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Abstract

This thesis explores the performance of machine learning (ML) methods for predicting
facies from seismic attributes for 2D and 3D datasets. It focuses on building, training, and testing
four supervised methods: Logistic Regression, Support Vector Machines, K-Nearest Neighbors,
and Random Forest; and one deep learning method: Neural Network with two hidden layers. A
realistic synthetic facies model with complex depositional systems, and a synthetic seismic cube
from the facies model are used for the comparison of facies prediction performed by the ML
approach with the ground-truth facies distribution. This comparison makes it possible to validate
the ML models’ prediction based on wells and seismic. In addition, the research evaluates the role
of the number of wells and their locations, the impact of seismic data frequency, and the effect of
using various seismic attributes. The most important features for facies prediction are seismic
inversion and relative acoustic impedance. Instantaneous frequency and envelope have little effect
on the accuracy of the ML prediction. Incorporating information about the lateral geometry of the

facies in the reservoir also improves the accuracy of the ML prediction.
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1. Introduction, Objectives, and Thesis Structure

1.1 Introduction

Facies classification is the process of assigning a specific rock type to a particular rock
sample based on the measured features [1]. These features include fossil content, mineralogical
composition, sedimentary structures, and texture description [2]. Knowledge about the facies
distribution in a reservoir is critical in reservoir characterization, exploration, and reservoir
simulation because it can indicate petrophysical characteristics, porosity distribution, and
consequently, permeability values [3]. The most reliable and direct source of information about
facies in the reservoir is core samples from wells. However, core extraction is expensive and cores
not always and not everywhere can be obtained. Moreover, a conventional approach to assigning
facies manually from core samples is time-consuming [1]. For this reason, alternative ways for
predicting facies from indirect sources that can reduce costs without sacrificing the quality of facies

classification are necessary.

Three-dimensional seismic data is one of the most valuable sources of information about
subsurface structure. Specific seismic attributes derived from seismic data highlight specific
information hidden in the seismic data that can help to identify depositional environments (or
facies distribution). For this reason, seismic attributes, which have been developed since the 1990s,
are currently widely integrated into many facies analyses. There are many seismic attributes now
available for various purposes, from prospect identification to detection and characterization of
faults [4]. In this thesis, seismic attributes such as relative acoustic impedance, instantaneous
frequency, and envelope, together with seismic inversion, which can potentially highlight facies
distributions in the reservoir, are utilized for facies classification. However, the large size of the
data requires the implementation of automatic methods that can handle facies classification and

are faster than the current manual interpretation methods.

The development of artificial intelligence (Al) and its application to a variety of problems over
the last decades demonstrate the effectiveness of this method in tasks that include large amount of
data. Machine Learning (ML) and Deep Learning (DL), as parts of Al, have aroused the interest

of many geologists because of their ability to solve geological problems with large data in a



relatively short amount of time. This thesis investigates the ability of the ML and DL methods for

facies prediction from seismic attributes.

A complete validation of the machine learning approach for facies prediction without a ground
truth facies distribution in the reservoir is impossible. For this reason, a realistic synthetic facies
cube, from which we precisely know the facies distribution, is utilized to evaluate the effectiveness
of the ML approach. In addition, the use of the synthetic seismic cube can help to evaluate the role
of seismic data derived from different frequencies, various wells’ locations and their number, and
the impact of noise. The synthetic model involves realistic depositional environments, normal
faults, and folds. Most of the work, including the ML, is done by using Python, and seismic

attributes extraction from seismic data is performed in Petrel.

1.2 Objectives

The main purpose of this study is to evaluate the performance of ML for facies prediction
from seismic attributes.

The specific goals to be covered in this thesis are:

- Building, training, and testing four supervised and one unsupervised ML methods on
seismic attributes for facies classification.

- Evaluating the impact of the number of wells and their location on facies prediction.

- Evaluating and comparing the performance of the ML models for facies prediction when
using seismic attributes derived from different frequencies.

- Estimating the role of seismic data contaminated with spectral noise.

- Evaluating the role of additional features, such as the facies lateral geometry, for ML facies

prediction.

1.3 Thesis structure

This thesis contains 9 chapters. Chapter 1 describes the dataset. Chapter 2 explains the
theoretical background of the above-mentioned ML methods: Logistic Regression (LR), K-
Nearest Neighbors (KNN), Support Vector Machines (SVM), Random Forest (RF), and Neural
Networks (NN). Chapter 3 includes information about the software tools and Python libraries used



for the analysis. Chapters 4 and 5 describe the workflow which is divided in two main parts.
Chapter 6 presents the results of the facies prediction. Finally, the discussion, future work, and

conclusions are presented in Chapters 7, 8 and 9 respectively.



2. Dataset description

This chapter describes the dataset used in this thesis, which comprises a realistic facies
model and, derived from it, seismic cubes and seismic attributes. All these data were provided by
SLB. A detailed description of the dataset, including depositional environment, geological
structure, and a short description of the facies and seismic cubes generation, are presented in the

following sections.

2.1 3D facies cube and its sections

The synthetic facies cube provided for this study covers an area of 39.5 km2. The vertical
range of the cube is presented in two-way travel time (TWT) and ranges from -2000 ms to -2700
ms (Figure 1). To simplify the study, we assume that the time and depth domain are equivalent.
The Z axis is either two-way travel time or depth in meters. Therefore, a constant VP velocity of

2000m/s is assumed.

Facies

[ Coarse sand
[ ] Sand
[ Fine sand

[ Shale
[ Carbonate

Figure 1. 3D facies cube. Axes are in meters

The facies cube includes several types of depositional environments, such as meandering-

deltaic and shoreline systems. The upper part of the reservoir consists of meandering-deltaic



deposits with a series of interbedded fine and medium-grained sandstones (FS, S), shales (Sh), and
thin layers of coarse sandstones (CS). The sediments of the meandering channels and delta are

unconformable and erosive (Figure 2).

e ¢ Caris e o
4000 4000
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R Ly S [ ] Fine sand
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Figure 2. Depth slice through the facies model showing channel deposits. Axes are in meters.
The black line S-S’ is a navigation of the section in Figure 4. The black line A-A’ is a navigation
of the section in Figure 5.

The lower part of the reservoir is a shoreline depositional environment that is represented
by thick and conformable layers of coarse, medium, and fine-grained sandstone and shale (Figure
3). The base of the lower part of the reservoir consists of interbedded thin layers of carbonates,

shales, and sandstones.
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Figure 3. Depth slice through the facies model showing shoreline deposits. Axes are in meters.

Figure 4 shows an E-W cross-section S-S’ through the facies cube, including the above-

mentioned deposits and the separation of the lower and upper zones of the reservoir.
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Figure 4. Cross-section S-S’ through the facies model. A black line divides the reservoir into two
zones: the upper zone and the lower zone. The navigation of the section is shown in Fig. 2. Axes
are in meters.



The area underwent extension which resulted in the formation of three normal faults. Two
of these faults have a NW direction, and one fault is oblique to them with a NE direction. The
faults divide the area into three segments. The faults are post-depositional, meaning that the
extension took place after the deposition of the sediments. The vertical section A-A’ shown in
Figure 5 is offset entirely by the largest NW normal fault which caused upward displacement of

the footwall on the SW side and downward displacement of the hanging wall on the NE side.
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Figure 5. Cross-section A-A’ through the facies cube and across a NW-SE normal fault. Axes
are in meters. The navigation of the section is shown in Fig. 2 as the red line A-A’.

2.2 The description of the dataset generation and seismic attributes

As mentioned earlier, the three-dimensional facies model, the seismic cube, and the seismic
attributes were provided by SLB for this study. A short description of the facies and seismic cubes
generation is given below.

First, the facies model is stored in a 3D grid which was populated stochastically with sonic,
density, and porosity properties whose values were generated using geostatistical tools. The range
of values for each property and for each facies were taken from the literature. From the simulated
sonic and density properties, the acoustic impedance was calculated. The synthetic facies model,
as well as the impedance cube, are regarded as ground-truth facies and acoustic impedance. Thus,



we can compare and verify the predicted values from the ML methods with the ground-truth values
of the synthetic model.

When it comes to the seismic cube, the process started with the acoustic impedance
property, which was converted into a 3D SEGY cube. Then, the 3D seismic cube was derived from
the acoustic impedance 3D cube using a Ricker wavelet with a frequency of 25 Hz. Moreover, in
this research, | explored the role of various seismic frequency ranges on ML facies prediction
performance. To do this, Ormsby wavelets with a set of different frequency ranges 10-60 Hz, 10-
80 Hz, and 10-100 Hz, were used for the modeling of additional seismic cubes (Figure 6).
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Figure 6. Time-section through the seismic cube. This is the lower part of the reservoir along
section S-S” in Figure 2.

However, seismic data give primary information about the subsurface structure rather than
revealing facies distribution in reservoirs. Based on amplitudes, seismic datasets are used for
mapping subsurface stratigraphic and structural features. In contrast, seismic attributes obtained
from seismic data can help identify characteristics of prospects such as depositional environments,
sequence boundaries and unconformities.

There are multiple seismic attributes available, and they can be divided into two groups:
geometrical and physical attributes [4, 5]. The geometrical attributes, for example, variance and
edge evidence, can be utilized for the interpretation of the seismic data and the mapping of features

such as sequence boundaries, discontinuities, and faults. Physical seismic attributes, such as



spectral decomposition, root mean square amplitude (RMS), and instantaneous phase, are aimed
at highlighting the hydrocarbon present in the reservoir and identifying coarse-grained facies [4,
6].

Facies delineation can be obtained from physical attributes. One of the physical properties
is the relative acoustic impedance (Rel Al) which is calculated by integration of the seismic trace.
This seismic attribute is typically used for the indication of sequence boundaries, lithology, and
hydrocarbons. Extraction of the relative acoustic impedance from seismic is a computationally
inexpensive and straightforward process, unlike the building of seismic inversion. Low values of
relative acoustic impedance can be associated with sandy intervals, while high values are related
to shales and sequence boundaries [5]. A time section through the relative acoustic impedance
cube is shown in Figure 7.

Other seismic attributes used for facies classification are envelope and instantaneous
frequency. Sweetness is aimed at highlighting coarse-grained sand intervals. This attribute is
defined as the ratio of the trace envelope and the square root of the average frequency. According
to [7], the envelope is a powerful attribute for detecting channel deposits. Instantaneous frequency
is defined as the time rate of the instantaneous phase change and is usually used for detecting thin
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Figure 7. Time section through the relative acoustic impedance cube. This is the lower part of the
reservoir along section S-S” in Figure 2.



Seismic inversion is aimed at extracting the acoustic impedance from seismic data.
However, this process is not straightforward and non-linear, thus making the inversion
computationally expensive. If computed properly, seismic inversion is a robust technique for facies
identification. A time section through the seismic inversion is illustrated in Figure 8.
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Figure 8. Time section through the seismic inversion cube. This is the lower part of the reservoir
along section S-S in Figure 2.

Finally, seismic data contaminated with noise can have a negative impact on facies
prediction. To evaluate the role of noise, the seismic data with spectral noise was provided for the

analysis (Figure 9).
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Figure 9. Time section through the seismic cube with spectral noise. This is the lower part of the
reservoir along section S-S” in Figure 2.



The description of how these data were used for training ML models, their verification,

and facies prediction is presented in Chapter 4.



3 Machine Learning Theoretical Background

3.1 Supervised ML methods (binary, multi-class, regression)

Supervised machine learning is the learning paradigm (algorithm) that processes the
training dataset consisting of the observed data (or input data) and the dependent variable (or
output data) for every record [8]. The learning procedure uses these data and builds a model that
identifies the underlying relationship between the observed data and the dependent variable.
Trying to minimize the difference between input and output in the training dataset, the model
optimizes its parameters. Finally, the model with the upgraded parameters predicts the output data
with some degree of uncertainty for any newly observed data [9].

The dependent variable can be represented as a continuous numerical or categorical value.
A supervised machine learning algorithm uses regression or classification techniques, respectively.
Categorical means that there is a certain number of outputs (or discrete variables). Classification
means that the variables are classified into one of two (binary classification) or more (multi-class
classification) classes. An example of binary classification can be spam detection when the model
can tell us whether an email is a spam or not. A good example of a multi-class task is identifying
the facies distribution based on well logs. Classifiers create a boundary that divides the region into
areas equal to the number of classes. The boundary line represents the equal probability between
classes. For binary case classification, there is only one boundary line (Figure 10a). An example
of multi-class classification is shown in Figure 10b, where each boundary classifier distinguishes
a single class from the remaining data.

In contrast, a regression technique predicts the output having a continuous nature (Figure
10c). This method tries to approximate the function f for an input data x that generates the output
value y minimizing the error between the model and the data. A good example is predicting plane
ticket prices based on the season and destination.
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Figure 10. Supervised ML types of problems: (a) Binary classification model where each
combination of x1 and x2 gives the yellow or blue target value. (b) Multi-class classification
model where every combination of x; and x. gives yellow, blue, or green classes. (c) Regression
model where the regression line predicts the target value y from input values x; (modified from

[10]).
Facies prediction from seismic attributes is a multi-class classification problem because we
are dealing with five facies classes: coarse sand (CS), sand (S), fine sand (FS), shale (Sh), and

carbonate (C).

There are multiple methods used for multi-classification problems: Classification trees,
Random Forests, K nearest-neighbor, Logistic Regression, Support vector machine, etc [11]. The
decision of which ML algorithm to choose depends on several factors. First, as discussed earlier,
if the classification is based on known classes, the analysis should utilize supervised ML
algorithms. Secondly, the size of the training dataset, its quality, and whether the data is structured
or unstructured provides insight into which methods can give more reliable results. Poor-quality,
inadequate and unprocessed data will lead to poor training of supervised methods. Thirdly, the
number of features used for training can directly affect the outcome. Once the number of features
is finalized and approved, the choice of machine learning techniques should start from the simplest
models, such as Linear Regression or Logistic Regression, which take less time for training but
also are less flexible. Complex models, in contrast, will take more time to learn, however, they can
be a good investment for the accuracy of the output. The final choice of ML algorithms depends
on finding a balance between simplicity and flexibility, in other words, between bias and variance.

The definition and importance of these two parameters is discussed in section 3.3.2.



3.1.1 Logistic Regression

The name ‘regression’ in a Logistic Regression model can be misleading because, under
the term regression, it is assumed that the dependent variable is continuous in nature. Logistic
Regression is a statistical classification model that is used to predict categorical or binary variables.
The term Logistic refers to ‘log odds’, the modeled probability ratio. The model is similar to a
linear regression model; however, it estimates the probability of the occurring event [12]. Thus,
the dependent predicted variable is bounded between 0 and 1. To accomplish this, Logistic
Regression uses a sigmoidal function. Mathematically, the sigmoidal function can be expressed as
[12]

1
1+e™™

fx) = 1)
where e (or epsilon) is a base of the natural logarithms or ‘Euler’s number’.
This formula can be rewritten to express the probability of the outcome Y given the knowledge of

the dependent variable X using the logistic function [11].

eBo+ B1x
14 ePo+ B1x (2)

P(Y|X) =
where Bo and P are coefficients that are used to fit a regression line in a In-In space.
Rewriting and transforming formula (2) as the inverse of the logistic function, which is called logit,
allows determining the coefficients o and 1 [11].

logit(P(Y]X)) = In (%) = Bo+ BiX ©)

The logistic curve is non-linear (Figure 11), and the used logit transform (Equation 3) gives
a linear regression, where the probability of success Y for a given X (P(Y|X)) can be calculated
[11]. As input, the logistic function takes the values (Bo + B1X) and gives the output as the
probability of Y given X (P(Y|X)). An example of the logistic function between the X interval -4

to 4 is shown in Figure 11.
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Figure 11. Logistic function for data between -4 and 4.

3.1.2 Support Vector Machines

Support Vector Machines (SVM) have become well-known over the past thirty years after
their introduction by Cortez and Vapnik. Originally, SVM was not introduced for multiclass
classification. However, further development made it possible to implement this method for more
than two groups of outcomes [13]. The purpose of the SVM algorithm is to identify the optimal
line, hyperplane, or plane for 1D, 2D, or 3D space, respectively. This boundary splits a dataset into
two classes. For an easier understanding of the principles of the SVM algorithm, we will consider

a binary classification as shown in Figure 12.



Best hyperplane
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Figure 12. In two-dimensions, the hyperplane is a line with the greatest distance to the nearest
element of each class [9].

SVM relies on data points from two data classes that are located closer to each other.
Drawing a line through the closest data point from each side gives two support vectors. Passing a
classification line that maximizes the distance between the two support vectors and separates
points on each side reduces the upper limit of the error [14]. This is called a hard maximal margin
classification, as shown in Figure 13(a). However, there might be a case when it is not possible to
divide data points completely by a line as shown in Figure 13(b). In this case, SVM introduces
slack variables that concede inaccuracy in the classification. This is called a soft margin
classification. Unlike a hard margin classifier, the soft margin approach misclassifies some data

points close to the boundary while separating most of the data points correctly
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Figure 13. The illustration of a hard (a) and soft (b) margin classifier for a linear SVM [9].

In addition, the SVM algorithm operates with a kernel method in a situation when data
points cannot be separated linearly by a hyperplane and when the soft margin classifier
misclassifies the data. The kernel is an additional use for the SVM that makes it possible to model
nonlinear and high-dimensional models by adding extra dimensions to nonlinear data, therefore,
converting them to linear data. The SVM kernel is applied to map a low-dimensional dataset into
a higher-dimensional space. By introducing additional dimensions, the SVM model achieves better
scalability and accuracy by classifying nonlinear datasets with sophisticated boundaries [9].
Different types of kernels can be utilized, for example, linear, polynomial, and radial. The selection
of a particular kernel depends on the dataset. This variety in the kernel makes it possible to
implement the SVM model in different fields, such as chemistry, geology, weather forecasting,
etc.

3.1.2 K-Nearest Neighbor

K-Nearest Neighbor (KNN) is a non-parametric supervised model used for classification,
regression, and clustering. The algorithm classifies data points based on their closest neighboring
instances. New data points are assigned to one of the existing labeled samples that are dominant
in the locality. The accuracy of the classification can be affected by the number of labeled
instances. For example, when the new data point is surrounded by equidistant samples that belong

to two classes, a new instance can be misclassified. In contrast, the classification accuracy



increases if the unknown data point is located close to samples with one class. For this reason, the
KNN algorithm uses several labeled samples that must be considered during the classification, so-
called, k-nearest neighbors. The one-nearest neighbor is applied when only one labeled data point
is used for classifying a new sample, while the four-nearest neighbors take into consideration the

four closest labeled samples (Figure 14).
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Figure 14. Principle of the k-NN decision rule. The 1-NN rule (a): a new sample is labeled by
using only one labeled instance. The 4-NN rule (b): a new sample is labeled by using four
labeled instances [15].

The distance between new data points and existing labeled samples of a particular class is
extremely important. KNN operates with an Euclidean distance to find the closest instances. The
smaller the distance, the higher the likelihood that unknown samples would be classified into the
same class as its closest known labeled data [15].

The KNN method is computationally expensive due to the calculation of the Euclidean
distance between the new and labeled instances. The larger the dataset, the more distances must

be calculated.

3.1.3 Random Forest

Random Forest (RF), introduced by Leo Breiman, is a decision tree-based ensemble model
that works well for regression and classification problems [16]. The RF combines the output of
multiple decision trees to produce a result. A principal decision tree example is shown in Figure
15.
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Figure 15. Principal structure of Decision Tree (modified from [17]).

Each decision tree takes some random number of bootstrap samples from the training data
so that the number of features and rows in a sample is less than in the initial dataset. Some features
and rows can be used again in another decision tree. Several decision trees are created from
bootstrap samples, and at each node of every tree, the best split is decided based on the provided
features. In the final stage, the output produced by every decision tree is aggregated and the result
is chosen by a majority vote [11]. The schematic structure of the Random Forest algorithm is
shown in Figure 16.
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Figure 16. Schematic structure of the RF algorithm [18].

Random Forest is an effective method for classification prediction. Despite the number of
decision trees used in RF, the model usually does not overfit [19]. The method is fast and performs

a high-accuracy prediction.

3.2 Neural Networks

Neural Networks (NN), or Artificial Neural Networks (ANN) are a part of machine
learning and a core of Deep Learning methods. They are highly efficient algorithms for



classification that can learn from training data and increase the model performance over time. This
technique does not have information about how to solve the problem but can find the best solution,
unlike the supervised ML. In several areas, such as speech recognition and language processing,
the ANN proved to surpass other classification approaches. However, it was only possible to
implement the NN after the introduction of Deep Learning. Initially, the idea of developing
artificial neural networks was designed to imitate the biological nervous system. The human brain
is composed of cells called neurons which are connected to other neurons by axons. A synapse
defines a connectivity strength between neurons. The brain is composed of billions of neurons and
uses the changing synapse signals to learn new activities. A single neutron can make the simple
task of receiving and responding to a coming activation signal and transmitting it to another
receptor neuron [20]. A complex interconnection of neurons allows the system to perform complex
tasks.

The same principle underlies the idea of the Artificial Neural Network. It consists of
computing nodes connected with each other through direct links. The synapse is represented by
the weights of those links. The main goal of the ANN is to modify weights in a such way that they
can reproduce the input and output data. To better understand the concept of the ANN, an example

of a one-layer network is shown in Figure 17.
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Figure 17. One-layer Neural Network.



The first input layer is used for adding inputs from attributes, and every numerical or
categorical attribute is assigned to each node (ni, n2). Then a specific weight is applied to every
node (Ws1, Wa1, W32, Wa2) and they are fed into a hidden layer that is comprised of hidden nodes
(n3, ns). Every hidden node utilizes an activation function that takes a decision of whether a neuron
will be activated or not, and then produces an activation value that is passed to the next output
layer. These values are again multiplied by a new set of weights (wss, wsa). In the output layer,
activation values are processed, and the output values are predicted [20].

If we consider one i node at the n layer, then the activation values a will be [20]:

af = f(X;weight]; - af*”" + bias]") (4)

where a;' is the activation function of node i at layer n; weight;; is the weight between nodes j

and i in the layers n and n-1, respectively; and bias/* is the bias at the node i .

Different types of activation functions are used in multi-layer NN. An activation value is
generated in every node and is represented as an activation function calculated from neutrons in
the previous layer. There are several activation functions, such as sigmoid, linear, and hyperbolic,
which can be utilized when customizing the NN model. When training the NN for facies
prediction, | used sigmoid and softmax activation functions for the first and second hidden layer,
respectively. The reason for using these activation functions is that they are usually implemented
for multi-class classification, as well as they are relatively simple and reliable.

The one-layer neural network utilizes one hidden layer in which relatively simple features
are captured from the input attributes. Including the additional hidden layer in the NN, this makes
it possible to combine two hidden layers and produce more complex features. This ability of the
ANN makes it a powerful method for classification prediction compared with other approaches.
In this thesis, | used a neural network with two hidden layers.

After the output is calculated, the difference between the input value and the predicted
value is computed. The sum of square differences between the last two values is defined as a cost
function. The cost function can be minimized during the training process. If the cost function is
large, then weights in the NN should be updated by utilizing optimizers. This process is called
backpropagation. Once weights are updated, the new cost function is calculated. The formula for

calculating the updated weight is shown below [20].
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weight],,, = weight},,

where weight},,, is an updated weight in the layer n; weight(;, is a previous weight; n is a

learning rate; 5 is a derivative of the loss function with respect to the previous weight.

weightl,
The one cycle of forward and backpropagation is called epoch. This process is iterative until the

cost function is minimized.

3.3 Optimizing the Machine Learning Model

3.3.1 Hyperparameters and hyperparameter tuning

In machine learning algorithms, there are two types of variables: model parameters and
hyperparameters. The model parameters are the parameters that a ML model tunes according to
the provided training dataset, such as weights in neural networks, while hyperparameters are high-
level parameters of ML techniques that are set before the start of the model training [20] and they
are not a part of the final model. Hyperparameters are one of the most crucial parts of producing
effective machine-learning models. It is important to understand how hyperparameters can affect
a model’s performance before training the model.

There are several hyperparameter optimization approaches implemented in the scikit-learn
library: Random Search, Grid Search, Bayesian Optimization, Gradient Descent, etc. The first two
strategies are the most used for hyperparameter tuning. In this thesis, Random Search and Grid
Search are applied as hyperparameter optimization techniques.

Grid Search is a powerful approach to identify the optimal set of hyperparameters for a
given model. In this case, Grid Search tries all possible combinations of the passed
hyperparameters. This approach certainly will find the best hyperparameters, however, it requires
large computational resources and time. Random Search requires less computational time and can
be utilized for a large dataset. This approach can be more efficient in high-dimensional space when

the model has a variety of hyperparameters and some of them are more important than others [22].



In this study, the hyperparameter optimization was applied to the model that showed the best
classification performance which is Random Forest Classifier. A set of hyperparameters of the RF

Classifier is shown in Table 1.

Table 1. The main hyperparameters of the Random Forest Classifier model.

Hyperparameter Description

n_estimators The number of trees inside the RF Classifier

max_features The parameter that looks for the number of features to achieve the best
split

max_depth The maximum height of the trees inside the model

min_sample_split The minimum number of samples in the internal node

min_sample_leaf The minimum number of samples that a node holds after split

criterion The function that defines the quality of a split

N_estimators control the number of trees in the model. The right number of n_estimators
improves the prediction accuracy of a training dataset, however, it may lead to overfitting and
increasing the model’s complexity. By default, the parameter n_estimators is equal to 100. The
parameter max_features sets a limit to the number of features in every tree to predict the target
variable. By default, the parameter max_features is an ‘sqrt’ which means that the number of
features used for splitting is equal to a square root of the number of features. The maximum number
of splits in every tree (max_depth) should be properly chosen to avoid overfitting and underfitting
(see paragraph 3.3.2). By default, the max_depth is None. The min_sample_split shows the
minimum number of samples in the internal node. A small number of samples restricts the tree and
can result in overfitting of the model. The default value is equal to 2. The min_sample_leaf
represents the minimum number of samples that a node holds after the split and a sufficient number
of leaves reduces the risk of overfitting. The default number is equal to 1. As explained in Table
1, the hyperparameter criterion measures the split quality, and the default value used in the thesis

is ‘gini’ which means the optimum split is based on a gini impurity criteria is calculated as follows

[9l:
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where j is the number of classes, and P is the probability of each data point of class i.
Since hyperparameter optimization relies on a training dataset and considers multiple
combinations of it to evaluate the best model’s performance, the process can lead to overfitting.

Below we explain model overfitting or underfitting.

3.3.2 Overfitting and Underfitting

Overfitting is an essential problem of the supervised machine-learning techniques and takes
place when the model shows a low error for the training data but has a poor performance for the
testing dataset. In addition to the reasons mentioned earlier for overfitting, a noisy dataset and
insufficient training dataset size may cause this problem [23]. The complex nonlinear and
nonparametric models with large flexibility usually tend to be overfitted. Overfitting is
characterized by a high variance and low bias (Figure 18). These terms are critical for analyzing
any model performance.

Bias is a term describing the difference between the average of the model’s prediction and
the actual value of the dataset. VVariance represents the amount of variation in the model prediction
for different training datasets.

Underfitting takes place when the model is oversimplified and unable to represent the
relationship between the attributes and targets. Underfitting is the opposite of overfitting.
Underfitting leads to a high error during the training and testing process, and it usually takes place
in a small dataset. Collecting additional data, using more complex models, and choosing proper
features can tackle the problem. Underfitting is associated with low variance and high bias and is
shown in Figure 18 [24].
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Figure 18. Examples of overfitting (a), underfitting (b), and a good balance between the data and

model (c). Blue points represent training data, and the red line is the model [24]

It is essential to achieve a correct balance between variance and bias because an increase

in variance results in a decrease in bias and vice versa. The model that has low bias and low

variance produces more accurate predictions and, consequently, reduces the total error. The bias

and variance trade-off are shown in Figure 19 [25].

Error

Underfitting zone Overfitting zone

Total Error

Variance

Optimum Model Complexity

= >

Model Complexity

Figure 19. Bias and variance trade-off for the case of underfitting and overfitting (modified after

[25])

The total error is the sum of variance and bias and can be expressed as:

Total error = Variance + Bias? + Irreducible Error

(7)



where the Irreducible Error is the error that represents the noise of the dataset.

3.3.3 Cross-validation

Cross-validation is a popular method for evaluating ML models and testing their
performance. The algorithm is based on randomly partitioning the dataset into a K number of
equally sized subsets, training a model on a K-1 number of subsets, and testing it on the remaining
subset. Cross-validation is an iterative method and repeats the workflow for the rest of the dataset.
For a better understanding, we will use a dataset that is split into three samples (S1, Sz, Ss). During
the first iteration, samples Sz and Sz are used to train a model, and sample S; is utilized for testing.
The model error E; is calculated for the first sprint. Similarly, the model is trained for samples S:
and Sz, tested for the S subset, and E> error is computed. Ultimately, samples Si, So, and S3 are
used for training and testing. The value of the overall error is the average of the three obtained
errors E1, E2, and Es. This example is called three-fold cross-validation (Figure 20).
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Figure 20. Three-folded cross-validation [20].

It is essential to choose a proper number of folds in cross-validation because a small value
can lead to increasing bias and generalization error. On the other side, a high number of K-folds
may result in decreasing bias but increasing variance. In general, the number of K-folds varies
between three and ten and depends on the size of the dataset. In this thesis, cross-validation is used

when tuning hyperparameters for the Random Search and Grid Search models. However, because



the training of the ML models is done by using three to seven wells comprising approximately 2-
5% of all data, the use of cross-validation on training and validation can be misleading and increase
bias. For this reason, the models’ performance is evaluated by comparing the fl-scores of the
testing set. An explanation of the F1-score and other performance evaluation parameters is

provided below.

3.4 Evaluation performance for classification

The evaluation method is crucial in estimating the classification performance of a model
when executing training and testing. In classification, the performance is presented as a
comparison between the predicted class and true class. The summary of the comparison is a matrix
called a confusion matrix or contingency table [26]. This matrix shows which classes are
misclassified by a model.

The concept of the confusion matrix is the same for binary and multi-class problems. To
better understand this matrix, we will consider a binary classification with a positive P class and a
negative N class. The trained model takes unknown samples to predict one of the two actual

classes. The illustration of the confusion matrix is shown in Figure 21.

True/Actual Class
Positive (P) Negative (N)

9 True Positive | False Positive
a

_"C; mTrue (T) (TP) (FP)

o 8 . .
o O False Negative | True Negative
nl: False (F) (FN) (TN)

P=TP+FN  N=FP+TN

Figure 21. A confusion matrix for binary classification [26].

This contingency table is utilized to calculate the main classification metrics. Accuracy is
one of the most common parameters for the evaluation of classification performance, and it is the

fraction of correctly classified samples and the total number of samples.



TP+TN

Accuracy = —— (8)
TP+TN+FP+FN

where TP is the number of properly identified positive class samples, TN is the number of correctly
classified negative samples; FP and FN are the numbers of incorrectly classified positive and
negative samples, respectively.

Precision is the ratio between the number of correctly classified positive values to the total

number of samples classified as positive.

TP
TP+FP (9)

Precision =

The recall is a parameter that is measured as a proportion of instances classified as positive

and a sum of true and false negative samples (the total number of positive samples).

Recall = —> (10)
TP+FN
F1-score is the harmonic mean between the recall and precision values.
F1score = 2(Precision -Recall) (11)

Precision+ Recall

Some of the above-mentioned metrics are vulnerable if the dataset is imbalanced which
means that instances of some classes exceed the number of other classes. If the dataset is
imbalanced, accuracy is not the correct metric for classification performance. Using the accuracy
metric for this case can lead to a misleading interpretation of the prediction. In this case, it is
recommended to use weighted parameters, such as F1-score, which give to the less presented facies

higher weight. In this thesis, the F1-score is used for evaluating the ML models “accuracy”.



3.4 Software Tools and Libraries

In this section, an overview of software tools, their libraries, and modules is described. It

Is important to use stable and compatible packages to avoid any possible conflicts and errors while
running code.
All calculations in this thesis are done in the operating system Windows 10. Visual Studio Code
(VS Code) made by Microsoft is used as a code editor and can be utilized with many programming
languages. VS Code is a very popular tool for running, coding, and debugging. It is also an open-
source and free project for students, and regular stable updates make it possible to utilize this tool
with the latest version of programming languages, such as Python. In this study, the VS Code 1.78
version is used.

Python is a powerful open-source programming language. Being based on object-oriented
paradigm concepts, the language offers many different libraries and modules that are extremely
popular among data scientists. The reason for Python’s popularity is the simplicity of coding and
easily understandable syntax. In this thesis, Python, with a stable version of 3.9.7, is used. The
Python tool can import a large variety of data science-related libraries that can help to perform ML
applications and tasks. These libraries are Pandas, Matplotlib, NumPy, Scikit Learn, TensorFlow,

etc. An overview of the libraries is shown in Table 2.

Table 2. An overview of libraries used in Python and their versions.

Library Version
Matplotlib 3.4.3
NumPy 1224
Scikit Learn 0.24.2
TensorFlow 2.12.0
Pandas 1.3.4
Plotly 55.0
Seaborn 0.11.2

NumPy or Numerical Python is a library that aims to work with array objects and operates
with many mathematical functions. In this thesis, NumPYy is used to perform calculations on one-

dimensional and two-dimensional arrays. For visualization of these arrays, | used several libraries



such as Matplolib, Plotly, and Seaborn. In addition to arrays, the DataFrame and Series structures
were used in this thesis. Series is a one-dimensional array with homogeneous data, while
DataFrame is a two-dimensional structure with heterogeneous data. The DataFrame and Pandas
are like the table and Excel program, respectively.

Scikit Learn is a Data Science and Machine Learning library containing different
algorithms for regression, classification, and clustering, among others. This library has many tools
for optimizing and improving supervised ML models. TensorFlow is used for the Deep Learning
and Neural Networks methods in this thesis [27].

In addition to the above mentioned libraries, | used several specific tools for loading and
handling SEG-Y files that store geophysical data (seismic and its attributes). These libraries are

developed by Equinor (Table 3).

Table 3. An overview of the specific Python libraries for SEG-Y data and their versions.

Library Version
Segyio 1.9.10
Segysak 0.3.4

3.5 Standardization
Some machine learning methods are sensitive to the feature scale, and this can affect the models’
performance if, for example, the models are distance-based such as KNN and SVM, where the
classification is performed by measuring the distances between new and labeled instances. As a
result, some features with larger scales can dominate over others [28]. By bringing all features to
a similar scale, it is possible to assure all features contribute to the facies classification equally.
There are different techniques for feature scaling, and in this study, the method called
standardization is used. Standardization is a feature scaling approach that transforms data in such
a way that their distribution has mean and standard deviation equal to zero and one, respectively.

Equation 12 shows how to scale feature values by standardization.

X-u (12)

standard=——-
g



where Xstandara 1S the standardized value of X from the feature dataset, p is the mean of the feature
dataset, and o is the standard deviation of the feature dataset.

As discussed in Chapter 5 ‘Data Analysis’, features such as Seismic, Seismic Inversion,
Relative Acoustic Impedance, Instantaneous Frequency, Envelope, and Geological Time, have a
different scale and can affect the ML model performance. For this reason, the standardization was
applied to all features used in this thesis.



4 Methodology

This chapter describes the methodology, which comprises three parts. The first part gives
information about dataset preparation. The second part describes the workflow of what type of
analysis was performed for the given dataset. Finally, the third part describes the machine learning

workflow implemented for the prepared data.

4.1 Dataset preparation and analysis workflow

The composite subsurface geometry of a reservoir, together with the presence of various
deposits, makes the facies prediction more challenging. For this reason, several 2D vertical
sections and one 3D cube with various reservoir geometries are used for facies classification. |
started with a facies section that is divided into the lower and upper zones, and these zones were
analyzed separately. This is because, in the lower zone, facies are homogeneous and consistent
laterally, while in the upper zone, facies are thin and inconsistent. In addition, | used a section that
contains a normal fault that divides the reservoir into two parts. Moreover, to test the ML benefits
and challenges, | used a three-dimensional cube also containing a normal fault. The navigation of

the two sections and the 3D cube are shown in Figure 22.
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Figure 22. Depth slice through the Facies cube with the navigation of the sections and the 3D
cube used in this analysis. The black line S-S’ is the navigation of the section with the lower and
upper zones. The blue line A-A’ is a navigation of the section with the normal fault. The red
square ABCD is a navigation of the 3D sub-cube used for the NN analysis.

In total, there are four cases considered in this study: Cases 1 and 2 are the lower and upper
reservoir zones in section S-S’, respectively. Case 3 is the lower reservoir zone in section A-A’.

Case 4 is the lower reservoir zone in the facies sub-cube. Cases 1 to 4 are shown in Figure 23.
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Figure 23. Four cases considered in this study. Case 1 is section S-S’ with the lower reservoir
zone. Case 2 is section S-S’ with the upper reservoir zone. Case 3 is section A-A’ with the lower
reservoir zone offset by a normal fault. Case 4 is the lower reservoir zone in the facies sub-cube.

The use of different composite geometries helps to understand whether machine-learning
methods trained on a few wells can predict facies classification accurately on a 2D or 3D dataset.

The facies classification prediction is based on seismic data, its attributes and seismic
inversion. The analysis starts with the application of ML to the 2D sections, namely for the lower
and upper zones. | started with the following data: seismic, relative acoustic impedance, and
seismic inversion. These data were used as features and the facies as labels.

In order to apply the ML models for facies classification, | extracted from each case several
traces which were further utilized as synthetic well-logs. The training and validation process was
performed for these synthetic well-logs, and the ML testing for the cross-section and the subcube.
Since it is possible to extract any number of well traces, | investigated the role of the number and
location of traces (or wells) on the facies prediction performance. The minimum acceptable
number of traces (or wells) was selected from the condition that the ML model performance should
exceed a threshold of 75%.

Following that, | evaluated the role of various frequencies, such as Ricker wavelet (25 Hz)

and three Ormsby frequencies (10-60, 10-80, 10-100 Hz), which were used for synthetic seismic



processing. The use of different frequency ranges can increase or decrease the ML models
performance in thick or thin-layered reservoirs.

In the real world, seismic data acquisition is usually accompanied by noise coming from
several sources such as acquisition, processing, cultural noise, weather, etc. For this reason, in this
study, I checked if ML can handle noisy data and how noise can affect the facies classification.

After that, additional seismic attributes, such as Envelope and Instantaneous Frequency,
were incorporated into the analysis. As mentioned earlier, seismic inversion can be
computationally expensive and is not as straightforward as, for example, seismic attributes, such
as relative acoustic impedance or complex attributes. So, | estimated the feasibility of using
seismic attributes and compared their performance with the seismic data, and seismic inversion.

Finally, incorporating extra information about the geological structure of the reservoir can
improve the facies prediction. These data can be obtained from different methods. One of the
techniques was described and implemented in [29] where seismic horizons or sequence boundaries
are used. In this study, the geological time property was considered as another type of data. This
property was incorporated in the facies prediction as an additional feature, and it was used for the
lower and upper zones. The overview of the described workflow is shown in Figure 24.



Figure 24. The overview of the performed analysis for the lower and upper zones of the reservoir
in cases 1 and 2.

As the calculations for the lower zone and the upper zone are completed along section S-
S’, and the minimum number of synthetic well-logs with the appropriate frequency was determined
for both zones of the reservoir, the research continued by taking into consideration section A-A’
with the lower zone offset by a normal fault, and the 3D small cube with the lower zone. For these
two cases, all mentioned seismic attributes, together with seismic inversion, were used for facies
classification. Geological time was not used in these cases. The following section explains the

general machine learning workflow.



4.2 Machine learning workflow

The general workflow carried out in this thesis is shown in Figure 25. The workflow is
designed to accomplish the aim of the study, which is to explore the ML opportunities for facies

classification based on seismic data, seismic attributes, and seismic inversion.

Dataset description

Data processing and

preparation

Training set Validation set Test set

Machine learning
models selection and
training
Evaluating model Is the model yes Einalinodel
erformance performance _
8 acceptable? prediction
no
Optimize model by
hyperparameter tuning

Figure 25. Machine learning workflow of this study.

Once the processing and preparation of the data were completed, the data were divided into
the training, validation, and testing subsets. The extracted well-logs from the sections of facies and
features were used as training and validation subsets, and their proportion was selected as 80/20.
So, for example, for three wells used for building and training the ML models, 80% of data were
used for training and 20% for validation. When various machine learning models were built and

trained, the rest of the facies traces in the section were used for testing the ML models.



Having a synthetic model and, consequently, the ground-truth values of facies, makes it
possible to evaluate the prediction accuracy. The comparison of the facies prediction was made by
utilizing a difference map that subtracts the predicted facies values from the actual values. If the
predicted value is the same as the actual one, the result is true; otherwise, the result is false.

The workflow, shown in Figure 24, was implemented for the lower and upper zones (for
cases 1 and 2). The main goal of this part is to evaluate the role of the number of wells, frequency
ranges, spectral noise, and additional features. For this reason, the analysis is done for baseline
models, such as the LR, KNN, SVM, RF, and NN, which means that the hyperparameter tuning
are not applied for these scenarios. For these parts, the evaluation is performed by using the overall
F1-score of the ML models and F1-score for each facies. After the analysis is completed, and the
number of wells, frequency range, and the role of using additional features is determined, the ML
process for facies prediction is applied to the other two cases, the section A-A’ with the lower zone
(case 3), and the seismic cube with the lower zone (case 4). In these regions, | performed the

models’ optimization by utilizing hyperparameter tuning and using all given features together.



5 Data Analysis and Processing

Data analysis and processing transforms raw input data into a usable form, highlighting
valuable information, and identifying hidden patterns to make them more informative. This step is
an essential part of the Machine Learning workflow because the processed data are then used for
building the ML models. Clean data also improves the ML models’ performance by reducing bias.

In this chapter, the exploratory analysis of the input facies and seismic features is given.

5.1 Exploratory facies analysis

The facies dataset of cases 1, 3 and 4 (lower reservoir zone) consists of five facies: coarse
sand (CS), sand (S), fine sand (FS), shale (Sh), and carbonate (C), while the datasets of case 2
(upper reservoir zone) consists of four facies: coarse sand (CS), sand (S), fine sand (FS) and shale
(Sh). A detailed description of the facies and their distribution is given in Table 4. In addition,
histograms showing the facies distribution, based on the data from Table 4, are shown in Figure
26.

Table 4. Summary of the facies presence in cases 1 to 4.

) The presence of facies in study cases (case), %
Facies Label Code
Case 1 Case 2 Case 3 Case 4
Coarse Sand CS 0 19.2 0.6 21.4 23.7
Sand S 1 12.8 29.6 20.3 26.7
Fine Sand FS 2 421 35.7 38.4 28.1
Shale Sh 3 23.7 34.1 18.9 174
Carbonate C 4 2.3 0 1.0 4.1

In addition, histograms showing the facies distribution, based on the data from Table 4, are
shown in Figure 26.
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Figure 26. Distribution of facies presence in cases 1, 2, 3 and 4.

Cases 1, 3 and 4 contain the lower part of the reservoir, while case 2 has the upper part of
the reservoir. As mentioned in Chapter 2 (Dataset description), the facies of the lower part are
thicker and unconformable in comparison to the facies from the upper part.

Cases 1, 3, and 4 have a similar distribution, with predominance of fine sand (FS) which is
42.1%, 38.4% and 28.1%, respectively. The presence of coarse sand (CS) and shale (Sh) in these
cases is also almost the same and is approximately 20%, while the carbonates are represented only
by thin layers at the base of the section, and their proportion is around 1-4%.

An interfingering of thin layers of fine sand (FS), sand (S), and shale (Sh) mainly
characterizes case 2. The presence of coarse sand does not exceed 1%.

The facies distribution from these four cases shows that the dataset is imbalanced, meaning
that some facies are predominant compared to others which can affect the training process. Dealing
with imbalanced data is an essential part of data processing, as it can decrease bias and improve
ML model predictability.



Different approaches are developed for addressing the imbalance dataset problem, and the
most popular are oversampling and undersampling [30]. Undersampling is a technique that
identifies the minority class and duplicates examples, while oversampling removes examples from
the majority class. In addition, some machine-learning methods, such as Balanced Random Forest
Classifiers, can handle highly imbalanced datasets because the model considers class weights
making the methods cost-sensitive. Moreover, the majority class is down-sampled, thus the

decision trees are built and trained on a balanced dataset [30].

5.2 Exploratory features analysis

Along with the facies dataset, the information about features and their distribution is also
essential when deciding about feature engineering and implementing optimal machine learning
methods. For example, features skewness, i.e., the asymmetry of the distribution, can result in
facies misclassification. In addition, skewness gives insight into the presence of outliers and more
importantly, the shift of the mean value which is quite essential for prediction performance.
Outliers are the data that differ significantly from the rest of the dataset and usually are caused by
the human factor, recording errors, etc [30]. The following plots were constructed for better

visualization of seismic attributes for every zone.

5.2.1 Casel

For the first zone, seismic, seismic inversion, relative acoustic impedance, instantaneous
frequency, envelope, and geological time, are considered for facies classification. Their
distribution is shown in Figure 27.

The distributions of seismic inversion and envelope are skewed to the right, while seismic
is skewed to the left. Relative acoustic impedance and instantaneous frequency are normally
distributed with minor skewness. The geological time distribution is uniform. As mentioned
earlier, the skewness can cause misclassification while using ML models based on Euclidean

distances.
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Figure 27. Distribution of seismic data and seismic attributes in case 1.

In addition, to detect inadequate values in the dataset via histograms, the boxplots of all
features for case 1 are presented in Figure 28. The red line inside the box shows the data median,
and the height of the black box shows the range of 50% of the data. Two horizontal lines outside

the box indicate the range of 95% of the data, while the black points outside the lines detect outliers
[31].
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data and its attributes used for facies classification in case 1.

all values of the features do not go beyond their physical

For case 2, the same features as for case 1 were used for facies classification: seismic,

seismic inversion, relative acoustic impedance, instantaneous frequency, envelope, and geological

time. The distribution of these features is shown in Figure 29.

In this area, the distribution of seismic, relative Al, and instantaneous frequency is normal,

while seismic inversion and envelope have slightly skewed to the right distribution.
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Figure 29. Distribution of seismic data and seismic attributes features in case 2.

Figure 30 shows the boxplots of the features for case 2. The features, such as seismic,

relative Al and geological time, do not have outliers. At the same time, the outliers in seismic

inversion, instantaneous frequency and envelope do not exceed their physical boundaries.
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Figure 30. Boxplots of seismic and its attributes used for facies classification in case 2.

5.2.3 Case 3

Facies classification of case 3 is performed by using five features together: seismic
inversion, relative acoustic impedance, instantaneous frequency, and envelope. The distribution of
these features is shown in Figure 31. The geological time attribute is not available for this case.

Most of the features have skewed to the right distribution except for seismic and instantaneous

frequency.
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Figure 31. Distribution of seismic data and seismic attributes features in case 3.

A statistical summary of the features in case 3 given as boxplots shows that all features
have outliers, but their values are within the physical boundaries (Figure 32).
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Figure 32. Boxplots of seismic and its attributes used for facies classification in case 3.

524 Case4
Facies classification of case 4 is also made by utilizing five features together: seismic
inversion, relative acoustic impedance, instantaneous frequency, and envelope. The distribution of

these features is shown in Figure 33. Almost all features are skewed either to the left or right.
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Figure 33. Distribution of seismic data and seismic attributes features in case 4.

The data analysis shows that the features used for facies classification have various ranges

and measurement units. For example, the seismic range is between -0.2 and 0.2, while the seismic

inversion range varies between 7500 and 11700. As mentioned earlier, different ML models are

sensitive to the features’ scale. Scaling can affect the models’ performance if, for example, some

features with a larger scale dominate over other features with a lower scale [28]. So, to avoid

misclassification of facies, standardization was applied to all features. The boxplots show that

some features have outliers, however, all of them are within their physical boundaries. The absence

of the outliers that are outside the physical boundaries is explained by the use of synthetic dataset.

However, in the real case, the statistical analysis might identify values that are beyond boundaries

which can decrease the ML models performance.



Results

In this chapter, the results of facies classification from seismic, its attributes, and seismic
inversion, for the four cases described before, are presented.

5.3 Results for case 1

As mentioned in the Methodology chapter, the analysis started with using three features:
seismic, relative acoustic impedance, and seismic inversion. As mentioned earlier, the main goal
of this part is to evaluate the role of the number of wells, frequency ranges, spectral noise, and
additional features such as geologic time. For this reason, the analysis is done for the baseline
models LR, KNN, SVM, RF, and NN, which means that hyperparameter tuning is not applied to

these scenarios.

5.3.1 Baseline models overview

Before performing the analysis of the minimum number of wells necessary for facies
classification, five baseline machine-learning models were built and tested for a random number
of wells in order to choose the ML model that gives the highest global average F1-score. This
model was later used for testing different numbers of wells. Figure 34 shows a comparison of five
baseline models. Four out of five baseline models demonstrate almost the same F1-score; however,
the best performance is observed for the Random Forest Classifier (RF). So, this model was further
utilized as the main model when estimating the impact of the number of wells on facies
classification. Logistic Regression is the least flexible method and has the lowest overall

performance.
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Figure 34. The overall F1-score of the baseline models for case 1.

5.3.2 Evaluating the impact of the number of wells

The estimation of the role of well numbers on facies prediction started for 30 wells and
continued for 15, 10, 8, 6, 5, 4, 3, 2, and 1 well. It is assumed that the higher the number of wells
used for building and training the model, the better the model’s performance. As the Random
Forest Classifier shows the best performance among the used ML models, this model was utilized
for the analysis. The imbalanced proportion of the facies in the training and validation sets was
overcome by incorporating class weighting which changes the weight of each class and assigns a
higher weight to undersampled data.

As mentioned earlier, the minimum acceptable number of wells must give a threshold
accuracy (overall F1-score) of 75%. Case 1 consists of 151 traces, so for 30 wells, every fifth or
sixth trace is used as a well, and for 15 wells, every tenth or eleventh trace is used as a well. The
model building, validation, and testing are based on three features: relative acoustic impedance,
seismic, and seismic inversion. Figure 35 shows that the overall F1-score of at least 75% for the

test set can be achieved by using only three wells.
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Figure 35. The impact of the number of wells on the model’s F1-score for case 1.

The comparison of the model’s performance, namely the facies prediction section and the
difference map for 15, 5, and 3 wells, is shown in Figure 36. The results show that the number and
location of the wells influence the accuracy, especially in the thin layers of the reservoir.
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Figure 36. The facies prediction and difference map for case 1 when using: a) 15 wells, b) 5
wells, c) 3 wells. The wells are shown as black lines. The facies prediction by the RF model is
on the left side, and the difference between the true facies and predicted facies is on the right.



5.3.3 Evaluating the role of the seismic frequency range.

The performance of facies classification depends on seismic data derived using various
frequencies: Ricker (25 Hz) and three Ormsby (10-60 Hz, 10-80 Hz, 10-100 Hz) wavelets. A
comparison of the overall F1-score of the Random Forest Classifier model when using seismic
features with different frequencies is shown in Figure 37. The comparison shows that the best
overall accuracy (F1-score) is achieved when using seismic features derived with an Ormsby filter
with a frequency range of 10-60 Hz.
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Figure 37. A comparison of the overall F1-score of facies prediction for the RF model when
using seismic features with different frequencies for case 1.

The comparison shows that the best overall accuracy (F1-score) is achieved when using
seismic data derived with using Ormsby filter with a frequency range of 10-60 Hz.

To identify what impact various frequencies have on each of the facies, the comparison of
the F1-score of each facies by the RF Classifier is presented in Figure 38. The highest F1-score is
achieved from seismic data (relative acoustic impedance, seismic, and seismic inversion)
calculated by using the Ormsby filter with a frequency of 10-60 Hz for Coarse Sand, Fine Sand,
and Shale, thereby following the trend of the overall f1-score. However, for the least presented
facies, such as Sand and Carbonates, the highest F1-score is obtained for the Ricker wavelet with

25 Hz. The difference in the performance of these two facies for the four frequencies is quite



significant. In general, there is no direct relationship between increasing frequency and the facies
prediction for thin layers.
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Figure 38. The F1-score for each of the facies from case 1 that were predicted from seismic
data derived by using the following frequencies: Ricker (25Hz), and three Ormsby (10-60Hz,
10-80Hz, 10-100Hz) wavelets.

The 2D section of facies prediction and the difference map for the tested frequencies is
shown in Figure 39.
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Figure 39. The facies prediction and difference map of case 1 when using seismic features
derived from: a) Ricker wavelet 25 Hz, b) Ormsby filter with frequency range 10-60 Hz, c)
Ormsby filter with frequency range 10-80 Hz, d) Ormsby filter with frequency range 10-100 Hz.
The wells are shown as black lines. The facies prediction by the RF model is on the left side, and

the difference between the true facies and predicted facies is on the right side.



5.3.4 Evaluating the role of using Spectral Decomposition

Including an additional feature such as spectral decomposition can improve the prediction
accuracy for thin layers such as carbonates. To confirm this, three spectral decompositions (30 Hz,
60 Hz, 90 Hz) are used as additional features for facies prediction, together with the features
(seismic, relative acoustic impedance and seismic inversion) derived with the 25 Hz Ricker

wavelet. The results are shown in Figure 40.
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Figure 40. F1-score of each facies in case 1, as predicted from seismic data derived by using
the 25 Hz Ricker wavelet, and spectral decomposition (30 Hz, 60 Hz, 90 Hz) as additional
features added one at a time.

The usage of spectral decomposition of 30 Hz, 60 Hz, and 90 Hz has almost no effect on
the F1-score for coarse sand, fine sand, and shale. However, the spectral decomposition of 90 Hz
and 60 Hz slightly improves the facies prediction of carbonates and shale, respectively.

As demonstrated in the Data Analysis chapter, the prevailing facies in case 1 are fine sand,
shale, and coarse sand, while carbonates and sand are less common. Accordingly, the lowest
performance is gained for carbonates deposits. A similar performance is observed for all ML
methods used in this thesis and can be explained by the lack of data used for training the models
since the thin layer of carbonates is penetrated only by one out of three wells. In contrast, the F1-
score for coarse sand, fine sand, and shale is more than 76%. The facies 2D section of case 1 and

the difference map for Spectral Decomposition 30 Hz, 60 Hz, and 90 Hz are shown in Figure 41
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Figure 41. The facies prediction and difference map of case 1 when using the additional feature:

a) Spectral Decomposition 30 Hz, b) Spectral Decomposition 60 Hz, ¢) Spectral Decomposition

90 Hz. The wells are shown as black lines. The facies prediction by the RF model is on the left
side, and the difference between the true facies and predicted facies is on the right side.

5.3.5 Evaluating the impact of noise for case 1

Figure 42 shows the overall F1-score of facies classification for case 1, calculated by the
Random Forest Classifier model, from data with and without spectral noise.
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Figure 42. F1-score comparison for facies prediction when using data with and without
spectral noise for case 1.

Features contaminated with spectral noise give overall accuracy (F1-score) of 72.5%, while
the performance for the facies predicted from seismic attributes and seismic inversion without
noise, is 82.8%. In general, the results of the ML prediction are expected. The comparison of the

facies derived from features with and without noise is given in Figure 43.
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Figure 43. The F1-score of facies prediction from data with and without noise for case 1. Seismic
data was constructed using an Ormsby 10-60 Hz wavelet.



Spectral noise negatively affects the prediction of every facies. So, when dealing with noisy
data, one should expect a decrease in the efficiency of facies prediction. The 2D facies section and

difference map for seismic data without and with noise are shown in Figure 44.
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Figure 44. The facies prediction and difference map of case 1 when using an Orsmby 10-60 Hz

wavelet, and features: a) without noise, b) with noise. The wells are shown as black lines. The

facies prediction by the RF model is on the left side, and the difference between the true facies
and predicted facies is on the right.

5.3.6 Exploration and comparison of additional features

5.3.6.1 Instantaneous frequency, envelope

As discussed in the previous section, seismic inversion is a computationally expensive and
not straightforward method in contrast to seismic attributes. The analysis of the facies prediction
from the ML model based on seismic inversion together with seismic on one hand, and seismic
attributes (relative acoustic impedance, envelope, and instantaneous frequency) and seismic on the
other hand, is shown in Figure 45. All attributes are derived from the Ormsby filter with a

frequency range of 10-60 Hz.
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Figure 45. The overall F1-score comparison for facies prediction of case 1 when using seismic
and seismic inversion versus relative acoustic impedance, seismic, instantaneous frequency,
and envelope.

The facies performance is slightly better when using seismic inversion and seismic than
when using seismic attributes and seismic. However, the difference is less than 2%. Figure 46
shows the comparison of the F1-score for each facies.
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Figure 46. The F1-score of facies prediction for case 1 from seismic and seismic inversion on the
one hand, and relative acoustic impedance, seismic, instantaneous frequency, and envelope on
the other hand.



The most significant difference, of 17.1% in facies prediction, takes place for carbonates.
The F1-score is only 3.3% for seismic and seismic attributes, and 20.4% for seismic and seismic
inversion. The F1-score for other facies is almost the same, with the exception of sand prediction,
where the prediction by seismic inversion is higher by 8%. Seismic inversion is a critical feature
to correctly identify the carbonates.

So, the main conclusion is that it is possible to predict facies using seismic attributes.
However, seismic inversion is the most important feature for increasing the performance of the
prediction. Figure 47 shows the comparison of feature importance for the RF Classifier model.
The bar plot shows that seismic inversion and relative acoustic impedance are the features that
contribute more to the accuracy of the prediction, with scores of 68% and 59%, respectively.
Envelope and instantaneous frequency contribute to facies prediction almost equally and are
around 20%.

Permutation importance Permutation importance
relai I I I R
N [ N A I

EO_J Eo_" seis_inv
e — 2 NN I I S N
7] envel ]
© | ©
(¥} (¥}
(= (=
m m
§ oo [ :
2 2 N
: © T

sels

0.0 0.1 02 03 0.4 0.5 0.6 0.0 0.1 0.2 03 0.4 0.5 0.6 07
Percentage, % Percentage, %

Figure 47. Features importance for facies prediction of case 1, for seismic and seismic
attributes (left), or seismic and seismic inversion (right) features and the RF model.

5.3.6.2 Geological Time

Incorporating information about geological time as an additional feature improves the
facies prediction. The comparison of the F1-score for the Random Forest Classifier shows that
using geological time together with seismic attributes gives almost the same accuracy as using
seismic inversion (Figure 48). The use of geological time improves the prediction accuracy of
sand, fine sand, and shale. However, for the thinnest layer of carbonates, the accuracy does not

outperform the F1-score when using seismic inversion which is equal to 20.4%.
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Figure 48. Comparison of the F1-score of RF classifier model for facies prediction of case 1
based on seismic and seismic attributes (blue), seismic and seismic inversion (brown), and
seismic, seismic attributes, and geological time (green).

The comparison of the feature importance for these cases shows that geological time plays
an important role in improving the accuracy of the facies classification. The feature importance
for the Random Forest classifier with seismic, seismic attributes, and geological time is shown in
Figure 49. The geological time contributes 23.5% to the accuracy of the facies prediction because
it gives extra information about the geometry of the reservoir. Figure 50 shows the 2D section of
facies prediction and the difference map, for RF models with seismic and seismic inversion (a),

and seismic, seismic attributes, and geological time (b).
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Figure 49. The permutation importance of RF model for facies classification of case 1, and
seismic, seismic attributes, and geological time as features.
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Figure 50. The facies prediction and difference map of RF model for case 1 when using the
features: a) seismic and seismic inversion, and b) seismic, seismic attributes, and geological
time. The wells are shown as black lines. The facies prediction is on the left side, and the
difference between the true facies and predicted facies is on the right.



5.4 Results for case 2

For case 2, the same analysis is performed as for case 1: evaluating the impact of using
different numbers of wells, frequency ranges, and spectral noise, and comparing the facies
prediction from seismic inversion and seismic attributes. The analysis is done using the baseline
ML model that gives the best accuracy among other models for the random number of wells. As

for case 1, hyperparameter tuning of the ML models is not performed.

5.4.1 Baseline models overview

In this part, five baseline ML models are built and tested for a random number of wells:
LR, KNN, SVM, RF, and NN. The model with the best performance is further utilized for
evaluating the impact of various numbers of wells. Figure 51 shows that the best overall F1-score
of 66.1% is achieved by the Random Forest Classifier. The SVM has almost the same accuracy,

but the RF is used as the base ML model for further analysis.
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Figure 51. The overall F1-score of the baseline models for Case 2.



5.4.2 Evaluating the impact of the number of wells

The role of the number of wells on facies prediction is estimated for 30, 15, 10, 8, 6, 5, 4,
3, 2,and 1 well. The analysis shows that the number of wells has an impact on the overall accuracy
of the facies prediction. However, in this case, the threshold accuracy of 75% is not achieved for
any number of wells (Figure 52). This means that when dealing with heterogeneous, thin facies
deposits such as those of the upper reservoir zone, one should expect lower facies prediction

accuracy than with homogeneous, thick facies deposits, as those of the lower reservoir zone in case
1.
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Figure 52. The overall accuracy (F1-score) of facies prediction of case 2 by the RF model with
different number of wells.

It is assumed that the drilled wells penetrate the entire thickness of the reservoir, including
the upper and lower zones. The necessary number of wells for the lower reservoir zone in case 1
was determined to be three (section 5.1.2). Therefore, for the upper reservoir zone and case 2, the
same number of wells is used in further analyses. Figure 53 shows the 2D section with facies
prediction and difference map for 15, 6, and 3 wells. The least accurate facies prediction is located

on the right (eastern) side and top left (western) side of the reservoir (Figure 53).
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Figure 53. The facies prediction and difference map of case 2 when using: a) 15 wells, b) 6
wells, ¢) 3 wells. The facies prediction by the RF model is on the left side, and the difference

between the true facies and predicted facies is on the right.

5.4.3 Evaluating the role of seismic frequency range.

The facies prediction performance depends not only on the features used but also on how

these features were derived. The evaluation of the impact of seismic inversion and seismic

attributes obtained from four different frequencies, Ricker (25 Hz) and three Ormsby (10-60 Hz,

10-80 Hz, 10-100 Hz) wavelets, is shown in Figure 54. This figure shows that the best overall

accuracy is achieved when using features derived with the Ormsby filter with a frequency range

of 10-100 Hz.
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Figure 54. A comparison of the overall accuracy (F1-score) of facies prediction of case 2 for
the RF model when using features with different frequencies.

To identify what impact different frequencies have on each of the facies, the comparison
of the F1-score for each facies for the RF Classifier is presented in Figure 55. The highest F1-score
is achieved from seismic data (relative acoustic impedance, seismic, and seismic inversion)
calculated by using the Ormsby filter with a frequency of 10-100 Hz for all facies: coarse sand,
fine sand, sand, and shale. Moreover, the bar chart shows that the higher the frequency used for
the features, the better the facies prediction performance, with an insignificant difference for the

coarse sand. So, for reservoirs containing thin facies, the higher frequencies give more robust
results.
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Figure 55. The F1-score for each of the facies of case 2 that were predicted by the RF model
from seismic data derived by using the following frequencies: Ricker (25Hz), and three
Ormsby (10-60Hz, 10-80Hz, 10-100Hz).

The 2D section of facies prediction and the difference map for the different tested
frequencies is shown in Figure 56.
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Figure 56. The facies prediction and difference map of case 2 when using features derived from:
a) Ricker wavelet 25 Hz, b) Ormsby filter with frequency range 10-60 Hz, c) Ormsby filter with
frequency range 10-80 Hz, and d) Ormsby filter with frequency range 10-100 Hz. The wells are
shown as black lines. The facies prediction by RF model is on the left side, and the difference
between the true facies and predicted facies is on the right.



5.4.4 Evaluating the role of using Spectral Decomposition

Incorporating spectral decomposition as an additional feature can also increase the ML
model’s performance for heterogeneous reservoirs. For case 2, three spectral decompositions (30
Hz, 60 Hz, and 90 Hz) are used additionally, together with seismic, relative acoustic impedance,
and seismic inversion derived with the use of Ricker wavelet. Figure 57 shows the comparison of

the overall accuracy of the RF model when using spectral decomposition.
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Figure 57. A comparison of the overall accuracy (global F1-score) of facies prediction in case 2
for the RF model when using spectral decomposition (30 Hz, 60 Hz, 90 Hz) in addition to
seismic, seismic inversion, and relative acoustic impedance derived using a Ricker wavelet with
25 Hz.

The best overall accuracy of 73.6% is achieved when using a spectral decomposition of 90
Hz. To check the assumption that spectral decomposition improves the predictability of thin-
layered facies, the comparison of the F1-score for each facies is shown in Figure 58.



Comparison of different Freg

90
&0 Ricker 25 Hz 9.2 80.3 83.2
+ Spec Dec 30 Hz 726 73.7 751
70 1 + Spec Dec 60 Hz 67.2 64 2
L Spec Dec 90 Hz 822 62.0
60 - P 59.3
& 53.7
v 50 -
L]
B 40
-
Ll 3_{1 J
20 1
10 1
°>9 57 24 24
D T T . T T
Coarse Sand Sand Fine Sand Shale

Frequency range

Figure 58. The F1-score for each of the facies of case 2 that were predicted by the RF model
from seismic data derived by using the Ricker 25 Hz wavelet and additional feature spectral
decomposition (30 Hz, 60 Hz, and 90 Hz).

The usage of spectral decomposition of 30 Hz, 60 Hz, and 90 Hz improves the F1-score
for sand, fine sand, and shale. The higher the frequency of spectral decomposition, the better the
facies prediction performance, except for coarse sand, for which the best F1-score is achieved
when using spectral decomposition of 30 Hz. The lack of data in the coarse sand in case 2 explains
this. The predicted facies 2D section and the difference map for spectral decomposition 30 Hz, 60

Hz, and 90 Hz is shown in Figure 59.
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Figure 59. The facies prediction and difference map of case 2 when using the additional feature:
a) spectral decomposition 30 Hz, b) spectral decomposition 60 Hz, and c¢) spectral decomposition
90 Hz. The wells are shown as black lines. The facies prediction by the RF model is on the left
side, and the difference between the true facies and predicted facies is on the right.

5.4.5 Evaluating the impact of noise
Figure 60 shows the overall Fl-score (accuracy) of facies classification for case 2,
calculated by the Random Forest classifier model, from data derived with the use of an Ormsby

filter with a frequency range of 10-100 Hz, with and without spectral noise.
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Figure 60. The overall accuracy (global F1-score) comparison for RF facies prediction when
using data with and without spectral noise for case 2.

Features contaminated with spectral noise give an overall accuracy of 71.1%, while the
performance for the facies predicted from seismic attributes, inversion without noise, is 73.5%.
The comparison of each facies derived from features with and without noise is given in Figure 61.
Spectral noise decreases the facies prediction performance. For example, the RF model fails when
predicting coarse sand on noisy data. However, the difference for other facies is not critical. So,
when dealing with noisy data, one should expect a slight decrease in the efficiency of facies
prediction. The 2D facies section and difference map are shown in Figure 62.
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Figure 61. The F1-score of RF facies prediction from data with and without noise for case 2.
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Figure 62. The facies prediction and difference map of case 2 when using seismic features: : a)
without noise, and b) with noise. The wells are shown as black lines. The facies prediction by the
RF model is on the left side, and the difference between the true facies and predicted facies is on

the right.



5.4.6 Exploration and comparison of additional features

5.4.6.1 Instantaneous Frequency, Envelope, and Geological Time

A comparison of facies performance for the RF classifier when using only seismic and
seismic attributes (relative acoustic impedance, envelope, and instantaneous frequency), versus
seismic and seismic inversion, versus seismic, seismic attributes, and geological time, is shown in
Figure 63. All features are derived with the use of an Ormsby filter with a frequency range of 10-
100 Hz.
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Figure 63. The overall accuracy (global F1-score) for RF facies prediction of case 2 when
using seismic and seismic attributes, seismic and seismic inversion, and seismic, seismic
attributes, and geological time.

Figure 63 shows that using only seismic and seismic attributes for facies prediction gives
almost the same result than using seismic and seismic inversion, namely 65.8%. Incorporating
geological time improves the overall accuracy by 9.2%. So, with the use of seismic attributes
together with geological time, the facies prediction is equal to the threshold accuracy of 75%.

Figure 64 shows the comparison of the F1-score for each facies.
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Figure 64. The F1-score of RF facies prediction of case 2 from seismic and seismic attributes
(blue), versus seismic and seismic inversion (brown), versus seismic, seismic attributes, and
geological time (green).

The use of seismic attributes together with geological time gives the best performance for
sand, fine sand, and shale with 75.2%, 65.1%, and 84.6%, respectively. However, the highest
performance for coarse sand is gained when using only seismic inversion.

So, the main conclusion in case 2 is that it is possible to predict facies using seismic
attributes. However, incorporating additional information about the geometry of the reservoir
(geological time) increases the facies prediction. Figure 65 shows the comparison of feature

importance for the RF Classifier model.
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Figure 65. Feature importance for RF facies prediction of case 2 from seismic and seismic
attributes (left), and seismic and seismic inversion (right).



Figure 65 shows that seismic inversion and relative acoustic impedance are the features
that contribute more to the accurate prediction, with values of 65% and 48%, respectively.
Envelope and instantaneous frequency contribute to facies prediction less than 10%. The
geological time contribution to the facies prediction is around 24%. Figure 66 shows a 2D section
of case 2 with facies prediction and difference map when using seismic and seismic inversion on

one hand, and seismic, seismic attributes, and geological time on the other hand.
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Figure 66. Facies prediction and difference map of case 2 when using the features: a) seismic and
seismic inversion, and b) seismic, relative acoustic impedance, envelope, instantaneous
frequency, and geological time. The wells are shown as black lines. The facies prediction by the
RF model is on the left side, and the difference between the true facies and predicted facies is on
the right.

5.5 Results of case 3

Case 3 belongs to the lower zone of the reservoir and is entirely crossed by a normal fault.
From the analysis of case 1 which also belongs to the lower part of the reservoir, we justified the

necessary number of wells (3 wells) for achieving the threshold accuracy of 75%. Apart from that,



the best performance of facies prediction was achieved when using seismic data derived with
Ormsby frequency 10-60 Hz. So, this information is utilized when applying ML models for facies
prediction in case 3 from five features: seismic, relative acoustic impedance, envelope,

instantaneous frequency, and seismic inversion. Geological time is not available for this zone.

5.5.1 Baseline models of case 3

In this part, five baseline ML models are built and tested for three wells. These ML models
are LR, KNN, SVM, RF, and NN (Figure 67). The location of the wells is random with only one
condition, that wells should not cross the fault. Hyperparameter tuning is applied to the model with
the highest overall accuracy of facies prediction.
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Figure 67. The overall accuracy (global F1-score) of the baseline models for case 3.

The best overall accuracy of 74.8% is achieved for the Random Forest Classifier. Other
ML models such as KNN, SVM, and NN showed slightly lower accuracy, from 74.2% to 72.8%.
The lowest accuracy of 67.3% was obtained for the least flexible Logistic Regression model.
Figure 68 shows the F1-score of each facies predicted by the five ML models.
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Figure 68. Comparison of the F1-score of each facies by the ML models LR, KNN, SVM, RF,
and NN for case 3.

Figure 68 shows that four out of the five ML models failed to predict the least present
carbonate facies, while only the Random Forest Classifier managed to predict this facies. The F1-
score for fine sand is almost the same for all five models, except for Logistic Regression, whose
performance is slightly lower and equal to 76.7%. The RF model has the highest performance
when predicting coarse sand and sand and is equal to 80.8% and 54.9%, respectively. The KNN

model predicts better the shales.

5.5.2 Model optimization

As the RF model gives the best overall accuracy and manages to predict the least presented
facies, hyperparameter tuning is applied to this model to improve its performance. Hyperparameter
tuning is done by applying Random Search and Grid Search methods. Due to time constraints,
other hyperparameter tuning approaches, such as Bayesian Optimization, were not used.

Hyperparameter tuning for the RF model starts with the Random Search that is executed

based on the relevant hyperparameters of the baseline RF model (Table 5).



Table 5. The hyperparameter range and optimal values of the Random Search for the
Random Forest Classifier model for case 3.

Hyperparameter Values Optimal values
n_estimators 200, 400, 600, 800, 1000, 1200, 1400, 1600, 1800, 2000 400
max_features ‘auto’, 'sqrt’, 'log2' ‘auto’

max_depth 10, 120, 230, 340, 450, 560, 670, 780, 890, 1000 890
min_samples_split 1,3,457,9 4
min_samples_leaf 1,2,4,6,8 1

criterion ‘entropy’, ‘gini’ ‘entropy’

The optimal parameters for Random Search are achieved by executing 100 iterations and
3 k-folds cross-validation of the training dataset. This resulted in the improvement of the overall
accuracy of the validation set of the RF model by 2% and equal to 88%. The overall accuracy for
the testing set increased by 0.5%.

Based on the values of the optimal hyperparameters calculated by the Random Search, the
range of values for the Grid Search are chosen (Table 6).

Table 6. The hyperparameter range and optimal values of the Grid Search for the Random
Forest Classifier model for case3.

Hyperparameter Values Optimal values
n_estimators 200, 300, 400, 500, 600 300
max_features ‘auto’ ‘auto’

max_depth 890 890
min_samples_split 2,3,4,5,6 4
min_samples_leaf 1,34 1

criterion ‘entropy’ ‘entropy’

In total, the Grid Search executed 100 iterations with 10 k-folds cross-validation for the
training set. As a result, the overall accuracy for the validation dataset is increased by 2% and is
equal to 90%. The accuracy of the testing set is improved by 0.3% compared with the accuracy

after implementing the Grid Search. Figure 69 shows the comparison of the overall accuracies for



the testing set without hyperparameter tuning, and with hyperparameter tuning using Random
Search and Grid Search.
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Figure 69. Comparison of the overall accuracies for the RF model for the test set of case 3
without hyperparameter tuning, and after hyperparameter tuning using Random Search and
Grid Search.

Figure 70 shows the facies prediction and the difference map by using the RF model with

Grid Search hyperparameter tuning.

Facies prediction Difference map

-2000

-2000 |
-2100 - ;“'es ’ Y 00 - 4
[ Coarse san | rue prediction
-2200 L1 Sand 3 2200 .

[2] Fine sand Pt

- e , 7 False prediction
£ -2300 g % I Carbonate £ —2300
E —2400{ : — = - E -2400

~2500 b | ~2500

-2600 = -2600

20 40 60 80 100 120 20 40 60 80 100 120
trace number trace number

Figure 70. The facies prediction and difference map of case 3 after implementing
hyperparameter tuning Grid Search. The wells are shown as black lines. The facies prediction
by the RF model is on the left side, and the difference between the true facies and predicted
facies is on the right



The difference map shows that the RF model managed to predict well the conformable and
thick facies deposits, even though these deposits are offset by the normal fault. However, in the
transition areas where one facies is replaced by another and consequently are characterized by thin
and interbedded deposits, the ML model’s performance is much lower. This is the case for all
zones and cases studied in this thesis. The main reason for lower performance in thinner deposits
is the difference in vertical resolution between seismic data and the facies deposits. Apart from

that, the most correct facies prediction is in areas close to the well locations.

5.6 Results of case 4

Case 4 is a 3D sub-cube and belongs to the lower zone of the reservoir and is entirely
crossed by a normal fault as Case 3. From the analysis of Case 1, which also belongs to the lower
zone of the reservoir, the optimal wavelet for deriving seismic data was the Ormsby filter with a
frequency range of 10-60 Hz. However, the number of wells and their location are chosen manually
for Case 4, which is 7 wells. As in Case 3, the prediction is made by using five features: seismic
inversion, seismic, relative acoustic impedance, envelope, and instantaneous frequency.

Geological time is not available for this zone.

5.6.1 Baseline models for case 4

In this part, five baseline ML models are built and tested for seven wells. These ML models
are LR, KNN, SVM, RF, and NN (Figure 71). The location of the wells is random, with the only
condition that wells should not cross the fault. Hyperparameter tuning is applied to the model with

the highest overall accuracy (global F1-score) of facies prediction.
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Figure 71. The accuracy (global F1-score) of the baseline models for case 4.

The best overall accuracy of 83.6% is achieved for the Random Forest classifier. Other ML
models, such as KNN and SVM, showed slightly lower accuracy, 81.4% and 82.7%, respectively.
The lowest accuracy of 74.6% was obtained for the least flexible Logistic Regression model.

Figure 72 shows the F1-score of each facies predicted by the five ML models.
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Figure 72. F1-score of each facies in case 4 for the ML models LR, KNN, SVM, RF, and NN.

Figure 72 shows that all ML models managed to predict the least present carbonate facies.
The highest F1-score for fine sand, carbonate, and shale is achieved by the RF model; while for

coarse sand and sand, the SVM model shows the best performance.



The feature importance of the RF model is shown in Figure 73. Seismic Inversion
contributes more than 65% to the accuracy of facies prediction, while relative acoustic impedance

only 12%. The impact of envelope and instantaneous frequency is less than 10%.
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Figure 73. Feature importance of the RF model for Case 4.

A 3D cube with the RF model facies prediction and difference map is shown in Figure 74.
A 2D section of the facies prediction and difference map gives a better visualization of the
performance of the model (Figure 75). The RF model manages to predict consistent and thick
layered facies. However, in the transition areas that are characterized by thin and interbedded
facies, the prediction is less reliable.
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Figure 74. Facies prediction and difference map for the 3D sub-cube of case 4. The wells are
shown as black lines. The facies prediction by the RF model is on the left side, and the difference
between the true facies and predicted facies is on the right. Transparent rectangle shows the
location of cross-section in Figure 75.
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Figure 75. Cross-section of the 3D facies prediction and difference map in Figure 74.



5.6.2 Model optimization for case 4

As the RF gives the best overall performance, hyperparameter tuning is applied to the
model to improve its performance. Hyperparameter tuning is done by applying Random Search
and Grid Search methods as for case 3. The best hyperparameters from Random Search are shown
in Table 7.

Table 7. The hyperparameter range and optimal values of the Random Search for the

Random Forest Classifier model of case 4.

Hyperparameter Values Optimal values
n_estimators 200, 400, 600, 800, 1000, 1200, 1400, 1600, 1800, 2000 1000
max_features ‘auto’, 'sqrt’, 'log2’ ‘log2’

max_depth 10, 120, 230, 340, 450, 560, 670, 780, 890, 1000 1000
min_samples_split 1,3,4,57,9 4
min_samples_leaf 1,2,4,6,8 1

criterion ‘entropy’, ‘gini’ ‘gini’

As for case 3, the optimal parameters for Random Search are achieved by executing 100
iterations and 3 k-folds cross-validation of the training dataset. This resulted in the improvement
of the overall F1-score of the validation set of the RF model by 0.2% and equal to 87.9%. The
overall accuracy for the testing set is not improved and is equal to 83.3%.

Grid Search was applied to improve the F1-score of the RF model after using Random

Search. The hyperparameters of the Grid Search are shown in Table 8.



Table 8. The hyperparameter range and optimal values of the Grid Search for the Random
Forest Classifier model of case 4.

Hyperparameter Values Optimal values
n_estimators 800, 900, 1000, 1100, 1200 300
max_features ‘log2’ ‘log2’

max_depth 1000 1000
min_samples_split 2,3,4,5,6 4
min_samples_leaf 1,34 1

criterion ‘gini’ ‘gini’

In total, the Grid Search executed 100 iterations with 10 k-folds cross-validation for the
training set. As a result, the overall F1-score was not improved. Figure 76 shows the comparison
of the overall accuracies for the testing set without hyperparameter tuning, and with
hyperparameter tuning using Random Search and Grid Search.
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Figure 76. Comparison of the overall F1-score of the RF model applied to the test set in case 4
without hyperparameter tuning, and after implementing hyperparameter tuning with Random
Search and Grid Search.



As a result, the use of hyperparameter tuning for the Random Forest model did not improve
the facies prediction. There can be two reasons: the default parameters are better than customized
hyperparameters, and tuning hyperparameters on a limited training and validation sets does not
affect the model’s performance on a large test set. The default hyperparameters are shown in Table
9.

Table 9. The default hyperparameters of the RF model for case 4.

Hyperparameter Default values
n_estimators 100
max_features ‘sqrt

max_depth None
min_samples_split 2
min_samples_leaf 1

criterion “gini’




6 Discussion

In this study, a performance comparison of four supervised machine-learning models
(Logistic Regression, K-Nearest Neighbors, Support Vector Machines, and Random Forest) and a
deep-learning model (Neural Networks), is performed for facies prediction based on a realistic
synthetic dataset consisting of a geological model, and forward modeled seismic. In general, the
best performance is achieved by implementing a decision tree-based method, the Random Forest
method, which outperforms all other ML models, including the more powerful Neural Networks
method. The reason behind this is that the Neural Networks performance depends on the amount
of data in the training dataset. The more data and features are available for training the model, the
more robust and higher the performance of the NN is. In our study, the training processes are based
on three wells for two-dimensional cases, and seven wells for a three-dimensional sub-cube, which
correspond to about 2-5% of the total dataset. For this reason, the ML models’ performance is

based on their ability to predict facies on a limited training set.

The Logistic Regression showed the least accurate performance compared to the other ML
models for all cases. This is because this model is less flexible, and the actual relationship between
features and facies is not linear. In addition, LR usually works well for a relatively balanced
dataset, which is not the case in this study.

Generally, the SVM and KNN models demonstrated almost the same performance as the
RF for all cases. However, the accuracy of the KNN model is slightly better for the least present
facies (carbonates in cases 1, 3, 4, and coarse sand in Case 2), compared to the SVM performance
which, in some realizations, failed to predict them. In contrast, the Random Forest method
produced the highest performance when classifying the least present facies, such as carbonates in
cases 1, 3, and 4, and coarse sand in Case 2. This means that the RF method is more robust and

suitable when dealing with imbalanced datasets.

However, in the transition areas where facies laterally change to other facies and they are

characterized by thin and interbedded deposits, the ML model’s performance is much lower. This



is true for all the cases studied in this thesis. The main reason for the lower ML performance in
thinner deposits is the difference in vertical resolution between the seismic data and the facies
deposits. It isa common problem for seismic data to have worse resolution with depth because of
increasing velocity and decreasing frequency. The increase in velocity is caused by rock
compaction, while the drop in frequency is explained by seismic data attenuation [32]. As a result,
the seismic wavelength, which is the velocity divided by frequency, also increases with depth,
leading to the loss of vertical resolution. To evaluate this problem, the role of various frequencies
used for deriving the seismic data, was evaluated.

The comparison of facies prediction from seismic attributes derived from Ricker wavelet
with a frequency of 25 Hz and three Ormsby filters with a frequency range of 10-60 Hz, 10-80 Hz,
and 10-100 Hz showed that the overall performance of ML facies prediction depends on the
depositional environment and frequencies. So, the use of the Ormsby filter with a frequency range
of 10-60 Hz showed the best overall performance of facies prediction for the lower part of the
reservoir, which is represented by a shallow marine environment with consistent and thick layers
of facies. In contrast, for the upper part of the reservoir with interbedded, thin, and inconsistent
facies, the best overall accuracy is achieved by using seismic features derived from the Ormsby
filter with a frequency range of 10-100 Hz. Moreover, for the heterogeneous facies deposits from
the upper part of the reservoir, the accuracy of each facies increases with the increase in frequency
values. However, this is not true for the lower part of the reservoir. This means that when dealing
with real data, it is important to use seismic data derived from various frequency ranges, especially

if dealing with complex depositional environments.

Incorporating additional features such as spectral decomposition with frequencies 30 Hz,
60 Hz, and 90 Hz, also influences the facies prediction depending on the facies depositional
characteristics. In the upper zone of the reservoir, the higher the frequency of the spectral
decomposition, the better the facies prediction accuracy. This confirms the previous statement that
when dealing with thin bedded, non-conformable facies deposits, it is essential to perform the
analysis from the seismic data derived from higher frequencies. However, for the lower zone of
the reservoir with thick and conformable deposits, the use of higher frequencies does not always

lead to a better facies prediction. ML is not an automatic procedure, but a geologist is needed to



divide the volume of investigation into smaller geologically meaningful domains (e.g., lower and
upper reservoir zones), for which different ML methods can be designed to get the best prediction.
This is the case for any geological feature to be predicted, sedimentary facies or geological

structures such as faults.

In addition, the number of wells and their location has an impact on the ML facies
prediction because its performance is based on the amount and quality of training data. However,
the prediction also depends on the facies distribution in the reservoir. For thicker and more
conformable facies, the threshold accuracy of 75% is achieved when using three wells for training
the ML model. Moreover, the use of only one well gives a slightly lower accuracy of 74.8%. In
contrast, the analysis of thin and less conformable facies from case 2 shows that even when
utilizing thirty wells for training the ML model, the threshold accuracy is not achieved, and the
maximum accuracy is just 69.2%. In this case, to improve the ML models performance, it is
recommended to incorporate additional features to the analysis. In addition, the accuracy of facies

prediction is higher in areas in the vicinity of the wells (Figure 77).
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Figure 77. Difference map between the ground truth facies distribution and facies prediction
by ML in case 2. The yellow rectangles show the areas close to the location of the wells,
where the facies prediction is better compared with the facies prediction at a larger distance
from the wells.



As one moves away from the location of the well, the accuracy of the facies prediction
decreases laterally along the stratum. This highlights the importance of the placement of the wells.
The ideal scenario is when the wells intersect all the facies in the reservoir. However, in the real
world, the number of wells is limited — because drilling wells is expensive and requires proper
justification. For this reason, it is important to include in the analysis as many wells as possible

corresponding (or related) to the analyzed reservoir.

Including the additional seismic attributes in the analysis improves the accuracy of the
facies prediction to varying degrees. Seismic inversion has the highest positive impact on facies
prediction, followed by relative acoustic impedance. Instantaneous frequency and envelope are
less important for correct facies prediction. Providing the ML models with information about the
lateral geometry of the reservoir, e.g., geological time as an additional feature, improves the facies

prediction.

One of the goals of this thesis was to assess the impact of seismic attributes versus seismic
inversion on the facies prediction. The thesis shows that the use of only seismic attributes (relative
acoustic impedance, instantaneous frequency, and envelope) gives almost the same prediction
accuracy as when utilizing seismic inversion. This conclusion is very important because seismic
inversion and the process of deriving acoustic impedance from seismic data is computationally
expensive and not as straightforward as deriving seismic attributes (e.g., relative acoustic
impedance) from seismic data. There are other seismic attributes that can potentially highlight the
facies distribution in the reservoir, however, due to time constraints, only a few relevant seismic

attributes are considered.

This study incorporates the facies prediction on 1D, 2D, and 3D datasets. For the 3D cube,
| consider it as a set of parallel 2D sections. The prediction process is also based on wells, and as
the facies classification is performed for one 2D section, the algorithm continues the calculations
for the next 2D section and so on until completing all sections. Thus, the ML models do not
consider previous predictors. In other words, the selected approach is a strictly single-trace process

which means that the results of neighboring traces do not influence the result of the trace under



consideration. In a real scenario, this approach of 3D facies prediction can cause inconsistent
predicted values along the x- and y-axis. To avoid or minimize possible discrepancies in facies
prediction in a 3D dataset, it is recommended to provide the ML model with information about the
horizontal spatial change along the x- and y-axis. This can be done by taking the average value of
each feature within a specific area surrounding every point and adding this value as a new feature.
So, facies prediction is further based on the average value of a feature within a specific area.
Because of time limitations, the averaging of the closest values in each feature was not performed
in this study.

7 Future work

As a further development, it is recommended to apply the results obtained in this study to
a real case scenario. This is because in the synthetic model, the wells used for training the ML
models are traces and have the same domain in TWT as seismic data, and resolution, which is not
the case in real scenarios. In a real scenario, one would need to tie the well to the seismic data, and
upscale the well logs to the seismic. Moreover, including the investigation of different filter
options to address the noise problem is also desirable. In addition, incorporating additional relevant
seismic attributes into the analysis might improve the prediction of facies. Exploring other
machine-learning methods, such as XGBoost, and K-means Clustering, might be advantageous. In
this thesis, four supervised models and one deep-learning method were tested, and hyperparameter
tuning (Random Search and Grid Search) was applied to the baseline model with the best
performance. Implementing the Bayesian Optimization approach to the Neural Networks method
can also improve the performance of the facies prediction. Finally, testing the implementation of
the best average window for facies prediction in a 3D cube can be interesting as a future work.



8 Conclusions

This thesis proves that machine-learning methods are a powerful tool for predicting facies
from seismic attributes and can be used in 2D and 3D datasets. Built and trained ML models,
together with developed algorithms for visualization and validation of results, will help to
implement the same methodology in other scenarios. The research shows that a complex reservoir
with various depositional environments requires the use of seismic data derived from different
frequencies, depending on the thickness and consistency of facies, to obtain better performance.
The use of relevant seismic attributes provides almost the same performance as when using seismic
inversion and incorporating additional information about the geological time (relative depth) can
even outperform the prediction from seismic inversion. The Random Forest model showed the
best performance and seemed to be a robust method among others. However, it is recommended
to develop unsupervised ML methods since they can handle a bigger dataset and have a good
performance if applied properly.
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Appendixes

Python appendices included in this section is published in GitHub and can be found using the
following link:

https://github.com/aiqulakberova/Machine-learning-based-seismic-classification-for-facies-
prediction
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Appendix 1 Reading SEG-y files
I

import segyio

from mpl_toolkits.axes_gridl import mzke axes locatable
from segysak.segy import segy heade r
from IPython.display import dis
import numpy as np

import pandas as pd

import matplotlib.pyplot as plt
from matplotlib import colors
import matplotlib.pyplot as plt
import matplotlib

def segy file(file name='Synth_seismic_1.segy’', color_map='seismic’):

"""The function reads SEGY file of 2D cross-section, makes a plot for Seismic data, its attributes

In addition, defines Extent of the cross-section

Parameters:
file_name (str): Specify the name of the SEGY-file. Defaults to "Synth_seismic_1.segy’.
color_map (str): Specify the color_map. Defaults to 'seismic’.

Returns:
data_file (2D array): 2D numpy array of cross-section
extent (list): List with depth and trace numbers for the plots

with segyio.open(file_name, ignore_geometry=Trus) as file:
# Get basic attributes
n_traces = file.tracecount
sample_rate = segyio.tools.dt(file) / 1eee
n_samples = file.samples.size
twt = file.samples
data_file = file.trace.raw[:] # Get all data into memory (could cause on big files)
# Load headers
bin_headers = file.bin
f'N Traces: {n_traces}, N Samples: {n_samples}, Sample rate: {sample_rateims’
d = data_file.flatten()

fig = plt.figure(figsize=(16, 4))
ax = fig.add_subplot(1l, 1, 1)
extent = [1, n_traces, -twt[-1], -twt[8]] # define extent
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# Choose color_map
if color_map =='seismic':
# Customise color map for sesimic
custom_norm=colors.TwoSlopeNorm({vmin=min(d), vcenter=8, vmax=max(d))
im = ax.imshow(data_file.T, origin="upper’', cmap="seismic", extent=extent, aspect="auto’, norm=custom_norm)
fig.colorbar(im)
#ax.set_title('Seismic section')

elif color_map == 'facies':
# Customise color map for facies
facies _namz = ['', 'Coarse Sand', 'Sand’, 'Fine Sand', 'Shale', 'Carbonate']
facies_color = ['#FFFFFF' ,'#E69876°, '"#FFFFE8', '"#FFCCB8', '#AGAGAS", '#BB28FF']
cmap = matplotlib.colors.listedColormap(facies_color)
bounds = [-1.5, -8.5, 8.5, 1.5, 2.5, 3.5, 4.5]
norm = matplotlib.colors.BoundaryNorm(bounds, cmap.M)
im = ax.imshow(data_file.T, cmap=cmap, aspect='auto', extent=extent, norm=norm, wvmin=8-1.5, wvmax=4+8.5)
fig.colorbar(im, ticks=np.arangz(@, 5))
#ax.set_title('Facies section’)

else:
im = ax.imshow(data_file.T, cmap="jet", vmin=min(d), vmax=max(d), aspect="auto', extent=extent)
fig.colorbar(im)
ax.set_title('")

colormapl = fig.axes[1]
colormapl.tick_params(labelsize=12)
ax.set_xlabel('trace number', fontsize=14)
plt.xticks(fontsize=12)
plt.yticks(fontsize=12)

ax.set_ylabel('TWT [ms]', fontsize=14)
plt.show()

return data_file, extent



Appendix 2 - Data Processing

.
2 import numpy as np

3 import pandas as pd

4

5

6

7 def replace_nonexisting_data_with_NaN(df, nonexisting_data):

3 """This function removes data that are out of reservoir (for example, for depths it is data that =25@)
9 and replaces with NaN.

1@

11 Args:

12 df (DataFrame): DataFrame

13 nonexisting_data (float): nonexisting data that have to be replaced by NaN

14

15 Returns:

16 df (DataFrame): DataFrame without nonexisting data

17 .

18 df = df.replace(nonexisting_data, np.NaN)

19 return df

28

21

22

23

24

25 def take_data_that_exist(df, df2):

26 """THis function removes data that are out of reservoir by filtering by another data
27

28 Args:

29 df (DataFrame): Data that need to be filtered

38 df2 (DataFrame): Filter

31

32 Returns:

33 map_df (DataFrame): Filtered DataFrame that contains data within the reservoir
3 .

35 r, ¢ = np.shape(df)

36 map_df = np.zeros{(r, c))

37 map_df[:] = np.NaN

38

39 # for every trace (column)
18 for every_col in range(len(df.columns)):
11 non_empty_rows = df2.iloc[:,every_col].dropna(axis=8)
42
13 # Filter
a4 map_df[non_empty_rows.index, every_col] = df.iloc[non_empty_rows.index, every_col]
45
a6 return pd.DataFrame{map_df) # returns df
47
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81

a2
83

def standartization(df, value_to_drop=True):

Implement standartization to a dataset.
When calculating MEAN and 5TD excludes the wvalues that belong to empty cells (in case, they were not removed earlier)

Parameters:
df (DataFrame)
value_to_drop (float): specify the wvalue that is outside reservoir

Returns:
df_standard (DataFrame): data after implementing Standartization
df_array = df.values.flatten()
# assign "values_to_drop' a value
if value to_drop == True:
to_drop = df.iloc[8,8]
# calculate mean of data after excluding values_to_drop from the data
df_mean = np.mean(df_array[(df_array != to_drop)])
# calculate STD
df_STD = np.std{df_array[(df_array != to_drop)])
# standartization
df_standard = pd.DataFrame((df.values - df_mean) / df_STD)
else:
df_standard = pd.DataFrame((df - np.nanmean(df.values)) / np.nanstd(df.values))

# return df_standard.add_prefix(str(feature_name})
return df_standard
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85 def standartization_3D(feature_3D array):

86

a7 e

88 Implement standartization to a dataset.

89 When calculating MEAN and STD excludes the values that belong to empty cells.
ge

91 Parameters:

92

93 Returns:

94 e

a5 # Flatten 3D array (to 1D)

96 feature_array_1ld = feature_3D_array.reshape(-1)
a7

98 # Calculate 5TD

a9 std_all = np.nanstd({feature_array_1d)

1lee

1e1 # Calculate Mean

182 mean_all = np.nanmean(feature_array_1d)

1e3

184 # Apply Standartization

185 feature_std_3D = (feature_3D_array - mean_all) / std_all
186
187 return feature_std_3D
188
1e9
11e
111 def df_wells_from_section(df, wells_list):
112
113 e
114 returns DataFrame with particular columns
115
116 Parameters:
117 df (DataFrame)
118 wells list (list): list of traces (wells)
119
128 Returns:
121 DataFrame with particular columns
122 e
123 df_wells = df.iloc[:,wells_list]
124 return df_wells

# Extract properties for wells

# We have wells coordinates

def extract_wells_with_data 3D(data_3D, x_coord_wells, y_coord_wells):
wells list = []

for well_x in %_coord_wells:
for well v in y_coord_wells:

each _well = data_3D[x_coord wells, y coord wells, :]
wells list.append(each_well)
# Convert to list and Remove nan from well_all
well_3d_array = np.asarray(wells_list)
well_2d_array = np.reshape(wsll_3d_array, (len(x_coord_wells), data_3D.shape[2]))

# wells_1d_array = well 2d array.flatten()

return well 2d_array
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» def concat_features_RelAl_Seis_SeisInv(df_facies_wells, feature_list RelAl_Seis_SeisInv):
"""The function concatenate features (RelAI, Seismic, Seismic Inversion) with Facies

-

Appendix 3 - Concatenate facies and features

import pandas as pd

Args:

df_facies_wells (DataFrams): Facies
feature_list_RelAIl_Seis_SeisInv (lisr)}: list of features

Returns:

facies_and_features (DataFrame): concatenated dataframe with facies and 3 festures (Relative AI, Seismic, Seis_inversion)

def create_empty_listsia):
for 1 in range(a):

Xxe, X1,

¥l = [1]

yield [1]

XX2 = greate_empty_lists{len(feature_list_RelAl Seis_SeisInv))

for every_well in range(len(df_facies_wells.columns)):

xa =
X1 =
X2 =

feature_list RelAl Seis SeisInv[@].iloc[:,every_well]
feature_list_RelAT_Seis_SeisInv[1].iloc[:,every_well]
feature_list_RelATl Seis SeisInv[2].iloc[:,ewvery well]

¥ = df_facies_wells.iloc[:,every_well]

X¥@ . append(X@)
W1, append (1)
XK¥Z . append(X2)

¥¥1.append(Y)

facies =

features

features

features

facies =
facies

.concat (X8, ignore_index=False, axis=8)
.concat(X0(1, ignore_index=False, axis=0)
.concat (X2, ignore_index=False, axis=0)

pd.concat(¥y¥l, ignore_index=False)

= pd.concat([XX@, XX1, Xx27, axis=1)
= features.rename(columns = {@:'relsi’,
1:'seis’,

2: "seis_inv'

W
LY
ot

pd.DataFrameifacies ). rename{columns={8: 'faciss"'})

facies_and_features = pd.concat{[facies, features], axis=1)
facies_and_features = facies_and_features.dropna(axis=2)

return facies_and_features
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def concat_features_Seis_SeisInvi{df_facies_wells, feature_list_Seis_SeisInw):
"“*"The function concatenate features (RelAI, Seismic, Seismic Inversion) with Facies

Args:

df_facies_wells (DataFrame): Facies

feature_list_RelAl_Seis_SeisInv (lisr):

Returns:

facies_and_features (DataFrame): concatenated dataframe with facies and 2 features (Seismic and Seismic Inversion)

list of features

def create_empty_lists(al:
for 1 in range(a):
yield []

¥HE, WK1
YY1l =[]

= create_empty_lists{len(feature_list_Seis_SeisInv))

for every_well in range(len(df_facies_wells.columns)):

Xa =
Xl =

feature_list Seiz SeisInv[@].iloc[:,every_well]
feature_list Seiz SeisInv[l].iloc[:,every_well]

¥ = df_facies_wells.iloc[:,every_well]

¥0A. append (X@)
¥1.append(X¥1)

¥¥1.append(Y)

[=%

e = p
Wl = p

=%

facles =

features

features

features

facles =
facies

.concat (0@, ignore_index=False, axis=0)
.concat (X1, ignore_index=False, axis=8)

pd.concat(¥Yl, ignore_index=False)
= pd.concat([¥X8, ¥X1], axis=1}

= features.rename(columns = {@:'seis’,
1:'seis_inv

W
LYy
il

pd.Dataframe(facies).rename(columns={8: 'facies'})

facies_and_features = pd.concat{[facies, features], axis=1)
facies_and_features = facles_and_features.dropnalaxiz=2)

return facies_and_features




115

116

117 def concat_features_RelAIl_Seis_Envel InstFreg{df_facies_wells, festure_list_RelAl_Seis_Envel_InstFreg):
118 """The function concatenate features (RelAl, Seismic, Envelope, InstFreg) with Facies
119

128 Args:

121 df_facies_wells (DataFrame): Facies

122 feature_list RelAI Seis_Enwel_InstFreq (lisr): list of festures
123

124 Returns:

125 facies_and_feastures (DataFrame): concatenated dataframe with facies and 4 features (Relative AI,
126 Seismic, Envelope, Instantancous Frequency)

127 e

128 def creste_empty_lists(a):

129 for 1 in range(a):

138 yield []

131

132 W@, W1, ¥M2, ¥X3 = create_empty_lists(len(festure_list_RelAIl_Seis_Envel_InstFrag))
133 YY1l = []

134

135 for every_well in range(len(df_facies_wells.columns)):

136

137 K@ = feature_list RelAl Seis_Envel_InstFreg[@].ilocl:,every_well]
138 X1 = feature_list_RelAI_Seis_Envel_InstFreg[l].iloc:,every_well]
139 X2 = Ffeature_list_RelAI_Seis_Envel_InstFreg[2].iloc:,every_well]
14@ X3 = feature_list_RelAI_Seis_Envel_InstFreg[3].iloc[:,every_well]
141

142 ¥ = df_facies_wells.iloc[:,svery_well]

143

144 XX@. append (X8}

145 X1, append (X1

146 XX2 . append (X%2)

147 X3, append (X3 )

148

149 ¥Y¥Y1.append(¥Y)

15a

151 ¥¥@ = pd.concat(X@, ignore_index=False, axiz=0)

152 ¥¥1 = pd.concat(XXl, ignore_index=False, axiz=0)

153 ¥X2 = pd.concat(XX2, ignore_index=False, axiz=08)

154 ¥X3 = pd.concat(X¥X3, ignore_index=False, axiz=0)

135

156 facies = pd.concat(¥YLl, ignore_index=False)

157

158 features = pd.concat([XXe, XK1, XX2, XA3], axis=1)

159

16a features = features.renamelcolumns = {8:'relzi’,

161 1:'seis’,

162 2: "envel',

163 3: 'imst_freq’

164 )

165 features

166

167 facies = pd.Dataframe(facies).rename{columns={8: 'facies'})

168 facies

159

17a@ facies_and_festures = pd.concat([facies, features], axis=1)

171 facies_and_features = facies_and_features.dropna{axis=a)

172

173 return facies and Featgres
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def concat_features_RelAl_Seis_SeisInv_Depth(df_facies_wells, feature_list_RelAl_Seis_SeisInv_Depth):
“""The function concatenate features (RelAl, Seismic, Selsmic Inversion) with Facies

Args:
df_facies_wells (DataFrame): Facies
feature_list_RelAl_Seis_SeisInv (lisr): list of features

Returns:
facies_and_features (DataFrame): concatenated dataframe with facies and 4 features (Relatiwve AI,
Seismic, Seismic Inversion, Geological Time)
def create_empty_lists(a):
for i in range(a):
yield []

X@, XX1, XX2, XX3 = create_empty_lists(len(feature_list_RelAI Seis SeisInv_Depth))
YY1l = []

for every_well in range(len(df_facies_wells.columns)):

¥3 = feature_list RelAl Seis SeisInv Depthl@].iloc[:,every_well]
¥1 = feature_list_RelAT Seis_SeisInv Depth[1].iloc[:,every_well]
¥2 = feature_list_RelAl Seis SeisInv Depthl2].iloc[:,every_well]
¥3 = feature_list_RelAT Seis_SeisInv Depth[3].iloc[:,every_well]

¥ = df_facies_wells.iloc[:,every_well]

XA, append(X8)
¥¥1.append(¥1)
¥X2 . append(¥2)
¥X3 . append(¥3)

¥Y1.append(Y)
¥X@ = pd.concat (@, ignore_index=False, axis=8)
¥¥1 = pd.concat(¥¥l, ignore_index=False, axis=8)
¥¥2 = pd.concat(X¥2, ignore_index=False, axis=0)
¥X3 = pd.concat (X3, ignore_index=False, axis=8)

facies = pd.concat(¥yl, ignore_index=False)

features = pd.concat([XXe, XM1, ¥x2, XX3], axis=1)

features = features.rename(columns = {8:'relsi’,
1:'seis’,
2: 'seis_inv',
3: "depth'
-
¥ rI

features

features

facies = pd.Dataframe(facies}.rename{columns={a: " 'facies"})
facies

facies_and_features = pd.concat({[facies, features], axis=1)
facies_and_features = facles_and_features.dropnalaxis=2)

return facies_and_features
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291
292
293
294
295

def concat_features_RelAl_Seis_Envel_InstFreq Depth(df_facies_wells, feature_list RelAIl Seis_Enwvel_InstFreg_Depth):
"""The function concatenate features (RelAI, Seismic, Envelope, InstFreg) with Facies

Args:
df_facies_wells (DataFrame): Facies
feature_list RelAl Seis Envel_InstFreq (lisr): list of features

Returns:
facies_and_festures (DataFrame): concatenated dataframe with facies and 5 features (Relative AI,
Seismic, Envelope, Instant Frequency, Geological Time)
def create_empty_lists(a):
for i in range(a):
yield []

¥He, ¥X1, ¥M2, XX3, X¥4 = create_empty_lists(len{feature_list_RelAI_Seis_Envel_InstFreq_Depth))
YWl =[]

for every_well in range(len(df_facles_wells.columns)):

X3 = feature_list_Reldl Seis_Envel_InstFreg_Depth[@].iloc[:,every_well]
¥1 = feature_list_ReldIl Seis_Envel_InstFreg_Depth[1].iloc[:,every_well]
X2 = feature_list RelAI Seis_Envel_InstFregq_Depth[2].iloc[:,every_well]
X3 = feature_list RelAI Seis_Envel_InstFreq_Depth[3].iloc[:,every_well]
¥4 = feature_list_RelAI Seis_Envel_InstFreq_Depth[4].iloc[:,every_well]

¥ = df_facies_wells.iloc[:,every_well]

8. append (X8}
¥X1.append (X1}
X002 . append(X2)
X003 . append(X3)
W append (X4}

¥¥1.append(Y)

W8 = pd.concat(X¥@, ignore_index=False, axis=0)
¥¥1 = pd.concat(XX¥l, ignore_index=False, axis=8)
¥¥2 = pd.concat(¥¥2, ignore_index=False, axis=@)
¥¥3 = pd.concat(¥¥3, ignore_index=False, axis=@)
¥4 = pd.concat(¥¥4, ignore_index=False, axis=@)

facies = pd.concat(¥Y¥l, ignore_index=False)
features = pd.concat([XXe, XW1, XX2, Xx3, ¥Xx4], axis=1)

features = features.renamelcolumns = {@:'relai’,
1:'seis’,
2: "envel’',
3: 'inst_freq’,
4: 'depth'

features




296

297 facies = pd.DataFrame(facies).rename{columns={8: " faciesz'})
298 facies

299

368 facles_and_features = pd.concat([facies, features], awxis=1)
3el facles_and_features = facies_and features.dropna{axis=a}
3@z

383 return facies_and_features

a4

385

386

387

388

389

31a

311

312

313 def concat_features_RelAI_Seis_SeisInv SpecDec(df_facies_wells, feature_list RelAl Seis_SeisInv SpecDec):
314 """The function concatenate features (RelAl, Seismic, Envelope, InstFreg) with Facies
315

316 Args:

317 df_facies_wells (DataFrame): Facies

318 feature_list RelAIl Seis_Envel_InstFreg (lisr): list of features
319

328 Returns:

321 facies_and_features (DataFrame): concatenated dataframe with facies and 5 features (Relative AL,
322 Seismic, Envelope, Instant Freguency, Geological Time)

323 o

324 cef create_empty_lists(a):

325 for 1 in range(a):

326 yield [

327

328 WP, M1, M2, ¥H3 = create_empty_lists(len(feature_list_RelAl Seis SeisInv_SpecDec))
329 YY1 = []

338

33 for every_well in range{len(df_facies_wells.columns)):

332

333 X@ = feature_list_RelAl Seis_SeisInv_SpecDec[@].iloc[:,every_well]
334 X1 = feature_list_RelAI Seis_SeisInv_SpecDec[1].iloc[:,every_well]
335 X2 = feature_list_RelAI_Seis_SeisInv_SpecDec[2].iloc[:,every_well]
336 X3 = feature_list_RelAl_Seis_SeisInv_SpecDec[3].iloc[:,every_well]
337

338 ¥ = df_facies_wells.iloc[:,every_well]

339

348 8. append{X@)

341 X1, append{X1)

342 X%2.append{X2)

343 X3, append(X3)

344

345 YY1, append{Y)

346

347 X¥@ = pd.concat(M@, ignore_index=False, axis=8)

348 X1 = pd.concat(XX1, ignore_index=False, axis=8)

349 X2 = pd.concat(XX2, ignore_index=False, axis=0)

358 X¥3 = pd.concat(XX3, ignore_index=False, axis=8)

351

352 facies = pd.concat(¥¥l, ignore_index=False)

353

354 features = pd.concat([XM@, X¥1, X2, XX3], axis=1)

355

356 festures = features.rename(columns = {@:'relzi’,

357 1:'seis’,

358 2: 'zels_inv',

359 3: "spec’

360 1))

361 features

362

363 facies = pd.DataFrame({facies).rename{columns={@: facies'})

364 facies

365

366 facies_and_features = pd.concat{[facies, features], awis=1)

367 facies_and_features = facies_and_features.dropna(axiz=a)



368

369 return facles_and_features

37a

371

372

373

374

375

376

377

378 -~ def concat_features_RelAl_Seis Envel InstFreg_SeisInvi(df facies_wells, featwre_list RelAI Seis Envel Instfreg SeisInv):
379 "“""The function concatenate features (RelAl, Seismic, Envelope, InstFreg) with Facies
388

381 Args:

382 df_facies_wells (DetaFrame): Facies

383 feature_list RelAl Seis_Envel_Instfreg (lisr): list of festures

384

385 Returns:

386 facies_and_features (DataFrame}: concatenated dataframe with facies and 5 features (Relative AT,
387 Seismic, Envelope, Instant Frequency, Geological Time)

388 e

389 def create_empty_lists(a):

398 for 1 in rangeia):

391 yield []

392

393 XAB, N1, X2, XH3, X4 = create_empty_lists(len{feature_list_RelAI Seis_Envel_InstFreg_SeisInw))
394 YY1 = []

395

396 for every_well in rangs(len(df_facies_wells.columns)):

397

398 K@ = feature_list_RelAT_Seis_Envel_Instfreg_SeisInv([@].ilocl:,every_well]
399 X1 = feature_list_RelAT_Seis_Envel_InstFreg_SeisInv[1].iloc[:,svery_well]
468 2 = -Featur'e_list_ReIlAI_Seis_Enuel_InstFreq_SeisInv:2].iloc[:,ewery_wel]]|
4@1 X3 = feature_list_RelAl Seis_Envel_Instfreg_SeisInv[3].iloc[:,every_well]
462 X4 = feature_list_RelAl Seis_Envel_Instfreg_SeisInv(4].iloc[:,every_well]
463

4@ ¥ = df_facies_wells.iloc[:,svery_well]

485

486 XXNE . append(X@)

487 W1, append(X1)

468 XK¥2 . append(X2)

469 KX3 . append(X3)

414 W4, append(Xd)

411

412 ¥Y1.append(Y)

413

414 X¥@ = pd.concat(X@, ignore_index=False, axiz=08)

415 X1 = pd.concat(Xxl, ignore_index=False, axiz=8)

416 ¥¥2 = pd.concat(XX2, ignore_index=False, axiz=8)

117 ¥X3 = pd.concat(X¥3, ignore_index=False, axiz=0)

418 ¥¥4 = pd.concat(X¥4, ignore_index=False, axiz=0)

419

42@ facies = pd.concat(¥yYl, ignore_index=False)

421

422 features = pd.concat( [Wxe, WX1, XX2, X¥3, X¥4], axis=1)

423

424 features = features.rename{columns = {B:'relai’,

425 1:'seis’,

426 2: "envel',

427 3: "inst_freqg’,

428 4: "seis_inv'

429 3]

43a features

431

432 facies = pd.DataFrame(facies).rename(columns={8: 'facies'})

433 facies
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435
436
437
438
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facies_and_features

facies_and_features = facies_and_features.dropna(axiz=a)

return facies_and_features

Appendix 4 - Machine learning part
| _

from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
import pandas as pd

import numpy as np

from sklearn.model_selection import cross_vel_scores
import matplotlib.pyplot as plt

from sklearn.inspection import permutation_importance

-

pd.concat([facies, features], axis=1)

from
from
from
from
from

-

Trom

sklearn
sklearn
sklearn
sklearn
zklearn
sklearn

.metrics
.metrics
import
.metrics
.metrics
.metrics

._plot.confusion_matrix import ConfusionMatrixDiszpla

import cl
import confusion_mat

_ (MF1l¥, CLas51lTlCsTlon_report, acfuracy _slore




51

53
54
55
56
57
58
59
68
61
62
63

65
66
67
68
69
7@
71
72
73
74
75
76
77
78
79
88
81
82
83

85
86
87
83
89
9@
91
92
93
94
95
96
97
93
99
1oa

def pred
nwny,
It t©

Args

Retu

#cr
r, c

ict_2d_RelAI_Seis SeisInv(df_facies, relai, seis, seis_inv, model):
hiz functiom uses ML model and attributes to predict 2D facies cross-section
akes the shape of the ground-truth facies and predicts facies usimg Rel AL, Seismic, Seis_Inv

df_facies (DataFrame): facles cross-section

relai (DataFrame): 2D cross-section of Rel AT

seis {DataFrame): 2D cross-section of Seismic

seis_inv (DataFrame): 2D cross-section of Seis Inversion
model: ML model

rns:
map_facies_1 (array) : the predicted facies
df_f comparison (array): the filtered actual facies for comparison

eate empty Mumpy array with the same shape as facies
= np.shape(df_facies)

map_facies = np.zeros{(r, c))
map_facies[:] = np.NaN
map_facies_1 = map_facies.copy()

#cr

eate array for facies filter

df _f_comparison = map_facies.copy()

# fo
for

retu

r every trace (column)
every_col in range(len({df_facies.columns)):

# concat every column

new_df = pd.concati{[relai.iloc[:,every_coll,
seiz.iloc[:,every_col],
seis_inv.iloc[:,every_col]]
, axis=1)

# remove NaN values from trace
new_df_1 = new _df.dropnalaxis=a)

# remove NaN values from Facies trace
non_empty_facies = df_facies.iloc[:,every_col].dropnailaxis=a)

# predict
map_facies[new df l.index, every_col] = model.predictinew df_ 1)

# Filter Facies to compare (since Facies and Features have different number of NaM and nolaN values)
map_facies_l[non_empty facles.index, every_col] = map_facles[non_empty facies.index, every_col]

df_f comparison[new_df_1.index, every_col] = df_facies.iloc[new df_1.index, every col]

rn map_facies_1, df f_comparison



114
115
116
117
118
119
122
121
122
123
124
125
126
127
128
129
138
131
132
133
134
135
136
137
138
139
143
141
142
143

def predict_2d_Seis_SeisInvidf_facies, sels, seis_inv, model):

# create empty Numpy array with the same shape as facies
r, ¢ = np.shape(df_facies)

map_facies = np.zeros{(r, c))

map_facies[:] = np.NaN

map_facies_1 = map_facies.copy()

# create array for facies filter
df_f_comparison = map_facies.copy()

# for every trace (column)
for every_col in range({len{df_facies.columns)):

# concat every column

new_df = pd.concat([seis.iloc[:,every_col],
seis_dinv.iloc[:,every_col]]
, axis=1)

# remove NaN values from trace
new_df_1 = new_df.dropnalaxis=a)

# remove NaN values from Facies trace
non_empty_facles = df_facies.iloc[:,every_col].dropnalaxiz=8)

# predict
map_facies[new_df_1.index, every_caol] = model.predict(new_df 1)

# Filter Facies to compare (since Facies and Features have different number of NaM and noNaN values)
map_facies_1[non_empty_facies.index, every_col] = map_facies[non_empty_facies.index, every_col]

df_f_comparison[new_df_1.index, every_col] = df facies.iloc[new df_1.index, esvery col]

return map_facies_1, df f comparison



144
145
146
147
148
149
158
151
152
153
154
135
156
157
158
159
laa
1al
la2
163
la4
165
166
167
1a8
169
17a
171
172
173
174
175
176
177
178
179
15@
181
182
133

def predict_2d_RelAI_Seis_SeisInv Depth(df_facies, relai, seis, seis_inwv, depth, maodel):

# create empty Numpy array with the same shape as facles
r, ¢ = np.shape(df_facies)

map_facies = np.zeros{(r, c)}

map_facies[:] = np.NaN

map_facies_1 = map_facies.copy(}

# create array for facies filter
df_f_comparison = map_facies.copy()

# for every trace (column)
for every_col im range(len{df_facies.columns)):

# concat every column

new_df = pd.concat([relai.iloc[:,every_col],
seis.iloc[:,every_col],
seis_inv.iloc[:,every_col],
depth.iloc[:,every_col]]
, axis=1)

# remove NaN values from trace
new_df_1 = new_df .dropnalaxis=a)

# remove NaN values from Facies trace
non_empty_facies = df_facies.iloc[:,every_col].dropnaiaxis=@)

# predict
map_facies[new_df_l.index, every_col] = model.predictinew_df 1)

# Filter Facies to compare (since Facies and Features have different number of MaM and noNaN values)
map_facies_1[non_empty_facies.index, every_col] = map_facies[non_empty_facies.index, every_col]

df_f_comparison[new_df_l.index, every_col] = df_facies.iloc[new_df_1.index, every_col]

return map_facies_1, df f_comparison



194
191

B e @

o

[ R R < I R B v o R
sl u

[
G woca

bt et
[

R T R N e e
L B o Y I - BT T = B s TNy [

[ T T R I T R N I T N I I N I I T I Sy Sy R A ]
]

]
o

def predict_2d_RelAI_Seis_Envel_ InstFreq Depth(df_facies, relai, seis, envel, inst_freqg, depth, model)

# creste empty Mumpy array with the same shape as facies
r, ¢ = np.shape(df_facies)

map_facies = np.zeros{(r, c))

map_facies[:] = np.MaN

map_facies_1 = map_facies.copy()

# create array for facies filter
df _f_comparison = map_facies.copy()

# for every trace (column)
for every_col in range(len(df_facies.columns)):

# concat every column

new_df = pd.concat([relai.iloc[:,every_col],
seis.iloc[:,every_col],
envel.iloc[:,every_col],
inst_freqg.iloc[:,every_col],
depth.iloc[:,every_col]l]
, axis=1)

# remove NaM values from trace
new_df_1 = new_df.dropna{axis=a)

# remove NaM values from Facies trace
non_empty_facies = df_facies.iloc[:,every_col].dropnaiaxis=8)

# predict
map_facies[new_df_1.index, every_col] = model.predict(new_df_1)

# Filter Facies to compare (since Facies and Features have different number of MaN and noNaN values)
map_facies_1[non_empty_facies.index, every_col] = map_facies[non_empty_facies.index, every_col]

df f_comparison[new_df_1.index, every_col] = df_facies.iloc[new df_1.index, every_col]

return map_facies 1, df f_compariszon
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~ def predict_2d_RelAl_Seis_Envel_InstFreq{df_facies, relai, seis, envel, inst_freq, model):

# create empty Mumpy array with the same shape as facies
r, ¢ = np.shaps(df_facies)

map_facies = np.zeros((r, c))

map_facies[:] = np.Mal

map_facies_1 = map_facies.copy()

# create array for facies filter
df_f_comparison = map_facies.copy()

# for every trace (column)
far every_col in range(len{df_facies.columns)):

# concat ewvery column

new_df = pd.concat([relai.iloc[:,every_col],
seis.iloc[:,every_col],
envel.iloc[:,every_col],
inst_freg.iloc[:,every_col]]
, axis=1)

# remove NaM values from trace
new_df_1 = new_df.dropna{axis=a)

# remove NaMN values from Facies trace
non_empty_facies = df_fecies.iloc[:,every_col].dropna(axis=8)

# predict
map_facies[new_df_1l.index, every_col] = model.predict(new_df_1)

# Filter Facies to compare {since Facies and Features have different number of NaN and nolah values)
map_facies_1[non_empty_facies.index, every_col] = map_facies[non_empty_facies.index, every_col]

df_f_comparison[new_df_l.index, ewvery_col] = df_facies.iloc[new_df_1.index, every_col]

return map_facies_1, df _f_comparison



278

271 def predict_2d_RelAIl Seis_SeisInv_Spec(df_facies, relal, seis, seis_inv, spec, model):
272

273 # creste empty Numpy array with the same shape as facies

274 r, ¢ = np.shape(df_facies)

275 map_facies = np.zeros((r, c))

276 map_facies[:] = np.MalN

277 map_facies_1 = map_fecies.copy()

278

279 # create array for facies filter

288 of_f_comparison = map_facies.copy()

231

282 # for every trace (column)

283 for every_col in range(len{df_facies.columns)):

234

285 # concat every column

286 new_df = pd.concat([relai.iloc[:,every_coll],

287 seis.iloc[:,every_col],

288 seis_inv.iloc[:,every_coll,

259 spec.iloc[:,every_col]]

299 , axis=1)

291

292 # remove NaN values from trace

293 new_df_1 = new_df.dropnaaxis=a)

294

295 # remove NaN values from Facies trace

296 non_empty_facies = df_facies.iloc[:,every_col].dropna(axis=0)
297

298 # predict

299 map_facies[new_df_1.index, every_col] = model.predict(new_df_1)
368

381 # Filter Facies to compare (since Facies and Features have different number of NaM and noNaN values)
382 mep_facies_l[non_empty_facies.index, every_col] = map_facies[non_empty_facies.index, every_col]
383 df_f_comparison[new_df_1.index, everv_col] = df_facies.iloc[new_df_1.index, every_col]
364

385 return map_facies 1, df_f_comparison

386

387

3as

389

318

311

312  def accuracy_score_cv(estimator, X, y, cv=1a):

313

314 from sklearn.model_selection import cross_wal_score

315 #Applying 18-fold cross validation

316 sccuracy_score_cv = cross_val_score(estimator=estimator, X=X, y=y, cv=cv)
317 print("accuracy: ", np.mean(accuracy_score_cv))

318

319 return np.mean{accuracy_score_cv)

322

321

322

323




# Feature importance
def feature_importance_plot{model, x_train, v_train, random_state):

from sklearn.inspection import permutation_importance

res = permutation_importance{model, x_train, y_train, scoring='sccuracy®, random_state=random_state)
importance = res.importances_mean

importance

importance_resz = pd.Series(importance, index=x_train.columns).sort_values(ascending=True)
importance_res

# Plot the results

fig, ax = plt.subplots(figsize=(8,4)}

gx = importance_res.plot.barh()

ax.set_title{'Permutation importance’, fontsize=14)

ax.set_ylabel('Importance score', fontsize=14)

gx.set_xlabel('Percentage, %', fontsize=12)

plt.xticks(fontsize=12)

plt.yticks(fontsize=12)

plt.grid()

plt.show()



353" # Remove data that were used for training
354 def confusicn_matrix_prediction(df_facies_comparison, facies_pred, col_number, facies_class):
355

356 from sklearn.metrics import f1_score

357 from sklearn.metrics import precision_ 5 e_support

358 from sklearn import metrics

359 from sklearn.metrics import classification_report

368 from sklearn.metrics import confusion_metrix, classification_report, accuracy_score
38l from sklearn.metrics._plot.confusion_matrix import ConfusionMatrixDisplay

362

363

364 gf _f_comparison_pd = pd.DaetaFrame{df_facies_comparison)

365 df_f_comparison_col = df _f_comparison_pd.drop{df_f_comparizon_pd.columns[col_number],axis = 1)
366

387 map_facies_pd = pd.DataFrame(facies_pred)

368 map_facies_col = map_facies_pd.drop(map_facies_pd.columns[col_number],axis = 1)
369

379 actual f = df_f_comparison_col.velues[~(np.isnan{df_f_comparison_col))]

371 predicted_f = map_facies_col.values[~(np.isnan{map_facies_col))]

372

373 conf_matrix = metrics.confusion_matrix{actual_f, predicted_f)

374 conf_matrix

375 # print{pd.crosstab(actual_f, predicted_f))

376 report_print = print(classification_report(actual_f, predicted_f))

377

378 fl_score_per_class = fl_score(actusl_f, predicted_f, average=hone)

379 accuracy_estimation = accuracy_score{actusl_f, predicted_f)

388

381 # Extract number of values of each class

382 count_facies = np.unique{actual_f, return_counts=True)[1]

383

384

385 # Plot confusion matrix

386 # display_conf_matrix = ConfusionMatrixDisplay{confusion_matrix=conf_matrix, display_labels=labels_list.classes_)
387

388 gisplay_conf_matrix = ConfusionMatrixDisplay(confusion_matrix=conf_matrix, display_labels=np.array(facies_class))
389 # plt.plot(figsize=(10, 4))

399 display_conf_matrix.plot{)

391 plt.show()

382

393 return report_print, fl_score_per_class, count_faciss, accuracy_estimation

384

385

396

387

388

348

499



482  def confusion_matrix_3D{facies pred, df_facies_comparison, model):

483

484 from sklearn.metrics import fl_score

485 from sklearn.metrics import precision_recall_fscore_support

486 from sklearn import metrics

487 from sklearn.metrics import classification_report

4688 from sklearn.metrics import confusion_metrix, classification_report, accuracy_score
469 from sklearn.metrics._plot.confusion_matrix import ConfusionMatrixDisplay
412

411 actual_f = df_facies_compariscn[~(np.isnan(df_facies_comparison))]

412 predicted_f = facies_pred[~(np.isnan{facies_pred})]

413

414 conf_matrix = metrics.confusicn_matrix(actual_f, predicted_f)

415 conf_matrix

416

417 fl_score_per_class = fl_score{actual_f, predicted_f, average=hone)

418 accuracy_estimation = accuracy_score(actusl_f, predicted_f)

419

4289 report_print = print(classification_report(actual_f, predicted_f))

421

422 # Extract number of values of each class

423 count_facies = np.unique{actual_f, return_counts=True)[1]

424

425 # Plot confusion matrix

426 display_conf_matrix = ConfusionMatrixDisplay(confusion_matrix=conf_matrix, display_labels=model.classes_)
427 display_conf_matrix.plot()

428 plt.show()

429

438 return report_print, f1_score_per_class, count_facies, accuracy_estimation
431

432

433

434

435

436



437
438

451

453
454
455
156
457
458
459
168
451
162
163
464
465
466
467
168
169
478
471
472
473
474
475
476
477
478

def predict_2d_RelAI_Seis_Envel_ InstFreq_SeisInv(df_facies, relai, seis, envel, inst_freq, seis_inv, model):

# create empty Numpy array with the same shape as facies
r, ¢ = np.shape(df_facies)

map_facies = np.zeros{(r, c))

map_facies[:] = np.NaN

map_facies_1 = map_facies.copy()

# create array for facies filter
gf_f_comparison = map_facies.copy()

# for every trace (column)
for every_col in range({len{df_facies.columns)}:

# concat every column

new_df = pd.concat([relai.iloc[:,every_col],
seis.iloc[:,every_coll,
envel.iloc[:,every_col],
inst_freg.iloc[:,every_col],
seis_inv.iloc[:,every_coll]
, axis=1)

# remove NaN values from trace
new_df_1 = new_df.dropna(axis=2)

# remove Nal values from Facies trace
non_empty_facies = df_facies.iloc[:,every_col].dropnalaxis=8)

# predict
map_facies[new_df_1.index, every_col] = model.predictinew_df_1)

# Filter Facies to compare (since Facies and Features have different number of MaMN and noMaN values)
map_facies_1[non_empty_facies.index, every_col] = map_facies[non_empty facies.index, everv_col]

df_f_comparison[new_df_1.index, every_col] = df_facies.iloc[new_df_l.index, every_col]

return map_facies_l, df_f_comparison



478

488 -~ def predict_facies_3D(facies, relai_std, seis_std, envel std, inst_freg_std, seis_inv_std, model):
481 r, ¢, b = np.shape(facies)

4352

483 map_facies = np.zeros{{r, c, b))

484 map_facies[:] = np.MaN

485 map_facies_1 = map_facies.copy()

486 df_f_comparison = map_facies.copy()

437

488 # for every trace (column)

488 for every_x in range(facies.shape[a]):

499 for every_y in range(facies.shape[1]):

4391

4932 new_df = pd.concat{

493 [pd.DataFrameirelai_std[every_x, everv_v]),

494 pd.DataFrame(seis_std[every_x, every_y]1),

435 pd.DataFrame(envel _std[every_x, every_v]),

496 pd.DataFrame(inst_freq_std[every_x, every_y]),

497 pd.DataFrame(seis_inv_std[every_x, every_y]}]

4498 , Bxiz=1)

4399

588

581

@2 new_features = new_df.dropna{axis=a)

583

584 #new_features = new_df

585 non_empty_facies = pd.DataFrame(facies[every_x, every_y, :]).dropna(axis=3)
586

587 map_facies[every_x, every_y, new_features.index] = model.predict(new_features)
SoE

589

518 # Filter

511 map_facies_l[every_x, every_y, non_empty_facles.index] = map_facies[every_x, every_ vy, non_empty_facies.index]
512 df_f_comparison[every_x, every_y, new_features.index] = faciss[every_x, every_v, new_festures.index]
513

514 # df_facies_wells = df_wells_from_section{df_f_copy, col_38)

515

516 map_facies

517 map_facies_1

518 return map_facies_l, df f_comparison

519
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Appendix 5 - Plot 2D sections
|

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt
from matplotlib import colors
import matplotlib.pyplot as plt
import matplotlib

def plot_2D_section(data_file, extent_plot, color_map='seismic', number_of_facies=5, list_of_wells=None)
“""This function plot 2D cross-section after non-existing changed by MalN

Args:
data_file (DataFrame): cleaned 2D section
extent_plot (1list): List with depth and trace numbers for the plots
color_map (str): Specify the color_map. Defaults to 'seismic'. Defaults to 'seismic’.
number_of_facies {int): Specify the number of Facies. Defaults to 5.

Returns:
lNone
fig = plt.figure(figsize=(12, 4))
ax = fig.add_subplot(l, 1, 1)
# d = np.array(data_file}

data = data_file
extent = extent_plot
d = np.array(data_file).flatten()

if color_map =="seismic':
custom_norm=colors.TwoSlopeMorm(vmin=min(d}, vcenter=@, vmax=max(d))
im = ax.imshow(data.T, origin="upper', cmap="seizmic", extent=extent, aspect='auto', norm=custom_norm})
fig.colorbar{im)

elif color_map == 'facles':

F qame = ['',"'Coarse Sand', 'Send', 'Fine Sand', 'Shale’', 'Carbonate’]

facies_color = ['#FFFFFF' ,'#E69875°, '#FFFFR8', '#FFCCOB', '#4GABAG', '#BABBFF"]

# cmap = matplotlib.colors.listedColormap(['black’', 'fuchsia', 'yellow', 'cyan', 'orange’, 'red'])
cmap = matplotlib.colors.listedColormap{facies_color)

bounds = [-1.5, -8.5, 8.5, 1.5, 2.5, 3.5, 4.5]

norm = matplotlib.colors.BoundaryMorm{bounds, cmap.MN)

im = ax.imshow(data_file.T, cmap=cmap, aspect='auto', extent=extent, norm=norm, wmin=8-1.5, wmax=4+3.5)
# plt.colorbar(im, cmap=cmap, norm=norm, boundaries=bounds)

fig.colorbar{im, ticks=np.arange(d, number_of_facies))

# ax.set_title('Facies', fontsize=18)

elif color_map == 'seis_ipv':
im = ax.imshow(datas, cmap="gist_reinbow", aspect='zuto’, extent=extent)
fig.colorbar{im)

else:
im = ax.imshow(data, cmap="jet", aspect='auto', extent=extent)
fig.colorbar{im}
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if list_of_wells==Hone:
oEss
else:
for well in list_of_wells:
ax.axvline(x = well, linewldth = 1, color

colormapl = fig.axes[1]
colormapl.tick_paramsi labelsize=12)

ax.set_wxlabel('trace number', fontsize=14)
ax.set_ylabel("'TWT [ms]', fontsize=14)
plt.xticks(fontsize=12)
plt.yticks(fontsize=12)

plt.show(]}

"black’

)
4



83 & Difference map

84

85 - def difference_map(df_facies_comparison, facies_predicted, extent, list_of_wells=Nones):
86 """ Function to plot difference map between the ground-truth and predicted facies.
87

88 Args:

39 df_facies_comparison (2D array): ground truth facies

=lc} facies_predicted (2D array): predicted facies from ML models
91 extent {list): List with depth and trace numbers for the plots
g2 list of wells (list): the list with wells location. Defaults to None.
93

94 Returns:

95 nothing

96

97 e

98

99

168 import matplotlib.pyplot as plt

181 import matplotlib.colors

182

163 fig = plt.figure{figsize=(1a, 4))

184 gx = fig.add subplot(l, 1, 1)

185

lee extent = extent # define extent

187 # The differsnce

188 np_facies_fact = df_facies_comparison

189 np_facies predicted = facies predicted

118

111 facies_difference = np.subtract{np_facies_fact, np_facies_predicted)
112

113 gfl = pd.DataFrame(facies_difference)

114 dfl = dfl.applyinp.sign).replace({-4:1, -3:1, -2:1, -1:1, @:@,

115 1:1, 2:1, 3:1, 4:1

116 1

117 facies_difference_result = np.array(dfl)

118

119

128

121 cmap = matplotlib.colors.ListedColormap(['green', 'red'])

122 im = ax.imshow{facies_difference_result, cmap=cmap, vmin=8, wmax=1, aspect='auto', extent=extent)
123

124 if 1list_of_wslls==lone:

125 p&ss

126 else:

127 for well in list_of wells:

128 ax.axvline(x = well, linewidth = 1, color ='black')

129

138 ax.set_xlabel( 'trace number', fontsize=14)

131 ax.set_ylabel('TWT [ms]', fontsize=14)

132 gx.set_title{'Difference map', fontsize=16)

133 colormapl = fig.axes[B]

134 colormapl.tick_params{labelsize=12)

135 plt.colerbar{im, ticks=[True, False])

136 plt.legend()

137 plt.show(}

138
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Appendix 6 - Plot 3D sections

import matplotlib.pyplot as plt
import matplotlib

import numpy as np

import pandas as pd

def plot_3D_cube(data, color_map='facies', number_of_facies=5, number_of_wells=7):

¥ = np.indices{data.shape)[2]
v = np.indices{data.shape)[1]
np.indices{data.shape)[2]
= data.flatten()

# 3D Plot

fig = plt.figure(figsize=(1@, 6))

ax30 = fig.add_subplot(projecticn="3d")
# ax3D = plt.axes(projection="3d")

# We will randomly choose 7 wells for training
# It should not cross faults

start_x = [1@, 6@, 38, 25, 65, 58, 21]
start_y = [15, 15, 28, 58, 68, 58, 35]

start_z = [7@0, 708, 708, 708, 700, 708, 700]

end_x = [1@, 6@, 38, 25, 65, 58, 21]
end_y = [15, 15, 28, 58, 6@, 58, 35]
end_z =[@, @, @, 8, @, @, 8]

ax30.set_wxlabel('x')
ax30.set_ylabel('y')
ax30.set_zlabel('z")

if number_of_wells ==
for well in range{number_of_wells):
ax30.plot([start_x[well], end_x[well]], [start_y[well], end_y[well]],

elif number_of_wells == MNone:
pass
if color_map == 'facies':

if number_of_facies ==

= ['", Coarse Sand', 'Sand', 'Fine Sand', 'Shale']
facies_color = ["#FFFFFF' ,'#EG9@76', '#FFFFOE", '#FFCCEA", "#ABABAG',
cmap = matplotlib.colors.LlistedColormap(facies_color)

bounds = [-1.5, -8.5, @.5, 1.5, 2.5, 3.5, 4.5]

norm = matplotlib.colors.BoundaryNorm{bounds, cmap.N)

# # 3D Plot

# fig = plt.figure()

# ax3D = fig.add_subplot(projection="3d")

# p3d = ax3D.scatter(x, y, =

# p3d = ax3D.scatter(x, v, z, ¢ =data, cmap=cmap)

p3d = ax3D.scatter(x, v, z, c=data, cmap=cmap}

zs=[start_z[well], end_z[well]], color='black', linewidth = 1}

"REBEOFF " ]



59
60
61
62
63

65
66
67
3]
69
7@
71
72
73
74
75
78
77
78
79
88
81
82
83

85
86
87
88
89
L]
91
92
a3
94
95
96
a7
98
99
1ed
le1
le2

p3d = ax3D.scatter(x, y, z, c=data, cmap=cmap)
# fig.colorbar(p3d, ticks=np.arange(@, 5))
fig.colorbar(p3d)

# im = ax.imshow(data.T, cmap=cmap, aspect='auto', extent=extent, norm=norm, vmin=@-1.5, vmax=4+8.5)
# # plt.colorbar{im, cmap=cmap, norm=norm, boundaries=bounds)

# fig.colorbar(im, ticks=np.arange(d, 5))

# aw.set_title('Facies section')

if number_of_facies ==
f =_name = ['Coarse Sand', 'Sand', 'Fine Sand', 'Shale']

facies_color = ['#EG0@76", '#FFFF@@', '"#FFCCOB", 'RABAGAG', '#BOSOFF']
cmap = matplotlib.colors.listedColormap(facies_color)
bounds = [-8.5, 8.5, 1.5, 2.5, 3.5, 4.5]

norm = matplotlib.colers.BoundaryNorm{bounds, cmap.N)
# # 3D Plot

# fig = plt.figure()

# ax3D = fig.add_subplot(projection="3d")}

# p3d = ax3D.scatter(x, v, z)

# p3d = ax3D.scatter(x, v, z, ¢ =data, cmap=cmap)

p3d = ax3D.scatteri{x, v, z, c=data, cmap=cmap)
fig.colorbar(p3d, ticks=np.arange(@, 5})

glif color_map == 'relai’:
# # 3D Plot
# fipg = plt.figure()
# ax3D = fig.add_subplot(projection="3d")
# p3d = ax3D.scatter(x, v, z)
# p3d = ax3D.scatter({x, vy, z, ¢ =data, cmap=cmap)
p3d = ax3D.scatter(x, v, z, c=data, cmap='jet")
# fip.colorbar(p3d, ticks=np.arange(8, 5))
fig.colorbar(p3d)

else:
§ fig = plt.figure()
# ax3D = fig.add_subplot(projection="3d")
# p3d = ax3D.scatter(x, v, z)
# p3d = ax3D.scatter{x, vy, z, ¢ =data, cmap=cmap)
p3d = ax3D.scatter(x, v, z, c=data, cmap='jet")
# fig.colorbar(p3d, ticks=np.arange(d, 5))
fig.colorbar(p3d)

plt.show()



111 def difference_map_3D(df_facies_comparison, facies_predicted, number_of_wells=7):
112 d, e, ¥ = np.shape(df_facies_comparison)

113 facies_difference_map = np.zeros((d, €, f})

114 facies_difference_map[:] = np.Nahl

115

116

117 # The difference map

118 np_facies_fact = ¢f_facies_comparison

119 np_facies_predicted = facies_predicted

128

121

122 facies_difference = np.subtract{np_facies_fact, np_facies_predicted)
123 # np.unigue(facies_difference)

124 facies_difference_map = np.where(((facies_difference »= 1) | (facies_difference <= -1)), 1, facies_difference)
125

126

127 ¥ = np.indices{cf facies_comparison.shape)[8]

128 y = np.indices(df_facies_comparison.shape}[1]

129 z = np.indices{cf facies_comparison.shape)[2]

138 col = df_facies_comparison.flatten()

131

132 # 3D Plot

133 fig = plt.figure(figsize=(8, 8))

134 #fipl=plt.figure(figsize=(8,5))

135 %30 = fig.add_subplotiprojection="3d")

136

137

138

139 start_x = [18, &@, 3@, 25, &5, 58, 21]

148 start_y = [15, 15, 28, 58, &@, 58, 35]

141 start_z = [78@, 708, 788, 708, 708, 708, 788]

142

143 end_x = [18, &8, 3@, 25, 65, 58, 21]

144 end_y = [15, 15, 28, 58, 6@, 5@, 35]

145 end_z =[8, 8, @, 8, 8, 8, @]

146

147 ax30.set_xlabell'x")

148 ax30.set_ylabel('y')

149 ax30.set_zlabel('z")

158

151 for well in range(number_of_wells):

152 ax3D.plot([start_x[well], end_x[well]], [start_y[well], end_y[well]], zs=[start_z[well], end_z[well]], color='black', linewidth = 1)
153

154

155 cmap = matplotlib.colors.ListedColormap(['green', 'red'])

156 bounds = [-8.5, 8.5, 1.5]

157 norm = matplotlib.colors.BoundaryNorm(bounds, cmap.M)

158 p3d = ax3D.scatter(x, v, z, c=facies_difference_map, cmap=cmap)
159 # fig.colorbar{p3d, ticks=np.arange(@, 5)}

168 fig.colorbar{p3d, ticks=np.arange(d, 2))

161 plt.show()
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