
FACULTY OF SCIENCE AND TECHNOLOGY

MASTER’S THESIS

Study programme / specialisation: Spring semester 2023

Master’s in engineering / Open

Robot Technology and Signal Processing

Author(s): Ådne Hult Karlson and Stian Wiik Berg

Faculty supervisor: Nejm Saadallah

Supervisor(s): Nejm Saadallah and Ketil Oppedal

Thesis title:

Design a continuous feedback system utilizing velocity-based training

and posture estimation improving the efficiency and performance of a squat

Credits (ECTS): 60 (2 · 30)

Keywords: Pages:

Velocity-based training, posture estimation, 91 + appendix: 3

Mediapipe, squat, application Stavanger 15. June 2023

Abstract
Staying in shape is important for physical and mental health. Adding squats
to a regular workout routine is beneficial, but performing them correctly and
determining the right number of repetitions can be challenging. A feedback
system utilizing body movement identification methods can assist in per-
forming squats correctly and efficiently. The system we have developed
incorporates velocity-based training principles and posture estimation us-
ing Mediapipe’s pose landmarks. It provides feedback on squat depth, neck
angle, and improvement techniques.

Our system functions as a visual feedback application. It was tested for
velocity-based training, posture estimation, and feedback and interface func-
tionality. A velocity loss of 10-20% indicates the need for a break during
squats, where comparing current squat velocity to the initial squat in a set
notifies the user of the velocity loss. The maximum velocity of the upward
motion of the squat was calculated with a standard deviation which trans-
lates to a potential error of 0.008% in velocity comparison. The depth of
the squat is determined by the femur’s parallelism to the ground, with a
deviation corresponding to a 10% error. A neck angle within a determined
range indicates good posture.

The application improves squatting performance, advises on breaks, and
offers user-friendly features like gesture control, however, the gesture control
does not work as intended and requires further work. Future work can
expand posture feedback to include additional requirements like stance, knee
position, back angle, and bar placement. If adapted as a phone application,
it can serve as a versatile and user-friendly exercise aid, providing valuable
information on correct exercise performance.

The solution for this thesis could be found in the Github repository link:
https://github.com/MAS-2023-Nejm/body-movement-identification

i

https://github.com/MAS-2023-Nejm/body-movement-identification

Acknowledgments

We would like to thank the Department of Electrical Engineering and Com-
puter Science at the University of Stavanger to provide with a room we could
work as well as equipment used for testing and research.

Our supervisors Nejm Saadallah and Ketil Oppedal gave valuable feedback
on the creative process, research, and writing process, and proved valuable
for this thesis. Thank you for always being available and going to the
lengths required for us finishing this project.

At last, we would like to thank our fellow students Emil Wiik Larsen and
Vebjørn Njåtun Krøyer for letting us record squats and use the data acquired
in this project.

ii

Abbreviations

1D 1 Dimension
1RM 1 Repetition Maximum
2D 2 Dimensions
3D 3 Dimensions
App Application
BGR Blue, Green, Red
CPU Central Processing Unit
FPS Frames Per Second
GPU Graphics Processing Unit
IMU Inertia Measurement Unit
PBT Percentage-Based Training
RGB Red, Green, Blue
ROI Region Of Interest
SD Standard Deviation
VBT Velocity-Based Training
WM Whole Movement
YOLO You Only Look Once

iii

Contents

1 Introduction 1

1.1 Motivation . 2

1.2 Existing solutions . 3

1.3 Problem definition . 5

1.4 Layout . 6

2 Background 7

2.1 The theory of velocity-based training 7

2.2 The theory behind the squat 9

2.3 Human pose estimation . 11

2.4 Gesture recognition . 13

2.5 Finite difference method . 14

2.6 Performance evaluation method 15

2.7 The geometric calculations 16

iv

CONTENTS

2.7.1 Distance calculation 16

2.7.2 Angle calculation . 17

3 Solution Approach 19

3.1 Input . 20

3.2 Human pose estimation . 21

3.3 Collection of landmarks . 22

3.3.1 Defining a coordinate system 22

3.4 Velocity-based training and posture 24

3.4.1 Velocity-based training 24

3.4.2 Posture estimation 28

3.5 The application . 31

3.5.1 Gesture control . 32

3.5.2 User interface . 32

3.5.3 Scoring system . 34

4 Testing and results 36

4.1 Setup . 36

4.2 Testing of velocity . 37

4.2.1 Testing the equation for the average velocity 37

4.2.2 Testing the velocity-based training 42

v

CONTENTS

4.3 Posture measurements . 49

4.3.1 Testing the depth function 49

4.3.2 Estimating a good neck angle 51

4.3.3 Testing neck angle with simulated input 52

4.3.4 Testing errors of mono camera-based measurements . 54

4.4 Testing of the application 60

4.4.1 Testing the gesture control 60

4.4.2 User interface and scoring system 62

5 Discussion and future work 69

5.1 The input . 70

5.2 Human pose estimation . 71

5.3 Velocity-based training . 73

5.3.1 Finding the region of interest 73

5.3.2 Calculating the velocity 74

5.4 Posture measurements . 75

5.4.1 The theory behind the squat 75

5.4.2 The depth estimation of the squat 76

5.4.3 The neck estimation 77

5.4.4 The missing posture estimations 78

vi

CONTENTS

5.5 The application . 79

5.5.1 The continuous feedback system 79

5.5.2 The gesture control 80

5.6 Further future work . 81

5.6.1 Instructions to user 81

5.6.2 Accessibility . 82

5.6.3 Depth perception . 82

5.6.4 Velocity zones . 83

5.6.5 Different methods to identify the squat 84

5.6.6 Identify different movements 84

6 Conclusion 86

Bibliography 91

Appendix 91

A Poster 92

B Gesture table 94

vii

Chapter 1

Introduction

This thesis utilizes machine learning models to develop an approach for
identifying body movements, which is subsequently applied to design a ded-
icated software for assisting individuals in performing squats. The software
provides guidance on the squat’s intensity and posture, thereby helping the
user determine when to take a break and how to execute the squat correctly.

This chapter will cover the motivation for the thesis, existing solutions that
use similar methods, the problem definition as well as the layout of the
report.

1

1.1 Motivation

1.1 Motivation

Staying in shape and exercising is important for a large group of people.
In a study done by Statistics Norway, there was found that up to approxi-
mately 57% of people in Norway above the age of 16 years exercise several
times a week. [1] One exercise that is often overlooked or misunderstood
is the squat, which may seem basic or unnecessary. However, this exer-
cise is actually incredibly powerful and beneficial when performed correctly,
and is referred to as the most important exercise in the training arsenal
[2], making the squat an essential addition to any regular workout routine.
Performing the squat correctly, however, could prove challenging, as a bad
performance could lead to poor progression, and in the worst-case scenario
lead to injuries. As a result, it may be discouraging to attempt this partic-
ular exercise.

There is a plethora of training materials available online, but many of them
provide conflicting advice without any academic foundation. This could
both be frustrating for the people that want to perform a given exercise,
but could also be overwhelming for people that want to start exercising.

Having an application easily available that could help with both how to
perform the exercise and give an insight into the intensity required, could
help with these goals. This would mean that it would be easier to begin
training, and motivational to know that you are performing the exercise
correctly. But how should the exercise be performed, and what is the right
intensity?

In addition, developing an effective body movement identification approach
has the potential to pave the way for a diverse range of applications. As
smartphones and comparable devices become increasingly ubiquitous, a
user-friendly and adaptable application leveraging this approach could emerge
as a feasible possibility.

Some potential usages could be in virtual and augmented reality training
programs for athletes and dancers, allowing them to see and correct their
movements with greater accuracy. In the medical field, body movement
models could potentially be used to design tailor-made rehabilitation pro-
grams for patients recovering from injuries or surgeries that affect their mo-

2

1.2 Existing solutions

bility. Additionally, they could be used to monitor and track the progress
of individuals with movement disorders like Parkinson’s disease, allowing
for earlier intervention and more effective treatment. [3]

1.2 Existing solutions

There exist multiple products or solutions that implement velocity-based
training (VBT) or that examine the posture of a workout, some of these
are Alphatek’s AlphaPWR[4], Viruve’s VBT device[5], Metric’s MetricVBT
app[6], and an example from Github regarding posture estimation[7].

Alphatek is a company that makes an equipment called AlphaPWR. This is
a platform that the user stands on while they are exercising, and gives the
user feedback on a screen after each repetition. This helps the user keep
track of their tempo and intensity to optimize the training. The platform
measures the users ground reaction force and gives feedback on how many
repetitions would yield the best result based on velocity loss. This process
is called velocity based training.[4]

The AlphaPWR could be found at multiple fitness centers, and therefore
require the user to have a membership at one of these centers. This could
be quite expensive over time, making it both harder for people to start
exercising and inconvenient to use. The platform has very specific function-
alities, including balance, jump, pull, and squat. This offers the end user a
relatively small variation of exercises. In addition, the AlphaPWR gives no
indication of how well the exercise is performed, and how to improve.

Virtuve has another example of a device that utilizes VBT. The device
employs accelerometers or linear encoders and consists of a box with a
reel attached to it. This device could be placed on the floor and attached
to an exercise bar. When lifting the bar, the reel gets pulled out from
the box, allowing for the measurement of velocity. This allows for real-
time measurements, where Virtuve provides the user with the velocity and
accompanied fatigue data.[5]

An early development of an application utilizing the principles from velocity-
based training is the Metric’s MetricVBT app. [6] With the use of a smart-

3

1.2 Existing solutions

phone camera to capture videos, the Metric team was able to count the
number of repetitions of the exercises deadlift, front squat, and bench press
and calculate the velocity needed for their purpose. This velocity data
was analyzed and compared to other exercise data gathered by Metric, and
the user could then get feedback on how their exercise is compared to the
standard set by Metric. This solution utilizes velocity-based training to
compare exercises, making it a potentially valuable tool. It’s designed as a
smartphone application, which would make it user-friendly, affordable, and
portable.

The solution proposed by Metric is however lacking in providing information
on how to perform the exercise and providing accompanying feedback on
this. There is also a lack of information regarding real-time indication of
how many repetitions the user should do, and when to take a break.

An example of how to determine the correct posture for a squat can be found
on a Github repository. [7] The solution from the example is designed to
monitor the number of repetitions, as well as the angles of the knee-joint
and hip-joint. It creates a virtual skeleton of the person performing the
squat, enabling the user or fitness instructor to view real-time repetitions
and angles. While the solution appears to effectively track real-time data,
it does not provide any feedback to the user on how to improve. Instead,
the user or instructor must interpret the data themselves.

4

1.3 Problem definition

1.3 Problem definition

Using body movement identification methods to define a continuous feed-
back system to help the user to exercise correctly and efficiently.

This includes;

• Monitor the users’ velocity and provide feedback on when the user
needs to take a break.

• Monitor the user’s posture to help the user lift correctly.

• Deliver a score to the user on how well the exercise was carried out.

• Give feedback on the exercise, and provide useful information on how
to improve.

The squat has been the main focus of this thesis.

5

1.4 Layout

1.4 Layout

This project is composed of five chapters; The background, the solution ap-
proach, testing and results, discussion and future work, and the conclusion.

The background will cover the necessary theoretical information for com-
prehending the thesis work and decisions. The theory of velocity-based
training and squatting form the core of this chapter. The former explains
how to identify the right time for the user to take a break, while the latter
teaches how to execute a proper squat. Additionally, the chapter covers the
theory of human pose estimation, which involves locating a person’s skele-
tal structure using Mediapipe pose landmarks and gesture recognition. It
also covers a method on how to find the velocity, and how to evaluate the
performance. The mathematical formulas used in the estimation process
are also explained in this chapter.

In the solution approach, the methods utilized in the thesis will be outlined
along with an explanation of how the achieved results were obtained. The
approach flow is described, starting from the input to the system and ending
with the application.

In the chapter regarding testing and results, the outcomes of the implemen-
tation described in the solution approach will be presented. Multiple tests
were conducted to test the accuracy and reliability of the implementation
of velocity-based training and posture estimation. Furthermore, the ap-
plication was tested to ensure that the feedback system and user interface
functioned as intended.

The discussion and future work goes into depth on the limitations and as-
sumptions made, as well as some potential reasons why some of the results
worked or did not work as intended. The chapter also presents sugges-
tions for future work, outlining ways to enhance and broaden the existing
implementations.

Finally, a conclusion is drawn in which the work is summarized and an
explanation is given regarding the effectiveness of the solution made.

6

Chapter 2

Background

2.1 The theory of velocity-based training

The method of velocity-based training is quite effective in determining the
right exercise intensity for a user. It involves analyzing velocity data to
determine when a user should take a break between sets. A linear position
transducer is typically used in VBT to measure the user’s velocity [8], which
then helps decide when an exercise set is completed, and the user should
take a break. This method has the potential to enhance both the exercise
experience and gains of the user.

When using the repetition until failure method for training, there is a risk of
errors due to fatigue and mechanical stress. [9][10] Instead, an alternative
method is to determine the exercise intensity as a percentage and adjust
the number of repetitions accordingly. This could be achieved through
percentage-based training (PBT) or VBT.

The level of exercise intensity is widely recognized as the crucial factor
that affects strength, and it is commonly associated with the relative load,
also known as the percentage of one repetition maximum (1RM). [8] This
approach is referred to as PBT in this section.

When it comes to prescribing training loads for performance improvement,

7

2.1 The theory of velocity-based training

VBT could be a more accurate alternative to traditional PBT, both in
terms of increasing specific and general performance. [11] Traditional PBT
has several limitations that VBT overcomes. One limitation of PBT is the
need for potentially risky tests which could lead to injury if not performed
correctly. [8] Additionally, changes in 1RM could fluctuate on a daily basis
due to factors such as nutrition, fatigue, and biological variability. [8][11] On
the other hand, VBT is believed to better reflect changes in the individual
load-velocity profile compared to PBT. [8]

An implementation of a VBT training program is recommended to be im-
plemented in different ways, for instance; [11]

• Using velocity zones as a part of separate or combined training pro-
grams.

• Applying velocity losses of 10-20%.

It’s important to emphasize that receiving feedback instantly is crucial,
regardless of the method used for implementation.

It appears that utilizing velocity zones is the most effective way to use
VBT. To achieve this, it is necessary to determine the load/velocity pro-
file for an individual and use this data to establish an optimal velocity
zone. To accomplish this, the individual’s 1RM must be determined, and
they must perform repetitions at various predetermined relative or absolute
loads. These loads range from 30-85% of the 1RM, and the velocities mea-
sured during the repetitions serve as the basis for the individual’s velocity
zone. [8]

Applying the velocity losses of 10-20% could help induce neuromuscular
adaptations and reduce neuromuscular fatigue. [11] Velocity loss would
mean comparing the current velocity to the first movement of the set. If
the loss reaches 10-20%, it’s advised for the user to take a break before
starting the next set. This approach is general and doesn’t require any
profiling.

The topic of velocity zones is often discussed in relation to athletes and
their training optimization. [8] However, this thesis aims to create a user-
friendly application for a broader audience to facilitate exercise, and the

8

2.2 The theory behind the squat

applied velocity loss of 10-20% achieves this goal. It is worth noting that
the effectiveness of VBT is still a subject of debate and ongoing verification.
[12][13]

2.2 The theory behind the squat

It is crucial to perform exercises correctly to reap maximum benefits and
avoid the risk of injury. Any incorrect movement could be harmful when
repeated, so it’s essential to pay attention to proper form. The squat is a
powerful exercise that could reap many benefits, however, it is important to
perform it correctly. The theory behind the squat will determine the basis
for the user’s posture score and subsequent feedback in the application.

According to Mark Rippetoe’s book, Starting Strength, the squat is the
most important exercise in the training arsenal. [2, p. 7] He highlights six
crucial elements to consider for this project: depth, knee position, stance,
eye gaze, back angle, hip drive, and bar placement.

When a squat is not performed deeply enough, Rippetoe refers to it as a
partial squat. The partial squat could cause strain on the knees and quadri-
ceps, without effectively targeting the glutes, adductors, or hamstrings. To
avoid this issue, it is recommended to perform a deep squat, which will
allow for the proper execution of the exercise. Examples of both the deep
squat and partial squat could be seen in the accompanying figure, Figure
2.1.

9

2.2 The theory behind the squat

Figure 2.1: The full squat. Illustration of correct depth on the left, and a partial
squat on the right.

Figure 2.2: Correct stance.

The stance and the knee position are highly correlated. With the feet flat
on the ground, the heels should be shoulder-width apart. The feet point
outward at an angle of about 30◦ of the forward-facing direction of the user,
with the femurs parallel to the feet. The knees are just a little forward of the
toes. The back is at an angle, about 45◦, that would place the bar over the
middle foot. Furthermore, the eye gaze plays an important part in driving
the hips and preventing unwanted stress from the bar. These guidelines

10

2.3 Human pose estimation

could be seen in the accompanying Figure 2.1 and Figure 2.2. Additionally,
the eyes should be fixed at a position on the floor approximately 1.5 meters
in front of the feet, keeping the neck at an angle corresponding to the angle
of the back. [2, p. 20-23]

2.3 Human pose estimation

When utilizing velocity-based training and analyzing a squat, it’s crucial
to have a method for collecting data on a person’s position. Human pose
estimation is a viable solution as it employs machine learning models and
computer vision to estimate the position of a human’s joints. [14]

When it comes to human pose estimation, there are numerous options to
consider. Thankfully, there are many pre-trained open-source models that
could be utilized for this purpose, making it a wise choice to use one of
them.

Google has developed the Mediapipe framework pipeline, which is designed
to handle machine learning and computer vision tasks with precision in ob-
ject detection. Thanks to its extensive training data, it is an ideal platform
for pose estimation. [15]

The Mediapipe pose library is capable of identifying 33 body parts called
landmarks, as shown in Figure 2.3. This makes it a great choice for image-
based exercise applications. [16]

11

2.3 Human pose estimation

Figure 2.3: Mediapipe pose landmarks [17, Fig 4.].

Mediapipe uses a bundle of models for human pose estimation, one where
it detects the presence of a human and another that finds the landmarks
shown in Figure 2.3. This bundle utilizes a convoluted neural network with
is supposedly similar to the MobileNetV2[18] which is optimized for real-
time applications such as fitness models.[16] This makes it ideal to use for
this project as the goal is to make a squatting application.

Aside from recognizing the body parts depicted in Figure 2.3, Mediapipe
also has the capability to identify intricate hand parts estimation. A single
hand is depicted as 21 3D data point landmarks, as illustrated in Figure
2.4. [19]

12

2.4 Gesture recognition

Figure 2.4: Mediapipe hand landmarks.[19]

2.4 Gesture recognition

When developing an application, it is important to prioritize a user-friendly
interface. The proposed application in this project, with a camera-based
input, requires the user to be at a distance from the device during use.
Therefore, it is recommended to integrate a method for controlling the ap-
plication without physical proximity.

Gesture recognition could be an effective solution for this purpose, as it
has been proven to be increasingly prevalent across various industries as a
means of controlling different products. One example of this is utilizing it in
automobiles to control the infotainment system. BMW is one of the auto-
mobile manufacturers that use this technology to control multiple functions
in their infotainment system, like, turning up the volume on the music, ac-
cepting/rejecting calls, pausing, and changing the song playing. when using
gesture recognition to control the output of a function, it is referred to as
gesture control.[20]

To implement this, the hand pose landmarks was utilized in combination
with a pre-trained model for hand gesture recognition found on Techvidvan’s
website.[21] with this model and a combination of Mediapipe, TensorFlow[22],
and OpenCv[23]. The wanted hand gestures were found.

Figure 2.5 illustrates all the possible gestures possible to detect using Ten-
sorflow and the trained model found on Techvidvan’s website.

13

2.5 Finite difference method

Figure 2.5: Various gestures recognized using TensorFlow.

2.5 Finite difference method

In order to successfully implement the theory of velocity-based training, ac-
cess to velocity is crucial. Real-time velocity information could be obtained
by calculating the derivative of the position in real time, using the backward
difference formula as a helpful tool for approximating this derivative. The
formula takes into account current and previous positions to determine the
velocity. The formula for the backward difference is shown in Equation(2.1).
[24]

f ′(x) = lim
h→0

f(x)− f(x− h)

h
(2.1)

In Figure 2.6 the approximation is illustrated. Where the f(x) represents
the current position, f(x − h) represents the previous position, and h rep-
resents the distance or time between the mentioned parameters. The blue
line is an arbitrary equation only used for illustrative purposes.

14

2.6 Performance evaluation method

Figure 2.6: Illustration of the backward difference formula.

2.6 Performance evaluation method

When performing tests in this project, some methods are needed to evaluate
the performance. A much-used method in this project was to look at the
standard deviation (SD) as shown in Equation (2.2), for the data gathered.

σ =

√√√√ 1

N

N∑
i=1

(xi − µ)2 (2.2)

where:

• σ represents the standard deviation.

• N is the total number of data points.

• xi represents each individual data point in the dataset.

• µ denotes the mean of the dataset.

15

2.7 The geometric calculations

Calculating the SD could be helpful in determining the spread of a data
set around the mean. It could also indicate whether the mean accurately
represents the data. [25] Additionally, the SD provides the same unit as the
original data used in the calculation.

2.7 The geometric calculations

In order to find and rate the elements mentioned in Chapter 2.2 The theory
behind the squat, the pose landmarks could be used. This method is based on
the assumption that body movements could be analyzed by examining the
joints and the links between them. By measuring the distances and angles
of these links, one could estimate the posture. This requires knowledge of
mathematical concepts such as vector theory, specifically in calculating dis-
tances and angles using the x, y, and z axes for both three-dimensional(3D)
and two-dimensional(2D) calculations. The following section details the
mathematical theory behind these calculations.

2.7.1 Distance calculation

To determine the distance between two coordinate points in a room, a
straightforward method is to consider the relevant axes, such as the x-axes,
and subtract the smaller x value from the larger one.

Distance = x1 − x2 (2.3)

The current approach only functions when measuring distance in a straight
horizontal line. However, for the code to be universally applicable and
adaptable to different dimensions and directions, a solution must be found
that doesn’t depend on the orientation of the coordinates.

This is where vector calculation comes in handy. Vector calculation ensures
that the input order of coordinates and the vector’s dimension, whether it’s
2D or 3D, does not matter. Figure 2.7 illustrates how two 2D coordinate
points could be transformed into a vector by subtracting one from the other.

16

2.7 The geometric calculations

(a) a line between point a
and b. (b) b minus a. (c) a minus b.

Figure 2.7: Three graphs illustrating vector calculations.

As shown in Figure 2.7, the length of the vector remains constant regardless
of the coordinates being subtracted. By converting the points to vector
form, the distance could be calculated by determining the vector norm. One
possible approach to achieve this task is to utilize the numpy.linalg.norm()
function, which is included in the Numpy library [26]. In the example shown
in Figure 2.7, the length could be calculated as 4.47 using Equation(2.7).

a = [2, 1] (2.4)
b = [4, 5] (2.5)
V = a− b = [−2,−4] (2.6)

| V | =
√

(−2)2 + (−4)2 = 4.47 (2.7)

2.7.2 Angle calculation

It is important to have a universal estimate for calculations of various di-
mensions, as this would simplify the development of the application. For-
tunately, this could be achieved by implementing vector solutions. For
instance, in order to determine the angle between a person’s thigh and
leg, one would typically require the hip, knee, and ankle coordinate points.
However, by simplifying these points to two vectors, as demonstrated in
Chapter 2.7.1 Distance calculation, it becomes possible to calculate the an-
gle between the vectors using the norm of each vector and the dot product
between them.

17

2.7 The geometric calculations

Figure 2.8 illustrates how three points could be changed into two vectors
in two different ways. Looking at Figure 2.8a, the outer points point a and
point c and the connecting point in the middle point b are illustrated. In
Figure 2.8b, the vectors are made by subtracting point a from point b, and
subtracting point c from point b. Thereby creating two vectors pointing
upward in the right top section of the plot. In Figure 2.8c, the opposite is
done, subtracting point b from point a and subtracting point b from point
c, thereby getting two vectors pointing in the opposite direction.

(a) Three positional
points; a, b, and c.

(b) subtracting a and c
from b.

(c) subtracting b from a
and c.

Figure 2.8: Illustration of how points could be transformed to vector form.

Both plots, illustrated in Figure 2.8b and Figure 2.8c, share a common
feature; the vectors they display form an identical angle. To determine this
angle, the utilization of the dot product and norm of the vectors are used,
as demonstrated in Equation(2.8). In Equation(2.8), θ represents the angle,
V1 and V2 represent the vectors, and |V1| and |V1| represent the norms of
the vectors.

θ = arccos

(
V1 · V2

|V1||V2|

)
(2.8)

18

Chapter 3

Solution Approach

The solution proposed in this thesis can be summarized by referring to the
flowchart depicted in Figure 3.1. To collect data on body movement, an
input is needed. This input is used to perform pose estimation and obtain
the pose landmarks necessary for estimating the squat. The landmarks are
then saved as position data for future reference. Position data serves as the
basis for the calculations and estimations required to accomplish velocity-
based training and posture estimation. The interface of the application
provides the user with continuous feedback, including details on when to
take breaks, tips on how to enhance their performance, and a scoring system.

19

3.1 Input

Figure 3.1: Flowchart of the proposed solution.

3.1 Input

The main goal of the input is to gather as much information about the
movement as possible, in order to be able to calculate the velocity of the
user and also to give a valid pose estimation. A camera solution was chosen
as it’s a practical and economical way to gather the required data for the
system. The camera’s adaptability allows it to acquire all the essential
information for both the velocity-based training and posture estimation
aspects of the task, meaning that only one input is required. This fact makes
the application easy to use, and a user-friendly and convenient choice. As
the proposed solution is made on a computer, the input corresponds to a
mono-based-camera solution.

Another reason the camera was chosen as the input is to keep the application
adaptable for smartphones, as this was seen as a natural future development
when designing the application. By using a camera solution the adaptability
of the application is preserved.

20

3.2 Human pose estimation

3.2 Human pose estimation

To process the input, the images are read using OpenCV[23] and then un-
dergo a series of modifications. Firstly, the images are re-scaled to a smaller
format in order to reduce unnecessary data from the image matrix. This
step could be done as Mediapipe does not require a high resolution. Next,
the images are reformatted from BGR (blue, green, red) to RGB (red, green,
blue) as Mediapipe requires the RGB input.

The image undergoes processing through Mediapipe, which identifies and
records all landmarks into a dictionary. These landmarks are then utilized
to create the virtual skeleton, as shown in Figure 2.3,. The skeleton is not
crucial or necessary for the computations performed in this project, how-
ever, it provides an excellent visual representation of the body’s connections
and could provide valuable feedback for the user to see if the landmarks are
properly found. This process is then repeated for every new image. Medi-
apipe does not retain the landmarks once a new image arrives, so it becomes
necessary to gather them for comparison calculations, such as velocity cal-
culations.

21

3.3 Collection of landmarks

3.3 Collection of landmarks

When utilizing Mediapipe, a landmark refers to the points of interest that
construct the human skeleton, as depicted in Figure 2.3 from Chapter 2.3
Human pose estimation. To perform velocity calculations and pose estima-
tions, these landmarks are gathered and saved.

A common issue that arises during the estimation of landmarks with Medi-
apipe is jitter. When performing pose estimation on a live video stream, the
algorithm analyzes one image per frame, resulting in approximately 30 anal-
yses per second. However, slight variations in the coordinates of seemingly
similar images can cause jitter, which can make it more difficult to analyze
the resulting data. While not an immediate concern, this issue can impact
the accuracy of the output. The solution was to use a simple median filter.
This filter could effectively smooth out the data, aligning changes with its
data points for a more seamless result.

3.3.1 Defining a coordinate system

Defining the coordinate system is important as it sets the standard for how
to understand and calculate the data. Mediapipe offers two main methods
of finding the landmarks: pose landmarks and pose world landmarks. [17]

The pose landmarks provide normalized x- and y-coordinates in relation to
the image’s width and height, ranging from 0 to 1. For instance, the top
left corner of an image would have a value of [x = 0, y = 0] as illustrated by
the right image in Figure 3.2, while the bottom right corner would have a
value of [x = 1, y = 1]. Additionally, the z-coordinate represents the depth
of the landmark, with the midpoint of the hip as the reference point. As
the z-value decreases, the landmark gets closer to the camera.

The pose world landmark yields estimated real-world 3D coordinates in
meters. The origin is set at the center of the hips and would change from
frame to frame. This corresponds to the left image in Figure 3.2

22

3.3 Collection of landmarks

Figure 3.2: An illustration of the definition of axes.

The use of real-world 3D coordinates works great when angles and distances
are calculated in the same frame. However, because of the potential change
in the origin for each frame, this would not work as well when comparing
data from different frames. For this reason, the pose landmarks is primarily
used for the velocity calculations and the pose world landmarks is primarily
used for the pose estimations. This is true for the rest of the thesis unless
specifically mentioned otherwise.

23

3.4 Velocity-based training and posture

3.4 Velocity-based training and posture

To ensure correct and efficient exercise, the squat’s velocity and posture will
be examined. Velocity will be monitored by analyzing the user’s changes in
speed for each squat, indicating when rest is needed due to fatigue. This
information is based on Chapter 2.1 The theory of velocity-based training.
Correct posture is crucial and involves observing the angles of various body
parts in relation to each other. Proper lifting technique not only prevents
injury but also maximizes benefits from the squat. This is based on Chapter
2.2 The theory behind the squat.

Using the correct data

Prior to conducting various calculations, it is crucial to have a clear under-
standing of the incoming data. Chapter 3.3.1 Defining a coordinate system
explains the two distinct types of coordinates - one for the world and an-
other for the image frame. Additionally, it is essential to determine the
orientation of the camera in order for the app to adjust accordingly. To
achieve this, a function was developed to identify which side of the per-
son should be focused on. This was accomplished by analyzing the z-data
from each side of the hip and selecting the smallest z-data, which indicates
the closest proximity to the camera. In essence, when analyzing the user’s
position data, the point closest to the camera is always used in calculations.

3.4.1 Velocity-based training

The real-time position data is obtained by the collection of landmarks. It
is used to analyze and determine the squatting direction, which is then
compared to the previously determined direction. This helps to establish
the region of interest (ROI). The peak velocity is then calculated within
this region to determine the velocity of each squat. The flowchart in Figure
3.3. demonstrates this process. In this section, it is explained how the ROI
is determined and how the velocity is calculated, as well as identifying the
expected errors from using this method.

24

3.4 Velocity-based training and posture

Figure 3.3: Flowchart illustrating how the ROI and the corresponding velocity
is found.

Region of interest

According to the theory of velocity-based training, the ROI would correspond
to the upwards thrust movement of the squat. By identifying when the user
is thrusting upwards in the squat, the maximum velocity of that movement
could be found. This could then be compared to the next thrust, and the
next, and so on.

The distance from the shoulder down to the ankle of the person is referred
to as the height of the person in this section, whereas the distance measured
while the person is standing is referred to as the maximum height. This is
illustrated in Figure 3.4.

By looking at the difference between the current height of the person and the
height in the past, and looking at the sign, the direction of the squat could
be determined. By trial and error, it was found that the difference between
the current height and the height 10 frames in the past, gave acceptable
results. An example of this is illustrated with the left and middle image in

25

3.4 Velocity-based training and posture

Figure 3.4, with H1 and H2 respectively, representing the current heights
of that frame. Here the current height H2 would be compared with the last
height H1 and the direction would be determined to be an upward direction.
Note that the difference in the images is not 10 frames in between, but
exaggerated for illustration purposes.

In addition, to ensure that the detected difference was a squat and not noise
or small insignificant movements in the shoulder, the maximum height of
the person was used. By comparing the absolute value of the detected
difference to a percentage of the maximum height, the detected ROI should
work independently of the distance from the camera and the person doing
the squats. By trial and error, 2% was found to give acceptable results.
So if the detected difference is larger than 2% of the person’s maximum
height, the difference is considered large enough to be a part of the squat
movement. The maximum height is illustrated in the right image of Figure
3.4.

Figure 3.4: Three positions illustrating the upward direction, with the bottom
position at the left and the maximum position at the right. Current height is
illustrated as H1 and H2, and maximum height as HM .

26

3.4 Velocity-based training and posture

Finding the velocity

By looking at the position of the shoulder closest to the camera, the velocity
could be calculated by first finding the distance between the current position
and the last position in the xy-plane. With this distance the derivative could
be found, resulting in the velocity. The utilization of the theory in Chapter
2.5 Finite difference method is used in order to find this derivative. By
assuming linearity between the position points of interest used to calculate
the velocity, the equation could be simplified to Equation(3.1).

vavg =
∆x

∆t
(3.1)

The ∆x would correspond to the distance between the current position
and a previous position. The time ∆t corresponds to the time between the
positions used in ∆x. The frames per second (FPS) is assumed to be known
and could be used to calculate this time by dividing the number of frames
between the positions used in ∆x and the FPS. Equation(3.1), ∆x, and the
FPS are combined below in Equation(3.2):

vavg =
∆x

(b
FPS)

(3.2)

In the updated average velocity Equation(3.2), b represents the number of
frames between the positions used in ∆x. If for instance the current position
and the last position are used as ∆x, with one frame between, the average
velocity equation becomes vavg = ∆x

(1
FPS)

Expected errors

When calculating the average velocity using a series of frames, there is a
possibility of introducing errors. The value of b in Equation(3.2), which
represents the frame between, must be an integer. If there is a significant
change in position right after a frame is captured, the velocity calculated
using the wrong b value can be inaccurate. In the worst-case scenario, this
error would correspond to one frame. For a video stream with 30 FPS,

27

3.4 Velocity-based training and posture

which is one of the standard FPS rates, this error would be 1
30s ≈ 33ms.

While this error is likely to be negligible, it is still important to test whether
it could affect the data.

3.4.2 Posture estimation

Defining a good posture

In order to implement a posture estimation, a good posture must first be
defined. From Chapter 2.2 The theory behind the squat, some key points
regarding the posture of the movement were defined. This included depth,
knee position, stance, eye gaze, back angle, hip drive, and bar placement.
Although the deepness of the squat has more to do with the efficiency of the
exercise it could also be interpreted as a form of posture and is therefore
included here. The proposed mono-camera-based solution for analyzing
squat form is assumed to require the side profile view of the user, making
the estimation of the stance difficult. The stance aspect of the posture
feedback is therefore ignored in this solution.

The main focus of the posture part for this thesis was decided to be the
depth of the squat as well as the neck position/angle. This was done to
create a proof of concept, where the remaining posture estimations could
be implemented at a later time. In this section, the approach to finding and
monitoring the neck angle and squat depth is presented.

Neck angle monitoring

In Chapter 2.2 The theory behind the squat, it was established that main-
taining a good neck posture entails orienting the head in a way that the eye
gaze of the user corresponds to the user looking approximately 1.5 meters
ahead of their standing position. To ensure this is achieved, it is important
to calculate and monitor the angle of the neck to provide the user with
feedback on their progress.

From Chapter 2.3 Human pose estimation, the identifiable body parts are

28

3.4 Velocity-based training and posture

defined. In order to determine the neck angle, three points were used; hip,
shoulder, and ear. By creating a baseline using the hip and shoulder points,
the offset of the ear point forms an angle that can be calculated using the
principles outlined in Chapter 2.7 The geometric calculations. The practical
application of this can be seen in Figure 3.5 below where the angle was found
to be 17◦.

Figure 3.5: Graphic illustration of the neck angle.

To determine the acceptable neck angle, testing is required. This test will
identify a suitable area for the neck angle, with a lower and upper limit
defining this area. The neck angle will be continuously recorded during
squatting and used as the basis for the scoring system.

Depth of the squat

To maximize the advantages of performing squats, it is essential to deter-
mine the appropriate depth for the exercise. In Chapter 2.2 The theory
behind the squat, a suitable squat depth is classified as when the femur is
parallel to the feet. Therefore, it would be beneficial to devise a method to
monitor and ensure this alignment.

The solution chosen was to use the hip, knee, and ankle points to measure
the distance from the knee and hip points down to the ankle height and
compare the distances. In the illustration displayed in Figure 3.6, the blue

29

3.4 Velocity-based training and posture

and the green lines represent the distances of interest these, called hip and
knee height respectively.

Figure 3.6: Graphic illustration a suitable squat depth.

The lines representing the hip and knee height illustrated in Figure 3.6
were calculated by subtracting the position of the ankle landmark from
the knee and hip landmarks. This was done using only the y-coordinates
(hipheight = |yhip − yankle|) effectively getting the distance of that straight
blue and green lines from Figure 3.6. These distances were then recorded to
calculate a depth score after each squat. A good squat is achieved when the
hip and knee heights are the same length, corresponding to the subtractions
equaling zero. However, a deeper squat is considered better, so negative
difference values are also taken into account. By calculating the distances
this way an assumption was made that the y-coordinate alone would be
sufficient to accurately calculate the distances.

30

3.5 The application

3.5 The application

The application plays a crucial role in the product’s functionality. It is
where the user receives feedback on their workout. The application has
been designed to provide continuous feedback to the user on various as-
pects such as the squat velocity, velocity change, depth of the squat, neck
position, as well as depth and neck scores. Upon opening the app, the cam-
era feed is displayed along with the mentioned outputs, as shown in the
layout illustrated in Figure 3.7.

Figure 3.7: Graphic illustration on the layout of the application.

Upon starting the application the layout shown in Figure 3.7 is presented to
the user. Real-time feedback on squat depth, as well as prompts to take a
break or adjust neck angle, are displayed on the left side through the Squat
velocity and Neck Angle Ok boxes. The camera feed is displayed on the right
side, allowing the user to view themselves along with a virtual skeleton for
guidance. The user can initiate and conclude squatting sessions via gesture
control or by clicking a button labeled Start Squat located in the file tab.

31

3.5 The application

3.5.1 Gesture control

To make the application more accessible, a method for initializing squat
estimation was necessary. The idea was for the user to position the device
with the application in a place where the whole body of the user could be
clearly seen. The user would then stand in front of the device, ready to
perform a squat. It would be convenient if they could start and stop the
squat estimation without pressing any buttons on the device.

By implementing the pre-trained model explained in Chapter 2.4 Gesture
recognition, a wide range of gestures was possible to use for the purpose
of controlling the application. In order to identify practical gestures for
the application, it was necessary to conduct a comparative test of the var-
ious potential gestures displayed in Figure 2.5 from Chapter 2.4 Gesture
recognition.

3.5.2 User interface

The user interface is designed to be straightforward. Upon opening the
application, the user is greeted with the layout displayed in Figure 3.7.
The camera feed section displays a feed of the user with a virtual skeleton
overlaid on top. To ensure accurate tracking, the user should position them-
selves at a 90-degree angle to the camera, ensuring the skeleton captures
their entire body. The user can initiate the squat by either performing the
okay gesture or selecting the start squat option under the file tab.

The user could then begin squatting. The first squat determines the initial
velocity of the upward movement. In Figure 3.7, there are two green squares
that indicate the user’s speed and neck position. The square labeled Squat
velocity turns orange when the upward thrust’s velocity drops by 10% from
the initial velocity. This indicates to the user that they need to either
speed up or take a break. If the velocity drops by 20%, the square turns
red, indicating that the user should take a break immediately. This update
happens after every squat. If the user positions their head too far back or
too far forward, the Neck Angle OK square will turn red and the message
will change to Control your neck!. This check is performed continuously to
ensure proper posture.

32

3.5 The application

The scores will be displayed below the two squares. The neck score will
update each time a change of direction is made in the squatting movement,
whether moving downward or upward. The depth score will be calculated
after each squat completion, and both scores will be shown as percentages.

The velocity change feature in the app displays the percentage change in
velocity between the current squat and the initial squat. To stop the squat
session, users can either use the peace gesture or press the Start squat button
again in the file tab. The application will then show the total depth score,
neck score, and a plot of the velocity change history as could be seen in
Figure 3.8.

Figure 3.8: Graphic illustration of the parallel squat.

To close the app, either Cross it out in the top right corner or press exit in
the file tab.

33

3.5 The application

3.5.3 Scoring system

The scoring of the squat is divided into two categories: depth score and
neck score. Velocity does not receive a score as it varies based on the
user and their number of squats. In the previous chapter, the hip and
knee heights were calculated to determine depth. The score is obtained by
subtracting the knee height from the hip height, resulting in a delta value
that determines the score, as shown in Equation(3.3).

score = 1− (hip_height − knee_height) (3.3)

The scores for depth are stored and utilized in computing the final score
for the set. The Total Depth score is obtained by determining the average
of all the depth scores and presenting it. It should be emphasized that a
perfect squat would earn a score of 100%, but a deeper squat results in a
higher score exceeding 100%. The graphical display in Figure 3.8 illustrates
the Total Depth score below the boxes.

Similar to the depth, the neck angle is also calculated continuously and
saved. An area is needed to define good neck posture, where a lower limit
and an upper limit would determine how the score is calculated. This is
shown in Equation(3.4).

score =

1 ; [lower limit < angle < upper limit]
1− (overshoot

scaling factor) ; [angle > upper limit]
1− (undershoot

scaling factor) ; [angle < lower limit]
(3.4)

The lower and upper limit from Equation(3.4) will determine when the
continuous feedback, which is displayed in the application with the box
labeled Neck Angle OK, shows as good or bad. When the neck angle
calculated in real-time is above the upper limit or below the lower limit, the
box will change color to red and display the text Control your neck!.

The score is calculated based on the data collected, which includes all saved
neck angles since the last change in direction. Each angle is then evaluated

34

3.5 The application

using a scoring Equation(3.4), with a score of 1 being awarded if the angle
falls within the upper and lower limits. If the angle exceeds these limits,
however, the score is calculated using the equation above. The terms over-
shoot and undershoot refer to the amount by which the angle exceeds or
falls below the limits, while the scaling factor determines the severity of
the impact of an incorrect neck angle on the score. Testing is required to
determine the limits as well as the scaling factor.

35

Chapter 4

Testing and results

4.1 Setup

Various tests have been conducted using videos of real and simulated indi-
viduals. To guarantee consistent results, all tests were performed multiple
times, explained in each test. The real videos were captured using a smart-
phone. To expedite the testing code, some video clips were divided into
separate image folders. However, the original video was assessed to confirm
the accuracy of the outcomes. The simulated video has been made and ren-
dered using Blender[27]. An example of a squat was collected from Adobe’s
Mixamo [28]. The character Bryze and the simulation air squat were chosen
from Mixamo, and the file was imported into Blender. The squat was then
edited to fit the wanted tests.

36

4.2 Testing of velocity

4.2 Testing of velocity

The equation used to calculate average velocity required testing to ensure
its accuracy. Furthermore, it was necessary to develop and test the logic
for velocity-based training. This would enable users to receive continuous
feedback on their velocity and know when to take a break.

4.2.1 Testing the equation for the average velocity

A real video was captured with a phone of a person doing one squat. In
the figure below, Figure 4.1, the starting position and the bottom position
illustrates the full movement. The full movement began at the starting
position, down to the bottom position and up again.

(a) Starting position. (b) Bottom position.

Figure 4.1: The captured video illustrated with the starting position and the
bottom position.

37

4.2 Testing of velocity

The equations from Chapter 3.4.1 Velocity-based training were implemented
with one frame between each calculation, as shown below in Equation(4.1).

vavg =
d

(b
FPS)

=
d

(1
FPS)

(4.1)

Figure 4.2 demonstrates the implementation results. To obtain the result,
the squat from Figure 4.1 was repeated 20 times, and the outcomes were
compared. In Figure 4.2a, the position of the whole movement (WM) and
the corresponding velocity in the WM is illustrated, while in Figure 4.2b, the
position in the ROI and the corresponding velocity in the ROI are shown.
The average position and velocity from the 20 runs are represented by red
and blue lines, respectively, while the SD is displayed in each plot as the
area around the line.

38

4.2 Testing of velocity

(a) Position of the WM with the corresponding velocity.

(b) Position of the ROI with the corresponding velocity.

Figure 4.2: Position of the WM and the ROI, with the corresponding velocities.

39

4.2 Testing of velocity

As could be anticipated, the derivative appears to be highly responsive
to even the slightest movements, ss depicted in Figure 4.2. The velocity
plot’s standard deviation averaged 0.00791, and the highest velocity at-
tained within ROI was found at 0.53441± 0.0272.

By using the same equation as earlier, Equation(4.2), but finding the dis-
tance d over a larger time and compensating with a larger b, the noise was
improved. This worked as a running smoothing filter.

Multiple values were tested for the ∆x and the corresponding b. The test
that yielded the most promising results calculated the difference ∆x with
the current position value and the position value of ten frames in the past.
This would then correspond to b = 10 shown in the updated equation,
Equation(4.2).

vavg =
∆x

(b
FPS)

=
∆x

(10
FPS)

(4.2)

The result of implementing this updated equation is shown in Figure 4.3:

40

4.2 Testing of velocity

(a) Position of the WM with the corresponding velocity using the updated equation.

(b) Position of the ROI with the corresponding velocity using the updated equation.

Figure 4.3: Position of the WM and the ROI, with the corresponding velocities
using the updated equation.

41

4.2 Testing of velocity

As depicted in Figure 4.3, the outcomes were considerably more polished.
While there was still some noise in the WM, it had become noticeably
smoother in the ROI. The velocity plot’s average SD was found at 0.00228,
and the maximum velocity achieved in the ROI was found to be approxi-
mately 0.4319±0.0036, which enhanced the overall accuracy and reliability
of the outcomes compared to the outcome without the smoothing filter. The
SD of approximately 0.0036 for the peak velocity corresponded to a poten-
tial error of 0.008% in the comparison of velocities and was considered to
be negligible in the scope of this thesis. The expected error introduced by
using FPS, discussed at the end of Chapter 3.4.1 Velocity-based training,
was also considered negligible with the use of this updated equation.

4.2.2 Testing the velocity-based training

Some tests were needed to ensure that the program was able to find out
when the person should take a break, based on Chapter 2.1 The theory
of velocity-based training. Three videos were tested, two simulations from
Blender, and one real video.

Red circles were used to visualize the maximum average velocities, and
green circles were used to visualize a squat that had a significant velocity
drop with respect to the first squat. In other words, if the maximum average
velocity was visualized with a green circle, the criteria for the velocity-based
training were met for the figures in this section.

The simulations from Blender

First, a simulation from Blender was tested. One squat was done and re-
peated eight times in a row. During the sequence of squats, each upward
movement was gradually scaled up in relation to the first squat, with random
increments until the last squat. This scaling resulted in a slower velocity
of the upward movement for each squat, as the movement occurred over
a longer period of time. The downward movement of each squat was un-
changed and identical to each other. Figure 4.4 shows the starting position
and the bottom of the first squat.

42

4.2 Testing of velocity

(a) Starting position. (b) Bottom position.

Figure 4.4: Starting position and the bottom position of the first squat of the
simulated training set.

The position and the velocity were found as before. A check if the current
squat had a velocity loss of 15% or greater in regards to the first squat
was implemented, and the results are shown in Figure 4.5. The simulation
was tested 20 times, and the figure shows the average positions and the
corresponding average velocities from the tests.

43

4.2 Testing of velocity

Figure 4.5: A simulated training set, where the green circle percent a significant
velocity drop.

From Figure 4.5 it could be seen that all the maximum velocities were found
and illustrated with red circles. However, the last squat met the requirement
of the 15% velocity loss and was represented with a green circle. According
to the figure, the velocity loss was equivalent to (15.55± 0.57)%.

To better visualize the peak velocities and their corresponding SDs, a bar
plot was created. Each peak velocity represented by a red circle, including
the last one, represented by a green circle in Figure 4.5, was displayed as a
blue bar. The SD was also included as an error cap at the top of each bar.
Figure 4.6 displays the bar plot.

44

4.2 Testing of velocity

Figure 4.6: Bar plot showing the peak velocities with the corresponding SDs
illustrated as error caps.

In Figure 4.6, it was noticeable that the SDs detected were relatively minor.
The largest SD recorded was found around 0.0079 for the fourth repetition,
which was considered an acceptable margin of error.

A new simulation was created and tested using Blender. It was based on the
same simulation as the one shown in Figure 4.5, but this time the downward
movements were scaled as well in order to check if varying velocity in this
movement affected the results.

It is important to mention that the scaling process in Blender may not result
in peak velocities matching Figure 4.5. However, the relationship between
peak velocities should remain consistent. If the downward movement had no
impact on the results, the percentage for the last velocity was expected to
be similar to the one shown in Figure 4.5. The results of the new simulation
are illustrated in Figure 4.7.

45

4.2 Testing of velocity

Figure 4.7: A simulated training set, with variation in the downward velocity.

From the test illustrated in Figure 4.7 it could once again be seen that
all the maximum velocities were found and illustrated with red circles. The
last squat met the requirement of the 15% velocity loss and was represented
with a green circle.

The downward movement varied randomly and was quite exaggerated. This
was not representative of a real training set, however, the results showed
that the percentage was in the same region as shown for the first simulation
and could imply that the variation in the downward velocity did not affect
the results.

The real video

A new video was taken of a person, where he took two fast squats followed
by one significantly slower squat relative to the first two. The video was
tested 20 times. Figure 4.8 depicts the person in the starting position and
at the bottom of the first squat. The figure below, Figure 4.9 shows the
position and the velocity.

46

4.2 Testing of velocity

(a) Starting position. (b) Bottom position.

Figure 4.8: Starting position and the bottom position of the first squat.

Figure 4.9: A Training set with three squats, where the green circle percent a
significant velocity drop.

47

4.2 Testing of velocity

From Figure 4.9 it could be seen that the maximum velocity for each thrust-
ing movement was found. The last squat was found to be 63.82± 0.1% rel-
ative to the maximum velocity of the first squat. The maximum SD found
for one squat was approximately 0.0008 and was assumed to be negligible.

By comparing the position with the velocity, it could also be seen that the
maximum velocity of the downward movement in the last squat was larger
than the maximum velocity of the upward thrust. The ROI was still found
as expected and the right maximum velocity was found, as indicated with
the green circle and percent in the velocity plot in Figure 4.9.

48

4.3 Posture measurements

4.3 Posture measurements

In order to ensure that the posture measurement system was functioning
properly and providing accurate feedback to the user, various tests had to be
conducted. This included testing the depth function using a simulation from
Blender, and assessing the angle estimation using both a real video and a
simulated video that would help determine the scoring equation parameters
for the neck angle. Additionally, two simulated tests was conducted to
determine the accuracy of mono-camera-based measurements.

4.3.1 Testing the depth function

In order to ensure accurate calculations and reliable landmarks, a simulated
video was utilized to test the effectiveness of the squatting technique. This
approach provided greater assurance that the test was executed as intended.
Figure 4.10 depicts the simulation done with the starting position and at the
bottom position of a squat. Ideally, at the bottom position, the difference
between the blue and green lines should be as close to zero as possible.

(a) Starting position. (b) Bottom position.

Figure 4.10: Starting position and the bottom position of the simulated squat.

49

4.3 Posture measurements

The purpose of the test was to measure the blue and green distances de-
picted in Figure 4.10b and analyze the difference between them while the
individual performed a squat. This process was repeated 20 times to ensure
accuracy. The results of the test are demonstrated in Figure 4.11. The
upper plot displays the advancement of the squat movement in terms of
distance from the hip and distance from the knee, while the lower plot indi-
cates the difference between the two distances with a dotted line indicating
the desired end position. The plot depicts the movement from the start-
ing position, where the difference in height amounts to 0.4, to the bottom
position.

Figure 4.11: Parallel distances.

Upon analyzing the plots illustrated in Figure 4.11, the results were gener-
ally as anticipated. As an individual descends, the difference between hip
and knee height decreases towards the desired height. The squat’s bottom
value was measured at 0.04, which corresponds to a 10% offset from the
reference value of 0 considering the character’s initial standing height dif-
ference of 0.4. This outcome was deemed satisfactory. After analyzing the
SD between the 20 runs, it was found to be approximately ±0.0007 and
determined to be negligible.

50

4.3 Posture measurements

4.3.2 Estimating a good neck angle

A test was conducted to determine the appropriate neck position, where a
person held their head still in the direction outlined in the theory Chapter
2.2 The theory behind the squat, looking approximately 1.5 meters in front of
the individual’s feet. This is depicted in Figure 4.12. A video was recorded
of the individual, where the camera initially had a close distance to the
individual, before gradually moving back to a distance of approximately
6.5 meters away from the individual. The anticipated outcome of this test
was that the angle would remain consistent when up close, but become
progressively less precise as the camera moved further away. Figure 4.12
displays the starting position of the video.

Figure 4.12: Starting position for the video used for estimating the neck angle.

The test results were represented in a plot shown in Figure 4.13. It can be
observed that the angle fluctuates between around 29◦ to 34◦. The average
value for the entire test was determined to be 31.6◦.

51

4.3 Posture measurements

Figure 4.13: The behavior of the neck angle.

The result is not as expected. There seems to be more interference than
anticipated, and it’s unclear if the measurement improves as the camera is
closer to the person. It’s hard to determine the actual neck angle from the
graph in Figure 4.13. Nevertheless, assuming the correct angle is in the
data found, by analyzing the plot it is possible to see an oscillation of about
5◦. This oscillation was treated as an error.

4.3.3 Testing neck angle with simulated input

To check how the neck monitoring develops in a controlled environment
while doing a squat, a test was contrived where the simulated video from
the depth test would be used. The reason for using the simulated video was
that the character in the video had a fixed neck position during the entire
squat. This made the input more predictable.

Figure 4.14 presents the result after running the same squat 8 times in a row.
The top plot presents the position of the squat, where the smallest value
represents the character from the simulation in a standing position and the
large value represents the character from the simulation in a bottom squat

52

4.3 Posture measurements

position. The plot below shows the neck angle through all the repetitions.

Figure 4.14: Position of the shoulder and the associated neck angle of the char-
acter from the simulation, over the span of 8 squats.

In the earlier test illustrated in Figure 4.13, it was predicted that there
would be a variation of approximately 5◦. However, upon analyzing the
data, it was discovered that the angle varies between approximately 12◦

and 22◦. This was a greater range than anticipated. Further examination
of the video and the Mediapipe skeleton showed that when the simulated
character squatted, their arms moved upwards, which caused the shoulder
point to shift from its original position. As a result, the line between the
hip and shoulder slightly shifted in relation to the ear point, resulting in a
change in the angle of the neck.

Combining the discoveries from the two tests, the parameters of the scoring
equation for the neck angle were determined. The scoring equation referred
to was derived in Chapter 3.5.3 Scoring system in Equation(3.4). By exa-
mening the plot in Figure 4.14 and Figure 4.13, an area defined as a good
neck posture was chosen to be between 15◦ and 34◦ in neck angle, mean-
ing the lower limit amounted to 15 and the upper limit amounted to 34.
The scaling factor was chosen as 10, ensuring that the wrong neck angle
would be properly reflected in the score. The scoring equation, with the
parameters determined, is shown below in Equation(4.3).

53

4.3 Posture measurements

score =

1 ; [lower limit < angle < upper limit]
1− (overshoot

scaling factor) ; [angle > upper limit]
1− (undershoot

scaling factor) ; [angle < lower limit]

⇒ score =

1 ; [15 < angle < 34]

1− (overshoot10) ; [angle > 34]

1− (undershoot10) ; [angle < 15]

(4.3)

4.3.4 Testing errors of mono camera-based measurements

During the application’s development, it was assumed that the camera
should be placed with a side view of an individual during an exercise. This
assumption was made to ensure that the results would be accurate and not
misrepresented due to camera misalignment. However, it was necessary to
test what happened if the camera came out of the assumed alignment.

To test the camera positioning and potential errors from misalignment, a
simulation was created where a character stood in a squatted position while
the camera was moved in different directions. In Figure 4.15 the character
is depicted from a bird’s eye view to give an enhanced comprehension of the
testing process. One of the tests conducted involved rotating the camera
anti-clockwise 360◦ around the character starting from the right side at 0◦

and ending back at the same position. This test is referred to as the 360◦

test.

Another test involved viewing the character from the right side at 0◦, while
the camera moved up in a negative direction on the y-axis and rotated in
a negative direction of rotation around the x-axis. After the movement
up in a negative direction on the y-axis and back down again, the camera
rolled towards the back and towards the front of the character equating to
a negative direction of rotation and then a positive direction of rotation
around the z-axis. The rotations around the z-axis happened while viewing
the right side of the character at 0◦. This test is referred to as the Roll
test.

The tests consistently maintained the same distance from the center of the

54

4.3 Posture measurements

character throughout and were simulated 10 times to obtain the accompa-
nying standard deviation and ensure the reliability of the results.

Figure 4.15: An illustration of how the camera was positioned in the test.

To analyze these tests, the depth height was used as this function was a
crucial part of the application. From the earlier test in Chapter 4.3.1 Test-
ing the depth function, the depth of the simulated character was found to
be 0.04. In the test conducted in this section, this value is considered to
be the true depth value. In other words, if the measured depth deviates
from this value, it is considered to be wrong due to the camera alignment in
relation to the character. It is assumed that any deviations and correspond-
ing errors in the measurement of the depth due to the camera alignment
correspond to the same error due to the same camera alignment in all the
other measurements and calculations done in this project.

In these tests, the assumption that the use of the y-coordinate alone was
sufficient in calculating the functions needed was also tested. This was done
by comparing the calculations done with only the y-coordinate and calcu-
lations with both the y and the z-coordinates, referred to as one-dimension
(1D) and two-dimensions (2D) calculations for this section.

55

4.3 Posture measurements

360◦ test

The test was conducted as described and is shown in Figure 4.16. The
target line, illustrated with a black dotted line in Figure 4.16, represents
the true depth value at 0.04. The upper plot displays the depth height found
from the right side data points and the lower plot displays the depth height
found from the left side data points. The red and blue lines present the
depth found while doing 1D and 2D calculations respectively. The shaded
area around the mentioned lines represents the SD.

Figure 4.16: Illustration of the calculated difference between hip and knee height
plotted against the degrees in camera position.

From the upper plot in Figure 4.16, it was interesting to see how the re-
sult seems to improve when the camera was aimed toward the front of the
character at 90◦. It was also clear to see that a camera position around the
back of the character (270◦) would not be ideal.

Drawing any concrete conclusion just by looking at the plot could be chal-
lenging. Therefore, the standard deviation of the four areas shown in Figure
4.15 was calculated. The data was divided into four parts: 45◦ to 135◦, 135◦

56

4.3 Posture measurements

to 225◦, 225◦ to 315◦, and 315◦ to 45◦ with equates to the area around 0◦,
90◦, 180◦, and 270◦ respectively as depicted in Figure 4.15. The SD for
these areas was then calculated against the true depth set at 0.04. The
results are presented in Table 4.1 below.

1D 2D
Side: Right depth Left depth Right depth Left depth
0◦ 0.016 0.017 0.022 0.035
90◦ 0.010 0.018 0.011 0.031
180◦ 0.018 0.009 0.024 0.014
270◦ 0.039 0.020 0.045 0.044

Table 4.1: The standard deviation from the target divided into 4 areas around
the regions of interest.

After examining Table 4.1, it is evident that the 1D calculations exhibited
the lowest SD for the left depth at 180◦, which was logical as the camera
was positioned at the character’s left side. However, it was surprising to
note that the right depth at 90◦ also had a low SD, as this corresponds
to the camera being in front of the character and was assumed to produce
errors. On the other hand, it is worth noting that the same can not be said
for the left depth at 90◦.

Regarding the comparison between 2D calculations and 1D calculations, it
cannot be concluded that the former was better as the standard deviation
consistently appears worse for the 2D calculations. This means the 1D
calculations gave a better result.

Roll test

The test was conducted as described, and the starting position, top view,
right roll, and left roll are illustrated in 4.17, along with the corresponding
frames the images are taken from as described in the captions.

57

4.3 Posture measurements

(a) Starting position,
Frame 0.

(b) Top view,
Frame 60.

(c) Right roll,
Frame 150.

(d) Left roll,
Frame 215.

Figure 4.17: Outtakes from the test video.

As described earlier, it was assumed that the camera had to be correctly
aligned, viewing the side profile of a person. Thus, it was expected that the
depth height would be unstable around the true depth at 0.04. The graph
shown in Figure 4.18 displays the calculated depth height for both the 1D
and 2D represented by the red and blue lines respectively. The target line,
illustrated with a black dotted line in Figure 4.18, represents the true depth
value at 0.04.

Figure 4.18: Plotting the depth distance while the camera changes height and
orientation.

After analyzing the plot and the accompanying video frames presented in
Figure 4.17, it appeared that smaller movements along the negative direc-
tion in the y-direction along with the corresponding rotation around the

58

4.3 Posture measurements

x-axis did not have as much impact on the results as expected. However,
as the camera approached the top point represented in Figure 4.17b, there
was a slightly higher deviation from the target line. The rolling movement
captured in Figure 4.17c and Figure 4.17d seemed to induce a large devia-
tion as could be seen in the corresponding sections of Figure 4.18. In fact,
the largest deviation is at 0.3 and is not considered an acceptable error.

Based on the previous 360◦ test, there was no indication that the 2D calcula-
tion provided any advantages over the 1D calculation. Nevertheless, Figure
4.18 displays that the 2D calculation was more proficient at handling the
roll action disturbance represented in Figure 4.17c and 4.17d. However, it
did not seem to improve the overall estimation of the depth as the areas
where the 2D calculations had an improvement over the 1D, were after the
estimations had already deviated to far from the target line.

After conducting two tests, it was concluded that although the first test
showed some minor improvements when the camera had the side view of
the user in regard to the other views, the deviations were still quite small.
On the other hand, regarding the 1D versus 2D calculations aspect of the
test, it had not been demonstrated that using the z-coordinate as well as
the y-coordinate provided any significant advantages over using only y-
coordinates, meaning the assumption that only the y-coordinate is sufficient
is valid.

59

4.4 Testing of the application

4.4 Testing of the application

The application served as the medium for user interaction and feedback on
squat performance. It was important to conduct testing to ensure its proper
functionality. The gesture control and user interface, along with the scoring
system, were thoroughly tested and assessed for quality assurance.

4.4.1 Testing the gesture control

As stated in Chapter 3.5.1 Gesture control, a pre-trained library was found
that could recognize various gestures. In order to determine the most prac-
tical gesture for initiating and concluding a squat, a test was conducted to
evaluate the reliability of the various gesture estimations. Chapter 2.4 Ges-
ture recognition showcases Figure 2.5, which displays all possible gestures
that the pre-trained library can estimate. Eight of these were chosen and
required testing to determine their reliability, the chosen gestures were call
me, fist, live long, okay, peace, stop, thumb down, and thumb up.

To conduct the test, a video was recorded for each gesture where the gesture
was made and moved around in the frame in order to see how often the
gesture was detected, and if the model identified a different gesture than it
was supposed to. Then, each video was run through the gesture recognition
model, saving all gestures found for each test.

The bar plot in Figure 4.19 illustrates the results of the different gesture
tests. The blue bars show how many times the correct gesture was identified,
while the red bars represent how often any gesture was identified. In other
words, the red bar displays how often a gesture is found for each test,
regardless of the gesture. The y-axis displays a score that ranges from
0% = 0 to 100% = 1, indicating how often the item in question was detected.

60

4.4 Testing of the application

Figure 4.19: Gesture recognition scoring.

Upon examining Figure 4.19, it was discovered that the gestures of fist,
thumb up, and thumb down had high scores. However, upon further ex-
amination of the blue bars in comparison to the red, it became clear that
while fist and thumb down were often detected correctly, they were also the
most difficult to detect out of all the images sent in. More than 50% of the
images sent in had no recognizable gestures.

It was also important to consider unintentional gestures. For example, stop
and live long is basically just an open hand, which is a natural gesture for
a person to make. This means it could easily be detected by mistake. The
same could be said for thumb up, especially if the person would be holding
a weight. For these reasons, the gestures of okey and peace were chosen.
From the bar plot, these two gestures had acceptable scores and were some
of the least natural gestures to make. This eliminated the possibility of
unintentional commands. The mentioned results as well as the rest of the
selected eight gestures in their respective test are attached in Appendix B
Gesture table.

61

4.4 Testing of the application

After selecting these gestures, it was important to ensure that they didn’t
have any correlation with each other. It would be unfortunate if the user
tried to start the squat and immediately stopped because the model detected
another gesture meant to stop the exercise. In Figure 4.20 below, the results
of the recognition test for the okay and peace gestures are displayed. The
bar plots show how many times the gestures were detected, as well as any
other gestures that were detected during the recognition test.

Figure 4.20: Recognition test to ensure reliability.

Based on the analysis of the bar plots in Figure 4.20, it can be concluded
that the okay and peace gestures were not correlated. Therefore, they were
suitable to use without the risk of unintentional commands or confusion
with each other.

4.4.2 User interface and scoring system

A test where a person started the application and did the squat from start to
end was done. The computer screen recorded the whole exercise session, and
representative screenshots of the session will be shown in this section. The
interesting points to examine were the user interface and scoring system.

The user started the application and got into position, making sure that the
whole body was in the frame, and when the user was ready, the squatting set
began. An immediate problem was discovered as the person doing the squat

62

4.4 Testing of the application

had a hard time seeing the feedback on the screen due to the necessity of the
camera position, and therefore the screen, relative to the person. This was
solved by having another person tell the user about the feedback, ensuring
that the feedback was given continuously and that the user could focus on
squatting.

In Figure 4.21, the start of the exercise is shown. Here it could be seen
that the camera feed was displayed as intended and that the skeleton of the
person was found. In the top left corner of the figure, it could be seen that
the squat monitoring gets started in the application manually by using the
file tab and pressing the start squat button.

Figure 4.21: The start of the exercise.

After squatting for some repetitions, the velocity of the upward movement
dropped over 10% compared to the initial velocity, and the square labeled
Squat velocity turned orange as shown in Figure 4.22.

63

4.4 Testing of the application

Figure 4.22: A screenshot showing the change of the square labeled Squat veloc-
ity.

From Figure 4.22 it could also be observed that below the two boxes with
the labels Squat velocity and Neck position is good! the depth score, neck
score, and velocity change were displayed as percentages. As this particular
screenshot was taken while the user was performing the downward motion
of the squat, this corresponded to the highest depth percent of the last
squat, the neck score from the last squat’s upward movement, and the
velocity change from the last squat compared to the initial squat. The
velocity change is displayed as 11.88% and the box labeled Squat velocity
was changed as designed.

The screenshot below, shown in Figure 4.23, shows the upward motion
subsequently from the downward movement shown in Figure 4.22. In other
words, Figure 4.23 shows the upward motion to the same squat as shown
in Figure 4.22.

64

4.4 Testing of the application

Figure 4.23: A screenshot showing the upward motion.

Figure 4.23 shows the box that was labeled as Neck position is good! changed
the label to Control your neck! and changed the color to red.

The user got the feedback on the orange box labeled Squat velocity and
chose to continue the session. The user managed to increase the velocity,
resulting in the box changing color to green again. This, however, only
lasted for a few more repetitions before the velocity drop was greater than
20% and the box turned red. This could be seen in the screenshot shown
in Figure 4.24, where the user was standing still after the session, while
another person ended the squat session in the application by pressing the
Start squat button in the file tab.

65

4.4 Testing of the application

Figure 4.24: A screenshot showing the end of the repetitions, and the other
person ending the session.

From the screenshot shown in Figure 4.24 the velocity change displayed was
27.49%, and the box labeled Squat velocity was changed as designed.

When the button Start squat was pressed the squat session ended the camera
feed was replaced with a plot illustrating the peak velocity of each squat.
In addition, the total depth score and total neck score were displayed, as
could be seen in Figure 4.25.

Figure 4.25: A screenshot showing the end of the session.

66

4.4 Testing of the application

From Figure 4.25 it could be observed that 32 squats were performed, with
32 peak velocities shown as red circles in the graph section of the figure.
A yellow vertical line from the first peak velocity illustrates the reference
for all the other peak velocities. The first peak velocity represents 100%
velocity, however, as shown in the plot, the peak velocities could be larger
than the determined 100%.

Upon closer examination of the graph section, it was evident that the 27th
squat experienced a peak velocity loss of over 10%. This corresponded to
the velocity loss of 11.88% and the orange box labeled Squat velocity shown
in Figure 4.23 and Figure 4.24. The next squat had a smaller velocity loss
than the 27th squat, meaning that the user increased the velocity after the
feedback from the orange box was received. At the 31st squat, the velocity
loss was greater than 20% meaning the requirement was met for the user
to take a break immediately. However, as the feedback was provided at
the end of the squat, the user performs one more squat before ending the
session. This corresponds to the screenshot shown in Figure 4.24.

In Figure 4.25 the implementation of the total depth score and the total
neck score is displayed, in this particular test the scores amounted to 98%
and 65% respectively. From observing the full video the screenshots were
taken from, an impression of how well the user performed in regard to the
depth and the neck position was formed. The scores seemed to represent
the impressions gotten.

A new squat session was performed by another user. This was done the same
way as the one already presented in this section, with similar continuous
feedback results. The main difference was the length of the session, as well
as the user generally having a deeper squat and worse neck position off each
repetition when compared to the first test. The end of the squat session of
the new squat performed is shown in Figure 4.26.

67

4.4 Testing of the application

Figure 4.26: A screenshot showing the end of the new session.

From Figure 4.26 it could be seen that 13 squats were performed. The 3rd
squat fulfilled the 20% velocity loss, however, due to the user not observing
or getting this information the session continued. The 11th squat was ex-
actly 20% velocity loss and due to how the logic was implemented the box
labeled Squat velocity was displayed as orange and not red. The next squat,
however, had a larger velocity loss and the box was displayed as red. Similar
to the previous test, the information regarding velocity loss was provided
after the squat was completed, leading to an extra squat being performed.

The total depth score and total neck score are displayed as well in Figure
4.26 as 105% and 26% respectively. This shows that both the depth and
the total depth score could be displayed as more than 100%. These results
were also consistent with the impression gathered from the full video.

68

Chapter 5

Discussion and future work

The goal of this thesis was to develop a continuous feedback system, using
body movement identification techniques, to assist users in exercising cor-
rectly and efficiently. The system involved monitoring the user’s posture
and velocity, providing feedback on when to take breaks and guidance on
proper lifting techniques. It also included a score to evaluate the exercise
and helpful feedback on improving squats.

A laptop application has been developed to provide users with accurate
feedback. The implementation of VBT works as intended, indicating when
a break is needed with a low error rate of 0.008% for one peak velocity and
a standard deviation of ±0.57 when examining velocity drop. The posture
estimation feature has also been implemented, accurately measuring the
depth and neck angle, with an error in depth measurement equivalent to
10% and an error in neck measurement of 5◦, with a good neck angle defined
within a specific range.

After conducting research on existing solutions utilizing similar approaches,
it is evident that the solution proposed in this project holds value. Unlike
other solutions, this project combines the velocity-based training aspect
with posture estimation, making it a unique and innovative combination.
Additionally, the effort put into creating a user-friendly, easily accessible,
and cost-effective application for general users further enhances the useful-
ness of the developed application.

69

5.1 The input

This chapter thoroughly examines key aspects of the application. It dis-
cusses the assumptions that were made, and potential problems with the
developed solution, and compares it to other existing solutions and alter-
native approaches that could have been used. Additionally, it provides
suggestions for future development.

5.1 The input

The purpose of the input is to collect ample data regarding the user’s move-
ment in order to accurately calculate their velocity and provide a reliable
pose estimation. While a camera solution was implemented, several alter-
native options were also explored that would achieve the same objective.

A similar design of the AlphaPWR mentioned in Chapter 1.2 Existing so-
lutions, is an excellent choice of input if only the data of the user’s velocity
is considered. Although it can be argued that a more affordable and user-
friendly design can be developed using this concept, it would still require
additional equipment and be less user-friendly compared to the solution
developed in this thesis. Alternatively, a smartwatch or something similar
with a built-in accelerometer could be used to calculate the velocity of the
user. This combined with a screen for the feedback system could provide
the user with a good application for the velocity-based training part.

For posture estimation, one approach that was considered was to use an
inertia measurement unit (IMU). This would have the potential for precise
measurement ensuring a good posture estimation, however, this approach
would require more equipment and calibrations for the end user compared
to the developed solution in this thesis.

The difference between the mentioned inputs above and the selected one is
mainly in terms of user-friendliness and convenience. Moreover, the chosen
input can serve both the velocity and posture aspects of the application.
With the camera input, users can easily launch the application and receive
feedback from the camera stream, complete with the virtual skeleton and
other helpful information, which will guide them on what actions to take.
Furthermore, since smartphones are prevalent, an application for smart-
phones could be made as a future development, creating an app that users

70

5.2 Human pose estimation

can conveniently access on their devices. This approach ensures that users
can readily operate the application and access it whenever they need it.
This input method gives users the benefit of receiving real-time updates
and feedback on their phone screens, making it user-friendly and accessible.

5.2 Human pose estimation

During the research of human pose estimation, various versions were eval-
uated such as You Only Look Once (YOLO) and Mediapipe.

While Mediapipe can only detect the pose of one person, YOLO has the
advantage of detecting multiple poses. However, since this application was
designed to focus on only one person, made this feature was unnecessary.
YOLO has the capability to use both the graphics process unit (GPU) and
central process unit (CPU) for pose estimation, unlike Mediapipe which
only uses the CPU. [29] Despite this, Mediapipe was chosen for its higher
accuracy.

Ultimately, Mediapipe was selected for this project due to its higher number
of landmarks and perceived accuracy and stability. [29] Additionally, Medi-
apipe’s website claims that their service can be utilized on multiple devices
including computers, tablets, and smartphones, making it an attractive op-
tion. [15] The application was aimed toward the possibility of being used
on smartphones in for future development, making this a desirable feature.

Collecting the landmarks

When collecting the landmarks found by Mediapipe, a problem arrived. As
Mediapipe has so many landmarks it could take a long time to log all of
them. As previously stated in this thesis, there was both used the pose land-
marks and the pose world landmarks, with 33 landmarks for each category.
The application, therefore, needed to catalog 66 different landmarks into
various lists. Combined with the processing time Mediapipe needed to esti-
mate the landmarks, meant this would result in latency for the application.
This meant that the video presented to the user would lag.

The solution to address this issue was by implementing threading and down-

71

5.2 Human pose estimation

sampling techniques, which could reduce the workload and allow other sec-
tions of the code to run concurrently. The code was split up into 4 different
threads; interface, gesture, pose estimation and collection of landmarks,
and calculations for the squat estimation to try and make it faster and non-
interruptive. This helped some, as the application now worked well but, the
video feed still came in slow and lagging. The video format sent into the
applications was 30 FPS and it was concluded that Mediapipe did not need
that many frames, so instead of processing all the images only every other
image was processed. By doing this the application then had more time to
process and collect the data. This meant that the video presented got less
lagging. However, when the program ran for a longer period, the dictionary
containing the data started to become quite big, which again resulted in
lagging. To solve for this a solution was put in where old data would get
deleted when the dictionary became larger than 100 data points per body
part landmark.

Although this approach helped reduce lagging, it introduced a new issue.
The application began to experience problems with velocity calculations, re-
sulting in different velocity outcomes for each run of the same input video.
To address this, each landmark collected was assigned an index size, en-
suring that the time between frames was consistent for every calculation.
This helped minimize errors. Based on an external test conducted outside
the application, no errors were found, leading to a fair assumption that
the results from the application should yield the same outcome. However,
despite conducting emulative analyses to identify the flaw, no issues were
found with the correct FPS or frame distance. However, a small SD still
persisted, and the reason for this remains unknown.

72

5.3 Velocity-based training

5.3 Velocity-based training

The velocity-based training seemed to be implemented correctly. As seen
from the tests done in Chapter 4.2 Testing of velocity, every maximum
average velocity of interest was found, and a significant enough velocity
drop was found. This would mean that, in the application, the user could be
notified of when to take a break. Although there was some slight uncertainty
and variation in the data, the test results showed that the outcome was
highly accurate and dependable.

While the implementation of velocity-based training could be seen as suc-
cessful, there were certain assumptions made when determining the region
of interest, which is discussed in detail in the next section. Furthermore,
the process of determining the velocity is also elaborated upon.

5.3.1 Finding the region of interest

To identify the ROI, the difference between the present and past height of
the person was analyzed, the sign was obtained, and the direction of the
squat was found. It is worth noting that this approach relies on certain
assumptions.

After conducting several tests, it was concluded that incorporating the cur-
rent height and the height from 10 frames earlier would produce satisfac-
tory outcomes. Though the ROI was consistently located despite this as-
sumption, implementing an adaptable approach to determine the required
number of frames between the current height and an earlier height would
enhance the dependability of the final product.

To confirm that the identified variation was indeed a squat and not just
a minor movement in the shoulder, a buffer of 2% of the user’s maximum
height was deemed appropriate. This measure helps eliminate any potential
noise or irrelevant data independent of the distance between the camera and
the user. The buffer was determined through trial and error and should be
tested more extensively to ensure that it functions as intended.

73

5.3 Velocity-based training

5.3.2 Calculating the velocity

In the thesis, a solution was proposed that involved calculating average ve-
locity utilizing the theory from Chapter 2.5 Finite difference method, using
the derivative, height difference, and FPS. Although the average velocity
was accurately calculated, there was susceptibility to noise, requiring the
implementation of a smoothing filter. An assumption made here was about
the linearity between the position point of interest simplifying the equation
for the average velocity(Equation(3.1)).

To explore more options, it is worth considering other approaches, such as a
Kalman filter, to compare the velocity results with the method used in the
project. Using this information as an argument, the most effective method
can be decided upon. Alternatively, the velocity results obtained in the
project could be verified by using a smartwatch or a similar device that has
a built-in accelerometer.

74

5.4 Posture measurements

5.4 Posture measurements

During the posture testing, accurate feedback was provided to the user
through the depth calculations, which allowed them to receive a score. Al-
though the neck calculations were slightly unstable, they still proved useful
in indicating the correct neck placement.

The assumption of the camera needing the side view of the person side
view proved wrong according to the test conducted in Chapter 4.3.4 Testing
errors of mono camera-based measurements. According to the test, a front-
facing view might also work, however, this would need to be tested for the
other calculations done in the application, for instance, the neck angle.

The goal of monitoring the user’s posture to lift correctly, as described
in Chapter 1.3 Problem definition, can be considered achieved. However,
only the depth of the squat and the neck angle provide feedback. The
assumptions, problems, and theory behind the posture measurements are
discussed and elaborated upon.

5.4.1 The theory behind the squat

In this project, the book written by Mark Rippertoe, Starting Strength[2],
laid the foundation for how to rate the posture of the squat. In researching
the subject, there was found many different sources of information about
the squat.

These different sources often talked about the same six subjects to think
about when performing a squat; depth, knee position, stance, eye gaze,
back angle, hip drive, and bar placement. However, the different sources
often had misleading and/or contradictory information in relation to each
other about the subject. In addition, the authors of this thesis do not
have any sort of background in the theory surrounding exercise. A decision
was therefore made use the book by Mark Rippertoe as the only source of
information.

With only one source of information, however, the posture part of this
application would work as a proof of concept, and not act as the only

75

5.4 Posture measurements

source of information needed to perform the squat as originally intended.
However, with more research on the subject and a corresponding change in
the parameters set in the application, the posture part of the application
could prove to be a useful source of information and potentially remove the
need of getting information about the posture from other sources for the
user.

5.4.2 The depth estimation of the squat

When looking for a solution for the depth estimation, multiple solutions
were considered, like checking the knee angle and looking at the height
change of the user, but since a good squat was defined as parallelity of the
height and the ground/foot, the solution used seemed like the most effective.
When the depth estimation was done, some assumptions were made. One
of these assumptions was that the line created by Mediapipe, between the
hip point and the knee point, could represent the femur. This was done in
order to more easily apply the theory of the squat.

The hip point found by Mediapipe tends to be defined a little higher on
the body than expected, as represented by an extreme case in Figure 5.1
taken from Chapter 4.2 Testing of velocity, where the velocity equation was
tested.

Figure 5.1: Figure taken from Chapter 4.2 Testing of velocity, illustrating the
potential problem with the hip point.

76

5.4 Posture measurements

If the hip point was taken as high as the example from Figure 5.1 the
assumption made about the line corresponding to the femur would be wrong.

Chapter 2.2 The theory behind the squat stated that when the femur was
parallel to the ground, the squat was deemed deep enough. This would mean
that if the hip point was located too high, the user would technically be
notified later than necessary when the user has a femur lower than parallel
to the ground. From the depth test in Chapter 4.3.1 Testing the depth
function it was found an error of 10% at the lowest depth position, this
could be seen as a significant error which could be rectified by adding a
bias as to define the lower position on the simulated test as 100% parallel
to the ground. However, as it was found through research in Chapter 2.2
The theory behind the squat, a good depth is when the femur is parallel to
the ground, but the lower down could be seen as better. Meaning an error
of 10% was deemed acceptable.

With this said, the application makes sure that the user is notified when
performing a partial squat, and could therefore be seen as a success. How-
ever, finding a better estimation of the femur is desirable as this would
better the overall quality of the application.

5.4.3 The neck estimation

Some issues arose after determining the neck angle. As per the test con-
ducted in Chapter 4.3.3 Testing neck angle with simulated input, it was
discovered that the shoulder movement had an adverse impact on the out-
come. Since the calculation requires the hip, shoulder, and ear to determine
the neck angle, moving the arms shifted the shoulder, resulting in an inac-
curate estimation. It is possible that the simulated character from the test
moved their arms more than an average person would, but this was still
considered a potential problem. One possible remedy could be to identify
other points that could be used for estimation. The ear to eye line could be
used to track the user’s gaze, but it was observed that these points moved
a bit. Therefore, it was decided not to focus on this, although it could work
with filtering of the data points. Currently, the user must keep their arms
still to fully benefit from neck posture monitoring, making it a less than
ideal solution.

77

5.4 Posture measurements

In Chapter 4.3.2 Estimating a good neck angle, an evaluation was carried out
to determine the acceptable range of neck angles. This was done in combi-
nation with the test mentioned above, and provided a rough estimate of the
required border limits. However, in retrospect, the test should have been
conducted on a larger sample size to gain a more accurate understanding of
the ideal border limits. This would have resulted in more data to analyze
and a better comprehension of what constitutes a good neck angle for the
user.

5.4.4 The missing posture estimations

Chapter 2.2 The theory behind the squat states that the feet should be flat
on the ground with the heels shoulder-width apart. The feet should point
about 30◦, with the femur parallel to the feet. Due to the limitations of the
mono camera-based measurements, and the fact that the camera needs the
side profile of the user, the application does not have any way to estimate
this stance. In addition, the posture estimations for the knee position,
back angle and bar placement were not implemented. This means that the
monitor, score, and feedback of the stance estimation, knee position, back
angle, and bar placement of the user’s posture are not complete.

It was considered to use the heel and toe landmarks to monitor that the
foot stayed in the same place throughout the squat. On closer inspection
of the landmark’s behavior during the pose estimation session, it was found
that there was not reliable as that moved around a lot. Making the method
unreliable. Regarding knee placement, the toe landmark might be stable
enough to check the difference between the knee landmark and the toe
landmark to get an estimation that the knee is in the correct area.

For the back angle and the bar placement, the Mediapipe library might
be too limited to check this directly using only Mediapipe. For the bar
placement, a combination of Opencv and Mediapipe might work. Where
Opencv could be used to find the circle of the bar and use the position of the
bar to see where it is placed in association with the Mediapipe’s generated
skeleton. The back angle might monitored by using image processing and
edge detection to find the curvature of the back, this can however introduce
other problems where the human body comes in many shapes which could
make concrete rules for the curvature hard to set.

78

5.5 The application

With the bar, however, the shoulder could be obscured by the weight of the
bar. This is unfortunate as the shoulder is used in calculating the height,
the neck angle estimation as well as the velocity calculation. A solution for
this is to identify when a bar is used and alter the calculations accordingly
using the midpoint of the bar’s side view, instead of the shoulder. Testing
this to ensure reliability is necessary.

5.5 The application

The user interface and scoring system both work as intended, however with
some problems. The user interface gives all the information required for
the user to take a break when needed, and also on what in the movement
needs improvements. However, by having the feedback on a screen that
is positioned in an unfortunate way for the user, the feedback could be
challenging to observe. In addition, the feedback regarding when the user
needs to take a break comes after the squat that meets the requirement.
As seen in the tests preformed in Chapter 4.4.2 User interface and scoring
system, this could lead to the user doing more squats than recommended.
In fact, a velocity loss of 27.49% was found at the end of one of the sessions.
Furthermore, the gesture control proved to be less than ideal for the user.

5.5.1 The continuous feedback system

The user interacts with the program and receives feedback and scores through
the application. While it functions properly, there are some limitations and
design choices that could be improved.

It was assumed that the user remains in a fixed position relative to the
camera while performing each set of exercises. While this simplified the
necessary calculations to provide feedback, it also limited the program’s
adaptability as the user would be constrained. In addition, as the screen
had the camera in close proximity this created a challenge for the user to
view the feedback while squatting due to the necessity of the camera angle
relative to the user. The user had to turn their head to see the screen,
making it less than ideal. An alternative way of providing the feedback

79

5.5 The application

system could be to use auditory cues.

The idea would be to mimic a personal trainer. The user could wear a
set of headphones connected to the device where the application would be
running, and when the different conditions are met, the user would get an
auditory cue. For instance, when the user had completed a deep enough
squat, the auditory cue could be a voice that saysup. When the condition
for the velocity-based training had been met, the auditory cue could be
break.

The use of auditory cues combined with a visual summary after each set
could prove useful as a continuous feedback system. This would eliminate
the need for the user to always look at the screen, but still provide the
necessary feedback in real-time.

The feedback displays were selected at the discretion of the authors. In
order to make sure that the feedback was easily comprehensible for the
average user, several tests should be conducted with a diverse group of
participants who could provide their opinions. Based on their feedback, the
design should be improved to ensure that the feedback ended up intuitive
enough to be understood by any general user.

5.5.2 The gesture control

To enhance user experience, gesture control was implemented to facilitate
starting and ending sessions. As a result, users should be able to easily
launch the application from any device it’s operating on, without having
to physically navigate to the device. During the gesture testing, initially,
promising outcomes were observed, leading to the conclusion that the ges-
ture was functioning as intended. However, it was later discovered that this
was due to a flaw in the testing conditions rather than an accurate repre-
sentation of the gesture control’s performance. Specifically, the images used
to evaluate the recognition accuracy of the gestures were taken from close
proximity to the hand. When tested from further away, where the user
would typically be positioned in a squatting session, the gesture recognition
did not function effectively.

As the recognition worked from close proximity, it was possible that the

80

5.6 Further future work

problem lies in that the gesture recognition gets too much information when
the whole body of the user was visible. It may be worth testing whether
cropping the input image to only show the hands and sending this informa-
tion to the gesture recognition system would solve the problem. Another
option could be to consider a more user-friendly method for starting and
stopping the session. For example, if a smartwatch is used in future devel-
opment, the user could simply press a button to initiate or terminate the
session.

5.6 Further future work

In addition to the already mentioned suggestion for future work, while dis-
cussing the results, there are a lot of improvements that could be made.
The ones mentioned in this section are implementation for providing the
user with relevant instructions, the accessibility, the depth perception, as
well as the possibility of using different methods to identify a movement
and identify different movements.

5.6.1 Instructions to user

Based on Chapter 1.3 Problem definition, one of the points made was that
the application should give feedback on the exercise, and provide useful in-
formation on how to improve.

The application provides feedback in the form of depth score and neck
score, which can help users improve their squatting technique. However,
there is currently no user guide available, nor any information on what
constitutes a good squat. To address this, the application could include
an instructional popup upon startup, which users can dismiss once read.
Additionally, a help drop-down bar could offer more detailed guidelines on
the app’s functionality and how to optimize performance.

81

5.6 Further future work

5.6.2 Accessibility

The accessibility of the applications is argued to be of huge importance, as
the accessibility could be a factor for both people that would like to start
exercising, but also for people that want to continue their exercise routine.

As the application stands, the program needs to use a computer (laptop) to
work. This is less than ideal, as the computer is not always easily available.
This is especially true if the user would like to combine the application with
the use of a gym.

As mentioned in this thesis, the application was made with the use of smart-
phones as a potential future development, making it more accessible to the
general public. This would mean that the application needs to be rewritten
to fit the format of smartphones. As most people have their smartphone
with them at all times, the hope is that it becomes much easier to begin
and maintain an exercise routine.

5.6.3 Depth perception

Finding depth through mono-camera-based estimation can be challenging.
Although there are techniques to extract this information, employing addi-
tional cameras appears to be the simplest solution.

To enhance the accuracy of depth estimation, the application could use two
cameras. This would be an improvement on the current application, as
the stance estimation would be possible to calculate. With the inclusion
of stance estimation in the monitoring process, the user’s posture can be
evaluated, scored, and provided with feedback. However, using two separate
cameras would make the application less user-friendly and more challenging
to operate.

By reformatting the application for smartphones, users can utilize the stereo-
camera system on their device to capture depth information from the side
profile. This enhancement maintains the user-friendly aspect of the project’s
solution while also providing additional depth information.

82

5.6 Further future work

A feasible method of achieving stance estimation through the stereo-camera
system is by evaluating the depth discrepancy between the toe and heel
points. The said difference can then be utilized to compute an approxima-
tion of the foot angle. Additionally, the knee and hip points can be evalu-
ated in the same manner, and by comparing the two angles, it is possible
to determine if the user is performing an acceptable stance. This method
assumes that if the user’s stance is correct on the side facing the device,
then their stance on the opposite side facing away from the camera is also
correct.

Both methods mentioned would make sure that the monitor, score, and
feedback of the stance estimation of the user’s posture is completed.

If the accurate depth is determined, it could unlock several potential oppor-
tunities for future development. One such possibility is utilizing the user’s
depth information to generate adaptable calculations based on depth. This
would remove the need to assume that the user is always in the same posi-
tion relative to the camera.

Another possibility is to use the depth information to compute a velocity
calculation that is more comparable. This would enable the user to compare
exercise sets more easily, such as comparing the velocity of their current
exercise with their previous workout.

5.6.4 Velocity zones

In Chapter 2.1 The theory of velocity-based training, two approaches were
discussed; applying velocity losses of 10-20% and incorporating velocity
zones into separate or combined training programs. While the velocity loss
method was effective for a wider range of users, velocity zones could be
provided as an alternative for individuals looking to tailor their workouts
to their specific needs.

One way to achieve this is by including an extra feature in the application,
which would guide the user through the necessary tests to determine their
individual 1RM. After that, a technique should be developed to determine
the required repetitions at different predetermined relative or absolute loads.
This would establish the basis for the individual’s velocity zone.

83

5.6 Further future work

5.6.5 Different methods to identify the squat

In this thesis, a method to determine whether a squat is executed correctly
or not by using Mediapipe and posture estimation is identified. While
this method generally works well, it has limited flexibility. As an idea
to extend the proven concept, methods using a predictive feedback system
and creating a new neural network are proposed.

The proposed predictive feedback system involves creating a model of a
specific exercise, such as the squat, and analyzing performance data to
determine how closely it aligns with the predicted outcome. To ensure
accurate predictions, the model must be flexible enough to adapt to the
initial data gathered during the exercise. This data may include details on
the initial speed and posture, which will help determine the trajectory of
the movement.

Some suggestions for creating a predictive feedback system are using Python’s
Dynamic Mode Decomposition (pyDMD) or its sparse identification of non-
linear dynamical systems. [30][31] These methods are known for identifying
and analyzing nonlinear dynamical systems, which can help create a mathe-
matical model and system states. By utilizing this information, a predictive
feedback system can be developed. Additionally, having the system states
and mathematical expressions could help find the velocity. When combined
with a well-designed model and appropriate assumptions, this approach
could be a promising option for future work.

Another approach is to have the user perform several squats and assess their
form using a scoring system, similar to the methodology employed in this
project. Once sufficient data has been collected on the user’s ideal squat
form, it can be used as the benchmark for subsequent squats, with each
squat being compared to the model.

5.6.6 Identify different movements

Only the squat movement was identified in this project. However, by ex-
panding the range of movements detected, the application could become
more helpful and provide users with a variety of exercises to choose from,

84

5.6 Further future work

along with relevant information and assistance.

To achieve this, the same methodology used for squats in this project could
be utilized, using Mediapipe and the geometry of the lines formed between
the pose landmarks to obtain a posture estimate. Alternatively, we can ap-
ply comparable techniques as discussed in Chapter 5.6.5 Different methods
to identify the squat, to identify the various exercises.

For exercises where the velocity detected corresponds directly to the power
lifted or pushed, velocity-based training should be effective. Nonetheless,
further research is needed to determine how the velocity can correspond to
power for specific exercises.

85

Chapter 6

Conclusion
This thesis presents the development of an application designed for laptops.
It incorporates theories on velocity-based training, human pose estimation,
and the squat exercise to offer users helpful guidance and feedback. The
application focuses on three key aspects: velocity-based training, posture
estimation, and a continuous feedback system.

The velocity-based training laid the foundation for providing feedback to
the user on the intensity level of the training and when to take a break. This
has been implemented successfully, with an SD corresponding to an error of
0.008% for one peak velocity and the largest SD found when examining the
velocity drop amounted to ±0.57. There are, however, some assumptions
made that could be a potential problem. The velocity is found by calculat-
ing the maximum velocity of the ROI, which corresponds to the upwards
motion of the squat. This ROI is found by using the current height and the
height found 10 frames in the past to determine the direction of the squat.
This proved successful in all the tests conducted, however, implementing
an adaptable and more robust approach is desirable. In addition, to avoid
any possibility of interference from noise or slight movement in the shoulder
that may impact the recognition of the ROI, a buffer of 2% of the user’s
maximum height was incorporated. The buffer size was established through
trial and error and requires further testing for optimal performance.

The posture estimation was implemented as a way to give the user reliable
and continuous feedback on how to perform and improve the movement
of the squat. The depth estimation works as intended and gives feedback
to the user when performing a deep enough squat with an error of 10%.
There is, however, an assumption about the femur approximation that has

86

Conclusion

the consequence of telling the user that a good squat is achieved later than
necessary. The neck angle was found with an error of 5◦ and an acceptable
area with an upper and lower limit was determined. The feedback works
as intended, however, the determined limits should be tested further with
a larger sample of people. This would ensure that the limits, and therefore
the feedback, are more versatile and reliable.

Only the depth estimation and neck angle estimation were implemented.
This means that the posture part of the application is incomplete as the
application does not give any feedback on how to perform and improve the
stance, knee position, back angle, and bar placement.

The overall goal of this project was to make an application that would
use body movement identification methods to define a continuous feedback
system to help the user exercise correctly and efficiently. The user velocity
was successfully monitored, and feedback was provided on when to take a
break. In addition, the user’s posture was also monitored, and feedback was
provided to help the user lift correctly. However, the posture feedback has
some key elements missing from the system. A score was delivered to the
user on how well the exercise was carried out and feedback was provided,
however, some key elements from the posture estimation are missing here
as well. The overall goal is achieved, however, with some areas in need of
improvement.

During the assessment, several recommendations were proposed for future
development. One of the suggestions is to incorporate posture feedback that
was previously missing. Implementing accurate parameters using multiple
sources of information would greatly contribute to achieving this goal. In
addition, improving the feedback system with auditory cues can enhance
the application’s quality and usability. Furthermore, the application’s ac-
cessibility could be enhanced by creating a mobile version, enabling users
to perform the exercises anywhere they go.

An effective way to enhance the velocity-based training part of the applica-
tion is to include velocity zones as a feature in the application. This option
would allow users to customize their workout according to their individual
requirements. Different methods and identifying different movements could
enhance the application significantly, transitioning from a limited squat-
specific design to an all-encompassing exercise app.

87

Bibliography

[1] Statistisk sentralbyrå (SSB). Sports and outdoor activ-
ities, survey on living conditions. https://www.ssb.no/
en/kultur-og-fritid/idrett-og-friluftsliv/statistikk/
idrett-og-friluftsliv-levekarsundersokelsen. accessed:
01.02.2023.

[2] M. Rippetoe. Starting strength. The Asgaard Company, 3 edition,
2012. p. 7-70.

[3] Ireland. D, Wang. Z, Lamont. R, and Liddle. J. Classification of move-
ment of people with parkinsons disease using wearable inertial move-
ment units and machine learning. https://pubmed.ncbi.nlm.nih.
gov/27440290/. accessed: 17.03.2023.

[4] Alphatek. Alphapwr. https://www.alphatek.no/alphapwr. accessed:
30.01.2023.

[5] Virtuve. Unlock your athlete’s potential. https://vitruve.fit/. ac-
cessed: 14.07.2023.

[6] Metric Jacob Tober. Reliability and validity of met-
ricvbt beta. https://www.metric.coach/articles/
reliability-and-validity-of-metricvbt-beta. accessed:
26.02.2023.

[7] Pradnya Rajendra Patil. Squat angle detection using
opencv and mediapipe. https://github.com/Pradnya1208/
Squats-angle-detection-using-OpenCV-and-mediapipe_v1. ac-
cessed: 08.06.2023.

[8] Mladen Jovanović and Dr Eamonn P. Flanagan. Researched ap-
plications of velocity based strength training. https://scholar.

88

https://www.ssb.no/en/kultur-og-fritid/idrett-og-friluftsliv/statistikk/idrett-og-friluftsliv-levekarsundersokelsen
https://www.ssb.no/en/kultur-og-fritid/idrett-og-friluftsliv/statistikk/idrett-og-friluftsliv-levekarsundersokelsen
https://www.ssb.no/en/kultur-og-fritid/idrett-og-friluftsliv/statistikk/idrett-og-friluftsliv-levekarsundersokelsen
https://pubmed.ncbi.nlm.nih.gov/27440290/
https://pubmed.ncbi.nlm.nih.gov/27440290/
https://www.alphatek.no/alphapwr
https://vitruve.fit/
https://www.metric.coach/articles/reliability-and-validity-of-metricvbt-beta
https://www.metric.coach/articles/reliability-and-validity-of-metricvbt-beta
https://github.com/Pradnya1208/Squats-angle-detection-using-OpenCV-and-mediapipe_v1
https://github.com/Pradnya1208/Squats-angle-detection-using-OpenCV-and-mediapipe_v1
https://scholar.google.com/scholar_lookup?title=Researched+applications+of+velocity+based+strength+training&author=Jovanovi%C4%87,+M.&author=Flanagan,+E.&publication_year=2014&journal=J.+Aust.+Strength+Cond.&volume=22&pages=58%E2%80%9369
https://scholar.google.com/scholar_lookup?title=Researched+applications+of+velocity+based+strength+training&author=Jovanovi%C4%87,+M.&author=Flanagan,+E.&publication_year=2014&journal=J.+Aust.+Strength+Cond.&volume=22&pages=58%E2%80%9369
https://scholar.google.com/scholar_lookup?title=Researched+applications+of+velocity+based+strength+training&author=Jovanovi%C4%87,+M.&author=Flanagan,+E.&publication_year=2014&journal=J.+Aust.+Strength+Cond.&volume=22&pages=58%E2%80%9369

BIBLIOGRAPHY

google.com/scholar_lookup?title=Researched+applications+
of+velocity+based+strength+training&author=Jovanovi%C4%87,
+M.&author=Flanagan,+E.&publication_year=2014&journal=J.
+Aust.+Strength+Cond.&volume=22&pages=58%E2%80%9369. ac-
cessed: 02.02.2023.

[9] M. Izquierdo, J J. González-Badillo, K. Häkkinen, J. Ibáñez, W J.
Kraemer, A. Altadill, J. Eslava, and E M Gorostiaga. Effect of
loading on unintentional lifting velocity declines during single sets
of repetitions to failure during upper and lower extremity mus-
cle actions. http://www.thieme-connect.de/products/ejournals/
abstract/10.1055/s-2005-872825. accessed: 06.03.2023.

[10] L. SÁNCHEZ-MEDINA and J J GONZÁLEZ-BADILLO. Velocity
loss as an indicator of neuromuscular fatigue during resistance train-
ing. https://journals.lww.com/acsm-msse/Fulltext/2011/09000/
Velocity_Loss_as_an_Indicator_of_Neuromuscular.16.aspx. ac-
cessed: 06.03.2023.

[11] M. Włodarczyk, P. Adamus, J. Zieliński, and A. Kantanista. Effects
of velocity-based training on strength and power in elite athletes—a
systematic review. https://doi.org/10.3390/ijerph18105257. ac-
cessed: 30.01.2023.

[12] Daniel A. Hackett, Timothy B. Davies, Rhonda Orr, Kenny Kuang, and
Mark Halaki. Effect of movement velocity during resistance training
on muscle-specific hypertrophy: A systematic review. https://www.
tandfonline.com/doi/full/10.1080/17461391.2018.1434563. ac-
cessed: 02.02.2023.

[13] Aristide Guerrieri, Carlo Varalda, and Maria Francesca. The role of ve-
locity based training in the strength periodization for modern athletes.
https://www.mdpi.com/2411-5142/3/4/55. accessed: 02.02.2023.

[14] Amrutha K, Prabu P, and Joy Paulose. Human body pose estima-
tion and applications. In 2021 Innovations in Power and Advanced
Computing Technologies (i-PACT), pages 1–6, 2021.

[15] Google. Mediapipe. https://mediapipe.dev/. accessed: 24.04.2023.

[16] Mediapipe. Pose landmark detection guide. https://developers.
google.com/mediapipe/solutions/vision/pose_landmarker. ac-
cessed: 03.06.2023.

89

https://scholar.google.com/scholar_lookup?title=Researched+applications+of+velocity+based+strength+training&author=Jovanovi%C4%87,+M.&author=Flanagan,+E.&publication_year=2014&journal=J.+Aust.+Strength+Cond.&volume=22&pages=58%E2%80%9369
https://scholar.google.com/scholar_lookup?title=Researched+applications+of+velocity+based+strength+training&author=Jovanovi%C4%87,+M.&author=Flanagan,+E.&publication_year=2014&journal=J.+Aust.+Strength+Cond.&volume=22&pages=58%E2%80%9369
https://scholar.google.com/scholar_lookup?title=Researched+applications+of+velocity+based+strength+training&author=Jovanovi%C4%87,+M.&author=Flanagan,+E.&publication_year=2014&journal=J.+Aust.+Strength+Cond.&volume=22&pages=58%E2%80%9369
https://scholar.google.com/scholar_lookup?title=Researched+applications+of+velocity+based+strength+training&author=Jovanovi%C4%87,+M.&author=Flanagan,+E.&publication_year=2014&journal=J.+Aust.+Strength+Cond.&volume=22&pages=58%E2%80%9369
https://scholar.google.com/scholar_lookup?title=Researched+applications+of+velocity+based+strength+training&author=Jovanovi%C4%87,+M.&author=Flanagan,+E.&publication_year=2014&journal=J.+Aust.+Strength+Cond.&volume=22&pages=58%E2%80%9369
https://scholar.google.com/scholar_lookup?title=Researched+applications+of+velocity+based+strength+training&author=Jovanovi%C4%87,+M.&author=Flanagan,+E.&publication_year=2014&journal=J.+Aust.+Strength+Cond.&volume=22&pages=58%E2%80%9369
https://scholar.google.com/scholar_lookup?title=Researched+applications+of+velocity+based+strength+training&author=Jovanovi%C4%87,+M.&author=Flanagan,+E.&publication_year=2014&journal=J.+Aust.+Strength+Cond.&volume=22&pages=58%E2%80%9369
http://www.thieme-connect.de/products/ejournals/abstract/10.1055/s-2005-872825
http://www.thieme-connect.de/products/ejournals/abstract/10.1055/s-2005-872825
https://journals.lww.com/acsm-msse/Fulltext/2011/09000/Velocity_Loss_as_an_Indicator_of_Neuromuscular.16.aspx
https://journals.lww.com/acsm-msse/Fulltext/2011/09000/Velocity_Loss_as_an_Indicator_of_Neuromuscular.16.aspx
https://doi.org/10.3390/ijerph18105257
https://www.tandfonline.com/doi/full/10.1080/17461391.2018.1434563
https://www.tandfonline.com/doi/full/10.1080/17461391.2018.1434563
https://www.mdpi.com/2411-5142/3/4/55
https://mediapipe.dev/
https://developers.google.com/mediapipe/solutions/vision/pose_landmarker
https://developers.google.com/mediapipe/solutions/vision/pose_landmarker

BIBLIOGRAPHY

[17] Google. Mediapipe pose. https://github.com/google/mediapipe/
blob/master/docs/solutions/pose.md. accessed: 24.04.2023.

[18] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov,
and Liang-Chieh Chen. Mobilenetv2: Inverted residuals and linear
bottlenecks. In 2018 IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 4510–4520, 2018.

[19] Google. Hand landmarks detection guide. https://developers.
google.com/mediapipe/solutions/vision/hand_landmarker. ac-
cessed: 24.04.2023.

[20] Steven Paul. Bmw gesture control: The quick how-
to guide. https://www.bmwblog.com/2022/10/07/
bmw-gesture-control-how-to-guide/. accessed: 14.06.2023.

[21] Techvidvan. Real-time hand gesture recognition using ten-
sorflow & opencv. https://techvidvan.com/tutorials/
hand-gesture-recognition-tensorflow-opencv/. accessed:
29.05.2023.

[22] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng
Chen, Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean,
Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp,
Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz
Kaiser, Manjunath Kudlur, Josh Levenberg, Dandelion Mané, Ra-
jat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster,
Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul
Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol
Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu,
and Xiaoqiang Zheng. TensorFlow: Large-scale machine learning on
heterogeneous systems, 2015. Software available from tensorflow.org.

[23] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of Software
Tools, 2000.

[24] Peter Moczo, Jozef Kristek, and Ladislav Halada. The finite-difference
method for seismologists. An Introduction, 161, 2004.

[25] Lee Dong Kyu, In Junyong, and Lee Sangseok. Standard deviation and
standard error of the mean. kja, 68(3):220–223, 2015.

90

https://github.com/google/mediapipe/blob/master/docs/solutions/pose.md
https://github.com/google/mediapipe/blob/master/docs/solutions/pose.md
https://developers.google.com/mediapipe/solutions/vision/hand_landmarker
https://developers.google.com/mediapipe/solutions/vision/hand_landmarker
https://www.bmwblog.com/2022/10/07/bmw-gesture-control-how-to-guide/
https://www.bmwblog.com/2022/10/07/bmw-gesture-control-how-to-guide/
https://techvidvan.com/tutorials/hand-gesture-recognition-tensorflow-opencv/
https://techvidvan.com/tutorials/hand-gesture-recognition-tensorflow-opencv/

BIBLIOGRAPHY

[26] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf
Gommers, Pauli Virtanen, David Cournapeau, Eric Wieser, Julian
Taylor, Sebastian Berg, Nathaniel J. Smith, Robert Kern, Matti Picus,
Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan Hal-
dane, Jaime Fernández del Río, Mark Wiebe, Pearu Peterson, Pierre
Gérard-Marchant, Kevin Sheppard, Tyler Reddy, Warren Weckesser,
Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. Array pro-
gramming with NumPy. Nature, 585(7825):357–362, September 2020.

[27] Blender. Blender 3.5. https://www.blender.org/. accessed:
08.06.2023.

[28] Mixamo. Air squat on bryce. https://www.mixamo.com/#/?page=1&
query=squat&type=Motion%2CMotionPack. accessed: 08.03.2023.

[29] JG Vishnu and SJ Divya. A comparative study of human pose estima-
tion.

[30] Nicola Demo, Marco Tezzele, and Gianluigi Rozza. Pydmd: Python
dynamic mode decomposition. Journal of Open Source Software,
3(22):530, 2018.

[31] Brian M. de Silva, Kathleen Champion, Markus Quade, Jean-
Christophe Loiseau, J. Nathan Kutz, and Steven L. Brunton. Pysindy:
A python package for the sparse identification of nonlinear dynamical
systems from data. Journal of Open Source Software, 5(49):2104, 2020.

91

https://www.blender.org/
https://www.mixamo.com/#/?page=1&query=squat&type=Motion%2CMotionPack
https://www.mixamo.com/#/?page=1&query=squat&type=Motion%2CMotionPack

Appendix A

Poster

The poster from the poster presentation is included in the page below.

92

Body movement identification
Defining a continuous feedback system to be used for squatting correctly and efficiently.

Authors: Ådne Hult Karlson and Stian Wiik Berg

Introduction/motivation
• Different training guides and videos online that give

contradictory information. Frustrating for the people that want
to perform a squat, but also overwhelming for people that want
to start exercising.

• Using Velocity-based training and posture
estimation to create a versatile and
user-friendly application using a camera-based
solution.

Method

Testing and results

Alphatek’s AlphaPWR is an
existing product utilizing
velocity-based training

System
flow:

Velocity-based training:

Posture estimation:
• Depth of squat
• Neck angle/position

• Feedback on the depth using a
progress bar.

• Feedback on the neck
• Squat velocity is monitored and

updated for each squat. Yellow
means close to finished. Red
means take a break.

• Depth score, neck score, and
velocity change for each squat
in %

• Total depth and
neck score at the
end of the set.

• Plot showing all
the peak
velocities in the
set.

Conclusion
• The application improves the squat, telling the user when to

take a break and some posture feedback.
• The posture estimation is missing some key posture feedback

for instance the stance, knee position, and an estimation of the
center of gravity.

Position of the whole movement

Velocity of the whole movement

Appendix B

Gesture table

Okay Peace Thumb up Thumb down
Okay 0.83 0 0 0
Peace 0 0.91 0 0

Thumb up 0 0 1.0 0
Thumb down 0 0 0 0.986

Call me 0 0 0.22 0
Stop 0 0 0 0

Live long 0.003 0 0 0
fist 0 0 0 0

Call me Stop rock Live long Fist Smile
Okay 0 0.17 0 0 0 0
Peace 0 0 0.014 0.074 0 0

Thumb up 0 0 0 0 0 0
Thumb down 0 0.005 0.009 0 0 0

Call me 0.77 0 0 0 0 0.008
Stop 0 0.39 0 0.61 0 0

Live long 0 0.186 0 0.722 0 0.089
fist 0 0 0 0 1.0 0

Table B.1: Here is a breakdown of the results for each gesture test. The first
column displays the names of the tests, while the first row lists the names of the
gestures found.

94

	Introduction
	Motivation
	Existing solutions
	Problem definition
	Layout

	Background
	The theory of velocity-based training
	The theory behind the squat
	Human pose estimation
	Gesture recognition
	Finite difference method
	Performance evaluation method
	The geometric calculations
	Distance calculation
	Angle calculation

	Solution Approach
	Input
	Human pose estimation
	Collection of landmarks
	Defining a coordinate system

	Velocity-based training and posture
	Velocity-based training
	Posture estimation

	The application
	Gesture control
	User interface
	Scoring system

	Testing and results
	Setup
	Testing of velocity
	Testing the equation for the average velocity
	Testing the velocity-based training

	Posture measurements
	Testing the depth function
	Estimating a good neck angle
	Testing neck angle with simulated input
	Testing errors of mono camera-based measurements

	Testing of the application
	Testing the gesture control
	User interface and scoring system

	Discussion and future work
	The input
	Human pose estimation
	Velocity-based training
	Finding the region of interest
	Calculating the velocity

	Posture measurements
	The theory behind the squat
	The depth estimation of the squat
	The neck estimation
	The missing posture estimations

	The application
	The continuous feedback system
	The gesture control

	Further future work
	Instructions to user
	Accessibility
	Depth perception
	Velocity zones
	Different methods to identify the squat
	Identify different movements

	Conclusion
	Bibliography
	Appendix
	Poster
	Gesture table

