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Abstract 

This thesis explores the performance of machine learning (ML) methods for predicting 

facies from seismic attributes for 2D and 3D datasets. It focuses on building, training, and testing 

four supervised methods: Logistic Regression, Support Vector Machines, K-Nearest Neighbors, 

and Random Forest; and one deep learning method: Neural Network with two hidden layers. A 

realistic synthetic facies model with complex depositional systems, and a synthetic seismic cube 

from the facies model are used for the comparison of facies prediction performed by the ML 

approach with the ground-truth facies distribution. This comparison makes it possible to validate 

the ML models’ prediction based on wells and seismic. In addition, the research evaluates the role 

of the number of wells and their locations, the impact of seismic data frequency, and the effect of 

using various seismic attributes. The most important features for facies prediction are seismic 

inversion and relative acoustic impedance. Instantaneous frequency and envelope have little effect 

on the accuracy of the ML prediction. Incorporating information about the lateral geometry of the 

facies in the reservoir also improves the accuracy of the ML prediction. 
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1. Introduction, Objectives, and Thesis Structure 

1.1 Introduction 

Facies classification is the process of assigning a specific rock type to a particular rock 

sample based on the measured features [1]. These features include fossil content, mineralogical 

composition, sedimentary structures, and texture description [2]. Knowledge about the facies 

distribution in a reservoir is critical in reservoir characterization, exploration, and reservoir 

simulation because it can indicate petrophysical characteristics, porosity distribution, and 

consequently, permeability values [3].  The most reliable and direct source of information about 

facies in the reservoir is core samples from wells. However, core extraction is expensive and cores 

not always and not everywhere can be obtained. Moreover, a conventional approach to assigning 

facies manually from core samples is time-consuming [1]. For this reason, alternative ways for 

predicting facies from indirect sources that can reduce costs without sacrificing the quality of facies 

classification are necessary. 

Three-dimensional seismic data is one of the most valuable sources of information about 

subsurface structure. Specific seismic attributes derived from seismic data highlight specific 

information hidden in the seismic data that can help to identify depositional environments (or 

facies distribution). For this reason, seismic attributes, which have been developed since the 1990s, 

are currently widely integrated into many facies analyses. There are many seismic attributes now 

available for various purposes, from prospect identification to detection and characterization of 

faults [4]. In this thesis, seismic attributes such as relative acoustic impedance, instantaneous 

frequency, and envelope, together with seismic inversion, which can potentially highlight facies 

distributions in the reservoir, are utilized for facies classification. However, the large size of the 

data requires the implementation of automatic methods that can handle facies classification and 

are faster than the current manual interpretation methods. 

The development of artificial intelligence (AI) and its application to a variety of problems over 

the last decades demonstrate the effectiveness of this method in tasks that include large amount of 

data. Machine Learning (ML) and Deep Learning (DL), as parts of AI, have aroused the interest 

of many geologists because of their ability to solve geological problems with large data in a 



 

relatively short amount of time. This thesis investigates the ability of the ML and DL methods for 

facies prediction from seismic attributes.  

A complete validation of the machine learning approach for facies prediction without a ground 

truth facies distribution in the reservoir is impossible. For this reason, a realistic synthetic facies 

cube, from which we precisely know the facies distribution, is utilized to evaluate the effectiveness 

of the ML approach. In addition, the use of the synthetic seismic cube can help to evaluate the role 

of seismic data derived from different frequencies, various wells’ locations and their number, and 

the impact of noise. The synthetic model involves realistic depositional environments, normal 

faults, and folds. Most of the work, including the ML, is done by using Python, and seismic 

attributes extraction from seismic data is performed in Petrel.  

 

1.2 Objectives 

The main purpose of this study is to evaluate the performance of ML for facies prediction 

from seismic attributes.  

The specific goals to be covered in this thesis are: 

- Building, training, and testing four supervised and one unsupervised ML methods on 

seismic attributes for facies classification. 

- Evaluating the impact of the number of wells and their location on facies prediction. 

- Evaluating and comparing the performance of the ML models for facies prediction when 

using seismic attributes derived from different frequencies. 

- Estimating the role of seismic data contaminated with spectral noise. 

- Evaluating the role of additional features, such as the facies lateral geometry, for ML facies 

prediction. 

 

 

1.3 Thesis structure 

This thesis contains 9 chapters. Chapter 1 describes the dataset. Chapter 2 explains the 

theoretical background of the above-mentioned ML methods: Logistic Regression (LR), K-

Nearest Neighbors (KNN), Support Vector Machines (SVM), Random Forest (RF), and Neural 

Networks (NN). Chapter 3 includes information about the software tools and Python libraries used 



 

for the analysis. Chapters 4 and 5 describe the workflow which is divided in two main parts. 

Chapter 6 presents the results of the facies prediction. Finally, the discussion, future work, and 

conclusions are presented in Chapters 7, 8 and 9 respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

2. Dataset description 

 

This chapter describes the dataset used in this thesis, which comprises a realistic facies 

model and, derived from it, seismic cubes and seismic attributes. All these data were provided by 

SLB. A detailed description of the dataset, including depositional environment, geological 

structure, and a short description of the facies and seismic cubes generation, are presented in the 

following sections. 

 

2.1 3D facies cube and its sections 

The synthetic facies cube provided for this study covers an area of 39.5 km2. The vertical 

range of the cube is presented in two-way travel time (TWT) and ranges from -2000 ms to -2700 

ms (Figure 1). To simplify the study, we assume that the time and depth domain are equivalent. 

The Z axis is either two-way travel time or depth in meters. Therefore, a constant VP velocity of 

2000m/s is assumed. 

 

   

Figure 1. 3D facies cube. Axes are in meters  

 

The facies cube includes several types of depositional environments, such as meandering-

deltaic and shoreline systems. The upper part of the reservoir consists of meandering-deltaic 



 

deposits with a series of interbedded fine and medium-grained sandstones (FS, S), shales (Sh), and 

thin layers of coarse sandstones (CS). The sediments of the meandering channels and delta are 

unconformable and erosive (Figure 2).   

 

  

Figure 2. Depth slice through the facies model showing channel deposits. Axes are in meters. 

The black line S-S’ is a navigation of the section in Figure 4. The black line A-A’ is a navigation 

of the section in Figure 5. 

 

The lower part of the reservoir is a shoreline depositional environment that is represented 

by thick and conformable layers of coarse, medium, and fine-grained sandstone and shale (Figure 

3). The base of the lower part of the reservoir consists of interbedded thin layers of carbonates, 

shales, and sandstones.  

 



 

  

Figure 3. Depth slice through the facies model showing shoreline deposits. Axes are in meters. 

 

Figure 4 shows an E-W cross-section S-S’ through the facies cube, including the above-

mentioned deposits and the separation of the lower and upper zones of the reservoir. 

 

    

Figure 4. Cross-section S-S’ through the facies model. A black line divides the reservoir into two 

zones: the upper zone and the lower zone. The navigation of the section is shown in Fig. 2. Axes 

are in meters. 

 

 



 

The area underwent extension which resulted in the formation of three normal faults. Two 

of these faults have a NW direction, and one fault is oblique to them with a NE direction. The 

faults divide the area into three segments. The faults are post-depositional, meaning that the 

extension took place after the deposition of the sediments. The vertical section A-A’ shown in 

Figure 5 is offset entirely by the largest NW normal fault which caused upward displacement of 

the footwall on the SW side and downward displacement of the hanging wall on the NE side.  

 

 

Figure 5. Cross-section A-A’ through the facies cube and across a NW-SE normal fault. Axes 

are in meters. The navigation of the section is shown in Fig. 2 as the red line A-A’. 

 

2.2 The description of the dataset generation and seismic attributes 

As mentioned earlier, the three-dimensional facies model, the seismic cube, and the seismic 

attributes were provided by SLB for this study. A short description of the facies and seismic cubes 

generation is given below.   

First, the facies model is stored in a 3D grid which was populated stochastically with sonic, 

density, and porosity properties whose values were generated using geostatistical tools. The range 

of values for each property and for each facies were taken from the literature. From the simulated 

sonic and density properties, the acoustic impedance was calculated. The synthetic facies model, 

as well as the impedance cube, are regarded as ground-truth facies and acoustic impedance. Thus, 



 

we can compare and verify the predicted values from the ML methods with the ground-truth values 

of the synthetic model.  

When it comes to the seismic cube, the process started with the acoustic impedance 

property, which was converted into a 3D SEGY cube. Then, the 3D seismic cube was derived from 

the acoustic impedance 3D cube using a Ricker wavelet with a frequency of 25 Hz. Moreover, in 

this research, I explored the role of various seismic frequency ranges on ML facies prediction 

performance. To do this, Ormsby wavelets with a set of different frequency ranges 10-60 Hz, 10-

80 Hz, and 10-100 Hz, were used for the modeling of additional seismic cubes (Figure 6). 

 

 

Figure 6. Time-section through the seismic cube. This is the lower part of the reservoir along 

section S-S´ in Figure 2. 

 

However, seismic data give primary information about the subsurface structure rather than 

revealing facies distribution in reservoirs. Based on amplitudes, seismic datasets are used for 

mapping subsurface stratigraphic and structural features. In contrast, seismic attributes obtained 

from seismic data can help identify characteristics of prospects such as depositional environments, 

sequence boundaries and unconformities.  

There are multiple seismic attributes available, and they can be divided into two groups: 

geometrical and physical attributes [4, 5]. The geometrical attributes, for example, variance and 

edge evidence, can be utilized for the interpretation of the seismic data and the mapping of features 

such as sequence boundaries, discontinuities, and faults. Physical seismic attributes, such as 



 

spectral decomposition, root mean square amplitude (RMS), and instantaneous phase, are aimed 

at highlighting the hydrocarbon present in the reservoir and identifying coarse-grained facies [4, 

6].   

Facies delineation can be obtained from physical attributes. One of the physical properties 

is the relative acoustic impedance (Rel AI) which is calculated by integration of the seismic trace. 

This seismic attribute is typically used for the indication of sequence boundaries, lithology, and 

hydrocarbons. Extraction of the relative acoustic impedance from seismic is a computationally 

inexpensive and straightforward process, unlike the building of seismic inversion. Low values of 

relative acoustic impedance can be associated with sandy intervals, while high values are related 

to shales and sequence boundaries [5]. A time section through the relative acoustic impedance 

cube is shown in Figure 7.  

Other seismic attributes used for facies classification are envelope and instantaneous 

frequency. Sweetness is aimed at highlighting coarse-grained sand intervals. This attribute is 

defined as the ratio of the trace envelope and the square root of the average frequency. According 

to [7], the envelope is a powerful attribute for detecting channel deposits. Instantaneous frequency 

is defined as the time rate of the instantaneous phase change and is usually used for detecting thin 

facies 

 

  

Figure 7. Time section through the relative acoustic impedance cube. This is the lower part of the 

reservoir along section S-S´ in Figure 2. 



 

Seismic inversion is aimed at extracting the acoustic impedance from seismic data. 

However, this process is not straightforward and non-linear, thus making the inversion 

computationally expensive. If computed properly, seismic inversion is a robust technique for facies 

identification. A time section through the seismic inversion is illustrated in Figure 8. 

 

 

Figure 8. Time section through the seismic inversion cube. This is the lower part of the reservoir 

along section S-S´ in Figure 2. 

Finally, seismic data contaminated with noise can have a negative impact on facies 

prediction. To evaluate the role of noise, the seismic data with spectral noise was provided for the 

analysis (Figure 9). 

 

 

Figure 9. Time section through the seismic cube with spectral noise. This is the lower part of the 

reservoir along section S-S´ in Figure 2. 



 

  

The description of how these data were used for training ML models, their verification, 

and facies prediction is presented in Chapter 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

3 Machine Learning Theoretical Background 

3.1 Supervised ML methods (binary, multi-class, regression) 

Supervised machine learning is the learning paradigm (algorithm) that processes the 

training dataset consisting of the observed data (or input data) and the dependent variable (or 

output data) for every record [8]. The learning procedure uses these data and builds a model that 

identifies the underlying relationship between the observed data and the dependent variable. 

Trying to minimize the difference between input and output in the training dataset, the model 

optimizes its parameters. Finally, the model with the upgraded parameters predicts the output data 

with some degree of uncertainty for any newly observed data [9].  

The dependent variable can be represented as a continuous numerical or categorical value. 

A supervised machine learning algorithm uses regression or classification techniques, respectively. 

Categorical means that there is a certain number of outputs (or discrete variables). Classification 

means that the variables are classified into one of two (binary classification) or more (multi-class 

classification) classes. An example of binary classification can be spam detection when the model 

can tell us whether an email is a spam or not. A good example of a multi-class task is identifying 

the facies distribution based on well logs. Classifiers create a boundary that divides the region into 

areas equal to the number of classes. The boundary line represents the equal probability between 

classes. For binary case classification, there is only one boundary line (Figure 10a). An example 

of multi-class classification is shown in Figure 10b, where each boundary classifier distinguishes 

a single class from the remaining data. 

In contrast, a regression technique predicts the output having a continuous nature (Figure 

10c). This method tries to approximate the function f for an input data x that generates the output 

value y minimizing the error between the model and the data. A good example is predicting plane 

ticket prices based on the season and destination. 

 



 

 

Figure 10. Supervised ML types of problems: (a) Binary classification model where each 

combination of x1 and x2 gives the yellow or blue target value. (b) Multi-class classification 

model where every combination of x1 and x2 gives yellow, blue, or green classes. (c) Regression 

model where the regression line predicts the target value y from input values x1 (modified from 

[10]). 

Facies prediction from seismic attributes is a multi-class classification problem because we 

are dealing with five facies classes: coarse sand (CS), sand (S), fine sand (FS), shale (Sh), and 

carbonate (C).  

 

There are multiple methods used for multi-classification problems: Classification trees, 

Random Forests, K nearest-neighbor, Logistic Regression, Support vector machine, etc [11]. The 

decision of which ML algorithm to choose depends on several factors. First, as discussed earlier, 

if the classification is based on known classes, the analysis should utilize supervised ML 

algorithms. Secondly, the size of the training dataset, its quality, and whether the data is structured 

or unstructured provides insight into which methods can give more reliable results. Poor-quality, 

inadequate and unprocessed data will lead to poor training of supervised methods. Thirdly, the 

number of features used for training can directly affect the outcome. Once the number of features 

is finalized and approved, the choice of machine learning techniques should start from the simplest 

models, such as Linear Regression or Logistic Regression, which take less time for training but 

also are less flexible. Complex models, in contrast, will take more time to learn, however, they can 

be a good investment for the accuracy of the output. The final choice of ML algorithms depends 

on finding a balance between simplicity and flexibility, in other words, between bias and variance. 

The definition and importance of these two parameters is discussed in section 3.3.2.  

 

 



 

3.1.1 Logistic Regression 

The name ‘regression’ in a Logistic Regression model can be misleading because, under 

the term regression, it is assumed that the dependent variable is continuous in nature.  Logistic 

Regression is a statistical classification model that is used to predict categorical or binary variables. 

The term Logistic refers to ‘log odds’, the modeled probability ratio. The model is similar to a 

linear regression model; however, it estimates the probability of the occurring event [12]. Thus, 

the dependent predicted variable is bounded between 0 and 1. To accomplish this, Logistic 

Regression uses a sigmoidal function. Mathematically, the sigmoidal function can be expressed as 

[12] 

 

𝑓(𝑥) =  
1

1+ 𝑒−𝑥                                                                 (1) 

 

where e (or epsilon) is a base of the natural logarithms or ‘Euler’s number’.  

This formula can be rewritten to express the probability of the outcome Y given the knowledge of 

the dependent variable X using the logistic function [11].  

 

𝑃(𝑌|𝑋) =  
𝑒𝛽0+ 𝛽1𝑥

1+ 𝑒𝛽0+ 𝛽1𝑥                                                          (2) 

 

where β0 and β1 are coefficients that are used to fit a regression line in a ln-ln space.  

Rewriting and transforming formula (2) as the inverse of the logistic function, which is called logit, 

allows determining the coefficients β0 and β1 [11]. 

 

𝑙𝑜𝑔𝑖𝑡(𝑃(𝑌|𝑋)) = ln (
𝑃(𝑌|𝑋)

1−𝑃(𝑌|𝑋)
) =  𝛽0 +  𝛽1𝑋                                     (3) 

 

The logistic curve is non-linear (Figure 11), and the used logit transform (Equation 3) gives 

a linear regression, where the probability of success Y for a given X (P(Y|X)) can be calculated 

[11]. As input, the logistic function takes the values (β0 + β1X) and gives the output as the 

probability of Y given X (P(Y|X)). An example of the logistic function between the X interval -4 

to 4 is shown in Figure 11. 

 



 

 

Figure 11. Logistic function for data between -4 and 4. 

 

 

 

3.1.2 Support Vector Machines 

Support Vector Machines (SVM) have become well-known over the past thirty years after 

their introduction by Cortez and Vapnik. Originally, SVM was not introduced for multiclass 

classification. However, further development made it possible to implement this method for more 

than two groups of outcomes [13]. The purpose of the SVM algorithm is to identify the optimal 

line, hyperplane, or plane for 1D, 2D, or 3D space, respectively. This boundary splits a dataset into 

two classes. For an easier understanding of the principles of the SVM algorithm, we will consider 

a binary classification as shown in Figure 12. 

 



 

 

 

Figure 12. In two-dimensions, the hyperplane is a line with the greatest distance to the nearest 

element of each class [9]. 

 

SVM relies on data points from two data classes that are located closer to each other. 

Drawing a line through the closest data point from each side gives two support vectors. Passing a 

classification line that maximizes the distance between the two support vectors and separates 

points on each side reduces the upper limit of the error [14]. This is called a hard maximal margin 

classification, as shown in Figure 13(a). However, there might be a case when it is not possible to 

divide data points completely by a line as shown in Figure 13(b). In this case, SVM introduces 

slack variables that concede inaccuracy in the classification. This is called a soft margin 

classification. Unlike a hard margin classifier, the soft margin approach misclassifies some data 

points close to the boundary while separating most of the data points correctly 

 



 

 

Figure 13. The illustration of a hard (a) and soft (b) margin classifier for a linear SVM [9]. 

 

In addition, the SVM algorithm operates with a kernel method in a situation when data 

points cannot be separated linearly by a hyperplane and when the soft margin classifier 

misclassifies the data. The kernel is an additional use for the SVM that makes it possible to model 

nonlinear and high-dimensional models by adding extra dimensions to nonlinear data, therefore, 

converting them to linear data. The SVM kernel is applied to map a low-dimensional dataset into 

a higher-dimensional space. By introducing additional dimensions, the SVM model achieves better 

scalability and accuracy by classifying nonlinear datasets with sophisticated boundaries [9]. 

Different types of kernels can be utilized, for example, linear, polynomial, and radial. The selection 

of a particular kernel depends on the dataset. This variety in the kernel makes it possible to 

implement the SVM model in different fields, such as chemistry, geology, weather forecasting, 

etc. 

 

 

3.1.2 K-Nearest Neighbor 

K-Nearest Neighbor (KNN) is a non-parametric supervised model used for classification, 

regression, and clustering. The algorithm classifies data points based on their closest neighboring 

instances. New data points are assigned to one of the existing labeled samples that are dominant 

in the locality. The accuracy of the classification can be affected by the number of labeled 

instances. For example, when the new data point is surrounded by equidistant samples that belong 

to two classes, a new instance can be misclassified. In contrast, the classification accuracy 



 

increases if the unknown data point is located close to samples with one class. For this reason, the 

KNN algorithm uses several labeled samples that must be considered during the classification, so-

called, k-nearest neighbors. The one-nearest neighbor is applied when only one labeled data point 

is used for classifying a new sample, while the four-nearest neighbors take into consideration the 

four closest labeled samples (Figure 14). 

 

 

Figure 14. Principle of the k-NN decision rule. The 1-NN rule (a): a new sample is labeled by 

using only one labeled instance. The 4-NN rule (b): a new sample is labeled by using four 

labeled instances [15]. 

 

The distance between new data points and existing labeled samples of a particular class is 

extremely important. KNN operates with an Euclidean distance to find the closest instances. The 

smaller the distance, the higher the likelihood that unknown samples would be classified into the 

same class as its closest known labeled data [15].  

The KNN method is computationally expensive due to the calculation of the Euclidean 

distance between the new and labeled instances. The larger the dataset, the more distances must 

be calculated. 

 

 

3.1.3 Random Forest 

Random Forest (RF), introduced by Leo Breiman, is a decision tree-based ensemble model 

that works well for regression and classification problems [16]. The RF combines the output of 

multiple decision trees to produce a result. A principal decision tree example is shown in Figure 

15. 

 



 

 

Figure 15. Principal structure of Decision Tree (modified from [17]). 

 

Each decision tree takes some random number of bootstrap samples from the training data 

so that the number of features and rows in a sample is less than in the initial dataset.  Some features 

and rows can be used again in another decision tree. Several decision trees are created from 

bootstrap samples, and at each node of every tree, the best split is decided based on the provided 

features. In the final stage, the output produced by every decision tree is aggregated and the result 

is chosen by a majority vote [11]. The schematic structure of the Random Forest algorithm is 

shown in Figure 16. 

 



 

 

Figure 16. Schematic structure of the RF algorithm [18]. 

 

Random Forest is an effective method for classification prediction. Despite the number of 

decision trees used in RF, the model usually does not overfit [19]. The method is fast and performs 

a high-accuracy prediction.  

 

 

3.2 Neural Networks 

Neural Networks (NN), or Artificial Neural Networks (ANN) are a part of machine 

learning and a core of Deep Learning methods. They are highly efficient algorithms for 



 

classification that can learn from training data and increase the model performance over time. This 

technique does not have information about how to solve the problem but can find the best solution, 

unlike the supervised ML. In several areas, such as speech recognition and language processing, 

the ANN proved to surpass other classification approaches. However, it was only possible to 

implement the NN after the introduction of Deep Learning. Initially, the idea of developing 

artificial neural networks was designed to imitate the biological nervous system. The human brain 

is composed of cells called neurons which are connected to other neurons by axons. A synapse 

defines a connectivity strength between neurons. The brain is composed of billions of neurons and 

uses the changing synapse signals to learn new activities. A single neutron can make the simple 

task of receiving and responding to a coming activation signal and transmitting it to another 

receptor neuron [20]. A complex interconnection of neurons allows the system to perform complex 

tasks. 

The same principle underlies the idea of the Artificial Neural Network. It consists of 

computing nodes connected with each other through direct links. The synapse is represented by 

the weights of those links. The main goal of the ANN is to modify weights in a such way that they 

can reproduce the input and output data. To better understand the concept of the ANN, an example 

of a one-layer network is shown in Figure 17.  

 

 

Figure 17. One-layer Neural Network. 

 



 

The first input layer is used for adding inputs from attributes, and every numerical or 

categorical attribute is assigned to each node (n1, n2). Then a specific weight is applied to every 

node (w31, w41, w32, w42) and they are fed into a hidden layer that is comprised of hidden nodes 

(n3, n4). Every hidden node utilizes an activation function that takes a decision of whether a neuron 

will be activated or not, and then produces an activation value that is passed to the next output 

layer. These values are again multiplied by a new set of weights (w53, w54). In the output layer, 

activation values are processed, and the output values are predicted [20].  

If we consider one i node at the n layer, then the activation values a will be [20]: 

 

𝑎𝑖
𝑛 = 𝑓(∑ 𝑤𝑒𝑖𝑔ℎ𝑡𝑖𝑗 

𝑛  ∙ 𝑗 𝑎𝑗
𝑛−1 + 𝑏𝑖𝑎𝑠𝑖

𝑛)                                         (4) 

 

where 𝑎𝑖
𝑛 is the activation function of node i at layer n; 𝑤𝑒𝑖𝑔ℎ𝑡𝑖𝑗 

𝑛  is the weight between nodes j 

and i  in the layers n and n-1, respectively; and 𝑏𝑖𝑎𝑠𝑖
𝑛 is the bias at the node i . 

Different types of activation functions are used in multi-layer NN. An activation value is 

generated in every node and is represented as an activation function calculated from neutrons in 

the previous layer. There are several activation functions, such as sigmoid, linear, and hyperbolic, 

which can be utilized when customizing the NN model. When training the NN for facies 

prediction, I used sigmoid and softmax activation functions for the first and second hidden layer, 

respectively. The reason for using these activation functions is that they are usually implemented 

for multi-class classification, as well as they are relatively simple and reliable.  

The one-layer neural network utilizes one hidden layer in which relatively simple features 

are captured from the input attributes. Including the additional hidden layer in the NN, this makes 

it possible to combine two hidden layers and produce more complex features. This ability of the 

ANN makes it a powerful method for classification prediction compared with other approaches. 

In this thesis, I used a neural network with two hidden layers.  

After the output is calculated, the difference between the input value and the predicted 

value is computed. The sum of square differences between the last two values is defined as a cost 

function. The cost function can be minimized during the training process. If the cost function is 

large, then weights in the NN should be updated by utilizing optimizers. This process is called 

backpropagation. Once weights are updated, the new cost function is calculated. The formula for 

calculating the updated weight is shown below [20].  



 

 

𝑤𝑒𝑖𝑔ℎ𝑡𝑛𝑒𝑤
𝑛 =  𝑤𝑒𝑖𝑔ℎ𝑡𝑜𝑙𝑑

𝑛 −  𝜂
𝜕𝐿

𝜕𝑤𝑒𝑖𝑔ℎ𝑡𝑜𝑙𝑑
𝑛                                  (5) 

 

where 𝑤𝑒𝑖𝑔ℎ𝑡𝑛𝑒𝑤
𝑛  is an updated weight in the layer n; 𝑤𝑒𝑖𝑔ℎ𝑡𝑜𝑙𝑑

𝑛  is a previous weight; η is a 

learning rate; 
𝜕𝐿

𝜕𝑤𝑒𝑖𝑔ℎ𝑡𝑜𝑙𝑑
𝑛  is a derivative of the loss function with respect to the previous weight.  

The one cycle of forward and backpropagation is called epoch. This process is iterative until the 

cost function is minimized.  

 

 

3.3 Optimizing the Machine Learning Model 

 

3.3.1 Hyperparameters and hyperparameter tuning 

In machine learning algorithms, there are two types of variables: model parameters and 

hyperparameters. The model parameters are the parameters that a ML model tunes according to 

the provided training dataset, such as weights in neural networks, while hyperparameters are high-

level parameters of ML techniques that are set before the start of the model training [20] and they 

are not a part of the final model. Hyperparameters are one of the most crucial parts of producing 

effective machine-learning models. It is important to understand how hyperparameters can affect 

a model’s performance before training the model.  

There are several hyperparameter optimization approaches implemented in the scikit-learn 

library: Random Search, Grid Search, Bayesian Optimization, Gradient Descent, etc. The first two 

strategies are the most used for hyperparameter tuning. In this thesis, Random Search and Grid 

Search are applied as hyperparameter optimization techniques.  

Grid Search is a powerful approach to identify the optimal set of hyperparameters for a 

given model. In this case, Grid Search tries all possible combinations of the passed 

hyperparameters. This approach certainly will find the best hyperparameters, however, it requires 

large computational resources and time. Random Search requires less computational time and can 

be utilized for a large dataset. This approach can be more efficient in high-dimensional space when 

the model has a variety of hyperparameters and some of them are more important than others [22]. 



 

In this study, the hyperparameter optimization was applied to the model that showed the best 

classification performance which is Random Forest Classifier. A set of hyperparameters of the RF 

Classifier is shown in Table 1. 

 

Table 1. The main hyperparameters of the Random Forest Classifier model. 

Hyperparameter Description 

n_estimators The number of trees inside the RF Classifier 

max_features The parameter that looks for the number of features to achieve the best 

split 

max_depth The maximum height of the trees inside the model 

min_sample_split The minimum number of samples in the internal node 

min_sample_leaf The minimum number of samples that a node holds after split 

criterion The function that defines the quality of a split 

 

 

N_estimators control the number of trees in the model. The right number of n_estimators 

improves the prediction accuracy of a training dataset, however, it may lead to overfitting and 

increasing the model’s complexity. By default, the parameter n_estimators is equal to 100. The 

parameter max_features sets a limit to the number of features in every tree to predict the target 

variable. By default, the parameter max_features is an ‘sqrt’ which means that the number of 

features used for splitting is equal to a square root of the number of features. The maximum number 

of splits in every tree (max_depth) should be properly chosen to avoid overfitting and underfitting 

(see paragraph 3.3.2). By default, the max_depth is None. The min_sample_split shows the 

minimum number of samples in the internal node. A small number of samples restricts the tree and 

can result in overfitting of the model. The default value is equal to 2. The min_sample_leaf 

represents the minimum number of samples that a node holds after the split and a sufficient number 

of leaves reduces the risk of overfitting. The default number is equal to 1. As explained in Table 

1, the hyperparameter criterion measures the split quality, and the default value used in the thesis 

is ‘gini’ which means the optimum split is based on a gini impurity criteria is calculated as follows 

[9]: 



 

 

𝐺𝑖𝑛𝑖 = 1 −  ∑ 𝑃(𝑖)2𝑗
𝑖=1                                                  (6) 

 

where j is the number of classes, and P is the probability of each data point of class i. 

Since hyperparameter optimization relies on a training dataset and considers multiple 

combinations of it to evaluate the best model’s performance, the process can lead to overfitting. 

Below we explain model overfitting or underfitting.  

 

 

3.3.2 Overfitting and Underfitting 

Overfitting is an essential problem of the supervised machine-learning techniques and takes 

place when the model shows a low error for the training data but has a poor performance for the 

testing dataset. In addition to the reasons mentioned earlier for overfitting, a noisy dataset and 

insufficient training dataset size may cause this problem [23]. The complex nonlinear and 

nonparametric models with large flexibility usually tend to be overfitted. Overfitting is 

characterized by a high variance and low bias (Figure 18). These terms are critical for analyzing 

any model performance.  

Bias is a term describing the difference between the average of the model’s prediction and 

the actual value of the dataset. Variance represents the amount of variation in the model prediction 

for different training datasets. 

Underfitting takes place when the model is oversimplified and unable to represent the 

relationship between the attributes and targets. Underfitting is the opposite of overfitting. 

Underfitting leads to a high error during the training and testing process, and it usually takes place 

in a small dataset. Collecting additional data, using more complex models, and choosing proper 

features can tackle the problem. Underfitting is associated with low variance and high bias and is 

shown in Figure 18 [24].  

 



 

 

Figure 18. Examples of overfitting (a), underfitting (b), and a good balance between the data and 

model (c). Blue points represent training data, and the red line is the model [24] 

 

It is essential to achieve a correct balance between variance and bias because an increase 

in variance results in a decrease in bias and vice versa. The model that has low bias and low 

variance produces more accurate predictions and, consequently, reduces the total error. The bias 

and variance trade-off are shown in Figure 19 [25].  

 

 

 

Figure 19. Bias and variance trade-off for the case of underfitting and overfitting (modified after 

[25]) 

 

The total error is the sum of variance and bias and can be expressed as: 

 

𝑇𝑜𝑡𝑎𝑙 𝑒𝑟𝑟𝑜𝑟 = 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 + 𝐵𝑖𝑎𝑠2 + 𝐼𝑟𝑟𝑒𝑑𝑢𝑐𝑖𝑏𝑙𝑒 𝐸𝑟𝑟𝑜𝑟                  (7) 



 

 

where the Irreducible Error is the error that represents the noise of the dataset.  

 

 

3.3.3 Cross-validation 

Cross-validation is a popular method for evaluating ML models and testing their 

performance. The algorithm is based on randomly partitioning the dataset into a K number of 

equally sized subsets, training a model on a K-1 number of subsets, and testing it on the remaining 

subset. Cross-validation is an iterative method and repeats the workflow for the rest of the dataset. 

For a better understanding, we will use a dataset that is split into three samples (S1, S2, S3). During 

the first iteration, samples S2 and S3 are used to train a model, and sample S1 is utilized for testing. 

The model error E1 is calculated for the first sprint. Similarly, the model is trained for samples S1 

and S3, tested for the S2 subset, and E2 error is computed. Ultimately, samples S1, S2, and S3 are 

used for training and testing. The value of the overall error is the average of the three obtained 

errors E1, E2, and E3. This example is called three-fold cross-validation (Figure 20). 

 

 

Figure 20. Three-folded cross-validation [20]. 

 

It is essential to choose a proper number of folds in cross-validation because a small value 

can lead to increasing bias and generalization error. On the other side, a high number of K-folds 

may result in decreasing bias but increasing variance. In general, the number of K-folds varies 

between three and ten and depends on the size of the dataset. In this thesis, cross-validation is used 

when tuning hyperparameters for the Random Search and Grid Search models. However, because 



 

the training of the ML models is done by using three to seven wells comprising approximately 2-

5% of all data, the use of cross-validation on training and validation can be misleading and increase 

bias. For this reason, the models’ performance is evaluated by comparing the f1-scores of the 

testing set. An explanation of the F1-score and other performance evaluation parameters is 

provided below. 

 

 

3.4 Evaluation performance for classification 

The evaluation method is crucial in estimating the classification performance of a model 

when executing training and testing. In classification, the performance is presented as a 

comparison between the predicted class and true class. The summary of the comparison is a matrix 

called a confusion matrix or contingency table [26]. This matrix shows which classes are 

misclassified by a model.  

The concept of the confusion matrix is the same for binary and multi-class problems. To 

better understand this matrix, we will consider a binary classification with a positive P class and a 

negative N class. The trained model takes unknown samples to predict one of the two actual 

classes. The illustration of the confusion matrix is shown in Figure 21.  

 

 

Figure 21. A confusion matrix for binary classification [26]. 

 

This contingency table is utilized to calculate the main classification metrics. Accuracy is 

one of the most common parameters for the evaluation of classification performance, and it is the 

fraction of correctly classified samples and the total number of samples.  



 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                                    (8) 

 

where TP is the number of properly identified positive class samples, TN is the number of correctly 

classified negative samples; FP and FN are the numbers of incorrectly classified positive and 

negative samples, respectively.  

Precision is the ratio between the number of correctly classified positive values to the total 

number of samples classified as positive.   

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                    (9) 

 

The recall is a parameter that is measured as a proportion of instances classified as positive 

and a sum of true and false negative samples (the total number of positive samples).  

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                    (10) 

 

F1-score is the harmonic mean between the recall and precision values.  

 

𝐹1 𝑠𝑐𝑜𝑟𝑒 =  
2(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙𝑅𝑒𝑐𝑎𝑙𝑙)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+ 𝑅𝑒𝑐𝑎𝑙𝑙
                                                         (11) 

 

Some of the above-mentioned metrics are vulnerable if the dataset is imbalanced which 

means that instances of some classes exceed the number of other classes. If the dataset is 

imbalanced, accuracy is not the correct metric for classification performance. Using the accuracy 

metric for this case can lead to a misleading interpretation of the prediction. In this case, it is 

recommended to use weighted parameters, such as F1-score, which give to the less presented facies 

higher weight. In this thesis, the F1-score is used for evaluating the ML models “accuracy”. 

 

 



 

3.4 Software Tools and Libraries 

In this section, an overview of software tools, their libraries, and modules is described. It 

is important to use stable and compatible packages to avoid any possible conflicts and errors while 

running code.  

All calculations in this thesis are done in the operating system Windows 10. Visual Studio Code 

(VS Code) made by Microsoft is used as a code editor and can be utilized with many programming 

languages. VS Code is a very popular tool for running, coding, and debugging. It is also an open-

source and free project for students, and regular stable updates make it possible to utilize this tool 

with the latest version of programming languages, such as Python. In this study, the VS Code 1.78 

version is used.  

Python is a powerful open-source programming language. Being based on object-oriented 

paradigm concepts, the language offers many different libraries and modules that are extremely 

popular among data scientists. The reason for Python’s popularity is the simplicity of coding and 

easily understandable syntax. In this thesis, Python, with a stable version of 3.9.7, is used. The 

Python tool can import a large variety of data science-related libraries that can help to perform ML 

applications and tasks. These libraries are Pandas, Matplotlib, NumPy, Scikit Learn, TensorFlow, 

etc. An overview of the libraries is shown in Table 2. 

 

Table 2. An overview of libraries used in Python and their versions. 

Library Version 

Matplotlib 3.4.3 

NumPy 1.22.4 

Scikit Learn 0.24.2 

TensorFlow 2.12.0 

Pandas 1.3.4 

Plotly 5.5.0 

Seaborn 0.11.2 

 

NumPy or Numerical Python is a library that aims to work with array objects and operates 

with many mathematical functions. In this thesis, NumPy is used to perform calculations on one-

dimensional and two-dimensional arrays. For visualization of these arrays, I used several libraries 



 

such as Matplolib, Plotly, and Seaborn. In addition to arrays, the DataFrame and Series structures 

were used in this thesis. Series is a one-dimensional array with homogeneous data, while 

DataFrame is a two-dimensional structure with heterogeneous data. The DataFrame and Pandas 

are like the table and Excel program, respectively.  

Scikit Learn is a Data Science and Machine Learning library containing different 

algorithms for regression, classification, and clustering, among others. This library has many tools 

for optimizing and improving supervised ML models. TensorFlow is used for the Deep Learning 

and Neural Networks methods in this thesis [27].  

In addition to the above mentioned libraries, I used several specific tools for loading and 

handling SEG-Y files that store geophysical data (seismic and its attributes). These libraries are 

developed by Equinor (Table 3).  

 

Table 3. An overview of the specific Python libraries for SEG-Y data and their versions. 

Library Version 

Segyio 1.9.10 

Segysak 0.3.4 

 

 

3.5 Standardization 

Some machine learning methods are sensitive to the feature scale, and this can affect the models’ 

performance if, for example, the models are distance-based such as KNN and SVM, where the 

classification is performed by measuring the distances between new and labeled instances. As a 

result, some features with larger scales can dominate over others [28].  By bringing all features to 

a similar scale, it is possible to assure all features contribute to the facies classification equally. 

There are different techniques for feature scaling, and in this study, the method called 

standardization is used. Standardization is a feature scaling approach that transforms data in such 

a way that their distribution has mean and standard deviation equal to zero and one, respectively. 

Equation 12 shows how to scale feature values by standardization. 

 

𝑋
𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑= 

𝑋− 𝜇

𝜎

                                                                (12) 



 

where Xstandard is the standardized value of X from the feature dataset, µ is the mean of the feature 

dataset, and σ is the standard deviation of the feature dataset.  

As discussed in Chapter 5 ‘Data Analysis’, features such as Seismic, Seismic Inversion, 

Relative Acoustic Impedance, Instantaneous Frequency, Envelope, and Geological Time, have a 

different scale and can affect the ML model performance. For this reason, the standardization was 

applied to all features used in this thesis.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

4 Methodology  

This chapter describes the methodology, which comprises three parts. The first part gives 

information about dataset preparation. The second part describes the workflow of what type of 

analysis was performed for the given dataset. Finally, the third part describes the machine learning 

workflow implemented for the prepared data.  

 

 

4.1 Dataset preparation and analysis workflow 

The composite subsurface geometry of a reservoir, together with the presence of various 

deposits, makes the facies prediction more challenging. For this reason, several 2D vertical 

sections and one 3D cube with various reservoir geometries are used for facies classification. I 

started with a facies section that is divided into the lower and upper zones, and these zones were 

analyzed separately. This is because, in the lower zone, facies are homogeneous and consistent 

laterally, while in the upper zone, facies are thin and inconsistent. In addition, I used a section that 

contains a normal fault that divides the reservoir into two parts. Moreover, to test the ML benefits 

and challenges, I used a three-dimensional cube also containing a normal fault. The navigation of 

the two sections and the 3D cube are shown in Figure 22. 

 



 

 

Figure 22. Depth slice through the Facies cube with the navigation of the sections and the 3D 

cube used in this analysis. The black line S-S’ is the navigation of the section with the lower and 

upper zones. The blue line A-A’ is a navigation of the section with the normal fault. The red 

square ABCD is a navigation of the 3D sub-cube used for the NN analysis. 

 

In total, there are four cases considered in this study: Cases 1 and 2 are the lower and upper 

reservoir zones in section S-S’, respectively. Case 3 is the lower reservoir zone in section A-A’. 

Case 4 is the lower reservoir zone in the facies sub-cube. Cases 1 to 4 are shown in Figure 23.  

 



 

 

Figure 23. Four cases considered in this study. Case 1 is section S-S’ with the lower reservoir 

zone. Case 2 is section S-S’ with the upper reservoir zone. Case 3 is section A-A’ with the lower 

reservoir zone offset by a normal fault. Case 4 is the lower reservoir zone in the facies sub-cube. 

 

The use of different composite geometries helps to understand whether machine-learning 

methods trained on a few wells can predict facies classification accurately on a 2D or 3D dataset.  

The facies classification prediction is based on seismic data, its attributes and seismic 

inversion. The analysis starts with the application of ML to the 2D sections, namely for the lower 

and upper zones. I started with the following data: seismic, relative acoustic impedance, and 

seismic inversion. These data were used as features and the facies as labels. 

In order to apply the ML models for facies classification, I extracted from each case several 

traces which were further utilized as synthetic well-logs. The training and validation process was 

performed for these synthetic well-logs, and the ML testing for the cross-section and the subcube. 

Since it is possible to extract any number of well traces, I investigated the role of the number and 

location of traces (or wells) on the facies prediction performance. The minimum acceptable 

number of traces (or wells) was selected from the condition that the ML model performance should 

exceed a threshold of 75%.  

Following that, I evaluated the role of various frequencies, such as Ricker wavelet (25 Hz) 

and three Ormsby frequencies (10-60, 10-80, 10-100 Hz), which were used for synthetic seismic 



 

processing. The use of different frequency ranges can increase or decrease the ML models 

performance in thick or thin-layered reservoirs.  

In the real world, seismic data acquisition is usually accompanied by noise coming from 

several sources such as acquisition, processing, cultural noise, weather, etc. For this reason, in this 

study, I checked if ML can handle noisy data and how noise can affect the facies classification.  

 After that, additional seismic attributes, such as Envelope and Instantaneous Frequency, 

were incorporated into the analysis. As mentioned earlier, seismic inversion can be 

computationally expensive and is not as straightforward as, for example, seismic attributes, such 

as relative acoustic impedance or complex attributes. So, I estimated the feasibility of using 

seismic attributes and compared their performance with the seismic data, and seismic inversion.  

Finally, incorporating extra information about the geological structure of the reservoir can 

improve the facies prediction. These data can be obtained from different methods. One of the 

techniques was described and implemented in [29] where seismic horizons or sequence boundaries 

are used. In this study, the geological time property was considered as another type of data. This 

property was incorporated in the facies prediction as an additional feature, and it was used for the 

lower and upper zones. The overview of the described workflow is shown in Figure 24.  

 

 

 



 

 

Figure 24. The overview of the performed analysis for the lower and upper zones of the reservoir 

in cases 1 and 2. 

 

As the calculations for the lower zone and the upper zone are completed along section S-

S’, and the minimum number of synthetic well-logs with the appropriate frequency was determined 

for both zones of the reservoir, the research continued by taking into consideration section A-A’ 

with the lower zone offset by a normal fault, and the 3D small cube with the lower zone. For these 

two cases, all mentioned seismic attributes, together with seismic inversion, were used for facies 

classification. Geological time was not used in these cases. The following section explains the 

general machine learning workflow. 

 



 

4.2 Machine learning workflow 

The general workflow carried out in this thesis is shown in Figure 25. The workflow is 

designed to accomplish the aim of the study, which is to explore the ML opportunities for facies 

classification based on seismic data, seismic attributes, and seismic inversion. 

 

 

Figure 25. Machine learning workflow of this study. 

 

Once the processing and preparation of the data were completed, the data were divided into 

the training, validation, and testing subsets. The extracted well-logs from the sections of facies and 

features were used as training and validation subsets, and their proportion was selected as 80/20. 

So, for example, for three wells used for building and training the ML models, 80% of data were 

used for training and 20% for validation. When various machine learning models were built and 

trained, the rest of the facies traces in the section were used for testing the ML models.  



 

Having a synthetic model and, consequently, the ground-truth values of facies, makes it 

possible to evaluate the prediction accuracy. The comparison of the facies prediction was made by 

utilizing a difference map that subtracts the predicted facies values from the actual values. If the 

predicted value is the same as the actual one, the result is true; otherwise, the result is false. 

The workflow, shown in Figure 24, was implemented for the lower and upper zones (for 

cases 1 and 2). The main goal of this part is to evaluate the role of the number of wells, frequency 

ranges, spectral noise, and additional features. For this reason, the analysis is done for baseline 

models, such as the LR, KNN, SVM, RF, and NN, which means that the hyperparameter tuning 

are not applied for these scenarios. For these parts, the evaluation is performed by using the overall 

F1-score of the ML models and F1-score for each facies. After the analysis is completed, and the 

number of wells, frequency range, and the role of using additional features is determined, the ML 

process for facies prediction is applied to the other two cases, the section A-A’ with the lower zone 

(case 3), and the seismic cube with the lower zone (case 4). In these regions, I performed the 

models’ optimization by utilizing hyperparameter tuning and using all given features together.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

5 Data Analysis and Processing 

 

Data analysis and processing transforms raw input data into a usable form, highlighting 

valuable information, and identifying hidden patterns to make them more informative. This step is 

an essential part of the Machine Learning workflow because the processed data are then used for 

building the ML models. Clean data also improves the ML models’ performance by reducing bias. 

In this chapter, the exploratory analysis of the input facies and seismic features is given. 

 

5.1 Exploratory facies analysis 

The facies dataset of cases 1, 3 and 4 (lower reservoir zone) consists of five facies: coarse 

sand (CS), sand (S), fine sand (FS), shale (Sh), and carbonate (C), while the datasets of case 2 

(upper reservoir zone) consists of four facies:  coarse sand (CS), sand (S), fine sand (FS) and shale 

(Sh). A detailed description of the facies and their distribution is given in Table 4. In addition, 

histograms showing the facies distribution, based on the data from Table 4, are shown in Figure 

26. 

 

Table 4. Summary of the facies presence in cases 1 to 4. 

Facies Label Code 
The presence of facies in study cases (case), % 

Case 1 Case 2 Case 3 Case 4 

Coarse Sand CS 0 19.2 0.6 21.4 23.7 

Sand S 1 12.8 29.6 20.3 26.7 

Fine Sand FS 2 42.1 35.7 38.4 28.1 

Shale Sh 3 23.7 34.1 18.9 17.4 

Carbonate C 4 2.3 0 1.0 4.1 

 

 

In addition, histograms showing the facies distribution, based on the data from Table 4, are 

shown in Figure 26.  

 



 

 

Figure 26. Distribution of facies presence in cases 1, 2, 3 and 4. 

 

Cases 1, 3 and 4 contain the lower part of the reservoir, while case 2 has the upper part of 

the reservoir. As mentioned in Chapter 2 (Dataset description), the facies of the lower part are 

thicker and unconformable in comparison to the facies from the upper part.  

Cases 1, 3, and 4 have a similar distribution, with predominance of fine sand (FS) which is 

42.1%, 38.4% and 28.1%, respectively. The presence of coarse sand (CS) and shale (Sh) in these 

cases is also almost the same and is approximately 20%, while the carbonates are represented only 

by thin layers at the base of the section, and their proportion is around 1-4%.  

An interfingering of thin layers of fine sand (FS), sand (S), and shale (Sh) mainly 

characterizes case 2. The presence of coarse sand does not exceed 1%.  

The facies distribution from these four cases shows that the dataset is imbalanced, meaning 

that some facies are predominant compared to others which can affect the training process. Dealing 

with imbalanced data is an essential part of data processing, as it can decrease bias and improve 

ML model predictability.  

 



 

Different approaches are developed for addressing the imbalance dataset problem, and the 

most popular are oversampling and undersampling [30]. Undersampling is a technique that 

identifies the minority class and duplicates examples, while oversampling removes examples from 

the majority class. In addition, some machine-learning methods, such as Balanced Random Forest 

Classifiers, can handle highly imbalanced datasets because the model considers class weights 

making the methods cost-sensitive. Moreover, the majority class is down-sampled, thus the 

decision trees are built and trained on a balanced dataset [30].  

 

5.2 Exploratory features analysis 

Along with the facies dataset, the information about features and their distribution is also 

essential when deciding about feature engineering and implementing optimal machine learning 

methods. For example, features skewness, i.e., the asymmetry of the distribution, can result in 

facies misclassification. In addition, skewness gives insight into the presence of outliers and more 

importantly, the shift of the mean value which is quite essential for prediction performance. 

Outliers are the data that differ significantly from the rest of the dataset and usually are caused by 

the human factor, recording errors, etc [30]. The following plots were constructed for better 

visualization of seismic attributes for every zone.  

 

5.2.1 Case 1 

For the first zone, seismic, seismic inversion, relative acoustic impedance, instantaneous 

frequency, envelope, and geological time, are considered for facies classification. Their 

distribution is shown in Figure 27.  

The distributions of seismic inversion and envelope are skewed to the right, while seismic 

is skewed to the left. Relative acoustic impedance and instantaneous frequency are normally 

distributed with minor skewness. The geological time distribution is uniform. As mentioned 

earlier, the skewness can cause misclassification while using ML models based on Euclidean 

distances.  

 

 

 



 

 

Figure 27. Distribution of seismic data and seismic attributes in case 1. 

 

In addition, to detect inadequate values in the dataset via histograms, the boxplots of all 

features for case 1 are presented in Figure 28. The red line inside the box shows the data median, 

and the height of the black box shows the range of 50% of the data. Two horizontal lines outside 

the box indicate the range of 95% of the data, while the black points outside the lines detect outliers 

[31].   

 

 



 

 

Figure 28. Boxplots of seismic data and its attributes used for facies classification in case 1. 

 

The boxplots show that all values of the features do not go beyond their physical 

boundaries.  

 

5.2.2 Case 2 

For case 2, the same features as for case 1 were used for facies classification: seismic, 

seismic inversion, relative acoustic impedance, instantaneous frequency, envelope, and geological 

time. The distribution of these features is shown in Figure 29. 

In this area, the distribution of seismic, relative AI, and instantaneous frequency is normal, 

while seismic inversion and envelope have slightly skewed to the right distribution.  

 



 

 

Figure 29. Distribution of seismic data and seismic attributes features in case 2. 

 

Figure 30 shows the boxplots of the features for case 2. The features, such as seismic, 

relative AI and geological time, do not have outliers. At the same time, the outliers in seismic 

inversion, instantaneous frequency and envelope do not exceed their physical boundaries.  

 

 

 

 

 



 

 

Figure 30. Boxplots of seismic and its attributes used for facies classification in case 2. 

 

 

5.2.3 Case 3 

Facies classification of case 3 is performed by using five features together: seismic 

inversion, relative acoustic impedance, instantaneous frequency, and envelope. The distribution of 

these features is shown in Figure 31. The geological time attribute is not available for this case. 

Most of the features have skewed to the right distribution except for seismic and instantaneous 

frequency. 

  

 



 

 

Figure 31. Distribution of seismic data and seismic attributes features in case 3. 

 

A statistical summary of the features in case 3 given as boxplots shows that all features 

have outliers, but their values are within the physical boundaries (Figure 32). 

 

 



 

 

Figure 32. Boxplots of seismic and its attributes used for facies classification in case 3. 

 

 

5.2.4 Case 4 

Facies classification of case 4 is also made by utilizing five features together: seismic 

inversion, relative acoustic impedance, instantaneous frequency, and envelope. The distribution of 

these features is shown in Figure 33. Almost all features are skewed either to the left or right. 

 

 



 

 

Figure 33. Distribution of seismic data and seismic attributes features in case 4. 

 

The data analysis shows that the features used for facies classification have various ranges 

and measurement units. For example, the seismic range is between -0.2 and 0.2, while the seismic 

inversion range varies between 7500 and 11700. As mentioned earlier, different ML models are 

sensitive to the features’ scale. Scaling can affect the models’ performance if, for example, some 

features with a larger scale dominate over other features with a lower scale [28]. So, to avoid 

misclassification of facies, standardization was applied to all features. The boxplots show that 

some features have outliers, however, all of them are within their physical boundaries. The absence 

of the outliers that are outside the physical boundaries is explained by the use of synthetic dataset. 

However, in the real case, the statistical analysis might identify values that are beyond boundaries 

which can decrease the ML models performance.   

 

 

 

 

 



 

Results 

In this chapter, the results of facies classification from seismic, its attributes, and seismic 

inversion, for the four cases described before, are presented.  

 

 

5.3 Results for case 1 

As mentioned in the Methodology chapter, the analysis started with using three features: 

seismic, relative acoustic impedance, and seismic inversion. As mentioned earlier, the main goal 

of this part is to evaluate the role of the number of wells, frequency ranges, spectral noise, and 

additional features such as geologic time. For this reason, the analysis is done for the baseline 

models LR, KNN, SVM, RF, and NN, which means that hyperparameter tuning is not applied to 

these scenarios. 

 

 

5.3.1 Baseline models overview 

Before performing the analysis of the minimum number of wells necessary for facies 

classification, five baseline machine-learning models were built and tested for a random number 

of wells in order to choose the ML model that gives the highest global average F1-score. This 

model was later used for testing different numbers of wells. Figure 34 shows a comparison of five 

baseline models. Four out of five baseline models demonstrate almost the same F1-score; however, 

the best performance is observed for the Random Forest Classifier (RF). So, this model was further 

utilized as the main model when estimating the impact of the number of wells on facies 

classification. Logistic Regression is the least flexible method and has the lowest overall 

performance. 

 



 

 

Figure 34. The overall F1-score of the baseline models for case 1. 

 
 

5.3.2 Evaluating the impact of the number of wells 

The estimation of the role of well numbers on facies prediction started for 30 wells and 

continued for 15, 10, 8, 6, 5, 4, 3, 2, and 1 well. It is assumed that the higher the number of wells 

used for building and training the model, the better the model’s performance. As the Random 

Forest Classifier shows the best performance among the used ML models, this model was utilized 

for the analysis. The imbalanced proportion of the facies in the training and validation sets was 

overcome by incorporating class weighting which changes the weight of each class and assigns a 

higher weight to undersampled data.  

As mentioned earlier, the minimum acceptable number of wells must give a threshold 

accuracy (overall F1-score) of 75%. Case 1 consists of 151 traces, so for 30 wells, every fifth or 

sixth trace is used as a well, and for 15 wells, every tenth or eleventh trace is used as a well. The 

model building, validation, and testing are based on three features: relative acoustic impedance, 

seismic, and seismic inversion. Figure 35 shows that the overall F1-score of at least 75% for the 

test set can be achieved by using only three wells.  

 

 



 

 

Figure 35. The impact of the number of wells on the model’s F1-score for case 1. 

 

The comparison of the model’s performance, namely the facies prediction section and the 

difference map for 15, 5, and 3 wells, is shown in Figure 36. The results show that the number and 

location of the wells influence the accuracy, especially in the thin layers of the reservoir. 

 



 

 

Figure 36. The facies prediction and difference map for case 1 when using: a) 15 wells, b) 5 

wells, c) 3 wells. The wells are shown as black lines. The facies prediction by the RF model is 

on the left side, and the difference between the true facies and predicted facies is on the right.  

 

 

 

 

 

 



 

5.3.3 Evaluating the role of the seismic frequency range. 

The performance of facies classification depends on seismic data derived using various 

frequencies: Ricker (25 Hz) and three Ormsby (10-60 Hz, 10-80 Hz, 10-100 Hz) wavelets.  A 

comparison of the overall F1-score of the Random Forest Classifier model when using seismic 

features with different frequencies is shown in Figure 37. The comparison shows that the best 

overall accuracy (F1-score) is achieved when using seismic features derived with an Ormsby filter 

with a frequency range of 10-60 Hz. 

 

 

Figure 37. A comparison of the overall F1-score of facies prediction for the RF model when 

using seismic features with different frequencies for case 1. 

 

The comparison shows that the best overall accuracy (F1-score) is achieved when using 

seismic data derived with using Ormsby filter with a frequency range of 10-60 Hz.  

To identify what impact various frequencies have on each of the facies, the comparison of 

the F1-score of each facies by the RF Classifier is presented in Figure 38. The highest F1-score is 

achieved from seismic data (relative acoustic impedance, seismic, and seismic inversion) 

calculated by using the Ormsby filter with a frequency of 10-60 Hz for Coarse Sand, Fine Sand, 

and Shale, thereby following the trend of the overall f1-score. However, for the least presented 

facies, such as Sand and Carbonates, the highest F1-score is obtained for the Ricker wavelet with 

25 Hz. The difference in the performance of these two facies for the four frequencies is quite 



 

significant. In general, there is no direct relationship between increasing frequency and the facies 

prediction for thin layers. 

 

Figure 38. The F1-score for each of the facies from case 1 that were predicted from seismic 

data derived by using the following frequencies: Ricker (25Hz), and three Ormsby (10-60Hz, 

10-80Hz, 10-100Hz) wavelets. 

 

The 2D section of facies prediction and the difference map for the tested frequencies is 

shown in Figure 39.  



 

 

Figure 39. The facies prediction and difference map of case 1 when using seismic features 

derived from: a) Ricker wavelet 25 Hz, b) Ormsby filter with frequency range 10-60 Hz, c) 

Ormsby filter with frequency range 10-80 Hz, d) Ormsby filter with frequency range 10-100 Hz. 

The wells are shown as black lines. The facies prediction by the RF model is on the left side, and 

the difference between the true facies and predicted facies is on the right side.  

 

 

 



 

5.3.4 Evaluating the role of using Spectral Decomposition 

Including an additional feature such as spectral decomposition can improve the prediction 

accuracy for thin layers such as carbonates. To confirm this, three spectral decompositions (30 Hz, 

60 Hz, 90 Hz) are used as additional features for facies prediction, together with the features 

(seismic, relative acoustic impedance and seismic inversion) derived with the 25 Hz Ricker 

wavelet. The results are shown in Figure 40. 

 

 

Figure 40. F1-score of each facies in case 1, as predicted from seismic data derived by using 

the 25 Hz Ricker wavelet, and spectral decomposition (30 Hz, 60 Hz, 90 Hz) as additional 

features added one at a time. 

 

The usage of spectral decomposition of 30 Hz, 60 Hz, and 90 Hz has almost no effect on 

the F1-score for coarse sand, fine sand, and shale. However, the spectral decomposition of 90 Hz 

and 60 Hz slightly improves the facies prediction of carbonates and shale, respectively.  

As demonstrated in the Data Analysis chapter, the prevailing facies in case 1 are fine sand, 

shale, and coarse sand, while carbonates and sand are less common. Accordingly, the lowest 

performance is gained for carbonates deposits. A similar performance is observed for all ML 

methods used in this thesis and can be explained by the lack of data used for training the models 

since the thin layer of carbonates is penetrated only by one out of three wells. In contrast, the F1-

score for coarse sand, fine sand, and shale is more than 76%. The facies 2D section of case 1 and 

the difference map for Spectral Decomposition 30 Hz, 60 Hz, and 90 Hz are shown in Figure 41 



 

 

 

Figure 41. The facies prediction and difference map of case 1 when using the additional feature: 

a) Spectral Decomposition 30 Hz, b) Spectral Decomposition 60 Hz, c) Spectral Decomposition 

90 Hz. The wells are shown as black lines. The facies prediction by the RF model is on the left 

side, and the difference between the true facies and predicted facies is on the right side. 

 

 

5.3.5 Evaluating the impact of noise for case 1 

Figure 42 shows the overall F1-score of facies classification for case 1, calculated by the 

Random Forest Classifier model, from data with and without spectral noise.  

 



 

    

Figure 42. F1-score comparison for facies prediction when using data with and without 

spectral noise for case 1. 

 

Features contaminated with spectral noise give overall accuracy (F1-score) of 72.5%, while 

the performance for the facies predicted from seismic attributes and seismic inversion without 

noise, is 82.8%. In general, the results of the ML prediction are expected. The comparison of the 

facies derived from features with and without noise is given in Figure 43. 

  

 

Figure 43. The F1-score of facies prediction from data with and without noise for case 1. Seismic 

data was constructed using an Ormsby 10-60 Hz wavelet. 



 

Spectral noise negatively affects the prediction of every facies. So, when dealing with noisy 

data, one should expect a decrease in the efficiency of facies prediction. The 2D facies section and 

difference map for seismic data without and with noise are shown in Figure 44.  

 

 

Figure 44. The facies prediction and difference map of case 1 when using an Orsmby 10-60 Hz 

wavelet, and features: a) without noise, b) with noise. The wells are shown as black lines. The 

facies prediction by the RF model is on the left side, and the difference between the true facies 

and predicted facies is on the right. 

 

 

5.3.6 Exploration and comparison of additional features 

5.3.6.1 Instantaneous frequency, envelope 

As discussed in the previous section, seismic inversion is a computationally expensive and 

not straightforward method in contrast to seismic attributes. The analysis of the facies prediction 

from the ML model based on seismic inversion together with seismic on one hand, and seismic 

attributes (relative acoustic impedance, envelope, and instantaneous frequency) and seismic on the 

other hand, is shown in Figure 45. All attributes are derived from the Ormsby filter with a 

frequency range of 10-60 Hz. 



 

 

  

Figure 45. The overall F1-score comparison for facies prediction of case 1 when using seismic 

and seismic inversion versus relative acoustic impedance, seismic, instantaneous frequency, 

and envelope. 

 

The facies performance is slightly better when using seismic inversion and seismic than 

when using seismic attributes and seismic. However, the difference is less than 2%. Figure 46 

shows the comparison of the F1-score for each facies. 

 

 

Figure 46. The F1-score of facies prediction for case 1 from seismic and seismic inversion on the 

one hand, and relative acoustic impedance, seismic, instantaneous frequency, and envelope on 

the other hand. 

 



 

The most significant difference, of 17.1% in facies prediction, takes place for carbonates. 

The F1-score is only 3.3% for seismic and seismic attributes, and 20.4% for seismic and seismic 

inversion. The F1-score for other facies is almost the same, with the exception of sand prediction, 

where the prediction by seismic inversion is higher by 8%. Seismic inversion is a critical feature 

to correctly identify the carbonates. 

So, the main conclusion is that it is possible to predict facies using seismic attributes. 

However, seismic inversion is the most important feature for increasing the performance of the 

prediction. Figure 47 shows the comparison of feature importance for the RF Classifier model. 

The bar plot shows that seismic inversion and relative acoustic impedance are the features that 

contribute more to the accuracy of the prediction, with scores of 68% and 59%, respectively. 

Envelope and instantaneous frequency contribute to facies prediction almost equally and are 

around 20%. 

 

    

Figure 47. Features importance for facies prediction of case 1, for seismic and seismic 

attributes (left), or seismic and seismic inversion (right) features and the RF model. 

 

5.3.6.2 Geological Time 

Incorporating information about geological time as an additional feature improves the 

facies prediction. The comparison of the F1-score for the Random Forest Classifier shows that 

using geological time together with seismic attributes gives almost the same accuracy as using 

seismic inversion (Figure 48). The use of geological time improves the prediction accuracy of 

sand, fine sand, and shale. However, for the thinnest layer of carbonates, the accuracy does not 

outperform the F1-score when using seismic inversion which is equal to 20.4%. 

 



 

 

 

Figure 48. Comparison of the F1-score of RF classifier model for facies prediction of case 1 

based on seismic and seismic attributes (blue), seismic and seismic inversion (brown), and 

seismic, seismic attributes, and geological time (green). 

 

The comparison of the feature importance for these cases shows that geological time plays 

an important role in improving the accuracy of the facies classification. The feature importance 

for the Random Forest classifier with seismic, seismic attributes, and geological time is shown in 

Figure 49. The geological time contributes 23.5% to the accuracy of the facies prediction because 

it gives extra information about the geometry of the reservoir. Figure 50 shows the 2D section of 

facies prediction and the difference map, for RF models with seismic and seismic inversion (a), 

and seismic, seismic attributes, and geological time (b). 

 



 

 

Figure 49. The permutation importance of RF model for facies classification of case 1, and 

seismic, seismic attributes, and geological time as features. 

 

 

Figure 50. The facies prediction and difference map of RF model for case 1 when using the 

features: a) seismic and seismic inversion, and b) seismic, seismic attributes, and geological 

time. The wells are shown as black lines. The facies prediction is on the left side, and the 

difference between the true facies and predicted facies is on the right. 

 



 

5.4 Results for case 2 

For case 2, the same analysis is performed as for case 1: evaluating the impact of using 

different numbers of wells, frequency ranges, and spectral noise, and comparing the facies 

prediction from seismic inversion and seismic attributes. The analysis is done using the baseline 

ML model that gives the best accuracy among other models for the random number of wells. As 

for case 1, hyperparameter tuning of the ML models is not performed. 

 

5.4.1 Baseline models overview 

In this part, five baseline ML models are built and tested for a random number of wells: 

LR, KNN, SVM, RF, and NN.  The model with the best performance is further utilized for 

evaluating the impact of various numbers of wells. Figure 51 shows that the best overall F1-score 

of 66.1% is achieved by the Random Forest Classifier. The SVM has almost the same accuracy, 

but the RF is used as the base ML model for further analysis. 

 

 

Figure 51. The overall F1-score of the baseline models for Case 2. 

 

 

 

 

 



 

5.4.2 Evaluating the impact of the number of wells 

The role of the number of wells on facies prediction is estimated for 30, 15, 10, 8, 6, 5, 4, 

3, 2, and 1 well. The analysis shows that the number of wells has an impact on the overall accuracy 

of the facies prediction. However, in this case, the threshold accuracy of 75% is not achieved for 

any number of wells (Figure 52). This means that when dealing with heterogeneous, thin facies 

deposits such as those of the upper reservoir zone, one should expect lower facies prediction 

accuracy than with homogeneous, thick facies deposits, as those of the lower reservoir zone in case 

1. 

 

 

Figure 52. The overall accuracy (F1-score) of facies prediction of case 2 by the RF model with 

different number of wells. 

 

It is assumed that the drilled wells penetrate the entire thickness of the reservoir, including 

the upper and lower zones. The necessary number of wells for the lower reservoir zone in case 1 

was determined to be three (section 5.1.2). Therefore, for the upper reservoir zone and case 2, the 

same number of wells is used in further analyses. Figure 53 shows the 2D section with facies 

prediction and difference map for 15, 6, and 3 wells. The least accurate facies prediction is located 

on the right (eastern) side and top left (western) side of the reservoir (Figure 53). 

 

  



 

 

Figure 53. The facies prediction and difference map of case 2 when using: a) 15 wells, b) 6 

wells, c) 3 wells. The facies prediction by the RF model is on the left side, and the difference 

between the true facies and predicted facies is on the right. 

 

5.4.3 Evaluating the role of seismic frequency range. 

The facies prediction performance depends not only on the features used but also on how 

these features were derived. The evaluation of the impact of seismic inversion and seismic 

attributes obtained from four different frequencies, Ricker (25 Hz) and three Ormsby (10-60 Hz, 

10-80 Hz, 10-100 Hz) wavelets, is shown in Figure 54. This figure shows that the best overall 

accuracy is achieved when using features derived with the Ormsby filter with a frequency range 

of 10-100 Hz. 

 



 

 

Figure 54. A comparison of the overall accuracy (F1-score) of facies prediction of case 2 for 

the RF model when using features with different frequencies. 

 

To identify what impact different frequencies have on each of the facies, the comparison 

of the F1-score for each facies for the RF Classifier is presented in Figure 55. The highest F1-score 

is achieved from seismic data (relative acoustic impedance, seismic, and seismic inversion) 

calculated by using the Ormsby filter with a frequency of 10-100 Hz for all facies: coarse sand, 

fine sand, sand, and shale. Moreover, the bar chart shows that the higher the frequency used for 

the features, the better the facies prediction performance, with an insignificant difference for the 

coarse sand. So, for reservoirs containing thin facies, the higher frequencies give more robust 

results. 

 



 

 

Figure 55. The F1-score for each of the facies of case 2 that were predicted by the RF model 

from seismic data derived by using the following frequencies: Ricker (25Hz), and three 

Ormsby (10-60Hz, 10-80Hz, 10-100Hz). 

 

 

The 2D section of facies prediction and the difference map for the different tested 

frequencies is shown in Figure 56.  

 



 

 

Figure 56. The facies prediction and difference map of case 2 when using features derived from: 

a) Ricker wavelet 25 Hz, b) Ormsby filter with frequency range 10-60 Hz, c) Ormsby filter with 

frequency range 10-80 Hz, and d) Ormsby filter with frequency range 10-100 Hz. The wells are 

shown as black lines. The facies prediction by RF model is on the left side, and the difference 

between the true facies and predicted facies is on the right. 

 



 

 

5.4.4 Evaluating the role of using Spectral Decomposition 

Incorporating spectral decomposition as an additional feature can also increase the ML 

model’s performance for heterogeneous reservoirs. For case 2, three spectral decompositions (30 

Hz, 60 Hz, and 90 Hz) are used additionally, together with seismic, relative acoustic impedance, 

and seismic inversion derived with the use of Ricker wavelet. Figure 57 shows the comparison of 

the overall accuracy of the RF model when using spectral decomposition. 

 

 

Figure 57. A comparison of the overall accuracy (global F1-score) of facies prediction in case 2 

for the RF model when using spectral decomposition (30 Hz, 60 Hz, 90 Hz) in addition to 

seismic, seismic inversion, and relative acoustic impedance derived using a Ricker wavelet with 

25 Hz. 

 

The best overall accuracy of 73.6% is achieved when using a spectral decomposition of 90 

Hz. To check the assumption that spectral decomposition improves the predictability of thin-

layered facies, the comparison of the F1-score for each facies is shown in Figure 58.  

 



 

 

 

Figure 58. The F1-score for each of the facies of case 2 that were predicted by the RF model 

from seismic data derived by using the Ricker 25 Hz wavelet and additional feature spectral 

decomposition (30 Hz, 60 Hz, and 90 Hz). 

 

 

The usage of spectral decomposition of 30 Hz, 60 Hz, and 90 Hz improves the F1-score 

for sand, fine sand, and shale. The higher the frequency of spectral decomposition, the better the 

facies prediction performance, except for coarse sand, for which the best F1-score is achieved 

when using spectral decomposition of 30 Hz. The lack of data in the coarse sand in case 2 explains 

this. The predicted facies 2D section and the difference map for spectral decomposition 30 Hz, 60 

Hz, and 90 Hz is shown in Figure 59. 

 



 

 

Figure 59. The facies prediction and difference map of case 2 when using the additional feature: 

a) spectral decomposition 30 Hz, b) spectral decomposition 60 Hz, and c) spectral decomposition 

90 Hz. The wells are shown as black lines. The facies prediction by the RF model is on the left 

side, and the difference between the true facies and predicted facies is on the right. 

 

 

5.4.5 Evaluating the impact of noise 

Figure 60 shows the overall F1-score (accuracy) of facies classification for case 2, 

calculated by the Random Forest classifier model, from data derived with the use of an Ormsby 

filter with a frequency range of 10-100 Hz, with and without spectral noise.  



 

 

Figure 60. The overall accuracy (global F1-score) comparison for RF facies prediction when 

using data with and without spectral noise for case 2. 

 

Features contaminated with spectral noise give an overall accuracy of 71.1%, while the 

performance for the facies predicted from seismic attributes, inversion without noise, is 73.5%. 

The comparison of each facies derived from features with and without noise is given in Figure 61. 

Spectral noise decreases the facies prediction performance. For example, the RF model fails when 

predicting coarse sand on noisy data. However, the difference for other facies is not critical. So, 

when dealing with noisy data, one should expect a slight decrease in the efficiency of facies 

prediction. The 2D facies section and difference map are shown in Figure 62. 

 



 

 

Figure 61. The F1-score of RF facies prediction from data with and without noise for case 2. 

 

 

 

Figure 62. The facies prediction and difference map of case 2 when using seismic features: : a) 

without noise, and b) with noise. The wells are shown as black lines. The facies prediction by the 

RF model is on the left side, and the difference between the true facies and predicted facies is on 

the right. 



 

 

5.4.6 Exploration and comparison of additional features 

5.4.6.1 Instantaneous Frequency, Envelope, and Geological Time 

A comparison of facies performance for the RF classifier when using only seismic and 

seismic attributes (relative acoustic impedance, envelope, and instantaneous frequency), versus 

seismic and seismic inversion, versus seismic, seismic attributes, and geological time, is shown in 

Figure 63. All features are derived with the use of an Ormsby filter with a frequency range of 10-

100 Hz. 

 

 

Figure 63. The overall accuracy (global F1-score) for RF facies prediction of case 2 when 

using seismic and seismic attributes, seismic and seismic inversion, and seismic, seismic 

attributes, and geological time. 

 

Figure 63 shows that using only seismic and seismic attributes for facies prediction gives 

almost the same result than using seismic and seismic inversion, namely 65.8%. Incorporating 

geological time improves the overall accuracy by 9.2%. So, with the use of seismic attributes 

together with geological time, the facies prediction is equal to the threshold accuracy of 75%. 

Figure 64 shows the comparison of the F1-score for each facies. 

 



 

 

Figure 64. The F1-score of RF facies prediction of case 2 from seismic and seismic attributes 

(blue), versus seismic and seismic inversion (brown), versus seismic, seismic attributes, and 

geological time (green). 

 

 

The use of seismic attributes together with geological time gives the best performance for 

sand, fine sand, and shale with 75.2%, 65.1%, and 84.6%, respectively. However, the highest 

performance for coarse sand is gained when using only seismic inversion.  

So, the main conclusion in case 2 is that it is possible to predict facies using seismic 

attributes. However, incorporating additional information about the geometry of the reservoir 

(geological time) increases the facies prediction. Figure 65 shows the comparison of feature 

importance for the RF Classifier model.  

 

     

Figure 65. Feature importance for RF facies prediction of case 2 from seismic and seismic 

attributes (left), and seismic and seismic inversion (right). 

 



 

Figure 65 shows that seismic inversion and relative acoustic impedance are the features 

that contribute more to the accurate prediction, with values of 65% and 48%, respectively. 

Envelope and instantaneous frequency contribute to facies prediction less than 10%. The 

geological time contribution to the facies prediction is around 24%. Figure 66 shows a 2D section 

of case 2 with facies prediction and difference map when using seismic and seismic inversion on 

one hand, and seismic, seismic attributes, and geological time on the other hand. 

 

 

Figure 66. Facies prediction and difference map of case 2 when using the features: a) seismic and 

seismic inversion, and b) seismic, relative acoustic impedance, envelope, instantaneous 

frequency, and geological time. The wells are shown as black lines. The facies prediction by the 

RF model is on the left side, and the difference between the true facies and predicted facies is on 

the right. 

 

 

5.5 Results of case 3 

Case 3 belongs to the lower zone of the reservoir and is entirely crossed by a normal fault. 

From the analysis of case 1 which also belongs to the lower part of the reservoir, we justified the 

necessary number of wells (3 wells) for achieving the threshold accuracy of 75%. Apart from that, 



 

the best performance of facies prediction was achieved when using seismic data derived with 

Ormsby frequency 10-60 Hz. So, this information is utilized when applying ML models for facies 

prediction in case 3 from five features: seismic, relative acoustic impedance, envelope, 

instantaneous frequency, and seismic inversion. Geological time is not available for this zone. 

 

 

5.5.1 Baseline models of case 3 

In this part, five baseline ML models are built and tested for three wells. These ML models 

are LR, KNN, SVM, RF, and NN (Figure 67). The location of the wells is random with only one 

condition, that wells should not cross the fault. Hyperparameter tuning is applied to the model with 

the highest overall accuracy of facies prediction. 

 

  

Figure 67. The overall accuracy (global F1-score) of the baseline models for case 3. 

 

The best overall accuracy of 74.8% is achieved for the Random Forest Classifier. Other 

ML models such as KNN, SVM, and NN showed slightly lower accuracy, from 74.2% to 72.8%. 

The lowest accuracy of 67.3% was obtained for the least flexible Logistic Regression model. 

Figure 68 shows the F1-score of each facies predicted by the five ML models. 

 



 

 

Figure 68. Comparison of the F1-score of each facies by the ML models LR, KNN, SVM, RF, 

and NN for case 3. 

 

Figure 68 shows that four out of the five ML models failed to predict the least present 

carbonate facies, while only the Random Forest Classifier managed to predict this facies. The F1-

score for fine sand is almost the same for all five models, except for Logistic Regression, whose 

performance is slightly lower and equal to 76.7%. The RF model has the highest performance 

when predicting coarse sand and sand and is equal to 80.8% and 54.9%, respectively. The KNN 

model predicts better the shales. 

 

5.5.2 Model optimization 

As the RF model gives the best overall accuracy and manages to predict the least presented 

facies, hyperparameter tuning is applied to this model to improve its performance. Hyperparameter 

tuning is done by applying Random Search and Grid Search methods. Due to time constraints, 

other hyperparameter tuning approaches, such as Bayesian Optimization, were not used. 

Hyperparameter tuning for the RF model starts with the Random Search that is executed 

based on the relevant hyperparameters of the baseline RF model (Table 5). 

 

 

 

 

 



 

Table 5. The hyperparameter range and optimal values of the Random Search for the 

Random Forest Classifier model for case 3. 

Hyperparameter Values Optimal values 

n_estimators 200, 400, 600, 800, 1000, 1200, 1400, 1600, 1800, 2000 400 

max_features 'auto', 'sqrt', 'log2' ‘auto’ 

max_depth 10, 120, 230, 340, 450, 560, 670, 780, 890, 1000 890 

min_samples_split 1, 3, 4, 5, 7, 9 4 

min_samples_leaf 1, 2, 4, 6, 8 1 

criterion 'entropy', 'gini' ‘entropy’ 

 

The optimal parameters for Random Search are achieved by executing 100 iterations and 

3 k-folds cross-validation of the training dataset. This resulted in the improvement of the overall 

accuracy of the validation set of the RF model by 2% and equal to 88%. The overall accuracy for 

the testing set increased by 0.5%.  

Based on the values of the optimal hyperparameters calculated by the Random Search, the 

range of values for the Grid Search are chosen (Table 6). 

 

Table 6. The hyperparameter range and optimal values of the Grid Search for the Random 

Forest Classifier model for case3. 

Hyperparameter Values Optimal values 

n_estimators 200, 300, 400, 500, 600 300 

max_features 'auto' ‘auto’ 

max_depth 890 890 

min_samples_split 2, 3, 4, 5, 6 4 

min_samples_leaf 1, 3, 4 1 

criterion 'entropy' ‘entropy’ 

 

In total, the Grid Search executed 100 iterations with 10 k-folds cross-validation for the 

training set. As a result, the overall accuracy for the validation dataset is increased by 2% and is 

equal to 90%. The accuracy of the testing set is improved by 0.3% compared with the accuracy 

after implementing the Grid Search. Figure 69 shows the comparison of the overall accuracies for 



 

the testing set without hyperparameter tuning, and with hyperparameter tuning using Random 

Search and Grid Search. 

 

 

Figure 69. Comparison of the overall accuracies for the RF model for the test set of case 3 

without hyperparameter tuning, and after hyperparameter tuning using Random Search and 

Grid Search. 

 

Figure 70 shows the facies prediction and the difference map by using the RF model with 

Grid Search hyperparameter tuning.  

 

 

Figure 70. The facies prediction and difference map of case 3 after implementing 

hyperparameter tuning Grid Search. The wells are shown as black lines. The facies prediction 

by the RF model is on the left side, and the difference between the true facies and predicted 

facies is on the right 

 



 

The difference map shows that the RF model managed to predict well the conformable and 

thick facies deposits, even though these deposits are offset by the normal fault. However, in the 

transition areas where one facies is replaced by another and consequently are characterized by thin 

and interbedded deposits, the ML model’s performance is much lower. This is the case for all 

zones and cases studied in this thesis. The main reason for lower performance in thinner deposits 

is the difference in vertical resolution between seismic data and the facies deposits. Apart from 

that, the most correct facies prediction is in areas close to the well locations. 

 

 

5.6 Results of case 4 

Case 4 is a 3D sub-cube and belongs to the lower zone of the reservoir and is entirely 

crossed by a normal fault as Case 3. From the analysis of Case 1, which also belongs to the lower 

zone of the reservoir, the optimal wavelet for deriving seismic data was the Ormsby filter with a 

frequency range of 10-60 Hz. However, the number of wells and their location are chosen manually 

for Case 4, which is 7 wells. As in Case 3, the prediction is made by using five features: seismic 

inversion, seismic, relative acoustic impedance, envelope, and instantaneous frequency. 

Geological time is not available for this zone.  

 

5.6.1 Baseline models for case 4 

In this part, five baseline ML models are built and tested for seven wells. These ML models 

are LR, KNN, SVM, RF, and NN (Figure 71). The location of the wells is random, with the only 

condition that wells should not cross the fault. Hyperparameter tuning is applied to the model with 

the highest overall accuracy (global F1-score) of facies prediction.   

 



 

  

Figure 71. The accuracy (global F1-score) of the baseline models for case 4. 

 

The best overall accuracy of 83.6% is achieved for the Random Forest classifier. Other ML 

models, such as KNN and SVM, showed slightly lower accuracy, 81.4% and 82.7%, respectively. 

The lowest accuracy of 74.6% was obtained for the least flexible Logistic Regression model. 

Figure 72 shows the F1-score of each facies predicted by the five ML models. 

 

 

Figure 72. F1-score of each facies in case 4 for the ML models LR, KNN, SVM, RF, and NN. 

 

Figure 72 shows that all ML models managed to predict the least present carbonate facies. 

The highest F1-score for fine sand, carbonate, and shale is achieved by the RF model; while for 

coarse sand and sand, the SVM model shows the best performance.  



 

The feature importance of the RF model is shown in Figure 73. Seismic Inversion 

contributes more than 65% to the accuracy of facies prediction, while relative acoustic impedance 

only 12%. The impact of envelope and instantaneous frequency is less than 10%. 

 

 

Figure 73. Feature importance of the RF model for Case 4. 

 

A 3D cube with the RF model facies prediction and difference map is shown in Figure 74. 

A 2D section of the facies prediction and difference map gives a better visualization of the 

performance of the model (Figure 75). The RF model manages to predict consistent and thick 

layered facies. However, in the transition areas that are characterized by thin and interbedded 

facies, the prediction is less reliable. 

 



 

 

Figure 74. Facies prediction and difference map for the 3D sub-cube of case 4. The wells are 

shown as black lines. The facies prediction by the RF model is on the left side, and the difference 

between the true facies and predicted facies is on the right. Transparent rectangle shows the 

location of cross-section in Figure 75. 

 

 

Figure 75. Cross-section of the 3D facies prediction and difference map in Figure 74. 

 

 

 

 



 

5.6.2 Model optimization for case 4 

As the RF gives the best overall performance, hyperparameter tuning is applied to the 

model to improve its performance. Hyperparameter tuning is done by applying Random Search 

and Grid Search methods as for case 3. The best hyperparameters from Random Search are shown 

in Table 7. 

 

Table 7. The hyperparameter range and optimal values of the Random Search for the 

Random Forest Classifier model of case 4. 

Hyperparameter Values Optimal values 

n_estimators 200, 400, 600, 800, 1000, 1200, 1400, 1600, 1800, 2000 1000 

max_features 'auto', 'sqrt', 'log2' ‘log2’ 

max_depth 10, 120, 230, 340, 450, 560, 670, 780, 890, 1000 1000 

min_samples_split 1, 3, 4, 5, 7, 9 4 

min_samples_leaf 1, 2, 4, 6, 8 1 

criterion 'entropy', 'gini' ‘gini’  

 

 

As for case 3, the optimal parameters for Random Search are achieved by executing 100 

iterations and 3 k-folds cross-validation of the training dataset. This resulted in the improvement 

of the overall F1-score of the validation set of the RF model by 0.2% and equal to 87.9%. The 

overall accuracy for the testing set is not improved and is equal to 83.3%.  

Grid Search was applied to improve the F1-score of the RF model after using Random 

Search. The hyperparameters of the Grid Search are shown in Table 8. 

 

 

 

 

 

 

 

 



 

Table 8. The hyperparameter range and optimal values of the Grid Search for the Random 

Forest Classifier model of case 4. 

Hyperparameter Values Optimal values 

n_estimators 800, 900, 1000, 1100, 1200 300 

max_features ‘log2’ ‘log2’ 

max_depth 1000 1000 

min_samples_split 2, 3, 4, 5, 6 4 

min_samples_leaf 1, 3, 4 1 

criterion 'gini' ‘gini’ 

 

In total, the Grid Search executed 100 iterations with 10 k-folds cross-validation for the 

training set. As a result, the overall F1-score was not improved.  Figure 76 shows the comparison 

of the overall accuracies for the testing set without hyperparameter tuning, and with 

hyperparameter tuning using Random Search and Grid Search. 

 

 

Figure 76. Comparison of the overall F1-score of the RF model applied to the test set in case 4 

without hyperparameter tuning, and after implementing hyperparameter tuning with Random 

Search and Grid Search. 

 



 

As a result, the use of hyperparameter tuning for the Random Forest model did not improve 

the facies prediction. There can be two reasons: the default parameters are better than customized 

hyperparameters, and tuning hyperparameters on a limited training and validation sets does not 

affect the model’s performance on a large test set. The default hyperparameters are shown in Table 

9.  

 

Table 9. The default hyperparameters of the RF model for case 4. 

Hyperparameter Default values 

n_estimators 100 

max_features ‘sqrt 

max_depth None 

min_samples_split 2 

min_samples_leaf 1 

criterion ‘gini’ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

6 Discussion 

 

In this study, a performance comparison of four supervised machine-learning models 

(Logistic Regression, K-Nearest Neighbors, Support Vector Machines, and Random Forest) and a 

deep-learning model (Neural Networks), is performed for facies prediction based on a realistic 

synthetic dataset consisting of a geological model, and forward modeled seismic. In general, the 

best performance is achieved by implementing a decision tree-based method, the Random Forest 

method, which outperforms all other ML models, including the more powerful Neural Networks 

method. The reason behind this is that the Neural Networks performance depends on the amount 

of data in the training dataset. The more data and features are available for training the model, the 

more robust and higher the performance of the NN is. In our study, the training processes are based 

on three wells for two-dimensional cases, and seven wells for a three-dimensional sub-cube, which 

correspond to about 2-5% of the total dataset. For this reason, the ML models’ performance is 

based on their ability to predict facies on a limited training set. 

 

The Logistic Regression showed the least accurate performance compared to the other ML 

models for all cases.  This is because this model is less flexible, and the actual relationship between 

features and facies is not linear. In addition, LR usually works well for a relatively balanced 

dataset, which is not the case in this study. 

 

Generally, the SVM and KNN models demonstrated almost the same performance as the 

RF for all cases. However, the accuracy of the KNN model is slightly better for the least present 

facies (carbonates in cases 1, 3, 4, and coarse sand in Case 2), compared to the SVM performance 

which, in some realizations, failed to predict them. In contrast, the Random Forest method 

produced the highest performance when classifying the least present facies, such as carbonates in 

cases 1, 3, and 4, and coarse sand in Case 2. This means that the RF method is more robust and 

suitable when dealing with imbalanced datasets. 

 

However, in the transition areas where facies laterally change to other facies and they are 

characterized by thin and interbedded deposits, the ML model’s performance is much lower. This 



 

is true for all the cases studied in this thesis. The main reason for the lower ML performance in 

thinner deposits is the difference in vertical resolution between the seismic data and the facies 

deposits.  It is a common problem for seismic data to have worse resolution with depth because of 

increasing velocity and decreasing frequency. The increase in velocity is caused by rock 

compaction, while the drop in frequency is explained by seismic data attenuation [32]. As a result, 

the seismic wavelength, which is the velocity divided by frequency, also increases with depth, 

leading to the loss of vertical resolution. To evaluate this problem, the role of various frequencies 

used for deriving the seismic data, was evaluated. 

 

The comparison of facies prediction from seismic attributes derived from Ricker wavelet 

with a frequency of 25 Hz and three Ormsby filters with a frequency range of 10-60 Hz, 10-80 Hz, 

and 10-100 Hz showed that the overall performance of ML facies prediction depends on the 

depositional environment and frequencies. So, the use of the Ormsby filter with a frequency range 

of 10-60 Hz showed the best overall performance of facies prediction for the lower part of the 

reservoir, which is represented by a shallow marine environment with consistent and thick layers 

of facies. In contrast, for the upper part of the reservoir with interbedded, thin, and inconsistent 

facies, the best overall accuracy is achieved by using seismic features derived from the Ormsby 

filter with a frequency range of 10-100 Hz. Moreover, for the heterogeneous facies deposits from 

the upper part of the reservoir, the accuracy of each facies increases with the increase in frequency 

values. However, this is not true for the lower part of the reservoir. This means that when dealing 

with real data, it is important to use seismic data derived from various frequency ranges, especially 

if dealing with complex depositional environments. 

 

Incorporating additional features such as spectral decomposition with frequencies 30 Hz, 

60 Hz, and 90 Hz, also influences the facies prediction depending on the facies depositional 

characteristics. In the upper zone of the reservoir, the higher the frequency of the spectral 

decomposition, the better the facies prediction accuracy. This confirms the previous statement that 

when dealing with thin bedded, non-conformable facies deposits, it is essential to perform the 

analysis from the seismic data derived from higher frequencies. However, for the lower zone of 

the reservoir with thick and conformable deposits, the use of higher frequencies does not always 

lead to a better facies prediction. ML is not an automatic procedure, but a geologist is needed to 



 

divide the volume of investigation into smaller geologically meaningful domains (e.g., lower and 

upper reservoir zones), for which different ML methods can be designed to get the best prediction. 

This is the case for any geological feature to be predicted, sedimentary facies or geological 

structures such as faults. 

 

In addition, the number of wells and their location has an impact on the ML facies 

prediction because its performance is based on the amount and quality of training data. However, 

the prediction also depends on the facies distribution in the reservoir. For thicker and more 

conformable facies, the threshold accuracy of 75% is achieved when using three wells for training 

the ML model. Moreover, the use of only one well gives a slightly lower accuracy of 74.8%. In 

contrast, the analysis of thin and less conformable facies from case 2 shows that even when 

utilizing thirty wells for training the ML model, the threshold accuracy is not achieved, and the 

maximum accuracy is just 69.2%. In this case, to improve the ML models performance, it is 

recommended to incorporate additional features to the analysis. In addition, the accuracy of facies 

prediction is higher in areas in the vicinity of the wells (Figure 77). 

 

 

Figure 77. Difference map between the ground truth facies distribution and facies prediction 

by ML in case 2. The yellow rectangles show the areas close to the location of the wells, 

where the facies prediction is better compared with the facies prediction at a larger distance 

from the wells.  

. 



 

 

As one moves away from the location of the well, the accuracy of the facies prediction 

decreases laterally along the stratum. This highlights the importance of the placement of the wells. 

The ideal scenario is when the wells intersect all the facies in the reservoir. However, in the real 

world, the number of wells is limited – because drilling wells is expensive and requires proper 

justification. For this reason, it is important to include in the analysis as many wells as possible 

corresponding (or related) to the analyzed reservoir. 

 

Including the additional seismic attributes in the analysis improves the accuracy of the 

facies prediction to varying degrees. Seismic inversion has the highest positive impact on facies 

prediction, followed by relative acoustic impedance. Instantaneous frequency and envelope are 

less important for correct facies prediction. Providing the ML models with information about the 

lateral geometry of the reservoir, e.g., geological time as an additional feature, improves the facies 

prediction. 

 

One of the goals of this thesis was to assess the impact of seismic attributes versus seismic 

inversion on the facies prediction. The thesis shows that the use of only seismic attributes (relative 

acoustic impedance, instantaneous frequency, and envelope) gives almost the same prediction 

accuracy as when utilizing seismic inversion. This conclusion is very important because seismic 

inversion and the process of deriving acoustic impedance from seismic data is computationally 

expensive and not as straightforward as deriving seismic attributes (e.g., relative acoustic 

impedance) from seismic data. There are other seismic attributes that can potentially highlight the 

facies distribution in the reservoir, however, due to time constraints, only a few relevant seismic 

attributes are considered.  

 

This study incorporates the facies prediction on 1D, 2D, and 3D datasets. For the 3D cube, 

I consider it as a set of parallel 2D sections. The prediction process is also based on wells, and as 

the facies classification is performed for one 2D section, the algorithm continues the calculations 

for the next 2D section and so on until completing all sections. Thus, the ML models do not 

consider previous predictors. In other words, the selected approach is a strictly single-trace process 

which means that the results of neighboring traces do not influence the result of the trace under 



 

consideration. In a real scenario, this approach of 3D facies prediction can cause inconsistent 

predicted values along the x- and y-axis. To avoid or minimize possible discrepancies in facies 

prediction in a 3D dataset, it is recommended to provide the ML model with information about the 

horizontal spatial change along the x- and y-axis. This can be done by taking the average value of 

each feature within a specific area surrounding every point and adding this value as a new feature. 

So, facies prediction is further based on the average value of a feature within a specific area. 

Because of time limitations, the averaging of the closest values in each feature was not performed 

in this study. 

 

 

 

 

 

7 Future work 

 

As a further development, it is recommended to apply the results obtained in this study to 

a real case scenario. This is because in the synthetic model, the wells used for training the ML 

models are traces and have the same domain in TWT as seismic data, and resolution, which is not 

the case in real scenarios. In a real scenario, one would need to tie the well to the seismic data, and 

upscale the well logs to the seismic. Moreover, including the investigation of different filter 

options to address the noise problem is also desirable. In addition, incorporating additional relevant 

seismic attributes into the analysis might improve the prediction of facies. Exploring other 

machine-learning methods, such as XGBoost, and K-means Clustering, might be advantageous. In 

this thesis, four supervised models and one deep-learning method were tested, and hyperparameter 

tuning (Random Search and Grid Search) was applied to the baseline model with the best 

performance. Implementing the Bayesian Optimization approach to the Neural Networks method 

can also improve the performance of the facies prediction. Finally, testing the implementation of 

the best average window for facies prediction in a 3D cube can be interesting as a future work. 

 

 



 

 

8 Conclusions 

 

This thesis proves that machine-learning methods are a powerful tool for predicting facies 

from seismic attributes and can be used in 2D and 3D datasets. Built and trained ML models, 

together with developed algorithms for visualization and validation of results, will help to 

implement the same methodology in other scenarios. The research shows that a complex reservoir 

with various depositional environments requires the use of seismic data derived from different 

frequencies, depending on the thickness and consistency of facies, to obtain better performance. 

The use of relevant seismic attributes provides almost the same performance as when using seismic 

inversion and incorporating additional information about the geological time (relative depth) can 

even outperform the prediction from seismic inversion. The Random Forest model showed the 

best performance and seemed to be a robust method among others. However, it is recommended 

to develop unsupervised ML methods since they can handle a bigger dataset and have a good 

performance if applied properly. 
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Appendixes 

Python appendices included in this section is published in GitHub and can be found using the 

following link: 

https://github.com/aigulakberova/Machine-learning-based-seismic-classification-for-facies-

prediction 
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Appendix 1 Reading SEG-y files 

 



 

 

 

 

 

 

 

 

 

 

 

 



 

Appendix 2 - Data Processing 

 



 

 

 



 

 

 



 

Appendix 3 - Concatenate facies and features 

 



 

 



 

 



 

 

 



 

 



 

 

 



 

 

 



 

 

 

Appendix 4 - Machine learning part 

 



 

 



 

 



 

 



 

 



 

 



 

 



 

 



 

 



 

 



 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Appendix 5 -  Plot 2D sections 

 



 

 



 

 

 

 

 



 

Appendix 6 - Plot 3D sections 
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