[10]+c[11]+c[12]+c[13]+c[14]+c[15] 
    d[7]=d[7]+c[7]+c[8]+c[9]+c[10]+c[11]+c[12]+c[13]+c[14]+c[15] 
    d[8]=d[8]+c[8]+c[9]+c[10]+c[11]+c[12]+c[13]+c[14]+c[15] 
    d[9]=d[9]+c[9]+c[10]+c[11]+c[12]+c[13]+c[14]+c[15] 
    d[10]=d[10]+c[10]+c[11]+c[12]+c[13]+c[14]+c[15] 
    d[11]=d[11]+c[11]+c[12]+c[13]+c[14]+c[15] 
    d[12]=d[12]+c[12]+c[13]+c[14]+c[15] 
    d[13]=d[13]+c[13]+c[14]+c[15] 
    d[14]=d[14]+c[14]+c[15] 
    d[15]=d[15]+c[15] 
    
    q+=1 
 
# damage calculation 
SN = 
np.array([11419970345055,252348077248,27133016267,5576157395,1634293119,599560619,256
818175,123216834,64466066,36113117,21379877,13248543,9032401,6968781,5473757,4367018]
) 
D = d/SN 
acc_D = sum(D) 
annual_D = 365*24*3600*acc_D*10/3600 
total_life = 1/(annual_D) 
 
print("Stress Range", a) 
print("Cycles", b) 
print("Damage", d) 
print("Miner",D) 
print("Summation",acc_D) 
print("accumulated annual damage",annual_D) 
print("fatigue life",total_life) 
j = 0 
while j<(D.size): 
    if D[j]>=1: 
        print("Warning! Too many cycles for stress range", j+1) 
    j+=1 
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Appendix F – Illustration of FAT class with FAT X number (DNV, 

2015)  
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Paper -1  

Modelling and analysis of the bending moment in a Subsea Shuttle Tanker under the effect of 

waves using a multi-body approach 

Karan Sandipkumar Patel, Yucong Ma, Yihan Xing, Lin Li  

 

Paper -2 

 Lower bound buckling capacity prediction for the isotropic cylindrical shell under axial 

compression loading using a probabilistic approach (Draft) 

Karan Sandipkumar Patel, Yucong Ma, Yihan Xing 
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ABSTRACT 
The Subsea Shuttle Tanker (SST) is a cost-effective, novel 

sizeable autonomous vehicle designed to transport liquid CO2 

between land facilities and smaller marginal fields. The SST 

travels underwater at a nominal diving depth of 70 m, allowing 

it to carry out freight operations in all weather conditions. 

Accurate structural assessment of large submarines is an 

essential part of structural reliability. In many practical cases, 

finite element methods (FEM) are used to predict the structural 

performance of the hull, but they come with significant 

computational expenses and time. This paper aims to present a 

reliable and efficient multi-body approach based on the discrete-

module-beam bending-based hydroelasticity method to study the 

hydro-elastic behavior of SST hull at 40 and 70 m water depth. 

First, the continuous hull of the SST is discretized into several 

multi-body rigid modules. Then, a planar multi-body seakeeping 

model is presented to study the bending moment response of an 

interconnected multi-body rigid module under wave loads. The 

bending moment results are first measured using simplified 

multi-body geometry to ensure the use of the optimal number of 

model fidelity. The bending moment time series and power 

spectral density (PSD) have been analyzed in this paper. 

Numerical results also show that the mean bending moment at 

40 m water depth is approximately 3 to 40 % greater than at 70 

m water depth. 

   

Keywords: submarine, autonomous underwater vehicle, 

seakeeping, potential flow theory, multi-body dynamics, bending 

moment 

 

 

 

1. INTRODUCTION 
1.1. Subsea Shuttle Tanker  

Subsea pipelines and shuttle tankers are commonly used to 

transport hydrocarbons from offshore fields to onshore land 

facilities [1]. Laying a pipeline can be very expensive for the 

remotely located deep-water oil and gas fields with low-profit 

margins. Shuttle tanker operations are highly weather-dependent 

and cannot be carried out during severe weather conditions.  

Considering this, various autonomous vehicles, such as 

autonomous freight submarines [2] and subsea gliders [3], are 

developed to be used as potential alternatives to subsea pipelines 

and shuttle tankers. Since these vessels operate subsurface, 

transportation is not halted even in extreme weather conditions. 

Several ideas for the novel sizeable autonomous vehicle 

were presented by the Equinor ASA  [4 & 5] in two research 

disclosures in 2019 for transporting liquid CO2 from land or 

offshore-based facilities to subsea wells for an improved 

recovery process. Xing et al. [6] investigated primary design 

considerations regarding Subsea Shuttle Tanker (SST)  to make 

it economically feasible. After that, the baseline design for an 

innovative 33600-ton SST was presented by Ma et al. [2].  

  The SST travels at 6 knots speed for maximum energy 

efficiency and at a 70 m constant water depth to attenuate the 

wave effects [2]. The wave loads or wave effects on the external 

hull of the SST are reduced up to a great extent at the given water 

depth. However, it is still essential to quantify and justify this 

reduction of wave effects in the given conditions to accurately 

predict the SST hull's structural performance. In addition, these 

dynamic load effects can potentially lead to fatigue damage to 

the SST external pressure hull. Also, as the SST has a large 

length-to-beam ratio, the external hull can be deformed by the 

combined effect of wave-induced loads and uneven weight and 

buoyancy distribution. FIGURE 2 illustrates the dynamic 

pressure variation with the depth and has a negative value under 

the wave trough and a positive value under the wave crest. 
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FIGURE 1: SUBSEA SHUTTLE TANKER (SST) [2] 

 

In recent years, a substantial quantity of research has already 

been done on Very Large Floating Structures (VLFSs) like cargo 

and passenger ships, bridges, emergency bases, terminal airports, 

etc [7]. However, there is hardly any work done for large 

submarines regarding efficient and reliable structural 

assessment. In this work, the authors adapted the existing 

experiences on VLFSs and proposed a reliable and efficient 

multi-body approach for large slender structures like SST to 

study the bending moment response of the SST hull under the 

wave effects for an accurate structural assessment. 

 

 
FIGURE 2: ENVIRONMENTAL LOADING ON THE SST 

HULL DURING ITS FORWARD MOTION 

 

Accurately predicting the interaction between fluid fields 

and SST is a fundamental aspect. The classic hydrodynamic 

technique assumes the structure of a rigid body; therefore, it 

ignores the impact of structural deformation and gives an 

imprecise hydrodynamic response estimation [7]. Therefore, the 

hydro-elastic theory is more suitable for investigating large 

structures' or vessels' hydrodynamic responses. The 

hydrodynamic responses can be obtained by combining the 

structural dynamic and hydrodynamic equations, considering the 

interaction between hydrodynamic, inertia, and elastic forces [7]. 

Two-dimensional [8 & 9] and three-dimensional [10] hydro-

elastic theory was developed in the frequency domain, whereas 

Liu and Sakai [11] developed time-domain hydro-elastic theory 

at the same time. With the aid of two-dimensional and three-

dimensional hydro-elastic theory, large semi-submersible 

pontoons are investigated, see  [12]. 

Many VLFSs, which comprise several modules, are being 

analyzed using these theories and the multi-body analysis 

approach. Multi-body VLFSs such as side-by-side moored 

floating production storage and offloading (FPSO)-shuttle tanker 

systems are investigated by Hong et al. [13]. Global and local 

motion responses are numerically determined considering multi-

body interaction and compared with the model test results. Choi 

and Hong [14] use the higher-order boundary element method 

(HOBEM) to investigate the hydrodynamic interaction of a 

floating multi-body system. The results are compared for two 

different offloading arrangements, side-by-side and tandem 

arrangements. Yu et al. [15] investigate multi-body mobile 

offshore base system's responses and connector forces by 

assuming bodies as rigid in numerical calculation. Several 

methods, such as the mode superposition method [16-18], 

eigenfunction expansion method [19 & 20] and direct method 

[21 & 22], have been used to investigate hydro-elastic responses. 

Kim et al. [23] investigate bending moment, stresses, and shear 

forces at connections of VLFS using a multi-body equation of 

motion. Hydrodynamic responses are calculated on each node, 

and total structural motion is derived by putting these responses 

together. Nonetheless, obtaining these responses in each mode is 

challenging due to irregular shape or stiffness. As a result, the 

direct method is used to examine structures whose modes are 

difficult to determine. 

This paper investigates the SST hull's bending moment 

response using the multi-body approach based on the discrete-

module-beam-bending based hydro-elastic method. First, a 

multi-body SST seakeeping planar model is presented based on 

the multi-body equation of motion. The empirical data are 

generated using time-domain simulation under different load 

cases. The main idea is to present a reliable and efficient 

methodology to investigate the structural performance and 

response of the SST hull against the bending moment under the 

influence of hydrodynamic forces considering hydroelectricity 

and connection stiffness. 

 

2. THEORETICAL BACKGROUND 
The continuous flexible hull of the SST is divided into 

several bodies, as illustrated in FIGURE 3. Each body is 

considered a rigid body with no deformation. Subsequently, a 

spring flexibly connects two neighboring bodies. The 

hydrodynamic interaction with neighboring bodies affects the 6 

degrees of freedom motion of each body. This paper uses linear 

wave theory assumptions to deal with hydrodynamic aspects, 

i.e., small wave steepness, non-viscous, incompressible, and 

irrotational flow. Then, hydrodynamic coefficients for the multi-

body SST are calculated from potential flow theory, which 

breaks the total structural loads into the wave excitation force 

and radiation effect. Finally, multi-body SST responses in the 

presence of waves are obtained by solving a multi-body equation 
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of motion considering hydroelectricity and connection stiffness.  

The bending stiffness of the spring in pitch direction is given by 

Eq. (1): 

 

 𝐾𝜃 =
4𝐸𝐼

𝐿
 (1) 

 

where  𝐿 is the length of the module, 𝐸 is the modulus of 

elasticity, and 𝐼 is the inertia moment. 

 

 
FIGURE 3: CONTINUOUS SST DIVIDED INTO MULTI-

BODIES 

 

2.1. Hydrodynamic Theory 
The equation of motion of any offshore structure and marine 

vessel can be given as: 

 

 𝑀𝑅𝐵𝜉̈ = 𝜏 (2) 

 

where: 𝑀𝑅𝐵is the rigid body mass matrix; 𝜉 ≜ [𝑥, 𝑦, 𝑧, 𝜙, 𝜃, 𝜓]T 

is a displacement vector that defines the position of the vessel or 

structure with respect to a reference frame (x-surge, y-sway, and 

z-heave, 𝜙-roll, 𝜃-pitch, and 𝜓-yaw); and 𝜏 ≜ [𝑋, 𝑌, 𝑍, 𝐾, 𝑀, 𝑁]T 

is a force vector in a body frame (𝑋 -surge, 𝑌 -sway, and 𝑍-heave, 

𝐾-roll, 𝑀-pitch, and 𝑁-yaw). 

 

 𝜏 = 𝜏𝑟𝑎𝑑 + 𝜏𝑣𝑖𝑠𝑐 + 𝜏𝑟𝑒𝑠 + 𝜏𝑒𝑥𝑐  (3) 

 

where 𝜏𝑟𝑎𝑑 is radiation force due to a change in the momentum 

of the fluid, 𝜏𝑟𝑒𝑠 is restoring force due to buoyancy and gravity,  

𝜏𝑒𝑥𝑡  is wave excitation force by incident waves, 𝜏𝑣𝑖𝑠𝑐  is viscous 

force.  

 

Time-domain model  

In this paper, the time-domain radiation force is represented 

by  Cummin's equation [24]:  

 

 𝜏𝑟𝑎𝑑 = −𝐴∞𝜉̈ − ∫ 𝐾(𝑡 − 𝑡′)𝜉(𝑡′)𝑑𝑡′̇
𝑡

0

 (4) 

 

The first term in Eq. (4) reflects pressure force owing to the 

structure's acceleration and 𝐴∞ is infinite frequency added mass 

and 𝐾 is retardation or memory function. The energy transfer 

from the motion of the structure to radiation waves is captured 

by the second term. It represents a fluid memory model. The 

kernel of the convolution term is the matrix of the memory 

function.  

Combining Eq. (3) and Eq (4), Cummins [24] equation can 

be written as 

 

 (𝑀𝑅𝐵 + 𝐴∞)𝜉̈ + ∫ 𝐾(𝑡 − 𝑡′)𝜉(𝑡′)𝑑𝑡′̇
𝑡

0

+ 𝐺𝜉 = 𝜏𝑒𝑥𝑐  (5) 

 

The above equation represents the equation of motion of any 

offshore structure and vessel, provided the linear wave theory 

assumption is satisfied. 

 

Frequency domain model  

Radiation force in the frequency domain can be written as 

[25 & 26]  

 

 𝜏𝑟𝑎𝑑(𝑗𝜔) = −𝐴(𝜔)𝜉̈(𝑗𝜔) − 𝐵(𝜔)𝜉(𝑗𝜔) (6) 

 

where 𝐴(𝜔) and 𝐵(𝜔) are frequency-dependent added mass and 

damping. The equation of motion in the frequency domain can 

be written as 

 

 
[−𝜔2[𝑀 + 𝐴(𝜔)] + 𝑗𝜔𝐵(𝜔) + 𝐺]𝜉(𝑗𝜔)

= 𝜏𝑒𝑥𝑐(𝑗𝜔) 
(7) 

 

With the aid of the Fourier transform, Ogitive [27] shows 

the relationship between added mass and damping coefficient in 

the time domain and frequency domain. 

 

 𝐴(𝜔) = 𝐴∞ −
1

𝜔
∫ 𝐾(𝑡) sin(𝜔𝑡) 𝑑𝑡

∞

0

 (8) 

 𝐵(𝜔) = ∫ 𝐾(𝑡) cos(𝜔𝑡) 𝑑𝑡
∞

0

 (9) 

 

Again, using Fourier transform, the retardation function in 

the frequency domain can be represented as: 

 

 𝐾(𝑗𝜔) = 𝐵(𝜔) + 𝑗𝜔[𝐴(𝜔) − 𝐴∞] (10) 

 

In this paper, the hydrodynamic coefficients (𝐴(𝜔) and 

𝐵(𝜔) for a finite set of frequency is obtained by using 

hydrodynamic codes (Wadam) based on potential theory. 

Therefore, using the above equations, the equation of 

motion of the multi-body SST in the frequency domain is given 

as follows: 
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[−𝜔2[𝑀𝑘 + 𝐴𝑘𝑘] + 𝑗𝜔𝐵𝑘𝑘 + 𝐺]𝜉

+ ∑ [−𝜔2𝐴𝑘𝑗 + 𝑗𝜔𝐵𝑘𝑗]𝜉

𝑛

𝑗=1,𝑗≠𝑘

= 𝜏𝑒𝑥𝑐(𝑗𝜔) 

(11) 

 

where 𝑛 is the number of bodies or modules, 𝑀𝑘 is the mass 

matrix of the  body 𝑘, 𝐴𝑘𝑘 and 𝐵𝑘𝑘  are the added mass and 

damping matrix caused by the moment of the  body 𝑘 by itself,  
𝐺 is hydrostatic or restoring force, 𝜉 is the displacement vector, 

𝐴𝑘𝑗 and 𝐵𝑘𝑗  are the added mass and damping matrix of the  body 

𝑘 caused by the movement of body 𝑗. The number of equations 

is the same as the number of bodies. 

 

Identification of Radiation-force model 

A non-parametric fluid memory model can be utilized to 

construct a simulation model based on the Cummin [24] 

equation. This approach required saving a previous step's data to 

solve the convolution integral. The last-mentioned approach can 

be very time consuming and difficult to implement. Therefore, 

in this paper the fluid memory model is solved using linear time-

invariant parametric model. 

 

 𝜇 = ∫ 𝐾(𝑡 − 𝑡′)𝜉̇(𝑡′)𝑑𝑡′̇
𝑡

0

     ≈ 
𝑥̇ = 𝐴̂𝑥 + 𝐵̂ 𝜉̇ 

𝜇̂ = 𝐶̂𝑥 
(12) 

 

where 𝑥  represents the state vector or fluid memory effect and 

𝐴̂, 𝐵̂, and 𝐶̂ are constants. 

 In the frequency domain, Eq (12) can be written as  

 

 𝐾(𝑗𝜔) ≈ 𝐾(𝑗𝜔) = 𝐶̂(𝑗𝜔𝐼 − 𝐴̂)−1𝐵̂ (13) 

 

where 𝐾(s) is a transfer function. A state-space model (Eq. (12)) 

can be obtained by estimating the transfer function via canonical 

realization [28].  

 

2.2. Forward Speed Effect 
Added mass and damping coefficient will influence by the 

forward speed of the SST. SST travel at the 70 m constant water 

depth with the speed of 6 knots in the x-direction, see FIGURE 

5. This problem may alternatively be characterized in the 

seakeeping frame as SST performing wave-induced oscillation 

in a steady flow of velocity U in the negative x-direction.  

Due to the doppler effect, a regular wave is observed with a 

different angular frequency called encounter frequency 𝜔𝑒 in the 

seakeeping frame. The encounter frequency 𝜔𝑒 for the heading 

angle 𝛽 between the wave propagation direction and SST can be 

given as  [26] 

 

 𝜔𝑒 = 𝜔 − 𝑘𝑈𝑐𝑜𝑠(𝛽) (14) 

 

with 𝜔 is incoming wave frequency, 𝑘 is wave number, 𝑈 is 

forward speed, and 𝛽 is heading angle. 

       Forward speed is considered by using encounter frequency. 

The authors considered the wave frequency range from 0.1 to 5 

rad/sec with the step of 0.05 rad/sec. The corresponding wave 

number can be determined using dispersion relationship. Finally, 

using Eq. (14), the encounter frequency can be obtained which 

can be used as an input to a hydrodynamic softwares like 

WADAM.  

In theory, the added mass and damping coefficients for any 

vessel moving at a forward speed can be written in the form [26]: 

 

 𝐴𝑗𝑘 = 𝐴𝑗𝑘
0 + 𝑈𝐴𝑗𝑘

(1)
+ 𝑈2𝐴𝑗𝑘

(2)
 (15) 

 𝐵𝑗𝑘 = 𝐵𝑗𝑘
0 + 𝑈𝐵𝑗𝑘

(1)
+ 𝑈2𝐵𝑗𝑘

(2)
 (16) 

 

2.3. Approach 
Obtaining a suitable mathematical model is very 

challenging for anyone seeking to develop a control system for a 

marine system. For this study, the Marine Hydro add-in provides 

with most widely used hydrodynamic codes. These codes 

calculate the added-mass and damping coefficients, restoring 

coefficients, excitation force and body motion transfer function 

(force-RAOs (response amplitude operator) and motion-RAOs), 

mean-drift force and moment, and so on using the geometrical 

parameters of the vessel and its loading conditions. The data 

structure of the SST is obtained using Marine System Simulator 

(MSS) [28]. The latter offers a smooth interface for the quick 

deployment of marine vessel models in three steps, see FIGURE 

4:  

1) Load the SST data into hydrodynamic software and 

execute it. For this paper, the authors used WADAM.  

2) SST's data structure is obtained in MATLAB using the 

raw hydrodynamic data generated in WADAM.  

3) With the aid of the Hydro add-in Simulink model, time-

domain simulations are obtained for different sea states. 

 

 
FIGURE 4: MARINE HYDRO CAPABILITIES 

 

3. SUBSEA SHUTTLE TANKER PLANAR MODEL 
3.1. Design Parameters 

http://0.0.0.28/
http://0.0.0.28/
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Ma et al. [2] presented the baseline design of the SST. SST 

travels at 70 m below mean sea level at the speed of 6 knots for 

maximum energy efficiency.  

 

TABLE 1 shows the most important design parameters for 

the SST. 

 

 

TABLE 1: DESIGN PARAMETER OF SST 
Parameter Unit Value 

Length m 164 

Beam m 17 

Total mass (m) kg 3.36×107 

Pitch moment of 

inertia (𝐼𝑦𝑦) 
kg∙m2 3.63×109 

Centre of buoyancy 

[𝑥𝑏, 𝑦𝑏, z𝑏] 
m [0, 0, -0.41] 

Aft skeg position (𝑥𝑠) m -70 

Bow skeg position 

(𝑥𝑏) 
m 30 

Skeg area (𝐴s) m 40 

Carbon dioxide 

capacity 
kg 1.7×106 

 

3.2. Seakeeping Model 
3.2.1. Coordinate system 

FIGURE 5 represents the global coordinate system, body-

fixed coordinate system, and seakeeping coordinate system of 

the SST. The global coordinate system (on, xn, yn, zn) or earth 

fixed coordinate system is North, East, and Down and is 

considered inertial. The body-fixed coordinate system (ob, xb, yb, 

zb) is located at the vessel's center of gravity (CoG), and its 

motion is relative to the global coordinate system. The 

seakeeping coordinates system (oh, xh, yh, zh) moves at the same 

speed as the SST following its path. When the SST moves at a 

constant speed (which includes the situation of zero speed), the 

wave-induced motion causes the SST to oscillate with respect to 

the seakeeping frame. It is also considered an inertial frame. The 

center of buoyancy (CoB) of the vessel is located right above the 

CoG.   

 

   
FIGURE 5: THE COORDINATE SYSTEM OF THE SST 

 

3.2.2. Plant model 
The equation of motion of SST can be written as: 

 

Inertia forces           𝑀𝑅𝐵𝜐̇ + 𝑀𝐴𝜐̇ 

(17) 
Damping forces +(𝐷𝑝 + 𝐷𝑣)𝜐𝑟 + 𝜇𝑟 

Restoring forces                 +𝐺𝜂 + 𝑔0 

Wave forces                               = 𝜏𝑤𝑎𝑣𝑒𝑠 

 

where 𝑀𝑅𝐵 is the rigid body mass matrix, 𝑀𝐴 is the added mass 

matrix, 𝐷𝑝 is the linear potential damping, 𝐷𝑣  is the viscous 

damping; 𝐺𝜂 + 𝑔0 is ballast and restoring force; 𝜏𝑤𝑎𝑣𝑒𝑠  is the 

wave excitation forces (consists of Froude–Krylov and 

diffraction force).  

 

3.2.3. Actuator model 
The only actuator system carried on SST is skegs. Brief 

information on the skegs model is given in the following section. 

 

Skegs 

Pitch and depth are controlled by two skegs on the port and 

starboard sides of the SST bow and aft. The lift force produced 

by a skeg is given as: 

 

 𝜏𝑠 = 0.5𝜌𝐶𝐿𝑆𝑠𝑘𝑒𝑔(𝛿𝑠 − 𝜃)𝑢2 (18) 

 

where 𝐶𝐿 = 6.1 rad-1 is the lift coefficient of the skeg, which is, 

𝜌 is the density of seawater, 𝑆𝑠𝑘𝑒𝑔  = 40 m2 and 50 m2 are the aft 

skeg area and bow skeg area, respectively, 𝛿𝑠is skeg angle which 

is fixed to 0 radians, 𝜃 is the angle of attack, and 𝑢 is velocity. 

Bower's airfoil profile [29] is used in the design of the SST.  

 

3.3. Simulink Implementation 

With the aid of the above-mentioned mathematical 

formulation, the 2-D planar multi-body Simulink model is 

prepared for the SST. The empirical data is generated using time-

domain simulation to determine the structural performance and 

response of the SST hull against the bending moment under the 

influence of hydrodynamic forces. It is divided into two blocks: 

• Plant model: The equation of motion of the SST body 

is represented by the plant model by considering added 

mass, damping and body lift force.  

• Actuators: This is the actuator contribution block, 

which includes aft and bow skegs. 

Numerical simulations using Simulink are performed by 

defining the stiffness of the connection in joints, as shown in 

FIGURE 6. Theoretically, the behavior of the SST with infinite 

strength of the connection is identical to that of the single rigid 

body.  
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FIGURE 6: SEVEN BODIES SST SIMULINK DYNAMIC 

MODEL 

 
4. CONTROL SYSTEM DESIGN 
4.1. Proportional-Integral-Derivative Controller 

The open-loop control system of the SST can be transformed 

into a closed-loop control system with the aid of a Proportional-

Integral-Derivative (PID) type controller. Because of its 

popularity among autonomous subsea vehicles and marine 

operation fields, it controls the motion and achieves the desired 

performance for the system under consideration [30]. 

 

FIGURE 7 illustrates the control loop block diagram for the 

SST depth control issue. The error 𝑒(𝑡) between a measured 

value and the reference value is the input to a PID controller. The 

diagram illustrates that the actuator controls the input u from the 

PID controller. Then it is fed into the SST seakeeping block to 

obtain the output y with a correction multiplied by a proportional 

gain (𝐾𝑝), integral gain (𝐾𝑖), and derivative gain (𝐾𝑑). The PID 

controller is described as:  

 

 𝑢(𝑡) = 𝐾𝑝𝑒(𝑡) + 𝐾𝑖 ∫ 𝑒(𝑡)𝑑𝑡 + 𝐾𝑑

𝑑𝑒(𝑡)

𝑑𝑡

𝑡

0

 (19) 

 

where 𝐾𝑃  is the proportional gain; 𝐾𝑖  is the integral gain; 𝐾𝑑  is 

the derivative gain; 𝑒(𝑡) is the error between the measured value 

and reference value.  

 

 
FIGURE 7: CONTROL BLOCK FOR SST 

 

In this paper,  𝑒(𝑡) is the error between the measured heave 

response and the desired value of the SST. The output is the aft 

and bow hydroplane angle which is used to maintain the desired 

position of the SST. The controller gains of individual PID 

controllers in the heave direction, i.e., their corresponding 𝐾𝑝, 𝐾𝑖  

and 𝐾𝑑 values, are used to tune this SST motion control.  

 

5. CASE STUDY 
Several cases with different model fidelity, operating depth, 

and wave parameters are considered to investigate the effect of 

bending moment. 

The wave data are generated using the North Sea hindcast 

data from 2001 to 2010. TABLE 2 shows three closely 

comparable load instances chosen to emulate a highly 

probabilistic operational state faced by the SST. The time-

varying irregular waves are modeled using Joint North Sea Wave 

Project (JONSWAP) with the respective significant wave height 

(𝐻𝑆) and spectral peak period (𝑇𝑃) values as shown in TABLE 2. 

 
TABLE 2: WAVE PARAMETERS FOR SIMULATIONS 

Load cases 𝐻𝑆 (m) 𝑇𝑃 (sec) Simulation 

length (sec) 

LC1 1.9 11.7 3600 

LC2 2.5 12.1 3600 

LC3 3.2 12.7 3600 

 
The continuous SST is divided into three, five, seven, and 

nine bodies to investigate the effect of bending moments due to 

the model fidelity and above load condition in the 180o wave 

direction (head sea).  

The depth definitions of the SST are as follows, see [2]: 

• The safety depth is 40 m. 

• The nominal diving depth is 70 m. 

• The test diving depth is 105 m.  

According to the depth mentioned in earlier definitions, the 

SST's operating depth range is between 40 m (safety depth) and 

70 m (nominal diving depth). For maximum energy efficiency, 

SST travels at the slow speed of 6 knots at the nominal water 

depth of 70 m. 

Based on the above depth definition, model fidelity, and 

load conditions, the different case studies are presented in 

TABLE 3 to investigate the bending moment for the SST hull 

when it is traveling at the constant speed of 6 knots. 
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TABLE 3: CASE STUDIES 
Case study No. of 

body 

Operating 

depth (m) 

Operating 

speed (knots) 

Control 

type 

3-70-6-tu Three 70 6 Tunned 

5-70-6-tu Five 70 6 Tunned 

7-70-6-tu Seven 70 6 Tunned 

9-70-6-tu Nine 70 6 Tunned 

 

The SST hull has a torpedo shape with a hemispherical bow, 

a long cylindrical mid-body section 130.5 m long, and a conical 

aft section 25 m long [2]. Because of the long cylindrical mid-

body section, the geometry is relatively simple. Therefore, in this 

paper, the actual torpedo-shape SST is replicated with the 

simplified cylindrical geometry during the convergence study 

when deciding the minimum required number of bodies.  

 

6. RESULT AND DISCUSSIONS 
6.1. Controller Tunning for the Simplified Shape of SST 

The Matlab transfer function-based PID tuner app is used in 

this paper as a tuning tool. Astrom et al. [31] highlighted the 

basic tuning principle for the selected controller. For the tuning, 

the PID tuner applies a system model linearized at an operational 

point. The tuner will automatically calculate the necessary 

controller gains and map out the system impulse response by 

adjusting the frequency domain's bandwidth and phase margin 

settings. TABLE 4 represents the most optimal PID controller 

gain for three, five, seven and nine bodies, respectively.  

 

TABLE 4: MOST OPTIMAL PID CONTROLLER GAINS 
Gains Three 

bodies 

Five bodies Seven bodies Nine bodies 

𝐾𝑝 -4.62 -3.44 -6.14 -5.92 

𝐾𝑖 -1.5104 -1.4104 -1.5104 -1.4104 

𝐾𝑑 -97.63 -115.17 -200.57 -137.98 

 

6.2. Convergence Study for the Simplified Multi-Body 
Structure 

A full-fledged convergence study is performed to ensure the 

use of the optimal number of model fidelity for performing 

bending moment analysis to achieve reliable results. n set of 

wave excitation and radiation forces are exerted on the center of 

each module. The motion of each module can be obtained by 

solving Eq. (11). The number of decomposed bodies influences 

the accuracy of the calculated results. Theoretically, The 

dynamic response and bending moment accuracy increase by 

increasing the number of bodies.   

To validate the convergence of different model fidelity, the 

bending moment results are compared for the three, five, seven, 

and nine bodies SST model in regular wave conditions at the 

nominal diving depth of 70 m, see FIGURE 8. The PID 

controller is tuned to its optimal gains, see TABLE 4. In all 

calculations, the wave amplitude and wave period are set to 1 m 

and 10 secs. 

The simulation time for three, five, seven and nine bodies is 

almost the same, which makes the chosen methodology fast and 

reliable. However, it should be noted that the formation of input 

data structure for radiation force for Simulink for the higher 

number of bodies may require some MATLAB coding for quick 

deployment. 

 

 
FIGURE 8: BENDING MOMENT DISTRIBUTION OF THE 

MULTI-BODY SST  

 

A comparison of the time series of the vertical displacement 

response and pitch response at the above-mentioned wave 

conditions and water depths is presented in FIGURE 9. The PID 

controller is tuned to its optimal gains. It is observed that the 

response amplitude in the heave and pitch direction is quite close 

to each other for different bodies. It is also noted that the pitch 

response has several small oscillations with different 

frequencies. These small peaks or irregularities can be because 

of small frequency oscillations in joint connections in MATLAB 

Simulink.  
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FIGURE 9: HEAVE AND PITCH RESPONSE OF MULTI-

BODY SST 

 

The bending moment response at three different time 

instances (i.e., at 520 secs, 525 secs, and 530 secs) are presented 

for five, seven, and nine-bodies SST models, see FIGURE 10. 

The wave amplitude is 1 m, the wave period is 10 sec, and the 

water depth is 70 m.   

 

 
(a) 

 
(b) 

 

 
(c) 

FIGURE 10: BENDING MOMENT RESPONSE AT (a) 520, 

(b) 525 AND (c) 530 SECS 

 

As shown in FIGURE 10, the bending moment responses at 

the three different time instances agree well with the seven and 

nine-bodies model but not the five-bodies model. This can be 

because five bodies might not have sufficient points to capture 

all the encounter frequencies experienced by the SST. 

Lu et al. [7] also showed and verified the accuracy of the 

proposed multi-body approach by comparing several test cases 

with the experimental results and found that the results shows 

quite a good agreement with each other. Therefore, the authors 

used seven bodies to present further results of the actual torpedo-

shaped SST hull. It is obvious that to obtain more accurate 

results, the continuous SST should be divided into more 
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modules. However, wave-induced bending moment analysis 

does not require a large number of modules.     

 

6.3. Controller Tunning for the Torpedo-shaped SST 
The most optimal PID controller gains for the actual 

torpedo-shape seven bodies SST are presented in  

TABLE 5. 

 

TABLE 5: MOST OPTIMAL PID GAINS FOR TORPEDO-

SHAPE SEVEN BODIES SST  

Gains Seven bodies 

KP -0.404 

KI -0.0006820 

KD -59.418 

 

6.4. Time-Domain Responses and Power Spectral 
Density (PSDs) 

The time-domain response and PSD distribution of the 

bending for the torpedo-shape seven bodies SST at different 

longitudinal locations are presented in FIGURE 11 & FIGURE 

12, respectively. All the simulation studies are performed at 70 

m water depth. 

  

 
FIGURE 11: TIME SERIES PLOT (LC1 LOAD CASE) 

 

The generalized time series response of bending moment at 

the different longitudinal locations is illustrated in FIGURE 11 

for the LC1 load case. The static part of the bending moments 

responses is much smaller than the dynamic part, which is 

significant. This is because the bending moment effects on the 

SST hull are dominated by the pitch excitation moments that are 

characterized by large oscillations but small mean values. The 

statistical summary, including the mean value and standard 

deviation (STD) value, for bending moment of different load 

cases is presented in TABLE 6. The bending moment at x/L = 0 

and x/L = 1 is zero, as both ends of all multi-body SST structures 

are free.  

 

TABLE 6: STATISTICAL SUMMARY FOR BENDING 

MOMENT FOR LC1, LC2 AND LC3 LOAD CASE 
x/L Mean 

value 

(LC1) 

(kNm) 

Mean 

value 

(LC2) 

(kNm) 

Mean 

value 

(LC3) 

(kNm) 

STD 

value 

(LC1) 

(MNm) 

STD 

value 

(LC2) 

(MNm) 

STD 

value 

(LC3) 

(MNm) 

0.14 42.1 116.6 184.1 5.35 7.76 11.46 

0.28 72.2 132.3 254.5 7.12 10.18 13.7 

0.42 64.3 143.8 231.8 8.18 11.91 16.11 

0.57 47.8 164.9 187.3 7.96 11.70 15.79 

0.71 28.6 164.1 128.5 6.77 9.88 13.25 

0.85 14.7 72.5 81.0 4.10 5.90 7.8 

 

 

 
 

 
FIGURE 12: POWER SPECTRAL DENSITY  

The PSDs distribution reveals the dynamic characteristics of 

the multi-body SST. The multi-body SST hull is mainly 

subjected to hydrodynamic forces and moments; therefore, the 

dominant excitation is from waves. For the dynamic bending 

moment response of the multi-body SST hull, the responses are 

mainly caused by low-frequency waves. Furthermore, a solid 

understanding of dynamic behavior is necessary to evaluate the 

extreme or design bending moment value and improve the design 

and analysis of the flexible hull of the SST. 

 

6.5. Water Depth Effect 
Furthermore, the wave effect is attenuated with water depth. 

According to the depth definition in Section 6, the operating 

depth range for the SST is between 40 m (safety depth) and 70 
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m (nominal diving depth). To better understand the wave effect 

on the SST hull, bending moment analysis at the 40 m water 

depth for the LC1 load case is performed. The statistical results 

are compared with those from 70 m water depth, as in TABLE 7. 

The mean bending moment at 40 m water depth is approximately 

40% higher than at 70 m water depth. At both depths, there is not 

much variation in the standard deviation. 

 

TABLE 7: STATISTICAL COMPARISON FOR BENDING 

MOMENT AT 40 M AND 70 M WATER DEPTH 

Longitudinal 

distance 

Mean 

value-

40m 

depth 

(kN.m) 

Mean 

value-

70m 

depth 

(kN.m) 

STD 

value-

40m 

depth 

(MN.m) 

STD 

value-

70m 

depth 

(MN.m) 

x/L = 0.14 58.41 42.1 6.09 5.35 

x/L = 0.28 111.23 72.2 8.39 7.12 

x/L = 0.42 117.37 64.3 8.21 8.18 

x/L = 0.57 70.76 47.8 7.25 7.96 

x/L = 0.71 28.03 28.6 6.84 6.77 

x/L = 0.85 25.29 14.7 5.00 4.10 

 
7. CONCLUSION 

This paper proposed a reliable and efficient multi-body 

approach to investigate the bending moment response of the SST 

using the time-domain discrete-module-beam-bending based 

hydro-elastic technique.  

First, a planar seakeeping model of the SST is developed 

based on a multi-body concept to study the bending moment 

response under the effect of waves. The total external forces, 

including radiation force, hydrostatic restoring force, and wave 

excitation force exerted on the CoG of each module, are 

calculated using multi-body hydrodynamic theory. A full-

fledged convergence study has been carried out for three, five, 

seven, and nine bodies SST by defining the stiffness in the 

connection joints. The results show that the number of 

decomposed bodies influences the accuracy of the calculated 

results. The dynamic response and bending moment accuracy 

increase by increasing the number of bodies. The lower number 

of bodies (i.e., three and five) can provide good response in 

heave and pitch direction but may underestimate the bending 

moment response at a given time. This can be because three and 

five bodies SST may not have sufficient points to capture all the 

wave encounter frequencies, thereby giving the less accurate 

response.  

It is important to note that this study's focus was on the 

multi-body concept rather than the way of subsequent bending 

moment assessment. However, a solid understanding of dynamic 

behavior is necessary to evaluate the extreme or design bending 

moment values and improve the design and analysis of the 

flexible hull of the SST. 

Furthermore, the following research studies have been 

identified and planned by the authors: 

• Extreme or design bending moment analysis of multi-

body SST using state-of-the-art ¨Average Conditional 

Exceedance Rate (ACER) method¨. 

• Efficient fatigue assessment of the SST hull. 
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Abstract 

Buckling loads of thin-walled cylindrical shells subjected to axial force vary substantially because 

of their extreme sensitivity to various imperfections. This paper proposes a probabilistic analysis 

approach to predict the lower-bound buckling loads for axially loaded cylindrical shells. First, 

Fourier series expansion is used to describe measured imperfection signatures. Next, the Monte 

Carlo simulation approach generates stochastic realizations of the imperfection. The finite element 

analysis determines the eigenvalue buckling for each realization of the surface imperfection. Last, 

the eigenvalue buckling loads with imperfection are fitted using state-of-the-art Gumbel 

distribution and the Average Conditional Exceedance Rate (ACER) function to predict the lower 

bound buckling capacity at the desired exceedance probability. The design methodology shows 

the evolution of design techniques for imperfection-sensitive shells from the early 1980s, and the 

results are validated with experimental data. The confidence interval obtained using the ACER 

method is higher than the Gumbel fitting method, meaning ACER will overpredict the buckling 

capacity.  The results show that the lower-bound capacities of the chosen cylindrical shells are 

slightly higher than the experimental results and compared with widely used design-by-rules 

criteria like NASA SP-8007, ASME BPVC VIII-2 and DNV.  
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1. Introduction 

 

Reducing structural weight is a key design driver for developing future-generation submarines and 

aerospace vehicles which are economically feasible. Reducing the wall thickness would be an 

obvious choice for the designers to reduce manufacturing and operational expenditure costs for the 

cylindrical shell case. 

Thin-walled cylindrical structures are used in various engineering applications, including offshore, 

marine and pipeline structures, civil engineering, and aeronautical vehicles. The failure due to 

buckling is the critical failure factor since these structures are typically subjected to significant 

axial compression loads [1-5]. Due to this axial compression loading, there is a large deformation 

on the surface of the shell. This deformation is perpendicular to the loading direction. The buckling 

phenomenon is followed by considerably reducing the shell's load-bearing capacity [4].  

The maximum buckling load-bearing capacity 𝑁𝑝𝑒𝑟 of the thin-walled cylindrical shells subjected 

to the axial compression load is given by Eq. (1) [6] 

 

 𝑁𝑝𝑒𝑟 =
2𝜋𝐸𝑡2

√3(1 − 𝜐2)
 (1) 

 

where 𝐸 is the modulus of elasticity, 𝑡 is the wall thickness, and 𝜐 is the Poisson's coefficient. 

From the Eq. (1) it should be noted that the buckling load-bearing capacity is independent of the 

length 𝐿 and radius 𝑅 of the cylindrical shell.   

When considering plastic buckling, the maximum theoretical buckling load-bearing capacity 

(squash load) is linked to the yield strength 𝑌 and can be calculated using Eq. (2) [6] 

 

 𝑁𝑠𝑞𝑢𝑎𝑠ℎ = 2𝜋𝐸𝑅𝑡𝑌 (2) 

 



 

 

The buckling capacity of the cylindrical shells reduces greatly without thick walls and/or stiffeners 

structure. The load-carrying capacity of the cylindrical shell is susceptible to various 

imperfections. Around the beginning of the 20th century, an extensive amount of experiments were 

carried out on cylindrical shells to understand Buckling under axial compression. Based on the 

outcomes of the experiments, the Lower Bound Design Philosophy has provided shell designers 

with a valuable tool for effective shell design [7]. When calculating the load-carrying capacities 

of a thin-walled cylindrical shell structure, lower bound design philosophy becomes the highly 

conservative deterministic technique [8, 9]. The uncertainties are compensated by employing an 

empirical knockdown factor (KDF). The experimental lower-bound buckling capacity is 

determined by multiplying KDF with a perfect shell buckling load [7]. In the 1960s, NASA SP-

8007 [10] offered a practical design guideline to provide recommended lower-bound KDFs for 

cylindrical shells, as indicated in Eq. (3).  

 

 𝜆𝑒𝑥𝑝 =
𝑁𝑒𝑥𝑝

𝑁𝑝𝑒𝑟
= 1 − 0.902 × (1 − 𝑒−

√𝑅/𝑡
16 ) (3) 

 

Fig. 1 illustrates the plot of the knockdown factor versus the radius-to-thickness ratio (R/t) obtained 

from a large number of experiments [7]. 

 



 

 

 

Fig. 1. Test data for isotropic shells subjected to axial compression [7] 

 

Fig. 1 shows a considerable difference between buckling theory and related experimental evidence 

conducted at different places at different times. The KDFs are mostly between a range of 0.4 and 

0.1 and, in a few cases, below the SP-8007 lower bound curve. Welds, material failure, plasticity, 

land failure, and poor boundary support all adequately impact the experimental results [11]. 

Despite great improvements in shell manufacturing and testing technique, the experimental result 

produced on cylindrical shell is 30% below the theoretical prediction [7]. Shape variations from 

the ideal cylindrical geometry termed geometric imperfections are a major cause of the huge 

disparity between buckling theory and experiment [12, 13]. The geometric imperfection was 

originally represented using buckling eigenmode expansion, and the resulting amplitudes were 

treated as a random variable [14].   

Several numerical approaches have been developed to forecast lower-bound buckling loads due to 

imperfections properly. Schmidt and Winterstetter [15] categorized numerical modelling of 

imperfect shell structures into three approaches: "realistic," "worst," and "stimulating" 

imperfections. Huhne et al. [16] proposed one of the popular method called Single Perturbation 

Load Approach (SPLA) to predict the lower-bound buckling load due to imperfection. The dimple 



 

 

produced by SPLA is regarded as a "worst" and "stimulating" imperfection, intensifying the pop-

in of the initial defect [16-18]. Various limitations of the SPLA method have been discovered as 

the research continues. Wagner [9] found that the latter approach does not always provide a 

conservative KDF for a isotropic metallic cylindrical shell with a axisymmetric or ring buckling 

pattern in the pre-buckling stage. Hao et al. [19] discovered that the SPLA cannot encapsulate the 

influence of full-field real defect just by considering single dimple-shape imperfection. 

Additionally, compared to SPLA, the Multiple Perturbation Load Approach (MPLA) suggested 

by Arbelo et al. [20] is an improved and promising method for forecasting lower-bound limits. In 

MPLA, many perturbation loads are introduced into cylinders instead of a single perturbation load 

and the effect is determined by considering three factors: the number of perturbation loads, their 

amplitude and their location. Mahidan and Ifayefunmi [21] studied the imperfection sensitivity of 

axially compressed conical shells by introducing multiple imperfections, such as single and 

multiple load indentation, eigenmode imperfection, uneven axial length imperfection and crack 

imperfection.  

Arbocz [22] presented a more realistic technique for the cylindrical shell that uses an actual 

measured geometric imperfection. A double Fourier series in the latter approach characterizes the 

geometric defects, and Fourier coefficients are the random variables of the probabilistic analysis. 

Double Fourier Series, as demonstrated by Arbocz and Abramovich [23], are ideally adapted to 

express genuine geometric defects. According to Arbocz [24], the KDFs estimated using real 

geometric faults correlates well with experimental data. The circumferential phase shift 

representation [17], the spectral representation [25] and the multimode approach [26] are 

alternative methodologies for the actual geometric representation.  

Various probabilistic methods are used to investigate the effect of traditional and non-traditional 

imperfections [27-30]. Bolotin [31] introduced probabilistic methods to study shell buckling 

because the imperfection can be represented as random due to its shape and amplitude. The random 

nature of geometric imperfection is amenable to specific probabilistic distributions, and the 

probability of buckling can be quantified using probabilistic approaches [32]. Broggi and Schueller 

[33] and Broggi et al. [34] thoroughly discuss the probabilistic analysis of composite shells with 

geometric imperfections. The Probabilistic Pertubation Load Approach (PPLA) is proposed by 

Meurer et al. [18], which is completely independent of expensive geometric imperfection 



 

 

measures. The latter approach constructs the traditional defects by using random imperfections. 

To describe traditional stochastic imperfection, evolutionary power spectra were used in 

combination with the spectral representation approach [25]. Schillo et al. [28] generated several 

initial geometric imperfections and calculated the associated buckling load using the Monte Carlo 

simulation method. Elishakoff et al. [35] proposed the semi-analytical first-order second moment 

(FOSM) when they discovered that the Monto Carlo simulation method could be time-consuming. 

Kreigesmann et al. [36] combined the Mahalanobis transformation with FOSM to reduce the 

computation time further up to a great extent. Arbocz and Hilburger [37] proposed an alternative 

probabilistic approach where only two imperfection modes represent geometric imperfection, and 

the associated amplitudes are characterized as the mean root square of the geometric imperfection 

signature. The geometric imperfection is not the only cause of reduction of buckling load [38], but 

also the irregular shell thickness [39] and deviation of the ideal loading positioning [40, 41]. 

Due to the advancement of technology, the effect of actual measured geometric imperfection on 

the buckling capacity of the cylindrical shell can be investigated extremely accurately [42, 43]. 

First, the structure must be built to study the effect of measured geometric imperfection. Later, the 

imperfections are quantified using optical measurement techniques [44], making the process time-

consuming and expensive.  

 

Lower-bound approaches should give the threshold for the buckling load equivalent to the buckling 

load capacity due to imperfections [45, 46]. Compared to probabilistic approaches, lower-bound 

methods eliminate the requirement for stochastic analysis, measurement and storage of 

imperfection data from several tests, saving time and money throughout the design process. 

In addition to these model-based techniques, the regression analysis capacity of the artificial neural 

network (ANN) is used to predict the lower-bound buckling load capacity by utilizing supervised 

learning algorithms [47-49]. Waszczyszyn et al. [50] predict the buckling load capacity of the 

cylindrical shell under axial compression using the ANN approach. Furthermore, Zhang et al. [51] 

established Back-Propagation Neural Network (BPNN) to present measured imperfection patterns. 

In addition to summarizing recent advancements in shell buckling analysis, this paper aims to 

propose a design example to determine the lower bound buckling capacity at the desired failure 



 

 

probability value for isotropic cylindrical shells under axial compression load. The methodology 

used in this study leverages the Fourier series, where the Fourier coefficients are the stochastic 

variables gathered from the test data, to characterize the imperfect surfaces. The eigenvalue 

buckling for each cylindrical shell is computed using finite element analysis by generating random 

realizations of the geometric imperfections. Monte Carlo simulation generates random realizations 

of the imperfection using the data obtained from measurements. The buckling loads with 

imperfection are fitted using state-of-the-art Gumbel distribution and Average Conditional 

Exceedance Rate (ACER) function to predict the extreme values, i.e., the lower bound buckling 

capacity at the desired exceedance probability. The performance of the Gumbel distribution and 

ACER method is compared to predict the lower bound buckling value at the desired failure 

probability. The performance of the proposed approach is compared with NASA SP-8007 and 

other design-by-rule methods. Lastly, the conclusions and future work from this paper are 

presented. 

 

2. Methodology 

  

The use of a probabilistic-based technique in this paper has the benefit of dealing with problems 

involving traditional imperfection variables up to a great extent. As a result, the prediction for the 

lower bound buckling value at the desired probability of exceedance can be fully addressed. Fig. 

2 is a schematic representation of the proposed approach, and the step-by-step guidance for 

applying the numerical procedure to obtain the lower bound value is given below 

1. First, the imperfection Fourier coefficient is determined. This is done with the help of the 

actual measured data from the imperfection data bank. 

2. Generation of the geometric imperfection for each cylindrical shell using the Fourier series. 

Then the random realization of surface imperfection are created using Monte Carlo 

simulation. 

3. The finite element (FE) models of the cylindrical shells are generated for each surface 

imperfection set through the Monte Carlo simulation method.    



 

 

4. Based on the imperfect shells, the FE mesh is generated, and the FE model is solved for 

eigenvalue buckling load in accordance with the applied loads and boundary conditions.  

5. The procedure is repeated several times to obtain several eigenvalue buckling capacities 

for newly generated surface imperfection. 

6. The values are fitted to a Gumbel distribution and ACER function. The associated lower-

bound buckling load capacity is determined based on the failure probability chosen, and 

the performance of the Gumbel and ACER method is compared. 

The following sections will describe these steps in great detail. 

 

 

Fig. 2. Schematic overview of the probabilistic lower-bound design approach 

 

 

 

 



 

 

3. Fourier series 

 

The surface imperfections used in this paper are generated based on the TU Delft experimental 

testing campaign. The test results are summarized in the imperfection data bank [23]. This section 

will primarily describe measured geometric imperfection using the Fourier series. The documents 

by Dancy [52] are recommended for more information on the testing and test evolution of the 

buckling experiments [53].  

The Fourier coefficients 𝐴𝑘𝑙, 𝐵𝑘𝑙, 𝐶𝑘𝑙 and 𝐷𝑘𝑙 of the half-wave cosine and sine methodology 

associated with the measured geometric imperfection are given in the imperfection data bank [23]. 

The authors decided to use the Fourier coefficient of the A shell and saved them along with the 

corresponding Matlab script to generate the surface plots of the imperfections.  

The half-wave cosine and sine methodology is represented by Eq. (4) and Eq. (5). The latter Eqs 

are used to define the imperfect surface 𝑊(𝑥, 𝑦) of the cylindrical shells. 

   

 𝑊(𝑥, 𝑦) = 𝑡∑∑𝑐𝑜𝑠⁡ (𝑘𝜋
𝑥

𝐿
) (𝐴𝑘𝑙𝑐𝑜𝑠 (

𝑙𝑦

𝑅
) + 𝐵𝑘𝑙𝑠𝑖𝑛 (

𝑙𝑦

𝑅
))

𝑛2

𝑙=0

𝑛1

𝑘=0

 (4) 

 

 𝑊(𝑥, 𝑦) = 𝑡∑∑sin⁡ (𝑘𝜋
𝑥

𝐿
) (𝐶𝑘𝑙𝑐𝑜𝑠 (

𝑙𝑦

𝑅
) + 𝐷𝑘𝑙𝑠𝑖𝑛 (

𝑙𝑦

𝑅
))

𝑛2

𝑙=0

𝑛1

𝑘=0

 (5) 

 

where 𝐿 is the length of the cylinder, 𝑅 is the radius of the cylinder, 𝑡 is the wall thickness, 𝑙, 𝑘 are 

the wave numbers, and 𝑥, 𝑦 are the coordinates. The maximum number of waves included in the 

series is represented by 𝑛1 and 𝑛2.  

Fig. 3 illustrates the imperfection signature of the A-7 and A-12 shell and the numerical 

imperfection surface is compared with the one in the imperfection data bank [23]. The numerical 

results is very similar to the plots in the imperfection data bank. The imperfection signature given 

as a square sum (see, Eq. (6)) can be analyzed by plotting Fourier coefficients against the number 

of the axial and circumferential wave numbers 𝑙 and 𝑘, see Fig. 4. Lower order modes dominate 



 

 

the initial imperfection of the A-7 and B-1 shells as shown in Fig. 4. That is, as the circumferential 

wave number 𝑙 increases, the amplitude of the Fourier coefficients based on the experimentally 

measured initial imperfection decay.    

 

 𝜉 = √𝐴𝑘𝑙
2 + 𝐵𝑘𝑙

2  (6) 

 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 3. Surface imperfection signature: A-7 shell - Simulated using Fourier series (a) and 

Imperfection data bank by Arbocz [23] (b);  B-1 shell – Simulated using Fourier series (c) and 

Imperfection data bank by Arbocz [23] (d) 

 



 

 

  

Fig. 4. Fourier coefficients against the number of the axial and circumferential wave numbers l 

and k for A-7 shell (left) and B-1 shell (right) 

               

Initially, the coefficients are defined using an imperfection data bank [23], and then numerous 

stochastic realizations are determined using Monte Carlo simulation. This, in turn, produce many 

random realizations of the cylindrical shell structures.  

 

4. Finite element (FE) modelling 

 

However, introducing randomly generated geometric imperfection into each finite element (FE) 

model required a great computation time and effort to assess the lower-bound buckling capacity. 

Therefore, the authors have decided to use ANSYS Mechanical APDL 2020 R1 for the FE analysis 

since it allows batch processing by reading the '.inp file' input files and gives the results as '.csv' 

files. Matlab is used to read the output files for further post-processing. 

 



 

 

 

Fig. 5. Loading and boundary conditions on a different shell used in this paper 

 

In this paper, two sets of material properties are used for the shell, see Table 1. Fig. 5 illustrates 

the boundary condition for the A-shell simulation. The bottom end is simply supported, i.e. 

translation moment of the nodes 𝑢𝑥 = 𝑢𝑦 = 𝑢𝑧 = 0, while the rotational moments are set to be 

free. The top nodes are allowed to move in an axial direction, whereas the translation displacement 

𝑢𝑥 and 𝑢𝑦 are fixed, i.e. 𝑢𝑥 = 𝑢𝑦 = 0. This ensures that the top edge remains straight during the 

collapse process. The boundary conditions used are the same as those used by Teng and Rotter [7], 

allowing the authors to compare the results. A total unit force is applied on the top nodes of the 

shell structure. Therefore, the compression force on each node can be calculated as follows: 

 

 𝑝𝐴 =
1

𝑛𝑡𝑜𝑝
 (7) 

 

where 𝑝𝐴 is the axial compression load on each node at the top and 𝑛𝑡𝑜𝑝 is total number of nodes 

at the top of the shell. 

 



 

 

Table 1. Material properties of the cylindrical shells used in this study 

Material properties A-7 shell B-1 shell 

Young's modulus 𝐸 [GPa] 104.11 106.5 

Poisson ratio 𝜈 0.3 0.3 

                

A mesh size sensitivity study determines the best trade-off between result accuracy and 

computational cost. The results show that the 1-2 mm mesh size is adequate for the A-7 and B-1 

shells. Fig. 6 illustrates the mesh size sensitivity study for the A-7 shell as a function of the lower-

bound buckling load. 

 

 

Fig. 6.  Sensitivity study on mesh size on A-7 shell 

 



 

 

5. Extreme value prediction 

 

The extreme value is defined as the largest/smallest of the maximum/minimum value from the 

individual maximum/minimum values (i.e. the maximum/minimum from a series of discrete 

maxima/minima). The following equation presents the distribution of the smallest among n of a 

variable [54]: 

 

 𝑌𝑒𝑥𝑡 = 𝑚𝑖𝑛(𝑌𝑚𝑖𝑛1, 𝑌𝑚𝑖𝑛2, 𝑌𝑚𝑖𝑛3. . . . . . . . . . , 𝑌𝑚𝑖𝑛⁡𝑛) (8) 

 

where 𝑌𝑒𝑥𝑡 is the smallest minimum value and 𝑌𝑚𝑖𝑛⁡𝑖 is the individual minimum value. It is assumed 

that the individual minimum value 𝑌𝑚𝑖𝑛⁡𝑖 are independent and identically distributed with 

cumulative distribution function (CDF) 𝐹𝑌𝑒𝑥𝑡(𝑦) [54] 

 

 𝐹𝑒𝑥𝑡 = 𝑃𝑟𝑜𝑏(𝑌𝑒𝑥𝑡 ≥ 𝑌) = 1 − [1 − 𝐹𝑌⁡𝑚𝑖𝑛(𝑦)]
𝑛 (9) 

 

Different methods are used to predict the extreme values at the desired exceedance probability. 

The state-of-the-art Gumbel fitting and Average Conditional Exceedance Rate (ACER) methods 

are the most well-proven. These methods have been successfully used to predict the marine and 

offshore structure's load effect analysis under the excitation of wind and wave loads. The authors 

want to utilize the two approaches mentioned above to predict the lower-bound buckling capacity 

at the desired failure probability. 

      

5.1.Gumbel fitting method 

 

Gumbel distribution is the most common type of extreme value distribution, also known as type I 

extreme value distribution.  

The lower-bound buckling load capacity values obtained from various FE analyses are fitted to the 

extreme Gumbel distribution to determine the minimum lower-bound capacity for a given 

cylindrical shell at the desired exceedance probability. The generalized extreme value distribution 



 

 

is represented by Eq. (10). It is the basis for evolving into various types of extreme value 

distributions.  

 

 𝐹𝑥(𝑥) = 𝑒𝑥𝑝{−(1 + 𝛾 (
𝑥 − 𝜇

𝜎
))

−1
𝛾

} (10) 

 

where 𝛾 is the shape parameter, 𝜇 is the location parameter (shows the measure of location), 𝜎 is 

the scale parameter. When 𝛾 tends to 0, the distribution approximately fits the Gumbel distribution 

[55].  

 

 𝐹𝑥(𝑥) = 𝑒𝑥𝑝 {−𝑒𝑥𝑝 {− (
𝑥 − 𝜇

𝜎
)}} (11) 

 

Eq. (11) can be written in logarithmic terms as given below: 

 

 −ln (−𝑙𝑛(𝐹𝑥(𝑥))) =
𝑥

𝜎
−
𝜇

𝜎
 (12) 

 

The Matlab inbuilt curve fitting tool is used to determine the location and scale parameter from 

the cumulative distribution probability (CDF) of the lower-bound buckling load data., i.e., a 

straight-line fitted by the original data on a probability paper.         

 

5.2.Average Conditional Exceedance Rate (ACER) method 

 

The Average Conditional Exceedance Rate (ACER) method, introduced by Naess and Gaidai [56], 

estimates the extreme value distribution by generating a sequence of non-parametric functions. 

The methodology applies to both stationary and non-stationary processes since it includes all 

global maxima peaks and the correlation between subsequent peaks in a sample series. Peak 

extraction is dependent on the type of data available. If the data comes from the narrow-banded 



 

 

process, the peak data is extracted first, and only those data are used to analyze the conditional 

rates. On the other hand, if the data is already considered as the peak data (i.e., related to this work) 

or broad-band process, then extracting the peak is less significant.  

Let {𝑋𝑗: 𝑗 = 1, 2, … . . , 𝑁} be the realization of the lower-bound buckling values obtained through 

the Monte-Carlo simulation. 𝑛 is the number of peak loads or the number of points contained in 

the data. This number is required when the target level is defined. The distribution function for the 

extreme values of the data can be written as  

 

 𝑀𝑁 = 𝑚𝑖𝑛(𝑋1, 𝑋2, 𝑋3… . . , 𝑋𝑁) (13) 

 

The extreme value distribution function or probability of occurrence (CDF) for the minimum 

values of the response 𝜂 is established; see Eq. (14). It is assumed that 𝑋𝑁 are independent and 

identically distributed with CDF function.   

 

 𝑃(𝜂) = 𝑃𝑟𝑜𝑏(𝑋𝑗 ≥ 𝜂, ⁡⁡⁡𝑋1 ≥ 𝜂, 𝑋2 ≥ 𝜂…… . . 𝑋𝑁 ≥ 𝜂) (14) 

 

The lower-bound buckling value realizations obtained from the FE analysis are not stationary data 

sets. The ACER method is applied to this non-stationary collection of data sets to assess the 

extreme values. The basic idea of this method is that a series of non-parametric functions based on 

ACER functions are established to represent the actual extreme value distribution, as shown in Eq. 

(8). The extreme value distribution using the ACER function can be written as [56] 

 

 𝑃𝑘(𝜂) = 𝑒𝑥𝑝(−(𝑁 − 𝑘 + 1)𝜀𝑘(𝜂)) (15) 

 

where 𝜀𝑘 is the empirical ACER function with the order 𝑘. 



 

 

 𝜀𝑘(𝜂) =
1

𝑁 − 𝑘 + 1
∑𝑎𝑘𝑗(𝜂)

𝑁

𝑗=𝑘

 (16) 

 

The above equation can be assumed as an Ergodic process such that one single realization of the 

stochastic process is representative of the process. For each condition of the recorded value, 

ergodicity is used to estimate the short-term expected values by utilizing values of 𝑎𝑘𝑗(𝜂) 

functions. Empirical probability distribution of 𝑚 = 1,…… . ,𝑀 is an alternative method of 

depicting the long-term extreme value distribution in Eq. (15) at the given surface imperfection 

having probabilities 𝑝𝑚, such that ∑ 𝑝𝑚 = 1𝑀
𝑚=1 . This is followed by introducing the long-term 

ACER function of order 𝑘:  

 

 𝐴𝐶𝐸𝑅𝑘(𝜂) ≡ ∑ 𝜀𝑘(𝜂,𝑚)𝑝𝑚

𝑀

𝑚=1

 (17) 

 

where 𝜀𝑘(𝜂,𝑚) is the same function as in Eq. (15), but it is limited to a specific realization with 

the number 𝑚. According to the long-term ACER function of order 𝑘, long-term extreme value 

distribution can be expressed as shown in [57-60] 

 𝑝(𝜂) ≈ 𝑒𝑥𝑝(−𝑁 ∙ 𝐴𝐶𝐸𝑅𝑘(𝜂)) (18) 

 

where 𝐴𝐶𝐸𝑅𝑘 is the long-term empirical ACER functions of order 𝑘, with 𝑘⁡"𝑁; 𝑁 is the total 

number of data points used to estimate the ACER functions. Eq. (18) starts to become accurate as 

the order 𝑘 of the ACER function increases [57-60]. The possibility of a data clustering effect can 

be noticed when we continue increasing the 𝑘 level. Thus, the ACER method provides several 

advantages: 1) It improves the accuracy of extreme prediction associated with long return periods, 

and 2) it avoids the over-conservative design values in results.  

An extrapolation approach is utilized to predict the extreme value distribution when 𝜂 is very large. 

The tail of the ACER function is assumed as 𝑒𝑥𝑝{−(𝑎𝜂 + 𝑏)𝑐 + 𝑑}  



 

 

 𝜀 ≈ 𝑞 × 𝑒𝑥𝑝(−𝑎(𝑥 − 𝑏)𝑐) (19) 

 

where 𝑎, 𝑏, 𝑐, and 𝑑 are the constants that depend on the order 𝑘, and 𝑞 fluctuates slowly in the 

tail area compared to the exponential function in Eq. (19). Therefore, it can be substituted by a 

suitable constant. The Levenberg Marquardt Least square technique can be used to calculate the 

constants 𝑎, 𝑏, 𝑐, and 𝑑. The ACER method, as demonstrated by Naess and Moan [59]  and Chai 

et al. [61] gives quite accurate prediction for extreme values while saving substantial computing 

effort.        

 

6. Case study 

 

Table 2 lists all the cases that are investigated in this paper. The case study is based on Doup's A-

7 and B-1 shell experiments. The goal of looking at Doup's A-7 and B-1 shells is to give a reference 

point for the probabilistic approach provided in this study. The main objective of this study is to 

compare the performance and efficiency of the suggested approach against the NASA SP-8007 

and other design-by-rule methods utilized for sizing these pressure vessels. In this paper, the 

authors assumed that the cylinders are produced using a single seam weld at the 0∘ and 360∘ 

location. Furthermore, this may not be feasible for massive pressure vessels like submarines or 

space rockets, requiring more than one seam weld fabrication. The authors did not consider 

modelling multiple seam welds in this paper because the main objective of this research is to 

emphasize the efficiency of the suggested technique in decreasing safety factors. The authors will 

conduct future investigations with multiple seam welds to produce a more precise and realistic 

outcome for large-pressure vessels like submarines.   

 

 

   

 



 

 

Table 2. Geometry data for the cylindrical shells 

CASE 

NO. 

GEOMETRY 

TYPE 

DIMENSIONS LOADING NO. OF 

REALIZATIONS D (m) L (m) t (m) 

1 A-7 shell 0.2032 0.2032 1.14E-4 Axial force 200 

2 B-1 shell 0.2032 0.1968 2.05E-4 Axial force 200 

    

7. Results and discussions 

 

The results and discussion corresponding to the abovementioned cases are presented in sub-

sections 7.1 and 7.2. 

  

7.1.Numerical results 

 

Fig. 3 illustrates the original realization of the surface imperfection for the A-7 and B-1 shells. Fig. 

7 represents the associated eigenvalue buckling shape for the imperfect surface. The surface 

imperfections discussed in this study are in the order of the wall thickness, i.e., the surface can 

deviate about +/- 2 and 1 for A-7 and B-1 shells, respectively. On-site measurements can be used 

to calibrate the actual surface variation. Clearly, a greater variance in the imperfection will result 

in a lower computed eigenvalue buckling load. The eigenvalue buckling shape (see Fig. 7) lacks 

any well-defined deformation pattern. This means that the shape seems to be relatively localized. 

However, the eigenvalue buckling shapes will differ greatly from those observed for the perfect or 

ideal surface geometries. The eigenvalue buckling load of a perfect thin-wall cylinder is low for 

the first mode, which also represents global collapse mode. Furthermore, a significant factor of 

safety is associated with the calculated eigenvalue buckling for the perfect geometrical shells.  

However, due to imperfections, this paper considers the first eigenvalue buckling shape as a local 

mode for the chosen shells. One advantage the proposed approach provides is that it tends to have 

a more significant eigenvalue buckling load. Therefore, the lower-bound buckling value can be 

predicted effectively with a lower safety factor since the actual imperfection is considered. The 

next section presents the lower bound buckling capacity at the desired exceedance probability to 

lower the safety factor further.   



 

 

  

Fig. 7. Eigenvalue buckling shape associated with the surface imperfection (Fig. 3) for A-7 shell 

(left) and B-1 shell (right). 

 

 

7.2.Gumbel fitting method vs ACER method 

 

Fig. 8. illustrated the lower-bound buckling load capacities obtained using 200 different surface 

imperfections for the A-7 shell and B-1 shell fitted to a Gumbel distribution. The measured data 

shows an upward-curving trend which indicates the Gumbel distribution was not a good fit for 

random surface representation for A-7 and B-1 shells; the 𝑅2 values are 0.9347 and 0.9195, 

respectively.  

 



 

 

 

(a) 



 

 

 

(b) 

Fig. 8. Gumbel fitting for the A-7 shell (a) and B-1 shell (b) and the lower-bound buckling value 

(red dot) at the desired exceedance probability of 10-6 

                    

The performance of the Gumbel fitting is tested by selecting another empirical fitting approach, 

such as the ACER method, see Fig. 9. It can be seen that the lower-bound value does not differ 

much as compared to the Gumbel fitting for the A-7 shell, but there is a significant difference for 

B-1 shell. To the author's surprise, the 95 % confidence interval obtained from the ACER method 

is wider than the 95 % confidence interval obtained from the Gumbel fitting method. The large 

interval size of ACER indicates that the lower-bound buckling value obtained through ACER is 

less accurate than the Gumbel distribution for the A-7 and B-1 shells. This means that ACER will 

overpredict the lower-bound buckling load. Future studies should look at selecting a more 

appropriate distribution. 

 



 

 

 

(a) 

 

(b) 



 

 

Fig. 9. ACER fitting for the A-7 shell (a) and B-1 shell (b) and the lower-bound buckling value 

(red dot) at the desired exceedance probability of 10-6 

 

7.3.Lower-bound buckling capacities 

 

The lower-bound buckling capacities are estimated using the Gumbel fitting and ACER methods 

at an exceedance probability of 10-6. The numerical results are compared to Arbocz [23] and other 

designs by rule methods like ASME BPVC VIII-2 and DNV, see Table 3. 

  

Table 3. Lower-bound buckling capacities using probabilistic method, Arbocz and other design 

by rules method. 

Shells Gumbel 

fitting 

method 

ACER 

method 

Arbocz [23] ASME 

BPVC VIII-

2 

DNV 

A-7 shell 3467.22 N 3623.14 N 3036.4 N 1062.1 N 975.92 N 

B-1 shell 11689.42 N 13262.94 N 11326.0 N 4162.4 N 4098.0 N 
 

The lower-bound buckling capacities for the A-7 shell calculated using the Gumbel fitting and 

ACER methods are 14.2% and 19.32% higher than the experimental value presented by Arbocz 

[23]. For the B-1 shell, the values for same are 3.20% and 17.10% higher than the experimental 

buckling load capacity [23]. Despite showing an upward curing trend, the Gumbel fitting approach 

provides better results than ACER. The difference in the experimental and numerical results can 

be due to the FE analysis conducted in more ideal conditions. But for experimental the boundary 

conditions and ambient conditions are not very ideal. The similar difference in experimental and 

numerical results is noticed in the work performed by Wagner et al. [30]. The proposed 

methodology demonstrates robustness in all analyzed scenarios while providing buckling design 

loads capacity exceeding the Arbocz [23], NASA SP-8007 and design-by-rules methods by 

reducing uncertainties, see Fig. 10 . It is observed that utilizing the current approach results in less 

conservative and more economical design loads than the design-by-rules methods. The significant 

increase in the buckling load capacity can be attributed to the use of a smaller, more specific sample 

set that better represents the local population. This leads to a more optimized lower-bound curve. 



 

 

 

Fig. 10. Comparison of knockdown factor using different methods 

 

8. Conclusion 

 

This article proposes a probabilistic approach to predict the lower-bound buckling loads of thin 

wall cylinders subjected to axially compression loads. A probabilistic analysis with wall thickness 

surface imperfection was demonstrated using the Fourier series. The Fourier coefficients are the 

stochastic variables gathered from the imperfection data bank to characterize many realizations of 

the imperfect surfaces. This random realization of the imperfect surface is done using Monte Carlo 

Simulation. The eigenvalue buckling load for each imperfect cylindrical shell realization is 

computed using finite element analyses. The buckling loads with imperfection are fitted using 

state-of-the-art Gumbel distribution and Average Conditional Exceedance Rate (ACER) function 

to predict the extreme values, i.e., the lower bound buckling capacity at the desired exceedance 

probability. The following main conclusion is made from this article: 



 

 

1) Gumbel fitting shows an upward trend indicating it was not an ideal fit for random surface 

representation for A-7 and B-1 shells. The 95 % confidence interval obtained from the 

ACER method is wider than the 95 % confidence interval obtained from the Gumbel fitting 

method indicating ACER is less accurate than the Gumbel distribution for the A-7 and B-

1 shells. This means that ACER will overpredict the lower-bound buckling load.  

2) The lower-bound buckling capacities for the A-7 shell calculated using the Gumbel fitting 

and ACER methods are 14.2% and 19.32% higher than the experimental value presented 

by Arbocz [23]. For the B-1 shell, the values for same are 3.20% and 17.10% higher than 

the experimental buckling load capacity [23]. The proposed methodology delivers always 

higher KDFs than the experimental value, NASA SP-8007, ASME BPVC VIII-2 and DNV.  

Hence, it can be regards as an improved method for predicting lower-bound buckling load 

capacity.   

However, the Gumbel and ACER fitting methods do not accurately and precisely fit the values. 

Future studies should look at selecting a more appropriate distribution.  
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