
$
University of

Stavanger

Faculty of Science and Technology

MASTER.S THESIS

Study program/ Specialization :

Master's Degree Programme / Robot
Technology and Signal Processing

Spring semester, 2o2g

Open

Writers:
Gent Luta 6sn! t

(Writer's signature)

Faculty supervisor:

Dr. Damiano Rotondo

Didrik Efjestad Fjereide

Thesis title:

Design and Implemento.tion of Model Predictiue Controlfor a Coupled Tank System

Credits (ECTS): 30

Keywords:

Model predictive control
Linear quadratic regulator
Quadratic programming

System modeling
Optimization

Pages: .1..8.L......

+ enclosu."' 1.8.6..

stavanger, .Lig*./.ro aa
Date/year

Frontpage for bachelor thesis
Faculty ofScience and Technology

Decision made by the Dean October 3oth zoog

Faculty of Science and Technology
Department of Electrical Engineering and Computer Science

Design and Implementation of Model
Predictive Control for a Coupled Tank

System

Master’s Thesis in Robot Technology and Signal Processing
by

Gent Luta

Internal Supervisors

Damiano Rotondo
Didrik Efjestad Fjereide

July 15, 2023

“Running water never grows stale. So you just have to keep on flowing.”

Bruce Lee, 1996

Abstract

Model predictive control (MPC) is a control technique that optimizes, over the manipu-
lated inputs, future trajectories of a dynamic system.

Given an objective function, the MPC uses a prediction model (which mathematically
tries to encapsulate the dynamic behaviour of a system as accurately as possible) and an
optimization algorithm in order to find the optimal manipulated inputs, which, when
applied to the prediction model, results in a predicted trajectory that minimizes the
objective function.

Model predictive control follows the receding horizon control policy, which implies that the
optimization procedure is computed over a finite horizon window. When the optimization
is completed, only the first calculated optimal manipulated input is applied to the system,
and the rest are discarded. The finite horizon window then shifts by one sample, and the
procedure is repeated ad infinitum.

This project investigates four types of model predictive controllers: (i) linear-, (ii) explicit-
, (iii) adaptive-, (iv) and nonlinear-MPC. It is shown that, for a multi-input, coupled,
fast-sampled tank system, the four types of model predictive controllers provide adequate
control in regards to set-point tracking and disturbance rejection. Furthermore, it is
shown that a model predictive controller can provide signal previewing functions as
well as decoupling functions, while also being subjected to constraints on the controlled
outputs, manipulated inputs, and the manipulated input rates. The aforementioned
observations are shown using simulation results and experimental results from the tank
system.

Additionally, more traditional control techniques such as LQR-, and PID-based controllers
are evaluated in a similar manner as the four model predictive controllers. It is shown
that the performance of the controllers, with regards to the integral of absolute error
(IAE) performance index, can be ranked in the subsequent order (from best to worst):
(i) nonlinear-MPC, (ii) linear-MPC, (iii) explicit-MPC, (iv) LQR-based controller, (v)
adaptive-MPC, (vi) PID feedback controller with feedforward control action and a linear
decoupler, (vii) PID feedback controller with feedforward control action, and lastly, (viii)
PID feedback controller. These observations are shown using experimental results from
the tank system.

Lastly, it is shown that the linear-, explicit-, and adaptive-MPC are able to provide
feasible control policies with a sampling interval of 0.1 s. A feasible control policy implies
that the model predictive controller is able to calculate the optimization procedure within

the time frame of one sample. For the nonlinear MPC, it is shown that this controller
provides a feasible control policy with a sampling interval of 0.5 s. These observations
are shown using experimental results from the tank system, in addition to simulation
results.

Acknowledgements

I would like to thank the lovely people at the University of Stavanger for providing me
with fives years of great experiences and memories.

Thank you to all of the amazing professors who, just through their pure dedication and
brilliance, motivate hundreds of students daily. In particular, I would like to give a
special thanks to Dr. Damiano Rotondo, Dr. Kristian Thorsen, Dr. Tormod Drengstig,
and Dr. John Håkon Husøy for giving me endless wisdom, knowledge, and inspiration.

As special thanks goes to the doctors, surgeons, and nurses at Hillevåg - Dagkirurgisk
enhet. You are all real-life superheros.

Lastly, I would like to express my deepest appreciation to my dear mother and father.
The sacrifices you have made for me and my siblings are too many to count, and I will
forever be grateful to you. Ju dua shumë.

vi

Declaration of Authorship

I, Gent Luta, declare that this thesis titled, 'Design and Implementation of Model

Predictive Control for a Coupled Tank System' and the work presented in it are my own.

I confirm that:

r This work was done wholly or mainly rn'hile in candidature for a master's degree at

this University.

r Where I have consulted the published work of others, this is always clearly at-

tributed.

r Where I have quoted from the work of others, the source is always given. With the

exception of such quotations, this thesis is entirely my own work.

r I have acknou'ledged all main sources of help.

Signed: 6.^^t (utn

1,-s o1.2.sllDate:

v111

List of Figures

1.1 Illustration of Ctesibius’ water clock. Image from Wikipedia / Public
Domain Mark 1.0. 2

1.2 Illustration of Cornelis’ oven. Image by Jonathon Rosen / All rights reserved. 3
1.3 Illustration of a centrifugal governor. Image from Wikipedia / Public

Domain Mark 1.0. 5
1.4 A demonstration of the M9 Director (center background) at Bell Labora-

tories in 1943. Image from Wikipedia / No known copyright restrictions. . 8

2.1 A simple MPC conceptual block diagram. 22
2.2 A discrete MPC scheme. Figure by Martin Behrendt/CC BY-SA 3.0 . . . 22

3.1 Schematic sketch of the two-tank system. 30
3.2 Detailed schematic sketch of the sub-system under consideration. 31
3.3 Simple sketch of an orifice valve. This sketch uses SI-units. 32
3.4 Equal percentage flow characteristics for different rangeability. 34
3.5 Comparison between (3.5) with R = 10 and (3.6). 34
3.6 Pump characteristics (3.10) when operating in the two-tank system. . . . 36
3.7 Cross section of Tank 2. 41
3.8 Graphical interpretation of (3.62) for f1 and f2. Recall that zi(t) and

uLV 00i(t), i ∈ {1, 2} can be used interchangeably due to assumption (3.7). 46
3.9 Graphical interpretation of (3.62) for f3. To increase readability, uP A001(t)

is abbreviated to just u(t) for this particular figure. 46
3.10 Simulation of the nonlinear- and linear- model with perturbations in the

input signals. 48
3.11 Phase plane of the unforced part in (3.63). The horizontal and vertical

axes represent ∆h1(t) and ∆h2(t), respectively. The origin (with respect to
the real system variables hi(t), i ∈ {1, 2}) represents the nominal solution
NS. John C. Polking of Rice University is acknowledged for providing
the MATLAB code which produced this image. 49

3.12 Simulation of the step response of each tank with respect to every input
signal. 52

3.13 Simulation of Tank 1 using ode45 with intervals ts = 0.1, and the ZOH
method with different sampling times ts(ZOH). 55

3.14 Simulation of Tank 2 using ode45 with intervals ts = 0.1, and the ZOH
method with different sampling times ts(ZOH). 55

3.15 Simulation of Tank 1 using ode45 with intervals ts = 0.1, and the Euler
method with different step sizes hEuler. 57

3.16 Simulation of Tank 2 using ode45 with intervals ts = 0.1, and the Euler
method with different step sizes hEuler. 57

ix

https://commons.wikimedia.org/wiki/File:Clepsydra-Diagram-Fancy.jpeg
https://creativecommons.org/publicdomain/mark/1.0/
https://creativecommons.org/publicdomain/mark/1.0/
https://nautil.us/the-vulgar-mechanic-and-his-magical-oven-234872/
https://commons.wikimedia.org/wiki/File:Centrifugal_governor.png
https://creativecommons.org/publicdomain/mark/1.0/deed.en
https://creativecommons.org/publicdomain/mark/1.0/deed.en
https://commons.wikimedia.org/wiki/File:Bell_telephone_magazine_(1922)_(14569949459).jpg
https://commons.wikimedia.org/wiki/File:MPC_scheme_basic.svg
https://creativecommons.org/licenses/by-sa/3.0/

4.1 Input constraint set U ∈ Rm illustrated by the gray polytope. 72
4.2 Input rate constraint set δU ∈ Rm illustrated by the gray polytope. 74
4.3 State constraint set X ∈ Rn illustrated by the gray polytope. 75
4.4 Optimal calculated state prediction set Xopt(k) and control moves Uopt(k)

at control interval k. Prediction- and control- horizons are 40 control
intervals long. 76

4.5 Optimal calculated state prediction set Xopt(k) and control moves Uopt(k)
at control interval k. Prediction- and control- horizons are 40 and 12
control intervals long, respectively. 77

4.6 Optimal calculated state prediction set Xopt(k) and control moves Uopt(k)
at control interval k. Prediction horizon is P = 40, while the control
horizon M is given by (4.39). 79

4.7 Example of the explicit MPC polyhedral partitioning. 84

5.1 Heat map of the total code execution time for the 210 simulations with
unique (P, M) combinations. 93

5.2 Heat map of the total quadratic cost for the 210 simulations with unique
(P, M) combinations. 93

5.3 Heat map of the total quadratic cost from a highlighted segment of Figure
5.2. 94

5.4 Closed-loop response w/ linear MPC. 96
5.5 Box plot of recorded elapsed time for every 800 QP solver called upon by

the linear MPC. Each box represent the data belonging to their respective
simulation instance. 97

5.6 Stem plot illustrating the execution time, and the number of necessary
iterations, used by the 800 QP solver calls, respectively, from the Sim7
data-set. 98

5.7 Closed-loop response w/ linear MPC. The paramount objective is to
prioritize set-point tracking in Tank 1. 100

5.8 Closed-loop response w/ linear MPC. The paramount objective is to
prioritize set-point tracking in Tank 2. 101

5.9 Box plot of recorded elapsed time for every 800 QP solver called upon by
the linear MPC. Each box represent the data belonging to their respective
simulation instance. The Interior-point method is used by the QP solver
calls. 102

5.10 Closed-loop response w/ linear MPC, which is programmed to use the
Interior-point method. 103

5.11 Stem plot illustrating the execution time, and the number of necessary
iterations, used by the 800 QP solver calls, respectively, from the Sim9
data-set. The QP solver calls are programmed to use the Interior-point
method. 104

5.12 Stem plot illustrating the total quadratic cost, and the number of polyhe-
dral regions, for the explicit MPCs designed with different control horizons
M . Note the logarithmic scale for the number of Polyhedral Regions axis
(orange). 105

5.13 Box plot of recorded elapsed time for every 800 QP solver called upon
by the explicit MPC. Each box represent the data belonging to their
respective simulation instance. 106

5.14 Closed-loop response w/ explicit MPC. 108

5.15 Closed-loop response w/ explicit MPC. The paramount objective is to
prioritize set-point tracking in Tank 1. I.e., the output weighting matrix
is set to be Qi (see (4.22)). 108

5.16 Closed-loop response w/ explicit MPC. The paramount objective is to
prioritize set-point tracking in Tank 2. I.e., the output weighting matrix
is set to be Qii (see (4.22)). 109

5.17 Closed-loop response w/ explicit MPC. The paramount objective is to
prioritize set-point tracking in Tank 2. I.e., the output weighting matrix is
set to be Qii (see (4.22)). Additionally, the manipulated variable weighting
matrix S is adjusted according to (5.12), in order to avoid excessive use of
the manipulated variables. 110

5.18 Box plot of recorded elapsed time for every 800 control interval (where each
control interval consists of one QP solver call, plus one prediction model
update) with the adaptive MPC. Each box represent the data belonging
to their respective simulation instance. 111

5.19 Pie chart illustrating the distribution of the mean total code execution
time from the ten simulations shown in Figure 5.18. 112

5.20 Closed-loop response w/ adaptive MPC. 113
5.21 Closed-loop response w/ adaptive MPC. The paramount objective is to

prioritize set-point tracking in Tank 1. I.e., the output weighting matrix
is set to be Qi (see (4.22)). 114

5.22 Closed-loop response w/ adaptive MPC. The paramount objective is to
prioritize set-point tracking in Tank 2. I.e., the output weighting matrix
is set to be Qii (see (4.22)). 115

5.23 Box plot of recorded elapsed time for every 800 SQP solver called upon
by the nonlinear MPC. Each box represent the data belonging to their
respective simulation instance. 116

5.24 Zoomed in version of Figure 5.23, for easier readability of the box plots. . 116
5.25 Closed-loop response w/ nonlinear MPC. 117
5.26 Stem plot illustrating the execution time, and the number of necessary

iterations, used by the 800 SQP solver calls, respectively, from the Sim1
data-set. Note the logarithmic scale for the Time axis (blue). 117

5.27 Closed-loop response w/ nonlinear MPC. The paramount objective is to
prioritize set-point tracking in Tank 1. I.e., the output weighting matrix
is set to be Qi (see (4.22)). 118

5.28 Closed-loop response w/ nonlinear MPC. The paramount objective is to
prioritize set-point tracking in Tank 2. I.e., the output weighting matrix
is set to be Qii (see (4.22)). 119

5.29 Closed-loop response w/ nonlinear MPC, using a sub-optimal solution. . . 120
5.30 Stem plot illustrating the execution time, and the number of necessary

iterations, used by the 800 SQP solver calls, respectively. The nonlinear
MPC is modified to use sub-optimal solutions, and the SQP solver calls
are limited to 30 iterations. Note the logarithmic scale for the Time axis
(blue). 121

6.1 Photograph of the two-tank system located at the laboratory facility KE
E-458, UiS. 124

6.2 Experimental results of the closed-loop response w/ linear MPC. The
MPC is programmed to prioritize level control of both tanks equally. . . . 127

6.3 Experimental results of the closed-loop response w/ linear MPC. The
MPC is programmed to prioritize Tank 1 more than Tank 2. 128

6.4 Experimental results of the closed-loop response w/ linear MPC. The
MPC is programmed to prioritize Tank 2 more than Tank 1. 128

6.5 Experimental results of the closed-loop response w/ explicit MPC. The
MPC is programmed to prioritize level control of both tanks equally. . . . 129

6.6 Experimental results of the closed-loop response w/ explicit MPC. The
MPC is programmed to prioritize Tank 1 more than Tank 2. 130

6.7 Experimental results of the closed-loop response w/ explicit MPC. The
MPC is programmed to prioritize Tank 2 more than Tank 1. 130

6.8 Experimental results of the closed-loop response w/ adaptive MPC. The
MPC is programmed to prioritize level control of both tanks equally. . . . 131

6.9 Experimental results of the closed-loop response w/ adaptive MPC. The
MPC is programmed to prioritize Tank 1 more than Tank 2. 132

6.10 Experimental results of the closed-loop response w/ adaptive MPC. The
MPC is programmed to prioritize Tank 2 more than Tank 1. 133

6.11 Experimental results of the closed-loop response w/ nonlinear MPC. The
MPC is programmed to prioritize level control of both tanks equally. . . . 134

6.12 Experimental results of the closed-loop response w/ nonlinear MPC. The
MPC is programmed to prioritize Tank 1 more than Tank 2. 134

6.13 Experimental results of the closed-loop response w/ nonlinear MPC. The
MPC is programmed to prioritize Tank 2 more than Tank 1. 135

6.14 Experimental results of the closed-loop response w/ LQR control. The
LQR controller is programmed to prioritize level control of both tanks
equally. 136

6.15 Experimental results of the closed-loop response w/ LQR control. The
LQR controller is programmed to prioritize Tank 1 more than Tank 2. . . 137

6.16 Experimental results of the closed-loop response w/ LQR control. The
LQR controller is programmed to prioritize Tank 2 more than Tank 1. . . 137

6.17 Experimental results of the closed-loop response w/ PID control. The
PID controller uses a simple feedback loop. 139

6.18 Experimental results of the closed-loop response w/ PID control. The PID
controller uses a simple feedback loop, paird up with feedforward control
on the set-points and the disturbance. 139

6.19 Experimental results of the closed-loop response w/ PID control. The PID
controller uses a simple feedback loop, paird up with feedforward control
on the set-points and the disturbance, in addition to a linear decoupler. . 140

6.20 Experimental results of the closed-loop system w/ linear MPC. These
results are from scenario (i) of the experiments where the linear MPC uses
the estimates from the MHE state estimator. 142

6.21 Experimental results of the closed-loop system w/ linear MPC. These
results are from scenario (ii) of the experiments where the linear MPC
uses the estimates from the MHE state estimator. 143

6.22 Experimental results of the closed-loop system w/ linear MPC. These
results are from scenario (iii) of the experiments where the linear MPC
uses the estimates from the MHE state estimator. 144

6.23 Measurements from a static environment in the two-tank system. I.e., the
water levels are motionless. 148

6.24 Measurements from a steady state environment in the two-tank system.
I.e., the pump control input and the valve control inputs are held constant
for a prolonged interval. While stabilizing on a certain water level, the
system shows signs of disturbances caused by the ripples in the water
surfaces, in addition to sensor noise. 149

6.25 Experimental results showing the time delay between valve LV001, and
the water level in Tank 2. 150

D.1 Box plot generated from a random data set. 169

E.1 Pump specifications. 171
E.2 Valve specifications. 172
E.3 Level transmitter specifications. 173
E.4 Positioner specifications. 174
E.5 Positioner model. 174

List of Tables

3.1 Parameters and variables related to Tank 1. 36
3.2 Parameters and variables related to Tank 2. 37
3.3 Dimensions of Tank 2. 41

4.1 Default options for the MATLAB QP solver. Here, nc, and nv are the
total number of constraints across the prediction horizon, and the total
number of optimization variables across the control horizon, respectively. . 80

5.1 Statistical properties of the data-set from Figure 5.5. Here, Perc. and
Adj. are abbreviations for Percentile and Adjacent, respectively. . . . 98

5.2 Statistical properties of the data-set from Figure 5.9. Here, Perc. and
Adj. are abbreviations for Percentile and Adjacent, respectively. . . . 102

5.3 Supplemental data to Figure 5.12. 106
5.4 Statistical properties of the data-set from Figure 5.13. Here, Perc. and

Adj. are abbreviations for Percentile and Adjacent, respectively. . . . 107
5.5 Statistical properties of the data-set from Figure 5.18. Here, Perc. and

Adj. are abbreviations for Percentile and Adjacent, respectively. . . . 110
5.6 Table presenting how long each simulation with the adaptive MPC took,

in addition to the time spent on solving QP solver calls and updating the
prediction model, respectively. 111

5.7 Statistical properties of the data-set from Figure 5.23. Here, Perc. and
Adj. are abbreviations for Percentile and Adjacent, respectively. . . . 114

6.1 Calculated quadratic costs of the experimental trials with the linear MPC.127
6.2 Calculated quadratic costs of the experimental trials with the explicit MPC.131
6.3 Calculated quadratic costs of the experimental trials with the adaptive

MPC. 132
6.4 Calculated quadratic costs of the experimental trials with the nonlinear

MPC. 135
6.5 Calculated quadratic costs of the experimental trials with the LQR-based

controller. 138
6.6 Calculated IAE performance indices of the experimental trials with the

PID-based controllers. 138
6.7 Calculated IAE performance index for all of the controller types, presented

in increasing order. These values are calculated only from the experimental
trials where both tanks were weighted equally in the desired closed-loop
system. 146

B.1 Parameters for the PID feedback controller. 165

xv

List of Algorithms

4.1 Workflow of adaptive MPC . 86
5.1 Simulation procedure . 89
6.1 Experimental procedure . 124
6.2 Experimental procedure w/ state estimation 141

xvii

Contents

Abstract iv

Acknowledgements vi

Declaration of Authorship vii

List of Figures viii

List of Tables xv

List of Algorithms xvii

1 Introduction 1
1.1 History of Automatic Control . 1
1.2 Background and Motivation . 9
1.3 Objectives . 10
1.4 Approach and Contributions . 11
1.5 Outline . 12

2 Related Work 15
2.1 Preliminaries . 15

2.1.1 Notation . 15
2.1.2 LQR control . 16

2.2 Linear MPC . 21
2.3 Nonlinear MPC . 26

3 System Modeling 29
3.1 System Description . 29

3.1.1 The Valves . 31
3.1.2 The Pump . 35

3.2 Nonlinear Model . 36
3.2.1 Tank 1 Model . 37
3.2.2 Tank 2 Model . 38

xix

3.3 Linear Model . 40
3.4 Analysis of the Linear Model . 47

3.4.1 Stability . 47
3.4.2 Laplace Transform . 49

3.5 Discretization . 53
3.5.1 Ordinary Differential Equation Solver 53
3.5.2 Zero-Order Hold Method . 53
3.5.3 Euler method . 56

4 MPC Design 59
4.1 Overview . 59

4.1.1 Software . 59
4.1.2 Hardware . 60

4.2 Linear MPC . 60
4.2.1 Model . 60
4.2.2 Quadratic Objective Function . 63
4.2.3 Scaling . 66
4.2.4 Weighting Matrices . 69
4.2.5 Constraints . 71
4.2.6 Prediction- and Control-Horizon 75
4.2.7 QP Solver . 79

4.3 Explicit MPC . 80
4.4 Adaptive MPC . 85
4.5 Nonlinear MPC . 87

5 Simulations 89
5.1 Simulation Environment . 89

5.1.1 Performance measures . 90
5.2 Optimal Prediction and Control Horizons 91
5.3 Linear MPC . 95

5.3.1 Alternative Closed-Loop Response 99
5.3.2 Alternative Optimization Solver: The Interior-Point Method . . . 101

5.4 Explicit MPC . 104
5.4.1 Alternative Closed-Loop Response 107

5.5 Adaptive MPC . 109
5.5.1 Alternative Closed-Loop Response 112

5.6 Nonlinear MPC . 113
5.6.1 Alternative Closed-Loop Response 115
5.6.2 Sub-Optimal Solution . 118

5.7 Analysis of the Simulation Results . 120

6 Experimental Evaluation 123
6.1 Experimental Setup . 123
6.2 Experimental Procedure . 124
6.3 Parameters . 125
6.4 Linear MPC . 126
6.5 Explicit MPC . 129

6.6 Adaptive MPC . 131
6.7 Nonlinear MPC . 133
6.8 LQR Control . 135
6.9 PID Control . 138
6.10 Linear MPC with State Estimation . 140
6.11 Analysis . 143

6.11.1 Modeling Error . 147

7 Conclusions 151
7.1 Summary . 151
7.2 Advantages . 153
7.3 Disadvantages . 155
7.4 Conclusion . 156
7.5 Future Directions . 157

A LQR Control 159

B PID Control 163
B.1 Feedforward Control . 165
B.2 Linear Decoupler . 165

C Integral of Absolute Error 167

D Box Plot 169

E Two-Tank Component Specifications 171

F Project Description 175

G Project Plan 178

H Master Theses Poster Presentation 180

I MATLAB Code 185
I.1 Functions . 185

I.1.1 AdaptiveSys.m . 185
I.1.2 central_diff.m . 187
I.1.3 forward_diff.m . 187
I.1.4 InversValveChar.m . 187
I.1.5 PumpChar.m . 187
I.1.6 tankCT_NEW.m . 187
I.1.7 tankDT_NEW_One_Step.m . 188
I.1.8 tankDT.m . 188
I.1.9 tankOutputFcn.m . 188
I.1.10 Valve_1_OP_New.m . 188
I.1.11 Valve_2_OP.m . 189
I.1.12 ValveChar.m . 189

I.2 MPC Design Files . 189

I.2.1 MPC_Adaptive_FINAL.m . 189
I.2.2 MPC_Explicit_FINAL.m . 196
I.2.3 MPC_Linear_FINAL.m . 202
I.2.4 MPC_Nonlinear_FINAL.m . 208
I.2.5 Experimental_Make_LQR.m . 214
I.2.6 Experimental_Make_MPCs.m . 217
I.2.7 Experimental_Make_PID.m . 223
I.2.8 LMHE_KMPC_Simulink_init.m 225

I.3 Figure Creation Files . 230
I.3.1 Plot_Data_Visualization_Adaptive_MPC.m 230
I.3.2 Plot_Data_Visualization_Explicit_MPC_V2.m 239
I.3.3 Plot_Data_Visualization_Explicit_MPC.m 248
I.3.4 Plot_Data_Visualization_Linear_MPC_V2.m 257
I.3.5 Plot_Data_Visualization_Linear_MPC.m 265
I.3.6 Plot_Data_Visualization_Nonlinear_MPC.m 275
I.3.7 Plot_Equal_Percentage_Valve_Char.m 281
I.3.8 Plot_Experimental_Data_Delay_Noise.m 283
I.3.9 Plot_Experimental_Data_State_Estimation.m 284
I.3.10 Plot_Experimental_Data.m . 290
I.3.11 Plot_Forward_Euler.m . 292
I.3.12 Plot_Pump_Char.m . 297
I.3.13 Plot_ZOH.m . 298

I.4 .m Files for Simulink . 303
I.4.1 SIM_AdaptiveSys.m . 303
I.4.2 SIM_Eval_Explicit_MPC.m . 305
I.4.3 SIM_forward_diff.m . 305
I.4.4 SIM_GetMatrix.m . 305
I.4.5 SIM_PumpChar.m . 306
I.4.6 SIM_ValveChar.m . 306

J Simulink Schemes 307
J.1 SIM_Linear_VS_Nonlinear_Model.slx 307
J.2 SIM_MPC_Linear.slx . 313
J.3 totank_Live_Edited_070723_PID.slx . 327
J.4 totank_Live_Edited_070723_LQR.slx 329
J.5 totank_mpc_and_mhe.slx . 329

Bibliography 341

Chapter 1

Introduction

1.1 History of Automatic Control

In the 21st century, the advent of the Fourth Industrial Revolution has brought a rapid
change in our technology and industries, especially in the fields of automatic control and
artificial intelligence. While today’s technological advancements happen at a rapid rate,
there is a long history of scientists, engineers, mathematicians and other brilliant minds
that built the foundation of fundamental theory.

Historians divide the history of automatic control in four appropriate periods: early
control (to 1900), the pre-classical period (1900-1935), the classical period (1935-1960),
and modern control (post-1955). The three former periods will be the focus of this
section.

Remark 1.1. This section only discusses the history of automatic control from the early
control (to 1900) and up to the classical period (1935-1960). As model predictive control
was not introduced until 1978, this section does not cover the history of this control
technique. While this section gives a brief account on the history of automatic control,
some of the most significant inventions, and some of the most important discoveries
within this field, it is not strictly required in order to understand the contents of this
project. Therefore, the reader is free to skip to Section 1.2.

Early Control: To 1900

Some of the first automatic systems can be dated more than 2,000 years ago. The water
clock is one of the oldest time-measuring instruments, and remnants of such devices have
been found all over the world. The Greek inventor Ctesibius (285–222 B.C.) designed
what is considered to be the first self-govern and self-regulating water clock.

1

2 Chapter 1 Introduction

Ctesibius’ water clock consisted of two chambers: an initial chamber to ensure a constant
inflow rate, and a second chamber to measure time. To ensure a constant inflow rate,
Ctesibius fitted the initial chamber with an overflow pipe. The water from the overflow
pipe was fed into the second chamber, which filled up at a precise rate. This allowed for
an accurate measurement of time.

Figure 1.1: Illustration of Ctesibius’ water clock. Image from Wikipedia / Public
Domain Mark 1.0.

For his design to work continually, Ctesibius added a siphon to the second chamber. This
allowed the water clock to be emptied and refilled automatically. While this was a great
improvement from earlier water clocks, there was still one problem: the Greeks divided
the daylight hours into twelve. This meant that their hours were shorter in the winter
than in the summer.

To solve this, Ctesibius included a water wheel, cogs and a cylinder. The water that
exited the second chamber through the siphon filled up the water wheel, which made
it rotate. Through a mechanical linkage, the rotation of the water wheel caused the
cylinder to rotate a tiny amount every day. The cylinder was etched with hour lines
that was nearer or farther apart depending on the time of the year. A floating pointer
was installed in the second chamber, which projected the current water level on to the
cylinder, thus, indicating the time of day.

https://commons.wikimedia.org/wiki/File:Clepsydra-Diagram-Fancy.jpeg
https://creativecommons.org/publicdomain/mark/1.0/
https://creativecommons.org/publicdomain/mark/1.0/

Chapter 1 Introduction 3

Ctesibius’ water clock became the most accurate time piece ever constructed for over
1,800 years, until the pendulum clock was invented by Christiaan Huygens (1629-1695)
in 1656.

* * *

One of the first recorded automatic feedback control systems was invented by the Dutch
engineer Cornelis Drebbel (1572-1633). Cornelis invented a self-regulating furnace that
maintained a desired temperature automatically.

The furnace itself consisted of three nested metal boxes, much like a Russian matryoshka
doll, which was placed over an enclosed fire. The outer box was fitted with vents at the
bottom and an opening at the top to ensure sufficient air circulation. The middle box
was filled with water, and acted as a buffer between the intense heat in the outer box and
the controlled heat in the center box. The center box is where Cornelis placed chicken
eggs or different metals, and the furnace acted as an incubator [1].

Figure 1.2: Illustration of Cornelis’ oven. Image by Jonathon Rosen / All rights
reserved.

To control the temperature in the center box, Cornelis devised what is considered to
be one of the first thermostats. The thermostat was an L-shaped glass tube filled with
alcohol and mercury. The tube was placed in the water of the middle box, just touching
the center box. Towards the end of the tube was a metal rod, floating in the mercury.
The metal rod was connected to a damper, which hovered over the top opening of the
outer box.

https://nautil.us/the-vulgar-mechanic-and-his-magical-oven-234872/

4 Chapter 1 Introduction

Due to thermal expansion, the alcohol would expand and push the mercury towards
the end of the tube. This caused the metal rod to rise upwards. When the metal rod
elevated high enough, the damper would close down on the opening of the outer box,
effectively cutting of the air that fed the fire. The fire would then slowly die out, and the
temperature in the center box would drop to the desired point.

If the temperature was too low, then the alcohol would contract, and the metal rod
would be lowered. This would lift up the damper, effectively increasing the air flow to
the fire and, thus, increasing the temperature of the center box.

As many consider it the first of its kind, Cornelis had developed crucial principles for
automatic temperature control and incubators. These principles began to be applied in the
18th century. E.g., some of the work of the French entomologist René Antoine Ferchault
de Réaumur (1683-1757), who proposed several automatic temperature controlled devices,
were based on Cornelis’ furnace [2].

* * *

The steam engine governor is considered to be the most significant control development
during the 18th century[2].

In 1776, the Scottish inventor James Watt (1736-1819) made significant improvements
on Thomas Newcomen’s steam engine (1712). Named after its creator, the Watt steam
engine was more energy efficient than previous steam engines, and it is considered as a
decisive breakthrough in the Industrial Revolution [3].

Since 1776, James made several improvements to the Watt steam engine. One desired
feature for factory machinery was that they would operate at a constant speed. This
was a feature that would be added to the Watt steam engine in 1789 [2].

In order for the Watt steam engine to operate at a constant speed, James included a
throttle valve and a centrifugal governor to his design. Through a mechanical linkage,
such as a drive shaft and a bevel gear construction, the center spindle of the governor
would start to rotate when the steam engine was operating.

Attached to the center spindle were two masses on lever arms. The rotation of the center
spindle transferred kinetic energy to the masses, causing them to experience centrifugal
force. This force, if large enough, lifted the masses upwards against gravity. The lever
arms, attached to the masses, would then change the position of a sleeve surrounding the
center spindle. The position of this sleeve would, through another mechanical linkage,
adjust the aperture of the throttle valve. The throttle valve controlled the flow of steam
to the steam engine.

Chapter 1 Introduction 5

Figure 1.3: Illustration of a centrifugal governor. Image from Wikipedia / Public
Domain Mark 1.0.

If the steam engine was over-speeding, then the center spindle would rotate rapidly,
causing the masses to experience a large centrifugal force. The masses, together with the
sleeve, would be lifted upwards against gravity. This motion caused the aperture of the
throttle valve to close, cutting off the amount of steam supplied to the engine and, thus,
lowering its speed.

By using the principles of proportional control, James created an automatic feedback
system that could self-regulate the speed of the Watt steam engine. Being self-regulated
and more energy efficient, relative to the then-existing steam engines, made the Watt
steam engine the universal prime mover in many branches of the economy [3].

* * *

Although the Watt steam engine was a key technological advancement for the Industrial
Revolution, it was not perfect. During the 19th century, even after James Watt’s death,
many efforts were made to improve on the original Watt governor. This lead to numerous
governor patents being permitted all over the world.

One common problem with the centrifugal governors was the concept of hunting. Hunting
occurred mostly due to the governors being over sensitive, meaning that any small change
in the engine speed led to a substantial change in the throttle valve. This caused the
engine speed to continuously oscillate below and above the desired speed.

Motivated by the concept of hunting, an extensive search for stability started in the
mid-19th century. In 1868, the Scottish mathematician James Clerk Maxwell (1831-1879)
published his paper ’On Governors’. In the paper, Maxwell derived differential equations
to describe the dynamics for various governor mechanisms. These differential equations

https://commons.wikimedia.org/wiki/File:Centrifugal_governor.png
https://creativecommons.org/publicdomain/mark/1.0/deed.en
https://creativecommons.org/publicdomain/mark/1.0/deed.en

6 Chapter 1 Introduction

were used to provide necessary and sufficient conditions to determine the stability of the
systems under consideration [4].

Although it was little recognised at the time, today, Maxwell’s ’On Governors’ is considered
as a significant contribution and a central paper in control theory.

The Pre-Classical Period: 1900-1935

The application of feedback controllers grew rapidly in the early years of the 20th century.
As systems and devices grew more complex, so did the quantity of variables that needed
to be controlled. Voltage, current, and frequency were key control variables for the
electric motor, while temperature, pressure, and flow were key control variables for the
industrial processes.

Although control devices became more applicable, most of them were designed without
any clear understanding of the control laws implemented or the dynamics of the system
that was to be controlled [2]. There was a lack of theoretical understanding, as well as
an absent technical language regarding control design. Furthermore, there was no simple
design methods for control systems that could be easily applied. The design methods at
the time were limited to the differential equations of the system and the Routh-Hurwitz
stability criterion, which is a laborious process.

Despite the above-mentioned circumstances, complex control systems were being devel-
oped in the early years of the 20th century. One of the first systems that incorporated
proportional-integral-derivative (PID) control and automatic gain adjustment was made
in 1911, by the American inventor Elmer Sperry (1860-1930). Elmer created an automatic
ship steering device that compensated for disturbances, which occurred when the sea
conditions changed. Elmer’s PID controller was based on an intuitive approach, rather
than mathematical equations [5].

In 1922, the Russian American mathematician Nicolas Minorsky (1885-1970) published
his paper titled ’Directional stability of automatically steered bodies’. During this period,
Nicolas worked on automatic ship steering for the US Navy. Through observations of
how a helmsman steered a ship, Nicolas provided theoretical analysis of the control laws
that we today associate with PID control. Alongside Maxwell’s ’On Governors’, Nicolas’
paper stands out as one of the significant contributions in control theory.

Chapter 1 Introduction 7

The Classical Period: 1935-1950

Between 1935 and 1942, there were many advancements in control theory being made
across many different institutes and countries. Some of the most significant advancements
are briefly mentioned below:

• In 1940, the American engineer Hendrik W. Bode introduced the concept of gain
and phase margins. By plotting these margins, also known as Bode plots, one was
able to display the frequency response of a system clearly. This resulted in a new
approach where the system stability could be studied in the frequency domain.
This method was considered as significantly simpler and easier to implement than
traditional time-domain-based methods. Although Hendrik introduced this concept
in 1940, the full details of his work was not known until he published the book
titled ’Network Analysis and Feedback Amplifier Design’ in 1945.

• In 1942, the two American control engineers John G. Ziegler and Nathaniel B.
Nichols published their paper titled ’Optimum Settings for Automatic Controllers’.
In the paper, they present a simple method for adjusting control parameters, by
making use of the ultimate sensitivity and period of the system. The method
eventually became known as the Ziegler-Nichols tuning rules, which is a prominent
tuning method in control engineering today.

• During this period, the Electrical Engineering Department of MIT worked on
several projects that would greatly impact the field of control engineering. Most
notably was the projects led by Harold L. Hazen and Gordon S. Brown. These
projects introduced, among other things, the use of block diagrams to represent
and manipulate both electrical and mechanical systems, and differential analyzers
to simulate control systems.

* * *

The race for technological superiority between the Allies and the Axis was an important
aspect of the Second World War, and it played a critical role in its outcome. Research
was highly motivated by military use, and technologies such as guided missiles, remote
sensing, aircraft, and even atomic weapons were being developed at a rapid rate. The
discipline of control systems was no exception, and research in this field also revolved
around military applications.

The most prominent control task during the Second World War was aiming anti-aircraft
weaponry. Properly aligning an anti-aircraft gun with its target was a cumbersome ordeal

8 Chapter 1 Introduction

that involved many complex tasks: detecting the enemy target, calculating its future
trajectory, and precisely control the movement of the heavy gun.

In 1943, the MIT Radiation Laboratory developed the SCR-584, which was an automatic-
tracking microwave radar. The SCR-584 was the most advanced radar of its era, and it
became the primary fire-control radar (FCR) for anti-aircraft weaponry.

Relaying the information from the SCR-584 to an anti-aircraft gun manually proved to be
inefficient, as the enemy targets moved with such high velocity. Therefore, a system that
directly linked the SCR-584 radar with the gun controller was needed. To accomplish
this, a group1 at Bell Telephone Laboratories created the M9 director.

The M9 director was a computer that continuously calculated fire solutions, based on the
information that it automatically received from the SCR-584 radar. After calculating a
fire solution, the M9 director would then automatically control the servomechanisms in
the gun, effectively adjusting its position accordingly. This system proved to be very
successful, especially against V-1 rockets.

Figure 1.4: A demonstration of the M9 Director (center background) at Bell Laboratories
in 1943. Image from Wikipedia / No known copyright restrictions.

The research related to the anti-aircraft controller system led to a broader understanding
of bandwidth, noise and non-linearities in systems [2]. It also was a source of inspiration for
the American mathematician Norbert Weiner (1894-1964), who made major developments
in the study of stochastic systems with his book titled ’The Extrapolation, Interpolation
and Smoothing of Stationary Time Series with Engineering Applications’, which was
published in 1942.

1Lead by Bode and including Blackman, C.A. Lovell, and Claude Shannon.

https://commons.wikimedia.org/wiki/File:Bell_telephone_magazine_(1922)_(14569949459).jpg

Chapter 1 Introduction 9

The majority of classical control techniques had been established by the end of the Second
World War, and much of the research done on control systems began to be published in
the post-war period2.

1.2 Background and Motivation

Since the dawn of the Digital Revolution, the computer has become mankind’s most
important tool. In the 21st century, the frontier of technological advancement has been
expanding vast and rapidly, including the complexity and capabilities of computers.

Today, the average smartphone is exponentially more powerful than the guidance computer
NASA used for the famous Apollo 11 mission in 1969 [6]. While this astronomical
advancement in technology is great for innovation, it also gives a rebirth to old ideas,
one of which being Model Predictive Control (MPC).

MPC refers to a class of algorithms that utilizes an explicit process model to compute a
sequence of manipulated variable adjustments in order to optimize the future behaviour
of the plant [7],[8]. Originally presented as Model Predictive Heuristic Control (MPHC),
Richalet et al. [9] offered the first description of MPC applications in 1978.

MPHC technology was originally developed for industrial processes such as petroleum
refineries and chemical plants. These industrial processes are often highly nonlinear,
multivariate systems subjected to multiple constraints, both economical and physical.
Additionally, these systems are typically slow, which eased the real-time implementation
of MPHC.

Due to the complex nature of these systems, the implementation of modern control
techniques to industrial control had not been so successful [9]. In addition to that,
Moore’s law began to prove true during this time period, which resulted in much more
powerful computers. These two statements became the core motivation behind the use
of digital computers in industrial process control and the development of MPC.

Surveys such as [7] and [8] show how MPC technology quickly became popular for its
intended market, namely areas like refining, petrochemicals and chemicals.

In the original description of MPHC, namely [9], the following question is raised:

’With the availability of much more powerful computers, should not the basic
approaches to control systems application be reconsidered?’

2For a more detailed description on the history of automatic control, the article by Bennett [2] is
strongly recommended.

https://en.wikipedia.org/wiki/Moore%27s_law

10 Chapter 1 Introduction

A common metric for gauging our technological advancement is by comparing the scaling
of metal–oxide–semiconductor field-effect transistors (MOSFET) over the years. When
the aforementioned question first was raised in 1978, the average MOSFET scale was
approximately 3-microns [10]. Today, the scaling is approximately 5nm (or 0.005-microns)
[11].

This drastic change in computational power has considerably decreased the cost and
increased the capacity of computers, sensors, communications and other hardware used
in the industrial process. With this fact in mind, it is a fair assessment to raise a similar
question as Richalet et al. [9] did almost 45 years ago:

With the availability of much more powerful computers, should not the basic approaches
to control systems applications, in particular MPC technology, be reconsidered?

This leads us to the main motivation behind this project, which is to explore state-of-
the-art MPC technology, and to investigate how it has evolved with the availability of
much more advanced and sophisticated computers since its inception as MPHC.

1.3 Objectives

This project aims at designing and implementing an MPC-based control system for a two-
tank configuration. The two-tank system is available in KE E-458, which is a laboratory
facility at the University of Stavanger (UiS). The performance of the MPC-based control
system will be compared against other more conventional control strategies.

At first, a simple linear MPC strategy will be used. In subsequent phases of the projects,
other types of MPC strategies will be applied, such as explicit-, adaptive-, and nonlinear-
MPC.

It is expected that the (dis)advantages of applying this technique are evaluated both in a
simulation environment and with experimental data obtained from the two-tank system.

The activities and objectives for this project are presented in a condensed list as the
following:

• Literature study and analysis of state-of-the-art MPC technology.

• Implementation and evaluation of linear MPC in a simulation environment.

• Implementation and evaluation of advanced MPC in a simulation environment.

• Experimental validation of the designed MPC-based control.

Chapter 1 Introduction 11

• Comparison of MPC against PID and LQR control strategies.

• Combining state estimation, in the form of Moving Horizon Estimation (MHE),
with MPC.

1.4 Approach and Contributions

The overall approach to this project follows the same order as the objectives presented in
Section 1.3. Firstly, literature study and analysis of the theory behind MPC is conducted.
For this purpose, the literature available at the Stavanger University Library is made use
of, in addition to published articles available on the internet.

When the literature study is concluded, the different MPC-based controllers are designed
and implemented in a simulation environment. This is done in the programming software
MATLAB, as well as in the toolbox Simulink. Note that, in order to properly design an
MPC, a prediction model is required. Therefore, some time is spent on system modeling
of the two-tank system.

After the MPCs are successfully implemented in a simulation environment, the next step
is to experimentally validate the simulations, which is done by implementing the MPCs
on the real two-tank system. As a part of the project, more traditional control techniques
such as LQR- and PID-based controllers are also implemented on the two-tank system.

When all of the experimental trials are conducted for the MPC-, LQR-, and PID-based
controllers, the results are evaluated, and their performances are compared against each
other.

As a final part of the project, reflections are made on what worked as intended, what did
not work, and what could have been done differently.

This project provides a descriptive work on the process of designing, implementing,
testing, and evaluating MPC-based controllers.

The project covers the theoretical background of the MPC approach, while also providing
a detailed discussion on practical matters such as MPC specification selection and code
syntax for implementation.

Additionally, thorough experiments are conducted on the MPCs (both in simulations
and on the real two-tank system), and these results are discussed and evaluated in detail.

This project provides further insight regarding what separates the MPC approach from
more traditional control techniques such as LQR-, and PID-based controllers. This

12 Chapter 1 Introduction

discussion is supplemented by experimental results from MPC-, LQR-, and PID-based
controllers, respectively, where it is shown that the MPC-based controllers provided
superior closed-loop systems, in terms of the performance index integral of absolute error
(IAE).

1.5 Outline

This project is divided into the seven subsequent chapters:

• Chapter 1 introduces:

- the background and motivation for the project,

- what the objectives of the project are,

- a brief summary of the overall approach, and

- the outline of the project.

• Chapter 2 discusses:

- the theoretical aspects of a linear-quadratic-regulator (LQR),

- the theory behind a linear model predictive controller (MPC), and

- the theory behind a nonlinear model predictive controller (NMPC).

• Chapter 3 gives:

- a thorough description of the two-tank system,

- a complete discussion on how to obtain a nonlinear model that describes the
dynamics of the two-tank system,

- a complete discussion on how to obtain a linear model from the nonlinear
mode,

- an analysis on the properties of the linear model, and

- a brief introduction to numerical solvers and discretization methods.

• Chapter 4:

- defines the different MPC specifications that need to be selected when designing
an MPC,

- it also provides detailed justifications as to why the different MPC specifications
were selected as they were in this project, and lastly

Chapter 1 Introduction 13

- it shows how to design a linear-, explicit-, adaptive-, and nonlinear-MPC using
MATLAB syntax.

• Chapter 5:

- looks to implement and evaluate the linear-, explicit-, adaptive-, and nonlinear-
MPC in a simulation environment, and

- it provides comparisons of the simulation results between the different MPC-
based controllers.

• Chapter 6 looks to:

- provide experimental validation of the linear-, explicit-, adaptive-, and nonlinear-
MPC, by implementing them on the real two-tank system,

- provide experimental validation of an LQR-based controller, by implementing
it on the real two-tank system,

- provide experimental validation of multiple PID-based controllers, by imple-
menting them on the real two-tank system, and finally

- it looks to compare the performance of the different controllers.

• Chapter 7 gives:

- a brief summary of the different theoretical and practical aspects covered in
this project,

- a brief summary on the advantages of the MPC approach,

- a brief summary on the disadvantages of the MPC approach, and

- a brief discussion on possible future directions that are of interest to further
understand, and to improve on, the MPC designs presented in this project.

Additionally, this project provides supplemental information and insight in the form of
appendices. The appendices cover the following:

• Appendix A derives the infinite-horizon steady state optimum gain matrix K∞ for
the LQR-based controllers used during the experimental validation in Chapter 6.

• Appendix B derives the PID feedback controller, the feedforward control action,
and the linear decoupler, which are used during the experimental validation in
Chapter 6.

• Appendix C provides a brief description of the performance index integral of absolute
error (IAE), which is a performance index used to compare the quality of different
controllers.

14 Chapter 1 Introduction

• Appendix D provides a brief introduction to box plots, which are tools used by
statisticians in order to present important statistical data graphically.

• Appendix E provides specifications (in the form of images) of the different compo-
nents that the two-tank system consists of.

• Appendix F shows the original project description provided by the supervisor of
this project.

• Appendix G provides the original project plan, including objectives and planned
dates.

• Appendix H provides the master theses poster presentation, which is a mandatory
part of the project to create.

• Appendix I provides all of the MATLAB code used during this project.

• Appendix J provides all of the Simulink schemes used throughout this project.

Finally, all of the references used and cited in this project are listed in the Bibliography.

Chapter 2

Related Work

This chapter is intended to familiarize the reader with the theoretical foundation of
different MPC-based control systems. The two MPC strategies discussed in this chapter
are linear and nonlinear MPC.

2.1 Preliminaries

2.1.1 Notation

The notation used in this project is fairly standard and in accordance with other notation
from the control theory literature. This project uses an extensive amount of state-space
representation to describe systems, both in continuous-time (CT) and discrete-time
(DT). The following equations show a generic state-space representation for CT and DT
systems:

CT

ẋ(t) = f(x(t), u(t), w(t), t)

y(t) = g(x(t), u(t), w(t), t)
(2.1)

DT

x(k + 1) = f(x(k), u(k), w(k), k)

y(k) = g(x(k), u(k), w(k), k)
(2.2)

where:

• t ∈ R denotes the current time.

• k ∈ Z denotes the current time step.

• x ∈ Rn denotes the state vector.

15

16 Chapter 2 Related Work

• u ∈ Rm denotes the input vector.

• w ∈ Rq denotes the disturbance vector.

• y ∈ Rp denotes the output vector.

• f(·) : Rn × Rm × Rq × R→ Rn.

• g(·) : Rn × Rm × Rq × R→ Rp.

The values n, m, q and p are the number of states, inputs, disturbances, and outputs,
respectively.

In the special case where f(·) and g(·) are linear functions of x and u, then the system
is called linear. The following equations show a generic state-space representation for
linear CT and DT systems:

CT

ẋ(t) = A(t)x(t) + B(t)u(t)

y(t) = C(t)x(t) + D(t)u(t)
(2.3)

DT

x(k + 1) = A(k)x(k) + B(k)u(k)

y(k) = C(k)x(k) + D(k)u(k)
(2.4)

where:

• A(·) ∈ Rn×n denotes the state matrix.

• B(·) ∈ Rn×m denotes the input matrix.

• C(·) ∈ Rp×n denotes the output matrix.

• D(·) ∈ Rp×m denotes the feedthrough matrix.

2.1.2 LQR control

The linear quadratic regulator (LQR), which serves a crucial role in the formulation of the
linear quadratic Gaussian (LQG) problem, is considered to be one of the most important
and influential results in optimal control theory to date [12]. LQR is a feedback controller
developed to control a dynamic system at a minimum cost.

The theory of LQR is a fundamental cornerstone to understanding MPC, therefore, it
is deemed necessary to provide a short summary. Note that this section is a highly
abbreviated summary of LQR, intended only to provide the main results. For the finer
details and proofs related to LQR, the reader is referred to sources such as [13], [14], [15],
[16] and [17].

Chapter 2 Related Work 17

Continuous time LQR control

To start, consider a linear time-invariant (LTI) system given by the following vector-matrix
differential equation:

ẋ(t) = Ax(t) + Bu(t) (2.5)

We seek a linear control law to command the input vector u(t) in a desirable manner.
The control law is proportional to the state vector, given by the following form:

u(t) = −K(t)x(t) (2.6)

where K(t) = [k1(t), k2(t), . . . , kn(t)] is a suitable gain matrix. Equation (2.6) is similar
to the control law used in full state feedback (FSF). However, FSF seeks a gain matrix
K(t) to place the closed-loop poles of the system in a pre-determined location. In the
case of LQR, we seek a gain matrix K(t) to minimize a specific performance criterion J ,
often referred to as a cost function.

The cost function J is expressed as an integral of the sum between the quadratic form in
the state x(t) and control u(t), respectively. I.e.:

J =
∫ T

τ

[
xT (t)Qx(t) + uT (t)Ru(t)

]
dt (2.7)

where Q ⪰ 0 and R ≻ 0 are symmetric matrices, and often called the state weighting
matrix and control weighting matrix, respectively. The lower limit τ and the upper
limit T are identified as present time and final time, respectively. The final time T can
either be finite or infinite, and these two cases are referred to as the CT finite-horizon or
infinite-horizon LQR problems, respectively.

Remark 2.1. Minimizing J implies minimizing the terms xT (t)Qx(t) and uT (t)Ru(t).
This means that the desired state is the origin.

The matrices Q and R specify how significant each element in x(t) and u(t) is, respectively,
to the overall cost function J , relative to each other. Consider the following example:

Example 2.1. A system is described by its position x1(t), velocity x2(t), and acceleration
x3(t), yielding the state vector x(t) = [x1(t), x2(t), x3(t)]T . If only the position of the
system is of concern, with no regards to its velocity or acceleration, then a state weighting
matrix Q can be selected as:

Q =

1 0 0
0 0 0
0 0 0

https://en.wikipedia.org/wiki/Full_state_feedback

18 Chapter 2 Related Work

which yields the quadratic form:
xT Qx = x2

1

Alternatively, the position is still of importance, but we want to slightly limit its velocity.
A possible choice for Q in this instance can be:

Q =

1 0 0
0 0.2 0
0 0 0

which yields the quadratic form:

xT Qx = x2
1 + 0.2x2

2

The same logic can be applied to the input weighting matrix R.

Substituting u(t) in (2.5) with the control law (2.6), results in the following closed-loop
dynamic system:

ẋ(t) = Ax(t)−BK(t)x(t) = Ac(t)x(t) (2.8)

where
Ac(t) = A−BK(t) (2.9)

The closed-loop dynamic system (2.8) is expressed as a "homogeneous", unforced equation,
with Ac(t) making the closed-loop state matrix. From the control theory (see e.g. [14]),
that the solution to (2.8) is given by:

x(t) = Φ(t, τ)x(τ) (2.10)

where Φ(t, τ) is the state-transition matrix, which relates the state at time t to the state
at time τ , given that t− τ > 0.

With the control law (2.6), the cost function J can be rewritten as:

J =
∫ T

τ

[
xT (t)Qx(t) + xT (t)KT (t)RK(t)x(t)

]
dt

Furthermore, x(t) can be substituted by (2.10):

J =
∫ T

τ

[
xT (τ)ΦT (t, τ)QΦ(t, τ)x(τ) + xT (τ)ΦT (t, τ)KT (t)RK(t)Φ(t, τ)x(τ)

]
dt

=
∫ T

τ

[
xT (τ)ΦT (t, τ){Q + KT (t)RK(t)}Φ(t, τ)x(τ)

]
dt

= xT (τ)P (τ, T)x(τ) (2.11)

https://en.wikipedia.org/wiki/State-transition_matrix

Chapter 2 Related Work 19

where
P (τ, T) =

∫ T

τ
ΦT (t, τ){Q + KT (t)RK(t)}Φ(t, τ) dt

Clearly, any choice of the gain matrix K(t) directly affects the cost function J given by
(2.11). The question then arises: how does one choose an optimum gain matrix K(t),
such that J is minimized? The answer is given by the following theorem:

Theorem 2.2. The optimum gain matrix K(t) that minimizes the CT finite-horizon
LQR problem is:

K(t) = R−1BT P (t, T)

where P (t, T) is a symmetric matrix found by solving the Riccati differential equation:

−Ṗ (t, T) = P (t, T)A + AT P (t, T)− P (t, T)BR−1BT P (t, T) + Q (2.12)

with the boundary condition
P (T , T) = 0

Proof. See [14], Section 9.4 of Chapter 9.

Note that the only condition that must be satisfied is for the boundary P (T , T) = 0,
which means that the Riccati differential equation (2.12) is solved by integrating backward
in time.

As Theorem 2.2 suggests, the solution to the CT finite-horizon LQR problem yields a
gain matrix K(t) which is time-varying. However, a steady state gain matrix can be
obtained by solving the CT infinite-horizon LQR problem.

If T → ∞, then P (t,∞) will either: "blow up" (i.e., P (t,∞)→∞) or converge to some
constant matrix (i.e., P (t,∞)→ P∞). In the case of the latter, as P (t,∞) converges, its
derivative will also converge to zero (i.e., Ṗ (t,∞)→ 0).

This allows for a simple, yet elegant, solution to the CT infinite-horizon LQR problem
given by the following theorem:

Theorem 2.3. The optimum steady state gain matrix K∞ that minimizes the CT
infinite-horizon LQR problem is:

K∞ = R−1BT P∞

where P∞ is a symmetric matrix found by solving the algebraic Riccati equation:

0 = P∞A + AT P∞ − P∞BR−1BT P∞ + Q (2.13)

20 Chapter 2 Related Work

Proof. See [14] Section 9.5 of Chapter 9, or, [13] Section 6 Solution of the linear regulator
problem.

Remark 2.4. Solving the Riccati equation (2.12) and the algebraic Riccati equation (2.13)
yields multiple solutions to P (t, T) and P∞, respectively. However, if the system is:

(i) Asymptotically stable, or

(ii) Controllable and observable,

then there exists a unique, positive definite solution for P (t, T) and P∞. For a complete
discussion regarding this, the reader is referred to [13] Section 5: Controllability.

Discrete time LQR control

Analog to the discussion above, the discrete time LQR counterpart follows the same
reasoning with minor deviations. Consider the following DT LTI system:

x(k + 1) = Ax(k) + Bu(k) (2.14)

The optimal control law is given by:

u(k) = −K(k)x(k) (2.15)

where K(k) = [k1(k), k2(k), . . . , kn(k)]. As before, the goal is to find an optimum gain
matrix K(k) that minimizes a certain quadratic cost function J . For the DT case, J is
given by:

J =
N−1∑
k=0

[xT (k)Qx(k) + uT (k)Ru(k)] (2.16)

where Q, R and N are the state weighting matrix, control weighting matrix and the final
time step, respectively. Assuming that the control horizon is finite, then the solution is
given by the following theorem:

Theorem 2.5. The optimum gain matrix K(k) that minimizes the DT finite-horizon
LQR problem is:

K(k) = (R + BT P (k + 1)B)−1BT P (k + 1)A (2.17)

where P (k) is a symmetric matrix found by solving the Riccati difference equation:

P (k − 1) = AT P (k)A−AT P (k)B(R + BT P (k)B)−1BT P (k)A + Q (2.18)

with the terminal condition:
P (N) = 0 (2.19)

Chapter 2 Related Work 21

Proof. See e.g. [15] or [16].

As discussed for the CT case, solving the finite-horizon LQR problem yields a time-
varying optimum gain matrix K(k). Note also that (2.18) solves for previous values of
P (k), i.e., P (k) is found iteratively backwards in time with (2.19) as the "starting point".

Alternatively, solving the DT infinite-horizon LQR problem yields a steady state optimum
gain matrix K∞, which can be obtained as follows:

Theorem 2.6. The optimum gain matrix K∞ that minimizes the DT infinite-horizon
LQR problem is:

K∞ = (R + BT P∞B)−1BT P∞A (2.20)

where P∞ is a symmetric matrix found by solving the algebraic Riccati equation:

P∞ = AT P∞A−AT P∞B(R + BT P∞B)−1BT P∞A + Q (2.21)

Proof. See e.g. [15] or [16].

Remark 2.4 also applies for the DT finite/infinite-horizon LQR problems, with respect
to the equations (2.18) and (2.21).

The control theory literature regarding LQR is both extensive and comprehensive,
especially considering its properties such as stability and optimality. The sources cited
in this section are highly recommended to the interested reader who wants to learn more
on this topic.

2.2 Linear MPC

The essence of MPC is to optimize, over the manipulated inputs, forecasts of process
behavior [18]. The forecasts (or predictions) are made based on a process model, hence
the name model predictive. To do this optimization, the MPC is dependent on current
measurements and the prediction model. While there is some research done on CT
MPC using analog circuitry (see e.g. [19]), in an overwhelming majority of cases, the
implementation is done as digital control. Therefore, the subsequent discussion will only
regard DT MPC.

A typical feedback loop for an MPC-based control system is shown in Figure 2.1. The
MPC-based controller consists of a prediction model and an optimizer. The prediction
model is a mathematical model that tries to capture the dynamics of the plant as

22 Chapter 2 Related Work

accurately as possible. The optimizer is a computer algorithm that tries to find optimal
control moves that drive the plant to some desired state. MPC-based controllers are
dependent on the feedback loop, which provides it with the measured outputs of the
plant. The references are necessary if the goal of the control system is target tracking.
The disturbance rejection of the control system can also be improved if the MPC is
provided with measured disturbances. A more concrete example illustrating the MPC

Figure 2.1: A simple MPC conceptual block diagram.

algorithm is shown in Figure 2.2. At the current sampling time k, a new measured

Figure 2.2: A discrete MPC scheme. Figure by Martin Behrendt/CC BY-SA 3.0
.

output (yellow) becomes available. The goal of the MPC calculations is to determine a
sequence of predicted control inputs (cyan), such that the predicted output (gold) follows
a reference trajectory (red), over a prediction horizon p, in an optimal manner.

https://commons.wikimedia.org/wiki/File:MPC_scheme_basic.svg
https://creativecommons.org/licenses/by-sa/3.0/

Chapter 2 Related Work 23

In mathematical terms, this simple MPC scheme can be described subsequently: At
sampling time k, the output measurement ym(k) becomes available. Linear MPC uses
an LTI prediction model, such as (2.14), to calculate a set of M values of the predicted
control input {u(k + i− 1), i = 1, 2, . . . , M}. I.e.:

Uopt(k) = {uopt(k), uopt(k + 1), . . . , uopt(k + M − 1)}

Note that:

(i) The set of M values containing the predicted control input is denoted by U.

(ii) Each element in the aforementioned set is the input vector, i.e., uopt(·) ∈ Rm.

(iii) The subscript opt denotes the optimal calculated set.

The set Uopt(k) is calculated in such a way, that the set of P values of the predicted
states {x(k + i), i = 1, 2, . . . , P} follows the reference trajectory in an optimal manner.
I.e.:

Xopt(k) = {xopt(k + 1), xopt(k + 2), . . . , xopt(k + P)}

Note that the set Xopt(k) does not contain a prediction for xopt(k). This state can be
estimated based on the output measurement ym(k).

The number of predictions P is regarded as the prediction horizon, while the number of
calculated control moves M is referred to as the control horizon [20]. The MPC strategy
requires that P ≥ M ≥ 1. If P > M , then the predicted outputs at sampling time k,
where: {xopt(κ), κ > k + M − 1}, are calculated based on the last predicted control input
uopt(k + M − 1). I.e., the input is held constant after the M predicted control moves [20].

After the optimal set Uopt(k) of M values is calculated, only the first control move uopt(k)
is actually sent to the actuators. The other control moves are discarded. On the next
sampling instant k + 1, the MPC will receive the output measurement ym(k + 1), and
calculate the following:

Uopt(k + 1) = {uopt(k + 1), uopt(k + 2), . . . , uopt(k + M)}

which gives the optimal predicted state:

Xopt(k + 1) = {xopt(k + 2), xopt(k + 3), . . . , xopt(k + P + 1)}

Again, only the first control move uopt(k+1) is implemented, and the output measurement
ym(k + 2) becomes available on the next sampling instant. This procedure continues ad

24 Chapter 2 Related Work

infinitum and is often referred to as a moving horizon or receding horizon, which is a
characteristic trait of the MPC strategy.

A reasonable question posed by the critical reader might be why calculate an M-step
control law, when only the first control action is implemented and the rest are discarded.
This strategy can be justified for two reasons:

(i) Any abstract mathematical model that tries to describe a physical system will
never be able to capture its full dynamics. There will always be phenomenons that
cannot be modeled, thus, model error and/or model uncertainty will always be
present [21].

(ii) Unmeasured disturbances may affect the system at any given time.

The aforementioned reasons may cause the predicted state to diverge from the real process
behaviour, which may result in the predicted control input no longer being suitable.
This explains why the entire set of predicted control inputs is not applied blindly to the
system, but rather, only the first predicted control move is applied.

Remark 2.7. One important detail not mentioned in the discussion above, and that does
not appear in Figure 2.2, is the fact that it takes time to perform the MPC calculations.
When a new output measurement ym(k) becomes available, the set Uopt(k) is calculated
after a certain time γ ∈ R. In reality, the control move uopt(k) is implemented no earlier
than at time kTs + γ, where Ts ∈ R is the sampling time. However, it is often assumed
that γ → 0.

A very desirable feature of MPC is its ability to handle constraints. E.g., when solving
for the optimal set of control moves Uopt(k), one can impose the following constraints:

Umin ≤ Uopt(k) ≤ Umax, ∀k = 0, 1, 2, . . . ,∞

Xmin ≤ Xopt(k) ≤ Xmax, ∀k = 0, 1, 2, . . . ,∞

Subjecting the controller to such constraints is reasonable in several (if not all) practical
situations. Consider a simple example where the water level in a tank is controlled by
adjusting the aperture of an outlet valve. The water level in the tank cannot be less than
zero, additionally, it cannot be higher than the height of the tank itself. On the other
hand, the aperture of the valve cannot be more closed than fully closed, as well as more
open than fully open (also referred to as valve saturation). Physical limitations such
as these create upper and lower bounds, which are constraints that the MPC can take
into consideration when calculating the predicted control moves and predicted states,
respectively.

Chapter 2 Related Work 25

To calculate the optimal prediction set Uopt(k) and Xopt(k), a performance measuring
index is required. Similar to LQR, the linear MPC problem also uses a quadratic objective
function. E.g., consider the following cost function for reference tracking:

Jk =
P∑

ℓ=1
(x(k + ℓ)− x̄(k + ℓ))T Q(x(k + ℓ)− x̄(k + ℓ))

+
M∑

ℓ=1
(u(k + ℓ− 1)− ū(k + ℓ− 1))T R(u(k + ℓ− 1)− ū(k + ℓ− 1))

where x̄(·) and ū(·) are the reference trajectory for the state and control input, respectively.
In practical situations, too severe changes in the control inputs are unwanted, as it can
wear out actuators faster and/or cause disturbances. To account for this, the cost function
can be modified accordingly:

Jk =
P∑

ℓ=1
(x(k + ℓ)− x̄(k + ℓ))T Q(x(k + ℓ)− x̄(k + ℓ))

+
M∑

ℓ=1
(u(k + ℓ− 1)− ū(k + ℓ− 1))T R(u(k + ℓ− 1)− ū(k + ℓ− 1))

+
M∑

ℓ=1
(δu(k + ℓ− 1))T S(δu(k + ℓ− 1))

where δu(k) ≜ u(k) − u(k − 1) is the control rate, and S is the control rate weighting
matrix, which is similarly defined as Q and R from Section 2.1.2. Naturally, there are
multiple ways of defining the performance measuring index J , all dependent on what
objectives are to be maximized/minimized. Regardless of the exact definition of J , this
formulation yields an optimization problem that can be solved with effective solution
techniques.

The key attributes of the linear MPC discussed so far, are the linear prediction model,
linear equality/inequality constraints, and the quadratic objective function. This op-
timization problem, with these specific attributes, can be solved through quadratic
programming (QP).

In QP, the objective function is quadratic and the constraints are linear [20]. The general
form of a QP problem is as follows:

Minimize
x

1
2xT Hx + fT x (2.22)

Subject to Ax ⪯ b (2.23)

where:

https://www.sciencedirect.com/topics/computer-science/quadratic-programming
https://www.sciencedirect.com/topics/computer-science/quadratic-programming

26 Chapter 2 Related Work

• x is the solution vector.

• H is the Hessian matrix.

• f is the gradient vector.

• A is a matrix of linear constraint coefficients.

• b is a vector.

For a detailed discussion on how a linear MPC optimization problem is converted into
the QP problem described by (2.22) and (2.23), the reader is referred to [22], Chapter
28 Linear Model Predictive Control in the Process Industries or [23], Chapter 1 Model
Predictive Control Basics, Section 3 QP Matrices. There are several ways of solving a
QP problem, among which are the algorithms: Interior Point, Active Set, Augmented
Lagrangian, and Conjugate Gradient. The details about these algorithms are left to the
reader, as it exceeds the scope of this project.

2.3 Nonlinear MPC

Nonlinear MPC (NMPC) follows the same principles as linear MPC, but there are some
key differences that [23] points out:

(i) The prediction model can be nonlinear and include time-varying parameters.

(ii) The equality/inequality constraints can be nonlinear.

(iii) The objective/cost function to be minimized can be a nonquadratic (linear or
nonlinear) function of the decision variables.

In its most general form, the NMPC problem statement can be described subsequently:

https://en.wikipedia.org/wiki/Hessian_matrix
https://en.wikipedia.org/wiki/Gradient

Chapter 2 Related Work 27

Solve the optimal control problem:

Minimize
u(·)

Jk(x0, u(·)) =
k+P −1∑

ℓ=k

Υ(x(ℓ, x0), u(ℓ))

Subject to

x(k, x0) = x0

x(ℓ + 1, x0) = f(x(ℓ, x0), u(ℓ))

x(ℓ) ∈ X

u(ℓ) ∈ U

δu(ℓ) ∈ δU

Where:

• x0 is the measured output at time step k.

• f(·, ·) is the prediction model.

• Υ(·, ·) is the objective function.

• Jk(·, ·) is the total cost at time step k, given the current measured output x0 and
the P predicted control moves u(·).

• X ⊆ X = Rn is the state constraint set.

• U ⊆ U = Rm is the control constraint set.

• δU ⊆ δU = Rm is the control rate constraint set.

To solve the aforementioned NMPC problem, sequential quadratic programming (SQP)
is used, which, in essence, is a parent problem of the QP problem for linear MPC.
Solution algorithms to the NMPC SQP problem are, among others: the Trust Region
Reflective Algorithm, the Active Set Algorithm and the Interior Point Algorithm. A
detailed discussion on these algorithms can be found in e.g. [24], Chapter 10 Numerical
Optimal Control of Nonlinear Systems, or in the MATLAB documentation, or in [25].

https://www.sciencedirect.com/topics/mathematics/sequential-quadratic-programming
https://se.mathworks.com/help/optim/ug/constrained-nonlinear-optimization-algorithms.html

Chapter 3

System Modeling

As mentioned in Chapter 1, the main objective of this project is to implement MPC to
the two-tank system at the UiS laboratory facility. The goal of this chapter is to provide
a detailed description of the two-tank system, as well as deriving multiple mathematical
models that describe its dynamics. Similar descriptions of the two-tank system can be
found in [26] and [27].

3.1 System Description

The two-tank system can be illustrated as in Figure 3.1. The entire two-tank system
consists of multiple components that allow for numerous functions, such as:

(i) Temperature control through a mixer tap or heating element.

(ii) Artificial delay through a hose coil.

(iii) Level control through valves or a pump.

This project will focus solely on level control, meaning that the mixer tap, heating
element, and hose coil are not used. Excluding these redundant components yields a
"sub-system" of the original two-tank system, which is shown in Figure 3.2. As see in
Figure 3.2, the sub-system consists of two tanks: one rectangular shaped (Tank 1) and
one square frustum shaped (Tank 2). The two tanks are connected, with the outlet of
Tank 1 (qLV 001(t)) serving as the inlet for Tank 2. At the bottom, there is a collection
vessel, which collects the outlet of Tank 2 (qLV 002(t)).

The two tanks are equipped with one sensor each (LT001 and LT002), which measure the
fluid levels of their respective tanks. The fluid levels h1(t) and h2(t) correspond to the

29

30 Chapter 3 System Modeling

Figure 3.1: Schematic sketch of the two-tank system.

states of the system, which, in this case, will also be regarded as the controlled variables
(CV’s).

The valve actuators (LV001 and LV002) are used to control the states. This is done
by manipulating the signals uLV 001(t) and uLV 002(t), which adjust the aperture of their
respective valves. These signals are regarded as the manipulated variables (MV’s), or,
inputs.

The pump (PA001) moves the fluid from the collection vessel and back into Tank 1
(qP A001(t)). The signal uP A001(t) controls the flow rate of the pump, and this flow rate is
measured by the flow meter FT001. In this project, the inlet from the pump is regarded
as a measured disturbance (MD) to the system.

Note also the following:

(i) Both tanks are open, meaning that the pressure on the fluid surface area is equal
to the atmospheric pressure.

Chapter 3 System Modeling 31

Figure 3.2: Detailed schematic sketch of the sub-system under consideration.

(ii) The two tanks cannot be fully drained due to the plumbing. Therefore, the minimum
fluid levels of Tank 1 and Tank 2 are h1,utlop and h2,utlop, respectively.

(iii) There is a vertical distance (hLV 001 and hLV 002) between the bottom of the two
tanks and their respective valves.

Prior to deriving the dynamic model for the system, additional information and assump-
tions regarding the pump and valves are provided below. For an easy overview of the
system variables and parameters, see Table 3.1 and 3.2.

3.1.1 The Valves

A simple orifice valve is illustrated by Figure 3.3: where x, q and ∆p are the flow rate
percentage, volumetric outflow, and pressure drop across the valve, respectively. The
volumetric outflow can be expressed mathematically as (see e.g. [21] page 48, or [20]

32 Chapter 3 System Modeling

Figure 3.3: Simple sketch of an orifice valve. This sketch uses SI-units.

page 25):
q(t) = Kvx(t)

√
∆p(t)

=
Kvx(t)

√
∆p(t)
100000

3600 [m3/s]
(3.1)

where Kv [m3/h√
bar

] is the valve constant. Note that Kv does not use SI-units, hence the
conversion Pa → bar and s → h is necessary, which is done by dividing ∆p(t) with
100000 and the entire expression with 3600, respectively.

The pressure drop across the valve is simply the difference between the pressure upstream
p+ [N/m2] and the pressure downstream p− [N/m2]. The pressure downstream is equivalent
to one atmospheric pressure pa [N/m2], since the fluid flows directly onto an open tank.
The pressure upstream is equivalent to the sum of one atmospheric pressure pa and the
pressure exerted by the fluid pf [N/m2]. The latter can be found using Pascal’s law, which
states:

pf (t) = ρgh(t) [N/m2] (3.2)

with ρ [kg/m3], g [m/s2] and h(t) [m] being the fluid density, gravitational acceleration, and
the fluid’s vertical height above the valve orifice, respectively. Following this, the pressure
drop across the valve can be expressed subsequently:

∆p(t) = p+(t)− p−

= pa + pf (t)− pa

= pf (t)

= ρgh(t)

(3.3)

Recall that, due to the plumbing, there is a small vertical height difference between

Chapter 3 System Modeling 33

the floor of the tanks and their respective valves. Therefore, h(t) in (3.3) does in fact
represent the sum of the fluid level in the tank and the vertical height difference between
the tank and the valve. I.e.:

∆pi(t) = ρg(hi(t) + hLV 00i), i ∈ {1, 2} (3.4)

where i denotes either valve LV001 or LV002. This will be the case for the subsequent
discussion.

Next, the flow characteristics of the valves are considered. Flow characteristics define
the relationship between the valve opening and the flow rate under constant pressure
conditions [28]. Note that the term valve opening refers to the relative position of the
valve plunge to its closed position, not the opening of the orifice pass area itself. The
orifice pass area will always be directly proportional to the flow rate. However, the valve
plunge gives different flow rates depending on its position and shape.

There are three main types of valve plunge shapes: fast opening, linear, and equal
percentage (see [28] for a thorough review of these). The valves in the two-tank system
use equal percentage plunges, which can be described mathematically as:

f(z(t)) = Rz(t)−1 (3.5)

where f(·), R, and z(·) are the flow rate percentage, rangeability, and valve opening,
respectively. The rangeability is typically defined as:

R = Flow at 95% opening
Flow at 5% opening

Figure 3.4 illustrates the flow characteristics of equal percentage valves, with different
rangeability: The valves in the two-tank system use R = 10. Note that f(z(t)) ̸= 0%
when z(t) = 0%, meaning that the valve is slightly open when the valve plunge is
completely closed1. As a result of this, an approximated valve characteristic is used,
which takes the following form (see [26]):

f(z(t)) = ez(t)1.2 − 1
e1 − 1 (3.6)

such that:
f(0) = e01.2 − 1

e1 − 1 = 1− 1
e1 − 1 = 0

f(1) = e11.2 − 1
e1 − 1 = e1 − 1

e1 − 1 = 1

1Again, recall that z(t) refers to the relative position of the valve plunge to its closed position.

34 Chapter 3 System Modeling

0% 25% 50% 75% 100%

0%

25%

50%

75%

100%

R = 5

R = 10

R = 15

R = 20

Figure 3.4: Equal percentage flow characteristics for different rangeability.

Figure 3.5 shows a direct comparison between the approximated flow characteristic (3.6),
and the equal percentage characteristic (3.5) with R = 10: The valves in the two-tank

0% 25% 50% 75% 100%

0%

25%

50%

75%

100%

Figure 3.5: Comparison between (3.5) with R = 10 and (3.6).

Chapter 3 System Modeling 35

system use pneumatic actuators to adjust the position of the valve plunges z(t). These
valves are normally open (NO), meaning that the valves will automatically open if the
compressed air from the actuators disappear. The pneumatic actuators are controlled by
the input signals uLV 00i(t), i ∈ {1, 2}.

There is a dynamic relationship between the control signals and the plunge positioning
of the two valves. However, this dynamic is considered negligible compared to the overall
dynamics of the system. Therefore, it is assumed that:

zi(t) = uLV 00i(t), i ∈ {1, 2} (3.7)

Using (3.7), the approximated flow characteristics (3.6) can be rewritten as:

fi(uLV 00i(t)) = euLV 00i(t)1.2 − 1
e1 − 1 , i ∈ {1, 2} (3.8)

Finally, the volumetric outflow for each of the valves can be expressed by substituting
∆p(t) and x(t) in (3.1) with (3.4) and (3.8), respectively:

qi(t) = Kv,ifi(uLV 00i(t))
3600 ·

√
ρg(hi(t) + hLV 00i)

100000 , i ∈ {1, 2} (3.9)

3.1.2 The Pump

Similarly to the discussion above, the pump characteristics must also be taken into
account when modeling the two-tank system. The pump characteristics define the
relationship between the control signal uP A001(t) and the flow rate qP A001(t). I.e.:

qP A001(t) = f3(uP A001(t)) (3.10)

Normally, the pump characteristics are provided by the pump manufacturer. However,
(3.10) may change depending on the environment of the pump during operations (e.g.:
pipe resistance, viscosity of the fluid, temperature, etc.).

As explained by Drengstig [26], the pump characteristics can be found by making small
increments of 0.05 in the control signal uP A001(t), and measuring the corresponding flow
rate qP A001(t). This is done over the entire range of uP A001(t), which is [0 − 1]. The
resulting pump characteristics are presented in Figure 3.6.

36 Chapter 3 System Modeling

0 0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

2

2.5

3

3.5
10

-4

Figure 3.6: Pump characteristics (3.10) when operating in the two-tank system. The
data is retrieved from [26].

Name Description Unit Value
h1(t) Fluid levels of Tank 1, measure by LT001. m [0− 1] m

A1 Fluid surface area of Tank 1. m2 0.0096 m2

ρ Fluid density (water). kg/m3 1000 kg/m3

qP A001(t) PA001 pump flow rate. m3/s [0− 12] l/min

uP A001(t) PA001 pump control signal. − [0− 1]
qLV 001(t) LV001 valve volumetric outflow. m3/s [0− 17] l/min

uLV 001(t) LV001 valve control signal. − [0− 1]
Kv,LV 001 LV001 valve constant. m3

time·
√

bar
11.23 m3

time·
√

bar

hLV 001 Vertical distance from LV001 to Tank 1. m 0.05 m

h1,utlop Level of drainage (relative to h1(t)). m 0.13 m

g Gravitational acceleration (Earth). m/s2 9.81 m/s2

Table 3.1: Parameters and variables related to Tank 1.

System Parameters

3.2 Nonlinear Model

The dynamic behaviour of the two-tank system can be expressed by mathematical models.
To achieve such models, balance laws are used. In general terms, the balance laws state
that (see e.g. [21] page 14):

Chapter 3 System Modeling 37

Name Description Unit Value
h2(t) Fluid levels of Tank 2, measure by LT002. m [0− 0.4] m

A2(h2(t)) Fluid surface area of Tank 2. m2 [0.025− 0.07] m2

qLV 002(t) LV002 valve volumetric outflow. m3/s [0− 17] l/min

uLV 002(t LV002 valve control signal. − [0− 1]
Kv,LV 002 LV002 valve constant. m3

time·
√

bar
11.25 m3

time·
√

bar

hLV 002 Vertical distance from LV002 to Tank 2. m 0.25 m

h2,utlop Level of drainage (relative to h2(t)) m 0.02 m

Table 3.2: Parameters and variables related to Tank 2.

The change of an "amount" (per time unit) in any system is equal to the net "amount"
flow to the system.

where amount refers to a particular measurable property, such as mass, energy, momentum,
entropy, charge, etc. Net amount flow refers to the sum of all amount inflows, minus all
amount outflows, plus all amount generated in the system. Mathematically, this can be
expressed as:

dυ

dt
=

∑
υin −

∑
υout +

∑
υgenerated (3.11)

where υ is the measurable property of interest. In the case of the two-tank system, υ

is chosen to be mass. Thus, the equation (3.11) can be rewritten as the following mass
balance law:

dm(t)
dt

=
∑

win(t)−
∑

wout(t) (3.12)

where m(t) [kg], win(t) [kg/s] and wout(t) [kg/s] are the mass, rate of mass in, and rate of
mass out, respectively. Note that the two-tank system does not produce any mass, which
is why (3.12) does not include a term containing wgenerated(t) [kg/s].

The equation (3.12) will be the starting point of the following discussion where the
dynamic models for the two tanks are derived.

3.2.1 Tank 1 Model

Firstly, consider the physical relationship:

m = ρV (3.13)

where m [kg], ρ [kg/m3], V [m3] are mass, density, and volume, respectively. Due to its
rectangular shape, the volume of Tank 1 can be expressed in terms of its base area A1

and the fluid levels h1(t). I.e.:
V1(t) = A1h1(t) (3.14)

38 Chapter 3 System Modeling

Combining (3.13) and (3.14) yields the following equation for the mass in Tank 1:

m1(t) = ρA1h1(t) (3.15)

Secondly, consider the total rate of mass into Tank 1. From Figure 3.2, it is clear that
the only volumetric inflow is qP A001(t), which can be expressed as (3.10). Therefore:

∑
w1,in(t) = ρf3(uP A001(t)) (3.16)

Note the conversion from volumetric inflow to rate of mass by use of (3.13).

Lastly, consider the total rate of mass out of Tank 1. Again, it is clear from Figure 3.2
that the total volumetric outflow is qLV 001(t), which can be expressed as (3.9). Thus:

∑
w1,out(t) = ρ

Kv,1f1(uLV 001(t))
3600 ·

√
ρg(h1(t) + hLV 001)

100000 (3.17)

Inserting the equations (3.15), (3.16), and (3.17) into (3.12), and rearranging for h1(t),
yields the following differential equation:

dh1(t)
dt

= 1
A1

f3(uP A001(t))− Kv,1f1(uLV 001(t))
3600 ·

√
ρg(h1(t) + hLV 001)

100000

 (3.18)

3.2.2 Tank 2 Model

Now the theoretical model for Tank 2 is derived. Again, the equation (3.12) serves as
the starting point of the modeling procedure.

Firstly, assuming that the system is isolated, and no fluid leaves the system during
operation, then, clearly, the total rate of mass into Tank 2 is equal to the total rate of
mass out of Tank 1 (3.17). I.e.:

∑
w2,in(t) =

∑
w1,out(t) = ρ

Kv,1f1(uLV 001(t))
3600 ·

√
ρg(h1(t) + hLV 001)

100000 (3.19)

Secondly, the total volumetric outflow of Tank 2 is qLV 002(t) (see Figure 3.2), which can
be expressed as (3.9). Using the relationship (3.13) with (3.9) gives the following total
rate of mass out from Tank 2:

∑
w2,out(t) = ρ

Kv,2f2(uLV 002(t))
3600 ·

√
ρg(h2(t) + hLV 002)

100000 (3.20)

Chapter 3 System Modeling 39

Lastly, consider the total mass in Tank 2, which can be expressed as (3.13). The volume
is given by:

V2(t) = A2(h2(t))h2(t) (3.21)

Inserting (3.21) in (3.13) gives:

m2(t) = ρA2(h2(t))h2(t) (3.22)

Inserting the equations (3.19), (3.20), and (3.22) into (3.12); and rearranging for h2(t),
results in the following differential equation:

dh2(t)
dt

= 1
A2(h2(t)) ·

Kv,1f1(uLV 001(t))
3600 ·

√
ρg(h1(t) + hLV 001)

100000

−Kv,2f2(uLV 002(t))
3600 ·

√
ρg(h2(t) + hLV 002)

100000

 (3.23)

Finding an expression for A2(·) proves to be not that trivial, so a detailed description
of this is provided below. Figure 3.7 and Table 3.3 are used as a basis for the following
calculations.

As a start, Tank 2 is divided into three segments: one cuboid, and two equal triangular
prisms (see Figure 3.7).

The fluid surface area can be expressed as:

A2(h2(t)) = A2,0 + 2Atp(h2(t)) (3.24)

where A2,0 and Atp(·) are the fluid surface area of the cuboid and the triangular prism,
respectively. A2,0 is a constant with a value of 0.004 m2 (see Table 3.3).

The fluid surface area of the triangular prism can be expressed as:

Atp(h2(t)) = d2 · ν2(h2(t)) (3.25)

where d2 and ν2(h2(t)) are described in Table 3.3. By use of triangular similarity (TS),
a mathematical expression for ν2(h2(t)) can be found:

ν2(h2(t))
h2(t)

TS= ν2,max

h2,max

∴

ν2(h2(t)) = h2(t) · ν2,max

h2,max

(3.26)

40 Chapter 3 System Modeling

Combining (3.26) with (3.25); and inserting the resulting expression in (3.24), yields:

A2(h2(t)) = A2,0 + 2 · d2 ·
ν2,max

h2,max
· h2(t)

= 0.004 + 2 · 0.08 · 0.175
0.4 · h2(t)

= 0.004 + 0.07 · h2(t)

(3.27)

Inserting (3.27) in (3.23) results in the differential equation:

dh2(t)
dt

= 1
0.004 + 0.07 · h2(t) ·

Kv,1f1(uLV 001(t))
3600 ·

√
ρg(h1(t) + hLV 001)

100000

−Kv,2f2(uLV 002(t))
3600 ·

√
ρg(h2(t) + hLV 002)

100000

 (3.28)

Finally, the two-tank system can be expressed by the following nonlinear state-space
representation: ḣ1(t)

ḣ2(t)

 =

 f1(h1(t), uLV 001(t), uP A001(t))
f2(h1(t), h2(t), uLV 001(t), uLV 002(t))

 (3.29)

where f1(·, ·, ·) and f2(·, ·, ·, ·) are the functions in the state equations (3.18) and (3.28),
respectively.

In this project, it is assumed that the level transmitters LT001 and LT002 measure the
states perfectly, with no feedthrough. Thus, the outputs can be expressed as:ĥ1(t)

ĥ2(t)

 =

 g1(h1(t), uLV 001(t), uP A001(t))
g2(h1(t), h2(t), uLV 001(t), uLV 002(t))

 (3.30)

where g1(·, ·, ·) and g2(·, ·, ·, ·) are the output equations, given by:

g1(h1(t), uLV 001(t), uP A001(t)) = h1(t) (3.31)

g2(h1(t), h2(t), uLV 001(t), uLV 002(t)) = h2(t) (3.32)

3.3 Linear Model

Theoretical models for most real physical systems include some degree of nonlinearity.
Nonlinear models often describe physical systems with high fidelity, but they are also
difficult to handle. On the other hand, linear models are easy to solve, and there are

Chapter 3 System Modeling 41

Figure 3.7: Cross section of Tank 2. [26]

Name Description Value
A2,0 Area of the cuboid. 0.004 [m2]
d2 Depth of Tank 2. 0.08 [m]
b2,max Upper width of Tank 2. 0.4 [m]
b2,min Lower width of Tank 2. 0.05 [m]
h2,max Maximum height of Tank 2. 0.4 [m]
ν2,max Maximum width of the triangular prism. 0.175 [m]
ν2(h2(t)) Width of the triangular prism at height h2(t). N/A

Table 3.3: Dimensions of Tank 2.

multiple analysis and design methods developed specifically for linear systems, such as
control design, stability analysis, and frequency response [21].

A common engineering practise is to obtain a linear model from the nonlinear model by
means of linearization. The term linearization is neatly defined by Levine [22] (page 955)
as:

’Approximation of the nonlinear state equation in the vicinity of a nominal
solution by a linear state equation, obtained by dropping second- and higher-
order terms of the Taylor expansion (about the nominal solution) of the
right-hand side function.’

To understand the definition above, firstly, consider the following nonlinear equation:

y = f(x) (3.33)

42 Chapter 3 System Modeling

Assuming that f(x) has derivatives of all orders at x = a, then, f(x) can be represented
by its corresponding Taylor series2 (see [29] page 543):

f(x) =
∞∑

k=0

f (k)(a)
k! (x− a)k (3.34)

To linearize f(x), the second- and higher- order terms in (3.34) (i.e., terms where
k = 2, 3, 4, . . .) are dropped, which gives:

L(x) = f(a) + f ′(a)(x− a) (3.35)

where L(x) provides linear approximations for values of f near a [29].

The equation (3.34) can be generalized to functions of more than one variable. For
instance, consider the function:

y = f(x1, x2, . . . , xd) (3.36)

Again, assuming that f(x1, x2, . . . , xd) is continuously differentiable at x1 = a1, x2 =
a2, . . . , xd = ad, then, f(x1, x2, . . . , xd) can be represented by its corresponding Taylor
series (see e.g. [30] Chapter 6 or [27] page 16):

f(x1, x2, . . . , xd) = f(a1, . . . , ad) +
d∑

j=1

∂f(a1, . . . , ad)
∂xj

(xj − aj)

+ 1
2!

d∑
j=1

d∑
k=1

∂2f(a1, . . . , ad)
∂xj∂xk

(xj − aj)(xk − ak)

+ 1
3!

d∑
j=1

d∑
k=1

d∑
l=1

∂3f(a1, . . . , ad)
∂xj∂xk∂xl

(xj − aj)(xk − ak)(xl − al)

+ . . .

(3.37)

Linearizing (3.36), i.e., dropping the second- and higher- order terms in (3.37), yields the
following:

L(x1, . . . , xd) = f(a1, . . . , ad) +
d∑

j=1

∂f(a1, . . . , ad)
∂xj

(xj − aj) (3.38)

where L(x1, . . . , xd) provides linear approximations for values of f near a1, . . . , ad.

Now consider the nonlinear state-space representation of the two-tank system expressed
by (3.29)3. A linear approximation of the state equations f1(·, ·, ·) and f2(·, ·, ·, ·) (in the
vicinity of a nominal solution denoted by a tilde) is obtained by applying the general

2Taylor series and Taylor expansion are used interchangeably in this project.
3Note that the output equations (3.30) already are linear, which is why they are not considered in

this section.

Chapter 3 System Modeling 43

formula (3.38):

ḣ1(t) ≈ f1(h̃1(t), ũLV 001(t), ũP A001(t))

+ ∂f1
∂h1

∣∣∣∣ h̃1
ũLV 001
ũP A001

(h1(t)− h̃1(t))

+ ∂f1
∂uLV 001

∣∣∣∣ h̃1
ũLV 001
ũP A001

(uLV 001(t)− ũLV 001(t))

+ ∂f1
∂uP A001

∣∣∣∣ h̃1
ũLV 001
ũP A001

(uP A001(t)− ũP A001(t))

(3.39)

ḣ2(t) ≈ f2(h̃1(t), h̃2(t), ũLV 001(t), ũLV 002(t))

+ ∂f2
∂h1

∣∣∣∣ h̃1
h̃2

ũLV 001
ũLV 002

(h1(t)− h̃1(t))

+ ∂f2
∂h2

∣∣∣∣ h̃1
h̃2

ũLV 001
ũLV 002

(h2(t)− h̃2(t))

+ ∂f2
∂uLV 001

∣∣∣∣ h̃1
h̃2

ũLV 001
ũLV 002

(uLV 001(t)− ũLV 001(t))

+ ∂f2
∂uLV 002

∣∣∣∣ h̃1
h̃2

ũLV 001
ũLV 002

(uLV 002(t)− ũLV 002(t))

(3.40)

The states and inputs can be redefined with respect to their nominal values. I.e.:

h1(t) = h̃1(t) + ∆h1(t) (3.41)

h2(t) = h̃2(t) + ∆h2(t) (3.42)

uLV 001(t) = ũLV 001(t) + ∆uLV 001(t) (3.43)

uLV 002(t) = ũLV 002(t) + ∆uLV 002(t) (3.44)

uP A001(t) = ũP A001(t) + ∆uP A001(t) (3.45)

ĥ1(t) = ˜̂
h1(t) + ∆ĥ1(t) (3.46)

ĥ2(t) = ˜̂
h2(t) + ∆ĥ2(t) (3.47)

where the delta-variables (denoted with a ∆ in front) represent small deviations from
their respective nominal value (denoted with a tilde). Consider the following:

(i) Equation (3.41) and (3.42) are to be inserted in the left-hand-side of (3.39) and
(3.40), respectively. As a consequence, the state equations f1 and f2 (evaluated at
the nominal solution) cancels out with the derivative of the nominal state ˙̃h1(t)
and ˙̃h2(t), respectively.

44 Chapter 3 System Modeling

(ii) Following every partial derivative in (3.39) and (3.40) is the difference between the
real state/input and the nominal state/input. These differences can be expressed
in terms of the delta-variables, as defined by (3.41) - (3.45).

Applying the observations mentioned above to (3.39) and (3.40) results in the following
linear approximations in a neighborhood of the nominal solution:

∆ḣ1(t) = ∂f1
∂h1

∣∣∣∣ h̃1
ũLV 001
ũP A001

∆h1(t)

+ ∂f1
∂uLV 001

∣∣∣∣ h̃1
ũLV 001
ũP A001

∆uLV 001(t)

+ ∂f1
∂uP A001

∣∣∣∣ h̃1
ũLV 001
ũP A001

∆uP A001(t)

(3.48)

∆ḣ2(t) = ∂f2
∂h1

∣∣∣∣ h̃1
h̃2

ũLV 001
ũLV 002

∆h1(t)

+ ∂f2
∂h2

∣∣∣∣ h̃1
h̃2

ũLV 001
ũLV 002

∆h2(t)

+ ∂f2
∂uLV 001

∣∣∣∣ h̃1
h̃2

ũLV 001
ũLV 002

∆uLV 001(t)

+ ∂f2
∂uLV 002

∣∣∣∣ h̃1
h̃2

ũLV 001
ũLV 002

∆uLV 002(t)

(3.49)

which can be transformed into the compact linear state-space representation:∆ḣ1(t)
∆ḣ2(t)

 =

 ∂f1
∂h1

∂f1
∂h2

∂f2
∂h1

∂f2
∂h2

NS

·

∆h1(t)
∆h2(t)

 +

 ∂f1
∂uLV 001

∂f1
∂uLV 002

∂f2
∂uLV 001

∂f2
∂uLV 002

NS

·

∆uLV 001(t)
∆uLV 002(t)

+

 ∂f1
∂uP A001

∂f2
∂uP A001

NS

·∆uP A001(t)

(3.50)

where the subscript notation NS4 implies that the partial derivatives in (3.50) are
evaluated at the arbitrary nominal solution. I.e.: h1(t) = h̃1, h2(t) = h̃2, uLV 001(t) =
ũLV 001, uLV 002(t) = ũLV 002, and uP A001(t) = ũP A001.

The corresponding output equations (using (3.46) - (3.47)) are:∆ĥ1(t)
∆ĥ2(t)

 =

1 0
0 1

 ·
∆h1(t)

∆h2(t)

 (3.51)

4Short for Nominal solution (NS) in fraktur font.

Chapter 3 System Modeling 45

The partial derivatives in (3.50) (evaluated at NS) are calculated to be:

∂f1
∂h1

= −
√

100000
7.2 · 108 ·

Kv,1f1(ũLV 001)ρg

A1

√
ρg(h̃1 + hLV 001)

(3.52)

∂f1
∂h2

= 0 (3.53)

∂f2
∂h1

= 1
0.004 + 0.07 · h̃2

·
√

100000
7.2 · 108 ·

Kv,1f1(ũLV 001)ρg√
ρg(h̃1 + hLV 001)

(3.54)

∂f2
∂h2

= − 1
0.004 + 0.07 · h̃2

·
√

100000
7.2 · 108 ·

Kv,2f2(ũLV 002)ρg√
ρg(h̃2 + hLV 002)

(3.55)

∂f1
∂uLV 001

= − Kv,1
3600A1

·

√
ρg(h̃1 + hLV 001)

100000 · df1
duLV 001

(3.56)

∂f1
∂uLV 002

= 0 (3.57)

∂f2
∂uLV 001

= 1
0.004 + 0.07 · h̃2

· Kv,1
3600 ·

√
ρg(h̃1 + hLV 001)

100000 · df1
duLV 001

(3.58)

∂f2
∂uLV 002

= − 1
0.004 + 0.07 · h̃2

· Kv,2
3600 ·

√
ρg(h̃2 + hLV 002)

100000 · df2
duLV 002

(3.59)

∂f1
∂uP A001

= 1
A1
· df3

duP A001
(3.60)

∂f2
∂uP A001

= 0 (3.61)

Note that the variables uLV 00i, i ∈ {1, 2} and uP A001 do not appear directly in the state
equations f1 and f2. In fact, f1 and f2 depend on the intermediate functions f1(uLV 001),
f2(uLV 002), and f3(uP A001). Therefore, the chain rule is applied to find (3.56), (3.58),
(3.59), and (3.60), respectively.

Finding the derivative of the intermediate functions f1, f2, and f3, with respect to their
independent variables, can be done numerically by use of the forward difference. The
forward difference is defined as (see e.g. [31] page 41-44):

f ′(x) = f(x + h)− f(x)
h

(3.62)

where h is the step size.

A graphical interpretation of (3.62) (with respect to f1, f2, and f3) can be seen in Figure
3.8 and Figure 3.9. In Figure 3.8, the slope of Lv represents f ′

i(ũLV 00i), i ∈ {1, 2}
evaluated at {ũLV 00i = 0.5} ∈ NS. Similarly, the slope of Lp in Figure 3.9 depicts
f ′

3(ũP A001) evaluated at {ũP A001 = 0.65} ∈ NS. The step size h = 0.1 is used in Figure
3.8 and 3.9 for illustration purposes, however, h = 0.01 is used for the remainder of this
project.

46 Chapter 3 System Modeling

Figure 3.8: Graphical interpretation of (3.62) for f1 and f2. Recall that zi(t) and
uLV 00i(t), i ∈ {1, 2} can be used interchangeably due to assumption (3.7).

Figure 3.9: Graphical interpretation of (3.62) for f3. To increase readability, uP A001(t)
is abbreviated to just u(t) for this particular figure.

Chapter 3 System Modeling 47

3.4 Analysis of the Linear Model

As an example, assume that the nominal solution is:

h̃1 = 0.5, h̃2 = 0.3, ũP A001 = 0.8, ũLV 001 = 0.5317, ũLV 002 = 0.5317︸ ︷︷ ︸
NS

which, in fact, represents an equilibrium point of the state equations f1 and f2. This can
be verified by inserting NS in the state equations, resulting in ≈ 0 for both cases.

A linear model (about NS) can be found by, firstly, calculating the partial derivatives
(3.52) - (3.61) (inserted the nominal solution), and, secondly, arranging the calculated
partial derivatives as in the state-space representation model (3.50). I.e.:

∆ḣ1(t)
∆ḣ2(t)

 =

−0.0230 0
0.0092 −0.0092

 ·
∆h1(t)

∆h2(t)

 +

−0.0719 0
0.0288 −0.0288

 ·
∆uLV 001(t)

∆uLV 002(t)

+

0.0450
0

 ·∆uP A001(t)

∆ĥ1(t)
∆ĥ2(t)

 =

1 0
0 1

 ·
∆h1(t)

∆h2(t)

(3.63)

A direct comparison between the linear approximation (3.63) and the nonlinear model
(3.29) can be done in Simulink. To compare the two models, small perturbations are
exerted on the pump and valve input signals, respectively. The starting point for the
simulation is the nominal solution NS. Figure 3.10 shows the results of this simulation,
while Appendix J.1 shows the Simulink block diagram. Note that, as the models drift
farther away from the nominal solution NS, the linear model deviates increasingly more
from the nonlinear model. However, the linear model strongly captures the dynamic
behavior of the nonlinear model when operating close to the nominal solution NS.

Remark 3.1. Note that Tank 2, in Figure 3.10, exceeds its possible fluid levels of 0.4m at
approximately 200 ≤ Time ≤ 400. Although this would not be physically possible on
the real system, it is purposely allowed for this particular simulation/comparison.

3.4.1 Stability

The stability of the unforced part in (3.63) can be determined by analysing the eigenvalues
of the state matrix. By unforced part, it is implied that ∆uLV 001(t) = ∆uLV 002(t) =
∆uP A001(t) = 0. The eigenvalues can be found by solving the following characteristic
equation (see [32] Chapter 6):

|A− λI| = 0 (3.64)

48 Chapter 3 System Modeling

Figure 3.10: Simulation of the nonlinear- and linear- model with perturbations in the
input signals.

where A, λ, and I are the state matrix, eigenvalue, and identity matrix, respectively.

Using (3.64) with the state matrix in (3.63) results in the following:∣∣∣∣∣∣
−0.0230 0

0.0092 −0.0092

−
λ 0

0 λ

∣∣∣∣∣∣ = 0
∣∣∣∣∣∣
−0.0230− λ 0

0.0092 −0.0092− λ

∣∣∣∣∣∣ = 0

(−0.0230− λ) · (−0.0092− λ) = 0

λ2 + 0.00322λ + 2.116 · 10−4 = 0 (3.65)

Solving (3.65) with the quadratic formula (see e.g. [29] page 42) yields the corresponding
eigenvalues:

λ1 = −0.0092 λ2 = −0.023 (3.66)

Both of the eigenvalues λ1 and λ2 appear on the left-hand side of the complex plane.
From the control theory (see e.g. [14] Section 4.4) this means that the unforced part of
system (3.63) is asymptotically stable, i.e., ∆h(t)→ 0 as t→∞.

Chapter 3 System Modeling 49

Additionally, the eigenvalues are both on the real axis (Im(λi) = 0, i ∈ {1, 2}), effectively
classifying the nominal solution NS as an asymptotically stable node, which can be
graphically illustrated in the phase plane as in Figure 3.11.

Figure 3.11: Phase plane of the unforced part in (3.63). The horizontal and vertical
axes represent ∆h1(t) and ∆h2(t), respectively. The origin (with respect to the real
system variables hi(t), i ∈ {1, 2}) represents the nominal solution NS. John C. Polking
of Rice University is acknowledged for providing the MATLAB code which produced

this image.

3.4.2 Laplace Transform

The linear model (3.63) can be further analysed by studying its Laplace Transform. The
Laplace Transform is a linear operator which is defined as (see e.g. [20] Chapter 3 or
[33] Chapter 6):

F (s) = L {f(t)} =
∫ ∞

0
f(t)e−st dt (3.67)

where

• f(t) is an arbitrary function,

• F (s) is the Laplace Transform of f(t),

• s is a complex independent variable,

• and L {·} is the Laplace Transform operator.

50 Chapter 3 System Modeling

First, consider the Laplace Transform of the linear model for Tank 1:

L
{

∆ḣ1(t)
}

= L {−0.0230∆h1(t)− 0.0719∆uLV 001(t) + 0.0450∆uP A001(t)} (3.68)

As mentioned, L {·} is a linear operator, meaning that it satisfies the superposition
principle (see e.g. [34] page 123 - 127). Applying the superposition principle to (3.68)
results in:

L
{

∆ḣ1(t)
}

= −0.0230L {∆h1(t)} − 0.0719L {∆uLV 001(t)}+ 0.0450L {∆uP A001(t)}
(3.69)

Notice how the multiplicative constants are factored out of the L {·} operator. Notice
also that the left-hand side of (3.69) contains the Laplace Transform of the derivative of
a function. Using integration by parts, this equates to (see e.g. [20] page 39, equation
3-9):

L
{

∆ḣ1(t)
}

= s∆H1(s) + ∆h1(0) (3.70)

Inserting (3.70) in the left-hand side, and applying (3.67) to the right-hand side of
equation (3.69), respectively, yields the following:

s∆H1(s) + ∆h1(0) = −0.0230∆H1(s)− 0.0719∆ULV 001(s) + 0.0450∆UP A001(s) (3.71)

Let the initial condition be at the nominal solution NS. Furthermore, let the pump
operates at the nominal solution NS. I.e.:

∆h1(0) = 0, ∆UP A001(s) = 0 (3.72)

Then, after some algebraic manipulation, (3.71) can be expressed as:

∆H1(s)
∆ULV 001(s) = −0.0719

s + 0.0230

= −3.1261
43.4783s + 1

(3.73)

which is the transfer function (or, relationship) between the Laplace Transform of the
state ∆h1(t) and the input ∆uLV 001(t), respectively.

Chapter 3 System Modeling 51

A similar procedure can be done for the linear model of Tank 2, which is shown subse-
quently:

L
{

∆ḣ2(t)
}

= 0.0092L {∆h1(t)} − 0.0092L {∆h2(t)}

+ 0.0288L {∆uLV 001(t)} − 0.0288L {∆uLV 002(t)}

=⇒

s∆H2(s) + ∆h2(0) = 0.0092∆H1(s)− 0.0092∆H2(s)

+ 0.0288∆ULV 001(s)− 0.0288∆ULV 002(s)

=⇒
∆H2(s)

∆ULV 002(s) = −0.0288
s + 0.0092

⇐⇒

∆h2(0) = 0, ∧ ∆H1(s) = 0, ∧ ∆ULV 001(s) = 0

∴

∆H2(s)
∆ULV 002(s) = −3.13

108.6957s + 1 (3.74)

A transfer function provides useful information regarding the dynamic behaviour of
the linear model, such as time constant and steady state gain. The steady state gain
of a transfer function tells how much a change in the independent variable affects the
dependent variable, while the time constant represents how fast the dependent variable
reacts to that said change.

The gains (denoted by κi, i ∈ {1, 2}) and time constants (denoted by τi, i ∈ {1, 2}) of
the two tanks will be useful information for future control design (see Appendix B). From
(3.73), it is clear that:

τ1 ≈ 43.5 [s] , κ1 = −3.1261 (3.75)

Similarly, based on (3.74), one can conclude that:

τ2 ≈ 109 [s] , κ2 = −3.13 (3.76)

For a detailed discussion on transfer functions and their properties, see e.g. [20] Chapter
4.

Alternatively, the time constants can be found numerically by analysing the unit step
response of the linear model. This can be done in MATLAB using the step function,
which results in the following:

1

2 Pole Magnitude Damping Frequency Time Constant

3 (rad/ seconds) (seconds)

52 Chapter 3 System Modeling

4

5 9.95e -01 9.95e -01 1.00e+00 9.18e -03 1.09e+02

6 9.89e -01 9.89e -01 1.00e+00 2.30e -02 4.36e+01

Additionally, Figure 3.12 illustrates the step response of the two tanks with respect to
each input signal. Comparing the subplots (1, 1) and (2, 2) in Figure 3.12, it is clear

0 1000 2000

-3

-2

-1

0

1

2

0 1000 2000

-3

-2

-1

0

1

2

0 1000 2000

-3

-2

-1

0

1

2

0 1000 2000

-3

-2

-1

0

1

2

0 1000 2000

-3

-2

-1

0

1

2

0 1000 2000

-3

-2

-1

0

1

2

Figure 3.12: Simulation of the step response of each tank with respect to every input
signal.

that Tank 1 responds faster than Tank 2 after a unit step in their respective valve signal.
This, as well as the printed MATLAB output, validate the time constants in (3.75) and
(3.76) that were found analytically through transfer functions.

Remark 3.2. For the sake of visualisation (as previously mentioned), the linear model in
Figure 3.12 is allowed to move outside of physical boundaries.

Obviously, the transfer functions (3.73) and (3.74) (and their respective properties)
will change depending on the chosen nominal solution NS prior to performing the
linearization.

Chapter 3 System Modeling 53

3.5 Discretization

So far, both the nonlinear and linear models have been discussed in continuous time.
However, as mentioned in Chapter 1, the MPC design for this project will be in discrete
time only. Therefore, it is necessary to discretize the models.

3.5.1 Ordinary Differential Equation Solver

Ordinary Differential Equations (ODEs) are usually solved/integrated using numerical
methods. These numerical methods are a necessity if the ODEs are to be analysed by a
computer.

To simulate the behaviour of the nonlinear model (3.29) (which is an ODE) on a computer,
it has to be done via numerical integration. To this end, the MATLAB function ode45

is used for the duration of this project. ode45 uses an embedded method named the
’Dormand-Prince pair’, which is a member of the explicit Runge-Kutta family of ODE
solvers. See [35] for an extensive discussion regarding ODE solvers of the Runge-Kutta
family. Additionally, see [36] Section 13.6 for a detailed discussion on the ode45 MATLAB
function.

Remark 3.3. The MATLAB function ode45 will be the most advanced ODE solver used
during this project. Therefore, while the ode45 function solves an ODE via numerical
methods, this numerical solution will be regarded as the continuous time solution of
said ODE. So, as emphasized by this remark, be aware of the distinction between the
solution of a continuous time ODE (which cannot be expressed on a computer), and the
numerical solution obtained via the function ode45.

3.5.2 Zero-Order Hold Method

The method Zero-Order Hold (ZOH) is used to discretize the linear models. Given the
continuous time linear state-space representation:ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)
(3.77)

an equivalent discrete time system can be obtained such that:x(k + 1) = Azohx(k) + Bzohu(k)

y(k) = Czohx(k) + Dzohu(k)
(3.78)

54 Chapter 3 System Modeling

The matrices in (3.78) are given by (see [17] Section 4.3.3 pp. 101-110):

Azoh = eAts (3.79)

Bzoh =
∫ ts

0
eAηB dη (3.80)

Czoh = C (3.81)

Dzoh = D (3.82)

where ts denotes the sampling time.

Clearly, the linear state-space model (3.63) does not have the same structure as the
general case given by (3.77). Therefore, an augmented state-space model is used, which
combines the manipulated variables with the measured disturbances:

∆ḣ1(t)
∆ḣ2(t)

︸ ︷︷ ︸

∆ḣ(t)

=

−0.0230 0
0.0092 −0.0092

︸ ︷︷ ︸

ANS

·

∆h1(t)
∆h2(t)

︸ ︷︷ ︸

∆h(t)

+

−0.0719 0 0.0450
0.0288 −0.0288 0

︸ ︷︷ ︸

BNS

·

∆uLV 001(t)
∆uLV 002(t)
∆uP A001(t)

︸ ︷︷ ︸

∆u(t)∆ĥ1(t)
∆ĥ2(t)

︸ ︷︷ ︸

∆ĥ(t)

=

1 0
0 1

︸ ︷︷ ︸

CNS

·

∆h1(t)
∆h2(t)

︸ ︷︷ ︸

∆h(t)

+

0 0 0
0 0 0

︸ ︷︷ ︸

DNS

·

∆uLV 001(t)
∆uLV 002(t)
∆uP A001(t)

︸ ︷︷ ︸

∆u(t)
(3.83)

The matrices in (3.83) can now be discretized by means of the ZOH method, using
the equations (3.79) - (3.82). Note that the ZOH discretization method preserves both
stability and instability [17]. As shown in Section 3.4.1, the unforced part of (3.83) is
asymptotically stable. Thus, the corresponding discrete time system (obtained via the
ZOH method) will also have an unforced part which is asymptotically stable.

Figure 3.13 and 3.14 show a comparison between the continuous time linear model (see
Remark 3.3 in Section 3.5.1), and its corresponding discrete time model obtained via the
ZOH method.

For the remainder of this project, when discretizing a linear system, the MATLAB
function c2d is used, which applies this exact ZOH method described in this section
(unless some other method is explicitly stated).

Chapter 3 System Modeling 55

0 50 100 150 200 250 300

0.45

0.5

0.55

0.6

22 24 26 28 30

0.5

0.505

0.51

0.515

Figure 3.13: Simulation of Tank 1 using ode45 with intervals ts = 0.1, and the ZOH
method with different sampling times ts(ZOH).

0 50 100 150 200 250 300

0.33

0.34

0.35

0.36

0.37

0.38

0.39

0 20 40 60 80

0.34

0.345

0.35

Figure 3.14: Simulation of Tank 2 using ode45 with intervals ts = 0.1, and the ZOH
method with different sampling times ts(ZOH).

56 Chapter 3 System Modeling

3.5.3 Euler method

Recall that a nonlinear MPC allows for a nonlinear prediction model to be used when
solving the SQP optimization problem. However, the nonlinear state equations of the
two-tank system discussed so far (see (3.29)) are in continuous time. Therefore, it is
necessary to discretize said equations prior to constructing the nonlinear MPC. To this
end, the Euler method (or sometimes called forward Euler) is used.

Given the continuous time ODE:

dy

dx
= f(x, y) (3.84)

and the initial value:
y0 = y(x0) (3.85)

then, there exists a unique solution (also called an initial-value problem, see [29] Section
18.3):

y = ϕ(x) = y0 +
∫ x

x0
f(t, ϕ(t)) dt (3.86)

The Euler method approximates the solution curve (3.86) by a polygonal line [29]. Each
segment in the polygonal line are equally spaced horizontally, and the slope of segment
n is determined by (3.84) evaluated at the tail of the previous segment, i.e., the end of
segment n− 1. The horizontal partitioning between each segment is referred to as the
step size, and is denoted by h.

The polygonal line is found by iteratively evaluating the starting point of the successive
segments, beginning from the initial value (3.85). Mathematically, this procedure can be
expressed by the general formula (see [29] page 1009 - 1012, or [31] page 131 - 137):

xn+1 = xn + h

yn+1 = yn + h · f(xn, yn)
(3.87)

which is referred to as an Euler step. Equation (3.87), when applied to the nonlinear
state equations (3.29), will act as the discrete time prediction model for the nonlinear
MPC. Figure 3.15 and 3.16 show a comparison between the simulated nonlinear two-tank
model, and multiple discretized models obtained via the Euler method with different
step sizes h.

Remark 3.4. The reason as to why the Euler method is preferred as the prediction model
for the nonlinear MPC, and not the ode45 function, is due to its simplicity and fast
computational solution, which, after comparing the two methods in Figure 3.15 and 3.16,
does not significantly affect the integrity of the prediction model with short step sizes h.

Chapter 3 System Modeling 57

0 50 100 150 200 250 300

0.5

0.52

0.54

0.56

0.58

0.6

0.62

80 85 90 95

0.592

0.594

0.596

0.598

0.6

Figure 3.15: Simulation of Tank 1 using ode45 with intervals ts = 0.1, and the Euler
method with different step sizes hEuler.

0 50 100 150 200 250 300

0.41

0.42

0.43

0.44

0.45

0.46

0.47

0.48

0.49

0.5

78 80 82 84 86 88

0.447

0.448

0.449

0.45

0.451

Figure 3.16: Simulation of Tank 2 using ode45 with intervals ts = 0.1, and the Euler
method with different step sizes hEuler.

58 Chapter 3 System Modeling

Remark 3.5. Note that only the state equations (3.29) are addressed in this section, and
that the output equations (3.30) are disregarded. This is because, while (3.30) is in
continuous time, it is also linear. Since (3.30) is a linear equation, the ZOH method (see
Section 3.5.2) can be used to discretize it, which will not affect the equations (see (3.81)
and (3.82)). Thus, the output equations (3.30) can be used in the prediction model as is.

Chapter 4

MPC Design

In this chapter, multiple MPC-based controllers (such as linear-, explicit-, adaptive-, and
nonlinear-MPC) are designed for the two-tank system. The goal of this chapter is to
provide a clear distinction between the different MPC-based controllers, what the different
MPC specifications imply, and how the MPC-based controllers can be created using
MATLAB syntax. Additionally, supplemental justifications will be provided regarding
the design choices and parameter selection for the MPC-based controllers when applied
to the two-tank system.

4.1 Overview

4.1.1 Software

This project relies extensively on MATLAB software [37], and some of the avail-
able add-ons. Most notably are the add-ons: Model Predictive Control Toolbox,
Optimization Toolbox, Control System Toolbox, and Simulink.

Using the ver function in the command window makes MATLAB display the current
version of the software and toolboxes. Below are listed the toolboxes (and corresponding
versions) used to obtain the results in this project:

1 MATLAB Version : 9.11.0.1837725 (R2021b) Update 2

2 Operating System : Microsoft Windows 10 Home Version 10.0 (Build 19045)

3 Java Version : Java 1.8.0 _202 -b08 with Oracle Corporation Java HotSpot (TM)

64- Bit Server VM mixed mode

4

5 MATLAB Version 9.11

(R2021b)

59

60 Chapter 4 MPC Design

6 Simulink Version 10.4

(R2021b)

7 Control System Toolbox Version 10.11

(R2021b)

8 Econometrics Toolbox Version 5.7

(R2021b)

9 Model Predictive Control Toolbox Version 7.2

(R2021b)

10 Optimization Toolbox Version 9.2

(R2021b)

11 Signal Processing Toolbox Version 8.7

(R2021b)

12 Statistics and Machine Learning Toolbox Version 12.2

(R2021b)

13 Symbolic Math Toolbox Version 9.0

(R2021b)

4.1.2 Hardware

Performance measures such as code execution time can be greatly affected depending
on the hardware running said code. Additionally, background programs can limit
the available RAM used by MATLAB, further slowing the code down. Therefore,
for replication purposes, it is important to provide the hardware specifications of the
computer that obtained the results presented in this project. Further details regarding
the computer used in this project are presented below:

• Unit: ideapad 710S-13IKB Signature Edition

• Processor: Intel(R) Core(TM) i7-7500U CPU @ 2.70GHz 2.90 GHz

• RAM: 8,00 GB (7,89 GB usable)

• System Type: 64-bit operating system, x64-based processor.

4.2 Linear MPC

4.2.1 Model

Implied by its name, the linear MPC uses a linear prediction model when optimizing
for future control inputs. As mentioned in Chapter 3, a linear model of the two-tank

Chapter 4 MPC Design 61

system (about a nominal solution NS) can be obtained by means of linearization. For
the remainder of this project, NS is chosen to be:

h̃1 = 0.5, h̃2 = 0.3, ũP A001 = 0.8, ũLV 001 = 0.5317, ũLV 002 = 0.5317︸ ︷︷ ︸
NS

(4.1)

Linearizing the nonlinear model {(3.29), (3.30)} about NS yields the following continuous
time linear state-space model:

∆ḣ1(t)
∆ḣ2(t)

 =

−0.0230 0
0.0092 −0.0092

 ·
∆h1(t)

∆h2(t)

 +

−0.0719 0 0.0450
0.0288 −0.0288 0

 ·

∆uLV 001(t)
∆uLV 002(t)
∆uP A001(t)

∆ĥ1(t)

∆ĥ2(t)

 =

1 0
0 1

 ·
∆h1(t)

∆h2(t)

 +

0 0 0
0 0 0

 ·

∆uLV 001(t)
∆uLV 002(t)
∆uP A001(t)

(4.2)

The linear model (4.2) can be discretized by means of the ZOH method (see Section
3.5.2). Suppose that the sampling time is ts = 0.5 [s]. Performing the ZOH method with
this sampling time yields the following discrete time linear state-space model:

∆h1(k + 1)
∆h2(k + 1)

 =

 0.9886 0
0.004554 0.9954

 ·
∆h1(k)

∆h2(k)

+

−0.03574 0 0.02237
0.01426 −0.01435 5.137 · 10−5

 ·

∆uLV 001(k)
∆uLV 002(k)
∆uP A001(k)

∆ĥ1(k)

∆ĥ2(k)

 =

1 0
0 1

 ·
∆h1(k)

∆h2(k)

 +

0 0 0
0 0 0

 ·

∆uLV 001(k)
∆uLV 002(k)
∆uP A001(k)

(4.3)

In MATLAB, this transformation is done using the c2d function, as such:

1 ts = 0.5; % Sampling time

2 sys = ss(A, B_a , C, D_a); % CT State -Space Model

3 sys = c2d(sys ,ts); % DT State -Space Model (ts sampling)

where A, B_a, C, and D_a are the matrices appearing in the continuous time linear
state-space model (4.2).

Recall that, in order to perform the ZOH transformation, an augmented state-space
system is used. The augmented state-space system contains the manipulated variables
(∆uLV 00i(k), i ∈ {1, 2}) as well as the measured disturbance (∆uP A001(k)) in the input

62 Chapter 4 MPC Design

vector. This information has to be explicitly stated to the MPC, which can be done by
editing the sys object with the setmpcsignals function:

1 % Signal Types

2 sys = setmpcsignals (sys , ’MV’, [1 2], ’MD’, 3, ’MO’, [1 2]);

where:

• ’MV’ are the ’Manipulated variables’, i.e., the first and second element in the input
vector.

• ’MD’ is the ’Measured Disturbance’, i.e., the third element in the input vector.

• ’MO’ are the ’Measured Outputs’, i.e., the first and second element in the output
vector.

The discretized sys object, together with the sampling time ts, are used to create a linear
MPC object in MATLAB:

1 mpcobj = mpc(sys , ts); % Linear MPC object

It is important to recognize that the linear model, which the MPC uses as a prediction
model, works with ∆-variables. Meaning that every control move that the MPC calculates
is regarded as the deviation from the nominal solution NS. Therefore, the nominal
solution NS has to be added to the calculated control moves ∆uLV 00i(k), i ∈ {1, 2} prior
to them being applied to the valves.

Conversely, prior to ’feeding’ the MPC with measured outputs, the nominal solution NS

has to be subtracted, such that only the ∆-variables remain (see the conversions (3.41) -
(3.47)). These conversions can be done automatically by defining the nominal state of
the MPC object in MATLAB:

1 mpcobj .Model. Nominal = struct (’X’,x0 ,’U’,u0 ,’Y’,y0);

where x0, u0, and y0 are the state vector, input vector, and output vector, respectively,
inserted the nominal solution NS:

x0 =

0.5
0.3

 , u0 =

0.5317
0.5317

0.8

 , y0 =

0.5
0.3

 (4.4)

As a final test, one can confirm if the linear discrete time prediction model is indeed
controllable. The MATLAB function ctrb calculates the controllability matrix C, which
is defined as:

C =
[
B AB A2B . . . An−1B

]
(4.5)

Chapter 4 MPC Design 63

In MATLAB, (4.5) is calculated subsequently:

1 ctrb(sys);

which gives:

C =

−0.0357 0 0.0224 −0.0353 0 0.0221
0.0143 −0.0143 0.0001 0.0140 −0.0143 0.0002

 (4.6)

The rank of C determines if the state-space model pair (A, B) is controllable or not.
If C has full row rank, i.e., rank(C) = n (where n is the number of states), then, the
matrix pair (A, B) is said to be controllable. In MATLAB, this can be checked with the
following code:

1 rank(ctrb(sys));

which yields:
rank(C) = 2 = n (4.7)

Thus, confirming that the prediction model (4.3) is indeed controllable. See [13] Section
5 for a complete discussion on controllability.

4.2.2 Quadratic Objective Function

In its most general form, the short-hand notation of the quadratic objective function for
the linear MPC can be written subsequently (see [23]):

J(zk) = Jy(zk) + Ju(zk) + Jδu(zk) + Jε(zk) (4.8)

where zk is the QP decision variable. Each term in (4.8) represents the cost related to
different aspects of optimal control performance, which, together, make up the total cost.

Controllers are commonly used for output reference tracking. A controller’s ability to
perform this task can be quantified by the quadratic cost term Jy(zk), which can be
expressed mathematically as:

Jy(zk) =
P∑

i=1

{
(r(k + i|k)− y(k + i|k))T ·Q2 · (r(k + i|k)− y(k + i|k))

}
(4.9)

or as (see [23] page 1-7):

Jy(zk) =
p∑

i=1

P∑
j=1

{
Q2

i,i · [ri(k + j|k)− yi(k + j|k)]2
}

(4.10)

64 Chapter 4 MPC Design

where:

• p is the number of outputs.

• r(k + i|k) ∈ Rp is the output reference vector.

• ri(k + j|k) ∈ R is the reference for output number i.

• y(k + i|k) ∈ Rp is the output vector.

• yi(k + j|k) ∈ R is output number i.

• Q is the diagonal output weighting matrix.

• Qi,i is the ith diagonal element in the output weighting matrix Q.

Commonly for all the cost functions presented in this section is that:

• k is the current control interval.

• P is the prediction horizon.

• The QP decision variable zk is defined as (see [23] page 1-8):

zk
T =

[
u(k|k)T , u(k + 1|k)T , . . . , u(k + P − 1|k)T , εk

]
(4.11)

where εk is a dimensionless slack variable.

Remark 4.1. Note the deviation from the previously discussed quadratic cost functions
in Chapter 2, where, in this case, the weighting matrix Q is squared. This also applies
for the subsequent cost functions and their respective weighting matrices.

Similarly, on some occasions, it is desirable for the manipulated variables to track some
reference (or commonly referred to as a target). The controller’s ability to follow a target
for the manipulated variables is quantified by Ju(zk), which can be written as:

Ju(zk) =
P −1∑
i=0

{
(utarget(k + i|k)− u(k + i|k))T ·R2 · (utarget(k + i|k)− u(k + i|k))

}
(4.12)

or as (see [23] page 1-8):

Ju(zk) =
m∑

i=1

P −1∑
j=0

{
R2

i,i · [utarget, i(k + j|k)− ui(k + j|k)]2
}

(4.13)

Here,

Chapter 4 MPC Design 65

• m is the number of manipulated variables.

• utarget(k + i|k) ∈ Rm is the manipulated variable target vector.

• utarget,i(k + j|k) ∈ R is the target for manipulated variable number i.

• u(k + i|k) ∈ Rm is the manipulated variable vector.

• ui(k + j|k) ∈ R is manipulated variable number i.

• R is the diagonal control weighting matrix.

• Ri,i is the ith diagonal element in the control weighting matrix R.

As mentioned in Chapter 2, the rate at which manipulated variables change from one
control interval to the next can cause disturbances to the system, or (if the change is too
rapid) damage the actuators. The term Jδu(zk) determines the cost related to the rate
of the manipulated variables, and is expressed subsequently:

Jδu(zk) =
P −1∑
i=0

{
(u(k + i|k)− u(k + i− 1|k))T · S2 · (u(k + i|k)− u(k + i− 1|k))

}
(4.14)

or as (see [23] page 1-8):

Jδu(zk) =
m∑

i=1

P −1∑
j=0

{
S2

i,i · [ui(k + j|k)− ui(k + j − 1|k)]2
}

(4.15)

with the defined variables:

• m is the number of manipulated variables.

• S is the diagonal control rate weighting matrix.

• Si,i is the ith diagonal element in the control rate weighting matrix S.

Finally, the term Jε(zk) quantifies the constraint violations of the controller. In some
situations, e.g. when a system is highly prone to disturbances, the system might move
from the constraint set. For soft constraints (see Section 4.2.5), this violation can be
temporarily allowed, but it will be heavily penalized by the quadratic objective function
Jε(zk). This is not a relevant case for the two-tank system, therefore, it will not be
discussed any further. See [23] page 1-9 for a detailed description on this term and its
implications.

66 Chapter 4 MPC Design

Remark 4.2. Notice that all of the terms in (4.8) are all dependent on the free variable zk.
This is because the output references, manipulated variable targets, previous inputs, and
measured disturbances are all known at control interval k. The MPC’s prediction model
is dependent on the current state of the system, and the current/future inputs, in order
to predict the optimal outputs for a horizon of P steps. The current state can either be
measured directly (as is the case in the two-tank system), or, it can be estimated based
on output measurements through a state observer (more on this in Section 6.10). This
leaves the only independent variable zk, which is defined by (4.11).

4.2.3 Scaling

Prior to tuning the weighting matrices Q, R, and S (defined in Section 4.2.2), it is
important to determine the scaling factors of the outputs and inputs properly. Why
scaling factors are important is easily described through a simple example:

Example 4.1. Consider a chemical plant where some liquid is stirred in a tank. This
tank is equipped with a control system that performs level control and temperature control.
Thus, the state vector can be written as:

x =

h(t)
T (t)

where h(t) [m] and T (t) [◦C] are the fluid level and fluid temperature, respectively.

The tank is 3m tall with a lower boundary on the fluid level of 0.5m, meaning that the
effective range of the height is 0.5m ≤ h(t) ≤ 3m. The temperature of the tank ranges
between 50◦C ≤ T (t) ≤ 300◦C.

Now, assume that both of the states are weighted equally. I.e., h(t) and T (t) are equally
significant (relative to each other) to the overall quadratic objective function. To achieve
this, an initial guess for the state weighting matrix is chosen to be:

Q =

1 0
0 1

Furthermore, the reference vector is set to:

x̄ =

 2m

200◦C

Assume that both of the states deviate from their respective reference by +10%, i.e.,
h(t) = 2m · 1.1 = 2.2m and T (t) = 200◦C · 1.1 = 220◦C. The corresponding quadratic

Chapter 4 MPC Design 67

cost for this particular case is shown subsequently:

J = (x̄− x)T ·Q2 · (x̄− x)

=

 2

200

−
2.2

220

T

·

1 0
0 1

2

·

 2

200

−
2.2

220

=

[
−0.2 −20

]
·

1 0
0 1

2

·

−0.2
−20

= 1 · 0.22 + 1 · 202

= 0.04︸︷︷︸
Jh

+ 400︸︷︷︸
JT

Clearly, JT ≫ Jh.

Since the relative cost of JT is much higher than Jh, the MPC will focus (almost
exclusively) on controlling the temperature of the tank while neglecting the fluid level.
However, this is not the desired control according to the chosen weighting matrix Q, which
was initially chosen such that both of the states are to be weighted equally. The issue lies
in the fact that the states are poorly scaled.

Scaling factors (denoted by λ) can be used to properly re-scale the states, and they are
defined as:

λxi = xmax
i − xmin

i

where xi is some arbitrary state in the state vector x ∈ Rn. These scaling factors are
used to adjust the weighting matrix Q, as such:

Q =

Q1,1
λx1

0 . . . 0
0 Q2,2

λx2
. . . 0

...
... . . . 0

0 0 . . .
Qn,n

λxn

Back to the example, the scaling factors for the tank are:

λh = hmax − hmin = 3− 0.5 = 2.5

λT = T max − T min = 300− 50 = 250

68 Chapter 4 MPC Design

which results in the following weighting matrix:

Q =

 1
λh

0
0 1

λT

=

 1
2.5 0
0 1

250

=

0.4 0
0 0.004

Re-calculating the quadratic cost yields:

J =
[
−0.2 −20

]
·

0.4 0
0 0.004

2

·

−0.2
−20

= 0.42 · 0.22 + 0.0042 · 202

= 0.0064︸ ︷︷ ︸
Jh

+ 0.0064︸ ︷︷ ︸
JT

Now the quadratic cost of the two states are of the same order (here equal) and the MPC
will prioritise both states equally (which was initially intended), albeit, the relative value
of the total cost has decreased with respect to the non-scaled total cost.

For the two-tank system, the scaling factors are determined to be (see Table 3.1 and 3.2):

λh1 = 1− 0.13 = 0.87 (4.16)

λh2 = 0.4− 0.02 = 0.38 (4.17)

λuLV 001 = 1− 0 = 1 (4.18)

λuLV 002 = 1− 0 = 1 (4.19)

λuP A001 = 1− 0 = 1 (4.20)

In MATLAB, the weighting matrices Q, R, and S can be automatically scaled, with
respect to the scaling factors (4.16) - (4.20), by adjusting the ScaleFactor property of
each signal in the MPC object. By default, the ScaleFactor property is set to unity.
The scale factors for the inputs (4.18) - (4.20) already correspond to the default value,
thus, no adjustments are required for these signals. The following code shows how the
scale factors (4.16) and (4.17) are applied to the output signals in MATLAB:

1 % Signal Scaling

2 mpcobj .OV (1). ScaleFactor = 1 - 0.13; % Range of h1

3 mpcobj .OV (2). ScaleFactor = 0.4 - 0.02; % Range of h2

Chapter 4 MPC Design 69

4.2.4 Weighting Matrices

The weighting matrices Q, R, and S are MPC controller specifications that determine
the significance of the different objective functions described in Section 4.2.2. These
tuning variables can be adjusted freely, depending on the priority of the system operating
engineer.

In the case of the two-tank system, the MPC controller is concerned with level control,
which, by extension, prioritizes output reference tracking. Therefore, the diagonal
elements in the output weighting matrix Q should be selected relatively larger than the
the diagonal elements in R and S.

Output Weighting Matrix

The general output weighting matrix Q for the two-tank system can be expressed as:

Q =

Q1,1 0
0 Q2,2

 (4.21)

Given (4.21), there are three main cases that the controller can operate under:

(i) Q1,1 > Q2,2, i.e., the controller prioritizes output reference tracking of Tank 1 more
than Tank 2.

(ii) Q2,2 > Q1,1, i.e., the controller prioritizes output reference tracking of Tank 2 more
than Tank 1.

(iii) Q1,1 = Q2,2, i.e., the controller prioritizes output reference tracking of Tank 1 and
Tank 2 equally.

In this project, the predominant engineering priority is case (iii), however, case (i) and
case (ii) will also be briefly studied (see Chapter 5). The weighting matrices for the three
aforementioned cases are selected to be:

Qi =

5 0
0 1

 , Qii =

1 0
0 5

 , Qiii =

1 0
0 1

 (4.22)

70 Chapter 4 MPC Design

Input Weighting Matrix

For the level control of the two-tank system, there is no penalty that accounts for the
usage of the valves. Thus, the input weighting matrix R is selected to be:

R =

0 0
0 0

 (4.23)

I.e., the inputs uLV 00i(k), i ∈ {1, 2} can move freely from their respective targets
utarget,i(k), i ∈ {1, 2} without affecting the overall quadratic objective function. Due to
this chosen control property, the input targets are not applicable, and, by extension, not
defined.

Remark 4.3. For the sake of completion, the reader should be aware that there are
multiple cases where the inputs are heavily penalized for deviating from their targets.
This is often the case when trying to optimize the operational cost1 of a system. For
instance, consider a quadcopter where the inputs are the voltage to their respective rotor.
Choosing a large input weighting matrix R forces the MPC to find an optimal solution
which uses the rotors conservatively. This can reduce the overall power consumption,
effectively increasing the battery life of the quadcopter.

Input Rate Weighting Matrix

The input rate weighting matrix S determines how much changes in the inputs should
be penalized, and, therefore, contribute to the quadratic objective function. To reduce
disturbance, and to promote smooth control of the two-tank, S is chosen to be:

S =

0.1 0
0 0.1

 (4.24)

Recall that the weighting matrices Q, R, and S all define the relative significance of the
outputs, inputs, and input rates, with respect to each other. In other words, the MPC
with the following control specifications:

Q =

1 0
0 1

 , R =

0 0
0 0

 , S =

0.1 0
0 0.1

 (4.25)

will have the exact same control priorities as the MPC with:

Q =

100 0
0 100

 , R =

0 0
0 0

 , S =

10 0
0 10

 (4.26)

1Cost, as in physical resources such as fule or electricity.

Chapter 4 MPC Design 71

In MATLAB, the weighting matrices can be adjusted with the following code:

1 % Weighting Matrices

2 mpcobj . Weights . OutputVariables = [q11 q22]; % Q

3 mpcobj . Weights . ManipulatedVariablesRate = [s11 s22]; % S

4 mpcobj . Weights . ManipulatedVariables = [r11 r22]; % R

where q11 and q22 are Q1,1 and Q2,2 in (4.21), respectively. The same applies for S and
R.

4.2.5 Constraints

As mentioned in Chapter 2, a desirable feature of the MPC is its ability to satisfy multiple
constraints on the inputs, input rates, and outputs, respectively. These constraints (or
bounds) are classified as either soft- or hard- constraints.

Hard Constraints

Hard constraints are constraints that must not be violated by the MPC during operation.
If the system is pushed to a state that violates hard constraints (e.g. by some disturbance),
then, the QP solver will yield an infeasible solution.

For the two-tank system, hard constraints are imposed only on the input variables
uLV 00i(k), i ∈ {1, 2}, as such:

uLV 00i, min ≤ uLV 00i(k) ≤ uLV 00i, max , i ∈ {1, 2} (4.27)

where (see Table 3.1 and 3.2):
uLV 00i, min = 0

uLV 00i, max = 1
, i ∈ {1, 2} (4.28)

The bounds in (4.28) yields an input constraint set U ∈ Rm, which is illustrated in Figure
4.1. In MATLAB, these hard constraints are set subsequently:

1 % Input (hard) Constraints

2 mpcobj .MV (1).Max = 0.9999;

3 mpcobj .MV (1).Min = 0.0001;

4 mpcobj .MV (2).Max = 0.9999;

5 mpcobj .MV (2).Min = 0.0001;

Note that, in a practical setting, the constraints applied in the code are slightly within the
set U , and not on the exact boundary defined by (4.28). This is to prevent numerical issues

72 Chapter 4 MPC Design

Figure 4.1: Input constraint set U ∈ Rm illustrated by the gray polytope.

due to rounding error and constraint tolerances in the QP solver. For instance, consider
this simple example which highlights one possible numerical issue if the constraints are
set exactly on the bounds given by (4.28):

Example 4.2. Suppose that Tank 1 is below the desired output, as may be the case after
a step in the reference. The logical action is to close the valve LV001 until h1(k) reaches
the desired output. I.e., uLV 001(k)→ 0.

The QP solver, when optimizing for the set of P inputs, is required to satisfy the constraints
(4.28) at all times. However, there is a set tolerance factor ς, which determines how
strict the QP solver is when deciding if a constraint is satisfied or not. I.e., the QP
solver will allow values (outside of the constraint set U) within the ranges:

uLV 00i, min − ς ≤ uLV 00i(k) ≤ uLV 00i, min

uLV 00i, max ≤ uLV 00i(k) ≤ uLV 00i, max + ς
, i ∈ {1, 2} (4.29)

When uLV 001(k) → 0, uLV 001, min = 0, and ς > 0, then, the QP solver may select
uLV 001(k) to be some value ζ, which is within:

0− ς ≤ ζ < 0 (4.30)

Chapter 4 MPC Design 73

Inserting ζ in the approximated valve characteristic equation (3.8) yields:

f1(ζ) = eζ1.2 − 1
e1 − 1 ∈ C (4.31)

which is a complex value (!), and has no physical interpretation.

The default constraint tolerance for the MPC object in MATLAB is ς = 1 · 10−6. Thus,
the absolute range for the inputs are:

0.0001− 1 · 10−6 ≤ uLV 00i(k) ≤ 0.9999 + 1 · 10−6 , i ∈ {1, 2} (4.32)

which do not exceed the physical boundaries of (4.28), and numerical issues (as shown in
the example above) are avoided.

No constraints are set on the input rates explicitly in MATLAB. However, since the
inputs themselves are restricted to approximately:

0 ≤ uLV 00i(k) ≤ 1 , i ∈ {1, 2} (4.33)

then, the biggest possible rates occur when the inputs either move from 0→ 1 or from
1→ 0. I.e.:

−1 ≤ δuLV 00i(k) ≤ 1 , i ∈ {1, 2} (4.34)

The constraint set δU ∈ Rm is illustrated by Figure 4.2

Soft Constraints

Contrary to hard constraints, the QP solver will yield a feasible solution if soft constraints
are violated. During the optimization process, the QP solver may deem it necessary to
temporarily violate certain soft constraints, in order to achieve the minimal quadratic
objective cost. In practice, soft constraints are imposed on output variables, as it can
lead to infeasibility in the QP solver if hard constraints are imposed on both manipulated-
and output- variables simultaneously. In MATLAB, soft constraints are determined by
the parameter equal concern for relaxation (ECR) which will be denoted by β. Given β,
the active range for the soft constraints (imposed on output variables) will be:

ymin − β ≤ y(k + 1|k) ≤ ymax + β (4.35)

where:

• ymin ∈ Rp is the lower bound on the outputs.

74 Chapter 4 MPC Design

Figure 4.2: Input rate constraint set δU ∈ Rm illustrated by the gray polytope.

• ymax ∈ Rp is the upper bound on the outputs.

• y(k + 1|k) ∈ Rp is the output vector.

For a detailed discussion on soft constraints, see [23] page 2-7 - 2-9.

As mentioned in Section 4.2.2, no soft constraints are imposed on the linear MPC during
control of the two-tank system. Both of the tanks have lower bounds of h1,utlop and
h2,utlop, respectively (see Table 3.1 and 3.2). Additionally, both of the tanks are equipped
with overflow pipes, which prevent the fluid levels of exceeding certain upper bounds.
Therefore, there is no possible scenario where a disturbance (or prediction error) can
’push’ the system outside of its respective (physical) constraint set X ∈ Rm (see Figure
4.3). As a result of the discussion above, the soft constraints imposed on the output
variables can be set in MATLAB accordingly:

1 % Output (soft) Constraints

2 mpcobj .OV (1).Max = inf;

3 mpcobj .OV (1).Min = -inf;

4 mpcobj .OV (2).Max = inf;

5 mpcobj .OV (2).Min = -inf;

6 % Output ECR (slack)

7 mpcobj .OV (1). MinECR = 1;

8 mpcobj .OV (1). MaxECR = 1;

9 mpcobj .OV (2). MinECR = 1;

Chapter 4 MPC Design 75

Figure 4.3: State constraint set X ∈ Rn illustrated by the gray polytope.

10 mpcobj .OV (2). MaxECR = 1;

which equates to: −∞− β

−∞− β

 ≤
ĥ1(t)

ĥ2(t)

 ≤
+∞+ β

+∞+ β

 (4.36)

with the ECR paramter β = 1 (default value).

4.2.6 Prediction- and Control-Horizon

The prediction horizon P ∈ N determines how many control intervals the MPC will
predict into the future at current control interval k. The total time (tp) which the MPC
predicts into the future is given by:

tp = ts · P (4.37)

where ts is the sampling time.

The control horizon M ∈ N is the number of free manipulated variables in the QP
problem that are to be optimized at control interval k [23]. See Section 2.2 for a more
detailed discussion on the prediction horizon and control horizon.

76 Chapter 4 MPC Design

In MATLAB, the prediction- and control-horizons can be selected subsequently:

1 % Moving Horizon Length

2 mpcobj . PredictionHorizon = P % Prediction Horizon

3 mpcobj . ControlHorizon = M % Control Horizon

As an example, consider the discrete time system (4.3). Suppose that the system is
operating at the nominal solution NS (see 4.1), and that the MPC has the specifications
P = M = 40. I.e., the prediction- and control-horizons are 40 control intervals long.

At time step k, the reference for Tank 1 changes from 0.5m → 0.7m. As mentioned
in Chapter 2, the MPC calculates the optimal set of control moves Uopt(k), such that
the prediction model state sequence Xopt(k) follows the reference in an optimal manner.
Figure 4.4 shows these predictions for this particular example. As previously mentioned

k k+5 k+10 k+15 k+20 k+25 k+30 k+35 k+40

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 4.4: Optimal calculated state prediction set Xopt(k) and control moves Uopt(k)
at control interval k. Prediction- and control- horizons are 40 control intervals long.

(see Section 2.2), one requirement for the moving horizon is that P ≥M ≥ 1. If P > M ,
then, the last P −M calculated optimal control moves are forced to be equal constants for
the remaining prediction horizon. Figure 4.5 shows this case, where P = 40 and M = 12.
Recall that the moving horizon policy only implements the first optimal calculated control
move uopt(k), while discarding the remaining P − 1 calculated control moves. In Figure

Chapter 4 MPC Design 77

k k+5 k+10 k+15 k+20 k+25 k+30 k+35 k+40

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 4.5: Optimal calculated state prediction set Xopt(k) and control moves Uopt(k)
at control interval k. Prediction- and control- horizons are 40 and 12 control intervals

long, respectively.

4.4 and 4.5, the first optimal control move is calculated to be:

u40
opt(k) =

0.1903
0.0001

 and u12
opt(k) =

0.1761
0.0001

 (4.38)

where the superscript denotes the respective control horizon length.

Evidently from (4.38), the first optimal calculated control move with M = 40 and
M = 12 do not differ significantly. Additionally, this difference does not pose a significant
change in the next predicted state (see h1,opt(k + 1) in Figure 4.4 and 4.5). For this
reason, choosing horizons where P ≫ M is recommended, as it forces the remaining
P −M control moves to be equal constants, effectively reducing the QP problem and
the computational effort (see [22] Section 28.3.4 or [23] Section 2.1.3).

Input Blocking

An effort to reduce the computational complexity, while maintaining the solution quality,
can be done through input blocking.

78 Chapter 4 MPC Design

Input blocking is a strategy where the QP solver optimizes for one optimal control input
over a predefined control interval (or block). The optimal control input is then held
constant for the duration of said block, until the interval is completed. The control
horizon M , with input blocking, can be expressed subsequently:

M =
[
m1 m2 . . .

]
where m1, m2, etc., represent the respective block lengths. Note the necessary condition
P ≥ m1 + m2 + . . . , similarly to P ≥M for the case without input blocking.

For example, consider the same simulation scenario as shown in Figure 4.4 and 4.5, with
P = 40. However, now, the control horizon is divided into the following blocks:

M =
[
1 3 6 15 15

]
(4.39)

which is the equivalent of the following control intervals:

k = k, k + 1 ≤ k ≤ k + 3,

k + 4 ≤ k ≤ k + 9, k + 10 ≤ k ≤ k + 24, k + 25 ≤ k ≤ k + 39

The MPC will solve one QP optimization problem for each of the control intervals, and
this solution (for its respective interval) will be held constant for the duration of the
control block. Figure 4.6 shows the simulation with M given by (4.39). Comparing the
simulations between Figure 4.4 and 4.6, it is clear that the solution quality is worsened
by the use of input blocking (especially at k + 10 ≤ Control Interval ≤ k + 25). However,
the QP problem in Figure 4.6 has reduced complexity, and is only solving for 5 unique
optimal control inputs, while the QP problem in Figure 4.4 needs to solve for 40 unique
optimal control inputs.

Additionally, as discussed for the case in Figure 4.5, the first optimal control input with
input blocking does not differ significantly from the first optimal control input with
M = 40 (see uLV 001(k) in Figure 4.4 and 4.6).

As explained by Levine [22] (Section 28.3.4), and by Bemporad et al. [23] (Section 2.1.3),
a common practise for input blocking is to use small partitioning (i.e., short input blocks)
at the beginning of the prediction horizon, and steadily increase the block sizes towards
the later stages of the prediction horizon.

In MATLAB, the input blocking shown in Figure 4.6 can be done with the following
syntax:

1 % Moving Horizon Length

2 mpcobj . PredictionHorizon = 40 % Prediction Horizon

Chapter 4 MPC Design 79

k k+5 k+10 k+15 k+20 k+25 k+30 k+35 k+40

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 4.6: Optimal calculated state prediction set Xopt(k) and control moves Uopt(k)
at control interval k. Prediction horizon is P = 40, while the control horizon M is given

by (4.39).

3 mpcobj . ControlHorizon = [1 3 6 15 15] % Control Horizon (Blocking)

The choice of the prediction- and control-horizons (and the use of input blocking) for the
two-tank system is further discussed in Chapter 5.

4.2.7 QP Solver

The QP solver for the MPC object mpcobj uses one of the two main optimization
algorithms: Interior-point, and Active-set. The performance of these algorithms will be
evaluated in Chapter 5.

The following code shows how to select the two different algorithms in MATLAB:

1 % Active -Set Solver

2 mpcobj . Optimizer . Algorithm = ’active -set ’;

3 ---

4 % Interior -Point Solver

5 mpcobj . Optimizer . Algorithm = ’interior -point ’;

Options such as constraint tolerance, maximum number of iterations when optimizing,
and step tolerance are all set to default values, which is shown in Table 4.1. For a detailed

80 Chapter 4 MPC Design

discussing on the different solver options, see the MATLAB documentation [23] Section
1.3. To execute the QP optimization in MATLAB, the following syntax is used:

Interior-point Active-set
MaxIterations 50 4 · (nc + nv)
ConstraintTolerance 1 · 10−6 1 · 10−6

UseWarmStart N/A True
OptimalityTolerance 1 · 10−6 N/A
ComplementarityTolerance 1 · 10−8 N/A
StepTolerance 1 · 10−8 N/A

Table 4.1: Default options for the MATLAB QP solver. Here, nc, and nv are the
total number of constraints across the prediction horizon, and the total number of

optimization variables across the control horizon, respectively [23].

1 MV = mpcmove (mpcobj , xc , [], r, v);

where:

• MV is the optimal calculated manipulated variable (uopt(k)).

• mpcobj is the MPC object constructed in Section 4.2.1.

• xc is a pointer to the current controller state, created using the function mpcstate

(see [23]).

• r is the output reference (h1,ref , h2,ref).

• v is the measured input disturbance (uP A001).

Remark 4.4. The element [] in the mpvmove function is a placeholder for the measured
outputs (ĥ1, ĥ2). Since there is no need for state estimation (because the states are
measured directly), there is no need to provide the measured outputs to the mpcmove

function.

4.3 Explicit MPC

While the implicit linear MPC (see Section 4.2) performs the QP optimization problem
(on line) iteratively at each control interval k, the explicit MPC looks to parameterize
the optimization problem, through multiparametric quadratic programming (mpQP),
into a piecewise affine control law that can be evaluated, equivalently to a look-up table.
The parameterization of the QP problem can be done off line, where the control law
is precomputed. Storing the precomputed control law on the system hardware reduces

Chapter 4 MPC Design 81

the on line computational efforts, which makes the application of explicit MPC-based
controllers more viable for fast sampling systems [38].

When computing the piecewise affine control law, the explicit MPC uses polyhedral
computations based on nonnegative least squares (see [38]) to divide the state-space into
nr polyhedral regions, in which, an affine control law is asserted to its respective region.
The explicit MPC uses the following piecewise affine control law to evaluate the optimal
control move (see [23] Chapter 6):

u(k) = Fiχ(k) + Gi , i = 1, . . . nr (4.40)

where Fi ∈ Rm×nχ and Gi ∈ Rm are predetermined constants asserted to the polyhedral
region i, and χ(k) ∈ Rnχ is a vector containing the current states and other independent
variables that affect the QP problem. In the case of the two-tank system, χ(k) consists
of the variables:

• h1(k) - Current state of Tank 1.

• h2(k) - Current state of Tank 2.

• uLV 001(k − 1) - Previous control move for LV001.

• uLV 002(k − 1) - Previous control move for LV002.

• uP A001(k) - Current measured disturbance.

• h1,ref (k) - Current output reference for Tank 1.

• h2,ref (k) - Current output reference for Tank 2.

• ĥ1,dist(k) - Current disturbance on the measurement of Tank 1.

• ĥ2,dist(k) - Current disturbance on the measurement of Tank 2.

As discussed in Chapter 3, it is assumed that the level transmitters LT001 and LT002 mea-
sure the fluid level of their respective tank perfectly. Therefore, ĥ1,dist(k) = ĥ2,dist(k) =
0, ∀k.

Since the constants Fi and Gi for i ∈ {1, . . . , nr} are predetermined, the main on line
operation of the explicit MPC is to determine in which polyhedral region χ(k) resides.
This algorithm is described in [23] page 6-5.

Prior to creating an explicit MPC object in MATLAB, the range of each variable in χ(k)
has to be determined. Since the explicit MPC precalculates the piecewise affine control
laws off line, it is crucial that no variable in χ(k) exceed their respective range during

82 Chapter 4 MPC Design

operation, as no polyhedral region (and by extension, no affine control law) has been
calculated for said case.

To determine the range of χ(k) in MATLAB, a range structure is created, as such:

1 range = generateExplicitRange (mpcobj);

which consists of the fields:

1 range =

2 a struct with fields :

3

4 State: [1x1 struct]

5 Reference : [1x1 struct]

6 MeasuredDisturbance : [1x1 struct]

7 ManipulatedVariable : [1x1 struct]

8

9 range.State

10 a struct with fields :

11

12 Min: [4x1 double]

13 Max: [4x1 double]

14

15 range. Reference

16 a struct with fields :

17

18 Min: [2x1 double]

19 Max: [2x1 double]

20

21 range. MeasuredDisturbance

22 a struct with fields :

23

24 Min: [1x1 double]

25 Max: [1x1 double]

26

27 range. ManipulatedVariable

28 a struct with fields :

29

30 Min: [2x1 double]

31 Max: [2x1 double]

The range.State structure contains the bounds on the states from the plant model, and
disturbance model, in the following order:

[
h1 h2 ĥ1,dist ĥ2,dist

]
(4.41)

Chapter 4 MPC Design 83

The range.Reference structure contains the bounds on the references for the outputs
in the following order: [

h1,ref h2,ref

]
(4.42)

The range.MeasuredDisturbance structure contains the bounds on the measured dis-
turbance in the following order: [

uP A001

]
(4.43)

The range.ManipulatedVariable structure contains the bounds on the manipulated
variables in the following order:

[
uLV 001 uLV 002

]
(4.44)

The aforementioned bounds are set in MATLAB subsequently (see Table 3.1 and 3.2):

1 % Range of the States

2 range.State.Min (:) = [0.13 0.02 -2 -2]; % Lower Bound

3 range.State.Max (:) = [1 0.4 2 2]; % Upper Bound

4 % Range of the References

5 range. Reference .Min (:) = [0.13 0.02]; % Lower Bound

6 range. Reference .Max (:) = [1 0.4]; % Upper Bound

7 % Range of the Measured Disturbance

8 range. MeasuredDisturbance .Min = 0; % Lower Bound

9 range. MeasuredDisturbance .Max = 1; % Upper Bound

10 % Range of the Manipulated Variables

11 range. ManipulatedVariable .Min (:) = [0 0]; % Lower Bound

12 range. ManipulatedVariable .Max (:) = [1 1]; % Upper Bound

Remark 4.5. The lower and upper bounds on the measurement disturbances ĥi,dist, i ∈
{1, 2} are determined on an ad hoc basis. As previously mentioned, it is assumed perfect
measurements when using the level transmitters LT001 and LT002.

With the appropriate ranges defined for all elements in χ(k), the explicit MPC object
can be created in MATLAB:

1 empcobj = generateExplicitMPC (mpcobj ,range);

where mpcobj is the implicit linear MPC object constructed in Section 4.2.

In this project, only default optimization options for explicit MPC generation are used.
These default options can be found in the MATLAB documentation.

The piecewise affine control law, given by the explicit MPC, can be evaluated in MATLAB
subsequently:

1 MV = mpcmoveExplicit (empcobj , xc , [], r, v);

84 Chapter 4 MPC Design

where the variables MV, xc, r, and v are defined in Section 4.2.7.

Example 4.3. As an illustrative example, consider an mpcobj object (as designed in
Section 4.2) with the output weighting matrix Qiii from (4.22), and the horizons P = 20
and M = 2. Furthermore, consider the vector χ(k) (with the exception of h1(k) and
h2(k)) to be in the following scenario:

h1,ref (k) = 0.5, ĥ1,dist(k) = 0, uLV 001(k − 1) = 0.5317

h2,ref (k) = 0.3, ĥ2,dist(k) = 0, uLV 002(k − 1) = 0.5317, uP A001(k) = 0.8

Given this scenario, the polyhedral partitioning can be graphically represented as a 2-D
plot, where h1(k) and h2(k) form the two axes (see Figure 4.7). Each region in Figure

Figure 4.7: Example of the explicit MPC polyhedral partitioning.

4.7 is asserted corresponding constants Fi and Gi, where i denotes the partition number.
For this particular example, the number of polyhedral regions is 47. Note that all 47
regions are not visible in Figure 4.7, given that seven out of the nine variables affecting
the QP problem are set to constants for graphical purposes. Note also the white spaces in
Figure 4.7, which show how no polyhedral regions exist outside of the bounds on χ(k).

Chapter 4 MPC Design 85

4.4 Adaptive MPC

Adaptive MPC uses the same MPC-based controller as the linear MPC designed in
Section 4.2, with one key difference: the prediction model and nominal values update on
every control interval.

It was shown in Chapter 3 that a linear approximation (in the vicinity of a nominal
solution NS) of the nonlinear two-tank model can be obtained by means of linearization
(see the equations {(3.50), (3.51)}). It was also shown that the validity of this linear
approximation degrades, as the system is driven farther away from the nominal solution
NS (see Figure 3.10).

For the linear MPC, this means that the prediction model (see Section 4.2.1) will make
less accurate predictions over the prediction horizon when the system is operating at a
point which is not in the neighborhood of the nominal solution NS, effectively increasing
the modeling error.

Hence, the following compromise arises between two competing factors:

(i) Use a linear MPC with an accurate prediction model, but, the control of the system
is limited to the vicinity of the nominal solution NS.

Or

(ii) Use a linear MPC where the control is not limited to the vicinity of the nominal
solution NS, but, there will be increasing modeling error as the system operates
farther away from the nominal solution NS.

One way to circumvent the issue presented above, is by using adaptive MPC. The idea
behind adaptive MPC is to (at every control interval) update the prediction model and
the nominal solution NS after solving the QP optimization problem. When the QP
optimization problem is solved, the current optimal control input uopt(k) is calculated.
Furthermore, the states hi(k), i ∈ {1, 2}, and the measured disturbance uP A001(k) are
available at control interval k. Thus, a nominal solution NSk, k = 0, 1, . . . can be
constructed, as such:

h̃1 = h1(k), h̃2 = h2(k), ũP A001 = uP A001(k), ũLV 001 = uopt,1(k), ũLV 002 = uopt,2(k)︸ ︷︷ ︸
NSk

(4.45)
Given the nominal solution NSk (at control interval k), the prediction model is updated
by, firstly, calculating the following continuous time state-space representation (see

86 Chapter 4 MPC Design

Section 3.3):

∆ḣ1(t)
∆ḣ2(t)

 =

 ∂f1
∂h1

∂f1
∂h2

∂f2
∂h1

∂f2
∂h2

NSk

·

∆h1(t)
∆h2(t)

 +

 ∂f1
∂uLV 001

∂f1
∂uLV 002

∂f1
∂uP A001

∂f2
∂uLV 001

∂f2
∂uLV 002

∂f2
∂uP A001

NSk

·

∆uLV 001(t)
∆uLV 002(t)
∆uP A001(t)

∆ĥ1(t)

∆ĥ2(t)

 =

1 0
0 1

 ·
∆h1(t)

∆h2(t)

(4.46)

and, secondly, discretizing the model (4.46) using the ZOH method with sampling time
ts (see Section 3.5.2).

This way, it is ensured that the system will operate within the neighborhood of the
nominal solution NSk at control interval k, thus, minimizing the introduced modeling
error.

The following pseudocode illustrates the workflow of an adaptive MPC, as it is imple-
mented in MATLAB:

Algorithm 4.1 Workflow of adaptive MPC
1: k ← k ▷ Current control interval
2: ĥi(k)← LT00i(k), i ∈ {1, 2} ▷ Measure outputs
3: hi(k)← ĥi(k), i ∈ {1, 2} ▷ Estimate states
4: uP A001(k)← FT001(k) ▷ Measure input disturbance
5: Retrieve previous control moves uLV 00i(k − 1), i ∈ {1, 2} from memory
6: uLV 00i(k)← uopt,i(k), i ∈ {1, 2} ▷ Solve QP optimization problem
7: Update current nominal solution NSk

8: Linearize nonlinear model about NSk

9: Discretize linear continuous time model
10: Insert NSk and updated prediction model in the MPC object
11: k ← k + 1 ▷ Next control interval

The QP optimization problem, for the adaptive MPC, can be solved in MATLAB
subsequently:

1 MV = mpcmoveAdaptive (mpcobj , xc , sys , NS_k , [], r, v)

where the variables MV, mpcobj, xc, r, and v are defined in Section 4.2.7. The sys object
is the updated prediction model, which is calculated using the AdaptiveSys function
(see Appendix I.1). The variable NS_k is the current nominal solution NSk plus the
term DX ≜ h(k)− h(k − 1), which is defined as the rate of change in the states from
one control interval to the next.

Chapter 4 MPC Design 87

4.5 Nonlinear MPC

Contrary to the MPC-based controllers discussed thus far, the nonlinear MPC is not
restricted to a linear prediction model, nor linear constraints, and nor a standard quadratic
objective function (see Section 2.3).

For this project, the nonlinear MPC will use the same linear constraints, and the same
quadratic objective function, as the other MPC-based controllers discussed so far in this
chapter. However, the prediction model will be based on the nonlinear two-tank model
{(3.29), (3.30)}, which will be solved by means of the Euler method (see Section 3.5.3).

The following code shows how to construct a nonlinear MPC in MATLAB:

1 nlobj = nlmpc(nx ,ny ,’MV’,mvIndex ,’MD’,mdIndex); % Nonlinear MPC object

where nx, ny, mvIndex, and mdIndex are the number of states n, the number of outputs
p, the indices of the manipulated variables in the input vector, and the index of the
measured disturbance in the input vector, respectively.

The nonlinear MPC specifications such as weighting matrices (Q, R, and S), scaling
factors (λh1 and λh2), prediction horizon (P), control horizon (M) and constraint sets (X ,
U , and δU) are all designed equivalently to the MPC specifications used in the previously
discussed MPC-based controllers (see Section 4.2 in particular, for a review on these
specifications and how to program them in MATLAB).

The sampling time of the MPC, and the prediction model, are specified subsequently:

1 % Sampling time

2 nlobj.Ts = ts;

3

4 % Nonlinear DT State Function

5 nlobj.Model. StateFcn = ’tankDT ’;

6 nlobj.Model. IsContinuousTime = false;

7 nlobj.Model. NumberOfParameters = 1;

8

9 % DT Output Function

10 nlobj.Model. OutputFcn = ’tankOutputFcn ’;

11

12 % Output Jacobian

13 nlobj. Jacobian . OutputFcn = @(x,u,Ts) [1 0; 0 1];

where ts, ’tankDT’, and ’tankOutputFcn’ are the sampling period ts, function call to
the Euler method, and function call to the output equations, respectively. The functions
’tankDT’ and ’tankOutputFcn’ can be found in Appendix I.1.

88 Chapter 4 MPC Design

Since the Euler method is used as a prediction model, the flag IsContinuousTime is set
to false (code line 6). Additionally, the Euler method requires a step size h, which is
why the variable NumberOfParameters is set to 1 (code line 7). In this case, the Euler
step size is set to the sampling time of the nonlinear MPC, i.e., h = ts.

Recall that the output equations are given by:ĥ1(t)
ĥ2(t)

︸ ︷︷ ︸

ĥ(t)

=

 g1(h1(t), uLV 001(t), uP A001(t))
g2(h1(t), h2(t), uLV 001(t), uLV 002(t))

︸ ︷︷ ︸
g(h1(t), h2(t), uLV 001(t), uLV 002(t), uP A001(t))

=

h1(t)
h2(t)

︸ ︷︷ ︸

h(t)

(4.47)

Given (4.47), the Jacobian matrix:

Dg

Dh

∣∣∣∣
NS

= C (4.48)

evaluated at some arbitrary nominal solution:

h̃1, h̃2, ũLV 001, ũLV 002, ũP A001︸ ︷︷ ︸
NS

(4.49)

results in:
Dg

Dh

∣∣∣∣
NS

= C =

1 0
0 1

 (4.50)

regardless of the arbitrary nominal solution NS. Therefore, to simplify computational
efforts, the Jacobian of the output function (code line 13) can be set to the identity
matrix I ∈ Rp.

Chapter 5

Simulations

The ensuing chapter will look towards implementing and evaluating the different MPC-
based controllers (designed in Chapter 4) in a simulation environment. Multiple simula-
tions will be carried out, where the effects of different MPC specifications will be studied.
Additionally, this chapter will look to compare the performance of the controllers against
each other, with performance measures such as the total quadratic objective function
and code execution time.

5.1 Simulation Environment

The goal of the following experiments is to analyse two main attributes of the controllers:
(i) set-point tracking, and (ii) disturbance rejection. To this end, every simulation will
be subjected to a rectangular pulse (of length 70 s) in the references, and the measured
disturbance, respectively. The following pseudocode highlights the procedure of the
simulations: The simulations will last a total of 400 s, which, with a sampling period of

Algorithm 5.1 Simulation procedure
1: TIME = 0 s =⇒ SIM ← NS ▷ Start of simulation at NS
2: TIME ≥ 50 s =⇒ h1,ref ↑ ▷ Start of positive rectangular pulse
3: TIME ≥ 120 s =⇒ h1,ref ↓ ▷ End of positive rectangular pulse
4: TIME ≥ 150 s =⇒ h2,ref ↓ ▷ Start of negative rectangular pulse
5: TIME ≥ 220 s =⇒ h2,ref ↑ ▷ End of negative rectangular pulse
6: TIME ≥ 250 s =⇒ uP A001 ↓ ▷ Start of negative rectangular pulse
7: TIME ≥ 320 s =⇒ uP A001 ↑ ▷ End of negative rectangular pulse
8: TIME = 400 s =⇒ SIM ← end ▷ End of simulation

ts = 0.5 s, equates to 800 iterations. Every simulation will start at the nominal solution

89

90 Chapter 5 Simulations

NS, which was defined in Section 4.2.1, and is restated below:

h̃1 = 0.5, h̃2 = 0.3, ũP A001 = 0.8, ũLV 001 = 0.5317, ũLV 002 = 0.5317︸ ︷︷ ︸
NS

(5.1)

5.1.1 Performance measures

The two performance measures of high significance, when comparing the controllers, are
the total quadratic objective cost, and the code execution time.

The total quadratic objective function is calculated similarly to the quadratic objective
function used by the QP solver (see Section 4.2.2). However, rather than calculating the
quadratic cost over the prediction horizon P , the total quadratic cost is calculated over
the entire span of the simulation. I.e.:

Jtotal = Jy,total + Ju,total + Jδu,total (5.2)

where:

Jy,total =
800∑
i=1

{
(r(i)− y(i))T ·Q2 · (r(i)− y(i))

}
(5.3)

Ju,total =
800∑
i=1

{
(utarget(i)− u(i))T ·R2 · (utarget(i)− u(i))

}
(5.4)

Jδu,total =
800∑
i=2

{
(u(i)− u(i− 1))T · S2 · (u(i)− u(i− 1))

}
(5.5)

As mentioned, one simulation consists of 800 iterations total. Consequently, the QP
solver is called upon a total of 800 times. The standard MATLAB stopwatch timer
is used to log the elapsed time for all of the 800 QP solver calls, respectively. From
this data, additional information can be retired, such as: mean time, max/min time,
upper/lower quantile, etc.

The following code shows how the SQP/QP solver execution times for the different MPCs
are logged in MATLAB:

1 % Linear MPC

2 tic % Start stopwatch timer

3 MV = mpcmove (mpcobj ,...

4 xc , [], r, v); % Call QP solver

5 time_elapsed = toc; % Read elapsed time from stopwatch

6

7 % Explicit MPC

8 tic % Start stopwatch timer

9 MV = mpcmoveExplicit (empcobj ,...

Chapter 5 Simulations 91

10 xc , [], r, v); % Call QP solver

11 time_elapsed = toc; % Read elapsed time from stopwatch

12

13 % Adaptive MPC

14 tic % Start stopwatch timer

15 MV = mpcmoveAdaptive (mpcobj ,...

16 xc , sys , NS_k , [], r, v) % Call QP solver

17 time_elapsed = toc; % Read elapsed time from stopwatch

18

19 % Nonlinear MPC

20 tic % Start stopwatch timer

21 MV = nlmpcmove (nlobj ,...

22 x, MV , r, v, nloptions); % Call SQP solver

23 time_elapsed = toc; % Read elapsed time from stopwatch

Recall that the adaptive MPC, in addition to calling the QP solver, also has to calculate
the updated prediction model. The execution time of this process is logged in a similar
fashion.

In order to achieve a representative value of these performance measures, the simulation
(i.e., Algorithm 5.1) is conducted 10 separate times, for each controller, so that a
performance measure mean can be used when comparing the controllers. E.g., when
finding a representative value on the total quadratic cost for the linear MPC, the following
equation is used:

Jtotal,µ = 1
10

10∑
i=1

Jtotal,i (5.6)

where Jtotal,µ and Jtotal,i are the mean total quadratic cost and the total quadratic cost
for simulation i, respectively. The same logic applies for the representative mean value
of the total code execution time.

For an overview on the software and hardware that the following experiments are
conducted on, see Section 4.1.

5.2 Optimal Prediction and Control Horizons

While all the necessary MPC specifications were discussed in Chapter 4, no explicit
choice was made for the prediction horizon P and control horizon M . The goal of this
section is to determine a pair (P, M) that provides satisfactory control of the two-tank
system, within a satisfactory limit on the code execution time. The pair (P, M) that is
deemed ideal in this section will be used for the subsequent parts of the project.

92 Chapter 5 Simulations

Since the explicit- and adaptive-MPC utilize the linear MPC object mpcobj in their
creation, respectively, the search for an ideal pair (P, M) will be done exclusively on the
linear MPC. Additionally, the output weighting matrix Qiii (see (4.22)) will be used for
the subsequent parts of this chapter, unless otherwise is explicitly stated, as this is the
predominant engineering priority in this project.

Now, to find the ideal pair (P, M), one simulation (see Algorithm 5.1) is conducted for a
variety of pairs (P, M) that all satisfy the necessary condition:

P ≥M ≥ 1, {P, M} ∈ N (5.7)

Each simulation is then compared against each other, based on the performance measures
described in Section 5.1.1.

Given an upper limit on the prediction horizon PU , then, the total number of pairs
(P, M) (denoted by Ξ) that satisfy (5.7), and P ≤ PU , is given by:

Ξ =
PU∑
n=1

n = PU (PU + 1)
2 (5.8)

which is a triangular number.

Consider the following example:

Example 5.1. Suppose that the larges possible prediction horizon is PU = 3. Then, the
total number of possible pairs (P, M) that satisfy (5.7), and P ≤ 3, is:

Ξ =
3∑

n=1
n = 3(3 + 1)

2 = 6

The pairs (P, M) that do not violate the aforementioned conditions are:

(1, 1), (2, 1), (2, 2)

(3, 1), (3, 2), (3, 3)

In the case of this experiment PU = 20, which, by using (5.8), results in Ξ = 210 unique
(P, M) combinations. The performance measures, i.e., the code execution time and the
quadratic cost, of the 210 simulations are presented as heat maps in Figure 5.1 and Figure
5.2, respectively. Firstly, consider Figure 5.1. As expected, the total execution time
generally1 tends to increase, as the QP optimization problem becomes more complex,
i.e., as P and M become larger in value. The (P, M) pair with the fastest simulation
time is (3, 2), which completed one simulation in 0.636 s. On the other hand, the slowest

1There are some outliers to this statement, e.g., the pair (P, M) = (1, 1) and (P, M) = (12, 4).

Chapter 5 Simulations 93

Figure 5.1: Heat map of the total code execution time for the 210 simulations with
unique (P, M) combinations.

Figure 5.2: Heat map of the total quadratic cost for the 210 simulations with unique
(P, M) combinations.

94 Chapter 5 Simulations

(P, M) pair is (20, 19), with a total simulation time of 1.17 s. Recall that one simulation
consists of 800 iterations, meaning that the average time spent on one QP solver call, for
the slowest (P, M) pair, is:

1.17 s

800 = 1.46 ms

which is a satisfactory code execution time, considering the fact that the sampling period
is ts = 0.5 s.

Secondly, consider Figure 5.2. Clearly, the worst (P, M) pair that resulted in the largest
total quadratic cost is (1, 1), which is the equivalent of predicting 0.5 s into the future
(see (4.37)). This results in a short-sighted MPC policy that does not fully capture the
dynamics of the system when predicting the optimal trajectory. As P and M become
larger, the total quadratic cost diminishes, however, this only applies up to a certain
point. To illustrate this, the rows 1 ≤ P ≤ 9, and columns 1 ≤M ≤ 7, are removed (see
Figure 5.3). Note how, in Figure 5.3, the dominant factor affecting the total quadratic

Figure 5.3: Heat map of the total quadratic cost from a highlighted segment of Figure
5.2.

cost is the prediction horizon P . For example, at row P = 18, the difference in the total
quadratic cost, between the elements in this row, remain relatively insignificant after
column M = 10. I.e., increasing M any further makes the QP problem more complex, yet,
the total quadratic cost remain relatively unaffected. This concept was also illustrated in
Section 4.2.6.

Chapter 5 Simulations 95

In fact, the (P, M) pair that performed the best, with respect to the total quadratic cost,
is (13, 13), which resulted in Jtotal = 0.843. Further increasing P and M only results in
the quadratic cost to grow (as shown in Figure 5.3), as well as the total code execution
time (as shown in Figure 5.1).

Following the discussion above, the MPC specifications (P, M) are determined to be
(13, 13), as this resulted in satisfactory control of the system, within a satisfactory time
limit on the code execution time.

5.3 Linear MPC

The following section looks to conduct 10 separate simulations of Algorithm 5.1, with
the linear MPC. The MPC specifications are:

P = M = 13,

and

Qiii =

1 0
0 1

 ,

with the QP solver programmed to use the Active-set method. The other MPC specifica-
tions, such as constraints, scaling factors, weighting matrices, etc., are identical to the
linear MPC designed in Section 4.2 of Chapter 4.

Firstly, consider one instance of the 10 separate simulations, which is shown in Figure 5.4.
Clearly, the linear MPC is capable of tracking the set-points, even when subjected to a
square pulse in the measured disturbance. Furthermore, there are several characteristics
to the closed-loop response in Figure 5.4 worth mentioning:

(i) Note that the closed-loop system responds prior to the rectangular pulse in the
references and the measured disturbance, respectively. This characteristic trait is
attributed to the predictive nature of the MPC policy. If future set-points and
measured disturbances are known, then, the MPC will use this information in the
P -step prediction horizon, thus, deciding appropriate control moves ahead of time.
This is often referred to as signal previewing or look-ahead control.

(ii) Recall that the two-tank system is a coupled system, where the outlet of Tank 1
serves as the inlet for Tank 2. In particular, recall that a step in uLV 001 causes a
dynamic response in h2 (see Figure 3.12, subplot (2,1)). However, this coupling is
not present in Figure 5.4.

96 Chapter 5 Simulations

0 50 100 150 200 250 300 350 400
0.4

0.45
0.5

0.55
0.6

0.65
0.7

0.75

0 50 100 150 200 250 300 350 400

0.1

0.15

0.2

0.25

0.3

0.35

0 50 100 150 200 250 300 350 400
0

0.5

1

Figure 5.4: Closed-loop response w/ linear MPC.

Note how, at times t ≈ 50 s and t ≈ 125 s, the rapid changes in uLV 001 does not
significantly affect h2. This is due to the decoupling properties of MPC-based
controllers.

(iii) As the rectangular pulse in h2,ref transitions (i.e., at t ≈ 150 s and t ≈ 225 s), two
spikes occur in h1 at the transitioning instances, respectively. This behaviour is
directly linked to the chosen output weighting matrix Qiii, which specifies that the
two outputs are to be weighted equally. As the set-point h2,ref transitions, there is
a sudden error between the output h2 and its corresponding set-point h2,ref . To
reduce this sudden error as quickly as possible, the MPC deliberately allows small
spikes in h1.

For instance, consider the spike at t ≈ 225 s. At this point, the output h2 is
far below the new set-point h2,ref . The fastest way to increase the fluid level
in Tank 2, is by completely closing its outlet valve LV002, and, simultaneously,
completely opening its inlet valve LV001. This explains why the fluid level in Tank
1 decreases, which the MPC prepares for, by slightly increasing the fluid level in
Tank 1 beforehand. The same concept applies for the spike at t ≈ 150 s.

(iv) Lastly, note that all of the constraints are satisfied, as none of the valve signals
exceed the input constraint set U (see Figure 4.1).

Chapter 5 Simulations 97

The execution time of every 800 QP solver call is logged, for each respective simulation
instance. This data is presented in Figure 5.5. For a brief introduction to box plots, see
Appendix D.

Sim
1

Sim
2

Sim
3

Sim
4

Sim
5

Sim
6

Sim
7

Sim
8

Sim
9

Sim
10

1

1.5

2

2.5

3

3.5

4

4.5

10
-3

Figure 5.5: Box plot of recorded elapsed time for every 800 QP solver called upon by
the linear MPC. Each box represent the data belonging to their respective simulation

instance.

Remark 5.1. One outlier (from Sim1 with a value of 39.41 ms) is not included in the
data-set presented in Figure 5.5. This is solely due to graphical reasons, as this outlier
eclipses all the other data-points, making the scaling of the plot difficult to read.

Evidently from Figure 5.5, the median code execution time for one QP solver call from
the linear MPC is slightly below 1 ms. Additional information that is retrieved from this
data-set is presented in Table 5.1.

Observe the similarities, both in the amount and the location, of the outliers between
the 10 different simulations in Figure 5.5. Rather than a coincidence, these similarities
are more a bi product of the way Algorithm 5.1 is staged. Note how, for the majority of
the simulation in Figure 5.4, the closed-loop response is static.

When the system is static, and the outputs follow the set-points, then, the QP solver
will quickly converge to the optimal solution, as this is the solution already applied to
the valves (i.e., the steady state values). However, when the system is not following
the set-points, such as immediately after a square pulse in the set-point or disturbance,

98 Chapter 5 Simulations

Median Max/Min Total Outliers 75th/25th Perc. Upper/Lower Adj.
Sim1 0.98 ms 39.41/0.86 ms 0.93 s 18 1.28/0.91 ms 1.84/0.86 ms

Sim2 1.31 ms 3.98/0.84 ms 1.04 s 28 1.48/0.93 ms 2.31/0.84 ms

Sim3 0.89 ms 2.62/0.83 ms 0.79 s 124 0.97/0.87 ms 1.11/0.83 ms

Sim4 0.90 ms 3.36/0.83 ms 0.79 s 115 0.98/0.87 ms 1.12/0.83 ms

Sim5 0.90 ms 2.59/0.83 ms 0.78 s 122 0.97/0.87 ms 1.11/0.83 ms

Sim6 0.90 ms 3.08/0.82 ms 0.80 s 116 0.99/0.87 ms 1.16/0.82 ms

Sim7 0.90 ms 3.21/0.82 ms 0.79 s 121 0.97/0.87 ms 1.11/0.82 ms

Sim8 0.90 ms 3.18/0.83 ms 0.79 s 120 0.97/0.87 ms 1.11/0.83 ms

Sim9 0.89 ms 2.54/0.83 ms 0.79 s 123 0.98/0.87 ms 1.14/0.83 ms

Sim10 0.90 ms 2.82/0.82 ms 0.80 s 115 0.99/0.88 ms 1.17/0.82 ms

Table 5.1: Statistical properties of the data-set from Figure 5.5. Here, Perc. and Adj.
are abbreviations for Percentile and Adjacent, respectively.

then, the QP solver may take longer to converge to the optimal solution. This concept is
illustrated in Figure 5.6, where, at control interval k, the code execution time of the QP
solver, and the total number of iterations that was necessary to converge to the optimal
solution, are plotted. Note how the density of outliers increase at the distinct control

0

0.5

1

1.5

2

2.5

3

3.5
10

-3

0

2

4

6

8

10

12

14

16

18

20

0 100 200 300 400 500 600 700 800

Figure 5.6: Stem plot illustrating the execution time, and the number of necessary
iterations, used by the 800 QP solver calls, respectively, from the Sim7 data-set.

intervals: 90 ≤ k ≤ 110, 230 ≤ k ≤ 240, 290 ≤ k ≤ 310, and 430 ≤ k ≤ 450. In the
time domain, these control intervals equate to the transitioning periods of the square
pulses in the set-points, shown in Figure 5.4. I.e., multiplying the control intervals with
the sampling period ts = 0.5 s, yields the corresponding time intervals: 45 s ≤ t ≤ 55 s,

Chapter 5 Simulations 99

115 s ≤ t ≤ 120 s, 145 s ≤ t ≤ 155 s, and 215 s ≤ t ≤ 225 s. This explains the similarities
in the amounts, and the locations, of the outliers between the data-sets shown in Figure
5.5.

Recall that the MPC control policy is based on the moving horizon policy, where one
finite horizon optimization problem (here referred to as one QP solver call) has to be
solved on every control interval. For this control policy to work, it is required that the
MPC is able to compute this finite horizon optimization problem within the duration of
the current control interval k, ∀k. The duration of one control interval is equivalent to
the sampling period, which, for this experiment, is set to be ts = 0.5 s.

During this experiment, the longest computational time (in milliseconds), used by the
linear MPC, to complete one QP solver call is 39.41 ms (see Table 5.1, row: Sim1, column:
Max/Min), which is within one control interval of length ts = 0.5 s. Conclusively, based
on the data-set in Table 5.1, this linear MPC has a feasible control policy, where the
MPC is able to compute the finite horizon optimization problem within every control
interval k of length ts = 0.5 s.

The representative mean value for the total quadratic cost of the linear MPC is calculated
to be:

Jtotal,µ = 0.829︸ ︷︷ ︸
Jy,total,µ

+ 0.013︸ ︷︷ ︸
Jδu,total,µ

+ 0.000︸ ︷︷ ︸
Ju,total,µ

= 0.842 (5.9)

The quadratic cost of the 10 respective simulations are identical to each other, and to
the mean values given in (5.9).

5.3.1 Alternative Closed-Loop Response

Tank 1 Priority

Suppose that the desired operation of the two-tank system is to prioritize Tank 1. I.e.,
the paramount objective of the closed-loop system is to keep h1 at the set-point h1,ref

at all times. In the case of the closed-loop system shown in Figure 5.4, albeit aiding h2

reaching its set-point faster, the spikes occurring in h1 at times t ≈ 150 s and t ≈ 225 s,
are detrimental to the paramount objective. To resolve this, the output weighting matrix
Q is adjusted according to the desired objective:

Qi =

5 0
0 1

100 Chapter 5 Simulations

Assuming identical MPC specifications to those discussed thus far, with the exception
of the updated output weighting matrix Qi, then, simulating this closed-loop system (
Algorithm 5.1) results in the response shown in Figure 5.7.

0 50 100 150 200 250 300 350 400

0.5

0.55

0.6

0.65

0.7

0 50 100 150 200 250 300 350 400

0.1

0.15

0.2

0.25

0.3

0 50 100 150 200 250 300 350 400
0

0.5

1

Figure 5.7: Closed-loop response w/ linear MPC. The paramount objective is to
prioritize set-point tracking in Tank 1.

While still present, the spikes in h1 (at times t ≈ 150 s and t ≈ 225 s) are significantly
smaller in Figure 5.7, compared to the closed-loop response in Figure 5.4. Note also
the slower response in h2, without the aid of the larger spikes in h1. However, this is
expected, as Tank 2 is of low priority for this desired operation.

Tank 2 Priority

Conversely, suppose that the paramount objective is to keep h2 at the set-point h2,ref at
all times. To obtain this desired closed-loop response, the output weighting matrix Q is
set to be:

Qii =

1 0
0 5

The simulation of this closed-loop system is shown in Figure 5.8. As expected, Figure
5.8 shows that the closed-loop system responds quickly to set-points changes in Tank 2.
However, this fast control of h2 causes h1 to experience larger spikes.

Chapter 5 Simulations 101

0 50 100 150 200 250 300 350 400

0.35
0.4

0.45
0.5

0.55
0.6

0.65
0.7

0 50 100 150 200 250 300 350 400

0.1

0.15

0.2

0.25

0.3

0 50 100 150 200 250 300 350 400
0

0.5

1

Figure 5.8: Closed-loop response w/ linear MPC. The paramount objective is to
prioritize set-point tracking in Tank 2.

5.3.2 Alternative Optimization Solver: The Interior-Point Method

As mentioned in Section 4.2.7 of Chapter 4, the Interior-point optimization algorithm
can be used to solve the QP problem. This part looks to perform the same experiments
discussed thus far, however, rather than using the active-set method, the linear MPC is
programmed to use the interior-point method.

The box plots containing the data-set from 10 separate simulations, where the code
execution time for the QP solver calls are logged, are shown in Figure 5.9 (similarly to
Figure 5.5).

Remark 5.2. Two outliers (from Sim1 and Sim3 with a value of 175.16 ms and 38.81 ms,
respectively) are not included in the data-set presented in Figure 5.9. This is solely
due to graphical reasons, as these outliers eclipse all the other data-points, making the
scaling of the plot difficult to read.

Additional information regarding the code execution time of the QP solver calls, using
the Interior-point method, is presented in Table 5.2.

102 Chapter 5 Simulations

Sim
1

Sim
2

Sim
3

Sim
4

Sim
5

Sim
6

Sim
7

Sim
8

Sim
9

Sim
10

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

Figure 5.9: Box plot of recorded elapsed time for every 800 QP solver called upon by
the linear MPC. Each box represent the data belonging to their respective simulation

instance. The Interior-point method is used by the QP solver calls.

Median Max/Min Total Outliers 75th/25th Perc. Upper/Lower Adj.
Sim1 1.92 ms 175.16/1.34 ms 1.80 s 11 2.35/1.49 ms 3.65/1.34 ms

Sim2 2.27 ms 13.34/1.33 ms 1.88 s 87 2.51/2.08 ms 3.15/1.43 ms

Sim3 1.45 ms 38.81/1.24 ms 1.35 s 37 1.80/1.36 ms 2.46/1.24 ms

Sim4 1.42 ms 6.21/1.24 ms 1.22 s 76 1.58/1.34 ms 1.93/1.24 ms

Sim5 1.40 ms 14.37/1.22 ms 1.22 s 58 1.58/1.32 ms 1.97/1.22 ms

Sim6 1.42 ms 8.96/1.24 ms 1.22 s 80 1.56/1.34 ms 1.90/1.24 ms

Sim7 1.41 ms 20.93/1.22 ms 1.24 s 67 1.59/1.33 ms 1.99/1.22 ms

Sim8 1.41 ms 15.45/1.26 ms 1.23 s 70 1.58/1.33 ms 1.95/1.26 ms

Sim9 1.43 ms 4.04/1.25 ms 1.23 s 52 1.62/1.35 ms 2.02/1.25 ms

Sim10 1.64 ms 15.56/1.26 ms 1.39 s 10 1.97/1.35 ms 1.97/1.26 ms

Table 5.2: Statistical properties of the data-set from Figure 5.9. Here, Perc. and Adj.
are abbreviations for Percentile and Adjacent, respectively.

The representative mean value of the total quadratic cost, when using the Interior-point
method, is:

Jtotal,µ = 0.829︸ ︷︷ ︸
Jy,total,µ

+ 0.013︸ ︷︷ ︸
Jδu,total,µ

+ 0.000︸ ︷︷ ︸
Ju,total,µ

= 0.842 (5.10)

which is the exact same mean quadratic cost as the simulations obtained with the
Active-set method (see (5.9)). The closed-loop response of Sim10 is shown in Figure
5.10. Additionally, Figure 5.11 illustrates the relationship between the execution time

Chapter 5 Simulations 103

0 50 100 150 200 250 300 350 400

0.4
0.45

0.5
0.55

0.6
0.65

0.7
0.75

0 50 100 150 200 250 300 350 400

0.1

0.15

0.2

0.25

0.3

0.35

0 50 100 150 200 250 300 350 400
0

0.5

1

Figure 5.10: Closed-loop response w/ linear MPC, which is programmed to use the
Interior-point method.

of the QP solver calls (using the Interior-point method), and the necessary iterations
needed in order to converge to an optimal solution. Given the presented data, consider
the subsequent observations:

(i) Evidently from Figure 5.9 and Table 5.2, the Interior-point method is a slower
optimization algorithm than the Active-set method. This is most obvious when
comparing the Total column in Table 5.1 and Table 5.2, where one full simulation
with the Active-set algorithm spends ≈ 0.80 s, while the Interior-point algorithm
spends ≈ 1.30 s.

(ii) The performance, in terms of the total quadratic cost, is identical between the two
methods. This can be seen by comparing Jtotal,µ in (5.9) with Jtotal,µ in (5.10).
Additionally, the closed-loop response of the two methods are indistinguishable
when comparing Figure 5.4 with Figure 5.10.

(iii) Lastly, note that the Interior-point method requires more iterations to reach the
optimal solution, than the Active-set method. This can be see by comparing Figure
5.6 with Figure 5.11. As the Active-set method required (mostly) 1 iteration,
the Interior-point method requires (mostly) 8 iterations, for the portions of the
simulation where the system is static.

104 Chapter 5 Simulations

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
10

-3

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

0 100 200 300 400 500 600 700 800

Figure 5.11: Stem plot illustrating the execution time, and the number of necessary
iterations, used by the 800 QP solver calls, respectively, from the Sim9 data-set. The

QP solver calls are programmed to use the Interior-point method.

Note that, although the Interior-point method is slower than the Active-set method
(based on the presented data in this section), it still provides a feasible control policy, as
the MPC is able to compute the QP solver calls within every control interval of length
ts = 0.5 s. However, do to the observations made in this section, the Active-set method
will be used (opposed to the Interior-point method) for the subsequent parts of this
project.

The simulation results between the MPC-based controllers will be compared against each
other at the end of this chapter.

5.4 Explicit MPC

Prior to simulating the explicit MPC, appropriate horizons P and M need to be selected.
As briefly discussed in Section 4.2.6, and in Section 5.2, a large control horizon M can
greatly increase the complexity of the QP optimization problem, yet, the reduction in
the total quadratic cost may be minor (see Figure 5.3).

This is especially the case for explicit MPC, as, once parameterized, it can no longer take
advantage of signal previewing. Note how the piecewise affine control law of the explicit

Chapter 5 Simulations 105

MPC (see 4.40) only relies on the current independent variables (with the addition of the
previous control moves). Meaning that, even if future set-points are known, the explicit
MPC cannot take advantage of this information. For this reason, the need for a long
control horizon M becomes superfluous.

To illustrate this, multiple explicit MPCs are design, where the control horizon M varies.
The other MPC specifications are selected identical to the linear MPC in Section 5.3.
One simulation will be conducted for each explicit MPC, where the total quadratic cost
will be recorded, in addition to its complexity. The results of these experiments are
shown in Figure 5.12, and in Table 5.3.

Remark 5.3. In this project, the complexity of an explicit MPC is determined by: (i) the
total number of polyhedral regions, and (ii) the total number of bytes it occupies in the
workspace.

0

0.5

1

1.5

2

2.5

3

3.5

10
0

10
1

10
2

10
3

10
4

0 1 2 3 4 5 6 7 8 9 10

Figure 5.12: Stem plot illustrating the total quadratic cost, and the number of polyhedral
regions, for the explicit MPCs designed with different control horizons M . Note the

logarithmic scale for the number of Polyhedral Regions axis (orange).

Clearly, further increasing the control horizon past M = 2 does not result in a noteworthy
improvement on the closed-loop response of the system, however, the required data
storage on the hardware, in which the explicit MPC is stored, does increase significantly,
as M becomes larger. For this reason, the subsequent experiments on the explicit MPC
will use a control horizon of length M = 2.

106 Chapter 5 Simulations

Control
Horizon

Total
Quadratic Cost

Polyhedral
Regions

Occupied
Bytes

1 3.0150 9 57946
2 2.5694 46 136622
3 2.5673 148 354930
4 2.5681 389 859574
5 2.5684 858 1832458
6 2.5683 1698 3555550
7 2.5684 3152 6481218
8 2.5684 5817 11782454
9 2.5684 9941 19909786

Table 5.3: Supplemental data to Figure 5.12.

With all the MPC specifications selected, similar experiments as those shown in Section
5.3 can be conducted on the explicit MPC. I.e., ten separate instances of Algorithm 5.1
are simulated and recorded. Figure 5.13 shows the box plots of code execution times for
these ten simulations, while Table 5.4 contains additional information related to the box
plots.

Sim
1

Sim
2

Sim
3

Sim
4

Sim
5

Sim
6

Sim
7

Sim
8

Sim
9

Sim
10

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

10
-3

Figure 5.13: Box plot of recorded elapsed time for every 800 QP solver called upon by
the explicit MPC. Each box represent the data belonging to their respective simulation

instance.

Remark 5.4. One outlier (from Sim1 with a value of 82.22 ms) is not included in the
data-set presented in Figure 5.13. This is solely due to graphical reasons, as this outlier
eclipses all the other data-points, making the scaling of the plot difficult to read.

Chapter 5 Simulations 107

Median Max/Min Total Outliers 75th/25th Perc. Upper/Lower Adj.
Sim1 0.71 ms 82.22/0.41 ms 0.62 s 9 0.79/0.53 ms 1.10/0.41 ms

Sim2 0.69 ms 1.87/0.42 ms 0.53 s 7 0.76/0.54 ms 0.76/0.42 ms

Sim3 0.66 ms 1.69/0.37 ms 0.50 s 13 0.45/0.50 ms 1.06/0.37 ms

Sim4 0.42 ms 1.39/0.37 ms 0.36 s 94 0.46/0.40 ms 0.54/0.37 ms

Sim5 0.42 ms 1.40/0.37 ms 0.37 s 98 0.46/0.40 ms 0.53/0.37 ms

Sim6 0.42 ms 2.51/0.36 ms 0.37 s 98 0.46/0.40 ms 0.55/0.36 ms

Sim7 0.42 ms 1.84/0.37 ms 0.37 s 99 0.46/0.40 ms 0.55/0.37 ms

Sim8 0.42 ms 1.06/0.36 ms 0.36 s 92 0.45/0.40 ms 0.53/0.36 ms

Sim9 0.42 ms 1.31/0.36 ms 0.36 s 92 0.45/0.40 ms 0.54/0.36 ms

Sim10 0.42 ms 1.31/0.37 ms 0.36 s 85 0.45/0.39 ms 0.54/0.37 ms

Table 5.4: Statistical properties of the data-set from Figure 5.13. Here, Perc. and Adj.
are abbreviations for Percentile and Adjacent, respectively.

The representative mean value for the total quadratic cost of the explicit MPC is
calculated to be:

Jtotal,µ = 2.5437︸ ︷︷ ︸
Jy,total,µ

+ 0.0257︸ ︷︷ ︸
Jδu,total,µ

+ 0.000︸ ︷︷ ︸
Ju,total,µ

= 2.5694 (5.11)

The quadratic cost of the 10 respective simulations are identical to each other, and to
the mean values given in (5.11).

Figure 5.14 shows the closed-loop response of the explicit MPC, where the data from
Sim10 is used. Note how the closed-loop response in Figure 5.14 does not react prior to
the square pulse in the set-points and the disturbance. Note also how, without look-ahead
control, the spikes occurring in h1 (at times t ≈ 150 s and t ≈ 225 s) are more aggressive.
Yet, the explicit MPC does provide a feasible control policy with respect to the code
execution time (see Table 5.4), and it does provide satisfactory control of the two-tank
system, with respect to set-point tracking.

5.4.1 Alternative Closed-Loop Response

Figure 5.15 and Figure 5.16 show the closed-loop response of the explicit MPC where the
priority of the control is Tank 1 and Tank 2, respectively (similarly to the experiments
conducted in Section 5.3.1). Figure 5.16 illustrates a great example where the manipu-
lated variables are being used excessively. This excessive use of the manipulated variables
(as mentioned in Section 2.2) can cause unwanted disturbances or even long-term damage
to the actuators. To account for this, the manipulated variable rate weighting matrix S

is adjusted accordingly:

S =

0.5 0
0 0.5

 (5.12)

108 Chapter 5 Simulations

0 50 100 150 200 250 300 350 400

0.4
0.45

0.5
0.55

0.6
0.65

0.7

0 50 100 150 200 250 300 350 400

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 50 100 150 200 250 300 350 400
0

0.5

1

Figure 5.14: Closed-loop response w/ explicit MPC.

0 50 100 150 200 250 300 350 400

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0 50 100 150 200 250 300 350 400

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 50 100 150 200 250 300 350 400
0

0.5

1

Figure 5.15: Closed-loop response w/ explicit MPC. The paramount objective is to
prioritize set-point tracking in Tank 1. I.e., the output weighting matrix is set to be Qi

(see (4.22)).

Chapter 5 Simulations 109

0 50 100 150 200 250 300 350 400

0.3
0.35

0.4
0.45

0.5
0.55

0.6
0.65

0.7

0 50 100 150 200 250 300 350 400

0.1

0.15

0.2

0.25

0.3

0.35

0 50 100 150 200 250 300 350 400
0

0.5

1

Figure 5.16: Closed-loop response w/ explicit MPC. The paramount objective is to
prioritize set-point tracking in Tank 2. I.e., the output weighting matrix is set to be Qii

(see (4.22)).

which results in the closed-loop response shown in Figure 5.17. As previously mentioned,
the simulation results between the MPC-based controllers will be compared against each
other at the end of this chapter.

5.5 Adaptive MPC

For the simulations of the adaptive MPC, the same MPC specifications to those chosen in
Section 5.3 are selected. Similarly to the previous experiments, ten separate simulations
are conducted, where the total quadratic cost, and code execution time, are recorded.

In the case of the adaptive MPC, the code execution time of one control interval consists
of the elapsed time for one QP solver call to be completed, plus the elapsed time for the
prediction model to be updated. The recorded data regarding the code execution time
for the ten simulations (with the adaptive MPC) are shown in Figure 5.18, and Table
5.5.

Remark 5.5. One outlier (from Sim2 with a value of 42.91 ms) is not included in the
data-set presented in Figure 5.18. This is solely due to graphical reasons, as this outlier
eclipses all the other data-points, making the scaling of the plot difficult to read.

110 Chapter 5 Simulations

0 50 100 150 200 250 300 350 400

0.35
0.4

0.45
0.5

0.55
0.6

0.65
0.7

0.75

0 50 100 150 200 250 300 350 400

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 50 100 150 200 250 300 350 400
0

0.5

1

Figure 5.17: Closed-loop response w/ explicit MPC. The paramount objective is to
prioritize set-point tracking in Tank 2. I.e., the output weighting matrix is set to be
Qii (see (4.22)). Additionally, the manipulated variable weighting matrix S is adjusted

according to (5.12), in order to avoid excessive use of the manipulated variables.

Median Max/Min Total Outliers 75th/25th Perc. Upper/Lower Adj.
Sim1 10.92 ms 32.31/10.35 ms 8.91 s 54 11.24/10.72 ms 11.98/10.35 ms

Sim2 11.03 ms 42.91/10.40 ms 9.19 s 54 11.37/10.78 ms 12.20/10.40 ms

Sim3 11.07 ms 29.34/10.40 ms 8.98 s 36 11.37/10.80 ms 12.23/10.40 ms

Sim4 11.11 ms 28.71/10.36 ms 9.05 s 44 11.48/10.81 ms 12.47/10.36 ms

Sim5 11.19 ms 27.71/10.42 ms 9.18 s 57 11.57/10.86 ms 12.61/10.42 ms

Sim6 11.15 ms 29.06/10.39 ms 9.04 s 33 11.53/10.80 ms 12.63/10.39 ms

Sim7 11.12 ms 28.08/10.24 ms 9.02 s 37 11.46/10.82 ms 12.33/10.24 ms

Sim8 11.24 ms 24.77/10.38 ms 9.12 s 32 11.63/10.86 ms 12.76/10.38 ms

Sim9 11.16 ms 28.26/10.34 ms 9.08 s 36 11.56/10.81 ms 12.67/10.34 ms

Sim10 11.19 ms 28.33/10.36 ms 9.20 s 59 11.60/10.84 ms 12.73/10.36 ms

Table 5.5: Statistical properties of the data-set from Figure 5.18. Here, Perc. and Adj.
are abbreviations for Percentile and Adjacent, respectively.

On average, the total code execution time of one simulation with the adaptive MPC is
calculated to be (see column: Total in Table 5.5):

Mean Total Time = 8.91 + 9.19 + 8.98 + 9.06 + 9.18 + 9.05 + 9.03 + 9.13 + 9.08 + 9.20
10

= 9.09 s

(5.13)
As previously mentioned, the mean total time (5.13) is the sum of two parts: (i) the

Chapter 5 Simulations 111

Sim
1

Sim
2

Sim
3

Sim
4

Sim
5

Sim
6

Sim
7

Sim
8

Sim
9

Sim
10

0.01

0.015

0.02

0.025

0.03

Figure 5.18: Box plot of recorded elapsed time for every 800 control interval (where
each control interval consists of one QP solver call, plus one prediction model update)
with the adaptive MPC. Each box represent the data belonging to their respective

simulation instance.

mean total time of one simulation spent on executing QP solver calls, and (ii) the
mean total time of one simulation spent on updating the prediction model. Table 5.6
shows these recorded values for each of the ten simulations. Figure 5.19 illustrates, on

Code Execution
Time of

QP Solver Calls

Code Execution
Time of

Prediction Model Updates

Code Execution
Time of

One Entire Simulation
Sim1 2.22 s 6.69 s 8.91 s

Sim2 2.28 s 6.91 s 9.19 s

Sim3 2.22 s 6.76 s 8.98 s

Sim4 2.25 s 6.80 s 9.05 s

Sim5 2.27 s 6.91 s 9.18 s

Sim6 2.23 s 6.81 s 9.04 s

Sim7 2.23 s 6.79 s 9.02 s

Sim8 2.24 s 6.88 s 9.12 s

Sim9 2.24 s 6.84 s 9.08 s

Sim10 2.28 s 6.92 s 9.20 s

Table 5.6: Table presenting how long each simulation with the adaptive MPC took,
in addition to the time spent on solving QP solver calls and updating the prediction

model, respectively.

average, how much time of the adaptive MPC protocol is spent solving the QP solver

112 Chapter 5 Simulations

calls, and how much time is spent on updating the prediction model, respectively (the
data from Table 5.6 is used to calculated the averages). Clearly, the majority of the

Figure 5.19: Pie chart illustrating the distribution of the mean total code execution
time from the ten simulations shown in Figure 5.18.

computational efforts are spent on updating the prediction model, which the adaptive
MPC will be using for the next control interval. However, even with this additional
task of updating the prediction model, the adaptive MPC does provide a feasible control
policy, considering that the protocol of finding an optimal control move, and updating
the prediction model, is completed within the length of the control interval (which is
ts = 0.5 s in this experiment).

The representative mean value for the total quadratic cost of the adaptive MPC is
calculated to be:

Jtotal,µ = 0.9018︸ ︷︷ ︸
Jy,total,µ

+ 0.0281︸ ︷︷ ︸
Jδu,total,µ

+ 0.000︸ ︷︷ ︸
Ju,total,µ

= 0.9300 (5.14)

The quadratic cost of the ten respective simulations are identical to each other, and to
the mean values given in (5.14).

Figure 5.20 shows the closed-loop response of the adaptive MPC, where the data from
Sim10 is used.

5.5.1 Alternative Closed-Loop Response

Figure 5.21 and Figure 5.22 show the closed-loop response of the adaptive MPC where
the priority of the control is Tank 1 and Tank 2, respectively (similarly to the experiments
conducted in Section 5.3.1). Note that the manipulated variable rate weighting matrix S

Chapter 5 Simulations 113

0 50 100 150 200 250 300 350 400

0.35
0.4

0.45
0.5

0.55
0.6

0.65
0.7

0.75

0 50 100 150 200 250 300 350 400

0.1

0.15

0.2

0.25

0.3

0.35

0 50 100 150 200 250 300 350 400
0

0.5

1

Figure 5.20: Closed-loop response w/ adaptive MPC.

is also adjusted according to (5.12), for both cases, in order to avoid excessive use of the
valves.

Note that the presented results for the different MPC-based controllers will be compared
against each other at the end of this chapter.

5.6 Nonlinear MPC

Lastly, ten separate simulations of Algorithm 5.1 are conducted using the nonlinear MPC.
For these experiments, the code execution time of one control interval is equal to the
code execution time of the SQP solver call, during said interval. The MPC specifications
are selected similarly to those selected in Section 5.3.

The recorded data regarding the code execution time for the ten simulations (with the
nonlinear MPC) are shown in Figure 5.23, and Table 5.7.

Remark 5.6. Note that Figure 5.23 contains all of the data points from the conducted
simulations, hence, the most extreme outliers contribute to poor scaling of the box plots,
making them difficult to read. For this reason, Figure 5.24 shows a zoomed in portion of
the box plots for easier readability, but, be aware that this figure does not include all of
the data points.

114 Chapter 5 Simulations

0 50 100 150 200 250 300 350 400

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0 50 100 150 200 250 300 350 400

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 50 100 150 200 250 300 350 400
0

0.5

1

Figure 5.21: Closed-loop response w/ adaptive MPC. The paramount objective is to
prioritize set-point tracking in Tank 1. I.e., the output weighting matrix is set to be Qi

(see (4.22)).

Median Max/Min Total Outliers 75th/25th Perc. Upper/Lower Adj.
Sim1 9.18 ms 385.25/5.57 ms 25.40 s 176 14.76/8.57 ms 20.77/5.57 ms

Sim2 8.97 ms 318.63/5.59 ms 25.27 s 173 14.47/8.35 ms 21.83/5.59 ms

Sim3 8.98 ms 375.51/5.41 ms 24.44 s 176 14.71/8.28 ms 19.95/5.41 ms

Sim4 8.97 ms 217.92/5.39 ms 23.41 s 176 14.81/8.20 ms 23.90/5.39 ms

Sim5 8.90 ms 210.21/5.34 ms 23.18 s 174 14.54/8.23 ms 21.26/5.34 ms

Sim6 9.06 ms 226.74/5.33 ms 23.56 s 173 15.55/8.36 ms 22.44/5.33 ms

Sim7 9.10 ms 215.85/5.36 ms 23.45 s 173 14.59/8.32 ms 21.13/5.36 ms

Sim8 9.11 ms 222.59/5.36 ms 23.53 s 173 14.75/8.32 ms 18.54/5.36 ms

Sim9 9.04 ms 212.95/5.39 ms 23.30 s 173 14.85/8.24 ms 20.28/5.39 ms

Sim10 9.14 ms 238.81/5.38 ms 23.71 s 173 14.68/8.29 ms 19.42/5.58 ms

Table 5.7: Statistical properties of the data-set from Figure 5.23. Here, Perc. and Adj.
are abbreviations for Percentile and Adjacent, respectively.

The representative mean value for the total quadratic cost of the nonlinear MPC is
calculated to be:

Jtotal,µ = 0.7786︸ ︷︷ ︸
Jy,total,µ

+ 0.0152︸ ︷︷ ︸
Jδu,total,µ

+ 0.000︸ ︷︷ ︸
Ju,total,µ

= 0.7938 (5.15)

The quadratic cost of the ten respective simulations are identical to each other, and to
the mean values given in (5.15).

Chapter 5 Simulations 115

0 50 100 150 200 250 300 350 400

0.3
0.35

0.4
0.45

0.5
0.55

0.6
0.65

0.7
0.75

0 50 100 150 200 250 300 350 400

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 50 100 150 200 250 300 350 400
0

0.5

1

Figure 5.22: Closed-loop response w/ adaptive MPC. The paramount objective is to
prioritize set-point tracking in Tank 2. I.e., the output weighting matrix is set to be Qii

(see (4.22)).

Figure 5.25 shows the closed-loop response of the nonlinear MPC, where the data from
Sim10 is used. The relationship between the code executing time, and the number of
necessary iterations needed to find an optimal solution, for the SQP solver calls during
simulation Sim1 is shown in Figure 5.26. The red dashed line in Figure 5.26 represents
the length of every control interval, which, during this experiment, is set to be ts = 0.5 s.
Evidently from Figure 5.26, and column: Max/Min in Table 5.7, the nonlinear MPC does
provide a feasible control policy, as the optimal manipulated variable is calculated within
the time frame of every respective control interval. Additionally, the nonlinear MPC
does provide a satisfactory control of the two-tank system, as shown in Figure 5.25.

5.6.1 Alternative Closed-Loop Response

Figure 5.27 and Figure 5.28 show the closed-loop response of the nonlinear MPC where
the priority of the control is Tank 1 and Tank 2, respectively (similarly to the experiments
conducted in Section 5.3.1).

116 Chapter 5 Simulations

Sim
1

Sim
2

Sim
3

Sim
4

Sim
5

Sim
6

Sim
7

Sim
8

Sim
9

Sim
10

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Figure 5.23: Box plot of recorded elapsed time for every 800 SQP solver called upon by
the nonlinear MPC. Each box represent the data belonging to their respective simulation

instance.

Sim
1

Sim
2

Sim
3

Sim
4

Sim
5

Sim
6

Sim
7

Sim
8

Sim
9

Sim
10

0

0.005

0.01

0.015

0.02

0.025

0.03

Figure 5.24: Zoomed in version of Figure 5.23, for easier readability of the box plots.

Chapter 5 Simulations 117

0 50 100 150 200 250 300 350 400

0.4
0.45

0.5
0.55

0.6
0.65

0.7
0.75

0 50 100 150 200 250 300 350 400
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 50 100 150 200 250 300 350 400
0

0.5

1

Figure 5.25: Closed-loop response w/ nonlinear MPC.

10
-2

10
-1

10
0

0

10

20

30

40

50

60

70

80

0 100 200 300 400 500 600 700 800

Figure 5.26: Stem plot illustrating the execution time, and the number of necessary
iterations, used by the 800 SQP solver calls, respectively, from the Sim1 data-set. Note

the logarithmic scale for the Time axis (blue).

118 Chapter 5 Simulations

0 50 100 150 200 250 300 350 400
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0 50 100 150 200 250 300 350 400

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 50 100 150 200 250 300 350 400
0

0.5

1

Figure 5.27: Closed-loop response w/ nonlinear MPC. The paramount objective is to
prioritize set-point tracking in Tank 1. I.e., the output weighting matrix is set to be Qi

(see (4.22)).

5.6.2 Sub-Optimal Solution

So far, all the different MPC-based controllers have provided feasible control policies
during the experiments presented in this chapter, including the nonlinear MPC. However,
it may happen that, for some systems, the search for an optimal control move may take
longer than the control interval itself. I.e., the MPC may not be able to find a suitable
control move uopt(k) before the next control interval k + 1.

There are several ways of tackling the issue of an infeasible control policy:

(i) If possible, reduce the complexity of the SQP/QP optimization problem. This
can be done by making the prediction horizon P , and/or the control horizon M ,
smaller. Alternatively, one can take advantage of input blocking (as discussed in
Section 4.2.6).

(ii) If possible, increase the control interval, such that the SQP/QP optimization
problem can be solved within the time-limit. This equates to increasing the
sampling period ts, which heavily relies on how fast the dynamics of the system
under consideration are.

Chapter 5 Simulations 119

0 50 100 150 200 250 300 350 400

0.4
0.45

0.5
0.55

0.6
0.65

0.7
0.75

0 50 100 150 200 250 300 350 400

0.1

0.15

0.2

0.25

0.3

0.35

0 50 100 150 200 250 300 350 400
0

0.5

1

Figure 5.28: Closed-loop response w/ nonlinear MPC. The paramount objective is to
prioritize set-point tracking in Tank 2. I.e., the output weighting matrix is set to be Qii

(see (4.22)).

(iii) If possible, use sub-optimal solutions of the SQP/QP optimization problems. I.e.,
set a maximum limit on the number of iterations that the SQP/QP solver can use
during one optimization problem.

The latter option will be briefly explored in this section.

For the nonlinear MPC, it was shown in Figure 5.26 that, at times, the number of
required iterations to solve the SQP optimization problem spiked up to approximately
70. While these SQP solver calls were solved within the time-limit of the control interval,
supposed that an even faster controller is desired. To achieve this, the maximum number
of iterations allowed to the SQP solver is reduced to 30. In MATLAB, this can be done
with the following syntax:

1 nlobj. Optimization . SolverOptions . MaxIterations = 30; % Limit SQP

Solver to 30 Iterations

2 nlobj. Optimization . UseSuboptimalSolution = true; % Toggle Sub -

Optimal Solution

Performing the same simulation of Algorithm 5.1 with this modificed nonlinear MPC
results in the closed-loop response shown in Figure 5.29: which yielded the total quadratic

120 Chapter 5 Simulations

0 50 100 150 200 250 300 350 400

0.4
0.45

0.5
0.55

0.6
0.65

0.7
0.75

0 50 100 150 200 250 300 350 400

0.1

0.15

0.2

0.25

0.3

0.35

0 50 100 150 200 250 300 350 400
0

0.5

1

Figure 5.29: Closed-loop response w/ nonlinear MPC, using a sub-optimal solution.

cost:
Jtotal,µ = 0.7787︸ ︷︷ ︸

Jy,total,µ

+ 0.0153︸ ︷︷ ︸
Jδu,total,µ

+ 0.000︸ ︷︷ ︸
Ju,total,µ

= 0.7940 (5.16)

By comparing Figure 5.25 with Figure 5.29, and the total quadratic cost (5.15) with
(5.16), it is clear that using the sub-optimal solution had no noteworthy impact on the
closed-loop response.

The total time spent on the simulation with the sub-optimal solution, however, was
20.92 s, compared to the average time of 23.92 s, when using the optimal solution (see
Table 5.4). Additionally, Figure 5.30 shows the execution time, and the number of
necessary iterations, used by the SQP solver calls, when programmed to use a sub-
optimal solution. Conclusively, the use of sub-optimal solutions are a viable option when
a faster MPC-based controller is desired. In the experiment presented in this section,
using the sub-optimal solution resulted in a noteworthy reduction in the computational
speed, however, the degradation of the closed-loop response was negligible.

5.7 Analysis of the Simulation Results

Given all the experiments conducted thus far, the following observations are made:

Chapter 5 Simulations 121

10
-2

10
-1

10
0

0

10

20

30

40

50

60

70

80

0 100 200 300 400 500 600 700 800

Figure 5.30: Stem plot illustrating the execution time, and the number of necessary
iterations, used by the 800 SQP solver calls, respectively. The nonlinear MPC is modified
to use sub-optimal solutions, and the SQP solver calls are limited to 30 iterations. Note

the logarithmic scale for the Time axis (blue).

(i) All of the MPC-based controllers tested in this chapter provided a feasible control
policy. I.e., all of the SQP/QP optimization problems were solved within the
time-limit of one control interval, which was of length ts = 0.5 s.

(ii) All of the MPC-based controllers tested in this chapter provided satisfactory control
of the two-tank system, even when subjected to square pulses in the set-points and
the measured disturbance, respectively.

(iii) All of the MPC-based controllers tested in this chapter satisfied the constraints on
the manipulated variables. Meaning that the manipulated variables were contained
within the constraint set U at all times.

(iv) When comparing the Total column of Table 5.1, 5.4, 5.5, and 5.7, it is clear that:

• the explicit MPC has the fastest computational execution time of all the MPC-
based controllers, with an average time of 0.42 s to complete one simulation.

• the nonlinear MPC has the slowest computational execution time of all the
MPC-based controllers, with an average time of 23.92 s to complete one
simulation.

122 Chapter 5 Simulations

(v) When comparing the total quadratic costs (5.9), (5.11), (5.14), and (5.15), it is
clear that:

• The explicit MPC has the inferior closed-loop response, with a total quadratic
cost of Jtotal,µ = 2.5694.

• The nonlinear MPC has the superior closed-loop response, with a total
quadratic cost of Jtotal,µ = 0.7938.

(vi) The weighting matrices Q, R, and S, do provide flexibility to the operating engineer
regarding the priority of the closed-loop system, as shown in Section 5.3.1, 5.4.1,
5.5.1, and 5.6.1.

(vii) The use of sub-optimal solutions from the SQP/QP solvers are viable options if a
faster MPC-based controller is required, without significant loss of quality in the
closed-loop response, as shown in Section 5.6.2.

(viii) The Active-set method, for solving the QP optimization problems, proved to be a
faster option that the Interior-point method, which can be seen by comparing the
Total column in Table 5.1 and 5.2. Additionally, the total quadratic cost between
the two methods proved to be indistinguishable, which can be seen by comparing
the two costs in (5.9) and (5.10), respectively.

Chapter 6

Experimental Evaluation

Up until now, the different MPC-based controllers have only been implemented and
evaluated in a simulation environment. The subsequent chapter, however, will look to
implement and evaluate the MPC-based controllers in a practical environment, where
they will be performing level control on the real two-tank system. The goal of this
chapter is to validate the simulation results in Chapter 5, through experimental tests on
the real system.

Additionally, the performance of the MPC-based controllers will be compared, not only
against each other, but also against the performance of more traditional control techniques
such as LQR- and PID-control. For more information on the design of the LQR- and
PID-controllers, see Appendix A and B, respectively.

Lastly, as a collaborative effort with fellow master’s student Greta Bekerytė, experiments
will be conducted on the two-tank system, where, rather than measuring all of the states
directly, some states are estimated by state observers. The goal of these experiments is
to analyse the linear MPC’s ability to control the system, when a combination of state
measurements and state estimates are available.

6.1 Experimental Setup

The real two-tank system can be seen in Figure 6.1, which highlights the different
components that are being used. For replication purposes, detailed images of the
components, and their specifications, are included in Appendix E.

123

124 Chapter 6 Experimental Evaluation

Figure 6.1: Photograph of the two-tank system located at the laboratory facility KE
E-458, UiS.

6.2 Experimental Procedure

The experimental procedure is as follows: Like the simulations in Chapter 5, the ex-

Algorithm 6.1 Experimental procedure
1: TIME < 50 s =⇒ SYS ← NS ▷ Drive system to nominal solution NS
2: TIME ≥ 50 s =⇒ h1,ref ↑ ▷ Start of positive rectangular pulse
3: TIME ≥ 150 s =⇒ h1,ref ↓ ▷ End of positive rectangular pulse
4: TIME ≥ 250 s =⇒ h2,ref ↑ ▷ Start of positive rectangular pulse
5: TIME ≥ 350 s =⇒ h2,ref ↓ ▷ End of positive rectangular pulse
6: TIME ≥ 450 s =⇒ uP A001 ↓ ▷ Start of negative rectangular pulse
7: TIME ≥ 550 s =⇒ uP A001 ↑ ▷ End of negative rectangular pulse
8: TIME = 700 s =⇒ end ▷ End of experimental procedure

periments conducted on the real two-tank system look to analyse both the set-point
tracking and the disturbance rejection abilities of the controllers. Note that there are
some differences between the simulations in Chapter 5, and the experimental procedure
in Algorithm 6.1:

Chapter 6 Experimental Evaluation 125

(i) The total time of the experimental procedure is 700 s, rather than 400 s.

(ii) Each rectangular pulse, in the set-points and the disturbance, is of length 100 s,
rather than 50 s.

(iii) The rectangular pulse in h2,ref is positive, rather than negative.

(iv) The nominal solution is given by:

h̃1 = 0.5, h̃2 = 0.2, ũP A001 = 0.8, ũLV 001 = 0.5317, ũLV 002 = 0.5680︸ ︷︷ ︸
NS

(6.1)

rather than (5.1).

6.3 Parameters

Given the speed at which the linear-, explicit-, and adaptive-MPC completed the sim-
ulations in Chapter 5 (see Table 5.1, 5.4, and 5.5), the sampling time is chosen to
be ts = 0.1 s for these controllers. This sampling time is also used for the LQR- and
PID-controllers. However, to ensure a feasible control policy during real-time operation
of the nonlinear MPC, the sampling time is increased to ts = 0.5 s for this controller.
Additionally, the nonlinear MPC is programmed to use a sub-optimal solution, where the
SQP optimization problem is limited to 30 iterations, as it was shown in Section 5.6.2
that this is a viable option for faster control, without noteworthy loss in performance.

All of the MPCs are programmed to use a prediction horizon of P = 13, and a control
horizon of M = 2. A shorter control horizon is chosen to simplify the SQP/QP optimiza-
tion problem, and to further promote a feasible control policy during real-time operation
of the MPCs. As discussed in Section 5.2, a large control horizon can lead to redundancy,
as the complexity of the SQP/QP optimization problem increases, without a noteworthy
reduction in the total quadratic cost (see Figure 5.2).

126 Chapter 6 Experimental Evaluation

Given the nominal solution (6.1), and a sampling time of ts = 0.1 s, the discrete time
linear prediction model that the linear- and explicit-MPC will be using is given by:

∆h1(k + 1)
∆h2(k + 1)

 =

 0.9977 0
0.001273 0.9984

 ·
∆h1(k)

∆h2(k)

+

−0.007181 0 0.004495
0.003986 −0.003802 2.866 · 10−6

 ·

∆uLV 001(k)
∆uLV 002(k)
∆uP A001(k)

∆ĥ1(k)

∆ĥ2(k)

 =

1 0
0 1

 ·
∆h1(k)

∆h2(k)

 +

0 0 0
0 0 0

 ·

∆uLV 001(k)
∆uLV 002(k)
∆uP A001(k)

(6.2)

The weighting matrices Q, R, and S will vary, depending on the priority of the desired
closed-loop response, and the MPC-based controller type. These matrices will be clearly
defined when experimental results are presented. Like the simulations in Chapter 5, there
are three main cases that will be tested for the desired closed-loop responses:

(i) Both tanks are prioritized equally.

(ii) Tank 1 is prioritized more than Tank 2.

(iii) Tank 2 is prioritized more than Tank 1.

6.4 Linear MPC

The first experiment is conducted on the linear MPC, which is programmed to prioritize
both tanks equally. For this case, the weighting matrices are given by (6.3), and the
experimental results are presented in Figure 6.2. To ensure a more smooth control, and
less aggressive use of the control input, the weighting matrices R and S are adjusted
accordingly, which also holds true for the subsequent experiments in this chapter.

Q =

100 0
0 100

 , S =

50 0
0 50

 , R =

0 0
0 0

 (6.3)

The first 50 s of the experiments are used to drive the system to the nominal solution
NS. Note that the initial conditions of the experimental trials are different. Therefore,
to ensure a fair comparison between the controllers, the total quadratic cost is calculated
only beyond t ≥ 30 s, which is when the system has stabilized on NS for all of the
experimental trials.

Chapter 6 Experimental Evaluation 127

0 100 200 300 400 500 600 700

0.4
0.45

0.5
0.55

0.6
0.65

0.7
0.75

0 100 200 300 400 500 600 700

0.2

0.25

0.3

0.35

0 100 200 300 400 500 600 700
0

0.5

1

Figure 6.2: Experimental results of the closed-loop response w/ linear MPC. The MPC
is programmed to prioritize level control of both tanks equally.

When prioritizing Tank 1 more than Tank 2 in the desired closed-loop response, the
following weighting matrices are used:

Q =

500 0
0 100

 , S =

50 0
0 50

 , R =

0 0
0 0

 (6.4)

which yield the experimental results shown in Figure 6.3. Lastly, the weighting matrices
shown in (6.5) are used when prioritizing Tank 2 more than Tank 1 in the closed-loop
response. Figure 6.4 shows the results from this experimental trial.

Q =

100 0
0 500

 , S =

50 0
0 50

 , R =

0 0
0 0

 (6.5)

The total quadratic costs of the three experiments with the linear MPC are listen in
Table 6.1.

Experimental Trial J total

Figure 6.2 59132
Figure 6.3 421020
Figure 6.4 1196700

Table 6.1: Calculated quadratic costs of the experimental trials with the linear MPC.

128 Chapter 6 Experimental Evaluation

0 100 200 300 400 500 600 700
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0 100 200 300 400 500 600 700

0.2

0.25

0.3

0.35

0 100 200 300 400 500 600 700
0

0.5

1

Figure 6.3: Experimental results of the closed-loop response w/ linear MPC. The MPC
is programmed to prioritize Tank 1 more than Tank 2.

0 100 200 300 400 500 600 700

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0 100 200 300 400 500 600 700

0.2

0.25

0.3

0.35

0 100 200 300 400 500 600 700
0

0.5

1

Figure 6.4: Experimental results of the closed-loop response w/ linear MPC. The MPC
is programmed to prioritize Tank 2 more than Tank 1.

Chapter 6 Experimental Evaluation 129

Remark 6.1. Note that, as the three experimental trials presented thus far all have
different objectives, the quadratic costs in Table 6.1 are not comparable against each
other. Table 6.1 is simply a compact way of presenting the calculated costs. This will be
the case for the subsequent experiments in this chapter. In practise, the total quadratic
costs of the different controllers are only comparable if their objectives of the closed-loop
response are identical. I.e., if the weighting matrices Q, R, and S are the same.

6.5 Explicit MPC

The same weighting matrices used for the linear MPC, are also used for the explicit
MPC. I.e., when prioritizing both tanks equally, the explicit MPC is programmed to use
the weighting matrices in (6.3). Figure 6.5 shows the results of this experimental trial.
Similarly, the explicit MPC uses the weighting matrices in (6.4), when programmed to

0 100 200 300 400 500 600 700

0.45
0.5

0.55
0.6

0.65
0.7

0.75

0 100 200 300 400 500 600 700

0.15

0.2

0.25

0.3

0.35

0 100 200 300 400 500 600 700
0

0.5

1

Figure 6.5: Experimental results of the closed-loop response w/ explicit MPC. The
MPC is programmed to prioritize level control of both tanks equally.

prioritize Tank 1 more than Tank 2. The results for this experimental trial are shown in
Figure 6.6. Finally, when prioritizing Tank 2 more than Tank 1, the explicit MPC uses
the weighting matrices in (6.5), and the experimental results for this trial are presented
in Figure 6.7. The total quadratic costs of the three experiments with the explicit MPC
are listen in Table 6.2.

130 Chapter 6 Experimental Evaluation

0 100 200 300 400 500 600 700

0.5

0.55

0.6

0.65

0.7

0.75

0 100 200 300 400 500 600 700

0.2

0.25

0.3

0.35

0 100 200 300 400 500 600 700
0

0.5

1

Figure 6.6: Experimental results of the closed-loop response w/ explicit MPC. The
MPC is programmed to prioritize Tank 1 more than Tank 2.

0 100 200 300 400 500 600 700

0.4
0.45

0.5
0.55

0.6
0.65

0.7
0.75

0 100 200 300 400 500 600 700

0.15

0.2

0.25

0.3

0.35

0 100 200 300 400 500 600 700
0

0.5

1

Figure 6.7: Experimental results of the closed-loop response w/ explicit MPC. The
MPC is programmed to prioritize Tank 2 more than Tank 1.

Chapter 6 Experimental Evaluation 131

Experimental Trial J total

Figure 6.5 70626
Figure 6.6 823990
Figure 6.7 784880

Table 6.2: Calculated quadratic costs of the experimental trials with the explicit MPC.

6.6 Adaptive MPC

For the adaptive MPC, the weighting matrices S and R are increased slightly more, due
to excessive use of the control inputs during operation. For the case where both tanks
are weighted equally, the adaptive MPC uses the following weighting matrices:

Q =

100 0
0 100

 , S =

60 0
0 60

 , R =

10 0
0 10

 (6.6)

which yield the experimental results shown in Figure 6.8. As the adaptive MPC is

0 100 200 300 400 500 600 700

0.4
0.45

0.5
0.55

0.6
0.65

0.7
0.75

0 100 200 300 400 500 600 700
0.15

0.2

0.25

0.3

0.35

0 100 200 300 400 500 600 700
0

0.5

1

Figure 6.8: Experimental results of the closed-loop response w/ adaptive MPC. The
MPC is programmed to prioritize level control of both tanks equally.

programmed to prioritize Tank 1 more than Tank 2 in the closed-loop response, the
weighting matrices are changed accordingly:

Q =

200 0
0 100

 , S =

60 0
0 60

 , R =

10 0
0 10

 (6.7)

132 Chapter 6 Experimental Evaluation

The results of this experimental trial can be seen in Figure 6.9. Lastly, for the adaptive

0 100 200 300 400 500 600 700

0.4
0.45

0.5
0.55

0.6
0.65

0.7
0.75

0 100 200 300 400 500 600 700

0.15

0.2

0.25

0.3

0.35

0 100 200 300 400 500 600 700
0

0.5

1

Figure 6.9: Experimental results of the closed-loop response w/ adaptive MPC. The
MPC is programmed to prioritize Tank 1 more than Tank 2.

MPC to prioritize Tank 2 more than Tank 1 in the closed-loop response, the weighting
matrices are given by:

Q =

100 0
0 200

 , S =

60 0
0 60

 , R =

10 0
0 10

 (6.8)

and the respective experimental results for this case can be seen in Figure 6.10. The total
quadratic costs of the three experiments with the adaptive MPC are listen in Table 6.3.

Experimental Trial J total

Figure 6.8 266580
Figure 6.9 314550
Figure 6.10 512930

Table 6.3: Calculated quadratic costs of the experimental trials with the adaptive
MPC.

Chapter 6 Experimental Evaluation 133

0 100 200 300 400 500 600 700

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0 100 200 300 400 500 600 700

0.15

0.2

0.25

0.3

0.35

0 100 200 300 400 500 600 700
0

0.5

1

Figure 6.10: Experimental results of the closed-loop response w/ adaptive MPC. The
MPC is programmed to prioritize Tank 2 more than Tank 1.

6.7 Nonlinear MPC

The last MPC-based controller to be tested is the nonlinear MPC. The first experiment
is where both tanks are weighted equally. To this end, the following weighting matrices
are used:

Q =

100 0
0 100

 , S =

40 0
0 40

 , R =

0 0
0 0

 (6.9)

which resulted in the closed-loop response shown in Figure 6.11. Next, the desired
closed-loop response is for the nonlinear MPC to prioritize Tank 1 more than Tank 2,
which can be achieved by choosing the following weighting matrices:

Q =

200 0
0 100

 , S =

40 0
0 40

 , R =

0 0
0 0

 (6.10)

Figure 6.12 shows the recorded data for this experimental trial. The last experiment
conducted, for the MPC-based controllers, is where the nonlinear MPC prioritizes Tank 2
more than Tank 1. The following weighting matrices are used for this case of the desired

134 Chapter 6 Experimental Evaluation

0 100 200 300 400 500 600 700

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0 100 200 300 400 500 600 700

0.15

0.2

0.25

0.3

0.35

0 100 200 300 400 500 600 700
0

0.5

1

Figure 6.11: Experimental results of the closed-loop response w/ nonlinear MPC. The
MPC is programmed to prioritize level control of both tanks equally.

0 100 200 300 400 500 600 700

0.5

0.55

0.6

0.65

0.7

0.75

0 100 200 300 400 500 600 700

0.15

0.2

0.25

0.3

0.35

0 100 200 300 400 500 600 700
0

0.5

1

Figure 6.12: Experimental results of the closed-loop response w/ nonlinear MPC. The
MPC is programmed to prioritize Tank 1 more than Tank 2.

Chapter 6 Experimental Evaluation 135

closed-loop response:

Q =

100 0
0 200

 , S =

50 0
0 50

 , R =

0 0
0 0

 (6.11)

Figure 6.13 presents the logged data from this experimental trial. The total quadratic

0 100 200 300 400 500 600 700

0.5

0.55

0.6

0.65

0.7

0.75

0 100 200 300 400 500 600 700

0.15

0.2

0.25

0.3

0.35

0 100 200 300 400 500 600 700
0

0.5

1

Figure 6.13: Experimental results of the closed-loop response w/ nonlinear MPC. The
MPC is programmed to prioritize Tank 2 more than Tank 1.

costs of the three experiments with the nonlinear MPC are listen in Table 6.4.

Experimental Trial J total

Figure 6.11 4696.8
Figure 6.12 10284
Figure 6.13 12449

Table 6.4: Calculated quadratic costs of the experimental trials with the nonlinear
MPC.

6.8 LQR Control

In this section, similar experimental trials to those presented thus far will be conducted,
however, an LQR-based feedback controller will be used, rather than an MPC-based

136 Chapter 6 Experimental Evaluation

controller. As mentioned in the introduction of this chapter, a detailed description on
how the LQR controller is designed can be found in Appendix A.

Firstly, consider the case where the desired closed-loop response prioritizes both tanks
equally. For this experiment, the weighting matrices are chosen accordingly:

Q =

100 0
0 100

 , S =

0 0
0 0

 , R =

1 0
0 1

 (6.12)

The results of this experiment are presented in Figure 6.14. Next, consider the case

0 100 200 300 400 500 600 700

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0 100 200 300 400 500 600 700

0.15

0.2

0.25

0.3

0.35

0 100 200 300 400 500 600 700

-1

0

1

2

Figure 6.14: Experimental results of the closed-loop response w/ LQR control. The
LQR controller is programmed to prioritize level control of both tanks equally.

where Tank 1 is prioritized more than Tank 2, which is done by selecting the following
weighting matrices for the LQR controller:

Q =

100 0
0 10

 , S =

0 0
0 0

 , R =

1 0
0 1

 (6.13)

The results of this experiment can be seen in Figure 6.15. The last experiment conducted
on the LQR controller, is the case where the desired closed-loop response prioritizes Tank
2 more than Tank 1. The subsequent weighting matrices are selected for this experiment:

Q =

10 0
0 100

 , S =

0 0
0 0

 , R =

1 0
0 1

 (6.14)

Chapter 6 Experimental Evaluation 137

0 100 200 300 400 500 600 700

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0 100 200 300 400 500 600 700

0.15

0.2

0.25

0.3

0.35

0 100 200 300 400 500 600 700

-1

0

1

2

Figure 6.15: Experimental results of the closed-loop response w/ LQR control. The
LQR controller is programmed to prioritize Tank 1 more than Tank 2.

which results in the closed-loop response shown in Figure 6.16. The total quadratic costs

0 100 200 300 400 500 600 700

0.4
0.45

0.5
0.55

0.6
0.65

0.7
0.75

0 100 200 300 400 500 600 700

0.15

0.2

0.25

0.3

0.35

0 100 200 300 400 500 600 700

0

0.5

1

Figure 6.16: Experimental results of the closed-loop response w/ LQR control. The
LQR controller is programmed to prioritize Tank 2 more than Tank 1.

138 Chapter 6 Experimental Evaluation

of the three experiments with the LQR-based controller are listen in Table 6.5.

Experimental Trial J total

Figure 6.14 95230
Figure 6.15 40229
Figure 6.16 36652

Table 6.5: Calculated quadratic costs of the experimental trials with the LQR-based
controller.

6.9 PID Control

In this section, three different PID controllers will be tested on the two-tank system. As
previously mentioned, the details around the design of these PID controllers can be found
in Appendix B. The goal of the experiments remain the same, i.e., to determine the
set-point tracking and disturbance rejection abilities of the PID controllers. However, as
there are no weighting matrices incorporated in the design of the PID controllers (in the
sense of Q, R, and S for the MPC and LQR controller design), no total quadratic cost
is calculated for the results with PID control. Instead, a more traditional performance
index is used in this section, which is the integral of absolute error (IAE). For a brief
introduction to IAE, see Appendix C.

Firstly, consider a simple PID feedback controller. The results of the experimental trial
with this controller is shown in Figure 6.17. For the second experiment, the same PID
feedback controller that resulted in the closed-loop response shown in Figure 6.17, is
paired up with a feedforward control action, which accounts for changes in the set-points
and the disturbance. Figure 6.18 shows the results of this experimental trial. Lastly,
in addition to the PID feedback controller and the feedforward control action, a linear
decoupler is added. The results of this experiment are shown in Figure 6.19. The IAE
performance indices of the three experiments with the PID-based controllers are listen in
Table 6.6.

Experimental Trial IAE

Figure 6.17 1.94610
Figure 6.18 1.19164
Figure 6.19 0.89011

Table 6.6: Calculated IAE performance indices of the experimental trials with the
PID-based controllers.

Chapter 6 Experimental Evaluation 139

0 100 200 300 400 500 600 700

0.4
0.45

0.5
0.55

0.6
0.65

0.7
0.75

0 100 200 300 400 500 600 700

0.1

0.15

0.2

0.25

0.3

0.35

0 100 200 300 400 500 600 700
0

0.5

1

Figure 6.17: Experimental results of the closed-loop response w/ PID control. The PID
controller uses a simple feedback loop.

0 100 200 300 400 500 600 700

0.4
0.45

0.5
0.55

0.6
0.65

0.7
0.75

0 100 200 300 400 500 600 700

0.1

0.15

0.2

0.25

0.3

0.35

0 100 200 300 400 500 600 700
0

0.5

1

Figure 6.18: Experimental results of the closed-loop response w/ PID control. The
PID controller uses a simple feedback loop, paird up with feedforward control on the

set-points and the disturbance.

140 Chapter 6 Experimental Evaluation

0 100 200 300 400 500 600 700

0.4
0.45

0.5
0.55

0.6
0.65

0.7
0.75

0 100 200 300 400 500 600 700

0.1

0.15

0.2

0.25

0.3

0.35

0 100 200 300 400 500 600 700
0

0.5

1

Figure 6.19: Experimental results of the closed-loop response w/ PID control. The
PID controller uses a simple feedback loop, paird up with feedforward control on the

set-points and the disturbance, in addition to a linear decoupler.

6.10 Linear MPC with State Estimation

The following section is a collaborative effort with fellow master’s student Greta Bekerytė.
Greta’s work explores the moving horizon estimation (MHE), which is an optimization
approach to state observers.

There are several similarities between the MPC approach to feedback controllers, and the
MHE approach to state observers. These similarities can be linked to the duality between
the two problems that, together, solve the linear-quadratic-Gaussian (LQG) problem:
(i) the linear-quadratic-regulator (LQR) problem, and (ii) the linear-quadratic-estimate
(LQE) problem.

In fact, under certain conditions, MPC can be reduced to the LQR problem. Similarly,
the MHE can be reduced to the LQE problem. For a detailed discussion on MHE, see
[39].

For these experimental trials, the nominal solution is given by:

h̃1 = 0.3, h̃2 = 0.2, ũP A001 = 0.6, ũLV 001 = 0.4264, ũLV 002 = 0.3902︸ ︷︷ ︸
NS

(6.15)

Chapter 6 Experimental Evaluation 141

Given this NS, and a sampling time of ts = 1.5 s, the discrete time prediction model
used by the linear MPC is given by:

∆h1(k + 1)
∆h2(k + 1)

 =

 0.9692 0
0.01698 0.9866

 ·
∆h1(k)

∆h2(k)

+

−0.07269 0 0.09599
0.04011 −0.04377 0.0008338

 ·

∆uLV 001(k)
∆uLV 002(k)
∆uP A001(k)

∆ĥ1(k)

∆ĥ2(k)

 =

1 0
0 1

 ·
∆h1(k)

∆h2(k)

 +

0 0 0
0 0 0

 ·

∆uLV 001(k)
∆uLV 002(k)
∆uP A001(k)

(6.16)

Furthermore, the linear MPC is programmed to use a prediction horizon of P = 10, and
a control horizon (with input blocking) of M =

[
2 3 5

]
.

The experimental procedure is as follows: Three experimental trials are conducted, with

Algorithm 6.2 Experimental procedure w/ state estimation
1: TIME < 150 s =⇒ SYS ← NS ▷ Drive system to nominal solution NS
2: TIME ≥ 150 s =⇒ uP A001 ↑ ▷ Positive step in disturbance
3: TIME ≥ 220.5 s =⇒ uP A001 ↑ ▷ Positive step in disturbance
4: TIME ≥ 291 s =⇒ uP A001 ↓ ▷ Negative step in disturbance
5: TIME ≥ 360 s =⇒ h1,ref ↑ ▷ Start of positive rectangular pulse in reference
6: TIME ≥ 430 s =⇒ h1,ref ↓ ▷ End of positive rectangular pulse in reference
7: TIME ≥ 501 s =⇒ h2,ref ↑ ▷ Start of positive rectangular pulse in reference
8: TIME ≥ 600 s =⇒ h2,ref ↓ ▷ End of positive rectangular pulse in reference
9: TIME = 650 s =⇒ end ▷ End of experimental procedure

the following scenarios:

(i) The future evolution of both tanks are estimated based on the measurements of
LT001 and LT002.

(ii) The future evolution of both tanks are estimated based on the measurements of
LT002.

(iii) The future evolution of both tanks, and the input from the pump, are estimated
based on the measurements of LT001 and LT002.

Again, for a more detailed discussion on how the MHE estimates the future evolution of
the states, see [39].

The experimental trials for the three aforementioned scenarios are presented in Figure
6.20, 6.21, and 6.22, respectively. As seen in Figure 6.20, the linear MPC rejects

142 Chapter 6 Experimental Evaluation

0 100 200 300 400 500 600

0.2

0.25

0.3

0.35

0.4

0.45

0 100 200 300 400 500 600

0.15

0.2

0.25

0.3

0 100 200 300 400 500 600
0

0.5

1

Figure 6.20: Experimental results of the closed-loop system w/ linear MPC. These
results are from scenario (i) of the experiments where the linear MPC uses the estimates

from the MHE state estimator.

the steps in the disturbance. Additionally, the water levels in the two tanks follow
the set-points, however, there is a slight overshoot in Tank 1 when it is subjected to
rectangular pulses in the set-point h1,ref .

When only the measurements from LT002 are available, the water level in Tank 1
experiances more deviations from its set-point (see Figure 6.21). However, the estimated
water level h1,estimated, which, in fact, is the variable that the MPC is using when
computing future control moves, does follow the set-point without the deviations seen in
h1,measured.

Lastly, when the MPC uses the estimate for the input from the pump uP A001,estimated,
the closed-loop response experiences more oscillations, as a result of the steps in the
disturbance and the set-points (see Figure 6.22).

Chapter 6 Experimental Evaluation 143

0 100 200 300 400 500 600

0.2

0.25

0.3

0.35

0.4

0.45

0 100 200 300 400 500 600

0.2

0.25

0.3

0 100 200 300 400 500 600
0

0.5

1

Figure 6.21: Experimental results of the closed-loop system w/ linear MPC. These
results are from scenario (ii) of the experiments where the linear MPC uses the estimates

from the MHE state estimator.

6.11 Analysis

Given all the experimental trials conducted thus far on the real two-tank system, the
following observations are made:

(i) All of the MPC-based controllers provided a feasible control policy. I.e., the MPCs
managed to compute the SQP/QP optimization problems within the sampling
interval, which was ts = 0.1 s for the linear-, explicit-, and adaptive-MPC, and
ts = 0.5 s for the nonlinear MPC.

Note that, due to its demanding computational requirements, the nonlinear MPC
did not provide a feasible control policy for a sampling interval of ts = 0.1 s, which
is why this is the only MPC with a higher sampling interval of ts = 0.5 s.

(ii) All of the MPC-based controllers satisfied the constraints on the manipulated
variables during the experimental trials, which is helpful in avoiding saturation on
the control inputs.

144 Chapter 6 Experimental Evaluation

0 100 200 300 400 500 600

0.2

0.25

0.3

0.35

0.4

0.45

0 100 200 300 400 500 600

0.15

0.2

0.25

0.3

0.35

0 100 200 300 400 500 600
0

0.5

1

Figure 6.22: Experimental results of the closed-loop system w/ linear MPC. These
results are from scenario (iii) of the experiments where the linear MPC uses the estimates

from the MHE state estimator.

This is in contrast to the LQR-based controller, which does not look to satisfy any
constraint. Since no constraints are imposed on the LQR-controller, note how the
control inputs in Figure 6.14, 6.15, and 6.16 all exceed the possible range of [0− 1]
on the control inputs, effectively causing saturation.

(iii) The linear-, explicit-, and nonlinear-MPC provided satisfactory control of the
two-tank system. I.e., the closed-loop system, with these controllers, managed to
follow the set-points, despite being subjected to changes in the set-points and the
measured disturbance.

While the adaptive MPC exhibits satisfactory set-point tracking and disturbance
rejection, the excessive use of the manipulated variables do render the adaptive
MPC inferior to the other MPC-based controllers. Note how the adaptive MPC
had the largest penalty on the manipulated variables and the manipulated variable
rates (i.e., S and R), yet, this is the controller with the most aggressive closed-loop
response, in terms of control input usage.

Chapter 6 Experimental Evaluation 145

(iv) All of the MPC-based controllers exhibited strong decoupling capabilities when
Tank 2 was prioritized more than Tank 1. I.e., changes in Tank 1 resulted in
negligible disturbances in Tank 2, due to the decoupling properties of MPC (see
Figure 6.4, 6.7, 6.10, and 6.13.)

Similarly, the LQR-based controller also provided this decoupling ability (see Figure
6.16).

This is in contrast to the closed-loop response with the PID-based controller, which
experiences large disturbances in Tank 2, whenever the level in Tank 1 changes
(see e.g. Figure 6.17 and 6.18, at t = 50 s and t = 150 s).

Incorporating a linear decoupler with the PID feedback controller does result in
less disturbances in Tank 2, whenever the level in Tank 1 changes, which can be
seen in Figure 6.19.

(v) The MPC based controllers, with the exception of the explicit MPC, are able to
provide look-ahead control, if future set-points and measured disturbances are
known.

This is in contrast to the explicit MPC, the LQR-based controller, and the PID-
based controller, which do not provide this previewing ability.

(vi) While being more prone to changes in the set-points and the disturbance, the linear
MPC provides acceptable control of the two-tank system when using the estimates
from the MHE state estimator.

Remark 6.2. It is important to emphasise, yet again, that the calculated total quadratic
costs J total presented in this chapter (see Table 6.1, 6.2, 6.3, 6.4) cannot be compared
against each other directly, as previously done for the simulations in Chapter 5.

Recall that in Chapter 5, all of the MPC-based controllers were simulated using the
same weighting matrices Q, R, and S, meaning that the objectives of the closed-loop
systems were identical. When this is the case, it is possible to directly compare the
total quadratic costs as a performance index, in order to distinguish which controller
performed the worst/best at completing their objectives. However, this is not the case
for the experimental trials presented in this chapter. I.e., the MPCs were programmed
to use different weighting matrices, meaning that their objectives were different, thus,
resulting in incomparable quadratic costs.

For the sake of comparison, the IAE performance index is computed for all of the
controllers. In this case, only the scenario where the closed-loop system prioritizes
both tanks are considered. I.e., the IAE performance index is only calculated for the
experimental results from Figure 6.2, 6.5, 6.8, 6.11, and 6.14, respectively. Table 6.7

146 Chapter 6 Experimental Evaluation

presents these IAE values, in addition to those calculated for the PID-based controllers
(see Table 6.6).

Controller Type IAE

Nonlinear MPC 0.0834
Linear MPC 0.1998
Explicit MPC 0.3158
LQR 0.3808
Adaptive MPC 0.6653
PID Feedback
+ Feedforward
+ Linear Decoupler

0.8901

PID Feedback
+ Feedforward 1.1916

PID Feedback 1.9461

Table 6.7: Calculated IAE performance index for all of the controller types, presented
in increasing order. These values are calculated only from the experimental trials where

both tanks were weighted equally in the desired closed-loop system.

Remark 6.3. When calculating the IAE performance indices in Table 6.7, it is important
to recall that the nonlinear MPC uses a sampling interval of ts = 0.5 s, while the other
controllers use a sampling interval of ts = 0.1 s. See Appendix C on how this information
is included in the calculations.

Given the results in Table 6.7, there are several observations to be made, and parallel-
s/differences to be drawn between the simulations in Chapter 5 and the experimental
results presented in this chapter:

(i) In terms of the IAE performance index, the nonlinear MPC scored the lowest. I.e.,
the nonlinear MPC has the best performance, with respect to the total integral of
the absolute error. This coincides with the simulation results, where the nonlinear
MPC had the lowest total quadratic cost.

(ii) The adaptive MPC gives conflicting results between the simulations and the
experimental trials. In the simulations, the adaptive MPC performed better than
the explicit MPC, however, this is not the case for the experimental results.

As mentioned earlier in this chapter, the adaptive MPC exhibited the most aggres-
sive use of the control inputs, even though this MPC was programmed with the
biggest (in value) weighting matrices S and R, which, from a theoretical perspective,
would imply the adaptive MPC to have the least aggressive use of the control
inputs.

Chapter 6 Experimental Evaluation 147

(iii) While the regular PID feedback controller performed the worst, i.e., it had the
highest IAE index, Table 6.7 shows that the performance can be improved by incor-
porating a feedforward control action, in addition to a linear decoupler. However,
the MPC-based controllers, and the LQR-based controller, all outperformed the
PID-based controllers.

6.11.1 Modeling Error

As a final part of the analysis, it is important to recognise key factors as to why the
experimental results did not match the simulations fully. While the experimental results
did provide a close resemblance to the simulations, there are some differences, such as
the performance of the adaptive MPC. One possible factor, which consists of multiple
components, may be modeling error.

Assumptions

As mentioned in Chapter 3, no mathematical model can describe a physical system
perfectly. There will always be physical phenomena that cannot be modeled, which is
why there will always be some modeling error.

From a practical point of view, some assumptions were made along the modeling process
of the two-tank system:

(i) The valve characteristics were approximated, such that 0% on the valve opening
z(t) resulted in 0% flow rate f(z(t)) (see Figure 3.5).

(ii) It was assumed that the control signals to the valves uLV 00i(t), i ∈ [1, 2] directly,
and more importantly, immediately, corresponded to the valve opening zi(t) (see
(3.7)).

(iii) As the pump characteristics were found experimentally, by measuring the flow
qP A001(t) for a finite set of control inputs uP A001(t), there is an assumption, in
the form of interpolation, as to what the pump characteristics are between the
measured points.

Static Noise

Another assumption made during the simulations is perfect measurement of the water
level in Tank 1 and Tank 2, through LT001 and LT002, respectively. In reality, there is
some sensor noise that is not accounted for.

148 Chapter 6 Experimental Evaluation

As an experiment, both valves LV001 and LV002 were shut closed. I.e., uLV 00i(t) = 0, i ∈
[1, 2]. Furthermore, the pump is turned off, which is done by setting uP A001(t) = 0.45
(see Figure 3.6).

When the valves are shut closed, and no water from the pump flows to the system, the
water (which is already within the two tanks) become motionless. In this scenario, if the
measurements were indeed perfect, then, the signals from LT001 and LT002 would be
constants. However, Figure 6.23 shows the real signals from the level transmitters, which
clearly show signs of measurement noise.

0 20 40 60 80 100 120

0.665

0.67

0 20 40 60 80 100 120

0.185

0.19

0 20 40 60 80 100 120
0

0.5

Figure 6.23: Measurements from a static environment in the two-tank system. I.e., the
water levels are motionless.

Dynamic Disturbance

One factor that the mathematical model of the two-tank system does not account for, is
the disturbance caused by the flowing water. When the water from the pump flows into
Tank 1, it causes ripples in the water surface, which affects the measurements. Similarly,
ripples in the water surface of Tank 2 are caused by the water that flows into it from
Tank 1. Meaning that true steady states, in the mathematical models, do not equate to
steady states in the real system.

Chapter 6 Experimental Evaluation 149

For instance, consider the case where uLV 00i(t) = 0.6, i ∈ [1, 2] and uP A001(t) = 0.8,
∀t. When the system stabilizes, it is expected that a steady state is achieved, i.e.,
ḣ(t) = 0. However, due to the disturbance on the water surfaces, the measured water
levels exhibit changes, which are larger than the measurement noise shown in Figure
6.23. This phenomenon is shown in Figure 6.24, where uLV 00i(t), i ∈ [1, 2] and uP A001(t)
are held constant for 200 s. Most notably, are the changes in Tank 2, where the water
ripples can be clearly seen, especially between 150 s ≤ t ≤ 180 s.

100 110 120 130 140 150 160 170 180 190 200
0.305

0.31

0.315

100 110 120 130 140 150 160 170 180 190 200

0.18

0.185

0.19

100 110 120 130 140 150 160 170 180 190 200
0.6

0.7

0.8

Figure 6.24: Measurements from a steady state environment in the two-tank system.
I.e., the pump control input and the valve control inputs are held constant for a
prolonged interval. While stabilizing on a certain water level, the system shows signs of
disturbances caused by the ripples in the water surfaces, in addition to sensor noise.

Delay

Lastly, when modeling the two-tank system, there is an assumption of zero time delay.
Obviously, this is not the case for the real system, as the water has to traverse multiple
pipes, which takes time. In the simulations, however, it is assumed that the water
enters/exits the tanks immediately.

The time delay can be shown through an experiment where a step is made in uLV 001(t).
The pump is turned off and valve LV002 is shut closed, as to not interfere with the
experiment. The results of this experiment are shown in Figure 6.25, where a delay of

150 Chapter 6 Experimental Evaluation

≈ 2 s can be seen from the time at which valve LV001 opens (t ≈ 35 s), to the time at
which the water level in Tank 2 starts to rise (t ≈ 37).

34 35 36 37 38 39 40 41 42 43 44

0.4

0.5

0.6

34 35 36 37 38 39 40 41 42 43 44

0.2

0.25

0.3

34 35 36 37 38 39 40 41 42 43 44
0

0.5

1

Figure 6.25: Experimental results showing the time delay between valve LV001, and
the water level in Tank 2.

The assumptions made during the modeling procedure, the sensor noise, the dynamic
disturbance of the water, and the time delay, all add up to the total modeling error
between the two-tank model, and the real physical system. These system properties may
be contributing factors as to why, for instance, the adaptive MPC exhibited unexpected
excessive use of the control inputs, which was not the case in a simulation environment.

Chapter 7

Conclusions

7.1 Summary

This project has covered theoretical aspects of MPC-based controllers, such as the linear-,
explicit-, adaptive-, and nonlinear-MPC. Practical design and implementation of the
MPC-based controllers have also been covered in detail. MPC specifications such as the
prediction horizon, control horizon, sampling time, quadratic objective function, weighting
matrices, constraints (hard and soft), scaling factors, and the SQP/QP solver have all
been clearly defined, and thorough justifications for the selection of these parameters
have been provided.

Given its predictive nature, the prediction model is the crux of any MPC-based controller.
Using balance laws, it was shown how a nonlinear mathematical model, which describes
the dynamics of the two-tank system, can be obtained.

It was further shown how, through linearization of the nonlinear model, a linear model
can be obtained. The linear model was expressed in a state-space form, where system
properties such as controllability and stability were shown. Additionally, the linear
model was reduced to algebraic equations through the Laplace transform. In the Laplace
domain, several transfer functions were derived, which are useful when designing a PID
feedback controller, a feedforward control action, and a linear decoupler.

A brief introduction to numerical solvers was provided, which included a description of
the MATLAB ode45 solver and the Euler method. Additionally, the zero-order hold
discretization method was used to discretize the linear continuous time state-space model.

Given the prediction models and the MPC specifications, the MPC-based controllers were
implemented and evaluated in a simulation environment. The goal of the simulations

151

152 Chapter 7 Conclusions

was to determine the controllers set-point tracking and disturbance rejecting abilities.
I.e., rectangular pulses in the set-points and the disturbance were introduced during the
simulations, in order to observe how the closed-loop systems would respond to these
changes.

The total quadratic costs for the different MPC-based controllers were calculated based
on the simulation results. Based on these calculated quadratic costs, the nonlinear MPC
proved to have the superior closed-loop response with the lowest total quadratic cost.
Conversely, the explicit MPC proved to have the inferior closed-loop response with the
highest total quadratic cost.

In addition to calculating the total quadratic costs, the code execution times of the
different MPC-based controllers were recorded. Based on these recordings, it was shown
that the explicit MPC provided the fastest code execution time, while the nonlinear
MPC provided the slowest code execution time.

Experimental validation of the MPC-based controllers was provided, as the controllers
were implemented and tested on the real two-tank system. In addition to the MPC-based
controllers, an LQR-based controller and three PID-based controllers were also designed,
implemented, and tested on the system.

The experimental results showed that the MPC-based controllers do provide satisfactory
control of the two-tank system, where the water levels follow the set-points, and the
disturbance is rejected by the respective closed-loop systems. This was also the case for
the LQR- and PID-based controllers.

When evaluating the performance of the different controllers, the integral of absolute
error (IAE) performance index was used. Based on the IAE performance indices, it can
be concluded that the nonlinear MPC exhibited the superior closed-loop response. In
contrast, the simple PID feedback controller showcased the worst closed-loop performance,
with the highest overall IAE score.

Contrary to the simulation results, the adaptive MPC exhibited excessive use of the
control inputs during the experimental trials on the two-tank system, effectively degrading
its performance. This may be explained by modeling errors such as sensor noise, additional
disturbances, and delays in the system, which, due to the continuous updating of the
prediction model in an adaptive MPC, may result in unpredicted behaviour.

Lastly, experimental trials were conducted, where the linear MPC used a combination
of real measurements and state estimates to control the two-tank system. The state
estimates were obtained by the MHE state estimator. These experimental results showed
that it is possible to control the system with the use of state estimates, which is useful in

Chapter 7 Conclusions 153

practical scenarios where it may not be possible to measure the states directly, or, in the
scenarios where the measurements are highly corrupted by noise, in which, an estimate
is the preferred option.

7.2 Advantages

There are several advantages to the MPC-based controllers, which may explain the
superior IAE performance indices, compared to the IAE performance indices of the LQR-
and PID-based controllers:

(i) The MPC-based controllers, with the exception of the explicit MPC, have the ability
to account for future changes in the set-points and the disturbance, respectively,
if these values are known beforehand. This previewing ability comes from the
predictive nature of MPC, where it optimizes the control inputs over a P -step
prediction horizon. This previewing ability is not an ability that the infinite-horizon
LQR-based controller, nor the PID-based controllers possess.

(ii) Similarly to the LQR-based controller, the MPC-based controllers can be optimized
for specific objectives, by adjusting the weighting matrices accordingly. This allows
for flexibility for the operating engineer, which has the ability to, e.g., program the
closed-loop system such that it prioritizes Tank 2 more than Tank 1.

This is added flexibility that the PID-based controllers do not provide, as it is not
possible to, e.g., program the PID controller such that the control input rates are
limited, which, in the case of the LQR- and MPC-based controllers, is achieved by
simply increasing the S weighting matrix.

(iii) All of the MPC-based controllers, and the LQR-based controller, showcased strong
decoupling abilities. Since the two tanks are coupled, any change in Tank 1 acts
as a disturbance on Tank 2. This is most evident by studying the experimental
results of the simple PID feedback controller (see Figure 6.17, at 50 s ≤ t ≤ 200 s).
Such disturbances on Tank 2, as shown in Figure 6.17, are highly suppressed in the
experimental results of the MPC-based controllers and the LQR-based controller.
Additionally, if the MPC- and LQR-based controllers are programmed to prioritize
Tank 2 more than Tank 1, then, the decoupling ability is reinforced even more.

It was shown that a linear decoupler could be added to aid the PID feedback
controller in eliminating this disturbance, however, as seen in Figure 6.19, Tank 2
is still slightly affected by set-point changes in Tank 1, and strongly affected by
changes in the disturbance, which is not the case for the MPC- and LQR-based
controllers.

154 Chapter 7 Conclusions

(iv) A big advantage of the MPC-based controllers is their ability to satisfy constraints
(both hard and soft) on the control inputs, the control input rates, and the outputs.
The simulations and the experimental results showed that all of the MPC-based
controllers satisfied the constraints imposed on the control inputs at all times. This
is a big advantage, especially when saturation can be an issue.

This is in contrast to the LQR- and PID-based controllers, which do not account
for any constraints in their closed-loop systems, respectively.

Like the weighting matrices, the ability to subject the optimization problem of an
MPC to constraints gives added flexibility, which, again, is not available for the
LQR- and PID-based controllers.

(v) Contrary to the LQR- and PID-based controllers, the nonlinear MPC has the
capabilities of using a nonlinear prediction model, optimized over a nonlinear
objective function, subjected to nonlinear constraints.

This is a big advantage, considering the fact that the LQR- and PID-based con-
trollers are restricted to linear models, which are often obtained through lineariza-
tion around a nominal solution. I.e., the linear model used for the design of the
LQR- and PID-based controllers is only applicable in the vicinity of the nominal
solution.

For highly nonlinear systems, this means that the linear model quickly becomes
inapplicable as the system is driven away from the neighborhood of the point of
linearization, effectively rendering the designed LQR- and PID-based controllers
non-optimal.

Since the nonlinear MPC utilizes a nonlinear prediction model, this is not an issue,
and the closed-loop system is able to provide optimal control over the entire range
of the system, and not just in the vicinity of a nominal solution.

(vi) Lastly, as shown in this project, the MPC-based controllers do have the capabilities
of controlling a fast sampling system. Recall that the linear-, explicit-, and adaptive-
MPC all provided feasible control policies with a sampling interval of ts = 0.1 s,
while the nonlinear MPC provided a feasible control policy with a sampling interval
of ts = 0.5 s.

While the first intended use cases of MPC was slow industrial processes with
sampling intervals ranging up to several minutes [9], modern technology provides
strong computational capabilities, which allows for the SQP/QP optimization
problems to be solved within much shorter time frames. This technological evolution,
since the inception of MPHC, makes the MPC-based controllers a viable option
for a wide range of systems, not only restricted to slow sampling systems such as
industrial processes.

Chapter 7 Conclusions 155

7.3 Disadvantages

While there are several advantages to the MPC approach, there are also some disadvan-
tages that were noted during this project:

(i) As mentioned earlier, the prediction model is the crux of any MPC-based controller.
Since the MPC approach is so dependent on the prediction model, the closed-loop
system is especially vulnerable to modeling errors.

This can be seen by comparing the control inputs of the LQR- and PID-based
controllers, with the control inputs of the MPC-based controllers. While the control
inputs from the LQR- and PID-based controllers are less abrupt and smooth, the
control inputs from the MPC-based controllers show more signs of being affected
by modeling errors such as noise and disturbances. I.e., the control inputs from
the MPC-based controllers appear more aggressive and ’jagged’.

(ii) Another disadvantage is that the MPC approach is computationally demanding.
The receding horizon policy does require the MPC to solve an SQP/QP optimization
problem on every control interval, where, out of the M calculated optimal control
moves, only the first optimal control move uopt(k) is applied to the system and the
rest are discarded.

While the SQP/QP optimization problems proved to be manageable for fast
sampling systems in this project, this might not be the case for larger systems, as
the SQP/QP optimization problems become more complex with a larger number
of controlled outputs and manipulated variables.

(iii) Although the explicit MPC provided the fastest code execution time (compared
to the other MPC-based controllers), it is the controller that requires the most
storage on the system hardware. It was shown that the number of polyhedral
regions increased drastically, as the control horizon M became larger (see Table
5.3). This sets a physical limit on how complex the explicit MPC can get, before the
number of polyhedral regions and predefined piecewise affine control laws exceed
the available storage space on the system hardware.

(iv) While the weighting matrices Q, R, and S do provide flexibility to the control
engineer, with respect to the desired behavior of the closed-loop system, selecting
the right weighting matrices can be a tedious process. I.e., some trial and error
is required before the correct weighting matrices, which result in the desired
closed-loop system, are found.

(v) Lastly, while not directly a disadvantage from a performance point of view, the
MPC specifications are numerous. When designing an MPC-based controller, there

156 Chapter 7 Conclusions

are several specifications that need to be accounted for, such as the prediction
horizon, control horizon, sampling time, quadratic objective function, weighting
matrices, constraints (hard and soft), scaling factors, and the SQP/QP solver.
From a practical point of view, the amount of effort needed to correctly tune an
MPC-based controller can be considered as a disadvantage, especially when other
controller options, such as LQR- and PID-based controllers, have significantly less
specifications that need tuning.

7.4 Conclusion

Conclusively, the MPC approach proves to be a viable option for medium sized, fast
sampling systems. From the simulations and the experimental trials presented in this
project, the MPC approach exhibited satisfactory set-point tracking and disturbance
rejecting abilities.

Additionally, the linear-, explicit-, and nonlinear-MPC all exhibited superior closed-loop
systems (with respect to the IAE performance index) in comparison to more traditional
controller techniques such as LQR- and PID-based controllers.

The MPC’s look-ahead control policy provides a closed-loop system which is able to take
action before changes in the set-points and the disturbances occur, if this information is
known beforehand.

The weighting matrices Q, R, and S do provide extended flexibility to the control
engineer, where the closed-loop system can be fine-tuned, such that a desired response is
achieved.

The MPC can be subjected to constrains on the controlled outputs, manipulated inputs,
and manipulated input rates, such that saturations on the outputs and inputs are avoided
at all times during operation.

The MPC provides strong decoupling abilities, where the effects of coupled outputs/inputs
are minimized. In the case of the two-tank, which is a coupled system, changes in Tank 1
resulted in negligible disturbances in Tank 2 due to the decoupling abilities of the MPC’s,
especially when Tank 2 was prioritized more than Tank 1 in the closed-loop system.

Due to the MPC’s heavily reliance on the prediction model, it is absolutely critical that
the modeling error is kept at a minimum. Otherwise, the future predicted trajectory
of the system might be inaccurate, effectively rendering the calculated optimal control
moves inappropriate.

Chapter 7 Conclusions 157

7.5 Future Directions

An accurate prediction model is the key to a well-functioning MPC. Recent studies in
the field of MPC emphasise this notion by incorporating advanced system modeling
techniques, such that the modeling error is kept at a minimum.

For instance, [40] discusses the use of data-driven prediction models in combination with
model predictive control. [41] incorporates machine learning, in the form of complex
neural network architectures, to describe the dynamics of a system, which the MPC uses
as a prediction model.

Rather than a dynamic model obtained via balance laws, an interesting avenue is to
incorporate more advanced modeling techniques, such as those in the aforementioned
research papers, to describe the dynamic behaviour of the two-tank system.

From an engineering perspective, there are some changes that can be incorporated to
the system design, such that the modeling error is mitigated. For instance, a low-pass
filter can be added to the measured outputs, such that the high-frequency measurement
noise from LT001 and LT002 are removed.

Another change in the design of the two-tank system can be to manipulate the pathway
of the water from the pipe into the tank. I.e., instead of the water cascading from the
pipe, and flowing directly onto the water surface (which gives rise to large ripples in the
water surface, effectively acting as a disturbance), a hose can be attached to the end of
the pipe, which directs the water to the bottom of the tank. This way, as the water level
rises, the hose submerges, meaning that the tank is filled from the bottom. Thus, no
water disrupts the water surface, effectively mitigating this dynamic disturbance which
was shown in Figure 6.24.

Lastly, another interesting future direction for a possible improvement to the overall
closed-loop system with an MPC, is to add an integral action, similarly to the integral
action from a PID-controller. With the integral action, it may be possible to completely
remove any steady-state error, effectively improving the set-point tracking and the
disturbance rejecting abilities of the closed-loop system.

Appendix A

LQR Control

Linearizing the nonlinear two-tank model about the nominal solution:

h̃1 = 0.5, h̃2 = 0.2, ũP A001 = 0.8, ũLV 001 = 0.5317, ũLV 002 = 0.5680︸ ︷︷ ︸
NS

(A.1)

results in the following continuous time linear state-space model:

∆ḣ1(t)
∆ḣ2(t)

 =

−0.02295 0
0.01275 −0.01559

 ·
∆h1(t)

∆h2(t)

+

−0.07189 0
0.03994 −0.03805

 ·
∆uLV 001(t)

∆uLV 002(t)

+

0.0450
0

 ·∆uP A001(t)

∆ĥ1(t)
∆ĥ2(t)

 =

1 0
0 1

 ·
∆h1(t)

∆h2(t)

(A.2)

159

160 Appendix A LQR Control

Discretizing (A.2) using the ZOH method with a sampling period of ts = 0.1 s, results in
the following discrete time linear state-space model:

∆h1(k + 1)
∆h2(k + 1)

 =

 0.9977 0
0.001273 0.9984

 ·
∆h1(k)

∆h2(k)

+

−0.007181 0
0.003986 −0.003802

 ·
∆uLV 001(k)

∆uLV 002(k)

+

 0.004495
2.866 · 10−6

 ·∆uP A001(k)

∆ĥ1(k)
∆ĥ2(k)

 =

1 0
0 1

 ·
∆h1(k)

∆h2(k)

 +

0 0 0
0 0 0

 ·

∆uLV 001(k)
∆uLV 002(k)
∆uP A001(k)

(A.3)

As described in Chapter 2, a steady state optimum gain matrix K∞ can be found by
solving the following discrete time infinite-horizon LQR problem:

K∞ = (R + BT P∞B)−1BT P∞A (A.4)

where:
P∞ = AT P∞A−AT P∞B(R + BT P∞B)−1BT P∞A + Q (A.5)

The matrices A and B can be found from the state-space model (A.3):

A =

 0.9977 0
0.001273 0.9984

 , B =

−0.007181 0
0.003986 −0.003802

 (A.6)

The weighting matrices Q and R are selected depending on the priority of the desired
closed-loop response. For the case where both tanks are weighted equally, the LQR uses
the following weighting matrices:

Q =

100 0
0 100

 , S =

0 0
0 0

 , R =

1 0
0 1

 (A.7)

which, when solving (A.4) and (A.5) for K∞, yields the following optimum steady state
gain matrix:

K∞ =

−8.7864 3.1019
−3.2865 −8.8629

 (A.8)

When prioritizing Tank 1 more than Tank 2, the LQR-controller uses the weighting
matrices:

Q =

100 0
0 10

 , S =

0 0
0 0

 , R =

1 0
0 1

 (A.9)

Appendix A LQR Control 161

which, when solving (A.4) and (A.5) for K∞, yields the following optimum steady state
gain matrix:

K∞ =

−9.2566 0.4000
−1.3090 −2.7349

 (A.10)

Finally, when prioritizing Tank 2 more than Tank 1, the LQR-controller uses the weighting
matrices:

Q =

10 0
0 100

 , S =

0 0
0 0

 , R =

1 0
0 1

 (A.11)

which, when solving (A.4) and (A.5) for K∞, yields the following optimum steady state
gain matrix:

K∞ =

−2.3425 5.1162
−1.6844 −7.8983

 (A.12)

Alternatively, this can be done in MATLAB using the following syntax:

1 [K, P, S] = lqr(sys , Q, R);

where sys, Q, and R are the state-space model, output weighting matrix Q, and input
weighting matrix R, respectively. The outputs from this function, i.e., K, P, and S are
the gain matrix K∞, the solution of the associated algebraic Riccati equation P∞, and
the poles of the closed-loop system, respectively.

Appendix B

PID Control

Linearizing the nonlinear two-tank model about the nominal solution:

h̃1 = 0.5, h̃2 = 0.2, ũP A001 = 0.8, ũLV 001 = 0.5317, ũLV 002 = 0.5680︸ ︷︷ ︸
NS

(B.1)

results in the following continuous time linear state-space model:

∆ḣ1(t)
∆ḣ2(t)

 =

−0.02295 0
0.01275 −0.01559

 ·
∆h1(t)

∆h2(t)

+

−0.07189 0
0.03994 −0.03805

 ·
∆uLV 001(t)

∆uLV 002(t)

+

0.0450
0

 ·∆uP A001(t)

∆ĥ1(t)
∆ĥ2(t)

 =

1 0
0 1

 ·
∆h1(t)

∆h2(t)

(B.2)

Performing the Laplace transform on (B.2) results in the following equations (see Section
3.4.2):

s∆H1(s) = −0.02295∆H1(s)− 0.07189∆ULV 001(s) + 0.045∆UP A001(s) (B.3)

s∆H2(s) = 0.01275∆H1(s)− 0.01559∆H2(s)

+ 0.03994∆ULV 001(s)− 0.03805∆ULV 002(s)
(B.4)

163

164 Appendix B PID Control

Through algebraic manipulation of (B.3) and (B.4), the subsequent transfer functions
are found, respectively:

G1(s) = H1(s)
ULV 001(s) = −0.07189

s + 0.2295 = −3.13
43.57s + 1 (B.5)

G2(s) = H2(s)
ULV 002(s) = −0.03805

s + 0.01559 = −2.44
64.14s + 1 (B.6)

The control law for the PID-controller is given by:

u(t) = ũ + Kpe(t) + Kp

Ti

∫ t

0
e(τ)dτ + KpTd

de(t)
dt

(B.7)

where

• ũ is the nominal control action. I.e., the point at which the nonlinear model was
linearized, with respect to the control input.

• e(t) is the tracking error between the controlled output and the reference.

• Kp is known as the proportional gain.

• Kp

Ti
is known as the integral gain.

• KpTd is known as the derivative gain.

To find the PID control parameters Kp, Ti, and Td, the Internal Mode Control (IMC)
method is used. For a first order transfer function, which is the case in (B.5) and (B.6),
the IMC method defines the PID control parameters as (see [20] Section 12.2.2, pp.
205-207):

Kp = τ

κτc
(B.8)

Ti = τ (B.9)

Td = 0 (B.10)

where:

• κ is gain of the first order transfer function.

• τ is the time constant of the first order transfer function.

• τc is the desired time constant of the closed-loop system.

Table B.1 shows the different parameters for the simple PID feedback controller for the
two tanks, respectively.

Appendix B PID Control 165

G1(s) G2(s)
κ −3.13 −2.44
τ 43.57 64.14
τc τ/4 = 10.9 τ/4 = 16.04
Kp −1.27 −1.63
Ti 43.57 64.14
Td 0 0

Table B.1: Parameters for the PID feedback controller.

B.1 Feedforward Control

The feedforward control action is added only to Tank 1. Firstly, the equation (B.3) is
manipulated into an expression for ∆H1(s):

∆H1(s) = −0.07189
s + 0.02295︸ ︷︷ ︸

G1(s)

∆ULV 001(s) + 0.045
s + 0.02295︸ ︷︷ ︸

Gd(s)

∆UP A001(s) (B.11)

Now, suppose that the water level in Tank 1 follows the reference perfectly, i.e., ∆H1(s) =
∆H1,ref (s). Furthermore, suppose that the control input in (B.11) is the control input
from the feedforward control action, i.e., ∆ULV 001(s) = ∆UF.F orward(s). Given these
definitions, (B.11) can be rewritten subsequently:

∆H1,ref (s) = −0.07189
s + 0.02295︸ ︷︷ ︸

G1(s)

∆UF.F orward(s) + 0.045
s + 0.02295︸ ︷︷ ︸

Gd(s)

∆UP A001(s) (B.12)

Solving (B.13) for ∆UF.F orward(s) results in:

∆UF.F orward(s) = s + 0.02295
−0.07189 ∆H1,ref (s)− 0.045

s + 0.02295 ·
s + 0.02295
−0.07189 ∆UP A001(s)

= −0.02295
0.07189︸ ︷︷ ︸
GF.,ref (s)

∆H1,ref (s) + 0.045
0.07189︸ ︷︷ ︸
GF.,d(s)

∆UP A001(s)

(B.13)
which is the contribution from the feedforward control action. Note the simplification in
GF.,ref (s), which is necessary to achieve a proper1 transfer function.

B.2 Linear Decoupler

Lastly, a linear decoupler is added to the PID feedback controller and the feedforward
control action. A linear decoupler can be constructed through a relative gain array

1I.e., the degree of the numerator does not exceed the degree of the denominator.

166 Appendix B PID Control

(RGA). This method will not be covered here, however, a detailed discussion on RGA
can be found in [20] Section 18.2.1, pp. 332-334.

In short, the contribution from the linear decoupler is given by:

∆UDecoupler,1(s) = T1,2(s)∆ULV 002(s) (B.14)

∆UDecoupler,2(s) = T2,1(s)∆ULV 001(s) (B.15)

where T1,2(s) and T2,1(s) are defined as:

T1,2(s) = −G1,2(s)
G1(s) (B.16)

T2,1(s) = −G2,1(s)
G2(s) (B.17)

Note that the subscript Gi,j denotes the transfer function between the control input j

and the output i. I.e.,

G1,2(s) = ∆H1(s)
∆ULV 002(s) = 0 (B.18)

G2,1(s) = ∆H2(s)
∆ULV 001(s) = −2.56

64.14s + 1 (B.19)

Inserting (B.18) and (B.19) into (B.16) and (B.17), respectively, results in the following
transfer functions:

T1,2(s) = − 0
G1(s) = 0 (B.20)

T2,1(s) = − −2.56
64.14s + 1 ·

64.14s + 1
−2.44 = −1.049 (B.21)

Finally, inserting (B.20) into (B.14), and (B.21) into (B.15), gives the expression for the
contribution from the linear decoupler:

∆UDecoupler,1(s) = 0 (B.22)

∆UDecoupler,2(s) = −1.049∆ULV 001(s) (B.23)

Appendix C

Integral of Absolute Error

One common performance index when comparing controllers is the integral of absolute
error (IAE). In the continuous time domain, the IAE performance index is calculated
subsequently:

IAE =
∫ ∞

0
|e|dt (C.1)

where e is the reference tracking error of the closed-loop system.

In the discrete time domain, the IAE performance index is calculated as:

IAE =
∞∑

k=0
h|e(k)| (C.2)

where h is the time between sample k and k − 1, i.e., the sampling period ts.

Note that, in practise, the integral/sum of the IAE performance index is calculated over
a finite time interval, and not an infinite integral/sum. The finite time interval is often
limited to the length of the simulation/experimental trial under consideration.

167

Appendix D

Box Plot

A box and whisker plot (also called a box plot) is a commonly used graphical tool among
statisticians, which illustrates key statistical properties of a data set.

Suppose that a data set is generated by selecting 100 uniformly distributed pseudorandom
integers ranging from [40− 60], plus, 10 uniformly distributed pseudorandom integers
ranging from [20− 30], plus, 10 uniformly distributed pseudorandom integers ranging
from [70− 80]. Given this data set, the box plot seen in Figure D.1 can be generated.

Data Set 1

20

30

40

50

60

70

80

Figure D.1: Box plot generated from a random data set.

169

170 Appendix D Box Plot

There are six key statistical properties that can be observed in Figure D.1, with respect
to this data set:

(i) The blue box encloses the interquartile range of the data set.

(ii) The blue horizontal line at the bottom of the blue box represents the 25th percentile,
i.e., the lower quartile.

(iii) The blue horizontal line at the top of the blue box represents the 75th percentile,
i.e., the upper quartile.

(iv) The red line within the blue box represents the median value of the data set.

(v) The whiskers are the two lines that are connected to the blue box via dashed
lines (above and below). The upper whisker is the largest nonoutlier data point,
while the lower whisker is the smallest nonoutlier data point. The upper and lower
whiskers are also referred to as the upper and lower adjacent, respectively.

(vi) The red dots are outliers. These are defined as data points which are 1.5 · IQR

away from the top or from the bottom of the box, respectively. IQR is defined as
the interquartile range, which is simply the distance between the lower and upper
quartiles.

For a more detailed discussion on box plots, see for instance [42], pp. 44-47.

Appendix E

Two-Tank Component Specifications

Figure E.1: Pump specifications.

171

172 Appendix E Two-Tank Component Specifications

Figure E.2: Valve specifications.

Appendix E Two-Tank Component Specifications 173

Figure E.3: Level transmitter specifications.

174 Appendix E Two-Tank Component Specifications

Figure E.4: Positioner specifications.

Figure E.5: Positioner model.

Appendix F

Project Description

175

Masteroppgave – Model predictive control of the two-

tank system

Model predictive control (MPC) is a control paradigm that relies on the model of the plant to

be controlled in order to predict the effect that a certain input value will have on the plant’s

state. The prediction is included into an online optimization problem that is solved online to

compute the optimal control sequence to be applied. Contrarily to other control strategies,

such as the LQR or the PID, MPC-based control systems can anticipate future events. Also, this

method is inherently capable of handling highly constrained nonlinear systems. For this

reason, MPC has been applied successfully in many industrial settings, such as for example

chemical plants and oil refineries, just to name a few.

Figure 1 – Model predictive control conceptual scheme

This project aims at designing and implementing an MPC-based control system to control the

two-tank system available in the laboratory at KE E-458 and compare its performance against

other more conventional control strategies. At first, a simple linear MPC strategy will be used.

In subsequent phases of the projects, other types of MPC strategies will be applied, such as

nonlinear MPC or robust MPC. It is expected that the advantages/disadvantages of applying

this technique are evaluated both in a simulation environment and with experimental data

obtained from the two-tank system.

ACTIVITIES AND OBJECTIVES

• Literature study and analysis of the state-of-the-art of MPC

• Implementation and evaluation of linear MPC in simulation environment

• Implementation and evaluation of advanced MPC in simulation environment

• Experimental validation of the designed MPC-based control systems on the two-tank

system available in the room KE E-458

• Comparison of MPC against PID and LQR control strategies

STUDENT PROFILE

• Strong skills and interest in control systems (the student should have passed both

ELE600 and ELE620)

• Proficiency in MATLAB and Simulink

RELEVANT MATERIAL

https://www.youtube.com/watch?v=YwodGM2eoy4 (Overview of MPC by Steve Brunton)

Rawlings, James B. "Tutorial overview of model predictive control." IEEE control systems

magazine 20.3 (2000): 38-52.

Ellis, Matthew, Helen Durand, and Panagiotis D. Christofides. "A tutorial review of economic

model predictive control methods." Journal of Process Control 24.8 (2014): 1156-1178.

Appendix G

Project Plan

178

M
S

c
T

h
e

si
s

-
G

e
n

t
L

u
ta

P
ER

IO
D

ER
 =

 W
ee

k
N

u
m

b
er

 P
er

io
d

eu
th

ev
in

g:
2

4

P
ER

IO
D

E
R

1
2

3
4

5
6

7
8

9
1

0
1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
2

0
2

1
2

2
2

3
2

4
2

5
2

6
2

7
2

8
2

9
3

0
3

1
3

2
3

3
3

4
3

5
3

6
3

7
3

8
3

9
4

0
4

1
4

2
4

3
4

4
4

5
4

6
4

7
4

8
4

9
5

0
5

1
5

2
5

3
5

4
5

5
5

6
5

7
5

8
5

9
6

0

C
h

ap
te

r
1

: I
n

tr
o

d
u

ct
io

n
6

2

C
h

ap
te

r
2

: R
e

la
te

d
 W

o
rk

 (
Th

e
o

ry
)

8
4

C
h

ap
te

r
3

: A
p

p
ro

ac
h

 (
To

y
e

xa
m

p
le

s
/

Si
m

u
la

ti
o

n
s)

12
4

C
h

ap
te

r
4

: E
xp

e
ri

m
e

n
ta

l E
va

lu
at

io
n

16
3

C
h

ap
te

r
4

.5
: C

o
lla

b
o

ra
ti

o
n

 c
h

ap
te

r
(M

H
E)

19
2

C
h

ap
te

r
5

: C
o

n
cl

u
si

o
n

s
/

D
is

cu
ss

io
n

21
2

R
e

p
o

rt
 (

A
b

st
ra

ct
 /

 A
ck

n
o

w
le

d
ge

m
e

n
ts

 /
 P

ro
o

f
re

ad
in

g)
23

2

Fi
rs

t
D

ra
ft

 R
e

p
o

rt
8

1

Se
co

n
d

 D
ra

ft
 R

e
p

o
rt

13
1

Th
ir

d
 D

ra
ft

 R
ap

o
rt

17
1

Fo
u

rt
h

 D
ra

ft
 R

e
p

o
rt

 (
M

as
te

ro
p

p
ga

ve
r)

22
1

 %
 fu

llf
ø

rt
 (

u
to

ve
r

p
la

n
en

)

A
K

TI
V

IT
ET

P
LA

N
LA

G
T

ST
A

R
T

P
LA

N
LA

G
T

V
A

R
IG

H
ET

FA
K

TI
SK

 S
TA

R
T

FA
K

TI
SK

V
A

R
IG

H
ET

P
R

O
SE

N
T

FU
LL

FØ
R

T

P
la

n
la

gt
 v

ar
ig

h
et

Fa
kt

is
k

st
ar

t
 %

 fu
llf

ø
rt

Fa
kt

is
k

(u
to

ve
r

p
la

n
en

)

Appendix H

Master Theses Poster Presentation

180

Design and Implementation of
Model Predictive Control for a
Coupled Tank System

Gent Luta

Introduction:

Increased computational power, faster sensors and
communications, and bigger storage capacity were
the key motivators for the development of Model
Predictive Control (MPC). Today, MPC is a wide-
spread process control technique within areas such as
refining, petrochemicals, and chemicals.

MPC can handle highly nonlinear, multivariate
systems that are subjected to multiple constraints.
Additionally, MPC has the ability to anticipate future
events due to its predictive nature.

Conclusion:

Pending. (Extended submission deadline.)

Objectives:

This project aims at designing and implementing MPC-
based control systems for the two-tank system, such as:
Linear MPC, and Explicit MPC

These MPC-based controllers are to be designed,
implemented and evaluated on the Two-tank system, as
well as in simulation environments.

Prediction
Model

Optimizer

MPC

Plant

Measured
Outputs

Measured
Disturbances

Control
Moves

Measured
Outputs

References

‘The essence of MPC is to optimize,

over the manipulated inputs, forecasts

of process behavior.’ - J.B. Rawlings

An MPC consists of a prediction model and an optimizer. The

prediction model describes the process dynamics, while the

optimizer uses algorithms to minimize / maximize an

objective function.

Department of Electrical Engineering
and Computer Science

Master’s Thesis Poster

LT
001

LT
002

FT
001

𝑢𝑃𝐴001 𝑡

ℎ1 𝑡

ℎ1,𝑢𝑡𝑙𝑜𝑝

ℎ𝐿𝑉001

ρ

𝐴1

𝑢𝐿𝑉001 𝑡

𝑞𝐿𝑉001 𝑡

ℎ2 𝑡

𝐴2 ℎ2

ℎ2,𝑢𝑡𝑙𝑜𝑝

ℎ𝐿𝑉002

𝑢𝐿𝑉002 𝑡

𝑞𝐿𝑉002 𝑡

𝑻𝒂𝒏𝒌𝟏

𝑻𝒂𝒏𝒌𝟐

𝑷𝑨𝟎𝟎𝟏

𝑪𝒐𝒍𝒍𝒆𝒄𝒕𝒊𝒐𝒏 𝑽𝒆𝒔𝒔𝒆𝒍

𝑞𝑃𝐴001 𝑡

𝑳𝑽𝟎𝟎𝟏

𝑳𝑽𝟎𝟎𝟐

Physical System

Step Response
(Using Linearized Model)

Description:

Coupled, pump fed, two-tank
system equipped with
pneumatic valve actuators for
level control.

The control design expects that
the fluid levels are output
variables; the valve signals are
manipulated variables; and the
pump signal is a measured
disturbance.

Modeling:

Nonlinear
mathematical
modeling (i.e.,
describing the system
dynamics) is achieved
using conservation /
balance laws.

Linear models are
obtained by
linearization of the
nonlinear model.

Step Response:

Step response of the
linear model gives us
important
information for
future MPC design
such as time
constants, which is
used when
determining
sampling time and
prediction horizon.

Results:
400 seconds are simulated using a sampling time of 0.5 seconds. I.e., each simulation is 800 time steps. This is
done 10 times to calculate the weighted averages and standard deviations of both execution time and total
cost of the objective function.
μ : Weighted Average
σ : Standard Deviation

Linear MPC w/ previewing:
Execution Time: μ = 0.985ms , σ = 0.1105ms
Total Objective Function Cost: μ = 462,387 , σ = 0.017e − 3

Linear MPC w/o previewing:
Execution Time: μ = 0.978ms , σ = 0.1012ms
Total Objective Function Cost: μ = 465,695 , σ = 0

Explicit MPC :
Execution Time: μ = 0.507ms , σ = 7.52e − 5s

Total Objective Function Cost: μ = 466,12 , σ = 2.22e − 5

Examples of Explicit MPC polyhedral partitioning

Appendix I

MATLAB Code

I.1 Functions

I.1.1 AdaptiveSys.m

1 function sys = AdaptiveSys (x,u, ts)

2 %% Linearization point

3 h1_A = x(1);

4 h2_A = x(2);

5 u_PA001_A = u(3);

6 u1_A = u(1);

7 u2_A = u(2);

8 f1_A = ValveChar (u1_A);

9 f2_A = ValveChar (u2_A);

10

11 %% System parameters

12 rho = 1000;

13 g = 9.81;

14 A1 = 0.01;

15 Kv1 = 11.25;

16 Kv2 = 11.25;

17 h_LV001 = 0.05;

18 h_LV002 = 0.25;

19

20 %% Function Handles

21 f1_handle = @ValveChar ;

22 f2_handle = @ValveChar ;

23 f3_handle = @PumpChar ;

24

25 delta = 0.01; %Step size (numerical difference)

26

27 %% Linearization

185

Appendix I MATLAB Code 186

28 % A - Matrix

29 a11 = - (sqrt (100000)) /(7.2*10^8) * ((Kv1*f1_A*rho*g) / (A1*sqrt(rho*g*(

h1_A + h_LV001))));

30 a12 = 0;

31 a21 = ((1) /(0.004 + 0.07* h2_A)) * ((sqrt (100000)) /(7.2*10^8)) * ((Kv1*

f1_A*rho*g) / (sqrt(rho*g*(h1_A + h_LV001))));

32 a22 = - ((1) /(0.004 + 0.07* h2_A)) * ((sqrt (100000)) /(7.2*(10^8))) * ((Kv2

*f2_A*rho*g) / (sqrt(rho*g*(h2_A + h_LV002))));

33 A = [a11 a12; a21 a22];

34

35 % B - Matrix

36 b11 = - ((Kv1) /(3600* A1)) * sqrt ((rho*g*(h1_A + h_LV001)) /100000) *

forward_diff (f1_handle , u1_A , delta);

37 b12 = 0;

38 b21 = ((1) /(0.004 + 0.07* h2_A)) * (Kv1 /3600) * sqrt ((rho*g*(h1_A +

h_LV001)) /100000) * forward_diff (f1_handle , u1_A , delta);

39 b22 = -((1) /(0.004 + 0.07* h2_A)) * (Kv2 /3600) * sqrt ((rho*g*(h2_A +

h_LV002)) /100000) * forward_diff (f2_handle , u2_A , delta);

40 B = [b11 b12 ; b21 b22];

41

42 % C - Matrix

43 C = eye (2);

44

45 % D - Matrix

46 %D = zeros (2);

47

48 % G - Matrix (Disturbance)

49 g11 = forward_diff (f3_handle , u_PA001_A , delta)/A1;

50 g21 = 0;

51 G = [g11; g21];

52

53 % B_a - Matrix (Augmented)

54 B_a = [B G];

55

56 % D_a - Matrix (Augmented)

57 D_a = zeros (2, 3);

58

59 %% State -Space -Model

60 sys = ss(A, B_a , C, D_a); % CT State -Space Model

61 sys = c2d(sys ,ts); % DT State -Space Model (ts sampling)

62 % Signal Names

63 sys. InputName = {’u1’, ’u2’, ’u_PA001 ’};

64 sys. OutputName = {’h1’, ’h2’};

65 sys. StateName = {’h1’, ’h2’};

66 % Signal Units

67 sys. InputUnit = {’-’, ’-’, ’-’};

68 sys. OutputUnit = {’m’, ’m’};

69 sys. StateUnit = {’m’, ’m’};

Appendix I MATLAB Code 187

70 % Signal Types

71 sys = setmpcsignals (sys , ’MV’, [1 2], ’MD’, 3, ’MO’, [1 2]);

I.1.2 central_diff.m

1 function derivative = central_diff (f, u, h)

2 derivative = (f(u+h) - f(u-h))/(2*h);

3 end

I.1.3 forward_diff.m

1 function derivative = forward_diff (f, u, h)

2 derivative = (f(u+h) - f(u))/(h);

3 end

I.1.4 InversValveChar.m

1 function u = InversValveChar (f)

2 u = exp(log(log(f*exp (1) -f+1))/1.2);

3 end

I.1.5 PumpChar.m

1 function f = PumpChar (u)

2 u_PA001 = [0.00 0.45 0.46 0.47 0.48 0.49 0.50 0.55...

3 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00];

4 q_PA001 = [0.00 0.00 1.25 2.25 3.15 3.75 4.40 6.75...

5 8.75 10.70 12.25 13.75 15.15 16.50 18.00 19.20 20.00];

6 q_PA001 = q_PA001 /60000; % liter/min -> m3/s

7 f = interp1 (u_PA001 ,q_PA001 ,u);

8 end

I.1.6 tankCT_NEW.m

1 function dxdt = tankCT_NEW (x,u)

2 %% parameters

3 A1 = 0.01;

4 Kv1 = 11.25;

5 Kv2 = 11.25;

6 rho = 1000;

Appendix I MATLAB Code 188

7 g = 9.81;

8 hLV1 = 0.05;

9 hLV2 = 0.25;

10 %%

11 h1 = x(1);

12 h2 = x(2);

13 u1 = u(1);

14 u2 = u(2);

15 uPA = u(3);

16 f3 = PumpChar (uPA);

17 %% Compute dxdt

18 dxdt = [(1/ A1)*(f3 - Kv1* ValveChar (u1)*sqrt ((rho*g*(h1+hLV1)) /100000)

/3600) ; ...

19 (1/((0.004 + 0.07* h2) *3600))*(Kv1* ValveChar (u1)*sqrt ((rho*g*(h1+

hLV1)) /100000) ...

20 - Kv2* ValveChar (u2)*sqrt ((rho*g*(h2+hLV2)) /100000))];

I.1.7 tankDT_NEW_One_Step.m

1 function xk1 = tankDT_NEW_One_Step (xk , uk , Ts)

2 delta = Ts;

3 xk1 = xk + delta* tankCT_NEW (xk , uk);

I.1.8 tankDT.m

1 function xk1 = tankDT (xk , uk , Ts)

2 M = 10;

3 delta = Ts/M;

4 xk1 = xk;

5 for ct =1:M

6 xk1 = xk1 + delta* tankCT (xk1 , uk);

7 end

I.1.9 tankOutputFcn.m

1 function y = tankOutputFcn (x, u, params)

2 y = [x(1);x(2)];

I.1.10 Valve_1_OP_New.m

Appendix I MATLAB Code 189

1 function u_O = Valve_1_OP_New (h1 , u_PA001)

2 %% Local variables

3 f3 = PumpChar (u_PA001);

4 Kv1 = 11.25;

5 rho = 1000;

6 g = 9.81;

7 h_LV001 = 0.05;

8 %%

9 f1 = f3 *3600* sqrt (100000/(rho*g*(h1+ h_LV001)))/Kv1;

10 u_O = InversValveChar (f1);

11 end

I.1.11 Valve_2_OP.m

1 function u_O = Valve_2_OP (u1 ,h1 ,h2)

2 %% Local variables

3 Kv1 = 11.25;

4 Kv2 = 11.25;

5 rho = 1000;

6 g = 9.81;

7 h_LV001 = 0.05;

8 h_LV002 = 0.25;

9 %%

10 f2 = (Kv1* ValveChar (u1)*sqrt ((rho*g*(h1 + h_LV001)) /100000))/(Kv2*

sqrt ((rho*g*(h2+ h_LV002)) /100000));

11 u_O = InversValveChar (f2);

12 end

I.1.12 ValveChar.m

1 function f = ValveChar (u)

2 %u = abs(u);

3 f = (exp(u^1.2) - 1)/(exp (1) - 1);

4 end

I.2 MPC Design Files

I.2.1 MPC_Adaptive_FINAL.m

1 %% Control of Two -Tank Using Adaptive MPC.

2 % Initial condition : {h1 = 0.5, h2 = 0.3, u_PA001 = 0.8}

Appendix I MATLAB Code 190

3

4 % Author : Gent Luta

5

6 % Date: Spring 2023

7

8 %% System Parameters (For Simulink Model)

9 rho = 1000;

10 g = 9.81;

11 A1 = 0.01;

12 Kv1 = 11.25;

13 Kv2 = 11.25;

14 h_LV001 = 0.05;

15 h_LV002 = 0.25;

16

17 h1_max = 1;

18 h1_min = 0.13;

19 h2_max = 0.4;

20 h2_min = 0.02;

21 Kv_LV001 = 11.25;

22 Kv_LV002 = 11.25;

23 z_LV001 = 0:0.05:1;

24 f_LV001 = (exp(z_LV001 .^1.2) -1)/(exp (1) -1);

25

26 z_LV002 = 0:0.05:1;

27 f_LV002 = f_LV001 ;

28 u_PA001_data = [0.00 0.45 0.46 0.47 0.48 0.49 0.50 0.55...

29 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00];

30 q_PA001 = [0.00 0.00 1.25 2.25 3.15 3.75 4.40 6.75...

31 8.75 10.70 12.25 13.75 15.15 16.50 18.00 19.20 20.00];

32 q_PA001 = q_PA001 /60000; % liter/min -> m3/s

33

34

35 %% Steady State Values

36 h1_A = 0.5;%0.5

37 h2_A = 0.3;%0.3

38 u_PA001_A = 0.8;%0.8

39

40 u1_A = Valve_1_OP_New (h1_A , u_PA001_A);

41 u2_A = Valve_2_OP (u1_A , h1_A , h2_A);

42

43 ts = 0.5; % Sampling time

44

45 sys = AdaptiveSys ([h1_A;h2_A], [u1_A;u2_A; u_PA001_A], ts); % DT Linear

System

46

47 %% Linear MPC

48 old_status = mpcverbosity (’on’);

49

Appendix I MATLAB Code 191

50 p = 13; % Prediction horizon

51 c = 13; % Control horizon

52 %c = [1 4 8]; % Control horizon (blocking)

53

54

55

56 mpcobj = mpc(sys , ts , p, c); % Linear MPC object

57

58 % Nominal Values

59 x0 = [h1_A; h2_A];

60 u0 = [u1_A;u2_A; u_PA001_A];

61 y0 = x0;

62 mpcobj .Model. Nominal = struct (’X’,x0 ,’U’,u0 ,’Y’,y0);

63

64 % Set Estimator (None)

65 setEstimator (mpcobj , ’custom ’);

66

67 % Signal Scaling

68 mpcobj .OV (1). ScaleFactor = 1 - 0.13; % Range of h1

69 mpcobj .OV (2). ScaleFactor = 0.4 - 0.02; % Range of h2

70

71 % Weighting Matrices

72 mpcobj . Weights . OutputVariables = [1 1]; % Q

73 mpcobj . Weights . ManipulatedVariablesRate = [0.1 0.1]; % S

74 mpcobj . Weights . ManipulatedVariables = [0 0]; % R

75

76 % Output (soft) Constraints

77 % mpcobj .OV (1).Max = 1;

78 % mpcobj .OV (1).Min = 0.13;

79 % mpcobj .OV (2).Max = 0.4;

80 % mpcobj .OV (2).Min = 0.02;

81

82 % % Output ECR (slack)

83 % mpcobj .OV (1). MinECR = 5;

84 % mpcobj .OV (1). MaxECR = 5;

85 % mpcobj .OV (2). MinECR = 5;

86 % mpcobj .OV (2). MaxECR = 5;

87

88 % Input (hard) Constraints

89 mpcobj .MV (1).Max = 0.9999;

90 mpcobj .MV (1).Min = 0.0001;

91 mpcobj .MV (2).Max = 0.9999;

92 mpcobj .MV (2).Min = 0.0001;

93

94 % Input Rate (soft) Constraints

95 % mpcobj .MV (1). RateMin = -0.1;

96 % mpcobj .MV (1). RateMax = 0.1;

97 % mpcobj .MV (2). RateMin = -0.1;

Appendix I MATLAB Code 192

98 % mpcobj .MV (2). RateMax = 0.1;

99

100 % %Input Rate ECR (slack)

101 % mpcobj .MV (1). RateMinECR = 20;

102 % mpcobj .MV (1). RateMaxECR = 20;

103 % mpcobj .MV (2). RateMinECR = 20;

104 % mpcobj .MV (2). RateMaxECR = 20;

105

106 % MPC Optimizer Options :

107 % Interior -Point Solver and Option

108 % mpcobj . Optimizer . Algorithm = ’interior -point ’;

109 % mpcobj . Optimizer . InteriorPointOptions . MaxIterations = 8;

110 % mpcobj . Optimizer . InteriorPointOptions . ConstraintTolerance = 1e -5;

111 % mpcobj . Optimizer . InteriorPointOptions . OptimalityTolerance = 1e -5;

112 % mpcobj . Optimizer . InteriorPointOptions . ComplementarityTolerance = 1e -6;

113 % mpcobj . Optimizer . InteriorPointOptions . StepTolerance = 1e -7;

114

115 % Active -Set Solver and Options

116 % mpcobj . Optimizer . Algorithm = ’active -set ’;

117 % mpcobj . Optimizer . ActiveSetOptions . MaxIterations = 2;

118 % mpcobj . Optimizer . ActiveSetOptions . ConstraintTolerance = 1e -6;

119

120 % mpcobj . Optimizer . UseSuboptimalSolution = true;

121

122 %% SIM

123 Duration = 400; % Simulation time

124 t = 0:ts: Duration ;

125 N = length (t);

126

127 % Signal Previewing

128 ref = [ones (1, N -1)*h1_A;

129 ones (1, N -1)*h2_A];

130 u_PA001 = ones (1,N)* u_PA001_A ;

131

132 % Reference and Disturbance Modification

133 t_h1_rise = 50;

134 t_h2_rise = 150;

135 t_upa_rise = 250;

136 t_hold = 70;

137 idx_ref1 = round(t_h1_rise /ts);

138 idx_ref2 = round(t_h2_rise /ts);

139 idx_upa = round(t_upa_rise /ts);

140 idx_hold = round(t_hold /ts);

141 %

142 ref (1, idx_ref1 : idx_ref1 + idx_hold) = h1_A + 0.2;%0.2

143 ref (2, idx_ref2 : idx_ref2 + idx_hold) = h2_A - 0.2;%0.2

144 u_PA001 (1, idx_upa : idx_upa + idx_hold) = u_PA001_A - 0.2;%0.2

145

Appendix I MATLAB Code 193

146

147 %

148 x = x0; % Current state

149 xc = mpcstate (mpcobj); % Controller state pointer

150 xN = x0; % Nominal (updated iteratively)

151 uN = u0; % Nominal (updated iteratively)

152 yN = y0; % Nominal (updated iteratively)

153 dxN = [0;0]; % Nominal (updated iteratively)

154

155 % History Tracking

156 UU = zeros (2,N); UU (: ,1) = u0 (1:2);

157 MPCXX = zeros (2,N); MPCXX (: ,1) = xc.Plant;

158 II = zeros (1,N -1);

159 XX_NL = zeros (2,N); XX_NL (: ,1) = x0;

160 TIME_SPENT = zeros (1,N -1);

161

162

163 nsim = 1; % Number of simulations

164

165 TIME_SPENT_AVERAGES = zeros (1, nsim);

166 COST = zeros (1, nsim);

167 for j = 1: nsim

168 hbar = waitbar (0, ’Simulation Progress ’);

169 for i = 1:(Duration /ts)

170 if i <= N-p-1

171 r1 = ref (1,i:i+p -1);

172 r2 = ref (2,i:i+p -1);

173 r = [r1 ’ r2 ’];

174 v = u_PA001 (i:i+p -1) ’;

175 else

176 r1 = ref (1,i:end);

177 r2 = ref (2,i:end);

178 r = [r1 ’ r2 ’];

179 v = u_PA001 (i:end) ’;

180 end

181 %r = ref (:,i) ’; % Without signal preview (reference)

182 %v = u_PA001 (i); % Without signal preview (disturbance)

183

184 tic

185 [mv , info] = mpcmoveAdaptive (mpcobj , xc , sys ,...

186 struct (’X’,xN ,’U’,uN ,’Y’,yN , ’DX’, dxN), [], r, v); % Solve QP

optimization problem

187 TIME_SPENT (i) = toc;

188

189 % Simulate Nonlinear System

190 [~, XNL] = ode45(@(t,x) tankCT_NEW (x, [mv;v(1)]), [0 ts], XX_NL (:,i));

191 xnl = [XNL(end ,1);XNL(end ,2)];

192

Appendix I MATLAB Code 194

193 % Update Controller State Based on Nonlinear System

194 xc.Plant = xnl;

195 xc. LastMove = mv;

196 xc. Disturbance = [0;0];

197

198 % Update Prediction Model and Nominal Solution

199 sys = AdaptiveSys (xnl , [mv;v(1)], ts);

200 xN = xnl;

201 uN = [mv;v(1)];

202 yN = xnl;

203 dxN = xnl - XX_NL (:,i);

204

205 % History tracking

206 UU(:,i+1) = mv;

207 MPCXX (:,i+1) = xc.Plant;

208 II(i) = info. Iterations ;

209 XX_NL (:,i+1) = xnl;

210

211 waitbar (i*ts/Duration , hbar);

212 end

213 close(hbar)

214

215 TIME_SPENT_AVERAGES (j) = mean(TIME_SPENT);

216

217 % Find Total Quadratic Cost

218 cost = 0;

219 Q = diag(mpcobj . Weights . OutputVariables);

220 Q(1 ,1) = Q(1 ,1)/ mpcobj .OV (1). ScaleFactor ; % Scaling

221 Q(2 ,2) = Q(2 ,2)/ mpcobj .OV (2). ScaleFactor ; % Scaling

222 S = diag(mpcobj . Weights . ManipulatedVariablesRate);

223 R = diag(mpcobj . Weights . ManipulatedVariables);

224 E = XX_NL (: ,2: end) - ref; % OV reference tracking error

225 EU = UU (: ,:) - u0 (1:2 ,:); % MV target tracking error

226 mvRate = UU (: ,1:end -1) - UU (: ,2: end); % MV rate

227 for l = 1:N-1

228 cost = cost + E(:,l) ’*(Q^2)*E(:,l) + mvRate (:,l) ’*(S^2)* mvRate (:,l)

+ EU(:,l) ’*(R^2)*EU(:,l);

229 end

230 COST(j) = cost;

231 end

232 sprintf (’Execution Time Weighted Average : %e’,mean(TIME_SPENT_AVERAGES))

233 sprintf (’Execution Time Standard Deviation : %e’,std(TIME_SPENT_AVERAGES))

234

235 sprintf (’Cost Weighted Average : %e’,mean(COST))

236 sprintf (’Cost Standard Deviation : %e’,std(COST))

237

238

239 %% Plot - Simulation

Appendix I MATLAB Code 195

240 figure

241

242 % Tank 1

243 subplot (3 ,1 ,1)

244 plot(t, XX_NL (1 ,:) , ’blue ’, ’LineWidth ’,1, ’LineStyle ’,’-’)

245 hold on

246 plot(t(2: end), ref (1 ,:) , ’red ’, ’LineWidth ’,1, ’LineStyle ’,’--’)

247 %hold on

248 %plot(t, MPCXX (1 ,:) , ’cyan ’, ’LineWidth ’,1, ’LineStyle ’,’--’)

249 xlabel (’t\, [s]’, Interpreter =’latex ’)

250 ylabel (’Water level $[m]$’, Interpreter =’latex ’)

251 title(’Tank 1’, Interpreter =’latex ’)

252 legend (’$h_ {1}$’,’$h_ {1,\, ref}$’, ’Interpreter ’,’latex ’)

253 ylim ([0 1]);

254 grid on

255 box on

256 set(gca ,’YTick ’ ,0:0.05:1)

257

258 % Tank 2

259 subplot (3 ,1 ,2)

260 plot(t, XX_NL (2 ,:) , ’blue ’, ’LineWidth ’,1, ’LineStyle ’,’-’)

261 hold on

262 plot(t(2: end), ref (2 ,:) , ’red ’, ’LineWidth ’,1, ’LineStyle ’,’--’)

263 %hold on

264 %plot(t, MPCXX (2 ,:) , ’cyan ’, ’LineWidth ’,1, ’LineStyle ’,’--’)

265 xlabel (’t\, [s]’, Interpreter =’latex ’)

266 ylabel (’Water level $[m]$’, Interpreter =’latex ’)

267 title(’Tank 2’, Interpreter =’latex ’)

268 legend (’$h_ {2}$’,’$h_ {2,\, ref}$’, ’Interpreter ’,’latex ’)

269 ylim ([0 1])

270 xlim ([0 t(end)])

271 grid on

272 box on

273 set(gca ,’YTick ’ ,0:0.05:1)

274

275 % Input Signals

276 subplot (3 ,1 ,3)

277 stairs (t, UU (1 ,:) , ’magenta ’, ’LineWidth ’ ,1)

278 hold on

279 stairs (t, UU (2 ,:) , ’green ’, ’LineWidth ’ ,1)

280 hold on

281 stairs (t, u_PA001 , ’k’, ’LineStyle ’,’:’, LineWidth =1)

282 xlabel (’$t\, [s]$’, Interpreter =’latex ’)

283 ylabel (’[-]’, Interpreter =’latex ’)

284 title(’Input Signals ’, Interpreter =’latex ’)

285 legend (’u_{LV001}’, ’u_{LV002}’, ’u_{PA001}’, ’Interpreter ’,’latex ’

)

286 ylim ([0 1])

Appendix I MATLAB Code 196

287 grid on

288 box on

I.2.2 MPC_Explicit_FINAL.m

1 %% Control of Two -Tank Using Adaptive MPC.

2 % Initial condition : {h1 = 0.5, h2 = 0.3, u_PA001 = 0.8}

3

4 % Author : Gent Luta

5

6 % Date: Spring 2023

7

8 %% System Parameters (For Simulink Model)

9 rho = 1000;

10 g = 9.81;

11 A1 = 0.01;

12 Kv1 = 11.25;

13 Kv2 = 11.25;

14 h_LV001 = 0.05;

15 h_LV002 = 0.25;

16

17 h1_max = 1;

18 h1_min = 0.13;

19 h2_max = 0.4;

20 h2_min = 0.02;

21 Kv_LV001 = 11.25;

22 Kv_LV002 = 11.25;

23 z_LV001 = 0:0.05:1;

24 f_LV001 = (exp(z_LV001 .^1.2) -1)/(exp (1) -1);

25

26 z_LV002 = 0:0.05:1;

27 f_LV002 = f_LV001 ;

28 u_PA001_data = [0.00 0.45 0.46 0.47 0.48 0.49 0.50 0.55...

29 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00];

30 q_PA001 = [0.00 0.00 1.25 2.25 3.15 3.75 4.40 6.75...

31 8.75 10.70 12.25 13.75 15.15 16.50 18.00 19.20 20.00];

32 q_PA001 = q_PA001 /60000; % liter/min -> m3/s

33

34

35 %% Steady State Values

36 h1_A = 0.5;%0.5

37 h2_A = 0.3;%0.3

38 u_PA001_A = 0.8;%0.8

39

40 u1_A = Valve_1_OP_New (h1_A , u_PA001_A);

41 u2_A = Valve_2_OP (u1_A , h1_A , h2_A);

Appendix I MATLAB Code 197

42

43 ts = 0.5; % Sampling time

44

45 sys = AdaptiveSys ([h1_A;h2_A], [u1_A;u2_A; u_PA001_A], ts); % DT Linear

System

46

47 %% Linear MPC

48 old_status = mpcverbosity (’on’);

49

50 p = 13; % Prediction horizon

51 c = 13; % Control horizon

52 %c = [1 4 8]; % Control horizon (blocking)

53

54

55

56 mpcobj = mpc(sys , ts , p, c); % Linear MPC object

57

58 % Nominal Values

59 x0 = [h1_A; h2_A];

60 u0 = [u1_A;u2_A; u_PA001_A];

61 y0 = x0;

62 mpcobj .Model. Nominal = struct (’X’,x0 ,’U’,u0 ,’Y’,y0);

63

64 % Set Estimator (None)

65 setEstimator (mpcobj , ’custom ’);

66

67 % Signal Scaling

68 mpcobj .OV (1). ScaleFactor = 1 - 0.13; % Range of h1

69 mpcobj .OV (2). ScaleFactor = 0.4 - 0.02; % Range of h2

70

71 % Weighting Matrices

72 mpcobj . Weights . OutputVariables = [1 1]; % Q

73 mpcobj . Weights . ManipulatedVariablesRate = [0.1 0.1]; % S

74 mpcobj . Weights . ManipulatedVariables = [0 0]; % R

75

76 % Output (soft) Constraints

77 % mpcobj .OV (1).Max = 1;

78 % mpcobj .OV (1).Min = 0.13;

79 % mpcobj .OV (2).Max = 0.4;

80 % mpcobj .OV (2).Min = 0.02;

81

82 % % Output ECR (slack)

83 % mpcobj .OV (1). MinECR = 5;

84 % mpcobj .OV (1). MaxECR = 5;

85 % mpcobj .OV (2). MinECR = 5;

86 % mpcobj .OV (2). MaxECR = 5;

87

88 % Input (hard) Constraints

Appendix I MATLAB Code 198

89 mpcobj .MV (1).Max = 0.9999;

90 mpcobj .MV (1).Min = 0.0001;

91 mpcobj .MV (2).Max = 0.9999;

92 mpcobj .MV (2).Min = 0.0001;

93

94 % Input Rate (soft) Constraints

95 % mpcobj .MV (1). RateMin = -0.1;

96 % mpcobj .MV (1). RateMax = 0.1;

97 % mpcobj .MV (2). RateMin = -0.1;

98 % mpcobj .MV (2). RateMax = 0.1;

99

100 % %Input Rate ECR (slack)

101 % mpcobj .MV (1). RateMinECR = 20;

102 % mpcobj .MV (1). RateMaxECR = 20;

103 % mpcobj .MV (2). RateMinECR = 20;

104 % mpcobj .MV (2). RateMaxECR = 20;

105

106 % MPC Optimizer Options :

107 % Interior -Point Solver and Option

108 % mpcobj . Optimizer . Algorithm = ’interior -point ’;

109 % mpcobj . Optimizer . InteriorPointOptions . MaxIterations = 8;

110 % mpcobj . Optimizer . InteriorPointOptions . ConstraintTolerance = 1e -5;

111 % mpcobj . Optimizer . InteriorPointOptions . OptimalityTolerance = 1e -5;

112 % mpcobj . Optimizer . InteriorPointOptions . ComplementarityTolerance = 1e -6;

113 % mpcobj . Optimizer . InteriorPointOptions . StepTolerance = 1e -7;

114

115 % Active -Set Solver and Options

116 % mpcobj . Optimizer . Algorithm = ’active -set ’;

117 % mpcobj . Optimizer . ActiveSetOptions . MaxIterations = 2;

118 % mpcobj . Optimizer . ActiveSetOptions . ConstraintTolerance = 1e -6;

119

120 % mpcobj . Optimizer . UseSuboptimalSolution = true;

121

122 %% SIM

123 Duration = 400; % Simulation time

124 t = 0:ts: Duration ;

125 N = length (t);

126

127 % Signal Previewing

128 ref = [ones (1, N -1)*h1_A;

129 ones (1, N -1)*h2_A];

130 u_PA001 = ones (1,N)* u_PA001_A ;

131

132 % Reference and Disturbance Modification

133 t_h1_rise = 50;

134 t_h2_rise = 150;

135 t_upa_rise = 250;

136 t_hold = 70;

Appendix I MATLAB Code 199

137 idx_ref1 = round(t_h1_rise /ts);

138 idx_ref2 = round(t_h2_rise /ts);

139 idx_upa = round(t_upa_rise /ts);

140 idx_hold = round(t_hold /ts);

141 %

142 ref (1, idx_ref1 : idx_ref1 + idx_hold) = h1_A + 0.2;%0.2

143 ref (2, idx_ref2 : idx_ref2 + idx_hold) = h2_A - 0.2;%0.2

144 u_PA001 (1, idx_upa : idx_upa + idx_hold) = u_PA001_A - 0.2;%0.2

145

146

147 %

148 x = x0; % Current state

149 xc = mpcstate (mpcobj); % Controller state pointer

150 xN = x0; % Nominal (updated iteratively)

151 uN = u0; % Nominal (updated iteratively)

152 yN = y0; % Nominal (updated iteratively)

153 dxN = [0;0]; % Nominal (updated iteratively)

154

155 % History Tracking

156 UU = zeros (2,N); UU (: ,1) = u0 (1:2);

157 MPCXX = zeros (2,N); MPCXX (: ,1) = xc.Plant;

158 II = zeros (1,N -1);

159 XX_NL = zeros (2,N); XX_NL (: ,1) = x0;

160 TIME_SPENT = zeros (1,N -1);

161

162

163 nsim = 1; % Number of simulations

164

165 TIME_SPENT_AVERAGES = zeros (1, nsim);

166 COST = zeros (1, nsim);

167 for j = 1: nsim

168 hbar = waitbar (0, ’Simulation Progress ’);

169 for i = 1:(Duration /ts)

170 if i <= N-p-1

171 r1 = ref (1,i:i+p -1);

172 r2 = ref (2,i:i+p -1);

173 r = [r1 ’ r2 ’];

174 v = u_PA001 (i:i+p -1) ’;

175 else

176 r1 = ref (1,i:end);

177 r2 = ref (2,i:end);

178 r = [r1 ’ r2 ’];

179 v = u_PA001 (i:end) ’;

180 end

181 %r = ref (:,i) ’; % Without signal preview (reference)

182 %v = u_PA001 (i); % Without signal preview (disturbance)

183

184 tic

Appendix I MATLAB Code 200

185 [mv , info] = mpcmoveAdaptive (mpcobj , xc , sys ,...

186 struct (’X’,xN ,’U’,uN ,’Y’,yN , ’DX’, dxN), [], r, v); % Solve QP

optimization problem

187 TIME_SPENT (i) = toc;

188

189 % Simulate Nonlinear System

190 [~, XNL] = ode45(@(t,x) tankCT_NEW (x, [mv;v(1)]), [0 ts], XX_NL (:,i));

191 xnl = [XNL(end ,1);XNL(end ,2)];

192

193 % Update Controller State Based on Nonlinear System

194 xc.Plant = xnl;

195 xc. LastMove = mv;

196 xc. Disturbance = [0;0];

197

198 % Update Prediction Model and Nominal Solution

199 sys = AdaptiveSys (xnl , [mv;v(1)], ts);

200 xN = xnl;

201 uN = [mv;v(1)];

202 yN = xnl;

203 dxN = xnl - XX_NL (:,i);

204

205 % History tracking

206 UU(:,i+1) = mv;

207 MPCXX (:,i+1) = xc.Plant;

208 II(i) = info. Iterations ;

209 XX_NL (:,i+1) = xnl;

210

211 waitbar (i*ts/Duration , hbar);

212 end

213 close(hbar)

214

215 TIME_SPENT_AVERAGES (j) = mean(TIME_SPENT);

216

217 % Find Total Quadratic Cost

218 cost = 0;

219 Q = diag(mpcobj . Weights . OutputVariables);

220 Q(1 ,1) = Q(1 ,1)/ mpcobj .OV (1). ScaleFactor ; % Scaling

221 Q(2 ,2) = Q(2 ,2)/ mpcobj .OV (2). ScaleFactor ; % Scaling

222 S = diag(mpcobj . Weights . ManipulatedVariablesRate);

223 R = diag(mpcobj . Weights . ManipulatedVariables);

224 E = XX_NL (: ,2: end) - ref; % OV reference tracking error

225 EU = UU (: ,:) - u0 (1:2 ,:); % MV target tracking error

226 mvRate = UU (: ,1:end -1) - UU (: ,2: end); % MV rate

227 for l = 1:N-1

228 cost = cost + E(:,l) ’*(Q^2)*E(:,l) + mvRate (:,l) ’*(S^2)* mvRate (:,l)

+ EU(:,l) ’*(R^2)*EU(:,l);

229 end

230 COST(j) = cost;

Appendix I MATLAB Code 201

231 end

232 sprintf (’Execution Time Weighted Average : %e’,mean(TIME_SPENT_AVERAGES))

233 sprintf (’Execution Time Standard Deviation : %e’,std(TIME_SPENT_AVERAGES))

234

235 sprintf (’Cost Weighted Average : %e’,mean(COST))

236 sprintf (’Cost Standard Deviation : %e’,std(COST))

237

238

239 %% Plot - Simulation

240 figure

241

242 % Tank 1

243 subplot (3 ,1 ,1)

244 plot(t, XX_NL (1 ,:) , ’blue ’, ’LineWidth ’,1, ’LineStyle ’,’-’)

245 hold on

246 plot(t(2: end), ref (1 ,:) , ’red ’, ’LineWidth ’,1, ’LineStyle ’,’--’)

247 %hold on

248 %plot(t, MPCXX (1 ,:) , ’cyan ’, ’LineWidth ’,1, ’LineStyle ’,’--’)

249 xlabel (’t\, [s]’, Interpreter =’latex ’)

250 ylabel (’Water level $[m]$’, Interpreter =’latex ’)

251 title(’Tank 1’, Interpreter =’latex ’)

252 legend (’$h_ {1}$’,’$h_ {1,\, ref}$’, ’Interpreter ’,’latex ’)

253 ylim ([0 1]);

254 grid on

255 box on

256 set(gca ,’YTick ’ ,0:0.05:1)

257

258 % Tank 2

259 subplot (3 ,1 ,2)

260 plot(t, XX_NL (2 ,:) , ’blue ’, ’LineWidth ’,1, ’LineStyle ’,’-’)

261 hold on

262 plot(t(2: end), ref (2 ,:) , ’red ’, ’LineWidth ’,1, ’LineStyle ’,’--’)

263 %hold on

264 %plot(t, MPCXX (2 ,:) , ’cyan ’, ’LineWidth ’,1, ’LineStyle ’,’--’)

265 xlabel (’t\, [s]’, Interpreter =’latex ’)

266 ylabel (’Water level $[m]$’, Interpreter =’latex ’)

267 title(’Tank 2’, Interpreter =’latex ’)

268 legend (’$h_ {2}$’,’$h_ {2,\, ref}$’, ’Interpreter ’,’latex ’)

269 ylim ([0 1])

270 xlim ([0 t(end)])

271 grid on

272 box on

273 set(gca ,’YTick ’ ,0:0.05:1)

274

275 % Input Signals

276 subplot (3 ,1 ,3)

277 stairs (t, UU (1 ,:) , ’magenta ’, ’LineWidth ’ ,1)

278 hold on

Appendix I MATLAB Code 202

279 stairs (t, UU (2 ,:) , ’green ’, ’LineWidth ’ ,1)

280 hold on

281 stairs (t, u_PA001 , ’k’, ’LineStyle ’,’:’, LineWidth =1)

282 xlabel (’$t\, [s]$’, Interpreter =’latex ’)

283 ylabel (’[-]’, Interpreter =’latex ’)

284 title(’Input Signals ’, Interpreter =’latex ’)

285 legend (’u_{LV001}’, ’u_{LV002}’, ’u_{PA001}’, ’Interpreter ’,’latex ’

)

286 ylim ([0 1])

287 grid on

288 box on

I.2.3 MPC_Linear_FINAL.m

1 %% Control of Two -Tank Using Adaptive MPC.

2 % Initial condition : {h1 = 0.5, h2 = 0.3, u_PA001 = 0.8}

3

4 % Author : Gent Luta

5

6 % Date: Spring 2023

7

8 %% System Parameters (For Simulink Model)

9 rho = 1000;

10 g = 9.81;

11 A1 = 0.01;

12 Kv1 = 11.25;

13 Kv2 = 11.25;

14 h_LV001 = 0.05;

15 h_LV002 = 0.25;

16

17 h1_max = 1;

18 h1_min = 0.13;

19 h2_max = 0.4;

20 h2_min = 0.02;

21 Kv_LV001 = 11.25;

22 Kv_LV002 = 11.25;

23 z_LV001 = 0:0.05:1;

24 f_LV001 = (exp(z_LV001 .^1.2) -1)/(exp (1) -1);

25

26 z_LV002 = 0:0.05:1;

27 f_LV002 = f_LV001 ;

28 u_PA001_data = [0.00 0.45 0.46 0.47 0.48 0.49 0.50 0.55...

29 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00];

30 q_PA001 = [0.00 0.00 1.25 2.25 3.15 3.75 4.40 6.75...

31 8.75 10.70 12.25 13.75 15.15 16.50 18.00 19.20 20.00];

32 q_PA001 = q_PA001 /60000; % liter/min -> m3/s

Appendix I MATLAB Code 203

33

34

35 %% Steady State Values

36 h1_A = 0.5;%0.5

37 h2_A = 0.3;%0.3

38 u_PA001_A = 0.8;%0.8

39

40 u1_A = Valve_1_OP_New (h1_A , u_PA001_A);

41 u2_A = Valve_2_OP (u1_A , h1_A , h2_A);

42

43 ts = 0.5; % Sampling time

44

45 sys = AdaptiveSys ([h1_A;h2_A], [u1_A;u2_A; u_PA001_A], ts); % DT Linear

System

46

47 %% Linear MPC

48 old_status = mpcverbosity (’on’);

49

50 p = 13; % Prediction horizon

51 c = 13; % Control horizon

52 %c = [1 4 8]; % Control horizon (blocking)

53

54

55

56 mpcobj = mpc(sys , ts , p, c); % Linear MPC object

57

58 % Nominal Values

59 x0 = [h1_A; h2_A];

60 u0 = [u1_A;u2_A; u_PA001_A];

61 y0 = x0;

62 mpcobj .Model. Nominal = struct (’X’,x0 ,’U’,u0 ,’Y’,y0);

63

64 % Set Estimator (None)

65 setEstimator (mpcobj , ’custom ’);

66

67 % Signal Scaling

68 mpcobj .OV (1). ScaleFactor = 1 - 0.13; % Range of h1

69 mpcobj .OV (2). ScaleFactor = 0.4 - 0.02; % Range of h2

70

71 % Weighting Matrices

72 mpcobj . Weights . OutputVariables = [1 1]; % Q

73 mpcobj . Weights . ManipulatedVariablesRate = [0.1 0.1]; % S

74 mpcobj . Weights . ManipulatedVariables = [0 0]; % R

75

76 % Output (soft) Constraints

77 % mpcobj .OV (1).Max = 1;

78 % mpcobj .OV (1).Min = 0.13;

79 % mpcobj .OV (2).Max = 0.4;

Appendix I MATLAB Code 204

80 % mpcobj .OV (2).Min = 0.02;

81

82 % % Output ECR (slack)

83 % mpcobj .OV (1). MinECR = 5;

84 % mpcobj .OV (1). MaxECR = 5;

85 % mpcobj .OV (2). MinECR = 5;

86 % mpcobj .OV (2). MaxECR = 5;

87

88 % Input (hard) Constraints

89 mpcobj .MV (1).Max = 0.9999;

90 mpcobj .MV (1).Min = 0.0001;

91 mpcobj .MV (2).Max = 0.9999;

92 mpcobj .MV (2).Min = 0.0001;

93

94 % Input Rate (soft) Constraints

95 % mpcobj .MV (1). RateMin = -0.1;

96 % mpcobj .MV (1). RateMax = 0.1;

97 % mpcobj .MV (2). RateMin = -0.1;

98 % mpcobj .MV (2). RateMax = 0.1;

99

100 % %Input Rate ECR (slack)

101 % mpcobj .MV (1). RateMinECR = 20;

102 % mpcobj .MV (1). RateMaxECR = 20;

103 % mpcobj .MV (2). RateMinECR = 20;

104 % mpcobj .MV (2). RateMaxECR = 20;

105

106 % MPC Optimizer Options :

107 % Interior -Point Solver and Option

108 % mpcobj . Optimizer . Algorithm = ’interior -point ’;

109 % mpcobj . Optimizer . InteriorPointOptions . MaxIterations = 8;

110 % mpcobj . Optimizer . InteriorPointOptions . ConstraintTolerance = 1e -5;

111 % mpcobj . Optimizer . InteriorPointOptions . OptimalityTolerance = 1e -5;

112 % mpcobj . Optimizer . InteriorPointOptions . ComplementarityTolerance = 1e -6;

113 % mpcobj . Optimizer . InteriorPointOptions . StepTolerance = 1e -7;

114

115 % Active -Set Solver and Options

116 % mpcobj . Optimizer . Algorithm = ’active -set ’;

117 % mpcobj . Optimizer . ActiveSetOptions . MaxIterations = 2;

118 % mpcobj . Optimizer . ActiveSetOptions . ConstraintTolerance = 1e -6;

119

120 % mpcobj . Optimizer . UseSuboptimalSolution = true;

121

122 %% SIM

123 Duration = 400; % Simulation time

124 t = 0:ts: Duration ;

125 N = length (t);

126

127 % Signal Previewing

Appendix I MATLAB Code 205

128 ref = [ones (1, N -1)*h1_A;

129 ones (1, N -1)*h2_A];

130 u_PA001 = ones (1,N)* u_PA001_A ;

131

132 % Reference and Disturbance Modification

133 t_h1_rise = 50;

134 t_h2_rise = 150;

135 t_upa_rise = 250;

136 t_hold = 70;

137 idx_ref1 = round(t_h1_rise /ts);

138 idx_ref2 = round(t_h2_rise /ts);

139 idx_upa = round(t_upa_rise /ts);

140 idx_hold = round(t_hold /ts);

141 %

142 ref (1, idx_ref1 : idx_ref1 + idx_hold) = h1_A + 0.2;%0.2

143 ref (2, idx_ref2 : idx_ref2 + idx_hold) = h2_A - 0.2;%0.2

144 u_PA001 (1, idx_upa : idx_upa + idx_hold) = u_PA001_A - 0.2;%0.2

145

146

147 %

148 x = x0; % Current state

149 xc = mpcstate (mpcobj); % Controller state pointer

150 xN = x0; % Nominal (updated iteratively)

151 uN = u0; % Nominal (updated iteratively)

152 yN = y0; % Nominal (updated iteratively)

153 dxN = [0;0]; % Nominal (updated iteratively)

154

155 % History Tracking

156 UU = zeros (2,N); UU (: ,1) = u0 (1:2);

157 MPCXX = zeros (2,N); MPCXX (: ,1) = xc.Plant;

158 II = zeros (1,N -1);

159 XX_NL = zeros (2,N); XX_NL (: ,1) = x0;

160 TIME_SPENT = zeros (1,N -1);

161

162

163 nsim = 1; % Number of simulations

164

165 TIME_SPENT_AVERAGES = zeros (1, nsim);

166 COST = zeros (1, nsim);

167 for j = 1: nsim

168 hbar = waitbar (0, ’Simulation Progress ’);

169 for i = 1:(Duration /ts)

170 if i <= N-p-1

171 r1 = ref (1,i:i+p -1);

172 r2 = ref (2,i:i+p -1);

173 r = [r1 ’ r2 ’];

174 v = u_PA001 (i:i+p -1) ’;

175 else

Appendix I MATLAB Code 206

176 r1 = ref (1,i:end);

177 r2 = ref (2,i:end);

178 r = [r1 ’ r2 ’];

179 v = u_PA001 (i:end) ’;

180 end

181 %r = ref (:,i) ’; % Without signal preview (reference)

182 %v = u_PA001 (i); % Without signal preview (disturbance)

183

184 tic

185 [mv , info] = mpcmoveAdaptive (mpcobj , xc , sys ,...

186 struct (’X’,xN ,’U’,uN ,’Y’,yN , ’DX’, dxN), [], r, v); % Solve QP

optimization problem

187 TIME_SPENT (i) = toc;

188

189 % Simulate Nonlinear System

190 [~, XNL] = ode45(@(t,x) tankCT_NEW (x, [mv;v(1)]), [0 ts], XX_NL (:,i));

191 xnl = [XNL(end ,1);XNL(end ,2)];

192

193 % Update Controller State Based on Nonlinear System

194 xc.Plant = xnl;

195 xc. LastMove = mv;

196 xc. Disturbance = [0;0];

197

198 % Update Prediction Model and Nominal Solution

199 sys = AdaptiveSys (xnl , [mv;v(1)], ts);

200 xN = xnl;

201 uN = [mv;v(1)];

202 yN = xnl;

203 dxN = xnl - XX_NL (:,i);

204

205 % History tracking

206 UU(:,i+1) = mv;

207 MPCXX (:,i+1) = xc.Plant;

208 II(i) = info. Iterations ;

209 XX_NL (:,i+1) = xnl;

210

211 waitbar (i*ts/Duration , hbar);

212 end

213 close(hbar)

214

215 TIME_SPENT_AVERAGES (j) = mean(TIME_SPENT);

216

217 % Find Total Quadratic Cost

218 cost = 0;

219 Q = diag(mpcobj . Weights . OutputVariables);

220 Q(1 ,1) = Q(1 ,1)/ mpcobj .OV (1). ScaleFactor ; % Scaling

221 Q(2 ,2) = Q(2 ,2)/ mpcobj .OV (2). ScaleFactor ; % Scaling

222 S = diag(mpcobj . Weights . ManipulatedVariablesRate);

Appendix I MATLAB Code 207

223 R = diag(mpcobj . Weights . ManipulatedVariables);

224 E = XX_NL (: ,2: end) - ref; % OV reference tracking error

225 EU = UU (: ,:) - u0 (1:2 ,:); % MV target tracking error

226 mvRate = UU (: ,1:end -1) - UU (: ,2: end); % MV rate

227 for l = 1:N-1

228 cost = cost + E(:,l) ’*(Q^2)*E(:,l) + mvRate (:,l) ’*(S^2)* mvRate (:,l)

+ EU(:,l) ’*(R^2)*EU(:,l);

229 end

230 COST(j) = cost;

231 end

232 sprintf (’Execution Time Weighted Average : %e’,mean(TIME_SPENT_AVERAGES))

233 sprintf (’Execution Time Standard Deviation : %e’,std(TIME_SPENT_AVERAGES))

234

235 sprintf (’Cost Weighted Average : %e’,mean(COST))

236 sprintf (’Cost Standard Deviation : %e’,std(COST))

237

238

239 %% Plot - Simulation

240 figure

241

242 % Tank 1

243 subplot (3 ,1 ,1)

244 plot(t, XX_NL (1 ,:) , ’blue ’, ’LineWidth ’,1, ’LineStyle ’,’-’)

245 hold on

246 plot(t(2: end), ref (1 ,:) , ’red ’, ’LineWidth ’,1, ’LineStyle ’,’--’)

247 %hold on

248 %plot(t, MPCXX (1 ,:) , ’cyan ’, ’LineWidth ’,1, ’LineStyle ’,’--’)

249 xlabel (’t\, [s]’, Interpreter =’latex ’)

250 ylabel (’Water level $[m]$’, Interpreter =’latex ’)

251 title(’Tank 1’, Interpreter =’latex ’)

252 legend (’$h_ {1}$’,’$h_ {1,\, ref}$’, ’Interpreter ’,’latex ’)

253 ylim ([0 1]);

254 grid on

255 box on

256 set(gca ,’YTick ’ ,0:0.05:1)

257

258 % Tank 2

259 subplot (3 ,1 ,2)

260 plot(t, XX_NL (2 ,:) , ’blue ’, ’LineWidth ’,1, ’LineStyle ’,’-’)

261 hold on

262 plot(t(2: end), ref (2 ,:) , ’red ’, ’LineWidth ’,1, ’LineStyle ’,’--’)

263 %hold on

264 %plot(t, MPCXX (2 ,:) , ’cyan ’, ’LineWidth ’,1, ’LineStyle ’,’--’)

265 xlabel (’t\, [s]’, Interpreter =’latex ’)

266 ylabel (’Water level $[m]$’, Interpreter =’latex ’)

267 title(’Tank 2’, Interpreter =’latex ’)

268 legend (’$h_ {2}$’,’$h_ {2,\, ref}$’, ’Interpreter ’,’latex ’)

269 ylim ([0 1])

Appendix I MATLAB Code 208

270 xlim ([0 t(end)])

271 grid on

272 box on

273 set(gca ,’YTick ’ ,0:0.05:1)

274

275 % Input Signals

276 subplot (3 ,1 ,3)

277 stairs (t, UU (1 ,:) , ’magenta ’, ’LineWidth ’ ,1)

278 hold on

279 stairs (t, UU (2 ,:) , ’green ’, ’LineWidth ’ ,1)

280 hold on

281 stairs (t, u_PA001 , ’k’, ’LineStyle ’,’:’, LineWidth =1)

282 xlabel (’$t\, [s]$’, Interpreter =’latex ’)

283 ylabel (’[-]’, Interpreter =’latex ’)

284 title(’Input Signals ’, Interpreter =’latex ’)

285 legend (’u_{LV001}’, ’u_{LV002}’, ’u_{PA001}’, ’Interpreter ’,’latex ’

)

286 ylim ([0 1])

287 grid on

288 box on

I.2.4 MPC_Nonlinear_FINAL.m

1 %% Control of Two -Tank Using Adaptive MPC.

2 % Initial condition : {h1 = 0.5, h2 = 0.3, u_PA001 = 0.8}

3

4 % Author : Gent Luta

5

6 % Date: Spring 2023

7

8 %% System Parameters (For Simulink Model)

9 rho = 1000;

10 g = 9.81;

11 A1 = 0.01;

12 Kv1 = 11.25;

13 Kv2 = 11.25;

14 h_LV001 = 0.05;

15 h_LV002 = 0.25;

16

17 h1_max = 1;

18 h1_min = 0.13;

19 h2_max = 0.4;

20 h2_min = 0.02;

21 Kv_LV001 = 11.25;

22 Kv_LV002 = 11.25;

23 z_LV001 = 0:0.05:1;

Appendix I MATLAB Code 209

24 f_LV001 = (exp(z_LV001 .^1.2) -1)/(exp (1) -1);

25

26 z_LV002 = 0:0.05:1;

27 f_LV002 = f_LV001 ;

28 u_PA001_data = [0.00 0.45 0.46 0.47 0.48 0.49 0.50 0.55...

29 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00];

30 q_PA001 = [0.00 0.00 1.25 2.25 3.15 3.75 4.40 6.75...

31 8.75 10.70 12.25 13.75 15.15 16.50 18.00 19.20 20.00];

32 q_PA001 = q_PA001 /60000; % liter/min -> m3/s

33

34

35 %% Steady State Values

36 h1_A = 0.5;%0.5

37 h2_A = 0.3;%0.3

38 u_PA001_A = 0.8;%0.8

39

40 u1_A = Valve_1_OP_New (h1_A , u_PA001_A);

41 u2_A = Valve_2_OP (u1_A , h1_A , h2_A);

42

43 ts = 0.5; % Sampling time

44

45 sys = AdaptiveSys ([h1_A;h2_A], [u1_A;u2_A; u_PA001_A], ts); % DT Linear

System

46

47 %% Linear MPC

48 old_status = mpcverbosity (’on’);

49

50 p = 13; % Prediction horizon

51 c = 13; % Control horizon

52 %c = [1 4 8]; % Control horizon (blocking)

53

54

55

56 mpcobj = mpc(sys , ts , p, c); % Linear MPC object

57

58 % Nominal Values

59 x0 = [h1_A; h2_A];

60 u0 = [u1_A;u2_A; u_PA001_A];

61 y0 = x0;

62 mpcobj .Model. Nominal = struct (’X’,x0 ,’U’,u0 ,’Y’,y0);

63

64 % Set Estimator (None)

65 setEstimator (mpcobj , ’custom ’);

66

67 % Signal Scaling

68 mpcobj .OV (1). ScaleFactor = 1 - 0.13; % Range of h1

69 mpcobj .OV (2). ScaleFactor = 0.4 - 0.02; % Range of h2

70

Appendix I MATLAB Code 210

71 % Weighting Matrices

72 mpcobj . Weights . OutputVariables = [1 1]; % Q

73 mpcobj . Weights . ManipulatedVariablesRate = [0.1 0.1]; % S

74 mpcobj . Weights . ManipulatedVariables = [0 0]; % R

75

76 % Output (soft) Constraints

77 % mpcobj .OV (1).Max = 1;

78 % mpcobj .OV (1).Min = 0.13;

79 % mpcobj .OV (2).Max = 0.4;

80 % mpcobj .OV (2).Min = 0.02;

81

82 % % Output ECR (slack)

83 % mpcobj .OV (1). MinECR = 5;

84 % mpcobj .OV (1). MaxECR = 5;

85 % mpcobj .OV (2). MinECR = 5;

86 % mpcobj .OV (2). MaxECR = 5;

87

88 % Input (hard) Constraints

89 mpcobj .MV (1).Max = 0.9999;

90 mpcobj .MV (1).Min = 0.0001;

91 mpcobj .MV (2).Max = 0.9999;

92 mpcobj .MV (2).Min = 0.0001;

93

94 % Input Rate (soft) Constraints

95 % mpcobj .MV (1). RateMin = -0.1;

96 % mpcobj .MV (1). RateMax = 0.1;

97 % mpcobj .MV (2). RateMin = -0.1;

98 % mpcobj .MV (2). RateMax = 0.1;

99

100 % %Input Rate ECR (slack)

101 % mpcobj .MV (1). RateMinECR = 20;

102 % mpcobj .MV (1). RateMaxECR = 20;

103 % mpcobj .MV (2). RateMinECR = 20;

104 % mpcobj .MV (2). RateMaxECR = 20;

105

106 % MPC Optimizer Options :

107 % Interior -Point Solver and Option

108 % mpcobj . Optimizer . Algorithm = ’interior -point ’;

109 % mpcobj . Optimizer . InteriorPointOptions . MaxIterations = 8;

110 % mpcobj . Optimizer . InteriorPointOptions . ConstraintTolerance = 1e -5;

111 % mpcobj . Optimizer . InteriorPointOptions . OptimalityTolerance = 1e -5;

112 % mpcobj . Optimizer . InteriorPointOptions . ComplementarityTolerance = 1e -6;

113 % mpcobj . Optimizer . InteriorPointOptions . StepTolerance = 1e -7;

114

115 % Active -Set Solver and Options

116 % mpcobj . Optimizer . Algorithm = ’active -set ’;

117 % mpcobj . Optimizer . ActiveSetOptions . MaxIterations = 2;

118 % mpcobj . Optimizer . ActiveSetOptions . ConstraintTolerance = 1e -6;

Appendix I MATLAB Code 211

119

120 % mpcobj . Optimizer . UseSuboptimalSolution = true;

121

122 %% SIM

123 Duration = 400; % Simulation time

124 t = 0:ts: Duration ;

125 N = length (t);

126

127 % Signal Previewing

128 ref = [ones (1, N -1)*h1_A;

129 ones (1, N -1)*h2_A];

130 u_PA001 = ones (1,N)* u_PA001_A ;

131

132 % Reference and Disturbance Modification

133 t_h1_rise = 50;

134 t_h2_rise = 150;

135 t_upa_rise = 250;

136 t_hold = 70;

137 idx_ref1 = round(t_h1_rise /ts);

138 idx_ref2 = round(t_h2_rise /ts);

139 idx_upa = round(t_upa_rise /ts);

140 idx_hold = round(t_hold /ts);

141 %

142 ref (1, idx_ref1 : idx_ref1 + idx_hold) = h1_A + 0.2;%0.2

143 ref (2, idx_ref2 : idx_ref2 + idx_hold) = h2_A - 0.2;%0.2

144 u_PA001 (1, idx_upa : idx_upa + idx_hold) = u_PA001_A - 0.2;%0.2

145

146

147 %

148 x = x0; % Current state

149 xc = mpcstate (mpcobj); % Controller state pointer

150 xN = x0; % Nominal (updated iteratively)

151 uN = u0; % Nominal (updated iteratively)

152 yN = y0; % Nominal (updated iteratively)

153 dxN = [0;0]; % Nominal (updated iteratively)

154

155 % History Tracking

156 UU = zeros (2,N); UU (: ,1) = u0 (1:2);

157 MPCXX = zeros (2,N); MPCXX (: ,1) = xc.Plant;

158 II = zeros (1,N -1);

159 XX_NL = zeros (2,N); XX_NL (: ,1) = x0;

160 TIME_SPENT = zeros (1,N -1);

161

162

163 nsim = 1; % Number of simulations

164

165 TIME_SPENT_AVERAGES = zeros (1, nsim);

166 COST = zeros (1, nsim);

Appendix I MATLAB Code 212

167 for j = 1: nsim

168 hbar = waitbar (0, ’Simulation Progress ’);

169 for i = 1:(Duration /ts)

170 if i <= N-p-1

171 r1 = ref (1,i:i+p -1);

172 r2 = ref (2,i:i+p -1);

173 r = [r1 ’ r2 ’];

174 v = u_PA001 (i:i+p -1) ’;

175 else

176 r1 = ref (1,i:end);

177 r2 = ref (2,i:end);

178 r = [r1 ’ r2 ’];

179 v = u_PA001 (i:end) ’;

180 end

181 %r = ref (:,i) ’; % Without signal preview (reference)

182 %v = u_PA001 (i); % Without signal preview (disturbance)

183

184 tic

185 [mv , info] = mpcmoveAdaptive (mpcobj , xc , sys ,...

186 struct (’X’,xN ,’U’,uN ,’Y’,yN , ’DX’, dxN), [], r, v); % Solve QP

optimization problem

187 TIME_SPENT (i) = toc;

188

189 % Simulate Nonlinear System

190 [~, XNL] = ode45(@(t,x) tankCT_NEW (x, [mv;v(1)]), [0 ts], XX_NL (:,i));

191 xnl = [XNL(end ,1);XNL(end ,2)];

192

193 % Update Controller State Based on Nonlinear System

194 xc.Plant = xnl;

195 xc. LastMove = mv;

196 xc. Disturbance = [0;0];

197

198 % Update Prediction Model and Nominal Solution

199 sys = AdaptiveSys (xnl , [mv;v(1)], ts);

200 xN = xnl;

201 uN = [mv;v(1)];

202 yN = xnl;

203 dxN = xnl - XX_NL (:,i);

204

205 % History tracking

206 UU(:,i+1) = mv;

207 MPCXX (:,i+1) = xc.Plant;

208 II(i) = info. Iterations ;

209 XX_NL (:,i+1) = xnl;

210

211 waitbar (i*ts/Duration , hbar);

212 end

213 close(hbar)

Appendix I MATLAB Code 213

214

215 TIME_SPENT_AVERAGES (j) = mean(TIME_SPENT);

216

217 % Find Total Quadratic Cost

218 cost = 0;

219 Q = diag(mpcobj . Weights . OutputVariables);

220 Q(1 ,1) = Q(1 ,1)/ mpcobj .OV (1). ScaleFactor ; % Scaling

221 Q(2 ,2) = Q(2 ,2)/ mpcobj .OV (2). ScaleFactor ; % Scaling

222 S = diag(mpcobj . Weights . ManipulatedVariablesRate);

223 R = diag(mpcobj . Weights . ManipulatedVariables);

224 E = XX_NL (: ,2: end) - ref; % OV reference tracking error

225 EU = UU (: ,:) - u0 (1:2 ,:); % MV target tracking error

226 mvRate = UU (: ,1:end -1) - UU (: ,2: end); % MV rate

227 for l = 1:N-1

228 cost = cost + E(:,l) ’*(Q^2)*E(:,l) + mvRate (:,l) ’*(S^2)* mvRate (:,l)

+ EU(:,l) ’*(R^2)*EU(:,l);

229 end

230 COST(j) = cost;

231 end

232 sprintf (’Execution Time Weighted Average : %e’,mean(TIME_SPENT_AVERAGES))

233 sprintf (’Execution Time Standard Deviation : %e’,std(TIME_SPENT_AVERAGES))

234

235 sprintf (’Cost Weighted Average : %e’,mean(COST))

236 sprintf (’Cost Standard Deviation : %e’,std(COST))

237

238

239 %% Plot - Simulation

240 figure

241

242 % Tank 1

243 subplot (3 ,1 ,1)

244 plot(t, XX_NL (1 ,:) , ’blue ’, ’LineWidth ’,1, ’LineStyle ’,’-’)

245 hold on

246 plot(t(2: end), ref (1 ,:) , ’red ’, ’LineWidth ’,1, ’LineStyle ’,’--’)

247 %hold on

248 %plot(t, MPCXX (1 ,:) , ’cyan ’, ’LineWidth ’,1, ’LineStyle ’,’--’)

249 xlabel (’t\, [s]’, Interpreter =’latex ’)

250 ylabel (’Water level $[m]$’, Interpreter =’latex ’)

251 title(’Tank 1’, Interpreter =’latex ’)

252 legend (’$h_ {1}$’,’$h_ {1,\, ref}$’, ’Interpreter ’,’latex ’)

253 ylim ([0 1]);

254 grid on

255 box on

256 set(gca ,’YTick ’ ,0:0.05:1)

257

258 % Tank 2

259 subplot (3 ,1 ,2)

260 plot(t, XX_NL (2 ,:) , ’blue ’, ’LineWidth ’,1, ’LineStyle ’,’-’)

Appendix I MATLAB Code 214

261 hold on

262 plot(t(2: end), ref (2 ,:) , ’red ’, ’LineWidth ’,1, ’LineStyle ’,’--’)

263 %hold on

264 %plot(t, MPCXX (2 ,:) , ’cyan ’, ’LineWidth ’,1, ’LineStyle ’,’--’)

265 xlabel (’t\, [s]’, Interpreter =’latex ’)

266 ylabel (’Water level $[m]$’, Interpreter =’latex ’)

267 title(’Tank 2’, Interpreter =’latex ’)

268 legend (’$h_ {2}$’,’$h_ {2,\, ref}$’, ’Interpreter ’,’latex ’)

269 ylim ([0 1])

270 xlim ([0 t(end)])

271 grid on

272 box on

273 set(gca ,’YTick ’ ,0:0.05:1)

274

275 % Input Signals

276 subplot (3 ,1 ,3)

277 stairs (t, UU (1 ,:) , ’magenta ’, ’LineWidth ’ ,1)

278 hold on

279 stairs (t, UU (2 ,:) , ’green ’, ’LineWidth ’ ,1)

280 hold on

281 stairs (t, u_PA001 , ’k’, ’LineStyle ’,’:’, LineWidth =1)

282 xlabel (’$t\, [s]$’, Interpreter =’latex ’)

283 ylabel (’[-]’, Interpreter =’latex ’)

284 title(’Input Signals ’, Interpreter =’latex ’)

285 legend (’u_{LV001}’, ’u_{LV002}’, ’u_{PA001}’, ’Interpreter ’,’latex ’

)

286 ylim ([0 1])

287 grid on

288 box on

I.2.5 Experimental_Make_LQR.m

1 %% Steady State Values

2 h1_A = 0.5;

3 h2_A = 0.2;

4 u_PA001_A = 0.8;

5

6 u1_A = Valve_1_OP_New (h1_A , u_PA001_A);

7 u2_A = Valve_2_OP (u1_A , h1_A , h2_A);

8 f1_A = ValveChar (u1_A);

9 f2_A = ValveChar (u2_A);

10

11 %% System Parameters (For Simulink Model)

12 rho = 1000;

13 g = 9.81;

14 A1 = 0.01;

Appendix I MATLAB Code 215

15 Kv1 = 11.25;

16 Kv2 = 11.25;

17 h_LV001 = 0.05;

18 h_LV002 = 0.25;

19

20 h1_max = 1;

21 h1_min = 0.13;

22 h2_max = 0.4;

23 h2_min = 0.02;

24 Kv_LV001 = 11.25;

25 Kv_LV002 = 11.25;

26 z_LV001 = 0:0.05:1;

27 f_LV001 = (exp(z_LV001 .^1.2) -1)/(exp (1) -1);

28

29 z_LV002 = 0:0.05:1;

30 f_LV002 = f_LV001 ;

31 u_PA001_data = [0.00 0.45 0.46 0.47 0.48 0.49 0.50 0.55...

32 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00];

33 q_PA001 = [0.00 0.00 1.25 2.25 3.15 3.75 4.40 6.75...

34 8.75 10.70 12.25 13.75 15.15 16.50 18.00 19.20 20.00];

35 q_PA001 = q_PA001 /60000; % liter/min -> m3/s

36

37 %% Function Handles

38 f1_handle = @ValveChar ;

39 f2_handle = @ValveChar ;

40 f3_handle = @PumpChar ;

41

42 delta = 0.01; % Step size when using forward difference

43

44 %% Linearization

45 % A - Matrix

46 a11 = - (sqrt (100000)) /(7.2*10^8) * ((Kv1*f1_A*rho*g) / (A1*sqrt(rho*g*(

h1_A + h_LV001))));

47 a12 = 0;

48 a21 = ((1) /(0.004 + 0.07* h2_A)) * ((sqrt (100000)) /(7.2*10^8)) * ((Kv1*

f1_A*rho*g) / (sqrt(rho*g*(h1_A + h_LV001))));

49 a22 = - ((1) /(0.004 + 0.07* h2_A)) * ((sqrt (100000)) /(7.2*(10^8))) * ((Kv2

*f2_A*rho*g) / (sqrt(rho*g*(h2_A + h_LV002))));

50 A = [a11 a12; a21 a22];

51

52 % B - Matrix

53 b11 = - ((Kv1) /(3600* A1)) * sqrt ((rho*g*(h1_A + h_LV001)) /100000) *

forward_diff (f1_handle , u1_A , delta);

54 b12 = 0;

55 b21 = ((1) /(0.004 + 0.07* h2_A)) * (Kv1 /3600) * sqrt ((rho*g*(h1_A +

h_LV001)) /100000) * forward_diff (f1_handle , u1_A , delta);

56 b22 = -((1) /(0.004 + 0.07* h2_A)) * (Kv2 /3600) * sqrt ((rho*g*(h2_A +

h_LV002)) /100000) * forward_diff (f2_handle , u2_A , delta);

Appendix I MATLAB Code 216

57 B = [b11 b12 ; b21 b22];

58

59 % C - Matrix

60 C = eye (2);

61

62 % D - Matrix

63 D = zeros (2);

64

65 % G - Matrix (Disturbance)

66 g11 = forward_diff (f3_handle , u_PA001_A , delta)/A1;

67 g21 = 0;

68 G = [g11; g21];

69

70 % Augmented B - Matrix

71 B_a = [B G];

72

73 % Augmented D - Matrix

74 D_a = zeros (2, 3);

75

76 %% State -Space -Model

77 ts = 0.1; % Sampling time

78 sys = ss(A, B_a , C, D_a); % CT state -space model

79 sys = c2d(sys ,ts); % DT state -space model (ts sampling)

80 % Signal Names

81 sys. InputName = {’u1’, ’u2’, ’u_PA001 ’};

82 sys. OutputName = {’h1’, ’h2’};

83 sys. StateName = {’h1’, ’h2’};

84 % Signal Units

85 sys. InputUnit = {’-’, ’-’, ’-’};

86 sys. OutputUnit = {’m’, ’m’};

87 sys. StateUnit = {’m’, ’m’};

88 % Signal Types

89 sys = setmpcsignals (sys , ’MV’, [1 2], ’MD’, 3, ’MO’, [1 2]);

90 % Check Controllability

91 controllability_matrix = ctrb(sys);

92 controllability_matrix_rank = rank(controllability_matrix);

93

94 %% SIM

95 Duration = 400; % Simulation time

96 t = 0:ts: Duration ;

97 N = length (t);

98

99 % Reference and Disturbance Modification

100 t_h1_rise = 50;

101 t_h2_rise = 250;

102 t_upa_rise = 450;

103 t_hold = 100;

104 %% LQR

Appendix I MATLAB Code 217

105 sys_lqr_ct = ss(A, B, C, D);

106 sys_lqr_dt = c2d(sys_lqr_ct , ts);

107

108

109 Q = [10 0; 0 100];

110 R = eye (2);

111 [K, S, P] = lqr(sys_lqr_dt , Q, R);

112 A = sys_lqr_dt .A;

113 B = sys_lqr_dt .B;

I.2.6 Experimental_Make_MPCs.m

1 %% Mat. File for Making the MPCs Used During Experimental Validation

2 % Linearized model about the nominal solution {h1 = 0.5, h2 = 0.3,

u_PA001 = 0.8}

3

4 % Author : Gent Luta

5

6 % Date: Spring 2023

7

8 %% Steady State Values

9 h1_A = 0.5;

10 h2_A = 0.2;

11 u_PA001_A = 0.8;

12

13 u1_A = Valve_1_OP_New (h1_A , u_PA001_A);

14 u2_A = Valve_2_OP (u1_A , h1_A , h2_A);

15 f1_A = ValveChar (u1_A);

16 f2_A = ValveChar (u2_A);

17

18 %% System Parameters (For Simulink Model)

19 rho = 1000;

20 g = 9.81;

21 A1 = 0.01;

22 Kv1 = 11.25;

23 Kv2 = 11.25;

24 h_LV001 = 0.05;

25 h_LV002 = 0.25;

26

27 h1_max = 1;

28 h1_min = 0.13;

29 h2_max = 0.4;

30 h2_min = 0.02;

31 Kv_LV001 = 11.25;

32 Kv_LV002 = 11.25;

33 z_LV001 = 0:0.05:1;

Appendix I MATLAB Code 218

34 f_LV001 = (exp(z_LV001 .^1.2) -1)/(exp (1) -1);

35

36 z_LV002 = 0:0.05:1;

37 f_LV002 = f_LV001 ;

38 u_PA001_data = [0.00 0.45 0.46 0.47 0.48 0.49 0.50 0.55...

39 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00];

40 q_PA001 = [0.00 0.00 1.25 2.25 3.15 3.75 4.40 6.75...

41 8.75 10.70 12.25 13.75 15.15 16.50 18.00 19.20 20.00];

42 q_PA001 = q_PA001 /60000; % liter/min -> m3/s

43

44 %% Function Handles

45 f1_handle = @ValveChar ;

46 f2_handle = @ValveChar ;

47 f3_handle = @PumpChar ;

48

49 delta = 0.01; % Step size when using forward difference

50

51 %% Linearization

52 % A - Matrix

53 a11 = - (sqrt (100000)) /(7.2*10^8) * ((Kv1*f1_A*rho*g) / (A1*sqrt(rho*g*(

h1_A + h_LV001))));

54 a12 = 0;

55 a21 = ((1) /(0.004 + 0.07* h2_A)) * ((sqrt (100000)) /(7.2*10^8)) * ((Kv1*

f1_A*rho*g) / (sqrt(rho*g*(h1_A + h_LV001))));

56 a22 = - ((1) /(0.004 + 0.07* h2_A)) * ((sqrt (100000)) /(7.2*(10^8))) * ((Kv2

*f2_A*rho*g) / (sqrt(rho*g*(h2_A + h_LV002))));

57 A = [a11 a12; a21 a22];

58

59 % B - Matrix

60 b11 = - ((Kv1) /(3600* A1)) * sqrt ((rho*g*(h1_A + h_LV001)) /100000) *

forward_diff (f1_handle , u1_A , delta);

61 b12 = 0;

62 b21 = ((1) /(0.004 + 0.07* h2_A)) * (Kv1 /3600) * sqrt ((rho*g*(h1_A +

h_LV001)) /100000) * forward_diff (f1_handle , u1_A , delta);

63 b22 = -((1) /(0.004 + 0.07* h2_A)) * (Kv2 /3600) * sqrt ((rho*g*(h2_A +

h_LV002)) /100000) * forward_diff (f2_handle , u2_A , delta);

64 B = [b11 b12 ; b21 b22];

65

66 % C - Matrix

67 C = eye (2);

68

69 % D - Matrix

70 D = zeros (2);

71

72 % G - Matrix (Disturbance)

73 g11 = forward_diff (f3_handle , u_PA001_A , delta)/A1;

74 g21 = 0;

75 G = [g11; g21];

Appendix I MATLAB Code 219

76

77 % Augmented B - Matrix

78 B_a = [B G];

79

80 % Augmented D - Matrix

81 D_a = zeros (2, 3);

82

83 %% State -Space -Model

84 ts = 0.1; % Sampling time

85 sys = ss(A, B_a , C, D_a); % CT state -space model

86 sys = c2d(sys ,ts); % DT state -space model (ts sampling)

87 % Signal Names

88 sys. InputName = {’u1’, ’u2’, ’u_PA001 ’};

89 sys. OutputName = {’h1’, ’h2’};

90 sys. StateName = {’h1’, ’h2’};

91 % Signal Units

92 sys. InputUnit = {’-’, ’-’, ’-’};

93 sys. OutputUnit = {’m’, ’m’};

94 sys. StateUnit = {’m’, ’m’};

95 % Signal Types

96 sys = setmpcsignals (sys , ’MV’, [1 2], ’MD’, 3, ’MO’, [1 2]);

97 % Check Controllability

98 controllability_matrix = ctrb(sys);

99 controllability_matrix_rank = rank(controllability_matrix);

100

101 %% SIM

102 Duration = 400; % Simulation time

103 t = 0:ts: Duration ;

104 N = length (t);

105

106 % Reference and Disturbance Modification

107 t_h1_rise = 50;

108 t_h2_rise = 250;

109 t_upa_rise = 450;

110 t_hold = 100;

111

112 %% Linear MPC

113 old_status = mpcverbosity (’on’);

114

115 p = 13; % Prediction horizon (var 13)

116 c = 2; % Control horizon

117 m = c;

118 mpcobj = mpc(sys , ts , p, c); % Linear MPC object

119

120 % Nominal Values

121 x0 = [h1_A; h2_A];

122 u0 = [u1_A;u2_A; u_PA001_A];

123 y0 = x0;

Appendix I MATLAB Code 220

124 mpcobj .Model. Nominal = struct (’X’,x0 ,’U’,u0 ,’Y’,y0);

125

126 % Set Estimator (None)

127 setEstimator (mpcobj , ’custom ’);

128

129 % Signal Scaling

130 mpcobj .OV (1). ScaleFactor = 1 - 0.13; % Range of h1

131 mpcobj .OV (2). ScaleFactor = 0.4 - 0.02; % Range of h2

132

133 q1 = 100;

134 q2 = 200;

135 s1 = 50;

136 s2 = 50;

137 r1 = 0;

138 r2 = 0;

139 % Weighting Matrices

140 mpcobj . Weights . OutputVariables = [q1 q2]; % Q

141 mpcobj . Weights . ManipulatedVariablesRate = [s1 s2]; % S

142 mpcobj . Weights . ManipulatedVariables = [r1 r2]; % R

143

144 % % Output (soft) Constraints

145 % mpcobj .OV (1).Max = 1;

146 % mpcobj .OV (1).Min = 0.13;

147 % mpcobj .OV (2).Max = 0.4;

148 % mpcobj .OV (2).Min = 0.02;

149 % % Output ECR (slack)

150 % mpcobj .OV (1). MinECR = 5;

151 % mpcobj .OV (1). MaxECR = 5;

152 % mpcobj .OV (2). MinECR = 5;

153 % mpcobj .OV (2). MaxECR = 5;

154 % Input (hard) Constraints

155 mpcobj .MV (1).Max = 0.9999;

156 mpcobj .MV (1).Min = 0.0001;

157 mpcobj .MV (2).Max = 0.9999;

158 mpcobj .MV (2).Min = 0.0001;

159

160

161 % Active -Set Solver and Options

162 % mpcobj . Optimizer . Algorithm = ’active -set ’;

163 % mpcobj . Optimizer . ActiveSetOptions . MaxIterations = 2;

164 % mpcobj . Optimizer . ActiveSetOptions . ConstraintTolerance = 1e -6;

165

166 % mpcobj . Optimizer . UseSuboptimalSolution = true;

167

168

169 %% Output dist:

170 sys_out_dist = getoutdist (mpcobj);

171

Appendix I MATLAB Code 221

172 %% Explicit MPC

173 % Define the Range:

174

175 mpcobj . PredictionHorizon = 13;

176 mpcobj . ControlHorizon = 2;

177

178 range = generateExplicitRange (mpcobj);

179

180 % Range of the States

181 range.State.Min (:) = [0.13 0.02 -2 -2];

182 range.State.Max (:) = [1 0.4 2 2];

183

184 % Range of the References

185 range. Reference .Min (:) = [0.13 0.02];

186 range. Reference .Max (:) = [1 0.4];

187

188 % Range of the Measured Disturbance

189 range. MeasuredDisturbance .Min = 0.00001;

190 range. MeasuredDisturbance .Max = 0.99999;

191

192 % Range of the Manipulated Variables

193 range. ManipulatedVariable .Min (:) = [0.00001 0.00001];

194 range. ManipulatedVariable .Max (:) = [0.99999 0.99999];

195

196 % Option for EMPC

197 opt = generateExplicitOptions (mpcobj);

198 opt. polyreduction = 1;

199

200 % Create EMPC Obj.

201 empcobj = generateExplicitMPC (mpcobj ,range ,opt);

202

203 mpcobj . PredictionHorizon = p;

204 mpcobj . ControlHorizon = c;

205

206 %% Nonlinear MPC

207 nx = 2; % Number of states

208 ny = 2; % Number of outputs

209 mvIndex = [1 ,2]; % Manipulated variable indices

210 mdIndex = 3; % Measured disturbance indices

211 nlobj = nlmpc(nx ,ny ,’MV’,mvIndex ,’MD’,mdIndex); % Nonlinear MPC object

212

213 nlobj.Ts = ts; % Sampling time

214

215 % Horizon Lengths

216 %p = 13; % Prediction horizon

217 %m = [2]; % Control horizon

218 nlobj. PredictionHorizon = p;

219 nlobj. ControlHorizon = m;

Appendix I MATLAB Code 222

220

221 % Nonlinear DT State Function

222 nlobj.Model. StateFcn = ’tankDT_NEW_One_Step ’;

223 nlobj.Model. IsContinuousTime = false;

224 nlobj.Model. NumberOfParameters = 1;

225

226 % DT Output Function

227 nlobj.Model. OutputFcn = ’tankOutputFcn ’;

228

229 % Output Jacobian (I.e., C - Matrix)

230 nlobj. Jacobian . OutputFcn = @(x,u,Ts) [1 0; 0 1];

231

232 % Weighting Matrices

233 nlobj. Weights . OutputVariables = [q1 q2]; % Q

234 nlobj. Weights . ManipulatedVariablesRate = [s1 s2]; % S

235 nlobj. Weights . ManipulatedVariables = [r1 r2]; % R

236

237 % Signal Scaling

238 nlobj.OV (1). ScaleFactor = 1 - 0.13; % Range of h1

239 nlobj.OV (2). ScaleFactor = 0.4 - 0.02; % Range of h2

240

241 % nlobj.OV (1).Max = 1;

242 % nlobj.OV (1).Min = 0.13;

243 % nlobj.OV (2).Max = 0.4;

244 % nlobj.OV (2).Min = 0.02;

245 % % Output ECR (slack)

246 % nlobj.OV (1). MinECR = 5;

247 % nlobj.OV (1). MaxECR = 5;

248 % nlobj.OV (2). MinECR = 5;

249 % nlobj.OV (2). MaxECR = 5;

250 % Input (hard) Constraints

251 nlobj.MV (1).Max = 0.9999;

252 nlobj.MV (1).Min = 0.0001;

253 nlobj.MV (2).Max = 0.9999;

254 nlobj.MV (2).Min = 0.0001;

255

256 nlobj. Optimization . SolverOptions . MaxIterations = 30; % Limit SQP

Solver to 30 Intervals

257 nlobj. Optimization . UseSuboptimalSolution = true; % Toggle Sub -

Optimal Solution

258

259 % Creat Bus Object for Simulink File

260 createParameterBus (nlobj ,’totank_Live_Edited_060723_2020b / Nonlinear MPC

Controller ’,’myBusObject ’,{ts});

261

262 %nlobj. Optimization . RunAsLinearMPC = ’Adaptive ’;

Appendix I MATLAB Code 223

I.2.7 Experimental_Make_PID.m

1 %% Steady State Values

2 h1_A = 0.5;

3 h2_A = 0.2;

4 u_PA001_A = 0.8;

5

6 u1_A = Valve_1_OP_New (h1_A , u_PA001_A);

7 u2_A = Valve_2_OP (u1_A , h1_A , h2_A);

8 f1_A = ValveChar (u1_A);

9 f2_A = ValveChar (u2_A);

10

11 %% System Parameters (For Simulink Model)

12 rho = 1000;

13 g = 9.81;

14 A1 = 0.01;

15 Kv1 = 11.25;

16 Kv2 = 11.25;

17 h_LV001 = 0.05;

18 h_LV002 = 0.25;

19

20 h1_max = 1;

21 h1_min = 0.13;

22 h2_max = 0.4;

23 h2_min = 0.02;

24 Kv_LV001 = 11.25;

25 Kv_LV002 = 11.25;

26 z_LV001 = 0:0.05:1;

27 f_LV001 = (exp(z_LV001 .^1.2) -1)/(exp (1) -1);

28

29 z_LV002 = 0:0.05:1;

30 f_LV002 = f_LV001 ;

31 u_PA001_data = [0.00 0.45 0.46 0.47 0.48 0.49 0.50 0.55...

32 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00];

33 q_PA001 = [0.00 0.00 1.25 2.25 3.15 3.75 4.40 6.75...

34 8.75 10.70 12.25 13.75 15.15 16.50 18.00 19.20 20.00];

35 q_PA001 = q_PA001 /60000; % liter/min -> m3/s

36

37 %% Function Handles

38 f1_handle = @ValveChar ;

39 f2_handle = @ValveChar ;

40 f3_handle = @PumpChar ;

41

42 delta = 0.01; % Step size when using forward difference

43

44 %% Linearization

45 % A - Matrix

Appendix I MATLAB Code 224

46 a11 = - (sqrt (100000)) /(7.2*10^8) * ((Kv1*f1_A*rho*g) / (A1*sqrt(rho*g*(

h1_A + h_LV001))));

47 a12 = 0;

48 a21 = ((1) /(0.004 + 0.07* h2_A)) * ((sqrt (100000)) /(7.2*10^8)) * ((Kv1*

f1_A*rho*g) / (sqrt(rho*g*(h1_A + h_LV001))));

49 a22 = - ((1) /(0.004 + 0.07* h2_A)) * ((sqrt (100000)) /(7.2*(10^8))) * ((Kv2

*f2_A*rho*g) / (sqrt(rho*g*(h2_A + h_LV002))));

50 A = [a11 a12; a21 a22];

51

52 % B - Matrix

53 b11 = - ((Kv1) /(3600* A1)) * sqrt ((rho*g*(h1_A + h_LV001)) /100000) *

forward_diff (f1_handle , u1_A , delta);

54 b12 = 0;

55 b21 = ((1) /(0.004 + 0.07* h2_A)) * (Kv1 /3600) * sqrt ((rho*g*(h1_A +

h_LV001)) /100000) * forward_diff (f1_handle , u1_A , delta);

56 b22 = -((1) /(0.004 + 0.07* h2_A)) * (Kv2 /3600) * sqrt ((rho*g*(h2_A +

h_LV002)) /100000) * forward_diff (f2_handle , u2_A , delta);

57 B = [b11 b12 ; b21 b22];

58

59 % C - Matrix

60 C = eye (2);

61

62 % D - Matrix

63 D = zeros (2);

64

65 % G - Matrix (Disturbance)

66 g11 = forward_diff (f3_handle , u_PA001_A , delta)/A1;

67 g21 = 0;

68 G = [g11; g21];

69

70 % Augmented B - Matrix

71 B_a = [B G];

72

73 % Augmented D - Matrix

74 D_a = zeros (2, 3);

75

76 %% State -Space -Model

77 ts = 0.5; % Sampling time

78 sys = ss(A, B_a , C, D_a); % CT state -space model

79 sys = c2d(sys ,ts); % DT state -space model (ts sampling)

80 % Signal Names

81 sys. InputName = {’u1’, ’u2’, ’u_PA001 ’};

82 sys. OutputName = {’h1’, ’h2’};

83 sys. StateName = {’h1’, ’h2’};

84 % Signal Units

85 sys. InputUnit = {’-’, ’-’, ’-’};

86 sys. OutputUnit = {’m’, ’m’};

87 sys. StateUnit = {’m’, ’m’};

Appendix I MATLAB Code 225

88 % Signal Types

89 sys = setmpcsignals (sys , ’MV’, [1 2], ’MD’, 3, ’MO’, [1 2]);

90 % Check Controllability

91 controllability_matrix = ctrb(sys);

92 controllability_matrix_rank = rank(controllability_matrix);

93

94 %% SIM

95 Duration = 400; % Simulation time

96 t = 0:ts: Duration ;

97 N = length (t);

98

99 % Reference and Disturbance Modification

100 t_h1_rise = 50;

101 t_h2_rise = 250;

102 t_upa_rise = 450;

103 t_hold = 100;

104

105

106 kp1 = -1.279;

107 ti1 = 43.47;

108 kp2 = -1.63;

109 ti2 = 64.1;

I.2.8 LMHE_KMPC_Simulink_init.m

1 close all; clear all;

2 % %%%

3 % Master Thesis :

4 % Moving Horizon Estimation for the Two -tank System by Greta Bekeryte

5 % and

6 % Design and Implementation of Model Predictive Control for a Coupled

Tank

7 % System by Gent Luta.

8 % May , 2023

9 % %%%

10 run parameters

11 port_attribute = 2;

12 n = 2; % number of states ? [3/2]

13 m = 1; % number of measurements available [2/1]

14 Ts = 1.5;

15 % Operating point for linearization

16 h1_0 = 0.3;

17 h2_0 = 0.2;

18 u_PA001_0 = 0.6;

19 % %%%%%%%%%%%%%%%%%%%%%%%%%%% MPC_init

20 % Steady State Values

Appendix I MATLAB Code 226

21 h1_A = 0.3;

22 h2_A = 0.2;

23 u_PA001_A = 0.6;

24 u1_A = Valve_1_OP_New (h1_A , u_PA001_A);

25 u2_A = Valve_2_OP (u1_A , h1_A , h2_A);

26 f1_A = ValveChar (u1_A);

27 f2_A = ValveChar (u2_A);

28 rho = 1000;

29 g = 9.81;

30 A1 = 0.01;

31 Kv1 = 11.25;

32 Kv2 = 11.25;

33 h_LV001 = 0.05;

34 h_LV002 = 0.25;

35 % Function Handles

36 f1_handle = @ValveChar ;

37 f2_handle = @ValveChar ;

38 f3_handle = @PumpChar ;

39

40 delta = 0.01; %Step size (numerical difference)

41 % Linearization

42 % A - Matrix

43 a11 = - (sqrt (100000)) /(7.2*10^8) * ((Kv1*f1_A*rho*g) / (A1*sqrt(rho*g*(

h1_A + h_LV001))));

44 a12 = 0;

45 a21 = ((1) /(0.004 + 0.07* h2_A)) * ((sqrt (100000)) /(7.2*10^8)) * ((Kv1*

f1_A*rho*g) / (sqrt(rho*g*(h1_A + h_LV001))));

46 a22 = - ((1) /(0.004 + 0.07* h2_A)) * ((sqrt (100000)) /(7.2*(10^8))) * ((Kv2

*f2_A*rho*g) / (sqrt(rho*g*(h2_A + h_LV002))));

47 A_mpc = [a11 a12; a21 a22];

48

49 % B - Matrix

50 b11 = - ((Kv1) /(3600* A1)) * sqrt ((rho*g*(h1_A + h_LV001)) /100000) *

forward_diff (f1_handle , u1_A , delta);

51 b12 = 0;

52 b21 = ((1) /(0.004 + 0.07* h2_A)) * (Kv1 /3600) * sqrt ((rho*g*(h1_A +

h_LV001)) /100000) * forward_diff (f1_handle , u1_A , delta);

53 b22 = -((1) /(0.004 + 0.07* h2_A)) * (Kv2 /3600) * sqrt ((rho*g*(h2_A +

h_LV002)) /100000) * forward_diff (f2_handle , u2_A , delta);

54 B_mpc = [b11 b12 ; b21 b22];

55

56 % C - Matrix

57 C_mpc = eye (2);

58

59 % D - Matrix

60 D_mpc = zeros (2);

61

62 % G - Matrix (Disturbance)

Appendix I MATLAB Code 227

63 g11 = forward_diff (f3_handle , u_PA001_A , delta)/A1;

64 g21 = 0;

65 G_mpc = [g11; g21];

66

67 % B_a - Matrix (Augmented)

68 B_a = [B_mpc G_mpc];

69

70 % D_a - Matrix (Augmented)

71 D_a = zeros (2, 3);

72

73 % State -Space -Model

74 %ts = 0.5; % Sampling time

75 sys = ss(A_mpc , B_a , C_mpc , D_a); % CT State -Space Model

76 sys = c2d(sys ,Ts); % DT State -Space Model (ts sampling)

77 % Signal Names

78 sys. InputName = {’u1’, ’u2’, ’u_PA001 ’};

79 sys. OutputName = {’h1’, ’h2’};

80 sys. StateName = {’h1’, ’h2’};

81 % Signal Units

82 sys. InputUnit = {’-’, ’-’, ’-’};

83 sys. OutputUnit = {’m’, ’m’};

84 sys. StateUnit = {’m’, ’m’};

85 % Signal Types

86 sys = setmpcsignals (sys , ’MV’, [1 2], ’MD’, 3, ’MO’, [1 2]);

87 % Linear MPC

88 old_status = mpcverbosity (’on’);

89

90 p = 10; % Prediction Horizon

91 %c = 1; % Control Horizon

92 c = [2 3 5]; % Control Horizon (Blocking)

93

94 mpcobj = mpc(sys , Ts , p, c); % Linear MPC object

95

96 % Nominal Values

97 x0 = [h1_A; h2_A];

98 u0 = [u1_A;u2_A; u_PA001_A];

99 y0 = x0;

100 mpcobj .Model. Nominal = struct (’X’,x0 ,’U’,u0 ,’Y’,y0);

101

102 % Set Estimator (None)

103 setEstimator (mpcobj , ’custom ’); %N

104 % setoutdist (mpcobj ,’ integrators ’)

105

106 % Signal Scaling

107 mpcobj .OV (1). ScaleFactor = 1 - 0.13; % Range of h1

108 mpcobj .OV (2). ScaleFactor = 0.4 - 0.02; % Range of h2

109

110 % Weighting Matrices

Appendix I MATLAB Code 228

111 mpcobj . Weights . OutputVariables = [1 1]; % Q

112 mpcobj . Weights . ManipulatedVariablesRate = [0.1 0.1]; % S

113 mpcobj . Weights . ManipulatedVariables = [0 0]; % R

114 % Output (soft) Constraints

115 mpcobj .OV (1).Max = 1;

116 mpcobj .OV (1).Min = 0.13;

117 mpcobj .OV (2).Max = 0.4;

118 mpcobj .OV (2).Min = 0.02;

119 % Output ECR (slack)

120 mpcobj .OV (1). MinECR = 5;

121 mpcobj .OV (1). MaxECR = 5;

122 mpcobj .OV (2). MinECR = 5;

123 mpcobj .OV (2). MaxECR = 5;

124 % % Input (hard) Constraints

125 mpcobj .MV (1).Max = 1;

126 mpcobj .MV (1).Min = 0;

127 mpcobj .MV (2).Max = 1;

128 mpcobj .MV (2).Min = 0;

129

130 xc = mpcstate (mpcobj);

131 % %%%%%%%%%%%%%%%%%%%%%%%%%%% MPC_init end

132

133 % %%%%%%%%%%%%%%%%%%%%%%%%%%% MHE init

134 %2x2: 1,1; 2x1: 9e-1, 1; 3x2:1e-6, 1e-1, 1e-4

135 %MHE parameters

136 N_horizon = 10; % Horizon length

137 % Process disturbance used in simulation and MHE

138 cov_w1 = 9e -1;

139 cov_w2 = 1;

140 cov_w3 = 1e -4;

141

142 % Measurement noise used in simulation and MHE

143 cov_v1 = 2.8e -6; % measurement noise

144 cov_v2 = 1.6e -6; % measurement noise

145 if n == 2

146 cov_w = diag ([cov_w1 , cov_w2]);

147 elseif n == 3

148 cov_w = diag ([cov_w1 , cov_w2 , cov_w3]);

149 end

150 if m == 2

151 cov_v = diag ([cov_v1 , cov_v2]);

152 elseif m == 1

153 cov_v = cov_v2 ;

154 end

155

156 % linearization

157 [A, B, C, D, u_LV001_0 , u_LV002_0] = linearization (h1_0 ,h2_0 ,u_PA001_0 ,n,

m);

Appendix I MATLAB Code 229

158 %Discrete -time matrice A (Forward Euler)

159 A_disc = eye(size(A)) + Ts*A;

160 % Parameter structure

161 parameter_struct .n = n;

162 parameter_struct .m = m;

163 parameter_struct .N = N_horizon ;

164 parameter_struct .Ts = Ts;

165 parameter_struct .A = A;

166 parameter_struct .B = B;

167 parameter_struct .C = C;

168 parameter_struct .D = D;

169 parameter_struct .h1_0 = h1_0;

170 parameter_struct .h2_0 = h2_0;

171 parameter_struct . u_LV001_0 = u_LV001_0 ;

172 parameter_struct . u_LV002_0 = u_LV002_0 ;

173 parameter_struct . u_PA001_0 = u_PA001_0 ;

174 parameter_struct .Q = cov_w;

175 parameter_struct .R = cov_v;

176 parameter_struct . A_disc = A_disc ;

177

178 % Init MHE

179 horizon = zeros (1, N_horizon);

180 h1_hat_horizon = horizon ;

181 h2_hat_horizon = horizon ;

182 u_PA001_hat_horizon = horizon ;

183 if n == 3

184 u_PA001_hat_init = u_PA001_0 ;

185 x_hat_horizon = [h1_hat_horizon ; h2_hat_horizon ; u_PA001_hat_horizon

];

186 u_horizon = [horizon ; horizon];

187 elseif n == 2

188 x_hat_horizon = [h1_hat_horizon ; h2_hat_horizon];

189 u_horizon = [horizon ; horizon ; horizon];

190 end

191

192 h1_meas_horizon = horizon ;

193 h2_meas_horizon = horizon ;

194

195 % Lower and upper bound constraints for whole horizon

196 h1_max_arr = zeros (1, N_horizon) + h1_max ;

197 h1_min_arr = zeros (1, N_horizon) + h1_min ;

198 h2_max_arr = zeros (1, N_horizon) + h2_max ;

199 h2_min_arr = zeros (1, N_horizon) + h2_min ;

200 if n == 3

201 u_PA001_max_arr = zeros (1, N_horizon) + 1; % From pump characteristic

202 u_PA001_min_arr = zeros (1, N_horizon) + 0.45; % From pump

characteristic

203 x_ub = [h1_max_arr ; h2_max_arr ; u_PA001_max_arr];

Appendix I MATLAB Code 230

204 x_lb = [h1_min_arr ; h2_min_arr ; u_PA001_min_arr];

205 elseif n == 2

206 x_ub = [h1_max_arr ; h2_max_arr];

207 x_lb = [h1_min_arr ; h2_min_arr];

208 end

209 parameter_struct .x_ub = x_ub;

210 parameter_struct .x_lb = x_lb;

211

212 % Estimate error covariance matrix matrix used in arrival cost storage

213 P_k_N_arr = [];

214 if n == 3

215 P_init = diag ([0.001 , 0.001 , 0.001]) ; % initial P covariance matrix

216 x_pred_k_N = [h1_0; h2_0; u_PA001_0];

217 elseif n == 2

218 P_init = diag ([0.001 , 0.001]) ; % initial P covariance matrix

219 x_pred_k_N = [h1_0; h2_0];

220 end

221 P_previous = P_init ;

I.3 Figure Creation Files

I.3.1 Plot_Data_Visualization_Adaptive_MPC.m

1 %% Control of Two -Tank Using Adaptive MPC.

2 % Initial condition : {h1 = 0.5, h2 = 0.3, u_PA001 = 0.8}

3

4 % Author : Gent Luta

5

6 % Date: Spring 2023

7

8 %% System Parameters (For Simulink Model)

9 rho = 1000;

10 g = 9.81;

11 A1 = 0.01;

12 Kv1 = 11.25;

13 Kv2 = 11.25;

14 h_LV001 = 0.05;

15 h_LV002 = 0.25;

16

17 h1_max = 1;

18 h1_min = 0.13;

19 h2_max = 0.4;

20 h2_min = 0.02;

21 Kv_LV001 = 11.25;

22 Kv_LV002 = 11.25;

Appendix I MATLAB Code 231

23 z_LV001 = 0:0.05:1;

24 f_LV001 = (exp(z_LV001 .^1.2) -1)/(exp (1) -1);

25

26 z_LV002 = 0:0.05:1;

27 f_LV002 = f_LV001 ;

28 u_PA001_data = [0.00 0.45 0.46 0.47 0.48 0.49 0.50 0.55...

29 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00];

30 q_PA001 = [0.00 0.00 1.25 2.25 3.15 3.75 4.40 6.75...

31 8.75 10.70 12.25 13.75 15.15 16.50 18.00 19.20 20.00];

32 q_PA001 = q_PA001 /60000; % liter/min -> m3/s

33

34

35 %% Steady State Values

36 h1_A = 0.5;

37 h2_A = 0.3;

38 u_PA001_A = 0.8;

39 u1_A = Valve_1_OP_New (h1_A , u_PA001_A);

40 u2_A = Valve_2_OP (u1_A , h1_A , h2_A);

41

42 ts = 0.5; % Sampling time

43

44 sys = AdaptiveSys ([h1_A;h2_A], [u1_A;u2_A; u_PA001_A], ts); % DT Linear

System

45

46 %% Linear MPC

47 old_status = mpcverbosity (’on’);

48

49 Duration = 400;

50 t = 0:ts: Duration ;

51 N = length (t);

52

53 nsim = 1;

54 COST = cell (1, nsim);

55 COST_Q = cell (1, nsim);

56 COST_S = cell (1, nsim);

57 COST_R = cell (1, nsim);

58 TIME_ARRAY_QP = cell (1, nsim);

59 TIME_ARRAY_SYS = cell (1, nsim);

60 ITERATIONS = cell (1, nsim);

61

62 for j = 1: nsim

63 p = 13; % Prediction horizon

64 c = 13; % Control horizon

65 %c = [1 4 8]; % Control horizon (blocking)

66

67 mpcobj = mpc(sys , ts , p, c); % Linear MPC object

68

69 % Nominal Values

Appendix I MATLAB Code 232

70 x0 = [h1_A; h2_A];

71 u0 = [u1_A;u2_A; u_PA001_A];

72 y0 = x0;

73 mpcobj .Model. Nominal = struct (’X’,x0 ,’U’,u0 ,’Y’,y0);

74

75 % Set Estimator (None)

76 setEstimator (mpcobj , ’custom ’);

77

78 % Signal Scaling

79 mpcobj .OV (1). ScaleFactor = 1 - 0.13; % Range of h1

80 mpcobj .OV (2). ScaleFactor = 0.4 - 0.02; % Range of h2

81

82 % Weighting Matrices

83 mpcobj . Weights . OutputVariables = [1 1]; % Q

84 mpcobj . Weights . ManipulatedVariablesRate = [0.1 0.1]; % S

85 mpcobj . Weights . ManipulatedVariables = [0 0]; % R

86

87 % Output (soft) Constraints

88 % mpcobj .OV (1).Max = 1;

89 % mpcobj .OV (1).Min = 0.13;

90 % mpcobj .OV (2).Max = 0.4;

91 % mpcobj .OV (2).Min = 0.02;

92

93 % % Output ECR (slack)

94 % mpcobj .OV (1). MinECR = 5;

95 % mpcobj .OV (1). MaxECR = 5;

96 % mpcobj .OV (2). MinECR = 5;

97 % mpcobj .OV (2). MaxECR = 5;

98

99 % Input (hard) Constraints

100 mpcobj .MV (1).Max = 0.9999;

101 mpcobj .MV (1).Min = 0.0001;

102 mpcobj .MV (2).Max = 0.9999;

103 mpcobj .MV (2).Min = 0.0001;

104

105 % Input Rate (soft) Constraints

106 % mpcobj .MV (1). RateMin = -0.1;

107 % mpcobj .MV (1). RateMax = 0.1;

108 % mpcobj .MV (2). RateMin = -0.1;

109 % mpcobj .MV (2). RateMax = 0.1;

110

111 % %Input Rate ECR (slack)

112 % mpcobj .MV (1). RateMinECR = 20;

113 % mpcobj .MV (1). RateMaxECR = 20;

114 % mpcobj .MV (2). RateMinECR = 20;

115 % mpcobj .MV (2). RateMaxECR = 20;

116

117 % MPC Optimizer Options :

Appendix I MATLAB Code 233

118 % Interior -Point Solver and Option

119 % mpcobj . Optimizer . Algorithm = ’interior -point ’;

120 % mpcobj . Optimizer . InteriorPointOptions . MaxIterations = 8;

121 % mpcobj . Optimizer . InteriorPointOptions . ConstraintTolerance = 1e -5;

122 % mpcobj . Optimizer . InteriorPointOptions . OptimalityTolerance = 1e -5;

123 % mpcobj . Optimizer . InteriorPointOptions . ComplementarityTolerance = 1e -6;

124 % mpcobj . Optimizer . InteriorPointOptions . StepTolerance = 1e -7;

125

126 % Active -Set Solver and Options

127 % mpcobj . Optimizer . Algorithm = ’active -set ’;

128 % mpcobj . Optimizer . ActiveSetOptions . MaxIterations = 2;

129 % mpcobj . Optimizer . ActiveSetOptions . ConstraintTolerance = 1e -6;

130

131 % mpcobj . Optimizer . UseSuboptimalSolution = true;

132

133 %% SIM

134 % Signal Previewing

135 ref = [ones (1, N -1)*h1_A;

136 ones (1, N -1)*h2_A];

137 u_PA001 = ones (1,N)* u_PA001_A ;

138

139 % Reference and Disturbance Modification

140 t_h1_rise = 50;

141 t_h2_rise = 150;

142 t_upa_rise = 250;

143 t_hold = 70;

144 idx_ref1 = round(t_h1_rise /ts);

145 idx_ref2 = round(t_h2_rise /ts);

146 idx_upa = round(t_upa_rise /ts);

147 idx_hold = round(t_hold /ts);

148 %

149 ref (1, idx_ref1 : idx_ref1 + idx_hold) = h1_A + 0.2;

150 ref (2, idx_ref2 : idx_ref2 + idx_hold) = h2_A - 0.2;

151 u_PA001 (1, idx_upa : idx_upa + idx_hold) = u_PA001_A - 0.2;

152

153 %

154 x = x0; % Current state

155 xc = mpcstate (mpcobj); % Controller state pointer

156 xN = x0; % Nominal (updated iteratively)

157 uN = u0; % Nominal (updated iteratively)

158 yN = y0; % Nominal (updated iteratively)

159 dxN = [0;0]; % Nominal (updated iteratively)

160

161 % History Tracking

162 UU = zeros (2,N); UU (: ,1) = u0 (1:2);

163 XX_NL = zeros (2,N); XX_NL (: ,1) = x0;

164 TIME_SPENT_QP = zeros (1,N -1);

165 TIME_SPENT_SYS = zeros (1,N -1);

Appendix I MATLAB Code 234

166 II = zeros (1,N -1);

167

168 hbar = waitbar (0, ’Simulation Progress ’);

169 for i = 1:(Duration /ts)

170 if i <= N-p-1

171 r1 = ref (1,i:i+p -1);

172 r2 = ref (2,i:i+p -1);

173 r = [r1 ’ r2 ’];

174 v = u_PA001 (i:i+p -1) ’;

175 else

176 r1 = ref (1,i:end);

177 r2 = ref (2,i:end);

178 r = [r1 ’ r2 ’];

179 v = u_PA001 (i:end) ’;

180 end

181 %r = ref (:,i) ’; % Without signal preview (reference)

182 %v = u_PA001 (i); % Without signal preview (disturbance)

183

184 tic

185 [mv , info] = mpcmoveAdaptive (mpcobj , xc , sys ,...

186 struct (’X’,xN ,’U’,uN ,’Y’,yN , ’DX’, dxN), [], r, v); % Solve QP

optimization problem

187 TIME_SPENT_QP (i) = toc;

188

189 % Simulate Nonlinear System

190 [~, XNL] = ode45(@(t,x) tankCT_NEW (x, [mv;v(1)]), [0 ts], XX_NL (:,i));

191 xnl = [XNL(end ,1);XNL(end ,2)];

192

193 % Update Controller State Based on Nonlinear System

194 xc.Plant = xnl;

195 xc. LastMove = mv;

196 xc. Disturbance = [0;0];

197

198 % Update Prediction Model and Nominal Solution

199 tic

200 sys = AdaptiveSys (xnl , [mv;v(1)], ts);

201 xN = xnl;

202 uN = [mv;v(1)];

203 yN = xnl;

204 dxN = xnl - XX_NL (:,i);

205 TIME_SPENT_SYS (i) = toc;

206 % History tracking

207 UU(:,i+1) = mv;

208 II(i) = info. Iterations ;

209 XX_NL (:,i+1) = xnl;

210

211 waitbar (i*ts/Duration , hbar);

212 end

Appendix I MATLAB Code 235

213 close(hbar)

214

215 TIME_ARRAY_QP {1,j} = TIME_SPENT_QP ;

216 TIME_ARRAY_SYS {1,j} = TIME_SPENT_SYS ;

217 ITERATIONS {1,j} = II;

218

219 cost = 0;

220 cost_Q = 0;

221 cost_S = 0;

222 cost_R = 0;

223

224 % Find Total Quadratic Cost

225 Q = diag(mpcobj . Weights . OutputVariables);

226 Q(1 ,1) = Q(1 ,1)/ mpcobj .OV (1). ScaleFactor ; % Scaling

227 Q(2 ,2) = Q(2 ,2)/ mpcobj .OV (2). ScaleFactor ; % Scaling

228 S = diag(mpcobj . Weights . ManipulatedVariablesRate);

229 R = diag(mpcobj . Weights . ManipulatedVariables);

230 E = XX_NL (: ,2: end) - ref; % OV reference tracking error

231 EU = UU (: ,:) - u0 (1:2 ,:); % MV target tracking error

232 mvRate = UU (: ,1:end -1) - UU (: ,2: end); % MV rate

233 for l = 1:N-1

234 cost_Q = cost_Q + E(:,l) ’*(Q^2)*E(:,l);

235 cost_S = cost_S + mvRate (:,l) ’*(S^2)* mvRate (:,l);

236 cost_R = cost_R + EU(:,l) ’*(R^2)*EU(:,l);

237 cost = cost + E(:,l) ’*(Q^2)*E(:,l) + mvRate (:,l) ’*(S^2)* mvRate (:,l)

+ EU(:,l) ’*(R^2)*EU(:,l);

238 end

239 COST {1,j} = cost;

240 COST_Q {1,j} = cost_Q ;

241 COST_S {1,j} = cost_S ;

242 COST_R {1,j} = cost_R ;

243 end

244

245 %% Plot - Simulation

246 figure

247

248 % Tank 1

249 subplot (3 ,1 ,1)

250 plot(t, XX_NL (1 ,:) , ’blue ’, ’LineWidth ’,1, ’LineStyle ’,’-’)

251 hold on

252 plot(t(2: end), ref (1 ,:) , ’red ’, ’LineWidth ’,1, ’LineStyle ’,’--’)

253 xlabel (’t\, [s]’, Interpreter =’latex ’)

254 ylabel (’Water level $[m]$’, Interpreter =’latex ’)

255 title(’Tank 1’, Interpreter =’latex ’)

256 legend (’$h_ {1}$’,’$h_ {1,\, ref}$’, ’Interpreter ’,’latex ’)

257 ylim ([0 1]);

258 grid on

259 box on

Appendix I MATLAB Code 236

260 set(gca ,’YTick ’ ,0:0.05:1)

261

262 % Tank 2

263 subplot (3 ,1 ,2)

264 plot(t, XX_NL (2 ,:) , ’blue ’, ’LineWidth ’,1, ’LineStyle ’,’-’)

265 hold on

266 plot(t(2: end), ref (2 ,:) , ’red ’, ’LineWidth ’,1, ’LineStyle ’,’--’)

267 xlabel (’t\, [s]’, Interpreter =’latex ’)

268 ylabel (’Water level $[m]$’, Interpreter =’latex ’)

269 title(’Tank 2’, Interpreter =’latex ’)

270 legend (’$h_ {2}$’,’$h_ {2,\, ref}$’, ’Interpreter ’,’latex ’)

271 ylim ([0 1])

272 xlim ([0 t(end)])

273 grid on

274 box on

275 set(gca ,’YTick ’ ,0:0.05:1)

276

277 % Input Signals

278 subplot (3 ,1 ,3)

279 stairs (t, UU (1 ,:) , ’magenta ’, ’LineWidth ’ ,1)

280 hold on

281 stairs (t, UU (2 ,:) , ’green ’, ’LineWidth ’ ,1)

282 hold on

283 stairs (t, u_PA001 , ’k’, ’LineStyle ’,’:’, LineWidth =1)

284 xlabel (’$t\, [s]$’, Interpreter =’latex ’)

285 ylabel (’[-]’, Interpreter =’latex ’)

286 title(’Input Signals ’, Interpreter =’latex ’)

287 legend (’u_{LV001}’, ’u_{LV002}’, ’u_{PA001}’, ’Interpreter ’,’latex ’

)

288 ylim ([0 1])

289 grid on

290 box on

291

292 %% Time spent QP

293 TIME_MAT = zeros(N-1, nsim);

294 Lable_struc = cell (1, nsim);

295 for i = 1: nsim

296 TIME_MAT (:,i) = TIME_ARRAY_QP {1,i}’;

297 Lable_struc {i} = sprintf (’Sim%i’, i);

298 end

299 figure ;

300 boxplot (TIME_MAT ," BoxStyle "," outline ",’MedianStyle ’,’line ’,’Notch ’,’off ’,

’OutlierSize ’ ,6,...

301 ’Symbol ’,’.r’, Jitter =0, Labels = Lable_struc)

302 xlabel (’Simulations ’, Interpreter =’latex ’)

303 ylabel (’Time $[s]$’, Interpreter =’latex ’)

304 title(’Box Plot w.r.t. Execution Time of QP Solver ’, Interpreter =’latex ’)

305 box on

Appendix I MATLAB Code 237

306 grid on

307

308 %% Time spent SYS

309 TIME_MAT = zeros(N-1, nsim);

310 Lable_struc = cell (1, nsim);

311 for i = 1: nsim

312 TIME_MAT (:,i) = TIME_ARRAY_SYS {1,i}’;

313 Lable_struc {i} = sprintf (’Sim%i’, i);

314 end

315 figure ;

316 boxplot (TIME_MAT ," BoxStyle "," outline ",’MedianStyle ’,’line ’,’Notch ’,’off ’,

’OutlierSize ’ ,6,...

317 ’Symbol ’,’.r’, Jitter =0, Labels = Lable_struc)

318 xlabel (’Simulations ’, Interpreter =’latex ’)

319 ylabel (’Time $[s]$’, Interpreter =’latex ’)

320 title(’Box Plot w.r.t. Execution Time of Prediction Model Update ’,

Interpreter =’latex ’)

321 box on

322 grid on

323

324 %% Time spent TOTAL

325 TIME_MAT = zeros(N-1, nsim);

326 Lable_struc = cell (1, nsim);

327 for i = 1: nsim

328 TIME_MAT (:,i) = TIME_ARRAY_QP {1,i}’ + TIME_ARRAY_SYS {1,i}’;

329 Lable_struc {i} = sprintf (’Sim%i’, i);

330 end

331 figure ;

332 boxplot (TIME_MAT ," BoxStyle "," outline ",’MedianStyle ’,’line ’,’Notch ’,’off ’,

’OutlierSize ’ ,6,...

333 ’Symbol ’,’.r’, Jitter =0, Labels = Lable_struc)

334 xlabel (’Simulations ’, Interpreter =’latex ’)

335 ylabel (’Time $[s]$’, Interpreter =’latex ’)

336 title(’Box Plot w.r.t. Execution Time of QP Solver plus Prediction Model

Update ’, Interpreter =’latex ’)

337 box on

338 grid on

339

340 result = 0;

341 result_Q = 0;

342 result_S = 0;

343 for i = 1: nsim

344 result = result + sum(TIME_ARRAY_QP {1,i} + TIME_ARRAY_SYS {1,i});

345 result_Q = result_Q + sum(TIME_ARRAY_QP {1,i});

346 result_S = result_S + sum(TIME_ARRAY_SYS {1,i});

347 end

348 avrg = result /10;

349 avrg_Q = result_Q /10;

Appendix I MATLAB Code 238

350 avrg_S = result_S /10;

351

352 for i = 1: nsim

353 i

354 sum(TIME_ARRAY_SYS {1,i})

355 end

356

357 %% Quadratic Cost

358 COST_mat = cell2mat (COST);

359 COST_Q_mat = cell2mat (COST_Q);

360 COST_R_mat = cell2mat (COST_R);

361 COST_S_mat = cell2mat (COST_S);

362

363 sprintf (’Mean Total Cost: %f’,mean(COST_mat))

364 sprintf (’Mean Total Cost - Q: %f’,mean(COST_Q_mat))

365 sprintf (’Mean Total Cost - S: %f’,mean(COST_S_mat))

366 sprintf (’Mean Total Cost - R: %f’,mean(COST_R_mat))

367

368 %% Show Iterations and time taken on every control interval . Fill out

this part!

369 figure

370 f = zeros (1 ,3);

371 yyaxis left

372 f(1) = stem(TIME_ARRAY_QP {1,9},’blue ’, ’LineWidth ’ ,.05, ’LineStyle ’,’-’,

MarkerSize =0.001) ;

373 ylabel (’Time $[s]$’,Interpreter =’latex ’)

374

375 hold on

376 f(2) = yline (2.02*10^ -3 , ’k’, ’LineWidth ’,1, ’LineStyle ’,’--’);

377 %ylim ([0 0.004])

378 yyaxis right

379

380 f(3) = stem(ITERATIONS {1,9},’Color ’ ,[255/255 ,69/255 ,0] , ’LineWidth ’ ,.05,

’LineStyle ’,’-’, MarkerSize =0.001) ;

381 ylabel (’Iterations ’,Interpreter =’latex ’)

382 set(gca ,’YTick ’ ,0:2:40)

383 ylim ([0 40])

384

385 ax = gca;

386 ax.YAxis (1).Color = ’b’;

387 ax.YAxis (2).Color = [255/255 ,69/255 ,0];

388 ax.XAxis (1).Color = ’k’;

389

390 title(’Execution Time and Iterations of Every QP Solver Call ’,Interpreter

=’latex ’)

391 xlabel (’Control Interval k ’,Interpreter =’latex ’)

392 legend (f(1:3) ,’Time Spent ’, ’Upper Adjacent ’, ’Iterations Required ’, ’

Interpreter ’,’latex ’)

Appendix I MATLAB Code 239

393 grid on

394 box on

I.3.2 Plot_Data_Visualization_Explicit_MPC_V2.m

1 %% Control of Two -Tank Using Explicit MPC.

2 % Linearized model about the nominal solution {h1 = 0.5, h2 = 0.3,

u_PA001 = 0.8}

3

4 % Author : Gent Luta

5

6 % Date: Spring 2023

7

8 %% Steady State Values

9 h1_A = 0.5;

10 h2_A = 0.3;

11 u_PA001_A = 0.8;

12 u1_A = Valve_1_OP_New (h1_A , u_PA001_A);

13 u2_A = Valve_2_OP (u1_A , h1_A , h2_A);

14 f1_A = ValveChar (u1_A);

15 f2_A = ValveChar (u2_A);

16

17 %% System Parameters

18 rho = 1000;

19 g = 9.81;

20 A1 = 0.01;

21 Kv1 = 11.25;

22 Kv2 = 11.25;

23 h_LV001 = 0.05;

24 h_LV002 = 0.25;

25

26 %% Function Handles

27 f1_handle = @ValveChar ;

28 f2_handle = @ValveChar ;

29 f3_handle = @PumpChar ;

30

31 delta = 0.01; % Step size when using forward difference

32

33 %% Linearization

34 % A - Matrix

35 a11 = - (sqrt (100000)) /(7.2*10^8) * ((Kv1*f1_A*rho*g) / (A1*sqrt(rho*g*(

h1_A + h_LV001))));

36 a12 = 0;

37 a21 = ((1) /(0.004 + 0.07* h2_A)) * ((sqrt (100000)) /(7.2*10^8)) * ((Kv1*

f1_A*rho*g) / (sqrt(rho*g*(h1_A + h_LV001))));

Appendix I MATLAB Code 240

38 a22 = - ((1) /(0.004 + 0.07* h2_A)) * ((sqrt (100000)) /(7.2*(10^8))) * ((Kv2

*f2_A*rho*g) / (sqrt(rho*g*(h2_A + h_LV002))));

39 A = [a11 a12; a21 a22];

40

41 % B - Matrix

42 b11 = - ((Kv1) /(3600* A1)) * sqrt ((rho*g*(h1_A + h_LV001)) /100000) *

forward_diff (f1_handle , u1_A , delta);

43 b12 = 0;

44 b21 = ((1) /(0.004 + 0.07* h2_A)) * (Kv1 /3600) * sqrt ((rho*g*(h1_A +

h_LV001)) /100000) * forward_diff (f1_handle , u1_A , delta);

45 b22 = -((1) /(0.004 + 0.07* h2_A)) * (Kv2 /3600) * sqrt ((rho*g*(h2_A +

h_LV002)) /100000) * forward_diff (f2_handle , u2_A , delta);

46 B = [b11 b12 ; b21 b22];

47

48 % C - Matrix

49 C = eye (2);

50

51 % D - Matrix

52 D = zeros (2);

53

54 % G - Matrix (Disturbance)

55 g11 = forward_diff (f3_handle , u_PA001_A , delta)/A1;

56 g21 = 0;

57 G = [g11; g21];

58

59 % Augmented B - Matrix

60 B_a = [B G];

61

62 % Augmented D - Matrix

63 D_a = zeros (2, 3);

64

65 %% State -Space -Model

66 ts = 0.5; % Sampling time

67 sys = ss(A, B_a , C, D_a); % CT state -space model

68 sys = c2d(sys ,ts); % DT state -space model (ts sampling)

69 % Signal Names

70 sys. InputName = {’u1’, ’u2’, ’u_PA001 ’};

71 sys. OutputName = {’h1’, ’h2’};

72 sys. StateName = {’h1’, ’h2’};

73 % Signal Units

74 sys. InputUnit = {’-’, ’-’, ’-’};

75 sys. OutputUnit = {’m’, ’m’};

76 sys. StateUnit = {’m’, ’m’};

77 % Signal Types

78 sys = setmpcsignals (sys , ’MV’, [1 2], ’MD’, 3, ’MO’, [1 2]);

79

80 %% Linear MPC

81 old_status = mpcverbosity (’on’);

Appendix I MATLAB Code 241

82

83 M = 1:9;

84 REGIONS = zeros (1,M(end));

85 EMPC = cell (1,M(end));

86 BYTES = zeros (1,M(end));

87 COST = zeros (1,M(end));

88 for m = M

89 p = 13; % Prediction horizon

90 c = m;

91 %c = [1 2 2 3 5]; % Control horizon

92 %c = [2 4 7]; % Control horizon (blocking)

93

94 mpcobj = mpc(sys , ts , p, c); % Linear MPC object

95

96 % Nominal Values

97 x0 = [h1_A; h2_A];

98 u0 = [u1_A;u2_A; u_PA001_A];

99 y0 = x0;

100 mpcobj .Model. Nominal = struct (’X’,x0 ,’U’,u0 ,’Y’,y0);

101

102 % Set Estimator (None)

103 setEstimator (mpcobj , ’custom ’);

104

105 % Signal Scaling

106 mpcobj .OV (1). ScaleFactor = 1 - 0.13; % Range of h1

107 mpcobj .OV (2). ScaleFactor = 0.4 - 0.02; % Range of h2

108

109 % Weighting Matrices

110 mpcobj . Weights . OutputVariables = [1 1]; % Q

111 mpcobj . Weights . ManipulatedVariablesRate = [0.1 0.1]; % S

112 mpcobj . Weights . ManipulatedVariables = [0 0]; % R

113

114 % Output (soft) Constraints

115 % mpcobj .OV (1).Max = 1;

116 % mpcobj .OV (1).Min = 0.13;

117 % mpcobj .OV (2).Max = 0.4;

118 % mpcobj .OV (2).Min = 0.02;

119

120 % % Output ECR (slack)

121 % mpcobj .OV (1). MinECR = 5;

122 % mpcobj .OV (1). MaxECR = 5;

123 % mpcobj .OV (2). MinECR = 5;

124 % mpcobj .OV (2). MaxECR = 5;

125

126 % Input (hard) Constraints

127 mpcobj .MV (1).Max = 0.9999;

128 mpcobj .MV (1).Min = 0.0001;

129 mpcobj .MV (2).Max = 0.9999;

Appendix I MATLAB Code 242

130 mpcobj .MV (2).Min = 0.0001;

131

132 % Input Rate (soft) Constraints

133 % mpcobj .MV (1). RateMin = -0.3;

134 % mpcobj .MV (1). RateMax = 0.3;

135 % mpcobj .MV (2). RateMin = -0.3;

136 % mpcobj .MV (2). RateMax = 0.3;

137

138 % Input Rate ECR (slack)

139 % mpcobj .MV (1). RateMinECR = 20;

140 % mpcobj .MV (1). RateMaxECR = 20;

141 % mpcobj .MV (2). RateMinECR = 20;

142 % mpcobj .MV (2). RateMaxECR = 20;

143

144 % Interior -Point Solver and Option

145 % mpcobj . Optimizer . Algorithm = ’interior -point ’;

146 % mpcobj . Optimizer . InteriorPointOptions . MaxIterations = 8;

147 % mpcobj . Optimizer . InteriorPointOptions . ConstraintTolerance = 1e -5;

148 % mpcobj . Optimizer . InteriorPointOptions . OptimalityTolerance = 1e -5;

149 % mpcobj . Optimizer . InteriorPointOptions . ComplementarityTolerance = 1e -6;

150 % mpcobj . Optimizer . InteriorPointOptions . StepTolerance = 1e -7;

151

152 % Active -Set Solver and Options

153 % mpcobj . Optimizer . Algorithm = ’active -set ’;

154 % mpcobj . Optimizer . ActiveSetOptions . MaxIterations = 2;

155 % mpcobj . Optimizer . ActiveSetOptions . ConstraintTolerance = 1e -6;

156

157 % mpcobj . Optimizer . UseSuboptimalSolution = true;

158

159 %% Explicit MPC

160 % Define the Range:

161 range = generateExplicitRange (mpcobj);

162

163 % Range of the States

164 range.State.Min (:) = [0.13 0.02 -0.001 -0.001];

165 range.State.Max (:) = [1 0.4 0.001 0.001];

166 % Range of the References

167 range. Reference .Min (:) = [0.13 0.02];

168 range. Reference .Max (:) = [1 0.4];

169 % Range of the Measured Disturbance

170 range. MeasuredDisturbance .Min = 0;

171 range. MeasuredDisturbance .Max = 1;

172 % Range of the Manipulated Variables

173 range. ManipulatedVariable .Min (:) = [0.00001 0.00001];

174 range. ManipulatedVariable .Max (:) = [0.99999 0.99999];

175

176 % Option for EMPC

177 opt = generateExplicitOptions (mpcobj);

Appendix I MATLAB Code 243

178 opt. polyreduction = 1;

179 %opt. maxiterBS = 200;

180 %opt. maxiterNNLS = 1000;

181 %opt. maxiterQP = 400;

182 %opt. flattol = 1e -6;

183 %opt. normalizetol = 10;

184 %opt. removetol = 1e -2;

185 %opt. zerotol = 1e -10;

186

187 % Create EMPC Obj.

188 empcobj = generateExplicitMPC (mpcobj ,range ,opt);

189 % empcobj = generateExplicitMPC (mpcobj ,range);

190 EMPC {1,m} = empcobj ;

191 [~, reg] = size(empcobj . PiecewiseAffineSolution);

192 REGIONS (1,m) = reg;

193 s = whos(’empcobj ’);

194 BYTES (1,m) = s.bytes;

195 end

196 % empcobjSimplified = simplify (empcobj , ’exact ’);

197

198 %% Plot EMPC Regions at Spesific Params .

199 empcobj = EMPC {4};

200 plotParams = generatePlotParameters (empcobj);

201

202 plotParams .State.Index = [3 4];

203 plotParams .State.Value = [0 0];

204

205 plotParams . ManipulatedVariable .Index = [1 2];

206 plotParams . ManipulatedVariable .Value = [0.2 0.2];

207

208 plotParams . Reference .Index = [1 2];

209 plotParams . Reference .Value = [0.2 0.35];

210

211 plotParams . MeasuredDisturbance .Index = 1;

212 plotParams . MeasuredDisturbance .Value = 0.9;

213

214 plotSection (empcobj , plotParams)

215 xlabel (’$h_ {1}(k)$’, Interpreter =’latex ’)

216 ylabel (’$h_ {2}(k)$’, Interpreter =’latex ’)

217 title(’2-D Plot of Explicit MPC Polyhedral Partition ’, Interpreter =’latex

’)

218 box on

219 grid on

220 xlim ([0 1])

221 ylim ([0 0.4])

222

223 %% SIM

224 Duration = 400; % Simulation time

Appendix I MATLAB Code 244

225 t = 0:ts: Duration ;

226 N = length (t);

227

228 nsim = length (M);

229 COST = cell (1, nsim);

230 COST_Q = cell (1, nsim);

231 COST_S = cell (1, nsim);

232 COST_R = cell (1, nsim);

233 TIME_ARRAY = cell (1, nsim);

234

235 for j = 1: nsim

236 empcobj = EMPC{j};

237 % Signal Previewing

238 ref = [ones (1, N -1)*h1_A;

239 ones (1, N -1)*h2_A];

240 u_PA001 = ones (1,N)* u_PA001_A ;

241

242 % Reference and Disturbance Modification

243 t_h1_rise = 50;

244 t_h2_rise = 150;

245 t_upa_rise = 250;

246 t_hold = 70;

247 idx_ref1 = round(t_h1_rise /ts);

248 idx_ref2 = round(t_h2_rise /ts);

249 idx_upa = round(t_upa_rise /ts);

250 idx_hold = round(t_hold /ts);

251 %

252 ref (1, idx_ref1 : idx_ref1 + idx_hold) = h1_A + 0.2;

253 ref (2, idx_ref2 : idx_ref2 + idx_hold) = h2_A - 0.2;

254 u_PA001 (1, idx_upa : idx_upa + idx_hold) = u_PA001_A - 0.2;

255

256 %

257 x = x0; % Current state

258 xc = mpcstate (empcobj); % Controller state pointer

259 %xc.Plant = x0;

260 %xc. LastMove = u0 (1:2);

261

262 % History Tracking

263 UU = zeros (2,N); UU (: ,1) = u0 (1:2);

264 XX_NL = zeros (2,N); XX_NL (: ,1) = x0;

265 TIME_SPENT = zeros (1,N -1);

266

267

268 hbar = waitbar (0, ’Simulation Progress ’);

269 for i = 1:(Duration /ts)

270 r = ref (:,i) ’; % Without signal preview (reference)

271 v = u_PA001 (i); % Without signal preview (disturbance)

272

Appendix I MATLAB Code 245

273 tic

274 [mv , info] = mpcmoveExplicit (empcobj , xc , [], r, v); % Find

optimal MV

275 TIME_SPENT (1,i) = toc;

276 if mv (1) < 0

277 mv (1) = 0;

278 end

279 if mv (2) < 0

280 mv (2) = 0;

281 end

282

283 % Simulate Linear System

284

285 % Update Controller State Based on Linear System (Uncomment to Use)

286 %xc.Plant = x; %N

287 %xc. LastMove = mv; %N

288 %xc. Disturbance = [0;0]; %N

289

290 % Simulate Nonlinear System

291 [~, XNL] = ode45(@(t,x) tankCT_NEW (x, [mv;v(1)]), [0 ts], XX_NL (:,i));

292 xnl = [XNL(end ,1);XNL(end ,2)];

293

294 % Update Controller State Based on Nonlinear System

295 xc.Plant = xnl;

296 xc. LastMove = mv;

297 %xc. Disturbance = [0;0];

298

299 % History tracking

300 UU(:,i+1) = mv;

301 XX_NL (:,i+1) = xnl;

302

303 waitbar (i*ts/Duration , hbar);

304 end

305 close(hbar)

306

307 TIME_ARRAY {1,j} = TIME_SPENT ;

308

309 % Find Total Quadratic Cost

310 cost = 0;

311 cost_Q = 0;

312 cost_S = 0;

313 cost_R = 0;

314

315 Q = diag(mpcobj . Weights . OutputVariables);

316 Q(1 ,1) = Q(1 ,1)/ mpcobj .OV (1). ScaleFactor ; % Scaling

317 Q(2 ,2) = Q(2 ,2)/ mpcobj .OV (2). ScaleFactor ; % Scaling

318 S = diag(mpcobj . Weights . ManipulatedVariablesRate);

319 R = diag(mpcobj . Weights . ManipulatedVariables);

Appendix I MATLAB Code 246

320 E = XX_NL (: ,2: end) - ref; % OV reference tracking error

321 EU = UU (: ,:) - u0 (1:2 ,:); % MV target tracking error

322 mvRate = UU (: ,1:end -1) - UU (: ,2: end); % MV rate

323 for l = 1:N-1

324 cost_Q = cost_Q + E(:,l) ’*(Q^2)*E(:,l);

325 cost_S = cost_S + mvRate (:,l) ’*(S^2)* mvRate (:,l);

326 cost_R = cost_R + EU(:,l) ’*(R^2)*EU(:,l);

327 cost = cost + E(:,l) ’*(Q^2)*E(:,l) + mvRate (:,l) ’*(S^2)* mvRate (:,l)

+ EU(:,l) ’*(R^2)*EU(:,l);

328 end

329 COST {1,j} = cost;

330 COST_Q {1,j} = cost_Q ;

331 COST_S {1,j} = cost_S ;

332 COST_R {1,j} = cost_R ;

333 end

334

335 %% Plot - Simulation

336 figure

337

338 % Tank 1

339 subplot (3 ,1 ,1)

340 %plot(t, XX (1 ,:) ,’blue ’, ’LineWidth ’,1)

341 %hold on

342 plot(t, XX_NL (1 ,:) , ’blue ’, ’LineWidth ’,1, ’LineStyle ’,’-’)

343 hold on

344 plot(t(2: end), ref (1 ,:) , ’red ’, ’LineWidth ’,1, ’LineStyle ’,’--’)

345 xlabel (’t\, [s]’, Interpreter =’latex ’)

346 ylabel (’Water level $[m]$’, Interpreter =’latex ’)

347 title(’Tank 1’, Interpreter =’latex ’)

348 % legend (’$h_ {1}(t)$’, ’$h_ {1,\, ref}$’,’$h_ {1,\,NL}$’, ’Interpreter ’,’

latex ’)

349 legend (’$h_ {1}$’, ’$h_ {1,\, ref}$’, ’Interpreter ’,’latex ’)

350 ylim ([0 1]);

351 grid on

352 box on

353 set(gca ,’YTick ’ ,0:0.05:1)

354

355 % Tank 2

356 subplot (3 ,1 ,2)

357 %plot(t, XX (2 ,:) , ’blue ’, ’LineWidth ’,1)

358 %hold on

359 plot(t, XX_NL (2 ,:) , ’blue ’, ’LineWidth ’,1, ’LineStyle ’,’-’)

360 hold on

361 plot(t(2: end), ref (2 ,:) , ’red ’, ’LineWidth ’,1, ’LineStyle ’,’--’)

362 xlabel (’t\, [s]’, Interpreter =’latex ’)

363 ylabel (’Water level $[m]$’, Interpreter =’latex ’)

364 title(’Tank 2’, Interpreter =’latex ’)

Appendix I MATLAB Code 247

365 % legend (’$h_ {2}(t)$’, ’$h_ {2,\, ref}$’,’$h_ {2,\,NL}$’, ’Interpreter ’,’

latex ’)

366 legend (’$h_ {2}$’, ’$h_ {2,\, ref}$’, ’Interpreter ’,’latex ’)

367 ylim ([0 1])

368 xlim ([0 t(end)])

369 grid on

370 box on

371 set(gca ,’YTick ’ ,0:0.05:1)

372

373 % Input Signals

374 subplot (3 ,1 ,3)

375 stairs (t, UU (1 ,:) , ’magenta ’, ’LineWidth ’ ,1)

376 hold on

377 stairs (t, UU (2 ,:) , ’green ’, ’LineWidth ’ ,1)

378 hold on

379 stairs (t, u_PA001 , ’k’, ’LineStyle ’,’:’, LineWidth =1)

380 xlabel (’$t\, [s]$’, Interpreter =’latex ’)

381 ylabel (’[-]’, Interpreter =’latex ’)

382 title(’Input Signals ’, Interpreter =’latex ’)

383 legend (’u_{LV001}’, ’u_{LV002}’, ’u_{PA001}’, ’Interpreter ’,’latex ’

)

384 ylim ([0 1])

385 grid on

386 box on

387

388

389 %% Time Spent

390 TIME_MAT = zeros(N-1, nsim);

391 Lable_struc = cell (1, nsim);

392 for i = 1: nsim

393 TIME_MAT (:,i) = TIME_ARRAY {1,i}’;

394 Lable_struc {i} = sprintf (’Sim%i’, i);

395 end

396 figure ;

397 boxplot (TIME_MAT ," BoxStyle "," outline ",’MedianStyle ’,’line ’,’Notch ’,’off ’,

’OutlierSize ’ ,6,...

398 ’Symbol ’,’.r’, Jitter =0, Labels = Lable_struc)

399 xlabel (’Simulations ’, Interpreter =’latex ’)

400 ylabel (’Time $[s]$’, Interpreter =’latex ’)

401 title(’Box Plot w.r.t. Execution Time of QP Solver ’, Interpreter =’latex ’)

402 box on

403 grid on

404

405 %% Quadratic Cost

406 COST_mat = cell2mat (COST);

407 COST_Q_mat = cell2mat (COST_Q);

408 COST_R_mat = cell2mat (COST_R);

409 COST_S_mat = cell2mat (COST_S);

Appendix I MATLAB Code 248

410

411 sprintf (’Mean Total Cost: %f’,mean(COST_mat))

412 sprintf (’Mean Total Cost - Q: %f’,mean(COST_Q_mat))

413 sprintf (’Mean Total Cost - S: %f’,mean(COST_S_mat))

414 sprintf (’Mean Total Cost - R: %f’,mean(COST_R_mat))

415

416 %% figure

417 figure

418 yyaxis left

419 stem(M, cell2mat (COST),’blue ’, ’LineWidth ’,1, ’LineStyle ’,’-’,MarkerSize

=10);

420 ylabel (’Total Quadratic Cost ’,Interpreter =’latex ’)

421

422 %ylim ([0 0.004])

423 yyaxis right

424

425 stem(M,REGIONS ,’Color ’ ,[255/255 ,69/255 ,0] , ’LineWidth ’,1, ’LineStyle ’,’-’

, MarkerSize =10, Marker =’x’);

426 ylabel (’Polyhedral Regions ’,Interpreter =’latex ’)

427 %set(gca ,’YTick ’ ,0:2:40)

428 %ylim ([0 40])

429 set(gca , ’YScale ’, ’log ’)

430 ax = gca;

431 ax.YAxis (1).Color = ’b’;

432 ax.YAxis (2).Color = [255/255 ,69/255 ,0];

433 ax.XAxis (1).Color = ’k’;

434 xlim ([0 10])

435 set(gca ,’XTick ’ ,0:1:10)

436 title(’Control Horizon v. Quadratic Cost and Explicit MPC Complexity ’,

Interpreter =’latex ’)

437 xlabel (’Control Horizon M ’,Interpreter =’latex ’)

438 legend (’Total Quadratic Cost ’, ’Polyhedral Regions ’, ’Interpreter ’,’latex

’)

439 grid on

440 box on

I.3.3 Plot_Data_Visualization_Explicit_MPC.m

1 %% Control of Two -Tank Using Explicit MPC.

2 % Linearized model about the nominal solution {h1 = 0.5, h2 = 0.3,

u_PA001 = 0.8}

3

4 % Author : Gent Luta

5

6 % Date: Spring 2023

7

Appendix I MATLAB Code 249

8 %% Steady State Values

9 h1_A = 0.5;

10 h2_A = 0.3;

11 u_PA001_A = 0.8;

12 u1_A = Valve_1_OP_New (h1_A , u_PA001_A);

13 u2_A = Valve_2_OP (u1_A , h1_A , h2_A);

14 f1_A = ValveChar (u1_A);

15 f2_A = ValveChar (u2_A);

16

17 %% System Parameters

18 rho = 1000;

19 g = 9.81;

20 A1 = 0.01;

21 Kv1 = 11.25;

22 Kv2 = 11.25;

23 h_LV001 = 0.05;

24 h_LV002 = 0.25;

25

26 %% Function Handles

27 f1_handle = @ValveChar ;

28 f2_handle = @ValveChar ;

29 f3_handle = @PumpChar ;

30

31 delta = 0.01; % Step size when using forward difference

32

33 %% Linearization

34 % A - Matrix

35 a11 = - (sqrt (100000)) /(7.2*10^8) * ((Kv1*f1_A*rho*g) / (A1*sqrt(rho*g*(

h1_A + h_LV001))));

36 a12 = 0;

37 a21 = ((1) /(0.004 + 0.07* h2_A)) * ((sqrt (100000)) /(7.2*10^8)) * ((Kv1*

f1_A*rho*g) / (sqrt(rho*g*(h1_A + h_LV001))));

38 a22 = - ((1) /(0.004 + 0.07* h2_A)) * ((sqrt (100000)) /(7.2*(10^8))) * ((Kv2

*f2_A*rho*g) / (sqrt(rho*g*(h2_A + h_LV002))));

39 A = [a11 a12; a21 a22];

40

41 % B - Matrix

42 b11 = - ((Kv1) /(3600* A1)) * sqrt ((rho*g*(h1_A + h_LV001)) /100000) *

forward_diff (f1_handle , u1_A , delta);

43 b12 = 0;

44 b21 = ((1) /(0.004 + 0.07* h2_A)) * (Kv1 /3600) * sqrt ((rho*g*(h1_A +

h_LV001)) /100000) * forward_diff (f1_handle , u1_A , delta);

45 b22 = -((1) /(0.004 + 0.07* h2_A)) * (Kv2 /3600) * sqrt ((rho*g*(h2_A +

h_LV002)) /100000) * forward_diff (f2_handle , u2_A , delta);

46 B = [b11 b12 ; b21 b22];

47

48 % C - Matrix

49 C = eye (2);

Appendix I MATLAB Code 250

50

51 % D - Matrix

52 D = zeros (2);

53

54 % G - Matrix (Disturbance)

55 g11 = forward_diff (f3_handle , u_PA001_A , delta)/A1;

56 g21 = 0;

57 G = [g11; g21];

58

59 % Augmented B - Matrix

60 B_a = [B G];

61

62 % Augmented D - Matrix

63 D_a = zeros (2, 3);

64

65 %% State -Space -Model

66 ts = 0.5; % Sampling time

67 sys = ss(A, B_a , C, D_a); % CT state -space model

68 sys = c2d(sys ,ts); % DT state -space model (ts sampling)

69 % Signal Names

70 sys. InputName = {’u1’, ’u2’, ’u_PA001 ’};

71 sys. OutputName = {’h1’, ’h2’};

72 sys. StateName = {’h1’, ’h2’};

73 % Signal Units

74 sys. InputUnit = {’-’, ’-’, ’-’};

75 sys. OutputUnit = {’m’, ’m’};

76 sys. StateUnit = {’m’, ’m’};

77 % Signal Types

78 sys = setmpcsignals (sys , ’MV’, [1 2], ’MD’, 3, ’MO’, [1 2]);

79

80 %% Linear MPC

81 old_status = mpcverbosity (’on’);

82

83 p = 13; % Prediction horizon

84 c = 2; % Control horizon

85 %c = [2 4 7]; % Control horizon (blocking)

86

87 mpcobj = mpc(sys , ts , p, c); % Linear MPC object

88

89 % Nominal Values

90 x0 = [h1_A; h2_A];

91 u0 = [u1_A;u2_A; u_PA001_A];

92 y0 = x0;

93 mpcobj .Model. Nominal = struct (’X’,x0 ,’U’,u0 ,’Y’,y0);

94

95 % Set Estimator (None)

96 setEstimator (mpcobj , ’custom ’);

97

Appendix I MATLAB Code 251

98 % Signal Scaling

99 mpcobj .OV (1). ScaleFactor = 1 - 0.13; % Range of h1

100 mpcobj .OV (2). ScaleFactor = 0.4 - 0.02; % Range of h2

101

102 % Weighting Matrices

103 mpcobj . Weights . OutputVariables = [1 5]; % Q

104 mpcobj . Weights . ManipulatedVariablesRate = [0.5 0.5]; % S

105 mpcobj . Weights . ManipulatedVariables = [0 0]; % R

106

107 % Output (soft) Constraints

108 % mpcobj .OV (1).Max = 1;

109 % mpcobj .OV (1).Min = 0.13;

110 % mpcobj .OV (2).Max = 0.4;

111 % mpcobj .OV (2).Min = 0.02;

112

113 % % Output ECR (slack)

114 % mpcobj .OV (1). MinECR = 5;

115 % mpcobj .OV (1). MaxECR = 5;

116 % mpcobj .OV (2). MinECR = 5;

117 % mpcobj .OV (2). MaxECR = 5;

118

119 % Input (hard) Constraints

120 mpcobj .MV (1).Max = 0.9999;

121 mpcobj .MV (1).Min = 0.0001;

122 mpcobj .MV (2).Max = 0.9999;

123 mpcobj .MV (2).Min = 0.0001;

124

125 % Input Rate (soft) Constraints

126 % mpcobj .MV (1). RateMin = -0.3;

127 % mpcobj .MV (1). RateMax = 0.3;

128 % mpcobj .MV (2). RateMin = -0.3;

129 % mpcobj .MV (2). RateMax = 0.3;

130

131 % Input Rate ECR (slack)

132 % mpcobj .MV (1). RateMinECR = 20;

133 % mpcobj .MV (1). RateMaxECR = 20;

134 % mpcobj .MV (2). RateMinECR = 20;

135 % mpcobj .MV (2). RateMaxECR = 20;

136

137 % Interior -Point Solver and Option

138 % mpcobj . Optimizer . Algorithm = ’interior -point ’;

139 % mpcobj . Optimizer . InteriorPointOptions . MaxIterations = 8;

140 % mpcobj . Optimizer . InteriorPointOptions . ConstraintTolerance = 1e -5;

141 % mpcobj . Optimizer . InteriorPointOptions . OptimalityTolerance = 1e -5;

142 % mpcobj . Optimizer . InteriorPointOptions . ComplementarityTolerance = 1e -6;

143 % mpcobj . Optimizer . InteriorPointOptions . StepTolerance = 1e -7;

144

145 % Active -Set Solver and Options

Appendix I MATLAB Code 252

146 % mpcobj . Optimizer . Algorithm = ’active -set ’;

147 % mpcobj . Optimizer . ActiveSetOptions . MaxIterations = 2;

148 % mpcobj . Optimizer . ActiveSetOptions . ConstraintTolerance = 1e -6;

149

150 % mpcobj . Optimizer . UseSuboptimalSolution = true;

151

152 %% Explicit MPC

153 % Define the Range:

154 range = generateExplicitRange (mpcobj);

155

156 % Range of the States

157 range.State.Min (:) = [0.13 0.02 -0.1 -0.1];

158 range.State.Max (:) = [1 0.4 0.1 0.1];

159 % Range of the References

160 range. Reference .Min (:) = [0.13 0.02];

161 range. Reference .Max (:) = [1 0.4];

162 % Range of the Measured Disturbance

163 range. MeasuredDisturbance .Min = 0.00001;

164 range. MeasuredDisturbance .Max = 0.99999;

165 % Range of the Manipulated Variables

166 range. ManipulatedVariable .Min (:) = [0.00001 0.00001];

167 range. ManipulatedVariable .Max (:) = [0.99999 0.99999];

168

169 % Option for EMPC

170 opt = generateExplicitOptions (mpcobj);

171 opt. polyreduction = 1;

172 %opt. maxiterBS = 200;

173 %opt. maxiterNNLS = 1000;

174 %opt. maxiterQP = 400;

175 %opt. flattol = 1e -6;

176 %opt. normalizetol = 10;

177 %opt. removetol = 1e -2;

178 %opt. zerotol = 1e -10;

179

180 % Create EMPC Obj.

181 empcobj = generateExplicitMPC (mpcobj ,range ,opt);

182 % empcobj = generateExplicitMPC (mpcobj ,range);

183 % empcobjSimplified = simplify (empcobj , ’exact ’);

184

185 %% Plot EMPC Regions at Spesific Params .

186 plotParams = generatePlotParameters (empcobj);

187

188 plotParams .State.Index = [3 4];

189 plotParams .State.Value = [0 0];

190

191 plotParams . ManipulatedVariable .Index = [1 2];

192 plotParams . ManipulatedVariable .Value = [0.2 0.2];

193

Appendix I MATLAB Code 253

194 plotParams . Reference .Index = [1 2];

195 plotParams . Reference .Value = [0.2 0.35];

196

197 plotParams . MeasuredDisturbance .Index = 1;

198 plotParams . MeasuredDisturbance .Value = 0.9;

199

200 plotSection (empcobj , plotParams)

201 xlabel (’$h_ {1}(k)$’, Interpreter =’latex ’)

202 ylabel (’$h_ {2}(k)$’, Interpreter =’latex ’)

203 title(’2-D Plot of Explicit MPC Polyhedral Partition ’, Interpreter =’latex

’)

204 box on

205 grid on

206 xlim ([0 1])

207 ylim ([0 0.4])

208

209 %% SIM

210 Duration = 400; % Simulation time

211 t = 0:ts: Duration ;

212 N = length (t);

213

214 nsim = 1;

215 COST = cell (1, nsim);

216 COST_Q = cell (1, nsim);

217 COST_S = cell (1, nsim);

218 COST_R = cell (1, nsim);

219 TIME_ARRAY = cell (1, nsim);

220

221 for j = 1: nsim

222

223 % Signal Previewing

224 ref = [ones (1, N -1)*h1_A;

225 ones (1, N -1)*h2_A];

226 u_PA001 = ones (1,N)* u_PA001_A ;

227

228 % Reference and Disturbance Modification

229 t_h1_rise = 50;

230 t_h2_rise = 150;

231 t_upa_rise = 250;

232 t_hold = 70;

233 idx_ref1 = round(t_h1_rise /ts);

234 idx_ref2 = round(t_h2_rise /ts);

235 idx_upa = round(t_upa_rise /ts);

236 idx_hold = round(t_hold /ts);

237 %

238 ref (1, idx_ref1 : idx_ref1 + idx_hold) = h1_A + 0.2;

239 ref (2, idx_ref2 : idx_ref2 + idx_hold) = h2_A - 0.2;

240 u_PA001 (1, idx_upa : idx_upa + idx_hold) = u_PA001_A - 0.2;

Appendix I MATLAB Code 254

241

242 %

243 x = x0; % Current state

244 xc = mpcstate (empcobj); % Controller state pointer

245 %xc.Plant = x0;

246 %xc. LastMove = u0 (1:2);

247

248 % History Tracking

249 UU = zeros (2,N); UU (: ,1) = u0 (1:2);

250 XX_NL = zeros (2,N); XX_NL (: ,1) = x0;

251 TIME_SPENT = zeros (1,N -1);

252

253

254 hbar = waitbar (0, ’Simulation Progress ’);

255 for i = 1:(Duration /ts)

256 r = ref (:,i) ’; % Without signal preview (reference)

257 v = u_PA001 (i); % Without signal preview (disturbance)

258

259 tic

260 [mv , info] = mpcmoveExplicit (empcobj , xc , [], r, v); % Find

optimal MV

261 TIME_SPENT (1,i) = toc;

262

263 % Simulate Linear System

264

265 % Update Controller State Based on Linear System (Uncomment to Use)

266 %xc.Plant = x; %N

267 %xc. LastMove = mv; %N

268 %xc. Disturbance = [0;0]; %N

269

270 % Simulate Nonlinear System

271 [~, XNL] = ode45(@(t,x) tankCT_NEW (x, [mv;v(1)]), [0 ts], XX_NL (:,i));

272 xnl = [XNL(end ,1);XNL(end ,2)];

273

274 % Update Controller State Based on Nonlinear System

275 xc.Plant = xnl;

276 xc. LastMove = mv;

277 %xc. Disturbance = [0;0];

278

279 % History tracking

280 UU(:,i+1) = mv;

281 XX_NL (:,i+1) = xnl;

282

283 waitbar (i*ts/Duration , hbar);

284 end

285 close(hbar)

286

287 TIME_ARRAY {1,j} = TIME_SPENT ;

Appendix I MATLAB Code 255

288

289 % Find Total Quadratic Cost

290 cost = 0;

291 cost_Q = 0;

292 cost_S = 0;

293 cost_R = 0;

294

295 Q = diag(mpcobj . Weights . OutputVariables);

296 Q(1 ,1) = Q(1 ,1)/ mpcobj .OV (1). ScaleFactor ; % Scaling

297 Q(2 ,2) = Q(2 ,2)/ mpcobj .OV (2). ScaleFactor ; % Scaling

298 S = diag(mpcobj . Weights . ManipulatedVariablesRate);

299 R = diag(mpcobj . Weights . ManipulatedVariables);

300 E = XX_NL (: ,2: end) - ref; % OV reference tracking error

301 EU = UU (: ,:) - u0 (1:2 ,:); % MV target tracking error

302 mvRate = UU (: ,1:end -1) - UU (: ,2: end); % MV rate

303 for l = 1:N-1

304 cost_Q = cost_Q + E(:,l) ’*(Q^2)*E(:,l);

305 cost_S = cost_S + mvRate (:,l) ’*(S^2)* mvRate (:,l);

306 cost_R = cost_R + EU(:,l) ’*(R^2)*EU(:,l);

307 cost = cost + E(:,l) ’*(Q^2)*E(:,l) + mvRate (:,l) ’*(S^2)* mvRate (:,l)

+ EU(:,l) ’*(R^2)*EU(:,l);

308 end

309 COST {1,j} = cost;

310 COST_Q {1,j} = cost_Q ;

311 COST_S {1,j} = cost_S ;

312 COST_R {1,j} = cost_R ;

313 end

314

315 %% Plot - Simulation

316 figure

317

318 % Tank 1

319 subplot (3 ,1 ,1)

320 %plot(t, XX (1 ,:) ,’blue ’, ’LineWidth ’,1)

321 %hold on

322 plot(t, XX_NL (1 ,:) , ’blue ’, ’LineWidth ’,1, ’LineStyle ’,’-’)

323 hold on

324 plot(t(2: end), ref (1 ,:) , ’red ’, ’LineWidth ’,1, ’LineStyle ’,’--’)

325 xlabel (’t\, [s]’, Interpreter =’latex ’)

326 ylabel (’Water level $[m]$’, Interpreter =’latex ’)

327 title(’Tank 1’, Interpreter =’latex ’)

328 % legend (’$h_ {1}(t)$’, ’$h_ {1,\, ref}$’,’$h_ {1,\,NL}$’, ’Interpreter ’,’

latex ’)

329 legend (’$h_ {1}$’, ’$h_ {1,\, ref}$’, ’Interpreter ’,’latex ’)

330 ylim ([0 1]);

331 grid on

332 box on

333 set(gca ,’YTick ’ ,0:0.05:1)

Appendix I MATLAB Code 256

334

335 % Tank 2

336 subplot (3 ,1 ,2)

337 %plot(t, XX (2 ,:) , ’blue ’, ’LineWidth ’,1)

338 %hold on

339 plot(t, XX_NL (2 ,:) , ’blue ’, ’LineWidth ’,1, ’LineStyle ’,’-’)

340 hold on

341 plot(t(2: end), ref (2 ,:) , ’red ’, ’LineWidth ’,1, ’LineStyle ’,’--’)

342 xlabel (’t\, [s]’, Interpreter =’latex ’)

343 ylabel (’Water level $[m]$’, Interpreter =’latex ’)

344 title(’Tank 2’, Interpreter =’latex ’)

345 % legend (’$h_ {2}(t)$’, ’$h_ {2,\, ref}$’,’$h_ {2,\,NL}$’, ’Interpreter ’,’

latex ’)

346 legend (’$h_ {2}$’, ’$h_ {2,\, ref}$’, ’Interpreter ’,’latex ’)

347 ylim ([0 1])

348 xlim ([0 t(end)])

349 grid on

350 box on

351 set(gca ,’YTick ’ ,0:0.05:1)

352

353 % Input Signals

354 subplot (3 ,1 ,3)

355 stairs (t, UU (1 ,:) , ’magenta ’, ’LineWidth ’ ,1)

356 hold on

357 stairs (t, UU (2 ,:) , ’green ’, ’LineWidth ’ ,1)

358 hold on

359 stairs (t, u_PA001 , ’k’, ’LineStyle ’,’:’, LineWidth =1)

360 xlabel (’$t\, [s]$’, Interpreter =’latex ’)

361 ylabel (’[-]’, Interpreter =’latex ’)

362 title(’Input Signals ’, Interpreter =’latex ’)

363 legend (’u_{LV001}’, ’u_{LV002}’, ’u_{PA001}’, ’Interpreter ’,’latex ’

)

364 ylim ([0 1])

365 grid on

366 box on

367

368

369 %% Time Spent

370 TIME_MAT = zeros(N-1, nsim);

371 Lable_struc = cell (1, nsim);

372 for i = 1: nsim

373 TIME_MAT (:,i) = TIME_ARRAY {1,i}’;

374 Lable_struc {i} = sprintf (’Sim%i’, i);

375 end

376 figure ;

377 boxplot (TIME_MAT ," BoxStyle "," outline ",’MedianStyle ’,’line ’,’Notch ’,’off ’,

’OutlierSize ’ ,6,...

378 ’Symbol ’,’.r’, Jitter =0, Labels = Lable_struc)

Appendix I MATLAB Code 257

379 xlabel (’Simulations ’, Interpreter =’latex ’)

380 ylabel (’Time $[s]$’, Interpreter =’latex ’)

381 title(’Box Plot w.r.t. Execution Time of QP Solver ’, Interpreter =’latex ’)

382 box on

383 grid on

384

385 %% Quadratic Cost

386 COST_mat = cell2mat (COST);

387 COST_Q_mat = cell2mat (COST_Q);

388 COST_R_mat = cell2mat (COST_R);

389 COST_S_mat = cell2mat (COST_S);

390

391 sprintf (’Mean Total Cost: %f’,mean(COST_mat))

392 sprintf (’Mean Total Cost - Q: %f’,mean(COST_Q_mat))

393 sprintf (’Mean Total Cost - S: %f’,mean(COST_S_mat))

394 sprintf (’Mean Total Cost - R: %f’,mean(COST_R_mat))

395

396 %%

397 for i = 1: nsim

398 i

399 sum(TIME_ARRAY {i})

400 end

I.3.4 Plot_Data_Visualization_Linear_MPC_V2.m

1 %% Control of Two -Tank Using Linear MPC.

2 % Linearized model about the nominal solution {h1 = 0.5, h2 = 0.3,

u_PA001 = 0.8}

3

4 % NOTE: This File is used for testing and for visualization of data

5

6 % Author : Gent Luta

7

8 % Date: Spring 2023

9

10 %% Steady State Values

11 h1_A = 0.5;

12 h2_A = 0.3;

13 u_PA001_A = 0.8;

14 u1_A = Valve_1_OP_New (h1_A , u_PA001_A);

15 u2_A = Valve_2_OP (u1_A , h1_A , h2_A);

16 f1_A = ValveChar (u1_A);

17 f2_A = ValveChar (u2_A);

18

19 %% System parameters

20 rho = 1000;

Appendix I MATLAB Code 258

21 g = 9.81;

22 A1 = 0.01;

23 Kv1 = 11.25;

24 Kv2 = 11.25;

25 h_LV001 = 0.05;

26 h_LV002 = 0.25;

27

28 h1_max = 1;

29 h1_min = 0.13;

30 h2_max = 0.4;

31 h2_min = 0.02;

32 Kv_LV001 = 11.25;

33 Kv_LV002 = 11.25;

34 z_LV001 = 0:0.05:1;

35 f_LV001 = (exp(z_LV001 .^1.2) -1)/(exp (1) -1);

36

37 z_LV002 = 0:0.05:1;

38 f_LV002 = f_LV001 ;

39 u_PA001_data = [0.00 0.45 0.46 0.47 0.48 0.49 0.50 0.55...

40 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00];

41 q_PA001 = [0.00 0.00 1.25 2.25 3.15 3.75 4.40 6.75...

42 8.75 10.70 12.25 13.75 15.15 16.50 18.00 19.20 20.00];

43 q_PA001 = q_PA001 /60000; % liter/min -> m3/s

44

45 %% Function Handles

46 f1_handle = @ValveChar ;

47 f2_handle = @ValveChar ;

48 f3_handle = @PumpChar ;

49

50 delta = 0.01; %Step size (numerical difference)

51

52 %% Linearization

53 % A - Matrix

54 a11 = - (sqrt (100000)) /(7.2*10^8) * ((Kv1*f1_A*rho*g) / (A1*sqrt(rho*g*(

h1_A + h_LV001))));

55 a12 = 0;

56 a21 = ((1) /(0.004 + 0.07* h2_A)) * ((sqrt (100000)) /(7.2*10^8)) * ((Kv1*

f1_A*rho*g) / (sqrt(rho*g*(h1_A + h_LV001))));

57 a22 = - ((1) /(0.004 + 0.07* h2_A)) * ((sqrt (100000)) /(7.2*(10^8))) * ((Kv2

*f2_A*rho*g) / (sqrt(rho*g*(h2_A + h_LV002))));

58 A = [a11 a12; a21 a22];

59

60 % B - Matrix

61 b11 = - ((Kv1) /(3600* A1)) * sqrt ((rho*g*(h1_A + h_LV001)) /100000) *

forward_diff (f1_handle , u1_A , delta);

62 b12 = 0;

63 b21 = ((1) /(0.004 + 0.07* h2_A)) * (Kv1 /3600) * sqrt ((rho*g*(h1_A +

h_LV001)) /100000) * forward_diff (f1_handle , u1_A , delta);

Appendix I MATLAB Code 259

64 b22 = -((1) /(0.004 + 0.07* h2_A)) * (Kv2 /3600) * sqrt ((rho*g*(h2_A +

h_LV002)) /100000) * forward_diff (f2_handle , u2_A , delta);

65 B = [b11 b12 ; b21 b22];

66

67 % C - Matrix

68 C = eye (2);

69

70 % D - Matrix

71 D = zeros (2);

72

73 % G - Matrix (Disturbance)

74 g11 = forward_diff (f3_handle , u_PA001_A , delta)/A1;

75 g21 = 0;

76 G = [g11; g21];

77

78 % B_a - Matrix (Augmented)

79 B_a = [B G];

80

81 % D_a - Matrix (Augmented)

82 D_a = zeros (2, 3);

83

84 %% State -Space -Model

85 ts = 0.5; % Sampling time

86 sys = ss(A, B_a , C, D_a); % CT State -Space Model

87 sys = c2d(sys ,ts); % DT State -Space Model (ts sampling)

88 % Signal Names

89 sys. InputName = {’u1’, ’u2’, ’u_PA001 ’};

90 sys. OutputName = {’h1’, ’h2’};

91 sys. StateName = {’h1’, ’h2’};

92 % Signal Units

93 sys. InputUnit = {’-’, ’-’, ’-’};

94 sys. OutputUnit = {’m’, ’m’};

95 sys. StateUnit = {’m’, ’m’};

96 % Signal Types

97 sys = setmpcsignals (sys , ’MV’, [1 2], ’MD’, 3, ’MO’, [1 2]);

98 % Check Controllability

99 controllability_matrix = ctrb(sys);

100 controllability_matrix_rank = rank(controllability_matrix);

101 %% Linear MPC

102 old_status = mpcverbosity (’on’);

103 Duration = 400;

104 t = 0:ts: Duration ;

105 N = length (t);

106

107 nsim = 10;

108 COST = cell (1, nsim);

109 COST_Q = cell (1, nsim);

110 COST_S = cell (1, nsim);

Appendix I MATLAB Code 260

111 COST_R = cell (1, nsim);

112 TIME_ARRAY = cell (1, nsim);

113 ITERATIONS = cell (1, nsim);

114

115 for j = 1: nsim

116 p = 13; % Prediction Horizon

117 c = 13; % Control Horizon

118 %c = [2 4 7]; % Control Horizon (Blocking)

119

120 mpcobj = mpc(sys , ts , p, c); % Linear MPC object

121

122 % Nominal Values

123 x0 = [h1_A; h2_A];

124 u0 = [u1_A;u2_A; u_PA001_A];

125 y0 = x0;

126 mpcobj .Model. Nominal = struct (’X’,x0 ,’U’,u0 ,’Y’,y0);

127

128 % Set Estimator (None)

129 setEstimator (mpcobj , ’custom ’); %N

130 % setoutdist (mpcobj ,’ integrators ’)

131

132 % Signal Scaling

133 mpcobj .OV (1). ScaleFactor = 1 - 0.13; % Range of h1

134 mpcobj .OV (2). ScaleFactor = 0.4 - 0.02; % Range of h2

135

136 % Weighting Matrices

137 mpcobj . Weights . OutputVariables = [1 1]; % Q

138 mpcobj . Weights . ManipulatedVariablesRate = [0.1 0.1]; % S

139 mpcobj . Weights . ManipulatedVariables = [0 0]; % R

140

141 mpcobj .MV (1).Max = 0.9999;

142 mpcobj .MV (1).Min = 0.0001;

143 mpcobj .MV (2).Max = 0.9999;

144 mpcobj .MV (2).Min = 0.0001;

145

146 % MPC Optimizer Options :

147 % Interior -Point Solver and Option

148 mpcobj . Optimizer . Algorithm = ’interior -point ’;

149 % mpcobj . Optimizer . InteriorPointOptions . MaxIterations = 8;

150 % mpcobj . Optimizer . InteriorPointOptions . ConstraintTolerance = 1e -5;

151 % mpcobj . Optimizer . InteriorPointOptions . OptimalityTolerance = 1e -5;

152 % mpcobj . Optimizer . InteriorPointOptions . ComplementarityTolerance = 1e -6;

153 % mpcobj . Optimizer . InteriorPointOptions . StepTolerance = 1e -7;

154

155 % Active -Set Solver and Options

156 % mpcobj . Optimizer . Algorithm = ’active -set ’;

157 % mpcobj . Optimizer . ActiveSetOptions . MaxIterations = 2;

158 % mpcobj . Optimizer . ActiveSetOptions . ConstraintTolerance = 1e -6;

Appendix I MATLAB Code 261

159

160 % mpcobj . Optimizer . UseSuboptimalSolution = true;

161

162 %% SIM

163

164 % Signal Previewing

165 ref = [ones (1, N -1)*h1_A;

166 ones (1, N -1)*h2_A];

167 u_PA001 = ones (1,N)* u_PA001_A ;

168 % Reference and Disturbance Modification

169 t_h1_rise = 50;

170 t_h2_rise = 150;

171 t_upa_rise = 250;

172 t_hold = 70;

173 idx_ref1 = round(t_h1_rise /ts);

174 idx_ref2 = round(t_h2_rise /ts);

175 idx_upa = round(t_upa_rise /ts);

176 idx_hold = round(t_hold /ts);

177

178 ref (1, idx_ref1 : idx_ref1 + idx_hold) = h1_A + 0.2;

179 ref (2, idx_ref2 : idx_ref2 + idx_hold) = h2_A - 0.2;

180 u_PA001 (1, idx_upa : idx_upa + idx_hold) = u_PA001_A - 0.2;

181

182 %

183 x = x0; % Current State

184 xc = mpcstate (mpcobj);

185

186 UU = zeros (2,N); UU (: ,1) = u0 (1:2);

187 XX_NL = zeros (2,N); XX_NL (: ,1) = x0;

188 TIME_SPENT_LIST = zeros (1,N -1);

189 II = zeros (1,N -1);

190

191 hbar = waitbar (0, ’Simulation Progress ’);

192 for i = 1:(Duration /ts)

193 if i <= N-p-1

194 r1 = ref (1,i:i+p -1);

195 r2 = ref (2,i:i+p -1);

196 r = [r1 ’ r2 ’];

197 v = u_PA001 (i:i+p -1) ’;

198 else

199 r1 = ref (1,i:end);

200 r2 = ref (2,i:end);

201 r = [r1 ’ r2 ’];

202 v = u_PA001 (i:end) ’;

203 end

204 %r = ref (:,i) ’; % Without preview (reference)

205 %v = u_PA001 (i); % Without preview (Disturbance)

206

Appendix I MATLAB Code 262

207 % Find optimal mv

208 tic

209 [mv , info] = mpcmove (mpcobj , xc , [], r, v);

210 TIME_SPENT_LIST (1,i) = toc;

211

212

213 % Simulate Linear System

214 x = sys.A*(x-x0) + sys.B*([mv;v(1)]-u0);

215 x = round(x + x0 , 5);

216

217 % Simulate Nonlinear System

218 [~, XNL] = ode45(@(t,x) tankCT_NEW (x, [mv;v(1)]), [0 ts], XX_NL (:,i));

219 xnl = [XNL(end ,1);XNL(end ,2)];

220 %xnl = round(xnl , 5);

221

222

223 xc.Plant = xnl; %N

224 xc. LastMove = mv; %N

225

226 % History tracking

227 UU(:,i+1) = mv;

228 II(1,i) = info. Iterations ;

229 XX_NL (:,i+1) = xnl;

230

231 waitbar (i*ts/Duration , hbar);

232 end

233 close(hbar)

234

235 TIME_ARRAY {1,j} = TIME_SPENT_LIST ;

236 ITERATIONS {1,j} = II;

237 cost = 0;

238 cost_Q = 0;

239 cost_S = 0;

240 cost_R = 0;

241

242 Q = diag(mpcobj . Weights . OutputVariables);

243 Q(1 ,1) = Q(1 ,1)/ mpcobj .OV (1). ScaleFactor ; % Scaling

244 Q(2 ,2) = Q(2 ,2)/ mpcobj .OV (2). ScaleFactor ; % Scaling

245 S = diag(mpcobj . Weights . ManipulatedVariablesRate);

246 R = diag(mpcobj . Weights . ManipulatedVariables);

247 E = XX_NL (: ,2: end) - ref;

248 EU = UU (: ,:) - u0 (1:2 ,:);

249 mvRate = UU (: ,1:end -1) - UU (: ,2: end);

250 for l = 1:N-1

251 cost_Q = cost_Q + E(:,l) ’*(Q^2)*E(:,l);

252 cost_S = cost_S + mvRate (:,l) ’*(S^2)* mvRate (:,l);

253 cost_R = cost_R + EU(:,l) ’*(R^2)*EU(:,l);

Appendix I MATLAB Code 263

254 cost = cost + E(:,l) ’*(Q^2)*E(:,l) + mvRate (:,l) ’*(S^2)* mvRate (:,l)

+ EU(:,l) ’*(R^2)*EU(:,l);

255 end

256 COST {1,j} = cost;

257 COST_Q {1,j} = cost_Q ;

258 COST_S {1,j} = cost_S ;

259 COST_R {1,j} = cost_R ;

260 end

261

262 %% Plot - Simulation

263 figure

264 subplot (3 ,1 ,1)

265

266 plot(t, XX_NL (1 ,:) , ’blue ’, ’LineWidth ’,1, ’LineStyle ’,’-’)

267 hold on

268 plot(t(2: end), ref (1 ,:) , ’red ’, ’LineWidth ’,1, ’LineStyle ’,’--’)

269 xlabel (’t\, [s]’, Interpreter =’latex ’)

270 ylabel (’Water level $[m]$’, Interpreter =’latex ’)

271 title(’Tank 1’, Interpreter =’latex ’)

272 legend (’$h_ {1}$’,’$h_ {1,\, ref}$’, ’Interpreter ’,’latex ’)

273 ylim ([0 1]);

274 grid on

275 box on

276 set(gca ,’YTick ’ ,0:0.05:1)

277

278 subplot (3 ,1 ,2)

279

280 plot(t, XX_NL (2 ,:) , ’blue ’, ’LineWidth ’,1, ’LineStyle ’,’-’)

281 hold on

282 plot(t(2: end), ref (2 ,:) , ’red ’, ’LineWidth ’,1, ’LineStyle ’,’--’)

283 xlabel (’t\, [s]’, Interpreter =’latex ’)

284 ylabel (’Water level $[m]$’, Interpreter =’latex ’)

285 title(’Tank 2’, Interpreter =’latex ’)

286 legend (’$h_ {2}$’,’$h_ {2,\, ref}$’, ’Interpreter ’,’latex ’)

287 ylim ([0 1])

288 xlim ([0 t(end)])

289 grid on

290 box on

291 set(gca ,’YTick ’ ,0:0.05:1)

292

293 subplot (3 ,1 ,3)

294 stairs (t, UU (1 ,:) , ’magenta ’, ’LineWidth ’ ,1)

295 hold on

296 stairs (t, UU (2 ,:) , ’green ’, ’LineWidth ’ ,1)

297 hold on

298 stairs (t, u_PA001 , ’k’, ’LineStyle ’,’:’, LineWidth =1)

299 xlabel (’$t\, [s]$’, Interpreter =’latex ’)

300 ylabel (’[-]’, Interpreter =’latex ’)

Appendix I MATLAB Code 264

301 title(’Input Signals ’, Interpreter =’latex ’)

302 legend (’u_{LV001}’, ’u_{LV002}’, ’u_{PA001}’, ’Interpreter ’,’latex ’

)

303 ylim ([0 1])

304 grid on

305 box on

306

307 %% Iterations

308 figure

309 histogram (ITERATIONS {1,2}, EdgeColor =’k’,EdgeAlpha =1, FaceAlpha =1,

FaceColor =[0.6350 0.0780 0.1840] ,...

310 LineStyle =’-’, LineWidth =1)

311 xlabel (’Necessary Iterations ’, Interpreter =’latex ’)

312 ylabel (’Number of QP Solver Calls ’, Interpreter =’latex ’)

313 title(’Simulation with Active -Set Algorithm ’, Interpreter =’latex ’)

314 grid on

315 box on

316 %% Time Spent

317 TIME_MAT = zeros(N-1, nsim);

318 Lable_struc = cell (1, nsim);

319 for i = 1: nsim

320 TIME_MAT (:,i) = TIME_ARRAY {1,i}’;

321 Lable_struc {i} = sprintf (’Sim%i’, i);

322 end

323 figure ;

324 boxplot (TIME_MAT ," BoxStyle "," outline ",’MedianStyle ’,’line ’,’Notch ’,’off ’,

’OutlierSize ’ ,6,...

325 ’Symbol ’,’.r’, Jitter =0, Labels = Lable_struc)

326 xlabel (’Simulations ’, Interpreter =’latex ’)

327 ylabel (’Time $[s]$’, Interpreter =’latex ’)

328 title(’Box Plot w.r.t. Execution Time of QP Solver ’, Interpreter =’latex ’)

329 box on

330 grid on

331 %% Quadratic Cost

332 COST_mat = cell2mat (COST);

333 COST_Q_mat = cell2mat (COST_Q);

334 COST_R_mat = cell2mat (COST_R);

335 COST_S_mat = cell2mat (COST_S);

336

337 sprintf (’Mean Total Cost: %f’,mean(COST_mat))

338 sprintf (’Mean Total Cost - Q: %f’,mean(COST_Q_mat))

339 sprintf (’Mean Total Cost - S: %f’,mean(COST_S_mat))

340 sprintf (’Mean Total Cost - R: %f’,mean(COST_R_mat))

341

342 %% Show Iterations and time taken on every control interval . Fill out

this part!

343 figure

344 f = zeros (1 ,3);

Appendix I MATLAB Code 265

345 yyaxis left

346 f(1) = stem(TIME_ARRAY {1,9},’blue ’, ’LineWidth ’ ,.05, ’LineStyle ’,’-’,

MarkerSize =0.001) ;

347 ylabel (’Time $[s]$’,Interpreter =’latex ’)

348

349 hold on

350 f(2) = yline (2.02*10^ -3 , ’k’, ’LineWidth ’,1, ’LineStyle ’,’--’);

351 %ylim ([0 0.004])

352 yyaxis right

353

354 f(3) = stem(ITERATIONS {1,9},’Color ’ ,[255/255 ,69/255 ,0] , ’LineWidth ’ ,.05,

’LineStyle ’,’-’, MarkerSize =0.001) ;

355 ylabel (’Iterations ’,Interpreter =’latex ’)

356 set(gca ,’YTick ’ ,0:2:40)

357 ylim ([0 40])

358

359 ax = gca;

360 ax.YAxis (1).Color = ’b’;

361 ax.YAxis (2).Color = [255/255 ,69/255 ,0];

362 ax.XAxis (1).Color = ’k’;

363

364 title(’Execution Time and Iterations of Every QP Solver Call ’,Interpreter

=’latex ’)

365 xlabel (’Control Interval k ’,Interpreter =’latex ’)

366 legend (f(1:3) ,’Time Spent ’, ’Upper Adjacent ’, ’Iterations Required ’, ’

Interpreter ’,’latex ’)

367 grid on

368 box on

369

370 %%

I.3.5 Plot_Data_Visualization_Linear_MPC.m

1 %% Control of Two -Tank Using Linear MPC.

2 % Linearized model about the nominal solution {h1 = 0.5, h2 = 0.3,

u_PA001 = 0.8}

3

4 % NOTE: This File is used for testing and for visualization of data

5

6 % Author : Gent Luta

7

8 % Date: Spring 2023

9

10 %% Steady State Values

11 h1_A = 0.5;

12 h2_A = 0.3;

Appendix I MATLAB Code 266

13 u_PA001_A = 0.8;

14 u1_A = Valve_1_OP_New (h1_A , u_PA001_A);

15 u2_A = Valve_2_OP (u1_A , h1_A , h2_A);

16 f1_A = ValveChar (u1_A);

17 f2_A = ValveChar (u2_A);

18

19 %% System parameters

20 rho = 1000;

21 g = 9.81;

22 A1 = 0.01;

23 Kv1 = 11.25;

24 Kv2 = 11.25;

25 h_LV001 = 0.05;

26 h_LV002 = 0.25;

27

28 h1_max = 1;

29 h1_min = 0.13;

30 h2_max = 0.4;

31 h2_min = 0.02;

32 Kv_LV001 = 11.25;

33 Kv_LV002 = 11.25;

34 z_LV001 = 0:0.05:1;

35 f_LV001 = (exp(z_LV001 .^1.2) -1)/(exp (1) -1);

36

37 z_LV002 = 0:0.05:1;

38 f_LV002 = f_LV001 ;

39 u_PA001_data = [0.00 0.45 0.46 0.47 0.48 0.49 0.50 0.55...

40 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00];

41 q_PA001 = [0.00 0.00 1.25 2.25 3.15 3.75 4.40 6.75...

42 8.75 10.70 12.25 13.75 15.15 16.50 18.00 19.20 20.00];

43 q_PA001 = q_PA001 /60000; % liter/min -> m3/s

44

45 %% Function Handles

46 f1_handle = @ValveChar ;

47 f2_handle = @ValveChar ;

48 f3_handle = @PumpChar ;

49

50 delta = 0.01; %Step size (numerical difference)

51

52 %% Linearization

53 % A - Matrix

54 a11 = - (sqrt (100000)) /(7.2*10^8) * ((Kv1*f1_A*rho*g) / (A1*sqrt(rho*g*(

h1_A + h_LV001))));

55 a12 = 0;

56 a21 = ((1) /(0.004 + 0.07* h2_A)) * ((sqrt (100000)) /(7.2*10^8)) * ((Kv1*

f1_A*rho*g) / (sqrt(rho*g*(h1_A + h_LV001))));

57 a22 = - ((1) /(0.004 + 0.07* h2_A)) * ((sqrt (100000)) /(7.2*(10^8))) * ((Kv2

*f2_A*rho*g) / (sqrt(rho*g*(h2_A + h_LV002))));

Appendix I MATLAB Code 267

58 A = [a11 a12; a21 a22];

59

60 % B - Matrix

61 b11 = - ((Kv1) /(3600* A1)) * sqrt ((rho*g*(h1_A + h_LV001)) /100000) *

forward_diff (f1_handle , u1_A , delta);

62 b12 = 0;

63 b21 = ((1) /(0.004 + 0.07* h2_A)) * (Kv1 /3600) * sqrt ((rho*g*(h1_A +

h_LV001)) /100000) * forward_diff (f1_handle , u1_A , delta);

64 b22 = -((1) /(0.004 + 0.07* h2_A)) * (Kv2 /3600) * sqrt ((rho*g*(h2_A +

h_LV002)) /100000) * forward_diff (f2_handle , u2_A , delta);

65 B = [b11 b12 ; b21 b22];

66

67 % C - Matrix

68 C = eye (2);

69

70 % D - Matrix

71 D = zeros (2);

72

73 % G - Matrix (Disturbance)

74 g11 = forward_diff (f3_handle , u_PA001_A , delta)/A1;

75 g21 = 0;

76 G = [g11; g21];

77

78 % B_a - Matrix (Augmented)

79 B_a = [B G];

80

81 % D_a - Matrix (Augmented)

82 D_a = zeros (2, 3);

83

84 %% State -Space -Model

85 ts = 0.5; % Sampling time

86 sys = ss(A, B_a , C, D_a); % CT State -Space Model

87 sys = c2d(sys ,ts); % DT State -Space Model (ts sampling)

88 % Signal Names

89 sys. InputName = {’u1’, ’u2’, ’u_PA001 ’};

90 sys. OutputName = {’h1’, ’h2’};

91 sys. StateName = {’h1’, ’h2’};

92 % Signal Units

93 sys. InputUnit = {’-’, ’-’, ’-’};

94 sys. OutputUnit = {’m’, ’m’};

95 sys. StateUnit = {’m’, ’m’};

96 % Signal Types

97 sys = setmpcsignals (sys , ’MV’, [1 2], ’MD’, 3, ’MO’, [1 2]);

98 % Check Controllability

99 controllability_matrix = ctrb(sys);

100 controllability_matrix_rank = rank(controllability_matrix);

101 %% Linear MPC

102 old_status = mpcverbosity (’on’);

Appendix I MATLAB Code 268

103 P = 20;

104 M = 20;

105 COST_CELL = cell(P,P);

106 TIME_CELL = cell(P,P);

107 TOTAL_TIME_CELL = cell(P,P);

108 for p = 1:P

109 for m = 1:M

110 if m > p

111 COST_CELL {p,m} = nan;

112 TIME_CELL {p,m} = nan;

113 TOTAL_TIME_CELL {p,m} = nan;

114 else

115 %p = 13; % Prediction Horizon

116 %c = 13; % Control Horizon

117 %c = [2 4 7]; % Control Horizon (Blocking)

118

119 mpcobj = mpc(sys , ts , p, m); % Linear MPC object

120

121 % Nominal Values

122 x0 = [h1_A; h2_A];

123 u0 = [u1_A;u2_A; u_PA001_A];

124 y0 = x0;

125 mpcobj .Model. Nominal = struct (’X’,x0 ,’U’,u0 ,’Y’,y0);

126

127 % Set Estimator (None)

128 setEstimator (mpcobj , ’custom ’); %N

129 % setoutdist (mpcobj ,’ integrators ’)

130

131 % Signal Scaling

132 mpcobj .OV (1). ScaleFactor = 1 - 0.13; % Range of h1

133 mpcobj .OV (2). ScaleFactor = 0.4 - 0.02; % Range of h2

134

135 % Weighting Matrices

136 mpcobj . Weights . OutputVariables = [1 1]; % Q

137 mpcobj . Weights . ManipulatedVariablesRate = [0.1 0.1]; % S

138 mpcobj . Weights . ManipulatedVariables = [0 0]; % R

139 % Output (soft) Constraints

140 % mpcobj .OV (1).Max = 1;

141 % mpcobj .OV (1).Min = 0.13;

142 % mpcobj .OV (2).Max = 0.4;

143 % mpcobj .OV (2).Min = 0.02;

144 % Output ECR (slack)

145 % mpcobj .OV (1). MinECR = 5;

146 % mpcobj .OV (1). MaxECR = 5;

147 % mpcobj .OV (2). MinECR = 5;

148 % mpcobj .OV (2). MaxECR = 5;

149 % % Input (hard) Constraints

150 mpcobj .MV (1).Max = 0.9999;

Appendix I MATLAB Code 269

151 mpcobj .MV (1).Min = 0.0001;

152 mpcobj .MV (2).Max = 0.9999;

153 mpcobj .MV (2).Min = 0.0001;

154 % Input Rate (soft) Constraints

155 % mpcobj .MV (1). RateMin = -0.3;

156 % mpcobj .MV (1). RateMax = 0.3;

157 % mpcobj .MV (2). RateMin = -0.3;

158 % mpcobj .MV (2). RateMax = 0.3;

159 % Input Rate ECR (slack)

160 % mpcobj .MV (1). RateMinECR = 20;

161 % mpcobj .MV (1). RateMaxECR = 20;

162 % mpcobj .MV (2). RateMinECR = 20;

163 % mpcobj .MV (2). RateMaxECR = 20;

164

165 % MPC Optimizer Options :

166 % Interior -Point Solver and Option

167 % mpcobj . Optimizer . Algorithm = ’interior -point ’;

168 % mpcobj . Optimizer . InteriorPointOptions . MaxIterations = 8;

169 % mpcobj . Optimizer . InteriorPointOptions . ConstraintTolerance = 1e -5;

170 % mpcobj . Optimizer . InteriorPointOptions . OptimalityTolerance = 1e -5;

171 % mpcobj . Optimizer . InteriorPointOptions . ComplementarityTolerance = 1e -6;

172 % mpcobj . Optimizer . InteriorPointOptions . StepTolerance = 1e -7;

173

174 % Active -Set Solver and Options

175 % mpcobj . Optimizer . Algorithm = ’active -set ’;

176 % mpcobj . Optimizer . ActiveSetOptions . MaxIterations = 2;

177 % mpcobj . Optimizer . ActiveSetOptions . ConstraintTolerance = 1e -6;

178

179 % mpcobj . Optimizer . UseSuboptimalSolution = true;

180

181 %% SIM

182 Duration = 400;

183 t = 0:ts: Duration ;

184 N = length (t);

185

186 % Signal Previewing

187 ref = [ones (1, N -1)*h1_A;

188 ones (1, N -1)*h2_A];

189 u_PA001 = ones (1,N)* u_PA001_A ;

190 % Reference and Disturbance Modification

191 t_h1_rise = 50;

192 t_h2_rise = 150;

193 t_upa_rise = 250;

194 t_hold = 70;

195 idx_ref1 = round(t_h1_rise /ts);

196 idx_ref2 = round(t_h2_rise /ts);

197 idx_upa = round(t_upa_rise /ts);

198 idx_hold = round(t_hold /ts);

Appendix I MATLAB Code 270

199

200 ref (1, idx_ref1 : idx_ref1 + idx_hold) = h1_A + 0.2;

201 ref (2, idx_ref2 : idx_ref2 + idx_hold) = h2_A - 0.2;

202 u_PA001 (1, idx_upa : idx_upa + idx_hold) = u_PA001_A - 0.2;

203

204 %

205 x = x0; % Current State

206 xc = mpcstate (mpcobj);

207

208 nsim = 1; % # of Simulations

209

210 XX = zeros (2,N); XX (: ,1) = x0;

211 UU = zeros (2,N); UU (: ,1) = u0 (1:2);

212 MPCXX = zeros (2,N); MPCXX (: ,1) = xc.Plant;

213 II = zeros (1,N-1, nsim);

214 XX_NL = zeros (2,N); XX_NL (: ,1) = x0;

215 TIME_SPENT = zeros (1,N-1, nsim);

216

217 TIME_SPENT_AVERAGES = zeros (1, nsim);

218 COST = zeros (1, nsim);

219 COST_Q = zeros (1, nsim);

220 COST_S = zeros (1, nsim);

221 COST_R = zeros (1, nsim);

222

223 for j = 1: nsim

224 hbar = waitbar (0, ’Simulation Progress ’);

225 for i = 1:(Duration /ts)

226 if i <= N-p-1

227 r1 = ref (1,i:i+p -1);

228 r2 = ref (2,i:i+p -1);

229 r = [r1 ’ r2 ’];

230 v = u_PA001 (i:i+p -1) ’;

231 else

232 r1 = ref (1,i:end);

233 r2 = ref (2,i:end);

234 r = [r1 ’ r2 ’];

235 v = u_PA001 (i:end) ’;

236 end

237 %r = ref (:,i) ’; % Without preview (reference)

238 %v = u_PA001 (i); % Without preview (Disturbance)

239

240 % Find optimal mv

241 tic

242 [mv , info] = mpcmove (mpcobj , xc , [], r, v);

243 TIME_SPENT (1,i,j) = toc;

244

245

246 % Simulate Linear System

Appendix I MATLAB Code 271

247 x = sys.A*(x-x0) + sys.B*([mv;v(1)]-u0);

248 x = round(x + x0 , 5);

249

250 % Simulate Nonlinear System

251 [~, XNL] = ode45(@(t,x) tankCT_NEW (x, [mv;v(1)]), [0 ts], XX_NL (:,i));

252 xnl = [XNL(end ,1);XNL(end ,2)];

253 %xnl = round(xnl , 5);

254

255

256 xc.Plant = xnl; %N

257 xc. LastMove = mv; %N

258

259 % History tracking

260 XX(:,i+1) = x;

261 UU(:,i+1) = mv;

262 MPCXX (:,i+1) = xc.Plant;

263 II(1,i,j) = info. Iterations ;

264 XX_NL (:,i+1) = xnl;

265

266 waitbar (i*ts/Duration , hbar);

267 end

268 close(hbar)

269 TIME_SPENT_AVERAGES (j) = mean(TIME_SPENT (:,:,j));

270

271 cost = 0;

272 cost_Q = 0;

273 cost_S = 0;

274 cost_R = 0;

275

276 Q = diag(mpcobj . Weights . OutputVariables);

277 Q(1 ,1) = Q(1 ,1)/ mpcobj .OV (1). ScaleFactor ; % Scaling

278 Q(2 ,2) = Q(2 ,2)/ mpcobj .OV (2). ScaleFactor ; % Scaling

279 S = diag(mpcobj . Weights . ManipulatedVariablesRate);

280 R = diag(mpcobj . Weights . ManipulatedVariables);

281 E = XX_NL (: ,2: end) - ref;

282 EU = UU (: ,:) - u0 (1:2 ,:);

283 mvRate = UU (: ,1:end -1) - UU (: ,2: end);

284 for l = 1:N-1

285 cost_Q = cost_Q + E(:,l) ’*(Q^2)*E(:,l);

286 cost_S = cost_S + mvRate (:,l) ’*(S^2)* mvRate (:,l);

287 cost_R = cost_R + EU(:,l) ’*(R^2)*EU(:,l);

288 cost = cost + E(:,l) ’*(Q^2)*E(:,l) + mvRate (:,l) ’*(S^2)* mvRate (:,l)

+ EU(:,l) ’*(R^2)*EU(:,l);

289 end

290 COST(j) = cost;

291 COST_Q (j) = cost_Q ;

292 COST_S (j) = cost_S ;

293 COST_R (j) = cost_R ;

Appendix I MATLAB Code 272

294 end

295 COST_CELL {p,m} = cost;

296 TIME_CELL {p,m} = TIME_SPENT_AVERAGES ;

297 TOTAL_TIME_CELL {p,m} = sum(TIME_SPENT (: ,: ,1));

298 end

299 end

300 end

301 %% Heatmap

302 Phm = 1:P;

303 Mhm = 1:M;

304 figure

305 COST_CELL_MAT = cell2mat (COST_CELL);

306 COST_CELL_MAT (: ,1:7) = nan; % Use to remove Columns !

307 COST_CELL_MAT (1:9 ,:) = nan; % Use to remove Rows!

308 heatmap (Phm , Mhm , COST_CELL_MAT ," Colormap ",jet)

309 xlabel (’M’)

310 ylabel (’P’)

311 title(’Quadratic Cost v. Horizon Lengths ’)

312 [min_val ,idx]= min(COST_CELL_MAT (:));

313 [row ,col]= ind2sub (size(COST_CELL_MAT),idx);

314 sprintf (’Best (P,M): (%f,%f) w/ Cost: %f’,row , col , COST_CELL_MAT (row ,col

))

315

316 [max_val ,idx]= max(COST_CELL_MAT (:));

317 [row ,col]= ind2sub (size(COST_CELL_MAT),idx);

318 sprintf (’Worst (P,M): (%f,%f) w/ Cost: %f’,row , col , COST_CELL_MAT (row ,

col))

319

320 Phm = 1:P;

321 Mhm = 1:M;

322 figure

323 TIME_CELL_MAT = cell2mat (TIME_CELL);

324 % TIME_CELL_MAT (: ,40: -1:20) = nan; % Use to remove Columns !

325 % TIME_CELL_MAT (1:7 ,:) = nan; % Use to remove Rows!

326 heatmap (Phm , Mhm , TIME_CELL_MAT ," Colormap ",jet)

327 xlabel (’M’)

328 ylabel (’P’)

329 title(’Average Execution Time v. Horizon Lengths ’)

330

331 [min_val ,idx]= min(TIME_CELL_MAT (:));

332 [row ,col]= ind2sub (size(TIME_CELL_MAT),idx);

333 sprintf (’Best (P,M): (%f,%f) w/ Time: %f’,row , col , TIME_CELL_MAT (row ,col

))

334

335 [max_val ,idx]= max(TIME_CELL_MAT (:));

336 [row ,col]= ind2sub (size(TIME_CELL_MAT),idx);

337 sprintf (’Worst (P,M): (%f,%f) w/ Time: %f’,row , col , TIME_CELL_MAT (row ,

col))

Appendix I MATLAB Code 273

338

339 Phm = 1:P;

340 Mhm = 1:M;

341 figure

342 TOTAL_TIME_CELL_MAT = cell2mat (TOTAL_TIME_CELL);

343 % TOTAL_TIME_CELL_MAT (: ,1:7) = nan; % Use to remove Columns !

344 % TOTAL_TIME_CELL_MAT (1:7 ,:) = nan; % Use to remove Rows!

345

346 heatmap (Phm , Mhm , TOTAL_TIME_CELL_MAT ," Colormap ",jet)

347 xlabel (’M’)

348 ylabel (’P’)

349 title(’Total Execution Time v. Horizon Lengths ’)

350

351 [min_val ,idx]= min(TOTAL_TIME_CELL_MAT (:));

352 [row ,col]= ind2sub (size(TOTAL_TIME_CELL_MAT),idx);

353 sprintf (’Best (P,M): (%f,%f) w/ Time: %f’,row , col , TOTAL_TIME_CELL_MAT (

row ,col))

354

355 [max_val ,idx]= max(TOTAL_TIME_CELL_MAT (:));

356 [row ,col]= ind2sub (size(TOTAL_TIME_CELL_MAT),idx);

357 sprintf (’Worst (P,M): (%f,%f) w/ Time: %f’,row , col , TOTAL_TIME_CELL_MAT (

row ,col))

358

359

360 %%

361 sprintf (’Execution Time Weighted Average : %e’,mean(TIME_SPENT_AVERAGES))

362 sprintf (’Execution Time Standard Deviation : %e’,std(TIME_SPENT_AVERAGES))

363 sprintf (’Cost Weighted Average : %e’,mean(COST))

364 sprintf (’Cost Standard Deviation : %e’,std(COST))

365

366 % Plot - Simulation

367 figure

368 subplot (3 ,1 ,1)

369 %plot(t, XX (1 ,:) ,’green ’, ’LineWidth ’,1)

370 %hold on

371 plot(t, XX_NL (1 ,:) , ’blue ’, ’LineWidth ’,1, ’LineStyle ’,’-’)

372 hold on

373 plot(t(2: end), ref (1 ,:) , ’red ’, ’LineWidth ’,1, ’LineStyle ’,’--’)

374 %hold on

375 %plot(t, MPCXX (1 ,:) , ’cyan ’, ’LineWidth ’,1, ’LineStyle ’,’--’)

376 xlabel (’t\, [s]’, Interpreter =’latex ’)

377 ylabel (’Water level $[m]$’, Interpreter =’latex ’)

378 title(’Tank 1’, Interpreter =’latex ’)

379 % legend (’$h_ {1,\,L}$’,’$h_ {1,\,NL}$’,’$h_ {1,\, ref}$’, ’Interpreter ’,’

latex ’)

380 legend (’$h_ {1}$’,’$h_ {1,\, ref}$’, ’Interpreter ’,’latex ’)

381 ylim ([0 1]);

382 grid on

Appendix I MATLAB Code 274

383 box on

384

385 subplot (3 ,1 ,2)

386 %plot(t, XX (2 ,:) , ’green ’, ’LineWidth ’,1)

387 %hold on

388 plot(t, XX_NL (2 ,:) , ’blue ’, ’LineWidth ’,1, ’LineStyle ’,’-’)

389 hold on

390 plot(t(2: end), ref (2 ,:) , ’red ’, ’LineWidth ’,1, ’LineStyle ’,’--’)

391 %hold on

392 %plot(t, MPCXX (2 ,:) , ’cyan ’, ’LineWidth ’,1, ’LineStyle ’,’--’)

393 xlabel (’t\, [s]’, Interpreter =’latex ’)

394 ylabel (’Water level $[m]$’, Interpreter =’latex ’)

395 title(’Tank 2’, Interpreter =’latex ’)

396 % legend (’$h_ {2,\,L}$’,’$h_ {2,\,NL}$’,’$h_ {2,\, ref}$’, ’Interpreter ’,’

latex ’)

397 legend (’$h_ {2}$’,’$h_ {2,\, ref}$’, ’Interpreter ’,’latex ’)

398 ylim ([0 1])

399 xlim ([0 t(end)])

400 grid on

401 box on

402

403 subplot (3 ,1 ,3)

404 stairs (t, UU (1 ,:) , ’magenta ’, ’LineWidth ’ ,1)

405 hold on

406 stairs (t, UU (2 ,:) , ’green ’, ’LineWidth ’ ,1)

407 hold on

408 stairs (t, u_PA001 , ’k’, ’LineStyle ’,’:’, LineWidth =1)

409 xlabel (’$t\, [s]$’, Interpreter =’latex ’)

410 ylabel (’[-]’, Interpreter =’latex ’)

411 title(’Inputs ’, Interpreter =’latex ’)

412 legend (’u_{LV001}’, ’u_{LV002}’, ’u_{PA001}’, ’Interpreter ’,’latex ’

)

413 ylim ([0 1])

414 grid on

415 box on

416

417 %% Iterations

418 figure

419 histogram (II (: ,: ,1) ,EdgeColor =’k’,EdgeAlpha =1, FaceAlpha =1, FaceColor

=[0.6350 0.0780 0.1840] ,...

420 LineStyle =’-’, LineWidth =1)

421 xlabel (’Necessary Iterations ’, Interpreter =’latex ’)

422 ylabel (’Number of QP Solver Calls ’, Interpreter =’latex ’)

423 title(’Simulation with Active -Set Algorithm ’, Interpreter =’latex ’)

424 grid on

425 box on

426 %% Time Spent

427 TIME_MAT = zeros(N-1, nsim);

Appendix I MATLAB Code 275

428 Lable_struc = cell (1, nsim);

429 for i = 1: nsim

430 TIME_MAT (:,i) = TIME_SPENT (:,:,i) ’;

431 Lable_struc {i} = sprintf (’Sim%i’, i);

432 end

433 figure

434 boxplot (TIME_MAT ," BoxStyle "," outline ",’MedianStyle ’,’line ’,’Notch ’,’off ’,

’OutlierSize ’ ,6,...

435 ’Symbol ’,’.r’, Jitter =0, Labels = Lable_struc)

436 xlabel (’Simulations ’, Interpreter =’latex ’)

437 ylabel (’Time $[s]$’, Interpreter =’latex ’)

438 title(’Box Plot w.r.t. Execution Time of QP Solver ’, Interpreter =’latex ’)

439 box on

440 grid on

I.3.6 Plot_Data_Visualization_Nonlinear_MPC.m

1 %% Control of Two -Tank Using Nonlinear MPC.

2 % Initial condition : {h1 = 0.5, h2 = 0.3, u_PA001 = 0.8}

3

4 % Author : Gent Luta

5

6 % Date: Spring 2023

7

8 %% Steady State Values

9 h1_A = 0.5;

10 h2_A = 0.3;

11 u_PA001_A = 0.8;

12

13 u1_A = Valve_1_OP_New (h1_A , u_PA001_A);

14 u2_A = Valve_2_OP (u1_A , h1_A , h2_A);

15

16 %% Initial Condition

17 x0 = [h1_A; h2_A];

18 u0 = [u1_A;u2_A; u_PA001_A];

19 y0 = x0;

20

21 %% Nonlinear MPC

22 ts = 0.5;

23 Duration = 400;

24 t = 0:ts: Duration ;

25 N = length (t);

26

27 nsim = 1;

28 COST = cell (1, nsim);

29 COST_Q = cell (1, nsim);

Appendix I MATLAB Code 276

30 COST_S = cell (1, nsim);

31 COST_R = cell (1, nsim);

32 TIME_ARRAY = cell (1, nsim);

33 ITERATIONS = cell (1, nsim);

34

35 for j = 1: nsim

36 nx = 2; % Number of states

37 ny = 2; % Number of outputs

38 mvIndex = [1 ,2]; % Manipulated variable indices

39 mdIndex = 3; % Measured disturbance indices

40 nlobj = nlmpc(nx ,ny ,’MV’,mvIndex ,’MD’,mdIndex); % Nonlinear MPC object

41

42 ts = 0.5; % Sampling time

43 nlobj.Ts = ts; % Sampling time

44

45 % Horizon Lengths

46 p = 13; % Prediction horizon

47 m = 13; % Control horizon

48 nlobj. PredictionHorizon = p;

49 nlobj. ControlHorizon = m;

50

51 % Nonlinear DT State Function

52 nlobj.Model. StateFcn = ’tankDT_NEW_One_Step ’;

53 nlobj.Model. IsContinuousTime = false;

54 nlobj.Model. NumberOfParameters = 1;

55

56 % DT Output Function

57 nlobj.Model. OutputFcn = ’tankOutputFcn ’;

58

59 % Output Jacobian (I.e., C - Matrix)

60 nlobj. Jacobian . OutputFcn = @(x,u,Ts) [1 0; 0 1];

61

62 % Weighting Matrices

63 nlobj. Weights . OutputVariables = [1 1]; % Q

64 nlobj. Weights . ManipulatedVariablesRate = [0.1 0.1]; % S

65 nlobj. Weights . ManipulatedVariables = [0 0]; % R

66

67 % Signal Scaling

68 nlobj.OV (1). ScaleFactor = 1 - 0.13; % Range of h1

69 nlobj.OV (2). ScaleFactor = 0.4 - 0.02; % Range of h2

70

71 % Input (hard) Constraints

72 nlobj.MV (1).Max = 0.9999;

73 nlobj.MV (1).Min = 0.0001;

74 nlobj.MV (2).Max = 0.9999;

75 nlobj.MV (2).Min = 0.0001;

76 %nlobj. Optimization . RunAsLinearMPC = ’Adaptive ’; % REMOVE

Appendix I MATLAB Code 277

77 nlobj. Optimization . SolverOptions . MaxIterations = 30; % Limit SQP

Solver to 30 Intervals

78 nlobj. Optimization . UseSuboptimalSolution = true; % Toggle Sub -

Optimal Solution

79

80 %% MPC Validation

81 validateFcns (nlobj ,x0 ,u0 (1:2) ,u0 (3) ,{ts});

82 nloptions = nlmpcmoveopt ;

83 nloptions . Parameters = {ts};

84

85 %% SIM

86

87 % Signal Previewing

88 ref = [ones (1, N -1)*h1_A;

89 ones (1, N -1)*h2_A];

90 u_PA001 = ones (1,N)* u_PA001_A ;

91

92 % Reference and Disturbance Modification

93 t_h1_rise = 50;

94 t_h2_rise = 150;

95 t_upa_rise = 250;

96 t_hold = 70;

97 idx_ref1 = round(t_h1_rise /ts);

98 idx_ref2 = round(t_h2_rise /ts);

99 idx_upa = round(t_upa_rise /ts);

100 idx_hold = round(t_hold /ts);

101 %

102 ref (1, idx_ref1 : idx_ref1 + idx_hold) = h1_A + 0.2;%0.2

103 ref (2, idx_ref2 : idx_ref2 + idx_hold) = h2_A - 0.2;%0.2

104 u_PA001 (1, idx_upa : idx_upa + idx_hold) = u_PA001_A - 0.2;%0.2

105

106 %

107 x = x0; % Current state

108 mv = u0 (1:2); % Last MV

109

110 % History Tracking

111 UU = zeros (2,N); UU (: ,1) = u0 (1:2);

112 II = zeros (1,N -1);

113 XX_NL = zeros (2,N); XX_NL (: ,1) = x0;

114 TIME_SPENT = zeros (1,N -1);

115

116 hbar = waitbar (0, ’Simulation Progress ’);

117 for i = 1:(Duration /ts)

118 if i <= N-p-1

119 r1 = ref (1,i:i+p -1);

120 r2 = ref (2,i:i+p -1);

121 r = [r1 ’ r2 ’];

122 v = u_PA001 (i:i+p -1) ’;

Appendix I MATLAB Code 278

123 else

124 r1 = ref (1,i:end);

125 r2 = ref (2,i:end);

126 r = [r1 ’ r2 ’];

127 v = u_PA001 (i:end) ’;

128 end

129 %r = ref (:,i) ’; % Without signal preview (reference)

130 %v = u_PA001 (i); % Without signal preview (disturbance)

131

132 tic

133 [mv , nloptions , info] = nlmpcmove (nlobj ,x,mv ,r,v, nloptions); % Solve

SQP optimization problem

134 TIME_SPENT (i) = toc;

135

136 % Simulate Nonlinear System

137 [~, XNL] = ode45(@(t,x) tankCT_NEW (x, [mv;v(1)]), [0 ts], XX_NL (:,i));

138 xnl = [XNL(end ,1);XNL(end ,2)];

139 x = xnl;

140

141 % History tracking

142 UU(:,i+1) = mv;

143 II(i) = info. Iterations ;

144 XX_NL (:,i+1) = xnl;

145

146 waitbar (i*ts/Duration , hbar);

147 end

148 close(hbar)

149

150 TIME_ARRAY {1,j} = TIME_SPENT ;

151 ITERATIONS {1,j} = II;

152

153 cost = 0;

154 cost_Q = 0;

155 cost_S = 0;

156 cost_R = 0;

157

158

159 % Find Total Quadratic Cost

160 Q = diag(nlobj. Weights . OutputVariables);

161 Q(1 ,1) = Q(1 ,1)/nlobj.OV (1). ScaleFactor ; % Scaling

162 Q(2 ,2) = Q(2 ,2)/nlobj.OV (2). ScaleFactor ; % Scaling

163 S = diag(nlobj. Weights . ManipulatedVariablesRate);

164 R = diag(nlobj. Weights . ManipulatedVariables);

165 E = XX_NL (: ,2: end) - ref; % OV reference tracking error

166 EU = UU (: ,:) - u0 (1:2 ,:); % MV target tracking error

167 mvRate = UU (: ,1:end -1) - UU (: ,2: end); % MV rate

168 for l = 1:N-1

169 cost_Q = cost_Q + E(:,l) ’*(Q^2)*E(:,l);

Appendix I MATLAB Code 279

170 cost_S = cost_S + mvRate (:,l) ’*(S^2)* mvRate (:,l);

171 cost_R = cost_R + EU(:,l) ’*(R^2)*EU(:,l);

172 cost = cost + E(:,l) ’*(Q^2)*E(:,l) + mvRate (:,l) ’*(S^2)* mvRate (:,l)

+ EU(:,l) ’*(R^2)*EU(:,l);

173 end

174 COST {1,j} = cost;

175 COST_Q {1,j} = cost_Q ;

176 COST_S {1,j} = cost_S ;

177 COST_R {1,j} = cost_R ;

178 end

179

180

181 %% Plot - Simulation

182 figure

183

184 % Tank 1

185 subplot (3 ,1 ,1)

186 plot(t, XX_NL (1 ,:) , ’blue ’, ’LineWidth ’,1, ’LineStyle ’,’-’)

187 hold on

188 plot(t(2: end), ref (1 ,:) , ’red ’, ’LineWidth ’,1, ’LineStyle ’,’--’)

189 xlabel (’t\, [s]’, Interpreter =’latex ’)

190 ylabel (’Water level $[m]$’, Interpreter =’latex ’)

191 title(’Tank 1’, Interpreter =’latex ’)

192 legend (’$h_ {1}$’,’$h_ {1,\, ref}$’, ’Interpreter ’,’latex ’)

193 ylim ([0 1]);

194 grid on

195 box on

196 set(gca ,’YTick ’ ,0:0.05:1)

197

198 % Tank 2

199 subplot (3 ,1 ,2)

200 plot(t, XX_NL (2 ,:) , ’blue ’, ’LineWidth ’,1, ’LineStyle ’,’-’)

201 hold on

202 plot(t(2: end), ref (2 ,:) , ’red ’, ’LineWidth ’,1, ’LineStyle ’,’--’)

203 xlabel (’t\, [s]’, Interpreter =’latex ’)

204 ylabel (’Water level $[m]$’, Interpreter =’latex ’)

205 title(’Tank 2’, Interpreter =’latex ’)

206 legend (’$h_ {2}$’,’$h_ {2,\, ref}$’, ’Interpreter ’,’latex ’)

207 ylim ([0 1])

208 xlim ([0 t(end)])

209 grid on

210 box on

211 set(gca ,’YTick ’ ,0:0.05:1)

212

213 % Input Signals

214 subplot (3 ,1 ,3)

215 stairs (t, UU (1 ,:) , ’magenta ’, ’LineWidth ’ ,1)

216 hold on

Appendix I MATLAB Code 280

217 stairs (t, UU (2 ,:) , ’green ’, ’LineWidth ’ ,1)

218 hold on

219 stairs (t, u_PA001 , ’k’, ’LineStyle ’,’:’, LineWidth =1)

220 xlabel (’$t\, [s]$’, Interpreter =’latex ’)

221 ylabel (’[-]’, Interpreter =’latex ’)

222 title(’Input Signals ’, Interpreter =’latex ’)

223 legend (’u_{LV001}’, ’u_{LV002}’, ’u_{PA001}’, ’Interpreter ’,’latex ’

)

224 ylim ([0 1])

225 grid on

226 box on

227

228 %% Time Spent

229 TIME_MAT = zeros(N-1, nsim);

230 Lable_struc = cell (1, nsim);

231 for i = 1: nsim

232 TIME_MAT (:,i) = TIME_ARRAY {1,i}’;

233 Lable_struc {i} = sprintf (’Sim%i’, i);

234 end

235 figure ;

236 boxplot (TIME_MAT ," BoxStyle "," outline ",’MedianStyle ’,’line ’,’Notch ’,’off ’,

’OutlierSize ’ ,6,...

237 ’Symbol ’,’.r’, Jitter =0, Labels = Lable_struc)

238 xlabel (’Simulations ’, Interpreter =’latex ’)

239 ylabel (’Time $[s]$’, Interpreter =’latex ’)

240 title(’Box Plot w.r.t. Execution Time of SQP Solver ’, Interpreter =’latex ’

)

241 box on

242 grid on

243

244 %% Quadratic Cost

245 COST_mat = cell2mat (COST);

246 COST_Q_mat = cell2mat (COST_Q);

247 COST_R_mat = cell2mat (COST_R);

248 COST_S_mat = cell2mat (COST_S);

249

250 sprintf (’Mean Total Cost: %f’,mean(COST_mat))

251 sprintf (’Mean Total Cost - Q: %f’,mean(COST_Q_mat))

252 sprintf (’Mean Total Cost - S: %f’,mean(COST_S_mat))

253 sprintf (’Mean Total Cost - R: %f’,mean(COST_R_mat))

254

255 %% Show Iterations and time taken on every control interval . Fill out

this part!

256 figure

257 yyaxis left

258 stem(TIME_ARRAY {1,1},’blue ’, ’LineWidth ’ ,.05, ’LineStyle ’,’-’,MarkerSize

=0.001)

259 hold on

Appendix I MATLAB Code 281

260 yline (20.77*10^ -3 , ’k’, ’LineWidth ’,1, ’LineStyle ’,’--’)

261 hold on

262 yline (0.5 , ’r’, ’LineWidth ’,1, ’LineStyle ’,’--’)

263 ylabel (’Time $[s]$’,Interpreter =’latex ’)

264 set(gca , ’YScale ’, ’log ’)

265

266 yyaxis right

267 stem(ITERATIONS {1,1},’Color ’ ,[255/255 ,69/255 ,0] , ’LineWidth ’ ,.05, ’

LineStyle ’,’-’, MarkerSize =0.001) ;

268 ylabel (’Iterations ’,Interpreter =’latex ’)

269 %set(gca , ’YScale ’, ’log ’)

270 ylim ([0 80])

271

272 ax = gca;

273 ax.YAxis (1).Color = ’b’;

274 ax.YAxis (2).Color = [255/255 ,69/255 ,0];

275 ax.XAxis (1).Color = ’k’;

276

277 title(’Execution Time and Iterations of Every SQP Solver Call ’,

Interpreter =’latex ’)

278 xlabel (’Control Interval k ’,Interpreter =’latex ’)

279 legend (’Time Spent ’, ’Upper Adjacent ’, ’Control Interval Length ’, ’

Iterations Required ’, ’Interpreter ’,’latex ’)

280 grid on

281 box on

282

283 %%

I.3.7 Plot_Equal_Percentage_Valve_Char.m

1 %% Equal Percentage Valve Characteristic (E.P.V.C.)

2

3 % Author : Gent Luta

4

5 % Date: Spring 2023

6

7

8 %% E.P.V.C. with different rangeability (R)

9 z = 0:0.01:1;

10 R = [5, 10, 15, 20];

11 style = {’--’, ’-’, ’:’, ’-.’};

12 nr = 1;

13 figure

14 for r = R

15 f = r.^(z -1);

16 plot(z,f, LineWidth =1, Color=’k’, LineStyle =style(nr))

Appendix I MATLAB Code 282

17 nr = nr + 1;

18 hold on

19 end

20 legend (’R = 5’, ’R = 10’, ’R = 15’,’R = 20’)

21 xlabel (’Valve Opening $z(t)$’, Interpreter =’latex ’)

22 ylabel (’Flow Rate $f(z(t))$’, Interpreter =’latex ’)

23 title(’Equal Percentage Flow Characteristics ’, Interpreter =’latex ’)

24 yticks ([0 ,0.25 , 0.5, 0.75 , 1]);

25 yticklabels ({’0%’, ’25% ’, ’50% ’,’75% ’, ’100% ’})

26 xticks ([0 ,0.25 , 0.5, 0.75 , 1]);

27 xticklabels ({’0%’, ’25% ’, ’50% ’,’75% ’, ’100% ’})

28 %line ([0.6 0.6] , [0 0.6] , Linewidth = 2) Use when showing central

29 % difference .

30 box on

31 grid on

32

33 %% E.P.V.C. with R = 10 and Approximated V.C.

34 z = 0:0.01:1;

35 f = figure ;

36 Real = 10.^(z -1);

37 Approx = (exp(z .^1.2) - 1) / (exp (1) - 1);

38 plot(z, Real , LineWidth =1, Color=’k’, LineStyle =’--’)

39 hold on

40 plot(z,Approx , LineWidth =1, Color=’k’, LineStyle =’-’)

41 box on

42 grid on

43 legend (’Equal Percentage $R = 10$’, ’Approximated Valve Char.’, ’

Interpreter ’,’latex ’)

44 yticks ([0 ,0.25 , 0.5, 0.75 , 1]);

45 yticklabels ({’0%’, ’25% ’, ’50% ’,’75% ’, ’100% ’})

46 xticks ([0 ,0.25 , 0.5, 0.75 , 1]);

47 xticklabels ({’0%’, ’25% ’, ’50% ’,’75% ’, ’100% ’})

48 xlabel (’Valve Opening $z(t)$’, Interpreter =’latex ’)

49 ylabel (’Flow Rate $f(z(t))$’, Interpreter =’latex ’)

50 title(’Real and Approximated Flow Characteristics ’, Interpreter =’latex ’)

51 exportgraphics (f,’ValveChar .png ’,’Resolution ’ ,300)

52

53 %% Approximated V.C. and Forward difference

54 z = 0:0.01:1;

55 figure

56 Approx = (exp(z .^1.2) - 1) / (exp (1) - 1);

57 delta = 0.1;

58 point = 0.5;

59 Approx_Forward = (exp ((point+delta)^1.2) - 1) / (exp (1) - 1);

60 Approx_Mid = (exp(point ^1.2) - 1) / (exp (1) - 1);

61 Forward_Diff = (Approx_Forward - Approx_Mid)/(delta);

62 b = Approx_Mid - Forward_Diff *0.5;

63 Linear_line = Forward_Diff .*z + b;

Appendix I MATLAB Code 283

64 plot(z, Linear_line , LineWidth =1, Color=’k’, LineStyle =’:’)

65 hold on

66 plot(z,Approx , LineWidth =1, Color=’k’, LineStyle =’-’)

67 box on

68 grid on

69 ax = gca;

70 ax. TickLabelInterpreter = ’latex ’;

71 ax. GridColor = [0 0 0];

72 ax. GridLineStyle = ’--’;

73 legend (’$\ mathcal {L}_v$ ’,’Approximated Valve Char.’, ’Interpreter ’,’latex

’)

74 yticks ([Approx_Mid , Approx_Forward]);

75 yticklabels ({’$f(z(t))$’, ’$f(z(t) + h)$’})

76 xticks ([point , point+delta]);

77 xticklabels ({’$z(t)$’, ’$z(t) + h$’})

78 xlabel (’Valve Opening $z(t)$’, Interpreter =’latex ’)

79 ylabel (’Flow Rate $f(z(t))$’, Interpreter =’latex ’)

80 title(’Forward Difference - Graphical Interpretation ’, Interpreter =’latex

’)

I.3.8 Plot_Experimental_Data_Delay_Noise.m

1 %% Plot Two - Tank System Properties (Delay / Noise / Water Ripple)

2

3 % Author : Gent Luta

4

5 % Date: Spring 2023

6

7 % Load Scope Data File

8 load(" Experimental_Folder_FINAL_DATA_080723 \

Experimental_Data_Dynamic_Noise .mat")

9

10 [upa , h1 , ulv1 , h2 , ulv2] = ScopeData . signals . values ;

11

12

13 % Index for ’Dynamic Noise ’, past 100 sec ->1430

14

15 t = ScopeData .time;

16

17 figure

18 % Tank 1

19 subplot (3 ,1 ,1)

20 plot(t, h1 , ’blue ’, ’LineWidth ’,1, ’LineStyle ’,’-’)

21 xlabel (’$t\, [s]$’, Interpreter =’latex ’)

22 ylabel (’Water level $[m]$’, Interpreter =’latex ’)

23 title(’Tank 1’, Interpreter =’latex ’)

Appendix I MATLAB Code 284

24 legend (’$h_ {1}$’, ’Interpreter ’,’latex ’)

25 %ylim ([0 1]);

26 xlim ([100 200]);

27 grid on

28 box on

29 %set(gca ,’YTick ’ ,0:0.05:1) % Use only when zooming in on Figure . Else ,

comment out

30

31 % Tank 2

32 subplot (3 ,1 ,2)

33 plot(t, h2 , ’blue ’, ’LineWidth ’,1, ’LineStyle ’,’-’)

34 xlabel (’$t\, [s]$’, Interpreter =’latex ’)

35 ylabel (’Water level $[m]$’, Interpreter =’latex ’)

36 title(’Tank 2’, Interpreter =’latex ’)

37 legend (’$h_ {2}$’, ’Interpreter ’,’latex ’)

38 %ylim ([0 1])

39 xlim ([100 200]);

40 grid on

41 box on

42 %set(gca ,’YTick ’ ,0:0.05:1) % Use only when zooming in on Figure . Else ,

comment out

43

44 % Input Signals

45 subplot (3 ,1 ,3)

46 stairs (t, ulv1 , ’magenta ’, ’LineWidth ’ ,1)

47 hold on

48 stairs (t, ulv2 , ’green ’, ’LineWidth ’ ,1)

49 hold on

50 stairs (t, upa , ’k’, ’LineStyle ’,’:’, LineWidth =1)

51 xlabel (’$t\, [s]$’, Interpreter =’latex ’)

52 ylabel (’$[-]$’, Interpreter =’latex ’)

53 title(’Input Signals ’, Interpreter =’latex ’)

54 legend (’u_{LV001}’, ’u_{LV002}’, ’u_{PA001}’, ’Interpreter ’,’latex ’

);

55 %ylim ([0 1])

56 xlim ([100 200]);

57 grid on

58 box on

I.3.9 Plot_Experimental_Data_State_Estimation.m

1 %% Plot Experimental Data - With State Estimation

2

3 % Author : Gent Luta

4

5 % Date: Spring 2023

Appendix I MATLAB Code 285

6

7 % Load Scope Data File

8 %% case 1: 2x2 (estimation of 2 states using 2 measurements)

9 load(" Simulink_mpc +mhe\ Simulink_mpc +mhe\ figures \ scopedata_2x2_mpc +mhe.mat

")

10

11 % uPA

12 upa = ScopeData . signals (1). values (: ,2); % Measured

13

14 % h1

15 h1_estimated = ScopeData . signals (2). values (: ,1);

16 h1_real = ScopeData . signals (2). values (: ,2);

17 h1_ref = ScopeData . signals (2). values (: ,3);

18

19 % h2

20 h2_estimated = ScopeData . signals (3). values (: ,1);

21 h2_real = ScopeData . signals (3). values (: ,2);

22 h2_ref = ScopeData . signals (3). values (: ,3);

23

24 % Input signals

25 ulv1 = ScopeData . signals (4). values (: ,1);

26 ulv2 = ScopeData . signals (4). values (: ,2);

27

28 % time

29 t = ScopeData .time;

30

31 figure

32 % Tank 1

33 subplot (3 ,1 ,1)

34 plot(t, h1_real , ’blue ’, ’LineWidth ’,1, ’LineStyle ’,’-’)

35 hold on

36 plot(t, h1_ref , ’green ’, ’LineWidth ’,1, ’LineStyle ’,’--’)

37 hold on

38 plot(t, h1_estimated , ’red ’, ’LineWidth ’,1, ’LineStyle ’,’:’)

39 xlabel (’$t\, [s]$’, Interpreter =’latex ’)

40 ylabel (’Water level $[m]$’, Interpreter =’latex ’)

41 title(’Tank 1’, Interpreter =’latex ’)

42 legend (’$h_ {1,\, measured }$’,’$h_ {1,\, ref}$’, ’$h_ {1,\, estimated }$’, ’

Interpreter ’,’latex ’)

43 ylim ([0 1]);

44 xlim ([0 t(end)])

45 grid on

46 box on

47 set(gca ,’YTick ’ ,0:0.05:1) % Use only when zooming in on Figure . Else ,

comment out

48

49 % Tank 2

50 subplot (3 ,1 ,2)

Appendix I MATLAB Code 286

51 plot(t, h2_real , ’blue ’, ’LineWidth ’,1, ’LineStyle ’,’-’)

52 hold on

53 plot(t, h2_ref , ’green ’, ’LineWidth ’,1, ’LineStyle ’,’--’)

54 hold on

55 plot(t, h2_estimated , ’red ’, ’LineWidth ’,1, ’LineStyle ’,’:’)

56 xlabel (’$t\, [s]$’, Interpreter =’latex ’)

57 ylabel (’Water level $[m]$’, Interpreter =’latex ’)

58 title(’Tank 2’, Interpreter =’latex ’)

59 legend (’$h_ {2,\, measured }$’,’$h_ {2,\, ref}$’, ’$h_ {2,\, estimated }$’, ’

Interpreter ’,’latex ’)

60 ylim ([0 1])

61 xlim ([0 t(end)])

62 grid on

63 box on

64 set(gca ,’YTick ’ ,0:0.05:1) % Use only when zooming in on Figure . Else ,

comment out

65

66 % Input Signals

67 subplot (3 ,1 ,3)

68 stairs (t, ulv1 , ’magenta ’, ’LineWidth ’ ,1)

69 hold on

70 stairs (t, ulv2 , ’green ’, ’LineWidth ’ ,1)

71 hold on

72 stairs (t, upa , ’k’, ’LineStyle ’,’:’, LineWidth =1)

73 xlabel (’$t\, [s]$’, Interpreter =’latex ’)

74 ylabel (’$[-]$’, Interpreter =’latex ’)

75 title(’Input Signals ’, Interpreter =’latex ’)

76 legend (’u_{LV001}’, ’u_{LV002}’, ’u_{PA001}’, ’Interpreter ’,’latex ’

);

77 ylim ([0 1])

78 xlim ([0 t(end)])

79 grid on

80 box on

81

82

83

84

85 %% case 2: 2x1 (estimation of 2 states using 1 measurements)

86 load(" Simulink_mpc +mhe\ Simulink_mpc +mhe\ figures \ scopedata_2x1_mpc +mhe.mat

")

87

88 % uPA

89 upa = ScopeData . signals (1). values (: ,2); % Measured

90

91 % h1

92 h1_estimated = ScopeData . signals (2). values (: ,1);

93 h1_real = ScopeData . signals (2). values (: ,2);

94 h1_ref = ScopeData . signals (2). values (: ,3);

Appendix I MATLAB Code 287

95

96 % h2

97 h2_estimated = ScopeData . signals (3). values (: ,1);

98 h2_real = ScopeData . signals (3). values (: ,2);

99 h2_ref = ScopeData . signals (3). values (: ,3);

100

101 % Input signals

102 ulv1 = ScopeData . signals (4). values (: ,1);

103 ulv2 = ScopeData . signals (4). values (: ,2);

104

105 % time

106 t = ScopeData .time;

107

108 figure

109 % Tank 1

110 subplot (3 ,1 ,1)

111 plot(t, h1_real , ’blue ’, ’LineWidth ’,1, ’LineStyle ’,’-’)

112 hold on

113 plot(t, h1_ref , ’green ’, ’LineWidth ’,1, ’LineStyle ’,’--’)

114 hold on

115 plot(t, h1_estimated , ’red ’, ’LineWidth ’,1, ’LineStyle ’,’:’)

116 xlabel (’$t\, [s]$’, Interpreter =’latex ’)

117 ylabel (’Water level $[m]$’, Interpreter =’latex ’)

118 title(’Tank 1’, Interpreter =’latex ’)

119 legend (’$h_ {1,\, measured }$’,’$h_ {1,\, ref}$’, ’$h_ {1,\, estimated }$’, ’

Interpreter ’,’latex ’)

120 ylim ([0 1]);

121 xlim ([0 t(end)])

122 grid on

123 box on

124 set(gca ,’YTick ’ ,0:0.05:1) % Use only when zooming in on Figure . Else ,

comment out

125

126 % Tank 2

127 subplot (3 ,1 ,2)

128 plot(t, h2_real , ’blue ’, ’LineWidth ’,1, ’LineStyle ’,’-’)

129 hold on

130 plot(t, h2_ref , ’green ’, ’LineWidth ’,1, ’LineStyle ’,’--’)

131 hold on

132 plot(t, h2_estimated , ’red ’, ’LineWidth ’,1, ’LineStyle ’,’:’)

133 xlabel (’$t\, [s]$’, Interpreter =’latex ’)

134 ylabel (’Water level $[m]$’, Interpreter =’latex ’)

135 title(’Tank 2’, Interpreter =’latex ’)

136 legend (’$h_ {2,\, measured }$’,’$h_ {2,\, ref}$’, ’$h_ {2,\, estimated }$’, ’

Interpreter ’,’latex ’)

137 ylim ([0 1])

138 xlim ([0 t(end)])

139 grid on

Appendix I MATLAB Code 288

140 box on

141 set(gca ,’YTick ’ ,0:0.05:1) % Use only when zooming in on Figure . Else ,

comment out

142

143 % Input Signals

144 subplot (3 ,1 ,3)

145 stairs (t, ulv1 , ’magenta ’, ’LineWidth ’ ,1)

146 hold on

147 stairs (t, ulv2 , ’green ’, ’LineWidth ’ ,1)

148 hold on

149 stairs (t, upa , ’k’, ’LineStyle ’,’:’, LineWidth =1)

150 xlabel (’$t\, [s]$’, Interpreter =’latex ’)

151 ylabel (’$[-]$’, Interpreter =’latex ’)

152 title(’Input Signals ’, Interpreter =’latex ’)

153 legend (’u_{LV001}’, ’u_{LV002}’, ’u_{PA001}’, ’Interpreter ’,’latex ’

);

154 ylim ([0 1])

155 xlim ([0 t(end)])

156 grid on

157 box on

158

159

160

161

162

163

164 %% case 3: 3x2 (estimation of 3 states using 2 measurements)

165 load(" Simulink_mpc +mhe\ Simulink_mpc +mhe\ figures \ scopedata_3x2_mpc +mhe.mat

")

166

167 % uPA

168 upa = ScopeData . signals (1). values (: ,2); % Measured

169 upa_estimate = ScopeData . signals (1). values (: ,1);

170

171 % h1

172 h1_estimated = ScopeData . signals (2). values (: ,1);

173 h1_real = ScopeData . signals (2). values (: ,2);

174 h1_ref = ScopeData . signals (2). values (: ,3);

175

176 % h2

177 h2_estimated = ScopeData . signals (3). values (: ,1);

178 h2_real = ScopeData . signals (3). values (: ,2);

179 h2_ref = ScopeData . signals (3). values (: ,3);

180

181 % Input signals

182 ulv1 = ScopeData . signals (4). values (: ,1);

183 ulv2 = ScopeData . signals (4). values (: ,2);

184

Appendix I MATLAB Code 289

185 % time

186 t = ScopeData .time;

187

188 figure

189 % Tank 1

190 subplot (3 ,1 ,1)

191 plot(t, h1_real , ’blue ’, ’LineWidth ’,1, ’LineStyle ’,’-’)

192 hold on

193 plot(t, h1_ref , ’green ’, ’LineWidth ’,1, ’LineStyle ’,’--’)

194 hold on

195 plot(t, h1_estimated , ’red ’, ’LineWidth ’,1, ’LineStyle ’,’:’)

196 xlabel (’$t\, [s]$’, Interpreter =’latex ’)

197 ylabel (’Water level $[m]$’, Interpreter =’latex ’)

198 title(’Tank 1’, Interpreter =’latex ’)

199 legend (’$h_ {1,\, measured }$’,’$h_ {1,\, ref}$’, ’$h_ {1,\, estimated }$’, ’

Interpreter ’,’latex ’)

200 ylim ([0 1]);

201 xlim ([0 t(end)])

202 grid on

203 box on

204 set(gca ,’YTick ’ ,0:0.05:1) % Use only when zooming in on Figure . Else ,

comment out

205

206 % Tank 2

207 subplot (3 ,1 ,2)

208 plot(t, h2_real , ’blue ’, ’LineWidth ’,1, ’LineStyle ’,’-’)

209 hold on

210 plot(t, h2_ref , ’green ’, ’LineWidth ’,1, ’LineStyle ’,’--’)

211 hold on

212 plot(t, h2_estimated , ’red ’, ’LineWidth ’,1, ’LineStyle ’,’:’)

213 xlabel (’$t\, [s]$’, Interpreter =’latex ’)

214 ylabel (’Water level $[m]$’, Interpreter =’latex ’)

215 title(’Tank 2’, Interpreter =’latex ’)

216 legend (’$h_ {2,\, measured }$’,’$h_ {2,\, ref}$’, ’$h_ {2,\, estimated }$’, ’

Interpreter ’,’latex ’)

217 ylim ([0 1])

218 xlim ([0 t(end)])

219 grid on

220 box on

221 set(gca ,’YTick ’ ,0:0.05:1) % Use only when zooming in on Figure . Else ,

comment out

222

223 % Input Signals

224 subplot (3 ,1 ,3)

225 stairs (t, ulv1 , ’magenta ’, ’LineWidth ’ ,1)

226 hold on

227 stairs (t, ulv2 , ’green ’, ’LineWidth ’ ,1)

228 hold on

Appendix I MATLAB Code 290

229 stairs (t, upa , ’k’, ’LineStyle ’,’:’, LineWidth =1)

230 hold on

231 stairs (t, upa_estimate , ’r’, ’LineStyle ’,’-.’, LineWidth =1)

232 xlabel (’$t\, [s]$’, Interpreter =’latex ’)

233 ylabel (’$[-]$’, Interpreter =’latex ’)

234 title(’Input Signals ’, Interpreter =’latex ’)

235 legend (’u_{LV001}’, ’u_{LV002}’, ’u_{PA001}’,’$u_{PA001 ,\, estimated

}$’, ’Interpreter ’,’latex ’);

236 ylim ([0 1])

237 xlim ([0 t(end)])

238 grid on

239 box on

I.3.10 Plot_Experimental_Data.m

1 %% Plot Experimental Data

2

3 % Author : Gent Luta

4

5 % Date: Spring 2023

6

7 % Load Scope Data File

8 load(" Experimental_Folder_FINAL_DATA_080723 \

Experimental_Data_Adaptive_08_1_100_60_10 .mat")

9

10 % Tank 1 Data

11 h1 = ScopeData1 {1}. Values .Data (: ,1);

12 h1_ref = ScopeData1 {1}. Values .Data (: ,2);

13

14 % Tank 2 Data

15 h2 = ScopeData1 {2}. Values .Data (: ,1);

16 h2_ref = ScopeData1 {2}. Values .Data (: ,2);

17

18 % Input Signals Data

19 ulv1 = ScopeData1 {3}. Values .Data (: ,1);

20 ulv2 = ScopeData1 {3}. Values .Data (: ,2);

21 upa = ScopeData1 {3}. Values .Data (: ,3);

22 t = ScopeData1 {1}. Values .Time;

23

24 figure

25 % Tank 1

26 subplot (3 ,1 ,1)

27 plot(t, h1 , ’blue ’, ’LineWidth ’,1, ’LineStyle ’,’-’)

28 hold on

29 plot(t, h1_ref , ’red ’, ’LineWidth ’,1, ’LineStyle ’,’--’)

30 xlabel (’$t\, [s]$’, Interpreter =’latex ’)

Appendix I MATLAB Code 291

31 ylabel (’Water level $[m]$’, Interpreter =’latex ’)

32 title(’Tank 1’, Interpreter =’latex ’)

33 legend (’$h_ {1}$’,’$h_ {1,\, ref}$’, ’Interpreter ’,’latex ’)

34 ylim ([0 1]);

35 grid on

36 box on

37 set(gca ,’YTick ’ ,0:0.05:1) % Use only when zooming in on Figure . Else ,

comment out

38

39 % Tank 2

40 subplot (3 ,1 ,2)

41 plot(t, h2 , ’blue ’, ’LineWidth ’,1, ’LineStyle ’,’-’)

42 hold on

43 plot(t, h2_ref , ’red ’, ’LineWidth ’,1, ’LineStyle ’,’--’)

44 xlabel (’$t\, [s]$’, Interpreter =’latex ’)

45 ylabel (’Water level $[m]$’, Interpreter =’latex ’)

46 title(’Tank 2’, Interpreter =’latex ’)

47 legend (’$h_ {2}$’,’$h_ {2,\, ref}$’, ’Interpreter ’,’latex ’)

48 ylim ([0 1])

49 %xlim ([0 t(end)])

50 grid on

51 box on

52 set(gca ,’YTick ’ ,0:0.05:1) % Use only when zooming in on Figure . Else ,

comment out

53

54 % Input Signals

55 subplot (3 ,1 ,3)

56 stairs (t, ulv1 , ’magenta ’, ’LineWidth ’ ,1)

57 hold on

58 stairs (t, ulv2 , ’green ’, ’LineWidth ’ ,1)

59 hold on

60 stairs (t, upa , ’k’, ’LineStyle ’,’:’, LineWidth =1)

61 xlabel (’$t\, [s]$’, Interpreter =’latex ’)

62 ylabel (’$[-]$’, Interpreter =’latex ’)

63 title(’Input Signals ’, Interpreter =’latex ’)

64 legend (’u_{LV001}’, ’u_{LV002}’, ’u_{PA001}’, ’Interpreter ’,’latex ’

);

65 ylim ([0 1])

66 grid on

67 box on

68

69

70

71

72 %%

73 t_inx = 301;

74 t_indx_stop = 7001;

75 u0 = [0.5317;0.5680];

Appendix I MATLAB Code 292

76 ts = 0.1;

77

78

79 cost = 0;

80 cost_Q = 0;

81 cost_S = 0;

82 cost_R = 0;

83

84 Q = [1 0 ;

85 0 1];

86 %Q(1 ,1) = Q(1 ,1) /(1 - 0.13); % Scaling

87 %Q(2 ,2) = Q(2 ,2) /(0.4 - 0.02); % Scaling

88 S = [0 0 ;

89 0 0];

90 R = [0 0;

91 0 0];

92 E = [(h1(t_inx: t_indx_stop) - h1_ref (t_inx: t_indx_stop))’ ; (h2(t_inx:

t_indx_stop) - h2_ref (t_inx: t_indx_stop)) ’];

93 EU = [ulv1(t_inx: t_indx_stop) ’;ulv2(t_inx: t_indx_stop) ’] - u0;

94 mvRate = [ulv1(t_inx: t_indx_stop -1) ’;ulv2(t_inx: t_indx_stop -1) ’] - [ulv1(

t_inx +1: t_indx_stop) ’;ulv2(t_inx +1: t_indx_stop) ’];

95 for l = 1: length (t(t_inx: t_indx_stop -1))

96 cost_Q = cost_Q + E(:,l) ’*(Q^2)*E(:,l);

97 cost_S = cost_S + mvRate (:,l) ’*(S^2)* mvRate (:,l);

98 cost_R = cost_R + EU(:,l) ’*(R^2)*EU(:,l);

99 cost = cost + E(:,l) ’*(Q^2)*E(:,l) + mvRate (:,l) ’*(S^2)* mvRate (:,l)

+ EU(:,l) ’*(R^2)*EU(:,l);

100 end

101 cost*ts

I.3.11 Plot_Forward_Euler.m

1 %% Plot Euler Method and ODE45

2

3 % Author : Gent Luta

4

5 % Date: Spring 2023

6

7 x0 = [0.5;0.5];

8 u0 = [0.5;0.5;0.8];

9

10 ts = 0.1;

11 h1 = 1;

12 h2 = 5;

13 h3 = 10;

14 h4 = 15;

Appendix I MATLAB Code 293

15 h5 = 20;

16 h6 = 25;

17 h7 = 30;

18

19 Duration = 300;

20 t1 = 0:h1: Duration ; N1 = length (t1);

21 t2 = 0:h2: Duration ; N2 = length (t2);

22 t3 = 0:h3: Duration ; N3 = length (t3);

23 t4 = 0:h4: Duration ; N4 = length (t4);

24 t5 = 0:h5: Duration ; N5 = length (t5);

25 t6 = 0:h6: Duration ; N6 = length (t6);

26 t7 = 0:h7: Duration ; N7 = length (t7);

27 tode = 0:ts: Duration ; Node = length (tode);

28

29 XX1 = zeros (2,N1); XX1 (: ,1) = x0;

30 XX2 = zeros (2,N2); XX2 (: ,1) = x0;

31 XX3 = zeros (2,N3); XX3 (: ,1) = x0;

32 XX4 = zeros (2,N4); XX4 (: ,1) = x0;

33 XX5 = zeros (2,N5); XX5 (: ,1) = x0;

34 XX6 = zeros (2,N6); XX6 (: ,1) = x0;

35 XX7 = zeros (2,N7); XX7 (: ,1) = x0;

36 XXODE = zeros (2, Node); XXODE (: ,1) = x0;

37 x1 = x0;

38 x2 = x0;

39 x3 = x0;

40 x4 = x0;

41 x5 = x0;

42 x6 = x0;

43 x7 = x0;

44 xode = x0;

45

46 for i = 2:(Duration /h1)+1

47 x1 = x1 + h1* tankCT_NEW (x1 ,u0);

48 XX1 (:,i) = x1;

49 end

50

51 for i = 2:(Duration /h2)+1

52 x2 = x2 + h2* tankCT_NEW (x2 ,u0);

53 XX2 (:,i) = x2;

54 end

55

56 for i = 2:(Duration /h3)+1

57 x3 = x3 + h3* tankCT_NEW (x3 ,u0);

58 XX3 (:,i) = x3;

59 end

60

61 for i = 2:(Duration /h4)+1

62 x4 = x4 + h4* tankCT_NEW (x4 ,u0);

Appendix I MATLAB Code 294

63 XX4 (:,i) = x4;

64 end

65

66 for i = 2:(Duration /h5)+1

67 x5 = x5 + h5* tankCT_NEW (x5 ,u0);

68 XX5 (:,i) = x5;

69 end

70

71 for i = 2:(Duration /h6)+1

72 x6 = x6 + h6* tankCT_NEW (x6 ,u0);

73 XX6 (:,i) = x6;

74 end

75

76 for i = 2:(Duration /h7)+1

77 x7 = x7 + h7* tankCT_NEW (x7 ,u0);

78 XX7 (:,i) = x7;

79 end

80

81 for i = 2:(Duration /ts)+1

82 [~, XODE] = ode45(@(t,x) tankCT_NEW (x, u0), [0 ts], xode);

83 xode = [XODE(end ,1);XODE(end ,2)];

84 XXODE (:,i) = xode;

85 end

86 %% Plot of Tank 1

87 figure

88 plot(tode , XXODE (1 ,:) , "Color","# A2142F ", ’LineWidth ’ ,1)

89 hold on

90 plot(t1 , XX1 (1 ,:) , "Color","#77 AC30", ’LineWidth ’ ,1)

91 hold on

92 plot(t2 ,XX2 (1 ,:) , "Color","# D95319 ", ’LineWidth ’ ,1)

93 hold on

94 plot(t3 ,XX3 (1 ,:) , "Color","# EDB120 ", ’LineWidth ’ ,1)

95 hold on

96 plot(t4 ,XX4 (1 ,:) , "Color","#7 E2F8E", ’LineWidth ’ ,1)

97 hold on

98 plot(t5 ,XX5 (1 ,:) , "Color","#0072 BD", ’LineWidth ’ ,1)

99 hold on

100 plot(t6 ,XX6 (1 ,:) , "Color",’m’, ’LineWidth ’ ,1)

101 hold on

102 plot(t7 ,XX7 (1 ,:) , "Color","cyan", ’LineWidth ’ ,1)

103 hold on

104 legend (’\verb|ODE45|’,’$h_{Euler} = 1$’, ’$h_{Euler} = 5$’, ’$h_{Euler} =

10$’ ,...

105 ’$h_{Euler} = 15$’, ’$h_{Euler} = 20$’, ’$h_{Euler} = 25$’, ’$h_{

Euler} = 30$’, ’Interpreter ’,’latex ’)

106 xlabel (’Time ’, Interpreter =’latex ’)

107 ylabel (’$h_1 \,[m]$’, Interpreter =’latex ’)

108 title(’Euler Method and \verb|ODE45|’, Interpreter =’latex ’)

Appendix I MATLAB Code 295

109 box on

110 grid on

111

112 axes(’position ’ ,[.65 .175 .25 .25])

113 box on % put box around new pair of axes

114 indexOfInterest = (tode < 120) & (tode > 50); % range of t near

perturbation

115 plot(tode(indexOfInterest),XXODE (1, indexOfInterest), "Color","# A2142F ",

’LineWidth ’ ,1) % plot on new axes

116 hold on

117 indexOfInterest = (t1 < 120) & (t1 > 50); % range of t near perturbation

118 plot(t1(indexOfInterest),XX1 (1, indexOfInterest), "Color","#77 AC30", ’

LineWidth ’ ,1) % plot on new axes

119 hold on

120 indexOfInterest = (t2 < 120) & (t2 > 50); % range of t near perturbation

121 plot(t2(indexOfInterest),XX2 (1, indexOfInterest), "Color","# D95319 ", ’

LineWidth ’ ,1) % plot on new axes

122 hold on

123 indexOfInterest = (t3 < 120) & (t3 > 50); % range of t near perturbation

124 plot(t3(indexOfInterest),XX3 (1, indexOfInterest), "Color","# EDB120 ", ’

LineWidth ’ ,1) % plot on new axes

125 hold on

126 indexOfInterest = (t4 < 120) & (t4 > 50); % range of t near perturbation

127 plot(t4(indexOfInterest),XX4 (1, indexOfInterest), "Color","#7 E2F8E", ’

LineWidth ’ ,1) % plot on new axes

128 hold on

129 indexOfInterest = (t5 < 120) & (t5 > 50); % range of t near perturbation

130 plot(t5(indexOfInterest),XX5 (1, indexOfInterest), "Color","#0072 BD", ’

LineWidth ’ ,1) % plot on new axes

131 hold on

132 indexOfInterest = (t6 < 120) & (t6 > 50); % range of t near perturbation

133 plot(t6(indexOfInterest),XX6 (1, indexOfInterest), "Color","m", ’LineWidth

’ ,1) % plot on new axes

134 hold on

135 indexOfInterest = (t7 < 120) & (t7 > 50); % range of t near perturbation

136 plot(t7(indexOfInterest),XX7 (1, indexOfInterest), "Color","cyan", ’

LineWidth ’ ,1) % plot on new axes

137 axis tight

138

139

140 %% Plot of Tank 2

141 figure

142 plot(tode , XXODE (2 ,:) , "Color","# A2142F ", ’LineWidth ’ ,1)

143 hold on

144 plot(t1 , XX1 (2 ,:) , "Color","#77 AC30", ’LineWidth ’ ,1)

145 hold on

146 plot(t2 ,XX2 (2 ,:) , "Color","# D95319 ", ’LineWidth ’ ,1)

147 hold on

Appendix I MATLAB Code 296

148 plot(t3 ,XX3 (2 ,:) , "Color","# EDB120 ", ’LineWidth ’ ,1)

149 hold on

150 plot(t4 ,XX4 (2 ,:) , "Color","#7 E2F8E", ’LineWidth ’ ,1)

151 hold on

152 plot(t5 ,XX5 (2 ,:) , "Color","#0072 BD", ’LineWidth ’ ,1)

153 hold on

154 plot(t6 ,XX6 (2 ,:) , "Color",’m’, ’LineWidth ’ ,1)

155 hold on

156 plot(t7 ,XX7 (2 ,:) , "Color","cyan", ’LineWidth ’ ,1)

157 hold on

158 legend (’\verb|ODE45|’,’$h_{Euler} = 1$’, ’$h_{Euler} = 5$’, ’$h_{Euler} =

10$’ ,...

159 ’$h_{Euler} = 15$’, ’$h_{Euler} = 20$’, ’$h_{Euler} = 25$’, ’$h_{

Euler} = 30$’, ’Interpreter ’,’latex ’)

160 xlabel (’Time ’, Interpreter =’latex ’)

161 ylabel (’$h_2 \,[m]$’, Interpreter =’latex ’)

162 title(’Euler Method and \verb|ODE45|’, Interpreter =’latex ’)

163 box on

164 grid on

165

166 axes(’position ’ ,[.65 .6 .25 .25])

167 box on % put box around new pair of axes

168 indexOfInterest = (tode < 120) & (tode > 50); % range of t near

perturbation

169 plot(tode(indexOfInterest),XXODE (2, indexOfInterest), "Color","# A2142F ",

’LineWidth ’ ,1) % plot on new axes

170 hold on

171 indexOfInterest = (t1 < 120) & (t1 > 50); % range of t near perturbation

172 plot(t1(indexOfInterest),XX1 (2, indexOfInterest), "Color","#77 AC30", ’

LineWidth ’ ,1) % plot on new axes

173 hold on

174 indexOfInterest = (t2 < 120) & (t2 > 50); % range of t near perturbation

175 plot(t2(indexOfInterest),XX2 (2, indexOfInterest), "Color","# D95319 ", ’

LineWidth ’ ,1) % plot on new axes

176 hold on

177 indexOfInterest = (t3 < 120) & (t3 > 50); % range of t near perturbation

178 plot(t3(indexOfInterest),XX3 (2, indexOfInterest), "Color","# EDB120 ", ’

LineWidth ’ ,1) % plot on new axes

179 hold on

180 indexOfInterest = (t4 < 120) & (t4 > 50); % range of t near perturbation

181 plot(t4(indexOfInterest),XX4 (2, indexOfInterest), "Color","#7 E2F8E", ’

LineWidth ’ ,1) % plot on new axes

182 hold on

183 indexOfInterest = (t5 < 120) & (t5 > 50); % range of t near perturbation

184 plot(t5(indexOfInterest),XX5 (2, indexOfInterest), "Color","#0072 BD", ’

LineWidth ’ ,1) % plot on new axes

185 hold on

186 indexOfInterest = (t6 < 120) & (t6 > 50); % range of t near perturbation

Appendix I MATLAB Code 297

187 plot(t6(indexOfInterest),XX6 (2, indexOfInterest), "Color","m", ’LineWidth

’ ,1) % plot on new axes

188 hold on

189 indexOfInterest = (t7 < 120) & (t7 > 50); % range of t near perturbation

190 plot(t7(indexOfInterest),XX7 (2, indexOfInterest), "Color","cyan", ’

LineWidth ’ ,1) % plot on new axes

191 axis tight

I.3.12 Plot_Pump_Char.m

1 %% Pump Plots

2

3 % Author : Gent Luta

4

5 % Date: Spring 2023

6

7 %% Pump Char.

8 u_PA001 = [0.00 0.45 0.46 0.47 0.48 0.49 0.50 0.55...

9 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00];

10 q_PA001 = [0.00 0.00 1.25 2.25 3.15 3.75 4.40 6.75...

11 8.75 10.70 12.25 13.75 15.15 16.50 18.00 19.20 20.00];

12 q_PA001 = q_PA001 /60000; % liter/min -> m3/s

13

14 f = figure ;

15 plot(u_PA001 , q_PA001 , LineStyle ="-", Color=’k’, LineWidth =1, Marker =’*’)

16 title(’Pump Characteristics ’, Interpreter =’latex ’)

17 xlabel (’Control Signal $u_{PA001 }(t)$’, Interpreter =’latex ’)

18 ylabel (’Flow Rate $q_{PA001 }(t)$’, Interpreter =’latex ’)

19 grid on

20 box on

21 % exportgraphics (f,’ PumpChar .png ’,’Resolution ’ ,300)

22

23 %% Forward Difference v Pump Char.

24 z = 0:0.01:1;

25 delta = 0.1;

26 Mid = interp1 (u_PA001 ,q_PA001 ,0.65) ;

27 Forward = interp1 (u_PA001 ,q_PA001 ,0.75) ;

28 Forward_Diff = (Forward - Mid)/(delta);

29 b = Mid - Forward_Diff *0.65;

30 Line = Forward_Diff .*z + b;

31

32 figure (3)

33 plot(z, Line , LineWidth =1, Color=’k’, LineStyle =’:’)

34 hold on

35 plot(u_PA001 , q_PA001 , LineStyle ="-", Color=’k’, LineWidth =1, Marker =’*’)

Appendix I MATLAB Code 298

36 title(’Forward Difference - Graphical Interpretation ’, Interpreter =’latex

’)

37 xlabel (’Control Signal $u_{PA001 }(t)$’, Interpreter =’latex ’)

38 ylabel (’Flow Rate $q_{PA001 }(t)$’, Interpreter =’latex ’)

39 legend (’$\ mathcal {L}_p$ ’,’Pump Char.’, ’Interpreter ’,’latex ’)

40 box on

41 grid on

42 ax = gca;

43 ax. TickLabelInterpreter = ’latex ’;

44 ax. GridColor = [0 0 0];

45 ax. GridLineStyle = ’--’;

46 yticks ([Mid , Forward]);

47 yticklabels ({’$f(u(t))$’, ’$f(u(t) + h)$’})

48 xticks ([0.65 , 0.75]) ;

49 xticklabels ({’$u(t)$’, ’$u(t) + h$’})

50 ylim ([0 3.5*(10^ -4)])

I.3.13 Plot_ZOH.m

1 %% Plot Euler Method and ODE45

2

3 % Author : Gent Luta

4

5 % Date: Spring 2023

6

7 %% Control of Two -Tank Using Linear MPC.

8 % Linearized model about the nominal solution {h1 = 0.5, h2 = 0.3,

u_PA001 = 0.8}

9

10 % Author : Gent Luta

11

12 % Date: Spring 2023

13

14

15 %% Steady State Values

16 h1_A = 0.5;

17 h2_A = 0.3;

18 hnominal = [h1_A;h2_A];

19 u_PA001_A = 0.8;

20 u1_A = Valve_1_OP_New (h1_A , u_PA001_A);

21 u2_A = Valve_2_OP (u1_A , h1_A , h2_A);

22 unominal = [u1_A;u2_A; u_PA001_A];

23 f1_A = ValveChar (u1_A);

24 f2_A = ValveChar (u2_A);

25

26 %% System Parameters (For Simulink Model)

Appendix I MATLAB Code 299

27 rho = 1000;

28 g = 9.81;

29 A1 = 0.01;

30 Kv1 = 11.25;

31 Kv2 = 11.25;

32 h_LV001 = 0.05;

33 h_LV002 = 0.25;

34

35 %% Function Handles

36 f1_handle = @ValveChar ;

37 f2_handle = @ValveChar ;

38 f3_handle = @PumpChar ;

39

40 delta = 0.01; % Step size when using forward difference

41

42 %% Linearization

43 % A - Matrix

44 a11 = - (sqrt (100000)) /(7.2*10^8) * ((Kv1*f1_A*rho*g) / (A1*sqrt(rho*g*(

h1_A + h_LV001))));

45 a12 = 0;

46 a21 = ((1) /(0.004 + 0.07* h2_A)) * ((sqrt (100000)) /(7.2*10^8)) * ((Kv1*

f1_A*rho*g) / (sqrt(rho*g*(h1_A + h_LV001))));

47 a22 = - ((1) /(0.004 + 0.07* h2_A)) * ((sqrt (100000)) /(7.2*(10^8))) * ((Kv2

*f2_A*rho*g) / (sqrt(rho*g*(h2_A + h_LV002))));

48 A = [a11 a12; a21 a22];

49

50 % B - Matrix

51 b11 = - ((Kv1) /(3600* A1)) * sqrt ((rho*g*(h1_A + h_LV001)) /100000) *

forward_diff (f1_handle , u1_A , delta);

52 b12 = 0;

53 b21 = ((1) /(0.004 + 0.07* h2_A)) * (Kv1 /3600) * sqrt ((rho*g*(h1_A +

h_LV001)) /100000) * forward_diff (f1_handle , u1_A , delta);

54 b22 = -((1) /(0.004 + 0.07* h2_A)) * (Kv2 /3600) * sqrt ((rho*g*(h2_A +

h_LV002)) /100000) * forward_diff (f2_handle , u2_A , delta);

55 B = [b11 b12 ; b21 b22];

56

57 % C - Matrix

58 C = eye (2);

59

60 % D - Matrix

61 D = zeros (2);

62

63 % G - Matrix (Disturbance)

64 g11 = forward_diff (f3_handle , u_PA001_A , delta)/A1;

65 g21 = 0;

66 G = [g11; g21];

67

68 % Augmented B - Matrix

Appendix I MATLAB Code 300

69 B_a = [B G];

70

71 % Augmented D - Matrix

72 D_a = zeros (2, 3);

73

74 %% State -Space -Model

75

76 ts = [1 5 10 20 30 40 50];

77 Duration = 300;

78 t1 = 0:ts (1): Duration ;

79 t2 = 0:ts (2): Duration ;

80 t3 = 0:ts (3): Duration ;

81 t4 = 0:ts (4): Duration ;

82 t5 = 0:ts (5): Duration ;

83 t6 = 0:ts (6): Duration ;

84 t7 = 0:ts (7): Duration ;

85

86 n = length (ts);

87 x0 = [0.45;0.35];

88 u0 = [0.5;0.5;0.8];

89 XX_hist = cell (1,n);

90 for i = 1:n

91 t = 0:ts(i): Duration ; N = length (t);

92 sys = ss(A, B_a , C, D_a); % CT state -space model

93 sys = c2d(sys ,ts(i)); % DT state -space model (ts sampling)

94 XX = zeros (2,N); XX (: ,1) = x0;

95 x = x0;

96 u = u0;

97 for j = 2:(Duration /ts(i))+1

98 x = sys.A*(x- hnominal) + sys.B*(u - unominal);

99 x = x + hnominal ;

100 XX(:,j) = x;

101 end

102 XX_hist {1,i} = XX;

103 end

104

105 ts_ode = 0.1;

106 tode = 0: ts_ode : Duration ; Node = length (tode);

107 XXODE = zeros (2, Node); XXODE (: ,1) = x0;

108 xode = x0;

109 for i = 2:(Duration / ts_ode)+1

110 [~, XODE] = ode45(@(t,x) tankCT_Linear (x, u0 - unominal), [0 ts_ode],

xode - hnominal);

111 xode = [XODE(end ,1);XODE(end ,2)];

112 xode = xode + hnominal ;

113 XXODE (:,i) = xode;

114 end

115

Appendix I MATLAB Code 301

116 %% Plot of Tank 1

117 figure

118 plot(tode , XXODE (1 ,:) , "Color","# A2142F ", ’LineWidth ’ ,1)

119 hold on

120 plot(t1 , XX_hist {1}(1 ,:) , "Color","#77 AC30", ’LineWidth ’ ,1)

121 hold on

122 plot(t2 , XX_hist {2}(1 ,:) , "Color","# D95319 ", ’LineWidth ’ ,1)

123 hold on

124 plot(t3 , XX_hist {3}(1 ,:) , "Color","# EDB120 ", ’LineWidth ’ ,1)

125 hold on

126 plot(t4 , XX_hist {4}(1 ,:) , "Color","#7 E2F8E", ’LineWidth ’ ,1)

127 hold on

128 plot(t5 , XX_hist {5}(1 ,:) , "Color","#0072 BD", ’LineWidth ’ ,1)

129 hold on

130 plot(t6 , XX_hist {6}(1 ,:) , "Color",’m’, ’LineWidth ’ ,1)

131 hold on

132 plot(t7 , XX_hist {7}(1 ,:) , "Color","cyan", ’LineWidth ’ ,1)

133 hold on

134 legend (’\verb|ODE45|’,’$t_s (ZOH) = 1$’, ’$t_s (ZOH) = 5$’, ’$t_s (ZOH) =

10$’ ,...

135 ’$t_s (ZOH) = 20$’, ’$t_s (ZOH) = 30$’, ’$t_s (ZOH) = 40$’, ’$t_s (

ZOH) = 50$’, ’Interpreter ’,’latex ’)

136 xlabel (’Time ’, Interpreter =’latex ’)

137 ylabel (’$h_1 \,[m]$’, Interpreter =’latex ’)

138 title(’Zero -Order Hold and \verb|ODE45|’, Interpreter =’latex ’)

139 box on

140 grid on

141

142 axes(’position ’ ,[.65 .175 .25 .25])

143 box on % put box around new pair of axes

144 indexOfInterest = (tode <= 80) & (tode >= 0); % range of t near

perturbation

145 plot(tode(indexOfInterest),XXODE (1, indexOfInterest), "Color","# A2142F ",

’LineWidth ’ ,1) % plot on new axes

146 hold on

147 indexOfInterest = (t1 <= 80) & (t1 >= 0); % range of t near perturbation

148 plot(t1(indexOfInterest),XX_hist {1}(1 , indexOfInterest), "Color","#77 AC30

", ’LineWidth ’ ,1) % plot on new axes

149 hold on

150 indexOfInterest = (t2 <= 80) & (t2 >= 0); % range of t near perturbation

151 plot(t2(indexOfInterest),XX_hist {2}(1 , indexOfInterest), "Color","# D95319

", ’LineWidth ’ ,1) % plot on new axes

152 hold on

153 indexOfInterest = (t3 <= 80) & (t3 >= 0); % range of t near perturbation

154 plot(t3(indexOfInterest),XX_hist {3}(1 , indexOfInterest), "Color","# EDB120

", ’LineWidth ’ ,1) % plot on new axes

155 hold on

156 indexOfInterest = (t4 <= 80) & (t4 >= 0); % range of t near perturbation

Appendix I MATLAB Code 302

157 plot(t4(indexOfInterest),XX_hist {4}(1 , indexOfInterest), "Color","#7 E2F8E

", ’LineWidth ’ ,1) % plot on new axes

158 hold on

159 indexOfInterest = (t5 <= 80) & (t5 >= 0); % range of t near perturbation

160 plot(t5(indexOfInterest),XX_hist {5}(1 , indexOfInterest), "Color","#0072 BD

", ’LineWidth ’ ,1) % plot on new axes

161 hold on

162 indexOfInterest = (t6 <= 80) & (t6 >= 0); % range of t near perturbation

163 plot(t6(indexOfInterest),XX_hist {6}(1 , indexOfInterest), "Color","m", ’

LineWidth ’ ,1) % plot on new axes

164 hold on

165 indexOfInterest = (t7 <= 80) & (t7 >= 0); % range of t near perturbation

166 plot(t7(indexOfInterest),XX_hist {7}(1 , indexOfInterest), "Color","cyan",

’LineWidth ’ ,1) % plot on new axes

167 axis tight

168

169 %% Plot Tank 2

170 figure

171 plot(tode , XXODE (2 ,:) , "Color","# A2142F ", ’LineWidth ’ ,1)

172 hold on

173 plot(t1 , XX_hist {1}(2 ,:) , "Color","#77 AC30", ’LineWidth ’ ,1)

174 hold on

175 plot(t2 , XX_hist {2}(2 ,:) , "Color","# D95319 ", ’LineWidth ’ ,1)

176 hold on

177 plot(t3 , XX_hist {3}(2 ,:) , "Color","# EDB120 ", ’LineWidth ’ ,1)

178 hold on

179 plot(t4 , XX_hist {4}(2 ,:) , "Color","#7 E2F8E", ’LineWidth ’ ,1)

180 hold on

181 plot(t5 , XX_hist {5}(2 ,:) , "Color","#0072 BD", ’LineWidth ’ ,1)

182 hold on

183 plot(t6 , XX_hist {6}(2 ,:) , "Color",’m’, ’LineWidth ’ ,1)

184 hold on

185 plot(t7 , XX_hist {7}(2 ,:) , "Color","cyan", ’LineWidth ’ ,1)

186 hold on

187 legend (’\verb|ODE45|’,’$t_s (ZOH) = 1$’, ’$t_s (ZOH) = 5$’, ’$t_s (ZOH) =

10$’ ,...

188 ’$t_s (ZOH) = 20$’, ’$t_s (ZOH) = 30$’, ’$t_s (ZOH) = 40$’, ’$t_s (

ZOH) = 50$’, ’Interpreter ’,’latex ’)

189 xlabel (’Time ’, Interpreter =’latex ’)

190 ylabel (’$h_2 \,[m]$’, Interpreter =’latex ’)

191 title(’Zero -Order Hold and \verb|ODE45|’, Interpreter =’latex ’)

192 box on

193 grid on

194

195 axes(’position ’ ,[.65 .175 .25 .25])

196 box on % put box around new pair of axes

197 indexOfInterest = (tode <= 80) & (tode > 0); % range of t near

perturbation

Appendix I MATLAB Code 303

198 plot(tode(indexOfInterest),XXODE (2, indexOfInterest), "Color","# A2142F ",

’LineWidth ’ ,1) % plot on new axes

199 hold on

200 indexOfInterest = (t1 <= 80) & (t1 >= 0); % range of t near perturbation

201 plot(t1(indexOfInterest),XX_hist {1}(2 , indexOfInterest), "Color","#77 AC30

", ’LineWidth ’ ,1) % plot on new axes

202 hold on

203 indexOfInterest = (t2 <= 80) & (t2 >= 0); % range of t near perturbation

204 plot(t2(indexOfInterest),XX_hist {2}(2 , indexOfInterest), "Color","# D95319

", ’LineWidth ’ ,1) % plot on new axes

205 hold on

206 indexOfInterest = (t3 <= 80) & (t3 >= 0); % range of t near perturbation

207 plot(t3(indexOfInterest),XX_hist {3}(2 , indexOfInterest), "Color","# EDB120

", ’LineWidth ’ ,1) % plot on new axes

208 hold on

209 indexOfInterest = (t4 <= 80) & (t4 >= 0); % range of t near perturbation

210 plot(t4(indexOfInterest),XX_hist {4}(2 , indexOfInterest), "Color","#7 E2F8E

", ’LineWidth ’ ,1) % plot on new axes

211 hold on

212 indexOfInterest = (t5 <= 80) & (t5 >= 0); % range of t near perturbation

213 plot(t5(indexOfInterest),XX_hist {5}(2 , indexOfInterest), "Color","#0072 BD

", ’LineWidth ’ ,1) % plot on new axes

214 hold on

215 indexOfInterest = (t6 <= 80) & (t6 >= 0); % range of t near perturbation

216 plot(t6(indexOfInterest),XX_hist {6}(2 , indexOfInterest), "Color","m", ’

LineWidth ’ ,1) % plot on new axes

217 hold on

218 indexOfInterest = (t7 <= 80) & (t7 >= 0); % range of t near perturbation

219 plot(t7(indexOfInterest),XX_hist {7}(2 , indexOfInterest), "Color","cyan",

’LineWidth ’ ,1) % plot on new axes

220 axis tight

I.4 .m Files for Simulink

I.4.1 SIM_AdaptiveSys.m

1 function sys = SIM_AdaptiveSys (x,u, ts)

2 %% Linearization point

3 h1_A = x(1);

4 h2_A = x(2);

5 u_PA001_A = u(3);

6 u1_A = u(1);

7 u2_A = u(2);

8 f1_A = ValveChar (u1_A);

9 f2_A = ValveChar (u2_A);

Appendix I MATLAB Code 304

10

11 %% System parameters

12 rho = 1000;

13 g = 9.81;

14 A1 = 0.01;

15 Kv1 = 11.25;

16 Kv2 = 11.25;

17 h_LV001 = 0.05;

18 h_LV002 = 0.25;

19

20 %% Function Handles

21 f1_handle = @ValveChar ;

22 f2_handle = @ValveChar ;

23 f3_handle = @PumpChar ;

24

25 delta = 0.01; %Step size (numerical difference)

26

27 %% Linearization

28 % A - Matrix

29 a11 = - (sqrt (100000)) /(7.2*10^8) * ((Kv1*f1_A*rho*g) / (A1*sqrt(rho*g*(

h1_A + h_LV001))));

30 a12 = 0;

31 a21 = ((1) /(0.004 + 0.07* h2_A)) * ((sqrt (100000)) /(7.2*10^8)) * ((Kv1*

f1_A*rho*g) / (sqrt(rho*g*(h1_A + h_LV001))));

32 a22 = - ((1) /(0.004 + 0.07* h2_A)) * ((sqrt (100000)) /(7.2*(10^8))) * ((Kv2

*f2_A*rho*g) / (sqrt(rho*g*(h2_A + h_LV002))));

33 A = [a11 a12; a21 a22];

34

35 % B - Matrix

36 b11 = - ((Kv1) /(3600* A1)) * sqrt ((rho*g*(h1_A + h_LV001)) /100000) *

forward_diff (f1_handle , u1_A , delta);

37 b12 = 0;

38 b21 = ((1) /(0.004 + 0.07* h2_A)) * (Kv1 /3600) * sqrt ((rho*g*(h1_A +

h_LV001)) /100000) * forward_diff (f1_handle , u1_A , delta);

39 b22 = -((1) /(0.004 + 0.07* h2_A)) * (Kv2 /3600) * sqrt ((rho*g*(h2_A +

h_LV002)) /100000) * forward_diff (f2_handle , u2_A , delta);

40 B = [b11 b12 ; b21 b22];

41

42 % C - Matrix

43 C = eye (2);

44

45 % D - Matrix

46 %D = zeros (2);

47

48 % G - Matrix (Disturbance)

49 g11 = forward_diff (f3_handle , u_PA001_A , delta)/A1;

50 g21 = 0;

51 G = [g11; g21];

Appendix I MATLAB Code 305

52

53 % B_a - Matrix (Augmented)

54 B_a = [B G];

55

56 % D_a - Matrix (Augmented)

57 D_a = zeros (2, 3);

58

59 %% State -Space -Model

60 sys = ss(A, B_a , C, D_a); % CT State -Space Model

61 sys = c2d(sys ,ts); % DT State -Space Model (ts sampling)

62 % Signal Names

63 sys. InputName = {’u1’, ’u2’, ’u_PA001 ’};

64 sys. OutputName = {’h1’, ’h2’};

65 sys. StateName = {’h1’, ’h2’};

66 % Signal Units

67 sys. InputUnit = {’-’, ’-’, ’-’};

68 sys. OutputUnit = {’m’, ’m’};

69 sys. StateUnit = {’m’, ’m’};

70 % Signal Types

71 sys = setmpcsignals (sys , ’MV’, [1 2], ’MD’, 3, ’MO’, [1 2]);

I.4.2 SIM_Eval_Explicit_MPC.m

1 function mv = SIM_Eval_Explicit_MPC (empcobj , x, last_mv , r, v)

2 xc = mpcstate (empcobj);

3 xc.Plant = x(1:2);

4 xc. LastMove = last_mv ;

5

6 mv = mpcmoveExplicit (empcobj , xc , [], r, v);

7 end

I.4.3 SIM_forward_diff.m

1 function derivative = SIM_forward_diff (f, u, h)

2 derivative = (f(u+h) - f(u))/(h);

3 end

I.4.4 SIM_GetMatrix.m

1 function [A, B, C, D] = SIM_GetMatrix (sys)

2 A = sys.A;

3 B = sys.B;

4 C = sys.C;

Appendix I MATLAB Code 306

5 D = sys.D;

6 end

I.4.5 SIM_PumpChar.m

1 function f = SIM_PumpChar (u)

2 u_PA001 = [0.00 0.45 0.46 0.47 0.48 0.49 0.50 0.55...

3 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00];

4 q_PA001 = [0.00 0.00 1.25 2.25 3.15 3.75 4.40 6.75...

5 8.75 10.70 12.25 13.75 15.15 16.50 18.00 19.20 20.00];

6 q_PA001 = q_PA001 /60000; % liter/min -> m3/s

7 f = interp1 (u_PA001 ,q_PA001 ,u);

8 end

I.4.6 SIM_ValveChar.m

1 function f = SIM_ValveChar (u)

2 %u = abs(u);

3 f = (exp(u^1.2) - 1)/(exp (1) - 1);

4 end

Appendix J

Simulink Schemes

J.1 SIM_Linear_VS_Nonlinear_Model.slx

307

u_PA001

u_LV001

u_LV002

h_1

h_2

Modell

Continuous	State-Space

+++−

Discrete	State-Space

++

++

++

+++−

h_1

h_2

u_PA001 u_LV001
u_LV002

h_2	-	Linear	CT

h_2	-	Nonlinear

h_1	-	Linear	CT

h_1	-	Nonlinear

h_1	-	Linear	DT

h_2	-	Linear	DT

2
h_2

1
h_1

q_LV001

u_LV002

h_2

Tank	2

u_PA001

u_LV001

h_1

q_LV001

Tank	1

3
u_LV002

2
u_LV001

1
u_PA001

q_LV001

h_1	[m]

h_2	[m]

2
q_LV001

1
h_1

aktuator-
dynamikk

Ventilkarakteristikk

++
Pumpekarakteristikk

x

Areal	tank1

+
−

2
u_LV001

1
u_PA001

f(z_LV001)z_LV001

1
h_2

aktuator-
dynamikk

Ventilkarakteristikk

++

+
+

+
−

x

÷

x

2
u_LV002

1
q_LV001

f(z_LV002)

h_2

z_LV002

Sample	Times	for	'SIM_Linear_VS_Nonlinear_Model'Sample	Times	for	'SIM_Linear_VS_Nonlinear_Model'

ColorColor AnnotationAnnotation DescriptionDescription ValueValue

	 Cont Continuous 0

	 D1 Discrete	1 0.5

	 Inf Constant Inf

	 M Multirate N/A

Appendix J Simulink Schemes 313

J.2 SIM_MPC_Linear.slx

Explicit	MPC
Linear	MPC

Adaptive	MPC

No	Signal	Previewing
Nonlinear	MPC

Signal	Previewing

Display

Two-Tank	System

u_PA001

u_LV001

u_LV002

h_1

h_2

Modell

MPC mv

x[k|k]

ref

md

Dist_Out

+−

++

++

Z-1 r0
r1
r2
r3
r4
r5
r6
r7
r8
r9
r10

y

Z-1Z-1Z-1Z-1Z-1Z-1Z-1Z-1Z-1

x

ref

last_mv

md

mv

Z-1 r0
r1
r2
r3
r4
r5
r6
r7
r8
r9
r10

y

Z-1Z-1Z-1Z-1Z-1Z-1Z-1Z-1Z-1

+−

++ ++

Adaptive
MPC mv

model

x[k|k]

ref

md

x1

x2

x_prev1

x_prev2

u1

u2

upa

A

B

C

D

U

Y

X

DX

Nonlinear
MPC mv

x

ref

last_mv

md

params

h_1

h_2

h1	ref

h2	ref

h2

h1

u1

u2

uPA

u1

u2

uPAh1	ref

h2	ref

u_PA001

h1	ref

h2	ref

u_PA001

function	y	=	fcn(r0,r1,	r2,	r3,	r4,	r5,	r6,	r7,	r8,	r9,	r10)
y	=	[r0';	r1';	r2';	r3';	r4';	r5';	r6';	r7';	r8';	r9';	r10';];

function	mv	=	fcn(x,ref,last_mv,	md)
coder.extrinsic('evalin')
coder.extrinsic('mpcmoveExplicit')
coder.extrinsic('assignin')
coder.extrinsic('SIM_Eval_Explicit_MPC')
mv	=	zeros(2,1);
persistent	flag
if	isempty(flag)
				mv	=	[evalin("base",	'u1_A');evalin("base",	'u2_A')];
				flag	=	1;
else
				empcobj	=	evalin("base",	'empcobj');
				mv	=	SIM_Eval_Explicit_MPC(empcobj,	x,	last_mv,	ref,	md);
end
end

function	y	=	fcn(r0,r1,	r2,	r3,	r4,	r5,	r6,	r7,	r8,	r9,	r10)
y	=	[r0';	r1';	r2';	r3';	r4';	r5';	r6';	r7';	r8';	r9';	r10';];

function	[A,	B,	C,	D,	U,	Y,	X,	DX]	=	UpdateModel(x1,	x2,	x_prev1,	x_prev2,	u1,	u2,	upa)
%coder.extrinsic('SIM_PumpChar')
%coder.extrinsic('SIM_ValveChar')
%coder.extrinsic('SIM_forward_diff')
coder.extrinsic('ss')
coder.extrinsic('c2d')
coder.extrinsic('SIM_GetMatrix')
ts	=	0.5;
h1_A	=	x1;
h2_A	=	x2;
u_PA001_A	=	upa;
u1_A	=	u1;
u2_A	=	u2;
f1_A	=	SIM_ValveChar(u1_A);
f2_A	=	SIM_ValveChar(u2_A);
%%	System	parameters
rho	=	1000;
g	=	9.81;
A1	=	0.01;
Kv1	=	11.25;
Kv2	=	11.25;
h_LV001	=	0.05;
h_LV002	=	0.25;
%%	Function	Handles
delta	=	0.01;			%Step	size	(numerical	difference)
%%	Linearization
%	A	-	Matrix
a11	=	-	(sqrt(100000))/(7.2*10^8)	*	((Kv1*f1_A*rho*g)	/	(A1*sqrt(rho*g*(h1_A	+	h_LV001))));
a12	=	0;
a21	=	((1)/(0.004	+	0.07*h2_A))	*	((sqrt(100000))/(7.2*10^8))	*	((Kv1*f1_A*rho*g)	/	(sqrt(rho*g*(h1_A	+	h_LV001))));
a22	=	-	((1)/(0.004	+	0.07*h2_A))	*	((sqrt(100000))/(7.2*(10^8)))	*	((Kv2*f2_A*rho*g)	/	(sqrt(rho*g*(h2_A	+	h_LV002))));
A	=	[a11	a12;	a21	a22];
%	B	-	Matrix
b11	=	-	((Kv1)/(3600*A1))	*	sqrt((rho*g*(h1_A	+	h_LV001))/100000)	*	((SIM_ValveChar(u1_A	+	delta)	-	SIM_ValveChar(u1_A))/(delta));
b12	=	0;
b21	=	((1)/(0.004	+	0.07*h2_A))	*	(Kv1/3600)	*	sqrt((rho*g*(h1_A	+	h_LV001))/100000)*((SIM_ValveChar(u1_A	+	delta)	-	SIM_ValveChar(u1_A))/(delta));
b22	=	-((1)/(0.004	+	0.07*h2_A))	*	(Kv2/3600)	*	sqrt((rho*g*(h2_A	+	h_LV002))/100000)*((SIM_ValveChar(u2_A	+	delta)	-	SIM_ValveChar(u2_A))/(delta));
B_a	=	[b11	b12	;	b21	b22];
%	C	-	Matrix
C	=	eye(2);
%	D	-	Matrix
%D	=	zeros(2);
%	G	-	Matrix	(Disturbance)
g11	=	((SIM_PumpChar(u_PA001_A	+	delta)	-	SIM_PumpChar(u_PA001_A))/(delta))/(A1);
g21	=	0;
G	=	[g11;	g21];
%	B_a	-	Matrix	(Augmented)

B	=	[B_a	G];
%	D_a	-	Matrix	(Augmented)
D	=	zeros(2,	3);
%%	State-Space-Model
sys	=	ss(A,	B,	C,	D);			%	CT	State-Space	Model
sys	=	c2d(sys,ts);										%	DT	State-Space	Model	(ts	sampling)
[A,	B,	C,	D]	=	SIM_GetMatrix(sys);
X	=	[x1;x2];
U	=	[u1;u2;upa];
Y	=	[x1;x2];
DX	=	[x1;x2]	-	[x_prev1;x_prev2];

2
h_2

1
h_1

q_LV001

u_LV002

h_2

Tank	2

u_PA001

u_LV001

h_1

q_LV001

Tank	1

3
u_LV002

2
u_LV001

1
u_PA001

q_LV001

h_1	[m]

h_2	[m]

2
q_LV001

1
h_1

aktuator-
dynamikk

Ventilkarakteristikk

++
Pumpekarakteristikk

x

Areal	tank1

+
−

2
u_LV001

1
u_PA001

f(z_LV001)z_LV001

1
h_2

aktuator-
dynamikk

Ventilkarakteristikk

++

+
+

+
−

x

÷

x

2
u_LV002

1
q_LV001

f(z_LV002)

h_2

z_LV002

1

mv

mo	or	x

ref

md

ext.mv

umin

umax

ymin

ymax

E

F

G

S

switch

ywt

uwt

duwt

rhoeps

uref

A

B

C

D

U

Y

X

DX

extp

extm

mv

cost

mv.seq

x.seq

y.seq

qp.status

est.state

MPC

3

ref

2

mo	or	x

umin_zero

umax_zero

ymin_zero

ymax_zero

switch_zero

y.wt_zero

du.wt_zero

ecr.wt_zero

cost_terminator

mv.seq_terminator

qp.status_terminator

u.wt_zero

1

model

BusSelector

mv.target_zero

ext.mv_zero

est.state_terminator

S_zero

E_zero

F_zero

G_zero

4

md

x.seq_terminator

y.seq_terminator

p_zero

m_zero

<A>

<C>

<D>

<U>

<Y>

<X>

<DX>

1

mv

mo	or	x

ref

md

ext.mv

umin

umax

ymin

ymax

E

F

G

S

switch

ywt

uwt

duwt

rhoeps

mv.target

extp

extm

mv

cost

mv.seq

x.seq

y.seq

qp.status

est.state

u0

MPC

2

ref

1

mo	or	x

du.wt_zero

ecr.wt_zero

u.wt_zero

switch_zero

umin_zero

umax_zero

ymin_zero

ymax_zero

u0_terminator

E_zero

F_zero

G_zero

S_zero

y.wt_zero

mv.target_zero

ext.mv_zero

3

md

cost_terminator

mv.seq_terminator

x.seq_terminator

y.seq_terminator

qp.status_terminator

est.state_terminator

p_zero

m_zero

1

mv 2

ref

1

x

3

last_mv

x

ref

lastMV

md

parameters

ymin

ymax

umin

umax

dumin

dumax

xmin

xmax

ywt

uwt

duwt

rhoeps

mv.target

mvinit

xinit

einit

mv

cost

mv.seq

x.seq

y.seq

slack

nlp.status

MPC

cost_terminator

mv.seq_terminator

x.seq_terminator

y.seq_terminator

mv.min_zero

mv.max_zero

y.min_zero

y.max_zero

x.min_zero

x.max_zero

y.wt_zero

mv.wt_zero

dmv.wt_zero

ecr.wt_zero

nlp.status_terminator

dmv.min_zero

dmv.max_zero

slack_terminator

md_zero

params_zero

mv.target_zero

mv.init_zero

x.init_zero

e.init_zero

mv_term

x_term

x0

x_seq

mv0

mv_seq

slack0

slack

mvinit

xinit

einit

xmvs_router

Sample	Times	for	'SIM_MPC_Linear'Sample	Times	for	'SIM_MPC_Linear'

ColorColor AnnotationAnnotation DescriptionDescription ValueValue

	 Cont Continuous 0

	 D1 Discrete	1 0.5

	 Inf Constant Inf

	 M Multirate N/A

Appendix J Simulink Schemes 327

J.3 totank_Live_Edited_070723_PID.slx

Appendix J Simulink Schemes 328

Appendix J Simulink Schemes 329

J.4 totank_Live_Edited_070723_LQR.slx

J.5 totank_mpc_and_mhe.slx

Two-tank	processTwo-tank	process

u_PA001

u_LV001

u_LV002

h1

h2

block

Interpreted
MATLAB	Fcn

NMHE

u+1

Interpreted
MATLAB	Fcn

LMHE

Action	Port

u_PA001_hat_k

u_PA001_hat_k 1
if(u1	==	3)

u1 if(u1	==	3)

MPC mv

x[k|k]

ref

md

Linear	MPC

Z-1

Z-1

++−

+−

+−

u_PA001	[-]

u_PA001	[-]

[h1_hat_k,	h2_hat_k,	u_PA001_hat_k]

k

[h1_hat_k,	h2_hat_k,	u_PA001_hat_k]

h1	[m],	measurement

h1	[m],	measurement

h1	[m],	estimate

h2	[m],	measurement

h2	[m],	measurement

h2	[m],	estimate

u_PA001	[-],	estimate

h1	[m],	reference

h2	[m],	reference

u_LV001	[-]

u_LV002	[-]

1

if(u1	==	3)

Action	Port

1
u_PA001_hat_k

2
h2

1
h1

u_PA001

u_LV001

u_LV002

pådrag

LT001

LT002

målinger

3
u_LV002

2
u_LV001

1
u_PA001

2
LT002

1
LT001

TT003

TT002

TT001

u-0.204

u-0.345

u-0.2

"Simulink	Desktop	Real-Time"
not	installed

Analog	Input1
National	Instruments
PCI-6024E	[auto]

"Simulink	Desktop	Real-Time"
not	installed

Analog	Input
National	Instruments
PCI-6024E	[auto]

FT001

TT001

LT002

TT002

LT001

TT003

u_LV003

u_HE001

u_FV002

u_FV001

in ut

in ut

in ut

"Simulink	Desktop	Real-Time"
not	installed

Analog	Output
National	Instruments
PCI-6703	[auto]

3
u_LV002

2
u_LV001

1
u_PA001

1
ut

−
+1

in

1
ut

−
+1

in

1
ut

−
+1

in

1
y

Wrap	To	Zero

V++

Increment
Real	World

D:1	

Force	to	be	scalar

Ref1
Ref2
Prop
FixPt

Data	Type
Propagation

1

mv

mo	or	x

ref

md

ext.mv

umin

umax

ymin

ymax

E

F

G

S

switch

ywt

uwt

duwt

rhoeps

mv.target

extp

extm

mv

cost

mv.seq

x.seq

y.seq

qp.status

est.state

u0

MPC

2

ref

1

mo	or	x

du.wt_zero

ecr.wt_zero

u.wt_zero

switch_zero

umin_zero

umax_zero

ymin_zero

ymax_zero

u0_terminator

E_zero

F_zero

G_zero

S_zero

y.wt_zero

mv.target_zero

ext.mv_zero

3

md

cost_terminator

mv.seq_terminator

x.seq_terminator

y.seq_terminator

qp.status_terminator

est.state_terminator

p_zero

m_zero

Sample	Times	for	'totank_mpc_and_mhe'Sample	Times	for	'totank_mpc_and_mhe'

ColorColor AnnotationAnnotation DescriptionDescription ValueValue

	 Cont Continuous 0

	 D1 Discrete	1 1.5

	 Inf Constant Inf

	 M Multirate N/A

Bibliography

[1] G. Tierie, Cornelis Drebbel (1572-1633). H. J. Paris, 1932.

[2] S. Bennett, “A brief history of automatic control,” IEEE Control Systems Magazine,
vol. 16, no. 3, pp. 17–25, 1996.

[3] D. S. Landes, The Unbound Prometheus: Technological Change and Industrial
Development in Western Europe from 1750 to the Present. Cambridge University
Press, 2nd ed., 2003.

[4] J. C. Maxwell, “On governors,” Proceedings of the Royal Society of London, vol. 16,
p. 270–283, 1868.

[5] S. Bennett, “Nicholas minorsky and the automatic steering of ships,” IEEE Control
Systems Magazine, vol. 4, no. 4, pp. 10–15, 1984.

[6] Adobe Acrobat Team, “Fast-forward : comparing a 1980s supercomputer to the mod-
ern smartphone,” 2022. URL: https://blog.adobe.com/en/publish/2022/11/

08/fast-forward-comparing-1980s-supercomputer-to-modern-smartphone,
Accessed: 2023-04-12.

[7] J. Qin and T. Badgwell, “An overview of industrial model predictive control tech-
nology,” AIChE Symposium Series, vol. 93, 1997.

[8] S. Qin and T. A. Badgwell, “A survey of industrial model predictive control technol-
ogy,” Control engineering practice, vol. 11, no. 7, pp. 733–764, 2003.

[9] J. Richalet, A. Rault, J. L. Testud, and J. Papon, “Model predictive heuristic control:
Applications to industrial processes,” Automatica, vol. 14, no. 5, pp. 413–428, 1978.

[10] Intel, “Intel chips timeline.” URL: https://www.intel.com/content/www/us/en/

history/history-intel-chips-timeline-poster.html, Accessed: 2023-04-15.

[11] TSMC, “5nm technology.” URL: https://www.tsmc.com/english/

dedicatedFoundry/technology/logic/l_5nm, Accessed: 2023-04-15.

341

https://blog.adobe.com/en/publish/2022/11/08/fast-forward-comparing-1980s-supercomputer-to-modern-smartphone
https://blog.adobe.com/en/publish/2022/11/08/fast-forward-comparing-1980s-supercomputer-to-modern-smartphone
https://www.intel.com/content/www/us/en/history/history-intel-chips-timeline-poster.html
https://www.intel.com/content/www/us/en/history/history-intel-chips-timeline-poster.html
https://www.tsmc.com/english/dedicatedFoundry/technology/logic/l_5nm
https://www.tsmc.com/english/dedicatedFoundry/technology/logic/l_5nm

Bibliography 342

[12] R. Tedrake, “Underactuated Robotics: Algorithms for Walking, Running, Swimming,
Flying, and Manipulation (Course Notes for MIT 6.832),” 2023. URL: https:

//underactuated.csail.mit.edu, Accessed: 2023-05-03.

[13] R. E. Kalman et al., “Contributions to the theory of optimal control,” Bol. soc. mat.
mexicana, vol. 5, no. 2, pp. 102–119, 1960.

[14] B. Friedland, Control system design : an introduction to state-space methods. Mineola,
New York: Dover Publications, 2005.

[15] H. Kwakernaak and R. Sivan, Linear optimal control systems, vol. 1072. Wiley-
interscience New York, 1969.

[16] P. Whittle, Risk-Sensitive Optimal Control. Wiley Interscience Series in Systems
and Optimization, Wiley, 1990.

[17] G. F. Franklin, J. D. Powell, and M. L. Workman, Digital control of dynamic systems.
World Student Series, Menlo Park, Calif. ; Harlow, United States: Addison Wesley
Longman, 3rd ed., 1998.

[18] J. B. Rawlings, “Tutorial overview of model predictive control,” IEEE control systems
magazine, vol. 20, no. 3, pp. 38–52, 2000.

[19] S. Vichik and F. Borrelli, “Solving linear and quadratic programs with an analog
circuit,” Computers & Chemical Engineering - Manfred Morari Special Issue, vol. 70,
pp. 160–171, 2014.

[20] D. E. Seborg, T. F. Edgar, D. A. Mellichamp, and F. J. Doyle III, Process dynamics
and control. John Wiley & Sons, 4th ed., 2016.

[21] F. Haugen, Dynamiske systemer: modellering, analyse og simulering. Tapir, 3rd ed.,
2007.

[22] W. S. Levine, The Control Handbook: Control System Advanced Methods. CRC
Press, 2nd ed., 2018.

[23] A. Bemporad, N. L. Ricker, and M. Morari, “Model Predictive Control Toolbox -
User’s Guide,” 2023. URL: https://se.mathworks.com/help/pdf_doc/mpc/mpc_

ug.pdf.

[24] L. Grüne and J. Pannek, Nonlinear Model Predictive Control : Theory and Al-
gorithms. Communications and Control Engineering, Springer London, 1st ed.,
2011.

[25] J. Nocedal and S. J. Wright, Numerical Optimization. New York, United States:
Springer, 1999.

https://underactuated.csail.mit.edu
https://underactuated.csail.mit.edu
https://se.mathworks.com/help/pdf_doc/mpc/mpc_ug.pdf
https://se.mathworks.com/help/pdf_doc/mpc/mpc_ug.pdf

Bibliography 343

[26] T. Drengstig, “Ele320 totank1 motivasjon modellering,” 2020. Lecture notes.

[27] G. Luta and J. H. Aarvåg, Studie på anvendeligheten av Carleman embedding til
kontroll av vannivået i en tank. University of Stavanger, 2021. Bachelor thesis. URL:
https://hdl.handle.net/11250/2985975.

[28] S. SARCO, “Control valve characteristics.” URL: https://www.spiraxsarco.

com/learn-about-steam/control-hardware-electric-pneumatic-actuation/

control-valve-characteristics, Accessed: 2023-05-17.

[29] R. A. Adams and C. Essex, Calculus : a complete course. Don Mills, Ont: Pearson,
9th ed., 2018.

[30] J. J. Duistermaat and J. A. C. Kolk, “Taylor expansion in several variables,” in
Distributions, Cornerstones, Boston: Birkhäuser Boston, 2010.

[31] A. Hiorth, “Modeling and computational engineering,” 2022. Lecture notes.

[32] C. Edwards and D. Penny, Elementary linear algebra. Harlow: Pearson Education,
2010.

[33] S. Haykin and B. V. Veen, Signals and systems. New York: Wiley, 2nd ed., 2003.

[34] A. R. Hambley, Electrical Engineering: Principles & Applications. Harlow, United
Kingdom: Pearson Education UK, 7th ed., 2018.

[35] J. R. Dormand and P. J. Prince, “A family of embedded runge-kutta formulae,”
Journal of Computational and Applied Mathematics, vol. 6, no. 1, pp. 19–26, 1980.

[36] H. Moore, MATLAB for engineers. Boston: Pearson, 4th ed., 2015.

[37] The MathWorks Inc., MATLAB version: 9.11.0 (R2021b). Natick, Massachusetts,
United States: The MathWorks Inc., 2021. URL: https://www.mathworks.com.

[38] A. Bemporad, “A multiparametric quadratic programming algorithm with polyhedral
computations based on nonnegative least squares,” IEEE transactions on automatic
control, vol. 60, no. 11, pp. 2892–2903, 2015.

[39] G. Bekerytė, Moving Horizon Estimation for the Two-tank System. University of
Stavanger, 2023. Master thesis.

[40] E. Bwambale, F. K. Abagale, and G. K. Anornu, “Data-driven model predictive
control for precision irrigation management,” Smart Agricultural Technology, vol. 3,
p. 100074, 2023.

https://hdl.handle.net/11250/2985975
https://www.spiraxsarco.com/learn-about-steam/control-hardware-electric-pneumatic-actuation/control-valve-characteristics
https://www.spiraxsarco.com/learn-about-steam/control-hardware-electric-pneumatic-actuation/control-valve-characteristics
https://www.spiraxsarco.com/learn-about-steam/control-hardware-electric-pneumatic-actuation/control-valve-characteristics
https://www.mathworks.com

Bibliography 344

[41] T. Salzmann, E. Kaufmann, J. Arrizabalaga, M. Pavone, D. Scaramuzza, and M. Ryll,
“Real-time neural mpc: Deep learning model predictive control for quadrotors and
agile robotic platforms,” IEEE Robotics and Automation Letters, vol. 8, no. 4,
pp. 2397–2404, 2023.

[42] R. E. Walpole, R. H. Myers, S. L. Myers, and K. Ye, Probability & Statistics for
Engineers & Scientists. Harlow, United Kingdom: Pearson, 9th ed., 2016.

	Abstract
	Acknowledgements
	Declaration of Authorship
	List of Figures
	List of Tables
	List of Algorithms
	1 Introduction
	1.1 History of Automatic Control
	1.2 Background and Motivation
	1.3 Objectives
	1.4 Approach and Contributions
	1.5 Outline

	2 Related Work
	2.1 Preliminaries
	2.1.1 Notation
	2.1.2 LQR control

	2.2 Linear MPC
	2.3 Nonlinear MPC

	3 System Modeling
	3.1 System Description
	3.1.1 The Valves
	3.1.2 The Pump

	3.2 Nonlinear Model
	3.2.1 Tank 1 Model
	3.2.2 Tank 2 Model

	3.3 Linear Model
	3.4 Analysis of the Linear Model
	3.4.1 Stability
	3.4.2 Laplace Transform

	3.5 Discretization
	3.5.1 Ordinary Differential Equation Solver
	3.5.2 Zero-Order Hold Method
	3.5.3 Euler method

	4 MPC Design
	4.1 Overview
	4.1.1 Software
	4.1.2 Hardware

	4.2 Linear MPC
	4.2.1 Model
	4.2.2 Quadratic Objective Function
	4.2.3 Scaling
	4.2.4 Weighting Matrices
	4.2.5 Constraints
	4.2.6 Prediction- and Control-Horizon
	4.2.7 QP Solver

	4.3 Explicit MPC
	4.4 Adaptive MPC
	4.5 Nonlinear MPC

	5 Simulations
	5.1 Simulation Environment
	5.1.1 Performance measures

	5.2 Optimal Prediction and Control Horizons
	5.3 Linear MPC
	5.3.1 Alternative Closed-Loop Response
	5.3.2 Alternative Optimization Solver: The Interior-Point Method

	5.4 Explicit MPC
	5.4.1 Alternative Closed-Loop Response

	5.5 Adaptive MPC
	5.5.1 Alternative Closed-Loop Response

	5.6 Nonlinear MPC
	5.6.1 Alternative Closed-Loop Response
	5.6.2 Sub-Optimal Solution

	5.7 Analysis of the Simulation Results

	6 Experimental Evaluation
	6.1 Experimental Setup
	6.2 Experimental Procedure
	6.3 Parameters
	6.4 Linear MPC
	6.5 Explicit MPC
	6.6 Adaptive MPC
	6.7 Nonlinear MPC
	6.8 LQR Control
	6.9 PID Control
	6.10 Linear MPC with State Estimation
	6.11 Analysis
	6.11.1 Modeling Error

	7 Conclusions
	7.1 Summary
	7.2 Advantages
	7.3 Disadvantages
	7.4 Conclusion
	7.5 Future Directions

	A LQR Control
	B PID Control
	B.1 Feedforward Control
	B.2 Linear Decoupler

	C Integral of Absolute Error
	D Box Plot
	E Two-Tank Component Specifications
	F Project Description
	G Project Plan
	H Master Theses Poster Presentation
	I MATLAB Code
	I.1 Functions
	I.1.1 AdaptiveSys.m
	I.1.2 central_diff.m
	I.1.3 forward_diff.m
	I.1.4 InversValveChar.m
	I.1.5 PumpChar.m
	I.1.6 tankCT_NEW.m
	I.1.7 tankDT_NEW_One_Step.m
	I.1.8 tankDT.m
	I.1.9 tankOutputFcn.m
	I.1.10 Valve_1_OP_New.m
	I.1.11 Valve_2_OP.m
	I.1.12 ValveChar.m

	I.2 MPC Design Files
	I.2.1 MPC_Adaptive_FINAL.m
	I.2.2 MPC_Explicit_FINAL.m
	I.2.3 MPC_Linear_FINAL.m
	I.2.4 MPC_Nonlinear_FINAL.m
	I.2.5 Experimental_Make_LQR.m
	I.2.6 Experimental_Make_MPCs.m
	I.2.7 Experimental_Make_PID.m
	I.2.8 LMHE_KMPC_Simulink_init.m

	I.3 Figure Creation Files
	I.3.1 Plot_Data_Visualization_Adaptive_MPC.m
	I.3.2 Plot_Data_Visualization_Explicit_MPC_V2.m
	I.3.3 Plot_Data_Visualization_Explicit_MPC.m
	I.3.4 Plot_Data_Visualization_Linear_MPC_V2.m
	I.3.5 Plot_Data_Visualization_Linear_MPC.m
	I.3.6 Plot_Data_Visualization_Nonlinear_MPC.m
	I.3.7 Plot_Equal_Percentage_Valve_Char.m
	I.3.8 Plot_Experimental_Data_Delay_Noise.m
	I.3.9 Plot_Experimental_Data_State_Estimation.m
	I.3.10 Plot_Experimental_Data.m
	I.3.11 Plot_Forward_Euler.m
	I.3.12 Plot_Pump_Char.m
	I.3.13 Plot_ZOH.m

	I.4 .m Files for Simulink
	I.4.1 SIM_AdaptiveSys.m
	I.4.2 SIM_Eval_Explicit_MPC.m
	I.4.3 SIM_forward_diff.m
	I.4.4 SIM_GetMatrix.m
	I.4.5 SIM_PumpChar.m
	I.4.6 SIM_ValveChar.m

	J Simulink Schemes
	J.1 SIM_Linear_VS_Nonlinear_Model.slx
	J.2 SIM_MPC_Linear.slx
	J.3 totank_Live_Edited_070723_PID.slx
	J.4 totank_Live_Edited_070723_LQR.slx
	J.5 totank_mpc_and_mhe.slx

	Bibliography

