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Abstract

The most dangerous and aggressive form of skin cancer is melanoma, responsible for
90% of skin cancer mortality. Early detection of melanoma plays a crucial role in the
prognostic outcome. The diagnostic has to be performed by a pathologist, which is time-
consuming. The recent increase in melanoma incidents indicates the growing demand for
a more efficient diagnostic process.

This thesis’s main objective is to develop a pipeline utilizing two independent pre-
trained models built on the VGG16 architecture. This pipeline consists of a diagnostic
and a prognostic model. The diagnosis model is responsible for localizing malignant
patches in WSIs and giving a patient-level diagnosis. The prognosis model uses the output
from the diagnosis model to provide a patient-level prognosis. The complete pipeline
provides both a prognostic and a diagnostic tool, which can be used by a pathologist
when evaluating Whole Slide Images (WSIs). A total of 243 WSIs were provided by
Stavanger University Hospital for this thesis. All have been provided a patient-level
label. 203 of the WSIs were used for parameter tuning and 40 were used for testing.

The diagnosis model performed with a 100% accuracy when evaluated on the original
test, which was provided together with the training set. The prognosis model also per-
formed well on the original dataset, with an accuracy of 0.7885. The model’s capability
to predict diagnosis and prognosis decreases significantly when being introduced to the
new dataset.

In addition to developing the pipeline, some parameters for the diagosis model was
found using a ROC cuve. By using the new parameters for the diagnosis model on the
validation set, the performance of the diagnosis model increased when using the test
set. The prognosis model performed relatively equally in all experiments. A correlation
between the number of patches in a WSI and the number of patches predicted malig-
nant was discovered and counteracted by altering the patient-level threshold calculation
method (MTrate).
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Chapter 1

Introduction

Globally, skin cancers are the most prevalent type of cancer, with an estimated 1.5 million
new cases reported in 2020 [34]. Among these, melanoma was diagnosed in approximately
325,000 cases, leading to 57,000 fatalities. The incidence rates of melanoma exhibit sig-
nificant geographical disparities, with certain regions reporting higher rates than others.
Norway especially saw a significant increase in skin cancer between the years 1953 and
2022, with 2,911 people new cases only in 2022. That is an increase of 468 from the
previous year, which is an increase of approximately 4.2% [20]. The growing number
of recorded skin cancer incidents makes this one of the fastest-growing cancer types in
Norway.

There are two main types of skin cancer: melanoma and non-melanoma. Melanoma is the
most aggressive type of skin cancer with the ability to spread, which makes early diagnosis
important. According to World Cancer Research Foundation, Norway ranks as the 5th
highest-rated country for melanoma cancer incidents [28]. The melanoma cancer incidents
in Norway are depicted in Figure 1.1, and melanoma incidents for men and women in
Norway are shown individually in Figure 1.2. The graphs show a concerning increase in
melanoma cases, especially in the last few years. Apart from the overall rise, differences
in cancer incidence based on geography have also been documented. Rogaland has been
found to have the highest age-adjusted cancer rates [8]. This highlights the importance
of melanoma diagnosis and treatment in the exposed areas, as early detection is the most
critical predictor of melanoma survival [9][17].

The rise in melanoma cases has placed considerable stress on pathology departments,
often leading to extended waiting periods for patients awaiting a diagnosis. Research
published in the Journal of the American Academy of Dermatology indicates that early
treatment could increase the patient’s chances of survival, particularly in the early stage
of melanoma [30]. As a countermeasure, the fusion of artificial intelligence (AI) and ma-
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Figure 1.1: Graph displaying incidence rates for selected cancers from 1953–2021. The graph
displays a considerable rise in melanoma (dark green) and non-melanoma (light green) skin
cancer cases since 1953. //textitFigure is sourced unaltered from the Cancer Registry of Norway
(Cancer in Norway 2021) [8].

chine learning methodologies in the field of pathology has emerged as a promising strategy
to assist pathologists. Specifically, advanced techniques such as deep learning (DL) and
convolutional neural networks (CNNs) have shown significant potential in improving the
accuracy and efficiency of diagnoses [6].
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Figure 1.2: Time series data for melanoma cancer in age-standardized (as per Norwegian
standards) incidence rates during the period 1960–2022. The graph shows a significant rise in
melanoma rates for skin cancer cases since 1960. The figure was created using data acquired
from kreftregisteret.no [20].

1.1 Motivation and Objective

The escalating incidence of melanoma worldwide necessitates innovative solutions to
support pathologists in their diagnostic and prognostic tasks. This thesis is motivated
by the need to expedite diagnosis, enhance accuracy, alleviate the workload on pathology
departments, reduce patient waiting time, and potentially improve survival rates through
early detection and treatment [30].

To address these challenges, this work aims to develop a pipeline that integrates two
pre-trained Deep Neural Network (DNN) models. The first model focuses on the detec-
tion and localization of melanoma, while the second provides a prognosis for identified
melanoma areas. By leveraging machine learning methodologies, we aim to provide a
complete pipeline to predict and locate melanoma in Whole-Slice Images (WSI) and give
a patient-level diagnosis and prognosis.

Each DNN model will be individually evaluated before integrating them into a compre-
hensive pipeline. The performance of this integrated system will then be assessed using
WSI, thereby ensuring its effectiveness in real-world scenarios.

The increasing number of melanoma incidents highlights the need for assisting pathol-
ogists in their work. The primary motivation of this thesis is to design a pipeline
that integrates machine learning methodologies to expedite and enhance the accuracy
of melanoma diagnosis and prognosis. This pipeline aims to alleviate the workload of
pathologists, reduce patient waiting time, and potentially improve survival rates through
early detection and treatment [30]. By leveraging the capabilities of pre-trained DNN
models, this pipeline is expected to provide valuable insights into the detection and lo-
calization of melanoma, as well as offer a prognosis on the identified areas. The ultimate
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goal is to assist pathologists in making more effective and accurate decisions, thereby
improving patient outcomes.
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Chapter 2

Background Theory

This thesis combines the field of machine learning and pathology. To provide a compre-
hensive understanding of the nature of this work, the following chapter will introduce
the main background theory from both fields. The medical background will first be
presented, followed by the technical background.
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2.1 Medical Background

This section will provide a medical context for this thesis. Firstly the skin layers will
be explained, followed by some main concepts in pathology. Lastly, Whole-Slide Images
and melanoma are presented.

2.1.1 Composition of the Skin

A fundamental understanding of skin composition and structure is crucial for grasping
the development and progression of melanoma skin cancer. Hence, before delving into
the intricacies of melanoma, we will first examine the layers of the skin.

The skin is composed of three primary layers: the epidermis, dermis, and hypodermis [16].
Figure 2.1 depicts the skin composition, including the epidermis, dermis, and hypodermis
layers. Each layer has a unique structure and function, which will be discussed briefly in
the following sections.

Figure 2.1: This figure illustrates the different layers of the skin, with a particular focus on
the location of melanocytes. The illustration demonstrates how melanocytes are situated within
the stratum basale of the epidermis. Melanocytes produce melanin, which contributes to skin
pigmentation. This figure was obtained from Wikimedia Commons. The original illustration was
created by Don Bliss and is in the public domain. Source: Wikimedia Commons.
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Epidermis

The epidermis is the outermost layer of the skin and acts as a protective barrier against
external factors. It mainly consists of keratinocytes, which are cells that produce ker-
atin. Melanocytes are found in the stratum basale, the deepest layer of the epidermis.
Figure 2.1 demonstrates how melanocytes are situated within the stratum basale of the
epidermis. Melanocytes’ main function is to produce melanin, the pigment responsible
for the darkening of the skin. When the skin is exposed to UVB (ultraviolet B) radia-
tion, melanocytes increase their production of melanin as a response[35]. Even though
melanocytes play an important role in protecting us from radiation, it also plays a critical
role in the development of melanoma [22], as discussed later.

Dermis

The dermis, situated beneath the epidermis, is a robust fibrous layer providing strength
and elasticity to the skin. It supports the epidermis and houses sensory receptors for
touch, temperature, and pain. The dermis comprises collagen, elastin fibers, follicles,
glands, and nerves, among others [7]. Melanoma originates from melanocytes in the
stratum layer (Figure 2.1), located above the dermis. If melanoma invades the dermal
layer containing blood and lymph vessels, it can potentially facilitate cancer spread [19].

Hypodermis

The hypodermis is the inner layer of the skin. It mainly consists of adipose tissue
(fat cells), which provides insulation, cushioning, and energy storage. The hypodermis
anchors the skin to the underlying muscles and bones. Melanoma can potentially invade
the hypodermis tissue layer but is more likely to grow and spread in the dermis and other
layers [33].
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2.1.2 Pathology

Pathology is the study of diseases, their causes, mechanisms, and effects on the body
[27]. The pathology field plays a crucial role in evaluating melanoma. Tissue samples
in the form of WSIs are examined to identify cancerous cells and determine the stage of
the disease. The process of diagnosing a patient involves several steps, from consulting
the mole at the doctor’s office to digitizing the stained tissue sample for further analysis.
The process of handling a tissue sample and creating a WSI are illustrated in Figure 2.2.
Every step involved in this process will be briefly explained in the subsequent sections.

Figure 2.2: Overview of the steps involved in the management of a tissue sample, from initial
biopsy to final diagnosis. The green box indicates the stage of the process in which this thesis
takes place.

Evaluation

The first step in this process is visually inspecting the mole. When visiting a healthcare
provider with concerns about a mole or lesion, the medical professional will examine its
visual characteristics and assess whether it is or may become cancerous (melanoma). A
common way to assess the mole is to use an acronym called ABCDE, which serves as a
standard tool for doctors to determine if the mole or nevus should be removed. ABCDE
stands for Asymmetry, Border irregularity, Color variation, Diameter, and Evolving ap-
pearance. A more deliberate explanation of each word is presented in Table 2.1. If any
of these features are present and raise suspicion, the doctor may recommend surgically
removing the mole for further examination. It is worth mentioning that other factors
may also play a crucial role in the evaluation. These factors are presented in the following
list [14][22]:

• Patient history: A family history of melanoma or other skin cancers can increase
the risk of developing melanoma.
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• Sun exposure: Excessive sun exposure, particularly during childhood, can increase
the risk of developing skin cancer.

• Skin type: People with fair skin, light hair, and light eyes are at a higher risk of
developing skin cancer.

• Number of moles: A large number of moles (more than 50) can increase the risk of
melanoma.

• Location of moles: Moles in areas frequently exposed to the sun, such as the face,
neck, and arms, may be more likely to become cancerous.

• Immune status: Individuals with weakened immune systems, such as HIV/AIDS
or organ transplant recipients, are at a higher risk of developing skin cancer.

• Age: The risk of developing skin cancer increases with age.

Letter Explanation

A: Asymmetry
One half of the mole does not match the other in size, shape,
color, or thickness. If you were to draw a line through the mole,
the two halves would not mirror each other.

B: Border The mole’s edges are irregular, ragged, notched, or blurred. The
pigment may also spread into the surrounding skin.

C: Color
The color is inconsistent and may include shades of black,
brown, and tan. There may also be white, gray, red, pink,
or blue areas.

D: Diameter The diameter of the mole is larger than 6mm.

E: Evolution
The mole changes in size, shape, or color, particularly if it
changes quickly or drastically. Other changes to watch for in-
clude new symptoms like bleeding, itching, or crusting.

Table 2.1: The ABCDE acronym for visual melanoma detection was developed to provide a
straightforward method for both doctors and patients to assess the atypical features of nevi. The
ABCD variant of this acronym was first introduced by R. Friedman et al. in 1985 [11] and later
modified to include E: Evolving [1].

Biopsy

If the clinician determines that a mole needs further examination, they will perform a
biopsy. This involves surgically removing the mole and neighboring tissue and sending
it to a pathology laboratory for analysis [15].
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Chemical Processing

Once the mole is surgically removed, it is sent to a pathology laboratory for further
analysis. The tissue sample undergoes a series of preprocessing steps, including fixation
(to preserve its structure), dehydration, clearing (removal of water and solvents), and
embedding in paraffin wax [15].

Slicing

The embedded tissue sample is sliced into thin sections, typically around 4-5 micrometers
thick, using a microtome. These thin sections allow for better visualization of cellular
structures and facilitate the staining process [15].

Staining

To visualize cellular structures and identify cancerous cells, the tissue sections are stained
with Hematoxylin and Eosin (H&E) stains. Hematoxylin stains cell nuclei blue, while
Eosin stains cytoplasm and extracellular matrix pink. This staining technique allows
pathologists to differentiate between various cell types and assess the presence of cancer
cells in the tissue sample [15].

Digitization

After staining, the tissue sections are mounted on glass slides and coverslipped. The
tissue sections can then either be examined under a microscope or digitized into an
image of the whole slide, hence Whole-Slide Image (WSI). For digitization of the glass
slides, they are imaged by a whole slide scanner, such as the Hamamatsu NanoZoomer
S60, at 40x magnification. The scanner captures high-resolution images of the entire
tissue section, creating a WSI which can be viewed and analyzed on a computer using
an appropriate display [15].

Whole-Slide Images (WSI)

WSI technology has become increasingly important in digital pathology. It offers various
benefits, including the potential to improve diagnostic accuracy and enhance collabo-
ration among pathologists. Additionally, it allows for the integration of computational
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tools for image analysis, streamlines workflow, reduces physical storage space require-
ments, and facilitates accessibility and education by providing easier access to a wide
range of cases. An example of a WSI is shown in Figure 2.3. The size of a WSI can
vary depending on the scanner’s resolution, magnification level, and the size of the tissue
section. However, it is common for WSIs to be several gigabytes in size due to their high
resolution.

Figure 2.3: Example of a WSI showcasing a high-resolution digital scan of a tissue sample.
This WSI was scanned using Hamamatsu NanoZoomer S60 at 40x magnification and stained
using H&E stain. This WSI is from a dataset provided by Stavanger University Hospital.

Artifacts in WSI

Throughout the tissue processing and digitization steps, various artifacts may be intro-
duced. Common artifacts include tissue folds, air bubbles, dust particles, and uneven
staining. These artifacts can potentially hinder the accurate diagnosis and prognosis of
melanoma using WSIs. This challenge is particularly pronounced when employing AI
models, as they may misinterpret the artifacts as features from other tissue types [18].

Digital Pathology

The traditional method of melanoma diagnosis involves a pathologist examining stained
tissue sections under a microscope. In recent years, more clinics have transitioned to
digital pathology [25]. This new method primarily employs two approaches:

• Human-Machine Interface (HMI): Pathologists utilize specialized software
tools to inspect digital images of tissue samples, replacing traditional microscope
examination.
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• Computer-Aided Pathology: Digital tools can assist pathologists by analyz-
ing digital images, effectively aiding in identifying and categorizing cancerous cells.
This can enhance the diagnostic process, combining algorithms with human ex-
pertise [25]. This thesis’s objective is to develop such a tool by using machine
learning.
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2.1.3 Melanoma

Recall that melanoma is a type of skin cancer originating from melanocytes [22]. It
develops when the DNA (Deoxyribonucleic Acid) of melanocytes becomes damaged, often
due to excessive exposure to UV radiation. This damage can cause the melanocytes to
grow uncontrollably and form a malignant tumor.

Stages of Melanoma

The progression of melanoma can be divided into several stages, often starting from
benign nevi, developing into dysplastic nevi, followed by the two growth states (Radial-
Growth Phase and Vertical-Growth Phase), and finally, the metastatic state [22]. Figure
2.4 illustrates the following stages, which will be explained subsequently:

1. Benign Nevus: The first stage is called a benign nevus, better known as a mole,
and is a limited growth of melanocytes in the epidermis. Moles are benign, and
most do not progress to cancer (melanoma).

2. Dysplastic Nevus: The next stage is called dysplastic nevus. It can develop
within a preexisting benign nevus or emerge in a new location. It is not cancerous
but carries a higher risk of progressing into melanoma. A dysplastic nevus is char-
acterized by atypical features such as irregular borders, diverse colors, or increased
size. Medical professionals examine these visual characteristics to assess whether a
mole is or may become cancerous (melanoma) [14].

3. Radial-Growth Phase: In this phase, malignant cells multiply within the epi-
dermis in a phase known as radial growth. At this point, the tumor is limited to
the epidermis and has not yet invaded the dermis. This stage is characterized by
unrestrained growth and division of melanoma cells, resulting in exponential cell
increase. Even as the tumor expands laterally along the epidermal layer, it does
not penetrate deeper skin layers. Melanoma cells in this phase exhibit decreased
differentiation, losing their unique roles and functions as cells, which paves the
way for quicker growth and division. However, they can’t yet grow in soft agar,
limiting their growth to solid surfaces. This phase’s tumor originates from a single
mutated melanocyte that has undergone clonal proliferation, resulting in a mass of
cells genetically identical to the mutated cell [10][14].

4. Vertical-Growth Phase: Eventually, most melanomas progress to the vertical-
growth phase, where the malignant cells penetrate the basal layer and invade the
dermis, growing vertically and deeper into the skin. The dermis contains blood
and lymph vessels, which can facilitate the spread of malignant cells. At this stage,
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melanoma cells can grow in soft agar, which increases the aggressiveness of the
cancer. The cancer cells continue to proliferate rapidly and may gain additional
genetic mutations that further drive tumor growth and invasion ability.

5. Metastatic Melanoma: Following the infiltration of blood and lymph vessels
during the vertical-growth phase, malignant cells can detach from the primary
tumor, travel through the blood or lymphatic system, and form new metastatic
tumors in other tissues, most commonly the bone, brain, liver, lung, skin, and
muscle [21]. This process is referred to as metastatic melanoma. Metastatic tumors
originate from the primary site and consist of the same type of cancer cells as the
primary tumor, indicating that cancer cells have disseminated from their initial
location to distant regions. This stage is the most challenging to treat and has the
poorest prognosis.[10][14].

Figure 2.4: Visual representation of melanoma progression starting from benign nevus to
metastatic melanoma. The diagram, moving from left to right, depicts increasing severity.
(Melanoma progression diagram, (reproduced with permission from Miller and Mihm,
“Melanoma,” 355: 51–65. Copyright 2020 Massachusetts Medical Society)

Prognosis

In addition to giving a diagnosis, the likely course or outcome of a disease can also be
given. This is referred to as the prognosis. It is a prediction made by medical professionals
based on current knowledge and understanding of the disease, as well as the patient’s
specific condition and overall health status. In the context of melanoma, a bad prognosis
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usually refers to situations where cancerous cells have advanced or spread beyond their
original location in the skin. This is referred to as metastasis [29], and it is the main
contributor to the high mortality rate associated with melanoma [31].
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2.2 Technical Background

This section provides a brief explanation of the main concepts and techniques related
to digital images, image processing, and artificial intelligence, with a particular focus on
deep learning methods. This knowledge is crucial for understanding the development and
implementation of the proposed pipeline for melanoma prediction and prognosis using
pre-trained convolutional neural networks (CNNs).

2.2.1 Digital Images

Digital images are a representation of visual information in the form of discrete numerical
values called pixels. Each pixel corresponds to a specific location in the image. An associ-
ated intensity value determines its color or brightness. Digital images can be categorized
into grayscale, binary, and color images based on the number of color channels.

Grayscale images represent the intensity of gray levels, where each pixel value ranges
from 0 (black) to 255 (white). Binary images contain only two possible pixel values: 0
(black) and 1 (white). These images are often used for representing shapes or outlines
of objects. Color images store more complex visual information by combining multiple
color channels. RGB (Red, Green, Blue) color space is the most frequently common color
space in digital images. Each pixel contains three values, red, green, and blue.

HSV is also a common color format, representing colors in terms of their HSV components
(Hue, Saturation, Value). The term "hue" refers to the color type and has a range from
0-360 degrees. Saturation is the intensity of the color type and ranges from 1-100%. The
last component, value, refers to the brightness of the color and has a range from 0-100%.
This color representation is more closely related to human perception of color than the
RGB color space. The HSV foreman is also promising for color thresholding in many
scenarios [12].

2.2.2 Image Processing

When working with digital images, such as WSIs, some image modifications are often
wanted or even necessary. This section will present the image processing technics used
in this thesis.
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Segmentation

In the context of WSI, segmentation plays a crucial role in separating different compo-
nents, such as background regions, from the tissue. Due to the vast number of pixels in
WSIs, segmentation is particularly important for identifying regions containing relevant
information. One effective approach to achieve this in H&E stained WSIs is through
color thresholding. In H&E stained WSIs, various tissue components exhibit distinct
hues and saturations due to the staining process. By converting the RGB image to HSV
and applying appropriate thresholds on hue and saturation channels, it becomes easier to
differentiate between tissue components and separate them from the background, lead-
ing to more accurate segmentation and improved analysis of WSIs in digital pathology
applications.

Patch extraction

As discussed earlier, a WSI is typically a gigapixel image. It is unrealistic to expect a DNN
model to handle this many pixels as input. To address this issue, a standard technique
involves first identifying the foreground and then dividing the ROI into smaller parts
called patches. This technic is commonly known as patch extraction.

Data Augmentation in WSI

Data augmentation is a technique employed to enhance the diversity and size of training
datasets by applying various transformations to the original images. In the context of
WSI, augmentation processes such as rotation, flipping, scaling, and color adjustments
can be applied to create new variations of the original images. These augmented im-
ages contribute to improving the generalization capabilities of AI models by exposing
them to a broader range of image variations during training. Specifically, for WSI, data
augmentation can be performed on individual patches, introducing variance within the
training set and further strengthening the model’s ability to recognize diverse features
and patterns.

Morphological Operations

Morphological operations are image processing techniques that modify the shape and
structure of objects in an image. Two common morphological operations used in WSI
are erosion and dilation.
Erosion is a process that removes pixels from the boundaries of objects, effectively
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shrinking them. This operation can help separate closely connected objects or remove
small artifacts from the image [13].
Dilation adds pixels to the boundaries of objects, causing them to expand. Dilation can
fill small gaps or holes within objects and connect disjointed components [13].

Both erosion and dilation can be applied sequentially in various combinations to refine
the segmentation results and enhance the quality of WSI images before feeding them into
AI models.

Opening and Closing is used in image processing to manipulate shapes and contours
of objects and is a two-step process of combining erosion and dilation. The opening
involves a process of erosion followed by dilation. The goal is primarily to smooth the
contour of an object. The closing, on the other hand, is the reverse of the opening and
involves dilation followed by erosion. Closing is used to close gaps, connect fragmented
regions, and create a more complete and continuous contour [13].

2.2.3 Introduction to Artificial Intelligence

Artificial intelligence (AI) describes a system that can function intelligently and indepen-
dently. It aims to create machines and systems capable of performing tasks that typically
require human intelligence. Machine learning (ML) and deep learning (DL) are subsets
of AI that focus on enabling machines to learn from data and improve their performance
over time [31]. Figure 2.5 illustrates the hierarchical relationship between AI, ML, and
DL. This chapter will delve into the artificial intelligence aspect, focusing on machine
learning and deep learning techniques that can be employed to analyze the processed
whole-slide images for melanoma detection and prognosis prediction.

Figure 2.5: The figure illustrates the
hierarchical relationship between Arti-
ficial Intelligence (AI), Machine Learn-
ing (ML), and Deep Learning (DL). AI,
represented as the largest circle, encom-
passes all facets of mimicking human
intelligence. Within AI is ML, a sub-
set dedicated to statistical techniques
for enabling machines to improve tasks
with experience. Nested within ML is
DL, a specialized subset of ML that uses
artificial neural networks with multiple
layers (or ’depth’) to model and un-
derstand complex patterns. Figure in-
spired by [31].

Machine learning is a subset of AI that focuses on developing algorithms and statistical
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models that enable machines to learn from data and improve their performance over time.
In this context, learning refers to the ability of a machine to recognize patterns in data,
make predictions, and adapt its behavior based on experience. Machine learning can be
broadly categorized into supervised learning, unsupervised learning, and reinforcement
learning [31]. Each category will be subsequently explained in the subsequent paragraphs.

Supervised learning involves training a model using labeled data, where each input exam-
ple is associated with a corresponding output label. The model learns to map inputs to
outputs by minimizing the difference between its predictions and the true labels. In the
context of this thesis, this could be using annotated WSIs to train a model to recognize
features from malignant patches.[31].

Unsupervised learning deals with unlabeled data. The goal is to uncover underlying
patterns or structures in the data without any prior knowledge of the labels. [31]. A
common example of unsupervised learning is clustering.

Weakly-supervised learning falls somewhere between supervised and unsupervised learn-
ing. The model is trained on weakly labeled data, meaning the labels are limited. In the
context of this thesis, an example could be having labels only for patients with melanoma
without any information about which patches from the WSI that contain melanoma.

Reinforcement learning is a method that trains algorithms to make optimal decisions
through interaction with an environment. The algorithm learns to select actions that
give the highest cumulative reward [31]. For instance, in the context of diagnosing skin
cancer using WSIs and machine learning, reinforcement learning could be used to train
an AI model to identify melanoma by analyzing image data. The model would learn
from each decision it makes - correct identifications would increase its ’reward’, while
incorrect ones would decrease it.

2.2.4 Deep Learning

Deep learning (DL) is a category of machine learning that uses artificial neural networks
with multiple layers to model and understand complex patterns in the data. These
networks consist of connected nodes or neurons organized into layers. DL has been
particularly successful in tasks involving large-scale, high-dimensional data, such as image
recognition, natural language processing, and speech recognition [24].
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Neural Networks

Artificial neural networks (ANNs) are computational models inspired by the structure
and function of biological neural networks. ANNs are made up of layers of interconnected
nodes or neurons. Each neuron receives input from one or more neurons in the previous
layer, processes the input using an activation function, and passes the result to neurons
in the next layer. The connections between neurons have associated weights, which
determine the strength of the influence between connected neurons. During training,
these weights are adjusted to minimize the difference between the network’s predictions
and the true labels.

Convolutional Neural Networks

Deep learning models known as Convolutional neural networks (CNNs) are created specif-
ically for processing grid-like data, such as images. CNNs are made up of one or more
convolutional layers followed by fully connected layers. The input data is subjected to
a set of filters by convolutional layers, which helps the network learn local features and
patterns in the data. Pooling layers are often used between convolutional layers to reduce
the spatial dimensions of the feature maps, which lowers computational complexity and
improves translation invariance. CNNs have been highly successful in various computer
vision tasks, including image classification, object detection, and semantic segmentation
[2].

VGG16 is a deep convolutional neural network developed and used for illustration in
Figure 2.6. It was trained on the ImageNet dataset, which contains over 14 million
images and 1000 object categories. The VGG16 model consists of 16 layers, including
13 convolutional layers and 3 fully connected layers. It takes an input size of 224x224
pixels. When using a different input size, larger images are often cropped to fit the
weights trained on ImageNet. Due to its depth and a large number of parameters, the
VGG16 model has been highly successful in various image recognition tasks and is often
used as a starting point for transfer learning in computer vision applications [36].
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Figure 2.6: Overview of the architecture of VGG16. The network has 16 layers and has an image
input size of 224-by-224. The network consists of 16 layers, 13 convolutional and three fully-
connected layers. This figure was obtained from Wikimedia Commons. The original illustration
was created by Gorlapraveen and is in the public domain. Source: Wikimedia Commons.

Transfer Learning

Transfer learning is a technique in which a pre-trained neural network is fine-tuned for a
new task or domain [23]. The idea is to leverage the knowledge learned by the network
during its initial training on a large dataset to improve its performance on a related but
smaller dataset. Transfer learning is particularly useful when the target task has limited
labeled data available, as it allows the model to benefit from the more extensive dataset’s
learned features and representations.

2.2.5 Supervised Learning

In the context of whole-slide image (WSI) analysis for diagnosis and prognosis, supervised
learning plays a crucial role in training ML models to recognize patterns and make
predictions based on labeled data. This section discusses various aspects of supervised
learning relevant to computer-aided pathology.

Training and Validation

Training and validation are essential steps in the process of developing a supervised
learning model. During the training phase, the model learns from a labeled dataset,
known as the training set. By adjusting its parameters, the model aims to minimize the
difference between the model’s predictions and the true labels. During this phase, the
model learns to recognize patterns and relationships in the data.
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Once the training phase is complete, the model’s performance is evaluated on a separate
labeled dataset, the validation set. This set is not used during training and serves to
assess the model’s ability to generalize to new, unseen data. The validation phase helps
identify potential issues such as overfitting, where the model performs well on the training
data but poorly on new data.

After training and validation of the model, the performance needs to be measured on a
completely independent and unseen data set, known as the test set. The test set helps
to determine how well the model can make accurate predictions and can be used as a
checkpoint to ensure that the model has not been overfitted to the training data. This
will help to validate the model’s generalization ability.

Cross-Validation

Cross-validation is a technique used to assess the performance of a supervised learning
model. It is useful in situations where there is limited data, as it effectively utilizes the
available data by using it both for training and validation.

A type of cross-validation is k-fold, as displayed in Figure 2.7. It involves dividing the
available labeled data into multiple folds. The model is then trained and validated
multiple times, with each fold serving as the validation set once while the remaining
folds form the training set. The average performance across all iterations provides a
more robust estimate of the model’s generalization capabilities.

Figure 2.7: Illustration of a 5-fold cross-validation. The dataset is divided into five folds. In
each iteration, one of the 5 folds is used as the validation set.
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Batch Normalization

Batch normalization is a technique used in deep learning models to reduce internal co-
variate shifts and enhance training stability. Internal covariate shift refers to the change
in the distribution of inputs to a layer during training, which can slow down convergence
and make it challenging to choose an appropriate learning rate.

Batch normalization addresses this issue by normalizing the inputs to each layer during
training. It computes the mean and standard deviation of the input batch and applies a
linear transformation to ensure that the inputs have zero mean and unit variance. This
normalization process helps maintain a consistent distribution of inputs across layers,
allowing for faster convergence and better generalization.

In addition to its regularization effect, batch normalization also allows for higher learning
rates and reduces the sensitivity to weight initialization. This makes it easier to train
deep learning models with many layers and achieve better performance on various tasks.

2.2.6 Weakly Supervised Learning Strategies

Weakly supervised learning strategies are particularly relevant in the context of WSI
analysis for diagnosis and prognosis, as they allow AI models to learn from data with
limited or noisy annotations. In many cases, WSIs have an assigned annotation for
the entire image rather than precise labels for individual regions or cells. This type
of annotation is considered a weak label, as it provides limited information about the
specific locations and characteristics of the objects of interest within the image.

2.2.7 Evaluation Metrics

When it comes to the evaluation of deep learning models, it is crucial to have a standard
for measuring the models’ performance. Evaluation metrics offer a quantitative method
to evaluate the model’s capacity to make precise predictions. They can be utilized
to compare various models or identify areas for improvement. The ensuing sections
present some commonly used evaluation metrics in machine learning, which include the
confusion matrix, precision, recall, F1-score, accuracy, specificity, and receiver operating
characteristic (ROC) curve.
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Confusion Matrix

The confusion matrix is a table that presents a thorough performance summary of a clas-
sification model by comparing its predicted labels with the true values (annotated labels)
. It offers a detailed distribution of the model’s predictions across different categories,
thereby making it easier to spot particular types of errors and imbalances in the model’s
performance. Figure 2.8 presents the four elements forming the confusion matrix. Each
element will be subsequently explained and expressed mathematically:

Figure 2.8: Illustration of a confusion matrix showing the components: True Positives (TP),
False Positives (FP), True Negatives (TN), and False Negatives (FN)

Let’s first denote:
yi: The actual class of the i-th instance
ŷi: The predicted class of the i-th instance

We can define the positive class as 1 and the negative class as 0. Then, the four types of
outcomes in a binary classification problem can be represented mathematically as follows:

• True Positives (TP): The number of instances that the model correctly identified
as positive. For instance, correctly identifying malignant skin lesions in a set of
WSIs.

TP =
∑
i

I(yi = 1, and, ŷi = 1) (2.1)

• False Positives (FP): The number of instances that the model wrongly marked
as positive. For example, incorrectly identifying benign skin lesions as malignant
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in a set of WSIs.
FP =

∑
i

I(yi = 0, and, ŷi = 1) (2.2)

• True Negatives (TN): The number of instances that the model correctly identi-
fied as negative. This could mean correctly identifying benign skin lesions in a set
of WSIs.

TN =
∑
i

I(yi = 0, and, ŷi = 0) (2.3)

• False Negatives (FN): The number of instances that the model wrongly identified
as negative. An example of this would be misclassifying malignant skin lesions as
benign in a set of WSIs.

FN =
∑
i

I(yi = 1, and, ŷi = 0) (2.4)

In the above equations, I denote the indicator function, which is defined as:

I(condition) =

{
1, if condition is true
0, if condition is false

This function gives a sum of 1 each time the condition inside is true and 0 otherwise. In
this way, we can count the number of times each condition (TP, TN, FP, FN) occurs in
the dataset.

Precision

Precision is a key assessment parameter that measures the proportion of instances that
the model correctly identified as positive out of all instances predicted as positive. The
mathematical representation is:

Precision =
TP

TP + FP
(2.5)

In the medical field, precision is of great importance when the implications of FP are
severe. For instance, when screening for skin cancer, high precision implies that the
model correctly identifies a majority of real cancer cases while reducing the number of
false alarms. This can help avert unneeded subsequent tests and treatments for patients
who do not have cancer.
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Recall

Recall, alternatively known as sensitivity, is an assessment parameter that measures the
proportion of instances that the model correctly identified as positive out of all actual
positive instances. The mathematical representation is:

Recall =
TP

TP + FN
(2.6)

In the medical field, recall is critically important when the implications of FN are severe.
For example, when it comes to the early detection of diseases, a high recall signifies
that the model identifies most of the real cases while minimizing the number of missed
cases. This is crucial as it ensures that patients with the disease receive timely treatment,
potentially improving their prognosis.

F1-score

The F1-score is the harmonic mean of precision and recall, providing a balanced measure
of the model’s performance in terms of both FP and FN. It is calculated as:

F1-score = 2× Precision × Recall
Precision + Recall

(2.7)

In the medical field, the F1-score becomes particularly useful when both FP and FN
have serious consequences, and a balance between precision and recall is desired. For
instance, when diagnosing life-threatening conditions, a high F1-score implies that the
model effectively identifies true cases while minimizing both false alarms and missed
cases. This balance ensures that patients receive appropriate diagnosis and treatment
while also preventing unnecessary procedures for patients without the condition.

Accuracy

Accuracy is a basic assessment parameter that measures the proportion of instances
correctly classified by the model. It is calculated as:

Accuracy =
TP + TN

TP + TN + FP + FN
(2.8)
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In medical diagnosis, accuracy can be used to gauge the overall performance of a model in
correctly identifying both positive and negative cases. However, it may not be the most
appropriate metric when dealing with imbalanced datasets, where one class is significantly
more prevalent than the other. In such scenarios, a high accuracy might be misleading
as the model could achieve a high score by simply predicting the majority class.

Specificity

Specificity, also known as the TN-Rate, measures the proportion of negatives that are
correctly identified as such. It is mathematically represented as:

Specificity =
TN

TN + FP
(2.9)

In the medical field, specificity is vital when the cost of FP is high. For instance, in
disease screenings, a high specificity indicates that the model correctly identifies a large
proportion of healthy cases while minimizing the number of false alarms. This can help
reduce the stress and unnecessary medical procedures for healthy patients.

Receiver Operating Characteristic (ROC) Curve and Area Under the Curve
(AUC)

The Receiver Operating Characteristic (ROC) curve is a graphical illustration of the
performance of a classification model across different decision thresholds. It plots the
TP-Rate (recall) against the FP-Rate (1 - specificity) for various threshold values. The
ROC curve provides a visual way to assess the trade-off between sensitivity and specificity,
thereby helping identify the optimal decision threshold for a given application, see figure
2.9.

The area under the ROC curve (AUC) is a scalar value that summarizes the overall
performance of the classification model. An AUC of 1 indicates perfect classification,
while an AUC of 0.5 corresponds to random chance. A higher AUC value denotes better
classification performance, making it a valuable metric for comparing different models or
assessing the effectiveness of feature extraction and learning strategies in WSI analysis.
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Figure 2.9: ROC-curve
showing where the "perfect
classifier" would be. The
goal is for the classifier to
have a low false positive
rate and a high true posi-
tive rate. This figure was ob-
tained from Wikimedia Com-
mons. The original illus-
tration was created by cm-
glee, MartinThoma, and is in
the public domain. Source:
Wikimedia Commons.
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Chapter 3

Data Material

This chapter introduces the datasets provided by Stavanger University Hospital from
2022 and a new dataset from 2023. Additionally, it covers the provided annotations and
the utilization of the data in this study.

3.1 DD: Dataset used in Diagnosis Prediction and Localiza-
tion

The dataset used to train the model for diagnosis prediction and localization (DD - Data
Diagnosis and Localization) was, provided by Stavanger University Hospital in 2022. It
consists of 90 Whole Slide Images (WSIs) scanned with a Hamamatsu Nanozoomer s60.
Each WSI has an associated diagnosis label (benign nevus, lentigo benign or malignant
melanoma) provided by a pathologist working at the hospital. The pathologist also
annotated each slide with different features, such as the location of benign, malignant
melanocytic lesions and/or normal tissue.

The dataset was divided into three subsets: a training set (DDTrain), a validation set
(DDV al), and a test set (DDTest). The labels benign nevus and lentigo benigna were
merged into a single category, "benign nevus." The distribution of WSIs across the three
sets based on labels can be found in Table 3.1.
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Set DDTrain DDV al DDTest DD

Benign Nevus 38 4 5 47
Melanoma 35 4 4 43
Total 73 8 9 90

Table 3.1: The number of WSIs provided to the diagnosis thises [3] is shown in this table. Each
set is based on an image-based diagnosis.

3.2 DP : Dataset used in Prognosis Prediction

The dataset used for prognosis, denoted as DP , was provided by the Stavanger University
Hospital in 2022. It consists of 52 WSIs obtained from different patients. All of the
WSIs represent patients diagnosed with malignant melanoma who underwent a follow-
up examination after a 5 years-period. The WSIs in the dataset are labeled with weak
labels indicating the prognosis results of the follow-up. The prognosis was determined
by the presence of metastasis.

The dataset is equally distributed of 26 patients with good prognoses and 26 with bad
prognoses. Alongside the WSIs, included annotations provided by a pathologist, are
stored in an XML file.

To create the dataset, a stratified 5-fold cross-validation approach was employed. The
data was divided into five iterations of training and validation using up to 250 patches
per WSI.

3.3 Annotation

Both DD and DP datasets were in addition to the weak labels, provided annotations
around ROIs or features by a pathologist at Stavanger University Hospital. These anno-
tations were created using the University of Stavanger’s in-house developed web-based
annotation tool for histological images (annotation tool). The annotations were exported
as XML files containing polygon coordinates and tags corresponding to the features.

An annotation protocol was established upfront through collaboration between expert
pathologists and experts in image processing and AI development at the University of
Stavanger. The protocol aimed to provide some annotations on ROI and lesions for all
patients while minimizing time spent on delineating borders accurately, as displayed in
fig 3.1.
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Figure 3.1: Example on an annotated WSI consisting of three slices of the same nevi. Each
annotated region is provided with a tag telling if the area is malign, benign, or normal tissue.
Each WSI is also provided with a patient-based diagnosis.

3.4 DNew: Dataset from 2023

The dataset used for this thesis, denoted as DNew, consists of a total of 243 WSIs obtained
from different patients. The data was collected from Stavanger University Hospital and
consists of 110 patients diagnosed with a benign nevus and 133 patients diagnosed with
malignant melanoma, see Tabel 3.2. Among the patients with melanoma, 10 patients were
diagnosed with a metastasis prognosis, while 101 patients had no metastasis prognosis
based on a 5-year check-up. Each WSI in the dataset is given a weak label, indicating
the diagnosis and/or prognosis of each corresponding patient.

The data set DNew is divided into two subsets: a validation set (DNewV al) and a test set
(DNewTest). The test contains 40 WSIs, where 18 of them are benign and 22 malignant.
Of the malignant 20 are labeled with metastasis and 2 with no metastasis.
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Set DNewV al DNewTest DNew

Benign Nevus 92 18 110
Melanoma 111 22 133
Total 203 40 243
Metastasis 10 2 12
No Metastasis 101 20 121

Table 3.2: The dataset DNew provided for this thesis. Divided up into a validation DNewV al

set and a test set DNewTest.

3.4.1 Artifacts

Some WSIs contain artifacts in the form of black stains from pen markings, Figure 3.2
(a). Other artifacts could be light areas affected by the scanning, Figure 3.2 (b). These
artifacts should be taken into consideration when analyzing the model for diagnosis
prediction and localization [18].

(a) Artifacts caused by black stains. (b) Artifacts caused by scanner.

Figure 3.2: Artifacts caused by the black stains and scanning of the WSIs.
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Chapter 4

Methods

This chapter presents a detailed overview of the methodologies employed in this thesis.
The proposed pipeline comprises three main steps: preprocessing, diagnosis prediction
with lesion localization, and prognosis prediction. Each of these stages is thoroughly
described to ensure a comprehensive understanding of the methodology.

4.1 Overview

The proposed method is illustrated in Figure 4.1. The initial step of the pipeline involves
preprocessing, which is essential due to the large size of the Whole Slide Images (WSI).
The preprocessing phase primarily focuses on background segmentation and extracting
patches from the tissue regions within the WSI.

The subsequent step involves using the extracted patches as input for the diagnosis
and localization model. This model utilizes pre-trained weights from previous work [3].
The output from the model contains a multi-class prediction for each patch: malignant,
benign, and normal tissue. To ascertain the diagnosis prediction for the entire image, the
ratio of malignant patches is examined. If the ratio of malignant patches exceeds a given
threshold (tr), the WSI is predicted as malignant. Conversely, if the ratio falls below tr,
the WSI is predicted as benign. If the WSI is predicted as malignant, the malignant tiles
are used as input for the next stage: prognosis prediction.

The prognosis prediction model is responsible for providing a binary prediction for a
patient’s prognostic outcome after a five-year period. This model uses pre-trained weights
from earlier works [4]. It was trained on a limited dataset of WSIs containing only
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malignant diagnoses. Each patch prediction is stored, and the image is then predicted
based on the ratio between patches predicted as good and bad prognoses. If the ratio is
greater than a threshold, the image is predicted as having a poor prognosis.

Figure 4.1: Overview of the pipeline for this project. The pipeline contains three main parts:
Preprocessing, diagnosis with localization, and prognosis. This overview is simplified and is
created to give a comprehensible overview of the workflow in this pipeline.
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4.2 Previous work

This project is built upon two master theses from 2022 [3][4]. The first project was
assigned to Roger Amundsen [3], with the objective of training a model to detect and
localize lesions and predict a diagnosis (benign lesion or melanoma) using a dataset DD

provided by the Stavanger University Hospital (3.1). The second project was assigned to
Christopher Andreassen [4], who trained a model to predict the prognosis of malignant
melanoma using a different dataset DP (3.2). For each WSI in both datasets, a weak
label was provided, indicating the known diagnosis or/and prognosis, and an annotation
showing the lesion’s localization. The diagnosis label specifies if the patient had cancer
or not, and the prognosis label is based on whether a patient with cancer experienced
metastasis within five years or not. This section will explain the work done by each of
them.

4.2.1 Diagnosis and Localization Model

The diagnosis model presents a method to predict patches as either normal tissue, benign
nevus, or melanoma and provides an overview of these predictions. Additionally, the
model calculates an image-based prediction of the WSI based on the ratio of malignant
pixels. The model utilizes the VGG16 architecture with pre-trained weights and is fine-
tuned on WSIs provided and annotated by Stavanger University Hospital. The DD

dataset consisted of 93 WSIs, which were divided into DDTrain, DDV al, and DDTest

as explained in Chapter (3.1). All images were assessed by a pathologist and given a
patient-based diagnosis label of either benign or malignant. In addition, the pathologist
provided a rough annotation of the lesion in all WSI.

Numerous models were trained, and the most promising one was selected for incorpora-
tion into this project. The multi-class model was specifically designed to predict three
classes "Lesion Benign" (LB), "Lesion Malignant" (LM), and "Normal Tissue" (NT),
while the binary-class model was trained to predict only LB and LM.

Table 4.1 presents an overview of the performance of the two multi-class models (16 and
17), along with a binary-class model for the purpose of comparison. The table presents
F1 scores and accuracy for the three classes (LB, LM, and NT) as predicted by the two
multi-class models. Additionally, LB and LM for the binary-class model. The F1 score
reflects the model’s ability to correctly recognize the different tissue types compared
to the labels for the annotated regions. Examining the table, model 17 performs less
accurately when predicting LB and LM, but outperformed the other model in detecting
NT. Model 17 was chosen for this thesis because it performed the best when introduced
with unseen tissue.
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Model Accuracy F1LB F1LM F1NT Epochs
Model 10 0.9813 0.9702 0.9864 - 8
Model 16 0.9706 0.9572 0.9865 0.5399 9
Model 17 0.9663 0.955 0.9799 0.5814 8

Table 4.1: Tabel shows one binary-class model and the two multiclass models from R.Amundsen
thesis [3]. F1 scores for the three classes are shown: Lesion Benign (LB), Lesion Malignant (LM),
and Normal Tissue (NT). The models was evaluated on DDV al.
Values are collected and unaltered from [3].

Model 17 is a multi-class model designed to predict three classes: benign, malignant, and
normal tissue. The model proved to be the best overall model. During its development,
experiments were performed to find the optimal thresholds for making predictions at the
patch level (for assigning a class to a patch) and on the image level (to determine patients
with melanoma).

The model’s output layer uses a softmax function that produces a probability vector, p̂,
indicating the likelihood of the patch belonging to a specific class LB, LM, and NT. If the
maximum probability in the vector is greater than or equal to the threshold tp, the class
with the highest probability is chosen for that specific patch. If the maximum is below
the threshold tp, the patch is classified as "tissue". ROC and precision-recall curves were
examined to find the optimal threshold on patch level tp for each model, displayed in
Figure 4.2. Based on the results obtained by R.Amundsen [3], a patch threshold value
of tp=0.999 was found to be the best threshold for this model.
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Figure 4.2: ROC and Recall/Precision from R. Amundsen’s experiments to find the best patch-
level threshold for the different models. model 17 with tp= 0.999 was used.
Values are collected and unaltered from [3].

The patient-level classification ŷs was found by using the best model and corresponding
tp to find the best ratio threshold tr. To classify a WSI, the ratio of malignant patches
(Rmp) was computed using equation 4.1. If the MBrate ratio exceeds the threshold tr
the WSI is classified as malignant, and if the ratio is below the threshold it is classified
as benign, as shown in 4.1.

MBrate =
Malignant Area

Lesion Area
=

∑
p ŷpM∑

p(ŷpM + ŷpB)

ŷs =

{
Malignant, if MBrate ≥ tr

Benign, else
(4.1)

Dataset DDV al was used to find classification results ŷs with a selection of thresholds tr to
decide the optimal threshold to use. To avoid false positives (malignant WSI predicted as
benign), the ratio threshold (tr) was determined based on the point where no more false
positives (benign WSI predicted malignant) were observed, at tr=0.04. This threshold
provided 100% correct patient-level classification on the validation set DDV al, effectively
ensuring accurate predictions and minimizing the risk of misclassification.

By using the best model obtained from the training data and the best threshold from
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the validation phase, R. Amundsen was able to achieve 100% accuracy on patient-level
classification on the test set DDTest consisting of nine WSIs. This result indicates that
the model accurately classifies them as either benign nevus or melanoma.

Moreover, for localization of the lesion, four WSIs from DDTest were used. The evaluate
the precision of the model, the entire tissue within each WSI was fed into the model,
generating predictions for each patch in the WSI. The model discovered both benign
and malignant classifications with great precision when compared to the provided anno-
tation, as shown in Table 4.2. This shows the model’s ability to accurately locate and
differentiate between different lesion types within the WSIs.

Metrics Recall Precision F1-score

Lesion Benign 0.8378 0.9999 0.9117
Lesion Malignant 0.9354 0.9999 0.9666

Table 4.2: Results on the diagnostics and localization model when it comes to localization of
the lesions. Performance metrics for the two classes of lesions, benign lesions, and malignant
lesions based on the associated annotations [3].

4.2.2 Prognosis Model

The prognostics model presents a methodology for predicting whether a patient diagnosed
with malignant melanoma will experience metastasis within five years, i.e. a spread of
the cancer to a different part of the body, based on follow-up information. Patients
who develop metastatic melanoma within this timeframe are classified as having a poor
prognosis, while those who do not are categorized as having a good prognosis.

The prognostics method utilized the VGG16 architecture with pre-trained weights on
ImageNet, augmented with fully connected layers, including two dense layers of 4096
neurons each and a final layer for the binary prognosis output [3].

The network was trained, validated, and tested on a dataset DP of a total of 51 WSIs from
different patients with known melanoma prognoses from Stavanger University Hospital.
Weak labels of prognosis and annotation of the lesion were also provided for this thesis,
as discussed in Chapter 3.2. The output of this classification was subsequently used
to predict the overall prognosis for each WSI. Patch-based predictions, in the case of
predicting the prognosis of patches, are challenging as there is only truth data at a
patient level available. All extracted patches within a WSI will then inherit the patient
truth label.

There was done some experiments involving training on different magnification levels of
the patches to find the optimal model, using cross-validation. The best performing model
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turned out to be the model trained on only one magnification level (mono-scale), using
20x, see results in Tabel 4.3.

Iteration Recall 1-Specificity F1-score Accuracy AUC

Total: 0.8846 0.4400 0.7667 0.7255 0.81

Table 4.3: Results from the prognostics model predicting prognosis of WSIs, only showing the
total iterations of the dataset. Using magnification level 20x, and threshold set to 0.3720 [4].

An overview of the model trained on multiple magnifications (multi-scale) is displayed
in Figure 4.3. The best performing model was a mono-scale, trained only on one mag-
nification level (20x), with a single backbone, and the output of the feature embedding
is directly fed into the classifier. Each patch going through the network generates a
prediction of either 0 or 1, indicating a bad or good prognosis, respectively.

Figure 4.3: Overview over the multiscale model. The output feature embedding from mono
scale models, as used in this thesis, is fed directly into C using a single backbone..
Figure are reprinted and unaltered from[5] with permission from the author.

The threshold for classifying WSIs based on image-level predictions was decided by using
a ROC curve, displayed in Figure 4.4. Aiming to minimize false negative predictions, the
threshold was chosen based on relatively high sensitivity and a high AUC. The selected
threshold was established at 0.3720. WSIs are predicted to have a bad prognosis if the
proportion of patches predicted as "bad" exceeds that threshold, while those below the
threshold were classified as having a good prognosis.
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Figure 4.4: ROC and AUC from the results on mono-scale using all iterations from the dataset
DP .
Image are collected and unaltered from C. Andreassens’ thesis [4].

4.3 Pipeline - Diagnosis, Localization, and Prognosis

This section presents the proposed pipeline and provides a comprehensive explanation of
each step involved in preprocessing, diagnostics, localization, and prognosis. The primary
objective of this thesis is to integrate the diagnosis and prognosis tasks into a unified
pipeline, specifically focusing on WSIs without annotations provided by a pathologist, as
depicted in Figure 4.1.

The main goal is to evaluate the two models using both old and new data sets, generate
a diagnosis output that aligns with the input format used to predict prognosis, and
finally improve the result using the new dataset by adjusting thresholds. To facilitate
this process, a separate directory was created exclusively for storing masks generated for
predicted malignant melanoma making it possible to unify the models.
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4.3.1 Preprocessing

Preprocessing is a crucial step, especially for high-resolution images such as Whole
Slide Images (WSIs), which encompass a vast amount of pixel data and demand time-
consuming processing. By utilizing preprocessing techniques like color thresholding and
morphological operations, the input region into the model can be minimized. This re-
duction leads to a smaller number of patches being fed to the model, ensuring that it
receives patches containing more pertinent information for distinguishing between malig-
nant tissue and other tissue types. Figure 4.5 provides an overview of the preprocessing
steps. The segmented region is depicted as an image in the top right corner of the figure.
The region of interest is displayed in white, while the background appears black. This
is referred to as the tissue mask throughout this chapter. Tabel 4.4 shows the different
methods used along with authors and whether or not they are modified.
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Figure 4.5: Overview of the preprocessing of the WSIs in this work. The WSIs are loaded,
then a color threshold is used in the HSV color channels for background segmentation. The
foreground mask is then eroded and dilated. Erosion ensures that small separated areas of the
foreground mask are removed. The dilation fills in small gaps in the mask, resulting in a more
coherent foreground mask. The foreground mask is then used in combination with the original
WSI to create a WSI image only containing the region of interest. Lastly, the ROI is divided
into patches of 256x256 pixels. The upper left coordinate for each patch is stored and used by
the inference function to extract the patches.

The proposed preprocessing method generates a binary tissue mask of the background
and tissue by converting the color representation from RGB to HSV format and then
applying a threshold on the Hue channels. Compared to the RGB model, the HSV color
model offers a more reliable approach for manipulating and representing colors, as ex-
plained in Section 2.2.2. Pixels with hue values outside the range of 100-180 are identified
as belonging to the background. This threshold effectively segments out the majority of
the area that is not affected by the H&E stain. Once the tissue has been separated from
the background, erosion, and dilation techniques are applied. Erosion operations are
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responsible for removing small regions, while dilation unifies areas, resulting in a more
consistent tissue mask, explained in background 2.2.2.

Both the diagnosis and prognosis model used in this thesis uses VGG16 architecture. As
mentioned in chapter 2.2.4, the VGG16 architecture uses 224x224 pixels as input. To
convert the patch size to the correct input format, each patch is cropped from 256x256
to 224x224. This is illustrated in Figure 4.6.

Figure 4.6: Depicting the cropping
of a patch from 256x256 to 224x224.
The VGG16 architecture uses 224x224
pixels as input. To convert the patch
size to the correct format, each patch
was cropped from 256x256 to 224x224.

As mentioned earlier in Section 3.4, the dataset DNew only contains image-level labels.
The objective of creating the tissue mask is to isolate the tissue, hence removing areas
that do not provide any relevant information for the model.

Figure 4.7: Tissue mask before morpholog-
ical operations.

Figure 4.8: Tissue mask after dilation and
erosion.
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After the tissue mask is generated, the ROI has to be processed by the model. This
is done by patch extraction. Extracting patches from Whole Slide Images (WSIs) is
essential due to the challenges associated with processing an entire gigapixel image at
its full resolution in a single step. The patch extraction method employed in this work,
initially developed by Rune Wetteland [32], was modified by R.Amundsen to address
specific challenges. These modifications include using only the areas inside the tissue
mask to scan for valid patches, using dynamic τ , and invalidating patches containing a
considerable amount of white backgrounds.

The preprocessing method extracts patches from tissue masks. After the valid patches
are found, the upper left coordinate for each valid patch enables multi-level patch extrac-
tion at varying magnification levels (2.5x, 10x, 20x, and 40x). This approach provides
the possibility of a wider field of view and a more comprehensive understanding of the
surrounding tissue context. By using a high magnification level for the patch extraction,
more patches can be extracted.

All patches have a consistent size of 256x256 pixels. Due to their square shape, some
patches inevitably extend beyond the boundaries of the tissue masks. To determine if a
patch is valid, an area threshold ϕ is employed, specifying the percentage of overlap with
the tissue mask required for a patch to be considered valid. In this case, the threshold is
set to 0.7. This means if less than 70% of the tissue mask is inside the patch, it will not
be considered valid.

Finally, valid patches are extracted, and their coordinates are stored as a dictionary in a
pickle file for efficient storage and retrieval during further analysis and processing in this
study. Figure 4.9 shows an example of a WSI and its valid tiles.
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(a) WSI before preprocessing and tile extrac-
tion

(b) WSI after foreground segmentation and di-
vided into valid patches.

Figure 4.9: Showing valid patches after extracting patches from a WSI. Image (a) is showing
the WSI before preprocessing, and image (b) is after valid patches are determined. Leaving out
background patches without important information will make the computation easier and more
effective.

The preprocessing utilizes code from previous projects. Authors of the code and a list of
the files used and modified during preprocessing are presented in Table 4.4.

Method Author Comment

Background segmentation C.Andreassen Modified
Patch extraction Wetteland, modified by R.Amundsen Unaltered

Remove background patches R.Amundsen Unaltered
Patch normalization R.Amundsen Unaltered

Table 4.4: This table shows an overview of the methods used in developing the model responsible
for preprocessing. The original author and modification status are also shown.

4.3.2 Step 1: Melanoma Detection

Upon the successful completion of the preprocessing phase, the valid patches are inputted
into the diagnosis and localization phase. Figure 4.10 illustrates the components of
the pipeline responsible for localizing malignant patches and providing an image-level
prediction.
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Figure 4.10: Overview of the pipeline’s diagnosis and localization process. The model receives
input from all of the valid patches discovered during preprocessing. The output consists of a
prediction of each patch, and a mask displaying the location of the predictions. To predict the
patient-level diagnosis, the ratio of malignant patches is compared with a threshold. The malig-
nant patches for the WSIs that were predicted cancerous will be saved for further examination.

The diagnostic model employs the VGG16 architecture and pre-trained weights from R.
Amundsen’s master thesis [3], as detailed in section 4.2.1. model 17 demonstrated the
best performance (F1-score 0.7535), as displayed in table 4.5.

Model 10 11 12 14 15 17

F1 0.6613 0.7102 0.6270 0.5139 0.7069 0.7535
tp 0.9999997 0.99999 1.0 0.99 1.0 0.999

Table 4.5: Each models’ best F1-score and corresponding patch-based threshold tp. The results
are patch-level prediction (ŷp) using all patches of the validation set. Results from R.Amundsens
thesis [3].

Initially, an instance of model 17 is initialized by loading the pre-trained weights. The
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valid patches from preprocessing are retrieved using the coordinates for each patch in
conjunction with the tissue mask.

Inference is then executed on each valid patch and stored in a dictionary. As Model 17 is
capable of multiclass prediction, the output (ŷip) consists of an array of three prediction
values for each patch, where benign nevi (B), malignant nevi (M), and normal tissue
(NT) represent the outputs as depicted in Equation 4.2.

ŷip =

 ŷpB
ŷpM
ŷpNT

 (4.2)

The patch-level prediction is denoted as ŷip, where p denotes the patch, and i denotes
the current image. The sum of all elements should equal 1, as demonstrated in Equation
4.3. ∑

i

ŷip = 1 (4.3)

To decide whether a patch is malignant, a threshold tp is employed. This threshold
determines which prediction values of ŷpM and ŷpB should be considered melanoma and
benign, respectively. The third prediction in ŷip is excluded and grouped with other
tissue because normal tissue predictions are irrelevant in this case where the true value
of each patch is unknown. In this thesis, the malignant and benign predictions are in
focus. The patch-level thresholding is illustrated in Equations 4.4, 4.5, and 4.6.

ŷpM =

{
1, if ŷpM ≥ tp

0, else
(4.4)

ŷpB =

{
1, if ŷpB ≥ tp

0, else
(4.5)

ŷpNT =

{
1, if ŷpM ∧ ŷpB ≤ tp

0, else
(4.6)

Thresholding tp is utilized to decide if the current patch is predicted as benign or malig-
nant. If neither of these prediction values satisfies the tp threshold, the tissue is assigned
as normal tissue.
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Although the model can predict normal tissue, it does so with an F1 score of only 0.5814
(Table 4.1). For the purpose of this thesis, differentiating between normal tissue and other
tissue is unnecessary and may lead to the exclusion of numerous patches. Consequently,
a patch is assigned the label NT if it does not predict B or M.

The image-level prediction ŷ is determined by first calculating the ratio MBrate of patches
predicted as malignant and benign. A threshold value is then used to ascertain ŷ. Equa-
tion 4.7 demonstrates how the MBrate was calculated in [3].

MBrate =

∑
p ŷpM∑

p(ŷpM + ŷpB)
=

Malignant Area
Lesion Area

(4.7)

In this thesis, an alternative method for calculating the MBrate is presented. Instead
of only considering the lesion when calculating the malignant rate present in a WSI,
all tissue regions can be used in the denominator to obtain a new rate, referred to as
the Melanoma-Tissue rate (MTrate). The new method considers the rate of malignant
patches relative to all valid patches in the image, as shown in Equation 4.8.

MTrate =

∑
p ŷpM∑

p(ŷpM + ŷpB + ŷpNT)
=

Malignant Area
All Tissue Areas

(4.8)

Table 4.1 show that the F1LB-score (benign patches) was 0.9550 and F1LM -score (ma-
lignant patches) was 0.9799, while F1NT -score (normal tissue patches) was 0.5814. The
model performed well in detecting both malignant and benign patches on the DDV al set.
It is suggested here that basing the malignant ratio only on the lesion can introduce
an extra layer of error into the equation. If the model is not able to detect the benign
patches correctly, the MBrate will consequently be largely impacted. MTrate is suggested
as a more reliable option. Since there was no annotation provided for the precise area
encompassing all of the tissue, it is not possible to calculate performance metrics that
would evaluate the accuracy of the tissue segmentation and patch extraction. However,
a visual examination suggests that background segmentation and finding valid patches
containing tissue are reliable. For a visual representation of the patch extraction, see
Figure 4.9.

For simplicity, the MBrate and MNrate are going to be referred to as Mrate when using
common equations for both methods. The value used for thresholding the Mrate is
denoted as tr (threshold rate). This value specifies the minimum percentage of the lesion
that must be predicted as malignant in order to classify the Whole Slide Images (WSIs)
as malignant, as illustrated in Equation 4.9.
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ŷ =

{
1, if Mrate ≥ tr

0, else
(4.9)

In R. Amundsen’s thesis [3], tr of 0.04 in combination with a tp of 0.999 was found
to perform well on model 17. The dataset DDV al used for determining the threshold
contained nine WSIs, which may have resulted in too few data points to determine the
general optimal thresholds.

The portion of this pipeline that is responsible for diagnosis prediction and localization
employs code from R. Amundsen’s thesis [3] with modifications. An overview of the
functions used in this part of the pipeline is presented in Table 4.6.

Method Author Comment

Model initialization R. Amundsen Unaltered
Running inference R. Amundsen Modified

Patch-level classification R. Amundsen Modified
Image-level classification R. Amundsen Modified

Prediction storage R. Amundsen Modified

Table 4.6: This table provides an overview of the methods used in developing the model
responsible for diagnosis, along with the original author and modification status.

4.3.3 Step 2: Melanoma prognosis

Once all of the images have been predicted and the malignant patches have been saved
for their corresponding WSIs, the prognosis model uses these patches for further analysis.
This process involves merging the predicted mask with the tissue mask and generating
a mask that identifies the specific region(s) the prognosis model will make predictions.
See Figure 4.11 for an illustration of this process.
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Figure 4.11: Overview of the pipeline’s prognosis process. The model receives all the malignant
patches extracted from a predicted malignant WSI and employs pre-trained weights to provide
a prognosis for each valid patch. The overall patient-level prediction is determined based on the
ratio of predicted "bad" patches within an image, compared with a predefined threshold.

The first step involves using the mask derived from the malignant pixels to extract new
patches. In order to ensure compatibility with the prognostic model’s expected input
format, the mask is adjusted accordingly. However, some of the malignant patches will
be discarded during the process of extracting valid tiles. Malignant patches from the
mask will be discarded in cases where 70% or more of the patch lies outside of the
extracted patches. By removing patches where the majority of the area falls outside the
region, the model can prioritize analyzing patches that provide meaningful insights for
prognosis assessment. To illustrate this process, Figure 4.12. provides an example of this
approach.
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(a) Predicted image from the diagnosis. The
red area indicates predicted melanoma and the
green area is predicted benign.

(b) Valid tiles from the malignant mask com-
bined with the WSI.

Figure 4.12: Figure (a) depicts an illustration of a predicted malignant WSI, while (b) demon-
strates the valid patches extracted from the predicted malignant mask. These patches are used
as input for the prognosis model.

For each patch prediction, the classifier assigns a prognosis label using a binary output.
A label of "0" indicates a bad prognosis, while a label of "1" indicates a good prognosis.

In this thesis, the same threshold value is used to predict a patient-level prognosis as the
optimal threshold selected in the Method described in 4.2.2. The specific threshold value
t was set at 0.3720 and is used for comparison with the ratio of metastasis, denoted as
Rmeta, to determine the prognosis of a WSI. The output provides the predicted prognosis
of a WSI, denoted as ŷp. If the ratio Rmeta exceeds the threshold t, the WSI will be
predicted to have a "bad" prognosis. Conversely, if the ratio falls below the threshold t,
the prognosis is considered as being "Good", as shown in Equation 4.11.

Rmeta =
#predicted metastasis patches

#All valid patches
(4.10)

ŷp =

{
0, if Rmeta ≥ t

1, else
(4.11)
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Method Author Comment

Extract patches C.Andreassen Modified
Running inference C.Andrassen Unaltered
Predict inference C.Andreassen Unaltered

Table 4.7: This table provides an overview of the methods used in developing the model
responsible for prognosis, along with the original author and modification status [4].
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Chapter 5

Experiments and Results

This chapter presents the results of the experiments performed in this thesis. The diag-
nosis and prognosis model was first evaluated on the old dataset. The diagnosis model
was then evaluated on the new dataset, providing a starting point for subsequent experi-
ments. Based on the result, it was concluded that new parameters for the diagnosis model
were necessary to create the pipeline. The parameters were found using the validation
set DNewV al. Lastly, the new parameters were used for evaluating the entire pipeline.

5.1 Validation of the Diagnosis and Prognosis Model on old
data set

It is crucial to evaluate the performance of each model separately before developing a
pipeline. The evaluation process begins with a separate assessment for each model.

5.1.1 Validation of the Diagnosis Model on DDTest

As mentioned in Section 3.1, the DDTest dataset consists of 9 WSIs; 5 labeled benign
and 4 melanoma. Earlier tests on this dataset using parameters tp = 0.999 and tr = 0.04
provided an accuracy of 100% [3]. Using identical parameters on the same dataset should
result in the same accuracy as it did. This emphasizes that the model is the same as used
in R. Amundsen’s thises [3]. The result from the run is displayed in Table 5.1, and the
confusion matrix in Figure 5.1 shows the distributions of predictions against the labels.
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It is worth noting that the confusion matrixes used in this thesis have predictions along
the x-axis and labels at the y-axis. This is emphasized to avoid confusion.

(a) Displaying the true value on the y-axis and
the number of predicted WSIs on the x-axis.

(b) Normalized. Showing percentage in deci-
mal format.

Figure 5.1: CM of the diagnosis model on dataset DDTest. Thresholds tp = 0.999 and tr = 0.04
were used, which were the most promising thresholds for the diagnosis model, on DDV al.

Metric Specificity Precision Recall Accuracy F1-Score
Value 1.0000 1.0000 1.0000 1.0000 1.0000

Table 5.1: Performance metrics from diagnosis model on the DDTtest. Thresholds used were
tp = 0.999 and tr = 0.04.
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5.1.2 Validating the Prognosis Model on DP

In the next experiment, the prognosis model is evaluated on the same dataset as used for
training (DP ). The dataset contains annotations for all but one WSI. This experiment
was performed by C. Andreassen in his thesis [4]. The result from his run was 100&,
which will be tried to reproduce. The annotations for the images are used as a mask
when finding valid patches for this run.

The result from the experiment is shown in Table 5.2, which gave as expected a 100%
accuracy. Figure 5.2 shows the distribution of predictions against labels. The progno-
sis model performed as expected. This validates that both models work and perform
according to what was documented in previous work [3][4].

(a) Displaying the true value on the y-axis and
the number of predicted WSIs on the x-axis.

(b) Normalized. Showing percentage in deci-
mal format

Figure 5.2: CM of the prognosis model on dataset DP . The annotation masks provided were
used as input masks for finding valid patches to run inference on.

.

Metric Specificity Precision Recall Accuracy F1-Score
Value 0.6154 0.7143 0.9615 0.7885 0.8197

Table 5.2: Performance metrics from prognosis model on the DP using the annotated masks
as input for finding valid patches.
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5.1.3 Evaluating the Pipeline on D̂P

As both models are evaluated, they will be tested on a dataset containing the training
set for the prognosis model. This experiment tests both models’ initial ability to be
integrated into a pipeline without finetuning. Moreover, if the diagnosis produces correct
patch predictions for the WSIs, the prognosis model should be provided with the same
ROI. Conclusively, the accuracy should be 100%.

DP contains some of the images used for training and validating the diagnosis model. To
give a more fair result, it was decided to exclude these images and define a new dataset,
D̂P .

Defining the test set for DP : D̂P

DD is the dataset used for the diagnosis model. The dataset used for training and
evaluating the model is denoted DDTrain and DDV al, respectively. The dataset DDTest

is the dataset used for testing the prognosis model. A definition of DD is shown in
equation 5.1.

DD = DDTrain ∪DDV al ∪DDTest (5.1)

In equation 5.2 hatDP is defined.

D̂P = DP \ (DDTrain ∪DDV al) (5.2)

The modified dataset D̂P is obtained by removing any data from DP that is present in
either DDTrain or DDV al, as depicted in Figure 5.3.
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Figure 5.3: A Venn diagram demonstrating D̂p , illustrated in blue, with the execution of the
dataset DDV al and DDTrain

It was decided by C. Andreassen that the limited number of WSIs provided (DP ) was
going to be used for training. This resulted in all WSIs from the dataset being introduced
to the prognosis model [4].

Diagnosis and Prognosis Inference on D̂P

In the following experiment, the inference was performed on D̂P , containing 38 WSIs
with melanoma; 17 of the images labeled bad prognosis (metastasis) and 21 labeled good
prognosis. The diagnosis model was first used for generating the malignant patches. The
malignant patches were then fed into the prognosis model. The diagnosis model used
thresholds found to be optimal by R. Amundsen [3] in his thesis, which was tp = 0.999 and
tr = 0.04. As mentioned previously, if the diagnosis model generates identical patches
from the annotated masks, the result should be the same (accuracy=100%).

All 38 WSIs were predicted to be malignant by the diagnosis model, resulting in all WSIs
being presented to the prognosis model. This means that the diagnosis model predicted
all images correctly, resulting in an accuracy of 100%.

Figure 5.4 illustrates the integration between the diagnosis output and the prognosis in
the pipeline. On the figure to the left side, a prediction mask generated by the diagnosis
model is shown. The red pixels within the mask represent malignant patches identified by
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the diagnosis model. These malignant patches are then extracted and combined to create
the malignant mask, which is then used as input for the prognosis model. The figure
on the right depicts the resulting patch extraction after preprocessing for the prognosis
model. These patches are selected based on the malignant mask, ensuring that only
relevant regions are considered for further analysis by the prognosis model.

(a) A WSI is provided to the diagnosis model,
and patch predictions are generated. The red
pixels represent malignant predictions.

(b) Patch extraction for prognosis model, using
diagnosis prediction as input. Each pink square
represents a patch predicted malignant by the
prognosis model. These patches are then used
as input for the prognosis model.

Figure 5.4: Integration between the diagnosis output and the prognosis. Figure (a) represents
the predicted patches from the diagnosis model, which collectively form the malignant mask.
Figure (b) illustrates how the prognosis model uses the malignant mask to extract valid patches.

The confusion matrix presented in Figure 5.5 shows the results from the prognosis model
on the dataset D̂P . The results are different from the initial prognosis test using anno-
tated masks, indicating some discrepancies from the masks presented to the prognosis
model. The model still predicted all WSI labeled metastasis correctly but misclassified
nine.

58



(a) Displaying the true value on the y-axis and
the number of predicted WSIs on the x-axis.
Dataset D̂P .

(b) Normalized confusion matrix, showing per-
centage in decimal format.

Figure 5.5: Confusion matrix of results from the prognostic model on dataset D̂P using pre-
dicted masks from diagnosis model. Thresholds tp = 0.999 and tr = 0.04 were used, which were
the most promising thresholds for the model, on DDV al.

Table 5.3 displays the evaluation metrics after running the pipeline on dataset D̂P .

Metric Specificity Precision Recall Accuracy F1-Score
Score 0.5714 0.6538 1.0000 0.7632 0.7907

Table 5.3: Evaluation Metrics after running the pipeline on dataset D̂P .
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5.2 Diagnosis Inference on New Dataset with Old Thresh-
olds

In this experiment, the diagnosis model’s performance on new data will be evaluated.
The dataset used is DNew, which contains WSIs. The dataset contains 133 malignant
images and 110 benign. The initial thresholds for patch-level classification (tp) and
patient-level classification (tr) are set at 0.999 and 0.04, respectively. The thresholds
used are the same as in the previous experiment, where the model predicted all images
correctly (accuracy=100%).

The model got an accuracy of 0.6008, which corresponds to the model correctly classifying
only 60% of the WSIs. With a recall of 0.9774, the model predicts almost all melanoma
cases correctly but struggles to predict benign cases. The results of the experiment are
presented as a confusion matrix in Figure 5.6.

(a) Displaying the true value on the y-axis and
the number of predicted WSIs on the x-axis.

(b) Normalized. Showing percentage in deci-
mal format.

Figure 5.6: Confusion matrix of results from diagnosis model on dataset DNew. Thresholds
tp = 0.999 and tr = 0.04 were used, which were the most promising thresholds for the model on
dataset DDV al.

Eval Metric Specificity Precision Recall Accuracy F1-Score
Score 0.1455 0.5804 0.9774 0.6008 0.7283

Table 5.4: Results from running inference with diagnosis model on Dnew with thresholds
tp = 0.999 and tr = 0.04.
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From these results, it is evident that the diagnosis model is generalizable for new data
with the current settings. This highlights the need for further optimization of the model.
This will be done by tuning the parameters for the model.
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5.3 Optimizing Thresholds for Diagnosis Model

The previous result showcased the evident drop in performance when using the new
dataset. This could be a result of poorly chosen thresholds. The threshold for the
diagnostic model was determined using the DDV al dataset, which only contains eight
images. To enhance the model’s performance, new thresholds can be identified using
dataset Dnew. The following section will research threshold values in addition to looking
at the data distribution for the new dataset DNewV al.

5.3.1 Evaluating the Patch-Level Threshold (tp)

The first threshold to be evaluated is tp, which is used to threshold the patch-level
predictions from the diagnosis model

Values between 0.99 and 1.00 were tested. The new dataset does not contain annotation,
so a visual inspection was used to select reasonable values. The prediction masks are
highly dependent on the tp value, which is used as input by the prognosis model. This
has to be taken into account when deciding the threshold value. Figure 5.7 displays a
representative collection of WSIs from dataset DNew and the respective prediction masks
with a range of thresholds.
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Figure 5.7: Prediction masks table for the diagnosis model, representing dataset DNew. Each
column displays a WSI with its corresponding letter and diagnosis label at the top. Each row
presents the prediction masks for each WSI with the given tp on the left side. Red pixels represent
patches predicted malignant, green represents patches predicted benign, and blue are patches
predicted as other tissue.

• At threshold value tp = 0.9900, all WSIs (A-E) exhibit scattered prediction masks.

• At threshold value tp = 0.9990, a relatively accurate prediction mask is observed
with some islands, particularly for A and B. The prediction mask displays a good

63



region of malignant predictions for C, D, and E, which are labeled malignant.

• At threshold value tp = 0.9999, smaller malignant prediction regions are seen, but
islands are reduced. The prediction mask still provides a reasonable number of
patches for the prognosis model. All WSIs have a small ratio of malignant patches
compared to other tissue patches (blue). Malignant WSIs (C-E) exhibit more
isolated neighborhoods of malignant regions, while malignant patches A and B are
more isolated.

• At threshold value tp = 1.0000, the prediction mask contains few patches predicted
as malignant, resulting in a limited number of patches sent to the prognosis model.

From the figure, it was concluded that using tp = 0.999 and tp = 0.9999 for the diagnosis
model results in the most suitable prediction mask for the prognosis model.

5.3.2 Best Method for Calculating Mrate

Valuable insight can often be obtained by examining the dataset. In this section, the
melanoma-rate calculation will be evaluated based on the data distribution. The distri-
bution will be looked at as a collection with respect to each label and for each WSI.

Firstly, the data distribution for patch predictions is examined to identify an appropriate
method for patient-level prediction. Subsequently, the Receiver Operating Characteristic
(ROC) and Area Under the Curve (AUC) are employed with tp = 0.999 and 0.9999 to
find the optimal patient-level threshold (tr).

In order to achieve a good image-level classification, it is important to establish a suitable
method for deciding what rate of malignant patches have to be present in a WSI for it to
be classified as malignant. The following equation is taken from section 4.3.2 and depicts
how the Mrate was calculated in R. Amundsens’ thesis [3]:

MBrate =
Malignant Area

Lesion Area
=

∑
p ŷpM∑

p(ŷpM + ŷpB)

This thesis proposes considering all tissue areas within the WSI for analysis. As discussed
in Section 4.3.2, the calculation of Mrate can involve examining the malignant matches
in relation to all tissue areas (MTrate), as shown in the Equation below:

MTrate =
Malignant Area
All Tissue Areas

=

∑
p ŷpM∑

p(ŷpM + ŷpB + ŷpNT)
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Analyzing the Patch Distribution for DNew

To gain a better understanding of the importance of selecting an appropriate Mrate, the
distribution of patches for each prediction class in the diagnosis model with tp = 0.999
and tp = 0.9999 is presented in Figure 5.8 and Figure 5.9, respectively.

Figure 5.8: Distribution of all patches in the DNew dataset with tp = 0.999. The patches
are categorized based on the predictions made by the diagnosis model and are presented as
percentages.

For tp = 0.999, malignant patches constitute nearly 12% of all valid patches, while benign
patches account for about 2%. Other patches make up 85.9%, resulting in the following
Mrate:

MBrate =
11.9

11.9 + 2.1
= 0.850

MTrate =
11.9

100
= 0.119

This indicates a relatively high MBratio but a low MTrate.
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Figure 5.9: Distribution of all patches in DNew with tp = 0.9999. The patches are categorized
based on the predictions made by the diagnosis model and are presented as percentages.

When considering a threshold of tp = 0.9999, we obtain a mean MBrate = 0.892 and a
mean MTrate = 0.074. The mean MBrate increases, while the MTrate decreases compared
to tp = 0.999. This can be attributed to a 37.8% decrease in malignant patch predictions
and a 57.1% decrease in benign patch predictions, suggesting that the model predicts
malignant patches with higher confidence than benign ones.

To further explore the relationship between malignant and benign patch predictions,
Figure 5.10 illustrates the correlation between the total number of predicted patches and
proportions classified as malignant or benign, with respective trendlines.

66



Figure 5.10: Plot showing the number of valid patches in a single WSI on the x-axis and
the y-axis representing the number of patches predicted malignant and benign. There are two
corresponding points for each WSI (blue and red). The blue represents the number of patches
predicted benign, while the number of malignant patches is represented by red. Each plot pair
(red/blue) is a single WSI from the dataset DNewTest. Correlation between the total number
of valid patches in a WSI and the number of patches predicted malignant/benign are shown in
trendlines. The value used for selecting the threshold for the patch predictions tp was 0.999.

The trendlines provide valuable insights into the model’s behavior regarding the predic-
tion of malignant and benign patches. The observed trend reveals that the model tends to
predict more malignant patches than benign ones, indicating higher prediction confidence
for malignant patches. However, various unknown factors may influence this correlation,
necessitating further experiments using both Mrate methods before determining the most
appropriate one.
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5.3.3 Finding Optimal Patient-Level Thresholds on New Dataset

Based on the previous experiments, threshold values tp of 0.999 and 0.9999 yielded
promising results when generating prediction masks, as displayed in Figure 5.7. The
results from evaluating the Mrate methods were not conclusive, resulting in both meth-
ods being used in further experiments. In the following sections, experiments using fixed
tp and varying tr will be used for generating ROC curves and calculating the correspond-
ing area under the curve (AUC) scores. The AUC score serves as an aggregate measure
of performance, summarizing the model’s ability to distinguish between malignant and
benign patches across all possible tr thresholds. A higher AUC score indicates better
overall performance, with values ranging from 0 to 1. The experiments of finding op-
timal thresholds will be performed on the validation set DNewV al and will, in the next
section, be tested DNew to evaluate the performance of the entire pipeline.

ROC AUC for Diagnosis Model with tp = 0.999

In the following experiments, the tp value is set to 0.999, while exploring a range of
possible classification thresholds for tr. The goal is to generate two ROC plots, one for
each Mrate method. The tr, True Positive Rate (TPR), and False Positive Rate (FPR)
values for the ROC plot were autogenerated by the ‘roc_curve()‘ and ‘auc()‘ functions
from the sklearn.metrics library [26].

Figure 5.11 displays the ROC plot for the MBrate method, while figure 5.12 shows the
ROC plot for the MTrate method. Both for dataset DNewV al.

In each ROC plot, data points representing every fifth tr threshold are depicted. These
points represent the TPR and FPR for the corresponding tr thresholds. The AUC score
is provided for each ROC plot, providing an evaluation metric for the chosen threshold
tp and Mrate method.
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Figure 5.11: ROC plot diagnosis for the model with tp = 0.999 and MBrate method on
dataset DNewV al. The threshold tr denoted by a green star was used in the previous diagnosis
experiments.

The diagnosis model’s performance using the MBrate method was relatively poor across
all tested tr values. An AUC value of 0.6106 indicates that the tp threshold or MBrate

method might not be suitable for achieving desirable results. It is important to consider
that R. Amundsen’s thesis [3] employed the MBratio method with a tr ratio of 0.04,
which resulted in a remarkable accuracy of 100% on the dataset DDTest. Comparing
this to the previous experiment’s results in Section 5.2, where the same thresholds were
used, provides valuable insights. The threshold value tr used by R. Amundsen’s thesis is
denoted by a green star in Figure 5.11.
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Next, a new ROC curve with corresponding AUC was generated using the MTrate method
instead of the MBrate, as displayed in Figure 5.12. Using the same threshold tp of 0.999
and dataset DNewV al.

Figure 5.12: ROC plot for diagnosis model with tp = 0.999 and MTrate method on dataset
DnewV al. The purple star denotes a promising tr threshold used in subsequent experiments.

The model demonstrated improved performance with an AUC value of 0.6820. This ex-
periment was conducted on an identical dataset and utilized the same tp threshold. The
increase in the AUC score suggests that the MTrate method is more effective for calcu-
lating Mrate when using a threshold tp = 0.999. Internal discussions with pathologists
at SUH revealed a preference for avoiding false negative diagnoses, despite the potential
for false positives. A tr value of 0.04 was determined to be a reasonable balance between
TPR and FPR, particularly in assisting pathologists.

Table 5.5 shows the mean value and the standard deviation of the Mrate for all WSIs in
the DNewV al dataset with a threshold tp = 0.999. There is an overlap for both Mrate

methods when taking into account the standard deviation. A visual representation of
the Mrate distribution is depicted in 5.13, using the MBrate to the left and MTrate to
the right. The green and pink lines in the figure denote the threshold value tr 0.04.
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MBrate MTrate

benign WSIs 0.5866(±0.3879) 0.0717(±0.0982)

malignant WSIs 0.7706(±0.2843) 0.1176(±0.1265)

Table 5.5: Mean and standard deviation values for MBrate and MTrate methods for benign
and malignant WSIs. tp threshold used was 0.999 on DNewV al

(a) Boxplot of MBrate with tp = 0.999. The
green line denotes the threshold tr = 0.04 for
MBrate method, which was used in the previ-
ous experiment.

(b) Boxplot of MTrate with tp = 0.999. The
purple line denotes the threshold tr = 0.04 for
MTrate method, which was found to be promis-
ing from the ROC curve in the previous exper-
iment.

Figure 5.13: Box plots of MBrate and MTrate for benign and malignant WSIs with tp = 0.999.
The box (blue area) represents the interquartile range (IQR), which contains 50% of the data,
with the lower edge at the first quartile (25th percentile) and the upper edge at the third quartile
(75th percentile). The horizontal purple line inside the box marks the median value, while the
red line represents the mean value. The lines extend from the box to show the range of data
within 1.5 times IQR, and any data points outside this range are plotted as individual points.

The box plots provide visual representations of the different variations and mean values
for both benign and malignant WSIs for each Mrate method. By analyzing the boxplot,
it becomes clear that the majority of the malignant patches are correctly predicted as
malignant when using a tp = 0.999, tr = .04, and the MTrate method on the validation
set DNewV al. As seen from the ROC Figure 5.11, the threshold values tp = 0.999 and
tr = 0.04 will predict most WSIs as malignant when using the MBrate method.
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ROC AUC Analysis for Diagnosis Model with tp = 0.9999

This section presents an analysis of the ROC curve with the corresponding AUC score
for the diagnosis model with a patch-level threshold, tp, of 0.9999. The experiment in-
volves varying the patient-level threshold (tr) and generating two ROC plots for different
Mrate methods. The True Positive Rate (TPR) and False Positive Rate (FPR) values
for the ROC plot are computed using the ‘roc_curve()‘ and ‘auc()‘ functions from the
sklearn.metrics library [26].

Figures 5.14 and 5.15 displays the ROC plots for MBrate and MTrate methods, respec-
tively. Each graph represents the TPR and FPR for different tr thresholds, with points
plotted at every fifth threshold. The AUC score, included in each graph, serves as an
evaluation metric for the overall performance of the model.

Figure 5.14: ROC plot for diagnosis model with tp = 0.9999 and MBrate method on dataset
DnewV al. The line of no discrimination is represented as a stippled red line, with all tr over
0.999 above it, indicating that the model can differentiate between malignant and benign patches
beyond randomness at this threshold level.

The AUC score obtained from Figure 5.14 is 0.6173, which is comparable to the previous
experiment’s score of 0.6106 at tr = 0.999. This indicates that when using the MBrate

method with tp = 0.9999, there is a slight improvement in TPR as tr decreases compared
to when using tp = 0.999.
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Figure 5.15: ROC plot for diagnosis model with tp = 0.9999 and MTrate method on dataset
DnewV al. All values of tr are above the line of no discrimination, indicating promising results
at this threshold level, particularly at tr = 0.01, denoted by a purple star, which will be used in
subsequent experiments.

Figure 5.15 shows that the combination of tp = 0.9999 and MTrate yields an AUC score
of 0.7107, suggesting promising results at various tr values, particularly at tr = 0.01.
Given that a high TPR is more critical than a low FPR in this context, this threshold
will be used in future experiments.

Table 5.6 provides the mean and standard deviation values for the MBrate and MTrate

methods applied to benign and malignant WSIs. The patch-level threshold (tp) used in
this experiment was 0.9999 on the dataset DNewV al. For benign WSIs, the mean MBrate

is 0.5534 with a standard deviation of 0.4261, while the mean MTrate is significantly lower
at 0.0371 with a standard deviation of 0.0644. For malignant WSIs, both methods yield
higher rates than benign WSIs. The mean MBrate is 0.8107 with a standard deviation
of 0.2797, and the mean MTrate is 0.0764 with a standard deviation of 0.1082.

MBrate MTrate

benign WSIs 0.5534(±0.4261) 0.0371(±0.0644)

malignant WSIs 0.8107(±0.2797) 0.0764(±0.1082)

Table 5.6: Mean and standard deviation values for MBrate and MTrate methods on benign
and malignant WSIs with a patient-level threshold (tp) of 0.9999 on dataset DNewV al.
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Figure 5.16 presents box plots of the distribution of MBrate and MTrate for both benign
and malignant WSIs at a patch-level threshold (tp) of 0.9999.

(a) Boxplot of MBrate with tp = 0.9999 (b) Boxplot of MTrate with tp = 0.9999. The
purple line denotes the threshold tr = 0.01 for
MTrate method, which was found to be promis-
ing from the ROC curve in the previous exper-
iment.

Figure 5.16: Box plots of MBrate and MTrate for benign and malignant WSIs with tp = 0.9999.
The box (blue area) represents the interquartile range (IQR), which contains 50% of the data,
with the lower edge at the first quartile (25th percentile) and the upper edge at the third quartile
(75th percentile). The horizontal purple line inside the box marks the median value, while the
red line represents the mean value. The lines extend from the box to show the range of data
within 1.5 times IQR, and any data points outside this range are plotted as individual points.

These visualizations provide further insights into the performance of the diagnosis model
at different thresholds, aiding in understanding its effectiveness in distinguishing between
benign and malignant patches.

5.4 Testing Complete Pipeline on New Test Dataset (DNewTest)

This section discusses the performance assessment of the integrated pipeline, comprising
both diagnosis and prognosis models, on a distinct test set (DNewTest). The evaluation
first considers the threshold and Mrate settings from R. Amundsens’ thesis[3], followed
by examining the thresholds identified in the previous experiments. For each model,
diagnosis, and prognosis, confusion matrices are presented along with normalized results,
providing a comprehensive performance overview.
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5.4.1 Testing the Pipeline with Old Thresholds

In the initial experiment, the pipeline is evaluated using predefined thresholds: a patch-
level threshold (tp) of 0.999 and a patient-level threshold (tr) of 0.04. The malignancy rate
(Mrate) was computed using the ratio between malignant patches and lesions (MBrate).

Figure 5.17 displays the confusion matrices for the diagnosis model in absolute numbers
and normalized form. Performance metrics are summarized in Table 5.7. The model
demonstrated high recall (1.0000), indicating accurate identification of true positive cases,
but low specificity (0.1111), implying a high false-positive rate.

(a) Confusion matrix from the diagnosis model
using old thresholds and MBrate. Displaying
the true value on the y-axis and the number of
predicted WSIs on the x-axis.

(b) Normalized. Showing percentage in deci-
mal format.

Figure 5.17: Confusion matrix of results from diagnosis model. Settings used was tp = 0.999
and tr = 0.04 on dataset DNewTest.

Metric Specificity Precision Recall Accuracy F1-Score
Value 0.1111 0.5789 1.0000 0.6000 0.7333

Table 5.7: Performance metrics from the diagnosis model on the DNewTest using old thresholds

The prognosis model’s confusion matrices are depicted in Figure 5.18, with corresponding
performance metrics in Table 5.8. Like the diagnosis model, the prognosis model also
achieved high recall (1.0000) but had lower specificity (0.1389).
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(a) Confusion matrix from the diagnosis
model using input generated from the diagnosis
model. Displaying the true value on the y-axis
and the number of predicted WSIs on the x-
axis.

(b) Normalized. Showing percentage in deci-
mal format.

Figure 5.18: Confusion matrix of results from the prognosis model on dataset DNewTest.
Settings used for the diagnosis model were tp = 0.999 and tr = 0.04.

Metric Specificity Precision Recall Accuracy F1-Score
Value 0.1389 0.0606 1.0000 0.1842 0.1143

Table 5.8: Performance metrics from prognosis model on the DNew running through the whole
pipeline, using the old threshold for finding valid patches.

These results indicate that while both models are highly sensitive and accurately identify
all positive cases, they also have high false-positive rates, potentially leading to overdiag-
nosis or overtreatment in clinical scenarios.
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Figure 5.19 displays two examples of output prediction masks from the diagnosis model
integrated with the input mask for the prognosis model from the experiment.

(a) Prediction masks and patient-level predicting from
the diagnosis model A summary of the results and set-
tings are displayed above each prediction mask.

(b) Patch extraction for prognosis model, using
diagnosis prediction masks as input.

Figure 5.19: Integration between the diagnosis output prediction mask and the prognosis input
mask. Settings used was MBrate method, tp = 0.999 and tr = 0.04 on dataset DNewTest.

5.4.2 Testing the Pipeline using New Thresholds (tp = 0.999, tr = 0.04,
MTrate)

The subsequent experiment tests the pipeline using the MTrate method with a patch-level
threshold (tp) of 0.999 and a patient-level threshold (tr) of 0.04.

Figure 5.20 displays the confusion matrices for the diagnosis model, both in absolute
numbers and normalized form. Performance metrics are summarized in Table 5.9.
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(a) Showing the number of predicted WSIs (b) Normalized. Showing percentage in deci-
mal format

Figure 5.20: Confusion matrix of results from diagnosis model with tp = 0.999, tr = 0.04 and
MTrate method on dataset DNewTest.

Metric Specificity Precision Recall Accuracy F1-Score
Value 0.3889 0.6207 0.8182 0.6250 0.7059

Table 5.9: Performance metrics from diagnosis model with tp = 0.999, tr = 0.04 and MTrate

method on dataset DNewTest

The prognosis model’s confusion matrices are depicted in Figure 5.21, with corresponding
performance metrics in Table 5.10. The prognosis model achieved a high recall (1) but
low specificity (0.0741), indicating a high false-positive rate.
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(a) Displaying the true value on the y-axis and
the number of predicted WSIs on the x-axis.

(b) Normalized. Showing percentage in deci-
mal format

Figure 5.21: Confusion matrix of results from prognosis model using patches predicted malig-
nant from diagnosis model. Settings used was tp = 0.999 and tr = 0.04 on dataset DNewTest.

Metric Specificity Precision Recall Accuracy F1-Score
Value 0.0741 0.0741 1.0000 0.1379 0.1379

Table 5.10: Performance metrics from prognosis model on the DNew running through the whole
pipeline, using tp = 0.999, tr = 0.04 and MTrate method.

Figure 5.22 displays two examples of output prediction masks from the diagnosis model
integrated with the input mask for the prognosis model from the experiment.
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(a) Prediction masks and patient-level predicting from
the diagnosis model

(b) Patch extraction for prognosis model, using
diagnosis prediction as input.

Figure 5.22: Integration between the diagnosis output prediction mask and the prognosis input
mask. Settings used was MTrate method, tp = 0.999 and tr = 0.04 on dataset DNewTest.
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5.4.3 Testing the Pipeline using New Thresholds (tp = 0.9999, tr = 0.01,
MTrate)

The next experiment evaluates the pipeline using the MTrate method with a patch-level
threshold (tp) of 0.9999 and a patient-level threshold (tr) of 0.01.

Figure 5.23 presents the confusion matrices for the diagnosis model in both absolute and
normalized forms. Performance metrics are summarized in Table 5.11. The diagnosis
model achieved a recall of 0.8636 and specificity of 0.3889, indicating an improvement in
FPR compared to previous settings.

(a) Displaying the true value on the y-axis and
the number of predicted WSIs on the x-axis.

(b) Normalized. Showing percentage in deci-
mal format.

Figure 5.23: Confusion matrix of results from diagnosis model with tp = 0.9999, tr = 0.01 and
MTrate method on dataset DNewTest.

Metric Specificity Precision Recall Accuracy F1-Score
Value 0.3889 0.6333 0.8636 0.6500 0.7308

Table 5.11: Performance metrics from diagnosis model on the DNew with tp = 0.9999, tr = 0.01
and MTrate.

The prognosis model’s confusion matrices are depicted in Figure 5.24, with corresponding
performance metrics in Table 5.12. The prognosis model achieved a high recall (1.) but
low specificity (0.0741), indicating a high false-positive rate.
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(a) Displaying the true value on the y-axis and
the number of predicted WSIs on the x-axis.

(b) Normalized. Showing percentage in deci-
mal format.

Figure 5.24: Confusion matrix of results from prognosis model using patches predicted ma-
lignant from the diagnosis model. Settings used was tp = 0.9999 and tr = 0.01 on dataset
DNewTest.

Metric Specificity Precision Recall Accuracy F1-Score
Value 0.1071 0.0741 1.0000 0.1667 0.1379

Table 5.12: Performance metrics from prognosis model on the DNew

Figure 5.25 displays two examples of output prediction masks from the diagnosis model
integrated with the input mask for the prognosis model from the experiment.
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(a) Prediction masks and patient-level predicting from
the diagnosis model

(b) Patch extraction for prognosis model, using
diagnosis prediction as input.

Figure 5.25: Integration between the diagnosis output prediction mask and the prognosis input
mask. Settings used was MTrate method, tp = 0.9999 and tr = 0.01 on dataset DNewTest.
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Chapter 6

Discussion

6.1 Diagnosis Model Limitations

The diagnosis model, developed by R. Amundsen in his master’s thesis, was initially
trained and validated on a dataset of 90 annotated images. Of these, 73 Whole Slide
Images (WSIs) were used for training, eight for validation and threshold determination,
and the remaining nine for testing the model. The model achieved an accuracy of 100%
when tested on this original dataset, a result that was successfully replicated in this
experiment. When the same model and settings were applied to a new set of images, the
performance significantly declined, as shown in Table 5.4. The precision score was 0.5989,
and the specificity was only 0.1744, although the recall remained high at 0.9550. This
discrepancy in performance between the original and new datasets could be attributed
to several factors:

• Dataset Characteristics: The new dataset might have different characteristics com-
pared to the WSIs used when training the model. The WSIs provided in the old
dataset were selected and carefully annotated by a pathologist, which may result
in the training data only containing images with certain types of characters. This
can result in the new data containing a variety of different image characters, which
the model has not been trained on.

• Color variation: A visual inspection revealed that the WSIs in the new dataset had
more color variation from the H&E stains than the WSIs in the old dataset. The
variation in color can be affected by different staining contrast, variations in image
acquisition, and slice thickness. To counteract the color variation, technics such as
color transfer could be used. This involves applying the color characteristics from
the training set to the new test set.

84



• Overfitting: The model may have overfitted to the original training data, making
it perform exceptionally well on that specific dataset but poorly when introduced
to new data.

When examining the patch prediction distribution for each WSIs in the DNewTest, a
correlation between the number of patches and the number of malignant predictions was
revealed. This correlation is shown in 5.10. To counteract this correlation, a new patient-
based calculation method was proposed (MTrate). The new method calculates the rate
between the number of patches predicted malignant and the number of all valid patches
in a given WSI. The equation for the MTrate is presented in Equation 4.8.

ROC plots for MTrate with the patch-level thresholds (tp) of 0.999 and 0.9999 are dis-
played in 5.12 and 5.15, respectively. The ROC AUC score increased for MTrate for both
tp = 0.999 (0.6106 to 0.6820) and tp = 0.9999 (0.6173 to 0.7107) compared to the old
malignant-rate calculation (MBrate). Based on the findings, it was concluded that using
MTrate was preferred in this context.

6.2 Choosing parameters

Several experiments were performed to find the optimal parameters for the diagnosis
model using a larger dataset. The dataset was divided into a validation set to find
thresholds (DNewV al) and a testing set (DNewTest) to evaluate the new thresholds. From
the visual inspection, it was decided that patch-level thresholds of 0.999 and 0.9999 gave a
promising prediction mask. Some sample images from the visual inspection are displayed
in 5.7. ROC plots for both patch-level thresholds presented a range of promising patient-
level thresholds. It was expressed by pathologists from Stavanger University Hospital that
a high sensitivity was preferred. Considering the pathologists’ preferences, the model’s
ability to accurately predict positive melanoma cases was prioritized. The relatively low
threshold of 0.04 and 0.01 was found to give good sensitivity while still maintaining some
specificity. The new parameter pairs chosen for the experiments were [tp = 0.999, tr0.01,
MTrate] and [tp = 0.9909, tr0.04, MTrate].

Since the prognosis model provides patient-level prediction in a binary fashion, the ratio
between metastasis and valid patches has to be fixed. For our experiments, we fixed
this threshold to 0.3720. However, this threshold can be further tuned based on a prior
model that is integrated into the pipeline. It is complex to find the optimal threshold by
selecting a possible combination of thresholds from diagnostic and prognostic models due
to the computational cost affiliated with inference of the new dataset. In short, we need
to find the best thresholds from diagnostic models first and then optimize the threshold
for the prognostic model.
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6.3 Prognosis Model

The prognosis model was trained solely on malignant patches, leading to a lack of repre-
sentation of other tissue types in the training data. This becomes a significant issue when
utilizing the prediction masks from the diagnostic model. Specifically, regions inaccu-
rately identified as melanoma by the diagnostic model will be processed by the prognosis
model. This could potentially skew the prognosis model’s predictions, as it has not been
trained to recognize and differentiate non-melanoma tissues. Consequently, the model
might provide inaccurate prognoses based on these false positives, which could lead to
unnecessary treatments or interventions.

6.4 Integration of Both Models

The table 6.1 presents the performance metrics from three different runs of the integrated
pipeline, each employing different thresholds for the diagnosis on the DNewTest.

In the first run (A), the diagnosis model (D) achieved perfect recall (1.0000) and a high
F1-Score (0.7333), indicating that it successfully identified all actual positive melanoma
cases. However, its specificity was low (0.1111), suggesting a high false positive rate.
The prognosis model (P) in this run also achieved perfect recall but had a low F1-Score
(0.1143), indicating a high number of false positives.

In the second run (B), the diagnosis model improved its specificity to 0.3889 and main-
tained a high F1-Score (0.7059). The prognosis model, however, did not show significant
improvement in its performance.

In the third run (C), the diagnosis model further improved its specificity to 0.3889 and
precision to 0.6333, while maintaining a high recall (0.8636) and accuracy (0.6500). The
prognosis model’s performance remained relatively unchanged.

Overall, the diagnosis model showed consistent improvement across the runs, particularly
in terms of specificity and precision, without significant loss in recall or accuracy. This
suggests that adjusting the thresholds improved the model’s ability to correctly identify
non-melanoma cases and reduce false positives. Run C gave the best performance with
respect to the tradeoff between specificity and recall. However, the best settings for the
model are highly dependent on the use case. Using a higher patch-level threshold might
result in improved accuracy, but the malignant tissue mask will be reduced. Contrary,
choosing a lower patch-level threshold might result in other tissue areas being present
in the melanoma prediction mask. Figure 6.1 presents a prediction from the diagnosis
model with different patch-level thresholds.
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Run (Ch) Model tp tr Mrate Specificity Precision Recall Accuracy F1-score

A. Ch. 5.2 D 0.9990 0.04 MB 0.1111 0.5789 1.0000 0.6000 0.7333

P - - - 0.1389 0.0606 1.0000 0.1842 0.1143

B. Ch. 5.4.2 D 0.9990 0.04 MT 0.3889 0.6207 0.8182 0.6250 0.7059

P - - - 0.0741 0.0741 1.0000 0.1379 0.1379

C. Ch. 5.4.3 D 0.9999 0.01 MT 0.3889 0.6333 0.8636 0.6500 0.7308

P - - - 0.1071 0.0741 1.0000 0.1667 0.1379

Table 6.1: Performance metrics from every experiment using different thresholds from the
diagnosis and prognosis model on the DNewTest. Rows with the same run name belong to the
same run. The letter in Model refers to if the metrics in the row are from the diagnosis (D) or
prognosis (P) model from the respective run.

(a) Prediction mask from the diagnosis model
using a patch-level threshold value of 0.99

(b) Prediction mask from the diagnosis model
using a patch-level threshold value of 0.9999

Figure 6.1: Representation of malignant tissue masks from different patch-level thresholds for
the prognosis model.

The prognosis model’s performance did not change significantly in the experiments. The
recall was 1.0000 for all runs, and experiments A and C resulted in increased specificity.
Run A and B uses the same tp, which results in identical prediction masks from the
diagnosis model. The only factor differentiating the two experiments is the calculation
of Mrate. In other words, patient-level prediction created two different sets of WSIs
resulting in different performances.
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Chapter 7

Conclusion

The main objective of this thesis was to develop a pipeline for predicting the diagnosis
and prognosis of WSIs. A dataset consisting of 243 WSIs from different patients, each
with a weak label was provided. The pipeline includes two independent models. The
first model is responsible for predicting and localizing melanoma in a WSI. The second
model is responsible for predicting the prognosis by using information about malignant
regions provided by the diagnostic model.

The initial result for the diagnostic model on the old datasets was promising but was not
generalizable on the new data set with the current parameters. By tuning the parameters,
the specificity increased, but recall decreased. The best result for the diagnosis model
gave a recall of 0.8636 and a specificity of 0.3889. From internal conversations with
pathologists from SUH, it was decided to prioritize minimizing false negatives, as this
could potentially lead to underdiagnosis or undertreatment in real clinical scenarios.
Consequently, it is suggested to use the diagnosis model with thresholds that give it high
sensitivity. This is achieved by using low patch-level and patient-level thresholds. In
a real clinical scenario, the majority of cases are benign. By using a diagnosis model
with good sensitivity, it can be used as a tool to help pathologists prioritize by excluding
non-urgent cases.

A correlation between the number of patches predicted malignant and the total number
of patches was discovered in the new dataset provided. To counteract this correlation, a
calculation method for finding the melanoma ratio in a WSI was proposed. The proposed
calculation method takes into account all valid patches rather than only the predicted
lesion. This has the added benefit of not depending on the models’ ability to correctly
predict benign patches. This method was utilized when giving a patient-level diagnostic
prediction.
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The pipeline integration displayed some promising results. The diagnosis model presented
considerable potential in localizing the malignant lesion within the WSIs, resulting in the
prognosis model being provided with relevant patches. It is important to note that as the
dataset lacked annotations of the lesions, the final confirmation of the predicted lesions
still relies on the expertise of a pathologist. The region presented in the prognosis model
can be adjusted by carefully tuning the patch-level threshold for the diagnosis model. The
patient-level threshold can be selected to include or exclude WSIs but does not impact
the prediction mask. In all three experiments, the prognosis model predicted all positive
cases correctly. It is important to acknowledge that the test set used only contained
two malignant cases, which is not enough samples to give a conclusive evaluation. In
addition, the best accuracy from the experiments was only 0.1842. The performance of
the prognosis model might be increased by tuning the patient (good/bad patches) ratio
threshold for the model.

7.1 Future Work

This section will present suggestions for future work that were not within the scope of
this thesis.

• Optimizing parameters for the prognosis model: Optimizing parameters for the
prognosis model is a crucial step for improving the pipeline. This can be achieved
by generating prediction masks with the diagnostic model using promising param-
eters, followed by evaluating patient-level thresholds for the prognosis model. This
approach could potentially enhance the accuracy of prognostic predictions by en-
suring that the model is tuned to the specific characteristics of the data.

• Incorporating preprocessing techniques for artifact detection and color variation.
These preprocessing techniques, as presented in [18], could significantly enhance the
model’s performance. These techniques can help mitigate the effects of variations in
image quality and color. This could potentially improve the model’s generalizability
and robustness to different imaging conditions and artifacts.

• Implementing a multiple instance learning (MIL) classifier for prognostic predic-
tion. MIL allows the model to extract feature vectors and apply them effectively
even when only weak labels are available. This is especially beneficial in cases
where metastasis labels do not provide localized information or annotations. By
identifying and learning from these weakly labeled instances, MIL can potentially
improve the model’s ability to predict prognosis with greater accuracy. In essence,
this approach could enhance the model’s learning capability from less detailed or
incomplete data, thereby improving its overall predictive performance.
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Appendix

Link to GitHub repository: https://github.com/Mariebs97/Master23.git
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