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Analytical representations of X-ray atomic form factor data have been

determined. The original data, f0(s;Z), are reproduced to a high degree of

accuracy. The mean absolute errors calculated for all s = sin �/� and Z values in

question are primarily determined by the precision of the published data. The

inverse Mott–Bethe formula is the underlying basis with the electron scattering

factor expressed by an expansion in Gaussian basis functions. The number of

Gaussians depends upon the element and the data and is in the range 6–20. The

refinement procedure, conducted to obtain the parameters of the models, is

carried out for seven different form factor tables published in the span Cromer

& Mann [(1968), Acta Cryst. A24, 321–324] to Olukayode et al. [(2023), Acta

Cryst. A79, 59–79]. The s ranges are finite, the most common span being

[0.0, 6.0] Å�1. Only one function for each element is needed to model the full

range. This presentation to a large extent makes use of a detailed graphical

account of the results.

1. Introduction

Calculations of X-ray atomic form factors, f0ðs; ZÞ, where

s ¼ sin �=� (2� is the angle between the incoming and scat-

tered wavevectors, � is the wavelength in question) and Z is

the atomic number, have always followed in the wake of the

ongoing development within quantum mechanics and

numerical/computational methods. Thus extensive tables of

f0ðs; ZÞ have been frequently published in the crystallographic

literature. Various analytical expressions, i.e. functions in the

independent variable s, have been examined to model the

tabulated data and ease their use in various calculations.

Parameters entering these functions are determined by least-

squares procedures which sometimes involve specific weight

schemes. Early papers by Vand et al. (1957), Forsyth & Wells

(1959) and Moore (1963) give parameters in Gaussian models

associated with form factor calculations by James & Brindley

(1931a,b), Viervoll & Ögrim (1949), McWeeny (1951), Hoerni

& Ibers (1954), Berghuis et al. (1955), Thomas & Umeda

(1957), Freeman & Smith (1958) and Freeman (1959), cf. Ibers

(1962). Papers of greater impact for the present work are

summarized in Table 1. To fill out the picture, one should also

consult the works by Onken & Fischer (1968), Lie (1977),

Weickenmeier & Kohl (1991), Peng et al. (1996), Szalóki

(1996), Su & Coppens (1998), Macchi & Coppens (2001),

Feranchuk et al. (2002) and Muhammad & Lee (2013). For

extensive sets of X-ray atomic form factor data, the reader is

advised to look up the works of Hubbell et al. (1975), Hubbell

& Øverbø (1979), databases EPDL97 (Cullen et al., 1997),

RTAB (Kissel, 2000), EPICS2017 (Cullen, 2018), and the

software environments XOP (Sánchez del Rı́o & Dejus, 1997,
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2011) and XRAYLIB (Brunetti et al., 2004; Schoonjans et al.,

2011).

In this work, cases where s spans a finite interval, e.g.

s 2 ½0:0; 6:0� Å�1, are addressed. Thus characteristic asymp-

totic properties in the limit s!1 are not taken into

consideration. This also warrants the inclusion of refinable

constants such as c and � in equations (3) and (5) below.

The main reference for the present analysis is the form

factor data presented in Table 6.1.1.1 in International Tables

for Crystallography, Vol. C (Maslen et al., 1992), and the

analytical modelling by a five-Gaussian expansion (Waasmaier

& Kirfel, 1995). Some key features herein are summarized in

Fig. 1. The mean and maximum absolute errors hj�f0ðs; ZÞjis
and j�f0ðs; ZÞjmax are presented as functions of Z {�f0ðs; ZÞ =

f0ðs; ZÞ½data� � f0ðs; ZÞ½model�}. Furthermore, it is also shown

that �f0ðs; ZÞ exhibits an oscillating behaviour as a function of

s, here depicted for Z = 26 (Fe). This signature is relatively

insensitive to the value of Z and it is assumed to be primarily

associated with inherent features of the quantum mechanical

calculations. The most frequently used analytical model, the n-

Gaussians expression, is apparently not capable of modelling

such a behaviour. Finally, the large irregular variation in the

parameter c as a function of Z is noted.

Table 1 in the paper by Waasmaier & Kirfel (1995), Para-

meters of analytical scattering-factor functions (a) For neutral

atoms, has no explicit ordering of parameters. It is advisable to

arrange the b1–b5 parameters in increasing order with a

research papers

Acta Cryst. (2023). A79, 318–330 Gunnar Thorkildsen � Modelling of X-ray atomic form factors 319

Figure 1
Summary of some results based on the analytical model S½5Gþ c� (Waasmaier & Kirfel, 1995) applied to the X-ray form factor data in International
Tables for Crystallography Vol. C, 1st ed. Iron (Fe, Z = 26) is indicated by a filled circle, the other elements by empty circles. Upper left: mean absolute
error hj�f0ðs; ZÞjis as a function of the atomic number Z. Upper right: maximum absolute error j�f0ðs; ZÞjmax as a function of the atomic number Z.
Lower left: the error (or deviation) �f0ðsÞ calculated for iron. Lower right: variation of the parameter c with the atomic number Z.

Table 1
Major compilations with associated s ranges and model functions (cf.
Section 2 for nomenclature).

Authors (data) sin �=� (Å�1) Model

Cromer et al. (1964) ½0:00; 1:99� S½4Gþ c�

Cromer & Waber (1965) ½0:00; 2:00� S½4Gþ c�

Cromer & Mann (1968a) ½0:00; 1:50� S½4Gþ c�

Doyle & Turner (1968) ½0:00; 2:00� S½4Gþ c�

Lee & Pakes (1969)
(Hanson et al., 1964)

½0:00; 1:40�† S½2Gþ c�

Hajdu (1972)
(Tavard et al., 1967)

½0:00; 1:20� S½4Gþ c�

IT Vol. iv:
Cromer & Waber (1974)

½0:00; 2:00� S½4Gþ c�

Fox et al. (1989)
(Doyle & Turner, 1968)

½2:00; 6:00� LP½4�

IT Vol. C:
Maslen et al. (1992)

½0:00; 6:00�‡ S½4Gþ c� and LP½4�

Rez et al. (1994) ½0:00; 6:00�§ S½4G�

Waasmaier & Kirfel (1995)
(Maslen et al., 1992)

½0:00; 6:00� S½5Gþ c�

Su & Coppens (1997) ½0:00; 6:00�} S½6G�

Kirkland (2010) ½0:00; 6:00� MB½3ðLþGÞ�

Lobato & Van Dyck (2014)
(Kirkland, 2010)

½0:00; 6:00� � MB½5ðLþ L2Þ�

Olukayode et al. (2023) ½0:00; 6:00�‡ S½5Gþ c� and LP½5�††

† Mo K� radiation; ½0:00; 0:60� Å�1 for Cu K�. ‡ Split in two parts ½0:00; 2:00�
and ½2:00; 6:00� Å�1 with different model functions. § Two separate parameter
sets, respectively, covering ½0:00; 2:00� and ½0:00; 6:00� Å�1. } Split in three
equal parts with separate sets of parameters. Form factors for Z 2 ½1; 54� are
analysed. †† Parameters for S½4Gþ c� and LP½4� are also provided.



subsequent rearrangement of the a parameters. Such an

ordering may help in revealing any challenges, but also

systematic trends across the Periodic Table. This gives support

when initial values for the parameters in the least-squares

treatment are to be selected. For the elements Z 2 {18, 38–42,

46, 78, 80} two out of the five b parameters have (almost) equal

values. Subsequently, building the normal matrix of the least-

squares calculation in these cases may result in a non-positive-

definite matrix and thus prevent uncertainty assessments. For

most elements the c parameter has a value close to zero, but

especially in the range Z 2 ½57; 76� one observes large nega-

tive values. A maximum magnitude of 83.3 is found for Z = 66

(Dy). A separate review of this case, cf. Table 2, demonstrates

that b1 has a very small value, making expð�b1 s2Þ almost unity

across the actual span in s. The corresponding coefficient, a1, is

approximately equal to �c. Their sum amounts to the true

constant in the model. A signature of both quantities is the

anomalously large magnitudes. The uncertainties, {�a1, �b1,

�c}, considerably exceed fja1j; jb1j; jcjg, so these parameters

are in practice undefined.

Altogether, it seems worthwhile to examine modelling of

X-ray atomic form factor data once more. The key to the

present approach is found in Appendix C, formula (C16), in

the textbook by Kirkland (2010), in the use of the inverse

Mott–Bethe formula (Mott & Bragg, 1930; Bethe, 1930; Bethe

& Jackiw, 1986) as analytical model. It is revealed that this

construction, with the electron scattering factor expressed by a

sum of Gaussians, may partly deal with the inherent oscillating

behaviour of f0ðs; ZÞ (see Fig. 2). By examining a series of

tabulations of X-ray atomic form factors, it became evident

that this approach works satisfactorily for most cases from the

Hartree–Fock atomic form factors by Cromer & Mann (1968a)

to the recent Dirac–Hartree–Fock calculations by Olukayode

et al. (2023).

2. Formulas

In this short survey the subscript X indicates X-rays while e

indicates electrons (otherwise the subscript 0, selected to

indicate zeroth order in the scattering factor, is used

throughout for X-rays). We quote the following formula for

X-ray elastic scattering, fXðs; ZÞ, in the form factor approx-

imation (Kissel & Pratt, 1985),

fXðs; ZÞ ¼

Z1

0

dr 4�r2�ðr; ZÞ
sinð4�srÞ

4�sr
: ð1Þ

Here �ðr; ZÞ is the electron number density for element Z

(assumed to be spherically symmetric).

The inverse Mott–Bethe equation, which is outlined within

the framework of non-relativistic quantum mechanics (Bethe

& Jackiw, 1986), gives a link between the X-ray and the

electron form factors, fXðs; ZÞ and feðs; ZÞ, respectively,

fXðs; ZÞ ¼ Z � 8�2a0s2feðs; ZÞ: ð2Þ

Here a0 is the Bohr radius.

Analytical models of impact for this work are as follows:

(i) The sum of n Gaussians normally incorporating a

constant term, here denoted as S½nGþ c�,

fXðs; ZÞ ¼ an � expð�bns2Þ þ c;

�
Pn

i

ai expð�bis
2Þ þ c: ð3Þ

The formulation of equation (3) with an n-dimensional

coefficient vector, an � fa1; . . . ang, and a corresponding

vector of Gaussian basis functions, expð�bns2Þ

� fexpð�b1s2Þ; . . . ; expð�bns2Þg, is especially efficient for

numerical calculations. Generally an ¼ anðZÞ, bn ¼ bnðZÞ, but

the Z dependence is normally not explicitly denoted.

(ii) The exponential or logarithmic polynomial model (in

nonlinear least-squares calculations the two formulations may

lead to slightly different results), denoted EP½n� or LP½n�:

fXðs; ZÞ ¼ expðan � snÞ m

ln½fXðs; ZÞ� ¼ an � sn with sn ¼ f1; s; s2; . . . ; sn�1
g: ð4Þ

The model LP½4� was used by Fox et al. (1989) to analyse data

in the s range ½2:0; 6:0� Å�1, cf. Maslen et al. (1992).

(iii) The inverse Mott–Bethe equation with the electron

form factor expressed by summing n Gaussian terms (the

number n may depend upon Z). A constant, �, is included as

well. The model is denoted by MB½nGþ ��. It is emphasized

that it is the analytical property of the generic term,

1� s2 expð�s2Þ, which is important, as it gives rise to a

curvature that locally may model part of an oscillation.
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Table 2
Waasmaier & Kirfel parameters including uncertainties for Z = 66 (Dy).

a and c are dimensionless quantities. b1 to b5 are sorted from top to bottom.

a b (Å2) c

88.69 (2833.73) 0.000665 (0.021645) �83.28 (2834.18)
17.1 (0.4) 0.226 (0.007)
26.67 (0.11) 2.28 (0.02)
14.07 (0.12) 12.92 (0.16)

2.77 (0.05) 122. (3.)

Figure 2
In the RTAB database (Kissel, 2000) the buildup of the atomic form
factor is based on summing the contributions from atomic shells defined
by the principal quantum number n. The figure displays the contributions
from n 2 ½3; 6� in the case of lead (Pb, Z = 82). An ordinate window of
�1:0 is chosen to emphasize the oscillating behaviour.



Equation (5) works to model X-ray atomic form factor data

defined for a finite range in s (O½smax� 	 101 Å�1):

fXðs; ZÞ ¼ Z � 8�2a0s2 �þ cn � expð�dns2
Þ

� �
: ð5Þ

This formula is also applicable in an analysis of X-ray form

factors of ions in which case Z is interpreted as the number of

electrons, cf. Section 5. In fact, equation (5) is a limit of

another model:

fXðs; ZÞ ¼ Z � 8�2a0s2 �þ am �
1

1þ bms2
þ cn � expð�dns2Þ

� �
:

ð6Þ

This model, incorporating m Lorentzian and n Gaussian basis

functions, is symbolized by MB½mLþ nGþ ��. The model

MB½3ðLþGÞ� has been examined by Kirkland (2010). This

class of models have been tested, but not found appropriate

for the data material examined, cf. Section 5. One should also

mention an expression built by a sum of Lorentzians and their

squares: MB½nðLþ L2Þ�. An asymptotic version (having

n ¼ 5), designed to cover the complete range s 2 ½0:;1Þ Å�1,

is analysed in the work by Lobato & Van Dyck (2014). Since

here we deal with exclusively truncated s ranges, this case is

not explored further.

A single MB model of type (iii) equation (5) is recom-

mended as an analytical representation of the X-ray atomic

form factor for a given element Z whenever data are given in a

finite range of sin �=�.

3. Method

The calculations were performed using the Mathematica

function NonlinearModelFit (Wolfram Research, 2022). It

returns a symbolic FittedModel object representing the

nonlinear model that has been constructed. All observations

are associated with unit weights. We may categorize the

complete procedure in the following steps:

Search. A built-in random-number generator is applied to

obtain initial values in the refinement process for the d

parameters. RandomReal[{xmin, xmax}] chooses reals with a

uniform probability distribution in the range xmin to xmax. This

is an approach also applied in other works (cf. Peng et al.,

1996). The first stage normally involves six Gaussians, i.e.

dn ) fd1; . . . ; d6g with (all d parameters are expressed in the

unit Å2):

d
ðiÞ
1 ¼ RandomReal½f0:025; 0:100g�

d
ðiÞ
2 ¼ RandomReal½f0:10; 0:50g�

d
ðiÞ
3 ¼ RandomReal½f0:5; 2:0g�

d
ðiÞ
4 ¼ RandomReal½f2:0; 10:0g�

d
ðiÞ
5 ¼ RandomReal½f10:0; 25:0g�

d
ðiÞ
6 ¼ RandomReal½f25:0; 80:0g�:

�ðiÞ ¼ RandomReal½f0:001; 0:010g�, while for the c parameters

the default value, 1, is used for startup. A nonlinear model is

constructed without any a priori parameter constraints. A

search typically consists of 100 repetitions of the refinement

process, each starting with a different set of random para-

meters. For a model to be accepted after refinement, the

following conditions are imposed on its parameters:

ck > 0; dk 2 ½0:01; 1000:� and min dkþ1=dk

� �
> 1:5 for all k:

They effectively prevent results that cannot be further

processed and have emerged from a growing experience.

Repair. In the case of a missing outcome for element

Z ¼ Zk in the search process, one may use the full parameter

set obtained for another element, Z ¼ Zj, as initial values in a

single refinement:

f�ðiÞ; cðiÞn ; dðiÞn gZk
¼ f�; cn; dngZj

:

Normally Zj ¼ Zk � 1.

Expand. The complete search process spans six to nine

Gaussians in the model MB½nGþ ��. To further expand the

model, MB½nGþ �� ! MB½ðnþ 1ÞGþ ��, the parameters

c
ðiÞ
nþ1 and d

ðiÞ
nþ1 are arbitrarily set to 1.0 Å and 200. Å2, irre-

spective of the value of Z, and then added to the vectors cn and

dn,

f�ðiÞ; c
ðiÞ
nþ1; d

ðiÞ
nþ1gZj

¼ f�; fcn; 1:0g; fdn; 200:ggZj
;

after which a single refinement is carried out. This approach

has been very efficient and a dynamical change in the distri-

bution of d values going from n to nþ 1 Gaussians is

observed. Expand is repeated, sometimes after an inter-

mediate stage where Repair is applied, until there is no further

improvement, usually measured by the change in the value of

the mean absolute error hj�f0ðs; ZÞjis. This implies that the

number of Gaussians in the model function may vary

throughout the Periodic Table. Typically, the least number of

Gaussians needed to obtain a value of the mean absolute error

close to what may be expected from the precision of the

published form factor data occurs for the noble gases and their

preceding elements. With a growing number of parameters in

the fitting process, the uncertainties in the refined parameters

increase. Thus one has to individually assess as to when

Expand should be interrupted. Furthermore, sudden striking

changes in the value of the constant � may indicate that the

model is pushed too far.

Test. A series of refinements are performed with small

random changes in the d parameters [e.g. within �(5–20)%]:

dðiÞn ¼ 1þ RandomReal½f�0:20; 0:20g�ð Þ 
 dn:

Usually 25–100 repetitions are carried out for each element.

The level of acceptance is subject to the same general condi-

tions as before and in addition the improvement of the mean

absolute error should be significant, e.g. hj�f
ðnewÞ
0 ðs; ZÞjis <

0:95hj�f
ðoldÞ
0 ðs; ZÞjis. This point is not especially crucial for

models involving Gaussians only, but becomes essential in the

search for a best fit when Lorentzians and Gaussians are

combined in the model function [cf. equation (6)].
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Verify. The least-squares process is always repeated once

with the final parameters from the Search-and-Expand

procedure as initial parameters, to ensure that a stable

minimum in the refinements has been reached for all elements.

Explore. Plots of parameters versus atomic numbers are

established to reveal any anomalies. Calculation of parameter

uncertainties with separate assessments of the cases where the

relative errors are larger than one is carried out. The beha-

viour of �ðZÞ is specifically examined. Refinements resulting

in �< 0 are normally not accepted {with the exception of Ir (Z

= 77) and Pt (Z = 78) in data set ITC (see below for definition),

both ascribed to the final model MB½10Gþ ��}. In most cases,

unexpected deviations occur when too many parameters are

incorporated into the model, and consequently the final

parameter set may be reduced: nG! ðn� 1ÞG.

4. Analyses

The X-ray form factor data sets covered in this work are

denoted as follows (entries marked with * have associated

model functions as given in Table 1): CM (Cromer & Mann,

1968a,b)*; ITiv (Cromer & Waber, 1974)*; ITC (Maslen et al.,

1992; Waasmaier & Kirfel, 1995)*; WSSS (Wang et al., 1993);

SC (Su & Coppens, 1997)* (cf. http://harker.chem.buffalo.edu/

group/ptable.html); Krf (Kissel, 2000); OFFV1 (Olukayode et

al., 2023)*; OFFV2 (Volkov, 2023).

For specific details of the quantum mechanical calculations

leading to the electron number density, �ðr; ZÞ, and then to the

X-ray form factor by applying equation (1), the original

publications and the references therein should be consulted.

ff0ðs; ZÞg are calculated on specific s grids for various sets of

elements fZg of the Periodic Table. The form factor data are

published over a period of more than half a century and it is

rather remarkable that a common construction of analytical

representations works so well for all cases.

The final analytical setup for each data set is comprised of

model functions MB½nGþ �� of equation (5). The number of

basis functions involved is listed in Fig. 3. n spans the interval

n 2 ½6; 20�. Factors of importance for the least-squares fits are

the number of data points, their precision and the sampling

grid. These key figures are summarized below:

CM: the original data compilation is characterized by

s 2 ½0:00; 1:50� Å�1. �s ¼ 0:01 Å�1, in a total of 151 entries.

Z 2 ½2; 103�. Form factors are presented with a precision of

1
 10�3.

ITiv: in this compilation s 2 ½0:00; 2:00� Å�1, in a grid �s:

0.00 (0.01) 0.20; 0.20 (0.02) 0.50; 0.50 (0.05) 0.70; and

0.7 (0.1) 2.0 Å�1 + {0.25, 0.35, 0.45} Å�1. Thus there are 56

data entries for each element Z, Z 2 ½1; 98�. The data preci-

sion is 1
 10�3.

ITC: here s 2 ½ 0:00; 6:00 � Å�1. The data in ITiv have here

been extended by the entries at s 2 {2.50, 3.00, 3.50, 4.00, 5.00,

6.00} Å�1. This extension was partly conducted by Doyle &

Turner (1968) in a genuine quantum mechanical calculation

and partly by Fox et al. (1989) applying polynomial curve

fitting and extrapolation to fill the gaps left by Doyle &

Turner. In total there are 62 entries here denoted as the IUCr

grid. ITC also presents X-ray form factors for the elements

Z 2 ½1; 98� with a precision 1
 10�3.

WSSS: s 2 ½0:00; 4:00� Å�1, in a grid �s: 0.000 (0.025) 0.500;

0.500 (0.050) 1.000; 1.000 (0.100) 3.000; and 3.000 (0.200)

4.000 Å�1. Thus there are 56 data entries for each element Z,

Z 2 ½2; 92�. The precision is a variable as f0ðs; ZÞ is given with

five significant digits in a decimal form.

SC: here s 2 ½0:00; 6:00� Å�1, �s ¼ 0:05 Å�1, in a total of

121 entries. Z 2 ½1; 86�. Precision is set to 1
 10�5 when

f0ðs; ZÞ< 10 and 1
 10�4 when f0ðs; ZÞ � 10. Notice that for

Si (14), P (15) and S (16) s 2 ½0:00; 4:35� Å�1, while for La (57)

s 2 ½0:00; 4:00� Å�1.

Krf: form factors are extracted from the RTAB database (cf.

https://starship.org/RTAB/RTAB.php) entry data_RF. They

are truncated to the range s 2 ½0:00; 6:00� Å�1. Here �s varies

among the elements and the number of entries amounts to

143–507. Z spans the interval ½1; 99�. The precision is also a

variable as f0ðs; ZÞ, of order 10�6–101, are stored with eight

significant digits in scientific format.

OFFV1(2): the most recently published data. In fact

there are two versions: OFFV1 given in the supporting

information file ae5122sup4.txt of Olukayode et al. (2023).

Here s 2 ½0:00; 6:00� Å�1 with �s given by the IUCr

grid. Z 2 ½2; 118� and the precision is 1
 10�5. A more

complete set generated by the same authors, OFFV2,

has been provided by Volkov (2023). Specifications:

s 2 ½0:00; 8:00� Å�1, �s ¼ 0:01 Å�1, in a total of 801 entries

for each element. All form factors are presented with ten

digits after the decimal point.

Table 3 summarizes the statistical measures hj�f0ðs; ZÞjis;Z
and h�f0ðs; ZÞir:m:s:js;Z (where r.m.s. is root-mean-square) for

322 Gunnar Thorkildsen � Modelling of X-ray atomic form factors Acta Cryst. (2023). A79, 318–330

research papers

Figure 3
Number of elements with a parameter set involving nG Gaussians.

Table 3
Statistical parameters.

hj�f0ðs; ZÞjis;Z h�f0ðs; ZÞir:m:s:j s;Z

CM-original 6:44
 10�3 1:67
 10�2

CM-new 2:34
 10�4 2:79
 10�4

ITiv-original 1:12
 10�2 1:62
 10�2

ITiv-new 2:33
 10�4 3:00
 10�4

ITC-original 1:22
 10�2 2:33
 10�2

ITC-new 2:36
 10�4 3:38
 10�4

WSSS 1:15
 10�4 1:72
 10�4

SC 5:79
 10�6 1:06
 10�5

Krf 6:87
 10�7 1:53
 10�6

OFFV1 1:95
 10�6 2:68
 10�6

OFFV2 5:33
 10�8 8:10
 10�8



the complete data sets. (h is indicates an average over all s with

fixed Z, while h is;Z indicates an average over all s and Z

values. Elements Z = 14–16, 57 in SC, published with an s

range different from the others, were discarded in this calcu-

lation. For ITC a special selection was made, see the main

text.) For CM, ITiv and ITC the corresponding measures
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Figure 4
Histograms of �f0ðs; ZÞ. The bin heights are given by relative numbers. Upper left: CM. Upper right: ITC. Lower left: SC. Lower right: OFFV1.

Figure 5
The error �f0ðsÞ for iron (Fe). Upper row: CM data. Left: model S½4Gþ c�. Right: model MB½8Gþ ��. Lower row: OFFV2 data. Left: model S½5Gþ c�.
Right: model MB½19Gþ ��.



(original versus new) obtained by the S½nGþ c� model using

parameters from Table 1 by Cromer & Mann (1968a), Table

2.2B by Cromer & Waber (1974) and Table 1 by Waasmaier &

Kirfel (1995) have been included. Furthermore �f0ðs; ZÞ

values are presented in histograms for four data sets in Fig. 4.

The new analytical model results in a substantial improvement

in the fits to the tabulated form factors. One is more or less

approaching the limits set by the precision in the original data

compilations. However, while the analysis of �f0ðs; ZÞ for ITiv

data seems to have reached a random state, the OFFV2 data
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Figure 8
ITC: the mean absolute error hj�f0ðs; ZÞjis as a function of Z for the
atomic form factor data compiled by Maslen et al. (1992) obtained by
applying the new modelling function. Top: for elements where
f0ðs; ZÞ; s 2 ½2:0; 6:0� Å is given by Doyle & Turner (1968). Bottom:
for elements where f0ðs; ZÞ; s 2 ½2:0; 6:0� Å is given by Fox et al. (1989).

Figure 6
CM: the mean absolute error hj�f0ðs; ZÞjis as a function of Z. Top:
original result by Cromer & Mann (1968a). Bottom: result obtained by
the present approach.

Figure 7
ITiv: the mean absolute error hj�f0ðs; ZÞjis as a function of Z. Top:
original result by Cromer & Waber (1974). Bottom: result obtained by the
present approach.

Figure 9
WSSS: analysis of data published by Wang et al. (1993). Results for the
final MB½nGþ �� parametrizations. Top: the mean absolute error
hj�f0ðs; ZÞjis as a function of Z. Bottom: the maximum absolute error
j�f0ðs; ZÞjmax as a function of Z.



still exhibit an oscillatory behaviour (see Fig. 5). Figs. 6–13

summarize hj�f0ðs; ZÞjis as a function of Z for all cases

studied. For WSSS to OFFV2 plots of j�f0ðs; ZÞjmax are

included. Special attention should be paid to the ITC analysis

presented in Fig. 8. The data in Table 6.1.1.1 (Maslen et al.,

1992) are compiled from various sources. The main part

s 2 ½0:0; 2:0� Å�1 is identical to Table 2.2.A (Cromer & Waber,
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Figure 10
SC: analysis of data published by Su & Coppens (1997). Results for the
final MB½nGþ �� parametrizations. Top: the mean absolute error
hj�f0ðs; ZÞjis as a function of Z. Bottom: the maximum absolute error
j�f0ðs; ZÞjmax as a function of Z.

Figure 11
Krf: analysis of data published by Kissel (2000). Results for the final
MB½nGþ �� parametrizations. Top: the mean absolute error
hj�f0ðs; ZÞjis as a function of Z. Bottom: the maximum absolute error
j�f0ðs; ZÞjmax as a function of Z.

Figure 12
Analysis of the OFFV1 data published by Olukayode et al. (2023).
Results for the final MB½nGþ �� parametrizations. Top: the mean
absolute error hj�f0ðs; ZÞjis as a function of Z. Bottom: the maximum
absolute error j�f0ðs; ZÞjmax as a function of Z.

Figure 13
Analysis of the OFFV2 data generated by Olukayode et al. (2023) and
made available by Volkov (2023). Results for the final MB½nGþ ��
parametrizations. Top: the mean absolute error hj�f0ðs; ZÞjis as a
function of Z. Bottom: the maximum absolute error j�f0ðs; ZÞjmax as a
function of Z. The Z variation indicates that the statistical limit set by the
data precision is not yet reached.
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Figure 14
Plots of �ðZÞ. Upper left: CM data; model MB½6Gþ ��. Upper right: ITiv data; model MB½6Gþ ��. Lower left: SC data; model MB½7Gþ ��. Lower
right: OFFV1 data; model MB½7Gþ ��.

Figure 15
Plots of d1 to d4 for some final models as functions of Z. Upper left: CM data. Upper right: ITiv data. Lower left: SC data. Lower right: OFFV1 data.



1974), while the extensions to include s 2 ½2:0; 6:0� Å�1, as

mentioned above, are built based on two very different

approaches. This is reflected in the refinements as the elements

having an s extension by Fox et al. (1989) have a different

signature from the data with extensions supplied by Doyle &

Turner (1968). Fig. 2 in the paper by Fox et al. (1989) reveals

that a polynomial fitting to f0(3.0 Å�1; Z), having relatively

large gaps in Z, may lead to less accurate values than expected

from the precision in their presentation. To emphasize this

point hj�f0ðs; ZÞjis as a function of Z has been presented in

two separate parts in Fig. 8. The statistical properties for ITC,

given in Table 3, are calculated for Z 2 ½2; 92� n {40, 59, 64–73}.

One should also mention that the values for the mean absolute

error, hj�f0ðs; ZÞjis, as presented in Fig. 7 using the original

S½4Gþ c� model, differ from what is found in Table 2.2.B by

Cromer & Waber (1974) (maximum absolute errors are

however reproduced). It may be that the values presented by

Cromer & Waber (1974) are calculated based on an s grid

different from that reported (cf. Cromer & Waber, 1964). Figs.

14 and 15 depict the Z dependence for � and d1–d4 for some

selected stages in the analysis. Clearly, in these cases, � is a

well behaved parameter, its value depends upon the actual s

span and it is typically highly correlated to fc1; d1g. We also

observe that the lowest d values are nearly insensitive to the Z

values, but depend on the s grid and the precision of the raw

form factor data.

Notice that, in most of the figures having Z as independent

variable, the positions of filled shells associated with the

principal quantum numbers are indicated with dashed vertical

lines. Particularly in the initial parts of the Search-and-Expand

procedure explicit parameter and error variations within a

shell (as functions of Z) are observed.

The form factor compilation OFFV2 is in many respects the

most complete. It has a large span, very fine grid and high

precision. Some aspects regarding the final set of parameters

in the analytical models for these data are graphically

presented in Figs. 16–18. In the expansion of the model it

is observed that hj�f
ðnþ1Þ
0 ðs; ZÞjis ’

1
3 hj�f

ðnÞ
0 ðs; ZÞjis. Here

superscript ðnÞ represents the number of Gaussians in the

model. Thus expanding the model eight times after Search

leads to a reduction of the mean absolute error by a factor

’ 1:5
 10�4.

5. Discussion

The first step in this study was to analyse the atom form factor

data by Kirkland, trying to expand his analytical model

MB½3ðLþGÞ� into MB½mLþ nGþ ��. This did not progress

as smoothly as expected. The best fits were finally achieved for

models MB½ð2; 3ÞLþ 5Gþ �� with two Lorentzians for

Z � 18. However, the improvements of hj�f0ðs; ZÞjis were not

substantial. Fig. 19 depicts the Z dependence of the mean

absolute error both for the analytical model developed by

Kirkland and the present approach. A detailed study, here

exemplified by �f0ðsÞ evaluated for iron (cf. Fig. 20), may

explain the reason for the behaviour. The fine ripples, super-

imposed upon the type of oscillating background normally
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Figure 16
The OFFV2 data; � as a function of Z at various stages of the refinement
process.

Figure 17
The extended OFFV2 data; di as a function of Z.



encountered, which is observed in the difference plots, are

assumed to prevent a normal development of the refinements

by Expand.

The model MB½3Lþ nGþ �� has been examined in

connection with most of the form factor data sets. It behaves

differently compared with MB½nGþ ��. Including Lorentzian

functions seems to give rise to a more complex parameter

space where many different parameter combinations lead to

almost identical values for hj�f0ðs; ZÞjis. Thus it becomes

difficult to verify whether a global minimum is really reached.

Repeated cycles of Tests must then be carried out until no

better fits are deduced. The Expand procedure does neither

function as efficiently as in the pure Gaussian case as the

subsequent refinements may follow a path between local

minima and miss the global one. Restrictions on the sign of the

coefficients of either the Lorentzian or the Gaussian basis

functions must be abandoned and the close-packed local

minima often involve different sign combinations of the

coefficients. Altogether, using model MB½nGþ �� in the

refinements leads smoothly to reproducible results and is the

preferred choice.

In the RTAB database the Krf data span the range

s 2 ½0:; 1000:� Å�1 which is truncated to s 2 ½0:0; 6:0� Å�1 to

be comparable with the range found in most form factor

publications. The parameters associated with the analytical

model refined for this range may be used as initial parameters

for a data set increased to incorporate s values up to and

including 7.0 Å�1. This procedure is then continued in steps of

1.0 Å�1 until a span s 2 ½0:0; 12:0� Å�1 is reached, which in
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Figure 18
The extended OFFV2 data; ci as a function of Z. Every other coefficient is
included to obtain suitable resolution.

Figure 19
The mean absolute error hj�f0ðs; ZÞjis as a function of Z. Atomic form
factors calculated by Kirkland. The * symbols are associated with model
MB½3ðLþGÞ� with parameters given by Kirkland. The other symbols are
associated with model(s) MB½ð2; 3ÞLþ 5Gþ ��.

Figure 20
The deviation �f0ðsÞ for Fe calculated based on form factor data by
Kirkland. Top: original MB½3ðLþGÞ� model function. Middle: S½5Gþ c�
model function. Bottom: MB½3Lþ 5Gþ �� model function.



many respects represents an upper limit in range. In this

process hj�f0ðs; ZÞjis;Z increases in each step in total by a

factor of	10. To regain approximately the value found for the

original range, the model must be expanded. MB½nGþ ��
! MB½ðnþ 3ÞGþ �� is sufficient. To model atomic form

factor data determined for an infinite range, one must search

for other analytical models than the present one.

Fig. 13 indicates that it should be possible to push the model

even further for the high-quality OFFV2 data. When

O½hj�f0ðs; ZÞjis� is approaching 1
 10�8 downwards, one has

to increase the values of the internal parameters MaxItera-

tions, PrecisionGoal and AccuracyGoal in the Mathematica

function NonlinearModelFit to obtain a reliable fit. In addi-

tion, when more Gaussians are incorporated in the model, the

d values tend to pack more closely and the condition of a

minimum ratio for neighbouring values of 1.5 must be relaxed.

Altogether these adjustments cause the computing time of a

refinement to increase considerably. Here form factor data for

Fe have been examined and it has been possible to increase in

steps the number of Gaussians from 19 to 25 (cf. Fig. 21), and

thereby reduce the mean absolute error from 2:36
 10�8 to

4:94
 10�10, still an order of magnitude larger than the actual

statistical limit for data with ten digits’ precision. It may be

appropriate to discuss whether such a level of accuracy in the

original data and in the modelling is ever needed. In X-ray

diffraction studies one has to take into account effects due to

non-spherical parts of the electron-density distribution and

dispersive parts of the scattering process. This will affect what

should be regarded as the relevant significant digits of X-ray

atomic form factor data.

Assuming that the deviations, �f0ðs; ZÞ, have a uniform

distribution [the standard deviation for a uniform distribution

of width 1:0
 10�k is ð1:0=
ffiffiffi
1
p

2Þ 
 10�k ’ 2:87
 10�ðkþ1Þ]

determined by the precision of the observations, the following

formula estimates the r.m.s. value h�f0ðs; ZÞir:m:s:js (evaluated

on the s grid):

h�f0ðs; ZÞir:m:s:js ¼
X

k

PZ½10�k�
10�kffiffiffiffiffi

12
p : ð7Þ

PZ½10�k� is the relative number of the form factors for element

Z with precision 10�k. Equation (7) is applied in connection

with WSSS and SC data and the outcomes are depicted in Fig.

22. Apparently, one is close to the statistical prediction, which

confirms that high-quality fits to the observations have been

obtained.

A preliminary analysis of form factors for the ions F�, Na+,

Mg2+, using the MB½nGþ �� model, was undertaken based on

data in Table 4 by Wang et al. (1996). The precision of these

data is 1
 10�4. The results for the mean and maximum

absolute errors are reported in Table 4. Also, for these cases

the final analytical models reproduce the data very well.

6. Concluding remarks

An analytical model based on the inverse Mott–Bethe rela-

tionship, parametrized as a sum of Gaussians, and denoted as

MB½nGþ ��, has proved to be a straightforward, refinable and

well behaving function to represent X-ray atomic form factor

data. From the outset, one should allow a variable number of

Gaussians in the model linked to the position of the elements

in the Periodic Table. Form factor data calculated on a fine

uniform grid and to a high precision lead through the refine-
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Figure 21
The error �f0ðsÞ for Fe for the ultimate final model MB½25Gþ �� for
OFFV2 data. Here shown for the range ½0:0; 2:0� Å�1 for easy
comparison with Fig. 5 (lower row – right).

Figure 22
h�f0ðs; ZÞir:m:s:j s for WSSS data (top) and SC data (bottom). The guiding
lines are calculated from the simple model of equation (7) with
k ¼ f3; 4; 5g for WSSS and k ¼ f4; 5g for SC.

Table 4
A preliminary analysis of some ions.

Form factor data by Wang et al. (1996).

Ion Model hj�f0ðs; 10Þjis j�f0ðs; 10Þjmax

F� MB½10Gþ �� 2:2
 10�5 6:4
 10�5

Na+ MB½8Gþ �� 2:4
 10�5 5:7
 10�5

Mg2+ MB½9Gþ �� 2:1
 10�5 5:4
 10�5



ment of the model parameters to a set of functions that

reproduces the input data to an unprecedented high accuracy.

This, together with its straightforward implementation, make

models of type S½nGþ c� and EP½n� obsolete. Ordering of the

parameters by increasing exponents throughout the analysis

has been of immediate importance in building the final

models.

The challenges encountered working with the ITC form

factor tables suggest that in forthcoming publications of the

International Tables for Crystallography, these tables should

be revised and brought to a self-consistent level. The data by

Olukayode et al. (2023) seem to be a strong candidate. As a by-

product, elastic atomic scattering factors of electrons may be

directly deduced from this modelling of X-ray form factors.

All final MB½nGþ �� parameter sets obtained are available

as supporting information.
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