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Abstract

This report outlines the research conducted to explore on the topic of clas-
sification of human neurological data using machine learning models. The
primary objective was to investigate alternative approaches for efficiently
interpreting EEG data and test the possibilities for predicting human emo-
tions. During the study, data was collected by recording the brain activity
of volunteering respondents using electroencephalography.

These participants were exposed to visual stimuli in the purpose of provok-
ing specific neural activity as a result of emotional responses in the brain.
The collected data underwent traditional signal preprocessing techniques
typically employed in EEG data analysis.

Subsequently, the filtered data was subjected to wavelet transformation,
both with and without synchrosqueezing. Principal components analysis
was used to perform dimensionality reduction on the resulting features ex-
tracted from the data. The final model achieved a prediction accuracy of
32% when classifying between eight different classes of emotional responses
based on training data from three respondents.
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Chapter 1

Introduction

This chapter gives an overview of the project’s motivation, background and
general project description.

1.1 History and common use of EEG

Electroencephalography, EEG for short, was first introduced to the public
through the study papers of the German psychiatrist Hans Berger in 1929.
In 1924, Berger performed the first EEG on a 17 year old boy that was under
a neurosurgical operation. In his publication he defined the observations as
alpha and beta waves. It was not until later years that these observations
were specifically defined as neural activity by American EEG scientists, as
Berger previously only dismissed these as artefacts. These findings were a
great breakthrough for the use of advanced technology in understanding the
human brain and people’s cognitive behaviour [1].

EEG is more commonly used today by psychiatrists and other medical per-
sonnel for diagnosing and correctly treating patients with brain disorders
such as; brain tumour, sleeping disorders, epilepsy and stroke [2].

Scientists and researchers are today exploring how to utilise emerging tech-
nology to both process and analyse signals from EEG. The different explo-
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ration topics varies from use of artificial neural networks to augment signals
in EEG data [3] and also use of features from EEG to predict cognitive be-
haviour and learning in brain development [4].

In this project, exploration has been done to see how a (machine learn-
ing) ML model will perform in an attempt to classify different EEG responses
based on human emotions processed through the brain. Future profession-
als in neuroscience and psychology would benefit from a model with these
characteristics, as it can serve as a helpful tool for interpreting a patient’s
EEG data.

1.2 Project’s vision and motivation

As new technology is becoming more frequently observed as an applica-
tion for physical medical purposes and gaining attention in media [5], this
research project’s objective will be to achieve more insight in the use of tech-
nology for challenges related to psychology and psychiatry. Today there is
currently more focus on research in medical technology related to direct
physical illnesses or use of other brain activity measurement methods that
are; more time consuming, less versatile and far more expensive.

EEG data used during this project will be collected through the EEG equip-
ment located in the cognitive lab at the University of Stavanger. Since all
the data will be anonymised this publication will be defined as an open
report. This will increase the amount of neural activity data available to
be used for future research projects. Additionally, all signal processing
methods and scripts will also be available through a public repository so it
can be used for further educational purposes at UiS. Hopefully, the use of
EEG can be more prominent in the future educational curriculum of signal
processing subjects at the university and eventually contribute to a more
interdisciplinary work environment across different study programmes.

Increasing the use and interest of the equipment accessible in the cognitive
lab may lead to more research topics that can help solve issues or improve
the process of diagnosing patient’s disorders related to the human brain.
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1.3 Project description

This project will be a part of research to determine if it is possible to make
use of machine learning models to classify human’s emotional responses
based on visual stimuli. With use of EEG, data will be collected from
volunteering respondents that will be exposed to images from a standard-
ised image set. When a stimulus evokes an emotional response or gener-
ates arousal, it is reflected as changes in large-scale neural networks in the
brain. Electroencephalography can be used to measure the brain’s activity
by measuring the electric charge between synapses when the neurons are
stimulated. The main achievement from the results of this project will be
to see if it is possible to classify people’s EEG responses and if they are
finding what they look at appealing to them or not.

One of the challenges in this thesis will be to make sufficient use of known
signal processing methods to be able to extract the correct information
based on the literature available. Then the signal will be segmented, divid-
ing the different emotional responses from one another. By later examining
the resulting filtered data in more detail, hopefully a pattern in the EEG
segments will be recognized and make it possible to correlate to the spe-
cific themed image that the respondent is looking at. These patterns will
then be extracted and hopefully be predicted by a trained machine learning
model [6].
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Figure 1.1: Example of EEG electrode protocol map and the four main lobes
of the cerebral hemisphere; occipital lobe coloured in red, parietal lobe in yellow,
frontal lobe in blue and temporal lobe in green [7].

The people used to collect data for the use of training the machine learning
model will be exposed to images from open database libraries. Their re-
action coming from the monitored EEG signals giving an indication of the
electrical potential will be stored and used in the training of the machine
learning model. For this project, code will be developed in Python to do the
signal processing of the electrical signals coming from the EEG. This data
will then be processed to extract specific features and fed into a machine
learning algorithm to train an AI model that will be developed using open
source resources, such as Sklearn.

Several methods are to be tested out to train the model varying on the
range of the most tangible ones to find the most suitable to solve the clas-
sification problem. Examples of different classification algorithms can be
random forest; based on decision trees, k-nearest neighbours or naive bayes
algorithm to determine if what the person is seeing in the image is of high
or low valence [§].



Chapter 2

Theoretical study

This chapter will elaborate about the basic theory of the different topics
relevant to this thesis project. First, the brain’s anatomy and physiology in
processing visual stimuli is discussed. The electroencephalography sensory
system is explained in rough detail to get an understanding of what it is
and how it works. Moreover, the signal processing pipeline of EEG signals
is discussed on a mathematical basis. Lastly, the feature extraction and
classification processes are explained on a certain level to better understand
the results later in this report.

2.1 The brain’s anatomy and physiology

2.1.1 The brain’s anatomy and physiology

The brain is known to be a very complex system. The outermost layer of
the brain is called the cerebral cortex, which has two hemispheres that can
be divided into four lobes; the frontal lobe, the parietal lobe, the tempo-
ral lobe and the occipital lobe. These can be observed in 1.1. All of the
lobes have responsibility for different functions, whereas the occipital lobe,
located at the posterior part of the brain, is responsible for processing vi-
sion [9]. The way that the brain sends signals to different parts of the brain
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is done through chemical reactions within and between neurons. A neuron
is a cell that is found in the body’s nervous system. The nervous system
can be divided into two parts, the central nervous system(CNS) and the
peripheral nervous system(PNS) [10]. Neurons receive nerve impulses, an
electrical charge, through signal receptors connected to the nucleus of the
cell called dendrites. This electrical charge occurs due to the difference in
the cells’” polarity [11]. To transfer nerve impulses further to other neu-
rons, the neuron has one specific long fibre called an axon. When a signal
reaches the end of the axon, it results in a stimulus that releases vesicles
full of neurotransmitters that are being emitted through a gap from the
presynaptic neuron to the postsynaptic neuron, called a synaptic terminal
or synapse [12] [13] [14].

2.1.2 Neurological signals - brain’s wavelengths

Electrical charge being transmitted between neurons differs between 6 main
frequencies, based on the physiological functions, whereas low frequencies
indicate a very relaxed state while higher frequencies indicate a more aware
or distressed state. These states are named for their frequency ranges as
described in Table 2.1 below [15].

Name Frequency range [Hz| Physiological function
Slow wave 0.1-1 NREM deep sleep
Delta 1-4 NREM deep sleep
Theta 4-10 Acquisition of navigation tasks
Alpha 8-15 Relaxed and passive attention
Beta 15-30 Wakefulness and REM sleep
Gamma 30-90 Associative learning

Table 2.1: Overview of the different brainwaves frequency ranges and physiolog-
ical functions [15].

A representation of the most commonly analysed signals from an EEG
recording separated into the 5 different frequency ranges is illustrated in
Figure 2.1 [12]. Each signal in the figure reflects a typical EEG recording
with the frequency ranges stated from Table 2.1.
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Figure 2.1: Tllustration of the most commonly analysed EEG signals’ waves [16].

In some researches where the respondent is awake during EEG recording, the
delta waves are occasionally filtered out due to the fact that the data might
contain unwanted artefacts such as eye blinking that has an average duration
span of 250 to 400 milliseconds, or 0.25 and 0.4 seconds [17]. This can be
calculated by simply using the frequency formula as defined in Equation 2.1
below.

f=1/T (2.1)

Where f is frequency in hertz and T is the period of a given time interval
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in seconds [18].

The time period interval of an eye blink will then correspond to a frequency
range between 2 and 4 Hz. Additionally, under certain circumstances, it
is desirable to filter out the frequency range for delta waves because head
movements may contribute to the occurrence of artefacts all the way down
to 0.5Hz [19].

2.1.3 Vision and the visual cortexes

All information that is coming through the eyes and being processed by
the brain goes through the visual cortex. As light goes through the pupil
and then reaches the retina, located in the back of the eye, photo receptors
transduce the light photons into a chemo electrical signal to the optical
nerve. These photo receptors are called rods and cones, whereas the former
is used to interpret shades of grey and the latter a perception of colours [20]
[21].

The signal further goes through the optical nerve before it is split off in
the thalamus where a low tract reaches the superior colliculi, accounting
for primitive visual functions [22]. After passing through the mid-brain,
the signal reaches the primary visual cortex located in the occipital lobe,
coloured in blue in Figure 2.2.
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Figure 2.2: Illustration of the brain with the occipital lobe coloured in blue,
ventral stream in purple and dorsal stream in green [23].

The visual cortex is divided into 5 main areas. In the primary visual cor-
tex, also often referred to as V1, the information is simply relayed as object
outlines, analog to edge detection in image processing. From the primary vi-
sual cortex, the information is further transmitted into two pathways called
the ventral and dorsal stream. In the ventral stream the information is
processed through the visual cortex V4 and leads further into the inferior
temporal cortex, which is part of the temporal lobe [24] of the brain.

The area for the ventral stream can be allocated on the cerebral hemisphere
as the purple coloured area in Figure 2.2. Information sent through the
ventral stream is associated with memory stored in the brain, using stored
information to interpret form and objects. This is due to the temporal lobe’s
communication with the hippocampus, which is important in forming long-
term memories [25].The dorsal stream can be allocated as the green coloured
area in Figure 2.2. Here the information is processed by the visual cortex
V5, in addition the dorsal stream leads the information to the posterior
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parietal cortex, part of the parietal lobe on the cerebral hemisphere. The
dorsal stream processes information about object locations [26].

2.1.4 Emotions

Emotions are the brain’s way to interpret stimuli based on previous sen-
sory experiences correlated with similar stimuli. Emotion is a temporary
perception that is processed by the limbic system in the body based on the
sensory stimuli that triggers the production and secretion of hormonal sub-
stances that change the body’s homeostasis, or balance point. The thalamus
is located between the cerebral cortex’ medial aspect, called the cingulate
gyrus [27] and the limbic system in the part of the brain called the dien-
cephalon. The thalamus forms a communication between these two areas
of the brain [28]. The hippocampus, which is connected to the thalamus,
helps to process this information and retrieve long-term memories from the
amygdala. Long-term memories are associated with the information coming
from the cerebral cortex and are compared with the information cognitively
stored in the amygdala [29] [30] [31].

The information that goes into the amygdala is a two-way communication,
where the hippocampus retrieves information from long-term memories to
interpret the information from the cerebral cortex and at the same time
provide information about current stimuli to the amygdala. Amygdala is
a specific neural network in the limbic system [32]. By communication be-
tween the temporal lobe and the visual cortex, the information extracted
from visual stimuli can be interpreted by the amygdala. The amygdala plays
an important role of processing emotions, where new stimuli are associated
together with previous sensory impressions with corresponding stimuli in
memory. The information sent from the thalamus is also sent to the hy-
pothalamus [33] [29] [25].

The hypothalamus functions as the centre for mediating the peripheral phys-
iological reactions in emotions through signals coming from the sensory cells
in the body [34]. These sensory cells can register changes or imbalances in
the body and contribute to maintain homeostasis [35]. The pituitary gland,
which is located below the hypothalamus, controls the endocrine system
and is a gland that controls the production and secretion of hormones in
this system [36].

10
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Figure 2.3: Cross section illustration of the brain, depicting the locations of the
main parts in the limbic system [37].

When hypothalamus receives input from the sensory cells in the body, the
pituitary gland can then be stimulated to secrete hormones. The release of
hormones affects the intensity of emotional reactions. Stimuli of the pitu-
itary gland from the hypothalamus occur via hormones, which can be e.g.
dopamine. Dopamine is a neurotransmitter related to the body’s reward
system |[38], and secretion of this neurotransmitter in the body will result
in a positive sensation. This complex system composes a great part of the
human cognitive functions [31] [39].

When the brain is processing information from the body’s sensory system
the pituitary gland can trigger hormone production in several organs of the
body. Secretion of these hormones often leads to physical changes in the
body, such as increase of heart rate or pupil dilation. The hormone pro-
ducing organs are called endocrine organs, which are part of the endocrine
system in the human body [40]. Both the hypothalamus and pituitary
gland, mentioned above, are part of the endocrine system. The hormones
that are released depends on what emotional response is processed in the
brain that triggers the organs in the endocrine system [41] [42].

11
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Valence measures if an emotion is positive or negative and how positive
and negative it is. The higher the valence for a specific stimulus is for a
person, the more positive associations the person has to that specific object,
person, taste, smell or scenario. Little is to say about neutral feelings, as
in psychology there is still not scientifically defined any neutral emotions,
only negative and positive valence [43].

Arousal, or sexual arousal, is when sensory stimuli is processed through the
hypothalamus in the limbic system and sends a signal through the spine and
into the sacral area of the body. The signal goes further to the reproductive
glands, which are part of the endocrine system, and secretes hormones such
as androgen and oestrogen hormones. These specific hormones will affect
the body and will lead to the feeling of arousal [44] [45].

The amount of different emotional feelings that a human can experience
can be infinite. However there are methods to categorise most of these
emotions. In 1980, a psychologist with specialised research in emotions and
psychotherapeutic process, named Robert Plutchik, defined what is known
as Plutchik’s Wheel of Emotions. The wheel of emotions is a colour map
that illustrates 8 main categories of emotions and what feelings that are
linked to the specific emotion and the mixes of feelings [46].

12
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contempt !

remorse disapproval

Figure 2.4: Plutchik’s Wheel of Emotions [47].

2.2 Electroencephalography

As mentioned in Chapter 1, EEG is a technique to measure cortical activ-
ity. The greatest benefit of using EEG, compared to other neural activity
measuring methods such as functional MRI(fMRI) and magnetoencephalog-
raphy(MEG), is that electroencephalography is, in addition to being non-
invasive to the patient, also; more versatile, less time consuming and is the
cheapest procedure of the three. The data provided by an EEG has a high

13
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temporal resolution, meaning high resolution with respect to time. By per-
forming an EEG, it is possible to record the neural activity of the patient
by attaching electrodes directly to the respondent’s scalp. The electrical ac-
tivity measured on the scalp is limited, but can still give a good indication
of the state of a person’s neural activity in different scenarios [48] [49].

Amplified neural activity measured from an EEG recording, varies normally
between amplitudes of 20 and 100 microvolts [50]. Frequencies most com-
monly measured by an EEG of interest in analysis of brain waves are be-
tween 0.5-44Hz [51]. Electrodes used in an EEG must have sufficient contact
with the skin to be able to acquire the neural signals that are obtainable
on the scalp. To be able to accomplish this, a specific conductive gel is
generally used to make contact between scalp and electrode. Other meth-
ods include using small needles, but this is less frequently used for research
purposes. While an EEG is being recorded, the respondent is exposed to
a certain stimuli for a given time period, based on what information that
needs to be analysed after the data collection. Each electrode is placed on
the scalp in specific positions on the head, so it will be possible to observe
how different areas in the head are reacting to the present stimuli. Good
EEG protocols are important to keep the recording efficient, reduce wear
on equipment and to collect clean data [52].

As described in the previous section, neural activity is triggered by visual
stimuli to process information and potentially resulting in an emotional

response associated with the specific stimuli. This opens up the possibilities
of recording these emotional responses through the use of EEG.

2.3 EEG signal processing theory

This section will elaborate about the theoretical background of some of the
most common signal processing techniques of EEG signals.

14
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2.3.1 Removing DC offsets

Early steps in most software for EEG signal processing include removing
any DC offset in the data. This is to generate a zero mean value of the
data for all channels [53|. Eliminating DC offset can be done by several
different methods, where one method is computationally easier than the
other. Subtracting the signal mean from each channel removes the DC offset
and centres each individual signal at zero volts. This can be a preferred
method to use for removing DC offset, because it increases the data accuracy
and is preferred if the data is to be statistically analysed in later stages [54]
[55]. Signal mean is generally calculated as shown in Equation 2.2 below,
where n is number of samples and z is the signal [56].

Another method is to perform baseline correction on the data set. Baseline
correction is commonly used within spectroscopy and image analysis and
enhancement [57]|. Baseline correction uses statistical methods to calculate
an estimator for the new baseline based on asymmetric weighting of devia-
tions in the raw data [58|. Data scientists have developed several algorithms
to perform these estimations implemented in open source code [59]. One of
the algorithms is called the Zhang Fit algorithm which is an algorithm based
on penalised least squares [60]. The statistical calculation of the penalised
least squares function, Sy(f), that the algorithm is based on is shown in
Equation 2.3 , where f is the functional space for projection, x; are the
smoothing variables, y, has unknown relations to x; and linear relation to
the regression variables in z;, B is a parameter vector, A is the smoothing
parameter and Ja(f) is the roughness penalty often defined by the integral

of (Z46)" [61].

dx?

S\ = = S (s~ flw) — 28 + Aa(f) (23

=1

15
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2.3.2 Identifying and removing bad channel data

When analysing EEG data with the DC offset removed it is easier to iden-
tify channels that deviate in time-domain when comparing them. These
signals are usually defined as bad channel data and are normally detected
by manual analysis through plotting the data and visually inspecting the
data set [62]. When using the zero mean subtraction method to reject
DC offsets, statistical operations can also be done to automatically identify
these bad channels [63]. Insufficient contact between the measuring elec-
trode and the scalp during an EEG recording might result in bad channel
data. In most cases where bad channel data is observed, the data is simply
rejected from the data set by manual analysis [64]. It is also possible to
automatically detect bad channels by using statistical approaches. One of
the alternatives is to make use of an adjustable threshold parameter [65]
that multiplies with the standard deviation of the data set and results in
a value used for identifying potential outliers. The signals that are not
within the range of the calculated value will be marked as bad channels.
The mathematical equation for calculating standard deviation is replicated
in Equation 2.4 below, where x is the signal data, ¥ is the signal data mean
and n is the number of samples in the signal [66].

(2.4)

After the channel outliers are detected the channel data can simply be
removed from the data set, which is a common approach to treat bad chan-
nels when looking at singular respondents. The reason why bad channels
are commonly rejected from the data set is because malfunctioning channels
may have zero variance, which may lead to dramatic shrinking of cortical
estimates, such as the standard deviation. The calculation of variance is
shown in Equation 2.5, which is the same as Equation 2.4 squared [63] [67].

2 i (m =) (2.5)

ST =
n—1

When doing an EEG analysis based on ERP, the zero variance will distort

16
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the group averaging of the signals with its low noise estimate. However,
if looking at data across multiple respondents, it may be of significance to
keep the data dimensions equal across respondents. Obtaining equal data
dimensions can be done by reconstructing the signals with interpolation of
neighbouring channel data [67].

2.3.3 Interpolation of bad channel data

Interpolation is a method used to achieve the same quantity of data for every
data set across respondents in the same study after rejecting the bad channel
data. This is to achieve the same dimensions on the data for every subject.
Frequently, interpolation algorithms produce an approximated signal as an
alternative to the bad channel data using neighbouring channels [67].

Interpolation is commonly used within both one dimensional signal process-
ing as well as for two dimensional signal processing for images. Many inter-
polation algorithms are accessible through open sources such as Python’s
interpolate and signal package indexes [68] [69].

The most tangible interpolation method is linear interpolation. This
method creates a direct line between approximated signal points of the
interpolated signal to generate the new signal. This method is based on the
polynomial defined in Equation 2.6 based on calculating a function’s slope
between two signal points |70].

f(z1) — f(20)

xT1 — Xo

p(z) = f(zo) + (x — x0) (2.6)

Another example of an interpolation method is the B-spline algorithm. This
is a more advanced technique to perform the signal approximation where the
new signal has smooth curves instead of straight lines between the interpola-
tion samples. The new signal using the B-spline algorithm is approximated
based on Equation 2.7, where ¢; are coefficient values, 3 is the basis function
of order o0 and Az is the equal spacing between signal points in = [68].

17
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y(@) 385~ d) (27)

J

2.3.4 Data filtering

Before a complete analysis can be performed on signal data, it is important
to perform signal filtering. Filtering is a common digital signal processing
method that removes unwanted components that occur under data collec-
tion. There are two common types of filtering methods that are categorised
based on their impulse response and can be defined through convolution
in the time domain [71]. The two types of filters are called Finite Impulse
response FIR, and Infinite Impulse Response. The main difference between
these filters is that the FIR filter’s response results in a finite sum, as its
output is defined by present and past filter input values as defined through
convolution in Equation 2.8 where z is the signal and h is the filter.

y(n) = 3 hk)a(n - k) (2.8)

Meanwhile an IIR filter’s response results in an infinite sum, as its output
is not only based on past and present input values, but also the filter’s
own output. IIR filters can generally be expressed through convolution as
defined in Equation 2.9, where x is the signal and h is the filter.

y(n) = 3 h(k)z(n — k) (2.9)

k=0

When filtering a signal a phase shift or delay in signal is introduced. The
time delay or phase shift is often higher in a FIR filter than an IIR filter.
IIR filters often have a higher resolution for low frequencies than the FIR
filter. IIR filters can therefore be a preferred filtering method if the low
frequency components in a signal are of interest [72| [73] [74].

Filtering in the time domain through convolution can be computationally
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difficult for larger data sets, therefore it is common to perform a transfor-
mation of the signal from time domain into frequency domain. For cer-
tain transformations, mathematical operations become significantly easier
to compute. An example is that the time domain convolution equals simple
multiplication in the frequency domain. One of these transformations is
called the discrete time Fourier transform and is defined through convolu-
tion of a signal and a complex exponential as shown in Equation 2.10, where
w is the frequency [75] [76].

X(w)= ) az(n)eion (2.10)

After filtering in the frequency domain, the filtered signal can be trans-
formed back into the time domain through the inverse discrete time Fourier
transform as defined in Equation 2.11 [77].

2(n) = % / " X (w)eRmdw (2.11)

Band pass filtering is a method used to preserve signals within a certain
range of frequencies by amplifying the frequencies of interest and attenuat-
ing all the other frequencies outside of this range. This range of frequencies
is usually called the filter’s bandwidth. A band pass filter can be seen as a
combination of a high pass and low pass filter, whereas a high pass filter at-
tenuates the unwanted low frequencies and a low pass filter attenuates the
unwanted high frequencies. The outer boundaries of a filter’s bandwidth
are called the lower and upper cut-off frequencies. Frequencies within the
bandwidth will be preserved when using band pass filtering. A cut-off fre-
quency is defined as when the output signal equals %, or -3dB, of the input

signal |78|. Figure 2.5 below illustrates a band pass filter’s characteristics.
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Figure 2.5: Illustration of a band pass filter with its center frequency fj, lower
and upper cut-off frequencies, fr, and fx, and the filter’s bandwidth B [79].

Band pass filters can be categorised by their Q-factor, whereas a high Q
factor implies a narrow bandwidth, or small distance between the low pass
and high pass filters cut-off frequencies, and a low Q factor implies a broad
bandwidth. The Q-factor is calculated from the following Equation 2.12
[80] [81].

_fu—1f1

©="7

(2.12)

The reason why most common filters have roll offs and not straight vertical
lines at the cut-off frequencies between the preservation and attenuation is
due to physical limitations. If using an ideal filter, which is defined as a
filter with vertical roll offs at its’ cut-off frequencies from the pass band(filter
value = 1), the Gibbs phenomenon occurs. This phenomenon is defined as
when oscillation is observed from a resonator in a signal or filter’s output
that is not present in its input after performing a Fourier transform on a
signal with abrupt change in magnitude. Figure 2.6 illustrates this with an
ideal low pass filter and its impulse response [82].
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Figure 2.6: An ideal low pass filter and its impulse response [83].

Filters are therefore specifically designed to prevent ringing and at the same
time attenuate the unwanted frequencies in the best way possible. One
type of filter design is the Butterworth filter, first described by Stephen
Butterworth in 1930, where he described how a filter can be normalised for
design [84]. The Butterworth filter is known as the best filter when it comes
to compromising between preserving and attenuating signals for frequency
filtering. Thus this is a common choice of filter design. A Butterworth filter
is also called a maximally flat filter due to it not introducing any ripples or
ringing artefacts in its stop band nor pass band [85]. In addition, the But-
terworth filter is known for having a more linear phase response, meaning
less signal delay after filtering than other traditionally used filters. The gen-
eral frequency response of a Butterworth filter is defined in the frequency
domain as in Equation 2.13 below, where w, is the cut-off frequency and n
is the order of the filter, which adjusts the steepness of the filter’s amplitude
response [86] [87].

H(jw) = ———— (2.13)

In certain cases it is desirable to remove components of a certain range of
frequencies from a signal. This is done by band stop filtering. A band stop
filter functions like a band pass filter, only that the cut off frequencies for the
higher and upper bound are opposites, meaning that the frequencies within
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the final filter’s bandwidth will be attenuated while all other frequencies will
be preserved. A specific type of band stop filter is called a notch filter which
is a band pass filter with a high Q-factor. Notch filtering is commonly used
in scenarios where the signal is greatly influenced with artefacts originated
from the power line, corrupting the analysis of the underlying signal of
interest [88] [89].

For analysis of EEG data, notch filtering might be necessary to perform in
addition to conventional band pass filtering. This might be the case if the
power line noise is prominent in the signal. Before performing band pass
filtering on signals in EEG data, the signals should be notch filtered, this is
because the high pass filtering used to get rid of DC shifts originating from
low frequency components are prone to the high frequency signals and may
cause the power line noise to be further amplified instead of attenuated [90].

2.3.5 Data epoching

Data collected from an EEG test usually has different types of stimuli to
trigger neural activity. Normally, during an analysis of signals recorded
using EEG, the different time intervals of responses to the stimuli the re-
spondent is exposed to is segmented. This is called an event related poten-
tial analysis, or ERP for short. When performing an analysis on ERP, it
is necessary to isolate the different electrical potentials to align them with
the stimuli exposure. This is commonly known as data epoching. This
is easily done to the data by simply segmenting the signals in the same
given time intervals of the stimuli exposure. Before epoching and starting
an ERP analysis, the EEG channels are averaged to get an unambiguous
signal representation [91].

2.3.6 Bad epoch elimination

When the mean averaged signal is segmented into epochs, there might be
certain epochs that contain specific unwanted artefacts that are not pos-
sible to eliminate using conventional signal processing filtering mentioned
earlier in this section. These epochs are therefore not wanted to use in an
ERP analysis and must be rejected as bad epochs. The simplest method
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to identify the bad epochs is to plot and compare them through manual
analysis. Typically it is possible to identify bad epochs through signal
plots by observing which epochs contain abnormal high amplitudes in mi-
crovolts that do not comply with the general amplitude range of the other
epochs. Bad epochs are simply epochs that are not representing the valu-
able underlying EEG data due to artefacts which may have been caused
by several factors, such as the respondents making abrupt motions while
recording. Some of the most common reasons for these signal artefacts
are; electrocardiogram(ECG), electrooculography(EOG) and electromyo-
gram(EMG) [92] [93] [94].

In addition to manual bad epoch identification there exists several meth-
ods to perform automatic identification and rejection of these bad epochs’
artefacts. Two recognised methods, based on higher order statistics are
Independent Components Analysis, I[CA for short, or rejection of epochs
based on kurtosis. The latter is based on using the statistical purposes
of kurtosis, meaning a signal’s peakyness to identify epoch outliers. As
muscular artefacts normally have higher peaks than underlying true EEG
signals, this method can be good to identify unwanted artefacts and mark
the epochs for rejection [95].

ICA’s algorithm is based on the theory that a signal is composed of multiple
signal sources, which is true for EEG signals that have sources coming
from the different artefact sources as well as the underlying true EEG from
multiple electrodes. Criteria for using ICA is that all signal components
need to be statistically independent and not be Gauss-distributed [96]. By
separating a signal into individual components, it is possible to compare
these and extract the specific unwanted component of the signals that are
considered EEG artefacts and not involve these when summing the signals
component back together. The biggest benefit of using ICA over pure epoch
rejection is that ICA preserves the underlying EEG signal of interest and
only rejects the specific artefact source, instead of losing the entire epoch
itself, resulting in no loss of epochs in the data set [97].
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2.4 Data representation and feature extraction

Typically one or more of the data representations’ elements described in this
section can be used as features to train a machine learning model to learn
the properties of specific signals and distinguish them from one another in
classification problems.

2.4.1 Periodograms

To get a better understanding of the signal data collected from an EEG
recording it is often beneficial to investigate the signals properties and spe-
cific features. A common way to represent data characteristics is through
signal periodograms. Periodograms are representations of the presence of
different frequencies in the signal. A common method to show this is with
use of the Fourier transform, as described in the previous section. Due
to the DTFT operation demanding a lot of processing capacity due to its
computational complexity, an alternative algorithm that is close to the orig-
inal DTFT that is easier to compute is commonly used for discrete signal
transformation. This is defined as the Fast Fourier Transform(FFT) and is
defined as in Equation 2.14 [98] [99].

=3 @n(n)e T FF k=0,1,.., N ~ 1 (2.14)

Just like the DTFT, FFT also has a counterpart called the Inverse Fast
Fourier Transform(IFFT) which is defined as in Equation 2.15 [100].

N-1

]. Tm
=5 2 X(m )el Nk | =0,1,..,N — 1 (2.15)
m=0

A periodogram categorises the frequency content in a signal by estimating
the signal’s frequency components [101], using the squared modulus or real
component of the FFT and dividing over a window function’s non-zero
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samples. This is also called the Power Spectral Density Estimation, or PSD
estimation of a signal, and is defined as shown in Equation 2.16, where z,, is
the signal and M is the size of the window function used which is described
in the next paragraph [102] [103].

N-1 2
1 1 _j2mn
Py, m(wi) = 5V ‘FFTN,k(xm”Q £ Wi E Tm(n)e 7N k (2.16)
n=0

When performing PSD estimation, different results can be expected based
on the window functions that are used. A commonly used window function
is called the Hann or Hanning window function based on the properties
of a cosine wave [104]. The results of the Hann window are defined as in
Equation 2.17 where Ry (n) is a standard rectangular window function [105]
[106].

2
=05(1-
w(n) = 0.5 < co8

2.4.2 Welch’s method for power spectral density estimation

The periodogram may sometimes be difficult to interpret as it has limi-
tations related to that it is a discrete function. One of the limitations of
analysing a periodogram is the picket fence effect, PFE for short, which
acts as white noise. The reason why this effect occurs is because the signal
contains frequency components that are in between integer multiples of the
sample frequency [107]. An alternative PSD estimation method that has
immunity to PFE is the Welch estimation method. When using the Welch
method, there is less distortion of the PSD function due to the smooth aver-
aging of the frequency components as it results in smooth curves to represent
the signal in the spectral domain [108]. The Welch method is based on av-
eraging the traditional PSD over a time frame, resulting in elimination of
the signal distortion introduced by the PFE. Welch method’s output there-
fore gives a smoother PSD through mean filtering the signals, making it a
preferred method over the periodogram when performing a spectral analysis
of a signal. Mathematical definition of the Welch PSD estimation method
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is defined as in Equation 2.18, whereas K is the number of frames used for
averaging [99] [109].

K—1

) 1

SV (wy) £ e Z Py, (W) (2.18)
m=0

2.4.3 Scalogram analysis

Another method of representing signal data’s characteristics is to use scalo-
grams. A scalogram is a representation that uses heating maps to represent
a signal’s frequency density at a specific given time of the signal data.
Scalograms make use of the wavelet function to extract and represent these
properties. There exist two common ways to implement the wavelet function
called the Discrete Wavelet Transform(DWT) and the Continuous Wavelet
Transform(CWT). The wavelet transform uses a series of time localised
small waves(wavelets) and performs convolution between the wavelets and
the signal of interest. Due to the localisation of the sine wavelets, this
transformation obtains both different frequency information and time in-
formation in the transformed signal. The series of wavelets is usually based
on what is called a Mother Wavelet, which is the first standardised wavelet
that the signal is processed with. Several standardised mother wavelets are
defined and a popular wavelet function often used for analysing EEG data
is called the Morlet wavelet, defined in Equation 2.19, where wyq is the center
frequency [110] [111].

. 2
—— e IWleT g (2.19)

A series of alternate versions of the mother wavelet is then convoluted with
the signal using scaling and translation factors to increase or decrease the
wavelet frequency, and shift the localisation of the wavelet. The general
equation of the Continuous Wavelet Transform is shown in Equation 2.20
below, where s is the scaling factor, x is the signal to be transformed and
1 is the mother wavelet [110].
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CWT(r,s) = ——

VR —

The main difference between the DWT and CWT is that the DWT uses
discrete scaling and translation factors, where the scaling is increasing in
the power of 2 while the translation factors are simply whole integers. Both
transforms are commonly used for denoising of data as well as for fea-
ture extraction to use in machine learning models. Time-frequency analy-
sis can also be realised through the use of the Short Time Fourier Trans-
form(STFT), but due to the STFT using linearly scaled sine waves which
are not localised in the time domain it results in a uniform spectre. Hence,
the wavelet transform is often preferred for time-frequency analysis and
overperforms compared to other techniques for signal processing. Wavelet
transformation results in high time domain resolution for high frequencies
and high frequency resolution for low values in the time domain, making
it possible to not only easily observe which frequencies are present in the
signal, but also which time these frequencies occur in the signal [112].

() (t - T) dt (2.20)
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Figure 2.7: Simple illustration of spectrogram using STFT(left) and scalogram
DWT (right) [113].

To enhance representation clarity and accuracy of signals in a time-
frequency analysis synchrosqueezing is commonly performed on the data.
This is a recognised method used in multi-component signals such as
biomedical signal analysis. Synchrosqueezing redistributes the energy cal-
cualted from the time-frequency transformation into corresponding fre-
quency bins associated with the signal’s computed instantaneous frequen-
cies. This increases the frequency content in the different time instances
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and higher resolution of the transform is achieved. Often, synchrosqueezing
improve the characterisation of complex non-stationary signals, making it
more feasible to analyse and use for machine learning models [114] [115].
Figure 2.8 illustrates the difference of a scalogram with the use of wavelet
transform with and without synchrosqueezing.
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Figure 2.8: Scalogram representation of a signal with and without synchrosqueez-
ing [116].
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2.5 Classification

Classification is a typical data analysis problem for a machine learning algo-
rithm to streamline the grouping of large data that can be a time consuming
process and not always easily analysed by humans. This section will dis-
cuss some algorithms used in modern multi-class classification problems and
ways on how to verify model performance. Multi-class classification is a su-
pervised machine learning method where there are more than two classes’
features for a machine learning model to distinguish between based on the
classes’ labels [117].

2.5.1 Feature selection

Before developing a machine learning model and training it on the data
based on the features that are extracted, it might be beneficial to perform
operations to the data to optimise which features are to be used. This
is called feature selection. Based mostly on statistical methods, common
feature selectors operate to find distinct features for the different classes
and reduce the amount of model input variables. The amount of features
fetched from using feature selection may vary depending on the wanted
model’s response variables or predicted output [118].

A recognised method commonly used within machine learning and signal
processing in general for dimensionality reduction is Principal Components
Analysis, PCA for short. PCA reduces high-dimensional data sets, whilst
preserving relationships and structure essential to the original data set. Per-
forming PCA to a data set sorts standarised data into a covariance matrix,
finds the eigenvectors and corresponding eigenvalues of the covariance ma-
trix and sorts them in descending order based on their importance of data
representation. When selecting the number of components to use for dimen-
sionality reduction, a new matrix is generated based on the eigenvectors and
reduces the dimensions into the size of the chosen number with the most
critical values. The reason why dimensionality reduction is often performed
prior to training a machine learning model is to avoid model over fitting,
which is a result of the curse of dimensionality. This refers to the formal
problem of analyzing data in high-dimensional spaces, where the data set
may consist of thousands or more features. However, this analysis will no
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longer be valid when applied to lower-dimensional spaces [119] [120]. In
other words, if features from a specific data set is used to train a model too
extensively, it may fail to predict correctly on other data sets. By including
diverse and large data sets or adjust the model’s complexity can decrease
the level of model over fitting [121].

2.5.2 Machine learning algorithms

There is a multitude of ways to make a machine learn how to solve several
problems. Some of the most commonly used in classification problems are
shortly elaborated below.

2.5.2.1 Naive Bayes’ algorithm

The Naive Bayes algorithm is based on Bayes’ theorem, often recognised
in probability statistics. This theorem bases on sequential events whereas
new information influence the initial probability, known as the prior prob-
ability, which results in the posterior probability. The prior probability is
the likelihood of an event before any conditions are set, meanwhile the pos-
terior probability is the likelihood of an event occurring after observing a
particular data point. Naive Bayes’ algorithm is given its name due to the
assumptions the method has, which is that its predictors are conditionally
independent to the other features and that the outcome is equally influenced
by all features [122].

2.5.2.2 k-Nearest Neighbour algorithm

The k-Nearest Neighbour algorithm, or kNN for short, is an algorithm that
assumes that data points of a specific class lies in some calculated proxim-
ity from other data points within the same class, called neighbours. Using
well-known mathematical operations such as calculating euclidean distance
between two data points, from the current data point to the potential same-
class data point. If the potential data point is within a certain calculated
distance away from the initial data point, it will be added as another neigh-
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bour. An unclassified label is then predicted through the majority among
its k nearest neighbours. The class with the highest frequency among the
neighbors will be assigned as the predicted class. [123].

2.5.2.3 Random Forest algorithm

Random forest algorithm is based on a collection of decision trees. Decision
trees divide data into finer subsets, often referred to as nodes, based on
different criteria or conditions called decision rules. When the majority of a
tree’s subset recordings indicate a specific class, the decision tree estimator
assigns its final prediction to that class. The random forest algorithm is
an ensemble method, meaning it averages the results from all decision tree
estimators. Tuning model parameters might be crucial to obtain a good
model based on the random forest algorithm. These parameters can be the
amount of total estimators or decision trees to use for averaging and the
depth of each decision tree [124] [125].

Decision rules in decision trees are the conditions or criteria used to make
decisions at each node of the tree. These rules determine how the data is
split and how the tree progresses from the root node to the leaf nodes. Each
internal node of a decision tree represents a decision rule based on one or
more features, and each leaf node represents a final decision or outcome.

2.5.3 Evaluation metrics

To evaluate a machine learning model’s performance, there exists several
methods for numerically and visually represent these and are described be-
low.

2.5.3.1 Confusion matrix

An easy way to visualise the model’s performance can be done through a
confusion matrix. The confusion matrix shows a grid of the actual classes vs.
class predictions made by the model. The amount of predictions made by
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the model for the specific class is often visualised using a heat map, where
as the brightest colors shows the highest numbers of predicted class. In
an ideal example, the brightest colors will appear on the matrix’ diagonal,
indicating high performance in the model’s capability of identifying True
Positives and True Negatives for a two-class classifier [126]. Figure 2.9
shows an example of a binary confusion matrix.

Predicted class

Positive Megative

Positive TP FM
Actual

class
Megative FP ™

Figure 2.9: Binary confusion matrix, representing the True Positive(TP), True
Negative(TN), False Positive(FP) and False Negative(FP) on a model’s predictions
vs. actual classes [127].

2.5.3.2 Classification report

Often evaluating if a machine learning model can be ready for use is to look
at its classification report. A Classification report shows an overview of the
model’s performance based on several methods. Commonly, to consider if a
model is good or not is by observing the parameters listed below [128] [129]
[130].

1. Precision: Gives an indicative percentage on the model’s performance
in identifying a specific class correctly based on all predictions by the
model. Meaning how many of the predictions that the model passed
as correct was actually true for that class.

o . _TP
This is calculated as: 75 7p.

2. Recall: Gives an indicative percentage on the model’s performance in
correctly predicting a class based on all valid labels for that specific
class.

e ta . _ TP
This is calculated as: TPIFN -
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3. fl-score: Is the harmonic mean between Precision and Recall, result-
ing in a mean between the two indicators’ that promotes similar values
for the two.

This is calculated as: rp

TP+3FP+FN’

4. Accuracy: Gives an indicative percentage on the model’s whole per-

formance in correctly predicting the data.

.. . TP+TN
This is calculated as: 7pryFprrN-

2.5.3.3 Cross-validation

During model training it is common to divide the training data into three
different subsets: training set, test set and validation set. The largest par-
tition will be the training subset, which will contain all training data the
model will see during training. In order to enhance the model’s performance,
it compares its predictions on the training set with the corresponding out-
comes in the test set. Through a series of training iterations the model
learns from its correct and incorrect predictions to improve its accuracy.
The validation subset is a subset of the training data that is unseen by the
model during training and is used to simply evaluate how the model per-
forms on unseen data. Cross-validation is a common method to find true
model performance using different sections of the data as unseen prediction
data [131] [132].
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Chapter 3

Related works

This chapter briefly discuss articles and research papers on topics that are
relevant to this master thesis project.

3.1 Generative Adversarial Network image regen-
eration

S. Palazzo et al. published a study [133] in 2017 where they were exploring
the possibilities in training a machine learning model based on Generative
Adversarial Networks, GAN for short, using respondent’s EEG signals. The
projects objective was to hopefully achieve better understanding of how the
brain operates. The respondents were exposed to several images of different
animals and certain kinds of food. While the respondents were exposed
to these visual stimuli, recordings through an 128-channel EEG were done.
The machine learning model was trained with features extracted from the
EEG signals and the specific images that were exposed to the different par-
ticipants based on Linear Short-Term Memory(LSTM) and Rectified Linear
Unit(ReLU) non-linearity. The main purpose of this experiment was to see
how well a machine learning model would be capable of regenerating an
image based solely on the respondents EEG responses and the associative
images. The respondents were exposed to 50 images within 40 different
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decision making

objectclasses. Notch filter integrated in the hardware was used to eliminate
power line noise. Furthermore, a second order Butterworth filter was used
to extract the alpha, beta and gamma waves in the EEG recordings within
the frequency ranges of 14-70Hz. The GAN based model showed an im-
pressive performance on the topic and was capable of reconstructing images
of extraordinary resemblance with only the EEG recordings as testing and
validation input. Other images were more distorted by certain artefacts
and the model was not able to reconstruct images in a well enough manner
to be qualified as ‘good’ results compared to the ones with high original
resemblance.

3.2 Error-related potential training for improved
machine decision making

In another study [134], Joo Hwan Shin et al. were exploring the possibil-
ities of extracting features from wearable EEG electronics to reinforce a
machine’s decision making in executing physical actions based on human
physio electrical signals. By utilising the concept of Brain-AI Closed-Loop
System(BACLoS) with wireless single-channel wireless EEG attached with
tattoo-like dry electrodes, they were able to create an IoT-system of the
respondent’s responses and an autonomous car in real time. This specific
study used Error-Related Potential(ErrP) classified through a deep learning
algorithm with features extracted from the respondent’s alpha waves using
a FIR band pass filter(8-12Hz) and the Morlet wavelet transform(5-15Hz)
to train the model. If relatively normal EEG responses were detected the
model was trained such that the action done was set as a “Yes”, meanwhile
if ErrP was detected, then it was interpreted as a “No” making the model
understand which action was part of good decision-making or not. Several
methods for model training was done using deep neural networks(DNN),
Long Short-Term Memory(LSTM) of recurrent neural networks, logistic re-
gression(LR), Linear Discriminant Analysis(LDA), Random Forest(RF) and
Support Vector Machine(SVM). The model was trained and tested using a
remote controlled car driving on a marked out path on paper. Additionally,
the model was tested with maze solving games to optimise the time and
path taken to solve the puzzle. The results showed that the outcome for
the machine’s decision-making were improved using the BACLoS concept
using human decision-making to reinforce the model.
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3.3 Emotion recognition based on smooth spectral
features

Tugce Balli et al. in [135], used EEG to extract spectral features to classify
three emotional responses: arousal, liking and valence to detect emotional
states of the respondents. The respondents were exposed to eight video
segments from Turkish TV-shows lasting between 2 and 4 minutes whereas
4 of the video segments had emotional content that were positive and the
4 others had negative content which were shown in random order to every
respondent. The EEG data was band pass filtered during recording using
a band pass filter within the range of 0.1-250Hz and ocular artefacts were
removed using ICA. A Hamming window was used to eliminate overlap-
ping segments of spectral data and FFT was used to transform the data
into spectral domain. The frequency ranges of interest for this particu-
lar study was between 0.5-30Hz. Sequential Floating Forward Search with
Linear Discriminant Analysis(SFFS-LDA) algorithm was used for feature
selection for the model training. With the modified SFFS-LDA algorithm
the model achieved an accuracy between approximately 67-72% across all
three different emotional dimensions.

3.4 Emotion Recognition using multi-level classifi-
cation model

In article [136], by Yi-Hung Liu et al. published their research using Imbal-
anced Quasiconformal Kernel Support Vector Machine(IQK-SVM) and Ker-
nel Fisher’s Emotion Pattern(KFEP) for emotion recognition using single-
trial EEG. The research intention was to be able to develop a multi-level
classification model to classify emotional response divided into emotional
arousal and valence. Respondents were exposed to images from Interna-
tional Affective Picture System(IAPS) to provoke emotional responses dur-
ing the EEG recording. The relevant frequency ranges for the proposed
methods were chosen to be between 4-45Hz, which includes the wavebands
between theta and gamma. Feature extraction was done through the KFEP
algorithm which combines Principal Components analysis for dimension re-
duction and Kernel Fisher Discriminant Analysis to maximise class separa-
bility. Results from the KFEP were sent to the next layer of the proposed
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model through the IQK-SVM for further classification. Their report con-
cluded with the model performing with classification accuracies of 84.79%
for emotional arousal and 82.68% for valence.
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Chapter 4

Data collection and equipment
specifications

This chapter elaborates about the experimental setup for data collection,
which hardware and software that were used and what stimuli was shown
to the respondents and how it was represented during this study.

4.1 Stimuli source

Visual stimuli used in this project was fetched from the Open Affective Stan-
dardized Image Set, OASIS for short, consisting of images divided in four
categories; animals, objects, people and scenery. The images’ valence and
emotional arousal was validated through a variety of people hired through
Amazon’s Mechanical Turk. OASIS was chosen as source of stimuli over
the International Affective Picture System(IAPS) due to constraints based
on the IAPS images’ copyrights [137].
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4.2 Hardware and software specifications

During this project the Enobio 32-channel wireless electrophysiology sen-
sor system [138] was used to perform the recording of the respondents for
collection of data. iMotions’ lab streaming layer platform [139] was used to
synchronise the visual stimuli and the EEG recording. Electroconductive
gel was used to make contact between the EEG electrodes and the respon-
dents’ scalps. All the equipment and a computer with necessary recording
software were located at the cognitive lab at the University of Stavanger,
therefore all experiments and recordings were done at this location.

(a) Gel type 1 (b) Gel type 2

Figure 4.1: Electroconductive gel used to improve connection between EEG
electrodes and respondents’ scalps.

4.3 Stimuli representation

For the two pilot runs of data collection, all 900 images from OASIS were
used, showing them in the proposed original order [137]. Every image was
displayed on screen while recording EEG data for 5 seconds in a video se-
quence made using PowerPoint slides. Due to respondents’ feedback which
could indicate emotional habituation, the stimuli was reduced. Habituation
is when physiological responses decrease due to repeated stimuli [140]. The

40



4.4 Experimental setup

stimuli was reduced to 120 images, whereas some images that had excep-
tional high or exceptional low valence appeared randomly among images
that had a relatively 'normal’ valence. This shortened the total stimuli ex-
posure time from 75 to 10 minutes. An overview of which image that was
expected to provoke which specific emotional feeling in the reduced stim-
uli based on Plutchik’s wheel of emotions, as illustrated in Figure 2.4 and
described in Subsection 2.1.4, is attached in Appendix A.

4.4 Experimental setup

Figure 4.2 shows the experimental setup of the data recording. The stimuli
was displayed on the same computer with the IMotions software that the
NIC2 was connected to over WiFi.

Figure 4.2: Respondent wearing the Enobio 32-channel EEG device, ready for
EEG recording.
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4.4 Experimental setup

For the experimental setup, the standard 32-channel EEG protocol proposed
in the NIC2-software that the Enobio 2 was running on was used. An
overview of this protocol’s channel placement on specific locations on the
scalp is shown in the table in Appendix B.

IMotions’ software displayed a pop-up that asked the respondents for their
consent to collect their data during the stimuli exposure. This had to be
ticked-off by the respondent themselves for the recording to start. The
respondents was left alone in the experiment room for the entire dura-
tion of the recording and asked to make themselves comfortable for the
time being and not to make too many abrupt movements to avoid un-
wanted artefacts in the EEG data. All data was anonymised and labelled
as anon_1,anon_2,...anon__ N in the data set. Table 4.1 shows the num-
ber of expected epochs divided into the expected emotional responses during
recording, total amount of images and the total running time.

anon_ 1,2 | anon_ 3,4,5

Boredom 341 46
Joy 159 26
Sadness 72 12
Disgust 27 9
Arousal 63 12
Admiration 109 6
Fear 107 5
Anger 22 4

Total images 900 120

Total time 1h 15min 10min

Table 4.1: Overview of number of epochs recorded from each respondents divided
into expected emotional responses.
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Chapter 5

EEG signal processing
methods and results

This chapter and Chapter 6 in this thesis report will show the work that
has been done during the project with the data gathered as described in
the previous Chapter 4. This chapter will focus on illustrating the results of
the signal processing of the raw data and explain why the specific methods
for processing are used. To not involve an extansive amount of figures, only
anon_3’s data will be shown in this chapter to give a brief overview of
the process done to all respondent’s data. All source code can be accessed
through the open GitHub Repository.

Proposed pipeline

Based on the theory discussed in Chapter 2, the signal processing steps were
done in order according to the following pipeline:

1. Raw data inspection
Here the raw data is inspected to get an overview of how the data
looks like before preprocessing.

2. Baseline correction
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5.1 Raw data inspection

Here the data is baselined to remove any DC offsets to achieve overall
Zero mean.

3. Bad channel rejection
In this step, the bad channels are automatically identified and removed
from the data set.

4. Bad channel interpolation
Here the previous eliminated bad channels are interpolated through
neighbouring channels to keep data sets across respondents within the
same dimensions.

5. Notch filtering
Here the signal data is notch filtered to attenuate any noise caused by
the power line.

6. Bandpass filtering
This step is done to attenuate any signals outside the frequency re-
gions of interest, in addition to eliminate any low frequency drifts.

7. Group averaging
Averaging across all channel data is performed to create an unambigu-
ous interpretation of the signal data to use in an ERP analysis.

8. Signal epoching
Dividing the averaged data into epochs to match time of stimuli ex-
posed to the respondents.

9. Wavelet transformation
Transforming the data using Morlet wavelets to represent the data in
a scalogram for a time-frequency analysis and preparing the data for
feature extraction.

5.1 Raw data inspection

Before preprocessing the data, the data was loaded into MatLab to get a full
view of the exported .CSV-files that were fetched from IMotions. This was
to get a simple overview of how the software exported the data. Some of the
signals went over the expected length of 300.000 samples with 500 sampling
rate, resulting in 600 seconds or 10 minutes. The data points that were taken
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5.1 Raw data inspection

in consideration for this project was the samples ranging from the timestamp
beginning of the stimuli exposure, named as "StartMedia" up until exact
300.000 samples were collected for all 32 channels. The correct matrices were
then loaded into a Python script using Pandas data frames [141]. Figure 5.1
shows the raw data from respondent anon 3 and two representations of the
data’s power spectral densities based on traditional FFT and another using
Welch’s method as described in Section 2.3 using the scipy.signal python
package [142].

Raw EEG data

70000

60000
3 50000

40000

30000

PSD of raw data using periodogram

PSD [dB/Hz]

Frequency [Hz]

PSD of raw data using Welch method

PSD [dB/Hz]

Figure 5.1: Raw data from anon 3 shown in time domain and frequency domain,
standard periodogram is plotted in the middle figure and the estimated power
spectral density using Welch’s method at the bottom. The power line frequency
at 50Hz is prominent, which can be observed in both frequency domains.

By inspecting Figure 5.1 it is evident that the power line noise at 50Hz is
clearly prominent in the raw data. The Welch’s method gives a far easier
interpretation of the signals than the periodogram as the curves are a lot
more smooth and is not corrupted by PFE. Thus the representation of the
power spectral density that is used further into the signal processing and
analysis is with the use of Welch’s method.
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5.2 Baseline correction and bad channel rejection

5.2 Baseline correction and bad channel rejection

As described in Chapter 2, there are two common ways to perform baseline
correction of EEG data. Figure 5.2 shows the result of the two different
methods, mean average subtraction and Zhang-fit correction, for baseline
correction on respondent anon_3’s data. Automatic bad channel detection
has been performed for both baseline correction methods, and it can be ob-
served that the baseline correction does not affect the bad channel detection
as the same channels are marked as bad for both scenarios. The detected
bad channels in this figure are marked in black to easier visualise them.
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5.2 Baseline correction and bad channel rejection

Detection of bad channels in time domain
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(a) Mean average subtraction baseline correction
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(b) Zhang fit baseline correction

Figure 5.2: Two methods for baseline correction of EEG data from anon 3 in
time domain.

Comparison between baseline corrected signal data and the raw data shown
at the top in Figure 5.1 can then be done. By visually inspecting the data,
the first baseline correction method is the easiest one to use to pick out
the bad channels manually, whereas Channel 23 greatly differentiate from
the rest of the signals in the data set. In addition, other channels were
marked as bad through automatic detection. It is not always so easy to
visually inspect channel outliers, so printing of the marked channels was
also implemented in the code.
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5.2 Baseline correction and bad channel rejection

Figure 5.3 shows how the different baseline corrections affect the frequency
representation of the signals.

Detection of bad channels in frequency domain

PSD [dBfHz]

(a) Mean average subtraction baseline correction

Detection of bad channels in frequency domain

PSD [dB/He]

(b) Zhang fit baseline correction

Figure 5.3: Two methods for baseline correction of EEG data from anon 3 in
frequency domain with bad channel thresholds = 2.0. The first method preserves
all frequency components, meanwhile the Zhang fit method attenuates the low

frequencies.

The greatest difference between the two methods through frequency domain
representation of the data is the contents of low frequencies. The mean av-
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5.2 Baseline correction and bad channel rejection

erage subtracted baseline method results in great presence of low frequency
contents, meanwhile being attenuated for the Zhang fit method. This is
commonly known as low frequency drifts which will be explained in further
detail in Subsection 5.4.2. This is also easy to observe by looking at the
Figure 5.2 where the data is centered around 0, but drifts between 8000
microvolts to -4000 microvolts. For this project, the simple mean average
subtraction method was used due to uncontrolled attenuation of low fre-
quencies occuring with use of the Zhang fit algorithm, which is observable
in the signals’ amplitudes when band pass filtered as shown in Subsection
5.4.2.
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5.2 Baseline correction and bad channel rejection

The bad channel detection can be divided into two separate methods,
whereas one is detecting bad channels looking at the data in time domain
and the other in frequency domain. Both functions are marking the bad
channels automatically by calculating the data’s standard deviation and
comparing each signal to the standard deviation’s interquartile range. If the
signal is detected as an outlier based on a set threshold, which is multiplied
with the standard deviation, the channel is marked as a bad channel. Figure
5.4 shows the results of using the automatic bad channel detection with
different thresholds in time domain.

I

(a) Threshold = 0.5 (b) Threshold = 1.0

(c) Threshold = 2.5 (d) Threshold = 4

Figure 5.4: Bad channel detection in time domain with different threshold values
for data from anon_ 3.

50



5.3 Channel interpolation

Figure 5.5 shows the results of using the automatic bad channel detection
with different thresholds in the frequency domain.

(¢) Threshold = 2.5 (d) Threshold = 4

Figure 5.5: Bad channel detection in time domain with different threshold values
from anon_ 3.

Figure 5.4 and Figure 5.5 illustrates that if a lower threshold is chosen,
the stricter the bad channel detection functions are. Because preservation
of the original signals in the data set is highly preferred for this study,
a threshold of 4 was chosen for this specific respondent’s response. This
specific threshold was chosen because it results in marking only the most
outlying channels as bad. After being marked, the channels were set to 0
non-zero arrays, clearing the bad channel data.

5.3 Channel interpolation

After the channels are marked and cleared, the bad channels could be in-
terpolated to maintain the data quantity. Figure 5.6 shows the linear inter-
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5.3 Channel interpolation

polation, as described in 2.3.3, done to the bad channels in anon 3’s data
set.

EEG data with interpolated values

5000

2000

2000

(a) Linear interpolation of bad channel data represented in time
domain

PsD [doiz]

(b) Linear interpolation of bad channel data represented in
frequency domain

Figure 5.6: Linear interpolation of bad channel data, channel 23 and 31 for
anon_ 3.

Observations from Figure 5.6 shows that the interpolated channel data are
improved by inspecting the marked signals in both time -and frequency
domain. The channels previously marked as bad can now be seen as new
interpolated signals in black in the figure.
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5.3 Channel interpolation

Bad channel rejection and interpolation may be more significantly impor-
tant in some scenarios than others. Why bad channels should be detected
and rejected from the data set is shown in Figure 5.7 that represent the
signal data from respondent anon 1.

Detection of bad channels in time domain
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(a) Linear interpolation of bad channel data represented in time
domain

Detection of bad channels in frequency domain
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(b) Linear interpolation of bad channel data represented in frequency
domain

Figure 5.7: Bad channel detection used in for the data recorded from respondent
anon 1.
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5.4 Filtering

Group averaging over the data in Figure 5.7 for an ERP analysis would re-
sult in a signal dramatically distorted by the marked bad channels. There-
fore, bad channels should be removed from the data set before continuing
to process it.

5.4 Filtering

For all filtering methods, the scipy.signal’s forward-backward filtering
method [143] was used to eliminate any phase shifts or time delays that
otherwise would occur when performing digital signal filtering in addition
to amplify the wanted underlying EEG signals [144] [145].

5.4.1 Notch filtering

As described in Chapter 2, a notch filter is a band stop filter with a band-
width defined by the filter’s Q-factor. Figure 5.8 shows notch filtering of the
data with different Q-factors, specified in sub figures’ descriptions, for the
data set from anon_3’s EEG recording. The Python package scipy.signal’s
iirnotch filter was used to create a second-order IIR notch digital filter [146].
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5.4 Filtering

(a) Q-factor =1 (b) Q-factor = 10

(c) Q-factor = 20 (d) Q-factor = 30

Figure 5.8: Frequency responses after notch filtering with different Q-factors.

For the rest of the signal processing throughout this study, a Q-factor of
30 was used to get a notch filter with a stop-band as narrow as possible to
only clearly attenuate the power line frequency. If higher Q-factor is chosen,
less of the surrounding frequencies would be attenuated, but the unwanted
artefact will not be dampened enough to have the wanted impact in later
stages. This is described in further detail later in Subsection 5.4.3.
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5.4 Filtering

5.4.2 Band pass filtering

To be able to extract the wanted components of the signal, the data was
band pass filtered between the frequencies of 4-45Hz using a 4th order But-
terworth IIR filter, inspired by the MNE-package’s documentation [147].
This is because the delta waves are not relevant for this project and at the
same time this will result in filtering out the eye blinking artefacts and po-
tential body movements that occurred during the recording as described in
Chapter 2. Additionally, the delta waves that is in the range of 4Hz and
lower is not relevant in this project, because all respondents were awake
during the recording and the delta waves corresponds to a deep sleeping
state [148|. Figure 5.9 shows band pass filtering of respondent anon 3’s
data.

Bandpass filtered data in range: 4-45Hz

Filtered EEG data

E!
Time [s]

Figure 5.9: Band pass filtered data on the top and their frequency responses
with full range 0-250Hz in the middle and zoomed in range 0-50Hz at the bottom.

The reason why the data need to be band pass filtered and not only low
pass filtered, to extract the underlying EEG signals, is due to low frequency
drifting. High pass filtering is commonly implemented in addition to low
pass filtering to get rid of the drifts [149]| [150]. Therefore, the combined
version in the form of a band pass filter is used. Figure 5.10 shows anon_3’s
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5.4 Filtering

low pass filtered data. By observation, it is simple to determine that the
low frequency drifting persists and that high pass filtering is essential.

Lowpass filtered data with cut-off frequency at 45Hz

Filtered EEG data
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Figure 5.10: Low pass filtering results of data collected from anon_ 3’s EEG
responses.
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5.4 Filtering

5.4.3 Why notch filtering is necessary

Figure 5.11 shows why conventional band pass filtering is not enough to
achieve sufficient filtering results. Figure 5.11a shows a band pass filtered
signal from a single channel from anon 3 with notch filtering on the left and
without on the right side of the figure. It is plainly evident that the notch
filter has a significant impact to the final result, even though the Butter-
worth band pass filter is defined outside of the power line noise frequency.
This can be observed in both the time domain and frequency domain. At
50Hz in the frequency domain of the band pass filtered signal without notch
filtering shows a peak of how much the signal hold of that specific frequency
and is still too prominent.
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(b) Q-factor = 50

Figure 5.11: Figure showing why notch filtering should be used with band pass
filtering and why Q-factor 30 gives slightly better performance than 50.

Moreover, the notch filtered signal with a Q-factor of 50 in the lower left
corner of Figure 5.11b, demonstrates that the attenuation of the unwanted
artefacts originating from the power line noise is not sufficiently dampened
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5.5 Group averaging and signal epoching

compared to a Q-factor of 30.

5.5 Group averaging and signal epoching

After filtering the data in such manner that only the underlying EEG values
of interest is present in the signals, then the group averaging of channels
could be done to use the data for an ERP analysis. This was done in the
code by simply calculating the average mean of all channels. Meaning that
all the channel data were added together and divided by the total number
of channels present. Figure 5.12 shows the result of the channel group
averaging and epoch boundaries.

Group Averaged Signal with Epoch Boundaries

—— Group Averaged Signal
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Figure 5.12: Group averaged signal data of respondent anon 3 with epoch
boundaries.

Furthermore, the data was segmented into epochs based on the time expo-
sures of the different stimuli. Because there was 120 images, that were used
for most of the respondents, it resulted in 120 epochs each data set. The
epochs were then plotted to do manual identification and rejection of bad
epochs. Attempts of using the FastICA [151] for preserving the epoch data
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5.6 Wavelet transformation

was done, but without success. Therefore bad epochs were simply removed
from the training and test sets. Fortunately, there was only approximately
2-3 bad epochs each data set, resulting in only loss of a small fraction of the
total data set. Figure 5.13 shows plots of 5 EEG epochs, whereas epoch 1
clearly can be marked as a bad epoch with its abrupt high oscillations.
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Figure 5.13: Plot of the first 5 epochs in anon_3’s group averaged signal data.

5.6 Wavelet transformation

To perform the time-frequency analysis of the data, a python package named
ssqueezypy [152] is used to easily perform a wavelet transformation and
display the data in a fitted scalogram. Figure 5.14 shows a typical scalogram
representation of a result from performing wavelet transformation using the
complex Morlet wavelet as defined in Subsection 2.4.3.
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(b) Scalogram of epoch using the transformed
signal’s complex values.

(¢) Scalogram of epoch using the transformed
signal’s absolute values.

Figure 5.14: Scalogram of an ordinary epoch using the complex Morlet wavelet
for transformation.
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5.6 Wavelet transformation

For better understanding the representation of a signal in a scalogram,
wavelet transformation was done to the first epoch of respondent anon_3’s
data, which was marked as a bad epoch. In Figure 5.15 is it fairly simple
to observe how the scalogram works.

Single epoch data
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Time (5]

(a) Epoch data

Frequency [Hz]
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(b) Scalogram of epoch using the wavelet transformation’s absolute
values

Figure 5.15: Scalogram for time-frequency analysis of bad epoch.

The scalogram displays when in time the different frequencies occur in the
signal and its magnitude. The magnitude is displayed through a range of
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5.6 Wavelet transformation

colors going from dark blue to dark red, whereas the dark red indicates a
high magnitude and dark blue indicates a low magnitude. At approximately
around 1.4 seconds for this specific epoch it can easily be observed that the
signal has a high content of frequencies at roughly 14, 8 and 3 Hertz. The
resulting transformed signal values can then be used for a machine learning
model’s training or test set in a classification problem.
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Chapter 6

Model training and
classification results

This chapter will show the results of training and evaluating machine learn-
ing models using different methods for model training and feature extrac-
tion. Other methods were also tested out, but due to not enhancing model
performance they are not included in this chapter. Instead see Appendix C
for external results.

Proposed pipeline

1. Feature extraction
Here the processed and transformed data coefficients(features) are set
into lists in dictionaries with expected emotional responses as labels
and saved as a serialised files.

2. Feature selection
If necessary, feature selection is performed on feature data before used
in model training.

3. Model selection
Here the data is used for training and testing with several simple
machine learning algorithms among the most commonly used methods
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6.1 Feature extraction

within multi-label classification using the proposed default values to
determine which method to go on with for further training based on
the highest accuracy.

4. Model training
Here the selected model will go through multiple training iterations
to see how the model’s performance evolve.

5. Model evaluation
The model is evaluated based on it’s performance on predicting unseen
data through cross-validation and a complete data set consisting of
unseen data using classification reports and confusion matrices.

6. Parameter adjustments
If necessary, model’s parameters are adjusted for the purpose of en-
hancing model performance.

7. Model mass training
The model is trained multiple times with data across different respon-
dents.

8. Model evaluation
Final model is tested on data set consisting of only unseen data and
evaluated from its performance through a confusion matrix and clas-
sification report. The final evaluation will indicate how the model will
perform on predicting other similar signals going further based on the
data currently available.

6.1 Feature extraction

The wavelet transformed epoch signals were extracted and loaded into .npy-
files which would be easy to extract later for model training and testing
purposes. Signal features were stored as arrays in a dictionary for the emo-
tional responses. For testing purposes, three different kinds of dictionaries
were tested out with more or less nuanced emotional responses. The first
dictionary contained the 8 different emotional responses; joy, admiration,
arousal, disgust, sadness, fear, anger, boredom/uninteresting. These re-
sponses are based on two of the respondents personal opinions and on the
results from the study in [137].
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6.1 Feature extraction

The second dictionary contained three responses which were less nuanced,
these were divided in to; positive (containing features from: joy, admira-
tion and arousal), negative (containing features from: disgust, sadness, fear
and anger), and neutral (boredom/uninteresting). Even though there are
no real value defined for neutral feelings, as discussed in Subsection 2.1.4,
this was still distinguished for this project as there were more boredom or
uninteresting images than the positive or negative images combined.

The last dictionary was based solely on valence, as discussed in Subsection
2.1.4, distinguishing between positive and negative emotional responses.
Because the models that were used in this project were not supporting
complex values, the absolute value of the complex Morlet wavelet coefficients
were used.

The ssqueezypy package also has a module for a synchrosqueezed version of
the complex wavelet, resulting in resolution enhancement [115].
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Figure 6.1: Synchrosqueezed complex Morlet wavelet transformed epoch data.
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Figure 6.2: Absolute value representation of synchrosqueezed complex Morlet
wavelet transformed epoch data.

6.2 Model development

At first, three different machine learning algorithms(kNN, Naive Bayes and
random forest) were tested with two respondent’s data for the features that
were stored in a feature file using the second dictionary with the three
different classes. This was to investigate which algorithm gave the best
accuracy results on the first training iteration with default values and decide
to go on with further training on the best performing model. Sklearn’s [153]
modules were used to define, train, test and validate the different models
throughout this chapter. Features derived directly from the absolute value
of the complex Morlet wavelet transformation’s coefficients were used for
training during model selection. The classification reports for three different
algorithms with default values are listed in the tables below.
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6.2 Model development

precision | recall | fl-score | support
Negative 0.33 0.15 0.21 13
Neutral 0.48 0.59 0.53 17
Positive 0.30 0.35 0.32 17
Accuracy 0.38 47
macro avg 0.37 0.37 0.35 47
weighted avg 0.37 0.38 0.37 47

Table 6.1: Classification report from model based on k-Nearest Neighbour algo-
rithm with default parameter values.

precision | recall | fl-score | support
Negative 0.00 0.00 0.00 13
Neutral 0.33 0.12 0.17 17
Positive 0.25 0.53 0.34 17
Accuracy 0.23 47
macro avg 0.19 0.22 0.17 47
weighted avg 0.21 0.23 0.19 47

Table 6.2: Classification report from model based on Naive Bayes algorithm with
default parameter values.

precision | recall | fl-score | support
Negative 1.00 0.15 0.27 13
Neutral 0.48 0.65 0.55 17
Positive 0.41 0.53 0.46 17
Accuracy 0.47 47
macro avg 0.63 0.44 0.43 47
weighted avg 0.60 0.47 0.44 47

Table 6.3: Classification report from model based on Random Forest algorithm
with default parameter values.

By evaluating each classification report, specifically inspecting the accuracy
for the different machine learning algorithms, the random forest machine
learning method’s results in Table 6.3 had the best outcome of 0.47 accuracy.
Therefore, this was the model used for training on the features for eight
different classes.
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6.2 Model development

Unfortunately, after running multiple iterations of model training, it seemed
like the model was oscillating in model performance and not converging
linearly to a final accuracy value. This was illustrated by plotting the model
accuracy over training iterations and can be observed in Figure 6.3.
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Figure 6.3: Development of model performance through multiple training itera-
tions.

That the model’s performance was oscillating could indicate that the
amount of properties learned from the features might be too many for the
model to be able to distinguish the different features from one another to
correctly classify them, which might lead to model overfitting for multiple
training iterations.
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6.2 Model development

Therefore, a feature selector based on feature variances of 80% was imple-
mented to perform dimensionality reduction to the data. This is because
the EEG features were carrying a lot of information which can be too ad-
vanced of a task for a machine learning model to perform. Considering the
model might be overfitted , the number of estimators in the random forest
model were reduced from the default of 100 estimators to 9. This did not
change any of the behaviour of the model’s performance and the results
were still oscillating. This can be observed in Figure 6.4.
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Figure 6.4: Model performance through multiple training iterations with use of
a feature selector.

Furthermore, a model based on random forest algorithm was used to train on
synschrosqueezed CWT features to achieve higher resolution in the feature
data. To minimise the number of features, but at the same time keeping the
most critical properties, PCA was performed to shorten down the number
of components from each epoch.
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6.2 Model development

After training the model for a while on a large data set from one of the
respondent results showed the model reached 93% accuracy on predicting
on the training data. The confusion matrix can be observed in Figure 6.5
and the classification report is shown in Table 6.4.

3 4
Predicted label

Figure 6.5: Confusion matrix for predicted data on the same trained data set.

precision | recall | fl-score | support

Admiration 0.99 0.92 0.95 99
Anger 1.00 0.79 0.88 19
Arousal 1.00 0.95 0.97 58
Disgust 1.00 0.96 0.98 24
Fear 0.98 0.89 0.93 98
Joy 0.92 0.90 0.91 136
Sadness 0.98 0.92 0.95 65
Boredom 0.88 0.97 0.92 307
Accuracy 0.93 806
macro avg 0.97 0.91 0.94 806
weighted avg 0.94 0.93 0.93 806

Table 6.4: Classification report from testing on trained model with the training
data.
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6.2 Model development

The model was then used to predict on another respondent’s unseen data.
As the unseen data consisted mostly of features within the 7th class with the
label Boredom, most of the model’s predictions were of that specific class.
This would be an indication of a typical overfitted model. The confusion
matrix from these results is shown in Figure 6.6 below.

True label

Figure 6.6: Confusion matrix for predicted unseen EEG data from another re-
spondent. The results indicate a favouring of class 7, which is Boredom.

As observed from the confusion matrix, the model will predict the 7th class
almost all the time. This is also shown in the classification report in Table
6.5.
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6.2 Model development

precision | recall | fl-score | support
Admiration 0.00 0.00 0.00 6
Anger 0.00 0.00 0.00 4
Arousal 0.00 0.00 0.00 12
Disgust 0.00 0.00 0.00 8
Fear 0.00 0.00 0.00 )
Joy 1.00 0.04 0.07 26
Sadness 0.00 0.00 0.00 12
Boredom 0.39 0.96 0.56 45
Accuracy 0.37 118
macro avg 0.17 0.12 0.08 118
weighted avg 0.37 0.37 0.23 118

Table 6.5: Classification report from testing on trained model with unseen EEG
data from another respondent, anon 5.

To increase variation in the training data to avoid model overfitting, the
model was trained for a total of three different respondents’ data, meanwhile
one respondent’s data, anon 5, were kept out for solely prediction purposes
as before. The model’s performance then started to show a trend of more
converging accuracy over the training iterations as shown in Figure 6.7,

which could confirm less model overfitting.
U
JiifL]

Model performance

MR M

Figure 6.7: Model accuracy over multiple training iterations.
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6.2 Model development

After training the model with data from anon 1, anon 3 and anon 4,
then the individual recall and precision increased on the unseen data from
anon_ 5, but the overall accuracy went down. The overall accuracy went
from 37% as observed from 6.5 to 32% accuracy on predicting the unseen
data of anon 5. The confusion matrix can be observed in Figure 6.8.

3 4
Predicted label

Figure 6.8: Confusion matrix for predicted unseen EEG data from anon 5 with
a greater variety of training data from three other respondents.

So, the model became better at predicting a greater variety of emotions
in contrast than almost only predicting the emotion Boredom, meanwhile
the recall value for Boredom decreased. A reason why the overall accuracy
decreased could be due to the fact that most of the features across all re-
spondents were Boredom. Increased recall and precision of the other classes
indicated less model overfitting, even though the overall accuracy went down
from when the model was overfitted as observed earlier in Figure 6.6.

In attempt of improving model prediction on the unseen data further, the
model was trained for 10.000 iterations for each of the training data sets
from anon_1, anon_3 and anon_ 4. Cross-validation was performed on the
model using the model’s parameter OOB(out of the bag) and gave a score
of 0.34%. The model was then used for predicting the unseen data from
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6.2 Model development

anon_5 and it resulted in an accuracy of 0.33% and the results can be
observed in Figure 6.9 and Table 6.6.

3 4
Predicted label

Figure 6.9: Confusion matrix for predicted unseen EEG data after 10.000 train-
ing iterations on each training set.

precision | recall | fl-score | support
Admiration 0.00 0.00 0.00 6
Anger 0.00 0.00 0.00 4
Arousal 0.20 0.25 0.22 12
Disgust 0.25 0.12 0.17 8
Fear 0.00 0.00 0.00 5
Joy 0.24 0.15 0.19 26
Sadness 0.33 0.17 0.22 12
Boredom 0.42 0.64 0.51 45
Accuracy 0.33 118
macro avg 0.18 0.17 0.16 118
weighted avg 0.28 0.33 0.29 118

Table 6.6: Classification report for predicted unseen EEG data after 10.000
training iterations on each training set.
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6.2 Model development

In another attempt of model development, the data features were divided
into two classes; positive and negative emotions. To avoid an imbalanced
amount of data features, which would result in class favouring, the length
of positive and negative emotions were set to be equal, shortening down

the class with the most data. This resulted in a confusion matrix and

classification report as shown in Figure 6.10 and Table 6.7.

True label

Figure 6.10: Confusion matrix for predicted unseen EEG data after 10.000 train-

ing iterations on each training set.

Predicted label

17

16

15

14

13

12

precision | recall | fl-score | support
Negative 0.57 0.55 0.56 29
Positive 0.57 0.59 0.58 29
Accuracy 0.57 58
macro avg 0.57 0.57 0.57 58
weighted avg 0.57 0.57 0.57 58

Table 6.7: Classification report from trained model on unseen data for 2 classes.

In this thesis project, various additional features, machine learning algo-
rithms, and feature selection methods were explored to enhance model per-
formance. However, the results did not surpass those already discussed in
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6.2 Model development

this chapter, and thus not elaborated in this project. External results can
be observed in Appendix C.
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Chapter 7

Discussion and conclusion

This chapter will discuss; the project results based on data illustrated in
Chapter 5 and Chapter 6, further improvements that can be done to enhance
the results, and what other projects can be built upon this project going
further.

7.1 Discussion

7.1.1 Signal processing results

Through use of scientific literature and processing tools available through
open source code, the signal processing done in this project, shown in 5
resulted in a simple overview of every step of the typical preprocessing
procedures involved in EEG analysis. The benefits of performing and visu-
alising the signal processing in such manner is that it gives the user more
control of how the raw data is processed and make it possible for the user
to fine-tune the parameters for signal enhancement. The implementation of
the code developed during this project has resulted in reaching satisfactory
standards of general EEG signal preprocessing on the acquired data.
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7.1 Discussion

7.1.2 Signal processing improvements

Further improvements of the signal processing methods can be made for easy
fetching the wanted EEG recordings by developing a script that allocated
the StartMedia-mark in the .csv-files and fetches the data timestamps and
channel data through data frames. Doing this would avoid the step of
importing the large files into a MatLab workspace to visually inspect the
data.

Refinement of the bad channel interpolation methods could be necessary
for future data filtering, as the current interpolation method would fail to
interpolate new data for bad channels if the nearby channels also are marked
as bad or if channel 1 or channel 32 is to be interpolated. The challenge
with interpolating channel 1 and 32 is that they only have one neighbouring
channel. This can be fixed by making the interpolation method look through
all channels and selecting the nearest channels that are non-zero to use for
interpolation. In the scenario of not selecting a channel that is non-zero
will result in an interpolated signal corrupted by another bad channel.

To make the code run more user friendly, methods for selecting parameter
values such as bad channel thresholds, notch filter’s Q-factor, band pass
cut-off frequencies and bad epoch selection could be improved by setting
the parameter variables separate from the rest of the script. Moreover,
investigation of implementing ICA can be done to decrease data loss for
feature extraction and possibly avoid removing bad epochs.

Active band pass filtering could be tested out to increase the data’s SNR-
value even further, so in addition to attenuate unwanted frequencies in the
signal, the frequencies in the pass band would be amplified [154]. Other
type of filters than Butterworth filters could also be tested out to see if
they could be better suited for EEG data, such as Chebyshev filters [155].

7.1.3 Classification model results

The final results of the classification model did not turn out to be as initially
intended for this project due to lack of data. However, it gave a great exam-
ple on how model overfitting impact the model’s capability on estimating
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7.2 Limitations

correct predictions. Additionally, the results shown in Chapter 6 show how
different feature extraction methods may be applied to improve the data
quality and enhance the model’s interpretation and learning. Model’s pre-
dictions of unseen data implies that more varied training data is necessary
to make more accurate predictions in the future. With training data from
only three respondent and achieving an accuracy just over 30% in distin-
guishing eight different classes based on emotional responses from unseen
data is not yet remarkable. This is also true for predictions of positive and
negative valence, where the predictions of the two classes barely surpasses
50% accuracy, which is poor results for a machine learning model.

7.1.4 Classification model improvements

When it comes to the aspect of improving model selection and training,
more models can be tested out with setting specific parameters before se-
lecting which machine learning method to work with going into the next
steps. This would result in a more extensive workload and the time was
limited. However, choosing the correct machine learning method for a spe-
cific problems takes time and practice, even if some methods have worked
in similar projects, it might not necessarily mean it is the best methods for
another.

Other features than the ones exploited in this report could be experimented
with to see if other data features are more fit for this classification problem.
Extra stratification methods could also be included for possibly improving
a model’s training and cross-validation data sets. Moreover, involvement
of advanced machine learning methods might have improved the model’s
performance, such as multi class neural networks methods like Softmax
[156]. Additional training data for less populated classes would be beneficial
to avoid model overfitting in further testing.

7.2 Limitations

During the project there were certain limitations that obstructed project
progression and for the sake of formality these limitations are described in
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7.3 Further work

this section.

Time limitations resulted in less exploration of machine learning models
and parameters as expected. During signal processing the script would
stop visualising the data from anon 2 after filtering, making it impossible
to make the right decisions for further preprocessing and feature extrac-
tion. Debugging of this was attempted, but no solution to the problem was
achieved.

The cognitive lab at UiS was not yet completed and in full operational use
at the time for the first data collection, which resulted in lack of guidance
in use of EEG equipment and software. Additionally, the data collection
itself was a lot more time-consuming than initially expected, even if the
stimuli was shortened. If not done right, the data would be completely
useless so certain procedures needed to be followed to minimise wear and
signal corruption.

7.3 Further work

Moving forward to expand upon the project findings, more EEG data from
other respondents should be collected to obtain a greater variety of EEG
data utilising the cognitive lab. Images used in this thesis project are up-
loaded to the GitHub Repository in a PowerPoint presentation in the same
order as during data collection and can be reused. The rest of the images can
also be fetched from the OASIS files [157|. If enough data is collected, other
machine learning methods can be tested to classify the emotional responses
in attempt to achieve the optimal outcome, like the more advanced methods
described in Chapter 3. Randomising the different test respondents data
might be tested to see if it results in an increase of model robustness in
predicting unseen data.

For other future work, if the model’s performance is substantially increased
to enable satisfactory predictions on unseen data, the model can be tested
on predicting EEG data that are fetched using other types of stimuli. Also,
research on the topic of how the order of different stimuli might impact the
model’s predictions on different emotional responses can be done. Another
interesting research topic would be to investigate if the model will be able
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7.4 Conclusion

to predict distinction between negative and positive emotional responses to
use in lie detection.

7.4 Conclusion

Emotions are challenging to distinguish as people’s minds operate differ-
ently. Due to the nature of perception, the same stimuli might result in
different emotional responses across individuals, with some being more uni-
versal than others. Emotions are results of the body’s previous sensory
experiences interpreted by the brain and humans have different life experi-
ences, thus they will often respond differently [158] [159]. An example of
this can be expressed through the image of a polar bear used as stimuli in
this thesis project. The different emotional responses might differ and be
interpreted as:

e Fear, as the bear is a known predator.

Joy, because the bear is located in its natural habitat.

Admiration, as the polar bear is a great majestic animal to look upon.

Sadness or anger, because to the polar bear is an endangered species
due to environmental climate changes.

To pursue an unambiguous interpretation of an emotional response across
a limited group of individuals with great variance in life experience and
background can be considered highly challenging. This can answer to why
the classification model was not able to correctly distinguish the emotional
responses from each other with higher accuracy by making correct predic-
tions.
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List of stimuli epochs and
expected emotional responses
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Tree

Tree

Tree

Squirrel

Brick wall
Naked man
Cardboard
Dead person
Cardboard
Graveyard
Half-naked man
Kitten

Galaxy drawing
Sleeping cat
Fence
Graveyard
Grass

Puppy

Kittens

Cat

Cat

Flower

Squirrel
Starved boy
Squirrel
Mini-city

Grass

Grass

Mugs

Machine gun
Cockroach
Snow

Mugs

Dead people
Puppy

Oral intercourse
Dog

Stacked glasses
Dog
Firehydrant
Cockroach
Smiling dog
BBQ

Hurt dog
Naked men
Dog and guinea pig
Unconcious person
Smiling dog
Fence

Plain landscape

Boredom
Boredom
Boredom
Joy
Boredom
Arousal
Boredom
Sadness
Boredom
Sadness
Arousal
Joy
Admiration
Joy
Boredom
Sadness
Boredom
Joy

Joy

Joy

Joy
Admiration
Joy
Sadness
Joy
Boredom
Boredom
Boredom
Boredom
Anger
Disgust
Boredom
Boredom
Fear

Joy
Arousal
Joy
Boredom
Joy
Boredom
Disgust
Joy

Joy
Sadness
Arousal
Joy
Sadness
Joy
Boredom
Boredom
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Tree logs

Feces

Firehydrant

Sushi

Sad man
Graveyard

Grass

Galaxy

Dog

Half-naked men
Firehydrant
Machine gun
Galaxy

Roses

Man looking out to water
Lamb

Kids smiling

Grass

KKK

Gun

Feces

Fence

Lions eating carcass
Monkey
Half-naked couple
Frustrated woman
Grass

Man with gun
Concrete wall

Dog

Bloody legs on hospital bed
Paperclips
Intercourse

Naked woman
Stack of paper
Piece of paper
KKK

Pinecones
Half-naked men
Pebbles
Half-naked woman
Auschwitz

Racoon

Pebbles

Naked woman
Snow

Rocks

Rooftiles

Rooftiles

Rooftiles

Boredom
Disgust
Boredom
Joy
Sadness
Sadness
Boredom
Admiration
Joy
Arousal
Boredom
Fear(Afraid)
Admiration
Admiration
Sadness
Joy

Joy
Boredom
Anger
Anger
Disgust
Boredom
Disgust
Joy
Arousal
Boredom
Boredom
Fear
Boredom
Joy
Disgust
Boredom
Arousal
Arousal
Boredom
Boredom
Anger
Boredom
Arousal
Boredom
Arousal
Sadness
Joy
Boredom
Arousal
Boredom
Boredom
Boredom
Boredom
Boredom
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Eye tumor
Pinecones
Boy crying

Confused older woman

Dog and kitten
Pebbles

Scary face
Scary face
Naked man
Concrete wall
Shark

Needle injection
Manholes
Snow

Severed finger
Girls smiling
Tree logs
Concrete wall
Galaxy

Thread

NOP
Boredom
Admiration
Joy

Disgust
Arousal
Sadness
Fear
Anger

Disgust
Boredom
Sadness
Sadness
Joy
Boredom
Fear
Fear
Arousal
Boredom
Joy
Disgust
Boredom
Boredom
Disgust
Joy
Boredom
Boredom
Admiration
Boredom

O P00 ©vW=z20027%9049v=z2209=2202

Negative, O = Neutral, P = Positive

N =
0]
p
P
N
P
N
N
N
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Chl

Ch2

Ch3

Ch4

Chs

Ché

Ch7

Ch8

Cho

Ch10
Ch11
Ch12
Ch13
Chi4
Chil5
Chl6
Ch17
Ch18
Ch19
Ch20
Ch21
Ch22
Ch23
Ch24
Ch25
Ch26
Ch27
Ch28
Ch29
Ch30
Ch31
Ch32

P7
P4
Cz
Pz
P3
P8
o1
02
T8
F8
c4
F4
Fp2
Fz
C3
F3
Fpl
T7
F7
Oz
PO4
FC6
FC2
AF4
CP6
CP2
CP1
CP5
FC1
FC5
AF3
PO3
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Extra results from additional ML experiments

Logistic regression:

Accuracy: 0.425531914893617
precision recall fl-score support

Negative o 0.38 0.43 13
Neutral ° 0.41 0.42 17
Positive - 0.47 0.42 17

accuracy 0.43 47
macro avg o - 0.43 47
weighted avg o o 0.43 a7

Figure C.1

SVM:

Accuracy: 0.40425531914893614
C:\Users\gjerd\AppData\Local\Programs\Python\Python37\
e are ill-defined and being set to 0.0 in labels with
_warn_prf(average, modifier, msg_start, len(result))
precision recall fl-score support

Negative o 5 5 13
Neutral 5 5 o 17
Positive 0 o o 17

accuracy - 47
macro avg o 47
weighted avg o 0 o 47

Figure C.2

Accuracy: 0.40425531914893614
precision recall fl-score support

Negative 0.50 0.15 0.24 i
Neutral 0.41 0.53 0.46 17
Positive 0.38 0.47 0.42 17

accuracy 5 47
macro avg o 47
weighted avg 5 5 47

Figure C.3
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Extra results from additional ML experiments

Normalised histograms:

Figure C.4

Figure C.5

|

Figure C.6

Gridsearch:
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Extra results from additional ML experiments

Fitting 4 folds for each of 210 candidates, totalling 840 fits
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
[Parallel(n_jobs=-1)]: Done 34 tasks | elapsed: 1.8min
[Parallel(n_jobs=-1)]: Done 184 tasks | elapsed: 5.2min

[Parallel(n_jobs=-1)]: Done 434 tasks | elapsed: 12.6min
[Parallel(n_jobs=-1)]: Done 784 tasks | elapsed: 22.7min
[Parallel(n_jobs=-1)]: Done 840 out of 840 | elapsed: 24.7min finished
©.40487804878048783

Figure C.7

Hjort descriptors:
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Figure C.8

Figure C.9
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Extra results from additional ML experiments
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Figure C.10

Figure C.11
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Appendix D

Code

All source code can be accessed through the open GitHub Repository in the
following link: GitHub Repository.

README.md:

This is code developed under a master thesis project for the purpose of
analysing EEG data and attempt to train a machine learning model to
classify different emotional responses. The thesis is a part of the mas-
ter’s degree in Robottechnology and signalprocessing with specialisation in
health technology at University of Stavanger.

Simple user guide: Use final.py-script for preprocessing of smaller sampled
data, e.g. 300.000 samples. Make sure to set the correct values for bad

channel detection and bad epoch rejection when saving features.

Use final2.py for preprocessing smaller data using Zhang-fit algorithm for
baselining.

Use the script in longer data preprocessing.py for preprocessing and ex-
tracting features for longer data sets, e.g. 2.250.000 samples

The file model.py is for the purpose of doing iterative model training and
testing.
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https://github.com/GjerdeV/Master-Thesis

Code

ml LR.py, ml NB.py,ml RF.py, ml SVM.py, ml kNN.py and ml nn.py
are files for proposed methods for development of different machine learning
models.

ssqpcaNN .npy-files are the features extracted using synchrosqueezed
wavelet transformation with PCA of 12 components. First N refers to the
respondent number and the second N refers to the total number of classes.
Respondent 1 is named 1 for large, which indicates the features extracted
from one of the larger data sets.
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Appendix E

Poster
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Al assisted classification of emotional responses based on visual stimuli

Martin Gjerde, M.Sc. Robot technology and signal processing with specialisation in health technology
University of Stavanger, Department of Electrical Engineering and Computer Science

This project will be a part of research to determine if it is possible to make use
of machine learning models to classify human's emotional responses based on
visual stimuli. With use of electroencephalography(EEG), data will be collected
from volunteering respondents that will be exposed to images from a
standardised image set. When humans are intrigued or feel a spike of
enjoyment, it sends off a spike of neurotic energy in the brain.
Electroencephalography can be used to measure the brain's activity by
measuring the electric charge between synapses when the neurons are
stimulated. The main achievement from the results of this project will be to
see if it is possible to classify people's EEG responses and if they are finding
what they look at appealing to them or not. One of the challenges in this
thesis will be to make sufficient use of known signal processing methods to be
able to extract the correct information based on the literature available. Then
the epochs will segment the signal, dividing the event related potentials from
one another. By later examining the resulting filtered data in more detail,
hopefully a pattern of EEG epoch recordings will be recognised and make it
possible to correlate to the specific themed image that the respondent is
looking at. These patterns will then be extracted as specific features to be set
as trigger points that will be detected by a trained machine learning model.

For the experimental setup, the standard 32-channel EEG protocol proposed
in the NIC2-software that the Enobio 2 was running on was used. IMotions'
software displayed a pop-up that asked the respondents for their consent to
collect their data during the stimuli exposure. This had to be ticked-off by the
respondent themselves for the recording to start. The respondents was left
alone in the experiment room for the entire duration of the recording and
asked to make themselves comfortable for the time being and not to make
too many abrupt movements to avoid unwanted artefacts in the EEG data. All
data was anonymised and labelled as anon\_1, anon\_2,.anon\_N in the data
set. During this project the Enobio 32-channel electroencephalography device
was used to perform the recording of the respondents for collection of data.
iMotions' lab streaming layer platform was used to synchronise the visual
stimuli and the EEG recording. Electroconductive gel was used to make
contact between the EEG electrodes and the respondents’ scalps. All the
equipment and computer software were located at the cognitive lab at the
University of Stavanger; therefore, all experiments and recordings were done
at this location.

Aipha

The raw data was processed step by step using traditional signal processing
techniques. Based on channels’ standard deviations, bad channels were
removed from the data automatically and interpolated using linear
interpolation methods. Notch filtering was performed to remove any power
line noise before performing band pass filtering between 4-45Hz to highlight
the underlying EEG data that was of interest for this thesis project and
attenuate the rest. All channel data from each respondent were group
averaged to perform an event related potential(ERP) with a 5 second interval,
segmenting the time of stimuli exposure. Bad epochs(epochs containing
irrelevant oscillations) were then removed from the data set, which were
maximum 2-3 epochs each respondent, making it a small fraction of only
losing approximately at most 1/60 of total epoch data.

il
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The Morlet wavelet was used to perform a time-frequency analysis of the
epochs and the resulting wavelet transformed data from each epoch were
then extracted as features for training the machine learning model. As the
model is currently under development, no results from the machine learning
model is not yet ready for discussion, therefore the answers for the project's
main question is still inconclusive and will hopefully be complete in the report
in mid-June. Reports and articles discussing related work showed promising
results, but with using highly complex machine learning techniques for
classification model training and testing. For this project it is desirable to test
out easier algorithms for basic model training such as naive bayes, k-nearest
neighbours and random forest for the multi-label classifier.
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All respondents were volunteering men and women with no prior health
conditions that would complicate the data collection and results. All code
were developed in python using specified packages like SciPy and Ssqueezypy
to preprocess the data, represent it in several ways and perform the epoch
signal feature extraction.




	Contents
	1 Introduction
	1.1 History and common use of EEG
	1.2 Project's vision and motivation
	1.3 Project description

	2 Theoretical study
	2.1 The brain's anatomy and physiology
	2.1.1 The brain’s anatomy and physiology
	2.1.2 Neurological signals - brain's wavelengths
	2.1.3 Vision and the visual cortexes
	2.1.4 Emotions

	2.2 Electroencephalography
	2.3 EEG signal processing theory
	2.3.1 Removing DC offsets
	2.3.2 Identifying and removing bad channel data
	2.3.3 Interpolation of bad channel data
	2.3.4 Data filtering
	2.3.5 Data epoching
	2.3.6 Bad epoch elimination

	2.4 Data representation and feature extraction
	2.4.1 Periodograms
	2.4.2 Welch's method for power spectral density estimation
	2.4.3 Scalogram analysis

	2.5 Classification
	2.5.1 Feature selection
	2.5.2 Machine learning algorithms
	2.5.2.1 Naïve Bayes' algorithm
	2.5.2.2 k-Nearest Neighbour algorithm
	2.5.2.3 Random Forest algorithm

	2.5.3 Evaluation metrics
	2.5.3.1 Confusion matrix
	2.5.3.2 Classification report
	2.5.3.3 Cross-validation



	3 Related works
	3.1 Generative Adversarial Network image regeneration
	3.2 Error-related potential training for improved machine decision making
	3.3 Emotion recognition based on smooth spectral features
	3.4 Emotion Recognition using multi-level classification model

	4 Data collection and equipment specifications
	4.1 Stimuli source
	4.2 Hardware and software specifications
	4.3 Stimuli representation
	4.4 Experimental setup

	5 EEG signal processing methods and results
	5.1 Raw data inspection
	5.2 Baseline correction and bad channel rejection
	5.3 Channel interpolation
	5.4 Filtering
	5.4.1 Notch filtering
	5.4.2 Band pass filtering
	5.4.3 Why notch filtering is necessary

	5.5 Group averaging and signal epoching
	5.6 Wavelet transformation

	6 Model training and classification results
	6.1 Feature extraction
	6.2 Model development

	7 Discussion and conclusion
	7.1 Discussion
	7.1.1 Signal processing results
	7.1.2 Signal processing improvements
	7.1.3 Classification model results
	7.1.4 Classification model improvements

	7.2 Limitations
	7.3 Further work
	7.4 Conclusion

	Bibliography
	Bibliography
	Appendix
	A List of stimuli epochs and expected emotional responses
	B EEG recording system electrode protocol
	C Extra results from additional ML experiments
	D Code
	E Poster

