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Abstract 

A transition towards renewable energy sources is a pressing concern for society and government 

officials, and the offshore wind industry is more relevant than ever. The industry has the 

potential to meet Europe’s energy demand by seven times, if fully realized. Reliable wind 

resource assessments and energy production methods are vital in order to determine the 

feasibility of new offshore wind farms and for technology to evolve. According to the IEC 

61400-12-1 standard procedure for power curve validation of wind turbines, measurements of 

the wind speed is taken at hub height. The standard procedure assumes that the hub height wind 

speed makes a sufficient representation of the wind speed experienced across the entire rotor 

swept area. As the wind industry is moving offshore and the turbine rotor gets bigger, the IEC 

61400-12-1 assumption becomes questionable.  

This thesis examines the theoretical energy output of a reference wind turbine through hub 

height wind speed (HHWS) and rotor equivalent wind speed (REWS) and compare it to the 

actual power output retrieved from SCADA. A new method for calculating the real power curve 

through SCADA data has also been applied and deals with the velocity deficit caused by rotor 

distortion. The thesis further examines the validity of complementing reanalysis data with local 

measurements through scaling, using WindPRO and WAsP. This method could be strongly 

beneficial when the data quality in the local measurements is low. 
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1 Introduction 

Climate change, limited energy supply, and a growing cost of energy (‘’CoE’’) has made the 

shift towards renewable energy sources a hot topic for society and government officials. 

Greenhouse gas emissions in the EU were reduced by 25% between 1990 and 2019, thanks to 

new policy initiatives and economic factors (EEA, 2022).  However, going forward, a faster 

pace in the reduction of greenhouse gas emissions to accomplish the European Climate Law's 

aim of climate neutrality by 2050 is needed. The European Commission agreed on March 30, 

2023, to boost the European Union's binding renewable objective for 2030 from 32% to a 

minimum of 42.5%, nearly doubling the EU's renewable energy contribution (European 

Commission,  2023). 

The offshore wind industry is a promising application of wind power with the potential to meet 

Europe’s energy demand by seven times if fully realized (Stiesdal, 2019, p.11). The global 

interest in offshore wind power exploitation has grown significantly, mainly due to increased 

energy demand and the substantially greater wind speed ratios compared to onshore, resulting 

in the possibility of larger turbines and higher energy outputs. Since the building of the world’s 

first offshore wind farm in Vindeby, Denmark, in 1991, individual wind farms have developed 

from 5 megawatts (‘’MW’’) to more than 1000 MW (Stiesdal, 2019, p.11). During the period 

2020-2021, offshore installation increased from 35.5 gigawatts (‘’GW’’) to 55.7 GW (Bojek, 

2022). Despite its promising potential and rapid technical advancements, the offshore wind 

sector is still in its infancy, with limited integration among supply chain participants and a need 

for more demand, order, and inventory transparency and collaboration (Stiesdal, 2019, p.16). 

In order to be competitive against fossil fuel-based technologies, CoE of offshore wind power 

needs to be reduced, and the sharing of knowledge within the industry needs to be improved 

(Stiesdal, 2019, p.16).  

Reliable wind resource assessments are critical in offshore wind farm development. 

Meteorological data for this purpose is typically delivered as a time series, which entails large 

volumes of data. There are several data sources, ranging from refined mesoscale model data to 

local observations. It is not unusual for local measurements to have gaps or incorrect data; it is 

also unusual to find coherent local measurements collected over long periods (Dorrego et al., 

2022). As a result, various studies have been conducted to investigate the validity of reanalysis 

data as an alternative to measured data. Model data is frequently accessible in entire series and 

for long-term periods stretching back in time. Nevertheless, the model data is known to have 
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inaccuracies. Accurate evaluation of wind speed characteristics at wind turbine relevant height 

is critical in the wind energy field since an error of roughly 1% in wind speed estimation can 

lead to a 2% mistake in wind energy (Azad et al., 2011). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

3 

 

1.1 Objectives and outline 

 

In this thesis, different analyses are performed based on data from the Westermost Rough wind 

farm. For a better overview of the thesis, its main objectives are outlined below and will be 

presented in thes same order in the results and discussion chapters.  

 

• Compare different methods for determining the atmospheric stability.  

The thesis compares the Bulk Richardsen and the Gradient Richardsen methods in 

determining  atmospheric stability. The calculations have been conducted by using  LiDAR 

data from a Leosphere Windcube  which is positioned close to the center of the wind farm.  

 

• Use LiDAR data to calculate energy output through hub height wind speed and 

rotor equivalent wind speed.  

The energy output predicted though the hub height wind speed (‘’HHWS’’) and rotor 

equivalent wind speed (‘’REWS’’) is compared to the actual production SCADA data.  

 

• Obtain the real power curve through SCADA data.  

As a part of the thesis, a novel idea on obtaining the real power curve using SCADA data 

as proposed by Dai et al (2022) has been tested. The method relies on applying moving 

average filter (MAF) to the wind speed, and the idea is that the wind experienced on the 

nacelle anemometer is heavily distorted compared to the wind experienced on the rotor.  

 

• Scale reanalysis data to LiDAR on-cite measurements for long-time correction and 

compare the energy prediction to actual energy production.  

The thesis also examines the validity of complementing reanalysis data with local 

measurements (LiDAR) through transfer functions (scaling). This is done due to the low 

availability of LiDAR data in the reference period (12%), which is often the case for wind 
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projects. This part of the thesis is done in WindPRO, using local measurements (LiDAR), 

NORA3, NEWA, and ERA5 for comparison.  

 

• Compare performance of the Jensen wake model and the Eddy-viscosity wake 

model.  

Both the Jensen and the Eddy-viscosity models are used in WindPRO as part of the Annual 

Energy Production (AEP) calculation. The deficits due to wake are compared for the 

individual turbines and presented.  

 

• Performance check for the wind farm using SCADA data in WindPRO 

Performance check is a powerful module in WindPRO that through the use of production 

data, error codes, and wind data, makes analyses of the wind farm operation. The module 

also quantifies how much energy has been lost according to the error codes chosen, and 

compares the actual and potential production.  

 

Turbine A01 (Appendix3, figure 49) has been chosen as reference turbine for some of the 

calculations throughout this thesis. This turbine was chosen through preliminary wake studies, 

where A01 showed to experience the least wake impact (figure 44)  among all the 35 turbines 

at Westermost Rough. The turbine could therefore be assumed to be the turbine experiencing 

the least amount of disturbed wind.  
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2 Theory 

2.1 Boundary Layer Meteorology  

The troposphere spans from ground level to a height of roughly 11 kilometers, while the 

underlying surface frequently modifies only the first kilometers of altitude. The boundary layer 

is a part of the troposphere and is defined as the portion that is immediately impacted by the 

presence of the earth's surface and responds to surface forcings in a timeframe of little more 

than one hour (Stull, 1988). The boundary layer may be further divided into altitude portions, 

with the surface layer accounting for approximately 10%. Inside this layer, mechanical shear 

rather than buoyancy dominates turbulence. The logarithmic wind profile is based on the 

assumption that wind speed grows near-logarithmically in the surface layer.  When the wind 

blows over the sea surface, the depth of the boundary layer changes rather slowly in both space 

and time. Because of the substantial amount of mixing within the top layer of the ocean, the sea 

surface temperature experiences small fluctuations throughout a diurnal cycle, as opposed to 

on-land circumstances. Water may also absorb a lot of heat from the sun without causing any 

noticeable temperature changes. A slow fluctuation in sea surface temperature equals a slow 

variation in surface boundary layer force.    Vertical particle motion and advection of air masses 

over the ocean surface are the major contributors to variations in boundary layer depth offshore. 

When an air mass with one temperature crosses an ocean with a different temperature, the air 

mass changes as its temperature equilibrates to the sea surface's temperature (Stull, 1988). As 

a result, the offshore boundary layer becomes thinner, resulting in less turbulence and more 

stability. 

2.2 Atmospheric Stability 

The thermal stability of the atmosphere causes it to cycle between discrete states. Air parcels 

near the surface will be heated when the earth is heated by the sun. The heat transfer from the 

earth will eventually become considerable, and the rise in temperature gradient will result in 

turbulent mixing. Without the heat of the sun, the ground transforms from a heat source to a 

heat sink in the evening. As air parcels migrate below, the lower atmosphere becomes more 

stratified. The theory is the same for offshore conditions. However, the sea surface temperature 

does not follow a diurnal cycle, and stability is seasonally determined rather than diurnal.     

When describing wind profiles in the atmospheric boundary layer, it is critical to acknowledge 

atmospheric stability. Even though it is commonly acknowledged that unstable 
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atmospheric conditions can result in increased turbulence, it is frequently overlooked in 

simulations of wind turbine (WTG) load and motion offshore (Putri et al., 2019).  Air is 

classified as a Newtonian fluid, with stress proportional to deformation rate, and can thus be 

represented using the Navier-Stokes equation. Turbulence kinetic energy (‘’TKE’’) is a 

significant quantity used to analyze the boundary layer where buoyant thermals and mechanical 

eddies can generate turbulence (Wang et al., 2021a). The turbulence intensity (‘’TI’’) is 

measured using the TKE theorem, which is derived from the Navier-Stokes equation. The TKE 

may be calculated by calculating the root mean square (‘’RMS’’) value of the variations in flow 

velocity, which is defined as a turbulent flows mean KE per unit mass (Magnusson et al., 1996): 

 
𝐾𝑖𝑛𝑒𝑡𝑖𝑐 𝑒𝑛𝑒𝑟𝑔𝑦 =

1

2
𝑚𝑣2 

 
[1] 

 

 𝐾𝑖𝑛𝑒𝑡𝑖𝑐 𝑒𝑛𝑒𝑟𝑔𝑦

𝑚
= 𝑇𝐾𝐸 

 
[2] 

 

 
𝑇𝐾𝐸 =

1

2
(𝑢′2̅̅ ̅̅ + 𝑣′2̅̅ ̅̅ + 𝑤′2̅̅ ̅̅ ̅) 

 

 

[3] 

 

 

Where the components in equation 3, 𝑢′, 𝑣′and 𝑤′, represent the fluctuating velocity 

components in each direction (Celik, 1999). The fluctuation velocities are time-dependent and 

needs to be derived to equation 4 in order to see the changes with time:  

 
𝜕𝑇𝐾𝐸

𝜕𝑡
=
𝑔

𝜃𝑣
(𝜔′𝜃𝑣′̅̅ ̅̅ ̅̅ ) − 𝑢′𝑤′̅̅ ̅̅ ̅̅

𝜕𝑈

𝜕𝑧
 −
𝜕𝑤′𝑘̅̅ ̅̅ ̅

𝜕𝑧
−
1

𝑝

𝜕𝑤′𝑝̅̅ ̅̅ ̅

𝜕𝑧
− 𝜖 

[4] 

 

 
𝑎             𝑏                   𝑐                 𝑑             𝑒            𝑓  

 

Where a, is the change in TKE with respect to time; b is the buoyant term; c is the shear term; 

d is the transport of TKE by turbulent eddies; e is the transport of TKE by pressure perturbation; 

and f is the decay due to dissipation (Stull, 1988).  
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The formula determines whether kinetic energy is produced or consumed (buoyancy or shear). 

Each term can be both a producer and a consumer. When the TKE lowers over time, the 

atmospheric boundary layer (‘’ABL’’) gets less turbulent; when the TKE increases over time, 

the ABL becomes more turbulent. 

2.3 Turbulence 

In contrast to surfaces on land, the sea surface roughness is not constant but strongly dependent 

on wind speed due to the wave height that governs from the wind, hence the surface roughness 

length will increase with an increase of wind speed (Csandy, 2001). Turbulence intensity is 

dependent on the roughness length and therefore a function of the wind speed (Vickers and 

Mahrt, 1997). To get a better understanding of the marine boundary layer and the operation and 

environment of offshore wind turbines, the understanding of TI over open sea surface is crucial.  

Turbulence intensity is often calculated from 10 minutes mean data retrieved from on-cite 

measurements, and is a relationship between the horizontal wind speed variance, 𝜎𝑢, and mean 

wind speed 𝑢 (Türk and Emeis, 2010):  

  

𝑇𝐼 =
𝜎𝑢
𝑢

 

 

[5] 

 

The ratio between the longitudinal wind speed variance and the friction velocity 𝑢∗, is given 

by: 

 
𝜎𝑢
2 = 6.25 × 𝑢∗

2 [6] 

 
  

For load calculations on wind turbines an important measure is the 90th percentile of the TI for 

a given wind speed bin (Emeis, 2014). The IEC 61400-3 (2005) recommends the following 

wind speed dependence:  

 

𝜎𝑢90 =
𝑢ℎ

ln (
𝑧ℎ
𝑧0
)
+ 1.28 (1.44𝑚𝑠−1)𝐼15 

[7] 

 

 
  

Where 𝑢ℎ is the hub height wind speed; 𝑧ℎ is the hub height; 𝐼15 is the hub height turbulence 

intensity average at a wind speed of 15 m/s; 𝑧0 is the roughness length (determined through the 
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charnock relation, equation 10). The first right hand side component of equation 7 calculates 

the mean wind speed standard deviation for a thermally neutral stratification using a logarithmic 

wind profile (Emeis, 2014).  The second term in equation 7 assumes a gaussian distribution for 

the wind speed standard deviation, hence the 90% percentile of the wind speed standard 

deviation, 𝜎𝑢90, is 1.28 times the magnitude of standard deviation, of the wind speed standard 

deviation (Emeis, 2014).  

2.4 Wind Profiles 

2.4.1 Wind Shear 

Wind shear can be described as the variation of wind speed with height. Wind shear is especially 

important to understand as it causes a direct impact on the available power at different turbine 

hub heights, and significantly influence the cyclic loading experienced by the turbine blades 

(Ray et al., 2006). 

2.4.2 Power Law Profile  

The vertical velocity profile is commonly required for estimating the KE that is available for 

wind turbines. In several situations, velocity measurements are limited in height.  The wind 

profile depicts how wind speed varies with height above ground. It might be represented by an 

idealized model profile, most often the power law or logarithmic profile models. The power 

law profile is defined as follows:   

  

𝑈(𝑧) = 𝑈(𝐻) (
𝑧

𝐻
)
𝛼

 

 

[8] 

 

Where U(z) represents the average wind speed; U(H) is wind speed at hub height; H is the 

distance in height between sea surface and rotor hub; z is the height used for reference; 𝛼 is the 

power law exponent which according to the DNV-RP-C205 standard is set to 0.14.  

     The power law is frequently employed as the fundamental wind profile in wind power 

evaluation due to its simplicity for calculating wind speeds at turbine heights less than 50 meters 

from the near-surface reference height, or when correcting data from diverse heights to a 

standard height (Robeson, 1997). 
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2.4.3 Logarithmic Profile  

The power law profile has limited use since it cannot account for surface roughness or the effect 

of atmospheric stability. The other very popular profile of use is the logarithmic profile,  defined 

as follows: 

  

𝑈(𝑧) =
𝑢∗ 
𝑘𝑎
ln (

𝑧

𝑧0
) 

 

[9] 

 

Where U(z) represents the wind speed at height; 𝑢∗ is the friction velocity; 𝑘𝑎 represents the 

Von Karman constant = 0.4 (DNV-RP-C205); 𝑧0 is the parameter for terrain roughness; z is 

height.  

The Charnock relation (Charnock, 1955) is extensively used to explain the change in sea surface 

roughness length as a function of wind speed and may be stated as: 

 

𝑧0 =
𝐴𝑐𝑈∗

2

𝑔
 

[10] 

 

Where 𝐴𝑐 is the Charnock constant; 𝑈∗ is the friction velocity; g the acceleration of gravity. 

The DNV standards make use of this relationship.  

2.4.4 Stability-corrected Logarithmic Wind Profile 

The atmospheric stability conditions have a considerable impact on the wind speed profile. The 

profiles given in equation 8 and 9 are both independent of atmospheric stability. To account for 

this, The DNV-RP-C205 suggests a logarithmic model with stability adjustments. The equation 

is as follows: 

 

U(z) =
𝑢∗
𝑘𝑎
 (𝑙𝑛

𝑧

𝑧0
−Ψ) 

[ 11] 

 

The introduction of the stability-dependent function, Ψ, which is reliant on the non-dimensional 

stability parameter, separates this new equation from equation 9. 

 

ζ =
z

L
 

[12] 
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Where z is the height; and L is the Monin-Obukhov length. The dimensionless stability 

parameter is negative under steady conditions, building a more substantial wind velocity. Under 

unstable conditions, the reverse is true.  Because the stability-dependent function is zero when 

the circumstances are neutral, atmospheric conditions have no effect on wind speed under those 

conditions.  

2.4.5 Monin-Obukhov Length 

Monin-Obukhov similarity theory (‘’MOS’’), has been the scientific standard approach for the 

past four decades when describing the surface layer atmospheric turbulence (Grachev and 

Fairall, 1997).   The Monin-Obukhov (‘’MO’’) length is defined as the distance in altitude 

where turbulence is buoyancy dominated, rather than shear dominated. The MO length can be 

expressed as:  

 
𝐿 =

𝑢∗
3𝜃𝑣̅̅ ̅

𝑘𝑎𝑔(𝑤′𝜃𝑣)𝑆̅̅ ̅̅ ̅̅ ̅̅ ̅̅
 

 

[13] 

 

Where 𝑢∗ is the friction velocity; 𝜃𝑣̅̅ ̅ the mean virtual potential temperature; 𝑘𝑎the von karman 

constant (0.4); and (𝑤′𝜃𝑣)𝑆̅̅ ̅̅ ̅̅ ̅̅ ̅̅  the surface virtual potential temperature flux.  

Following Holtsag (2014) we distinguish between the different stability classes based on their 

respective MO length in table 1. To determine stability, different approaches can be utilized. 

Some of the most popular include the Eddy-correlation method, Bulk Richardson number, and 

the Gradient Richardson number.  

Class Boundaries      Stability Class 

  -200 ≤ 𝐿∗ < 0     very unstable   

             −500 ≤ 𝐿 − 200     unstable 

               |L| > 500     neutral 

  200 < 𝐿 ≤ 500     stable 

          0 < 𝐿 ≤ 200     very unstable 

Table 1: Stability class boundaries (Holtsag et al., 2014).  

*The MO length is derived from on-site measurements. 
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2.4.6 Gradient Richardson Number 

The Richardson number (Ri) is a critical nondimensional parameter when measuring the 

competition between the destabilizing influence of mechanical shear, and the stabilizing real 

Brunt-Vaisala frequency, that is, a measure of buoyancy (Geernaert, 2003). It is a coarse 

measure of expected turbulence. The gradient Richardson number can be expressed as:  

 

𝑅𝑖 = −
𝑔 (
𝑑𝜌0
𝑑𝑧
)

𝜌0 (
𝑑𝑈
𝑑𝑧
)
2 

[14] 

 

 

Where the top part of the equation is the vertical density gradient multiplied with the 

acceleration of gravity. The bottom part is the horizontal wind speed’s vertical gradient squared, 

multiplied with the unperturbed density. The Ri is negative when the heat flux is upward 

oriented (unstable), whereas the opposite is true for positive Ri values. The different stability 

classes can be distinguished based on the Ri number as suggested by Obhrai et al (2012), 

presented in table 2:  

Gradient Richardson Number     Stability Class 

                 Ri < -5.34     very unstable   

             -5.34 <= Ri <-2.26     unstable 

            -2.26 <= Ri <-0.569     weakly unstable 

          -0.569 <= Ri < 0.083     neutral 

         0.083 <=  Ri < 0.196     weakly stable 

         0.196 <=  Ri <  0.49     stable 

            0.49 <=  Ri      very stable 

Table 2: Gradient Richardson number and corresponding stability class (Obhrai et al., 2012) 

 

2.4.7 Bulk Richardson Number 

The bulk Richardson number (Rib) is an approximation of the Ri. It is structured as a 

approximation of local gradients by finite differences across layers (Weisman and Klemp, 

1986). The Richardson bulk number is given by: 
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𝑅𝑖𝑏 =
(
𝑔
𝑇𝑣
)Δ𝜃𝑣Δ𝑧

(Δ𝑈)2 + (Δ𝑉)2
 

 

[15] 

 

Where 𝑇𝑣 is the absolute virtual temperature; Δ𝜃𝑣 is the differences in the virtual potential 

temperature across a layer of thickness Δ𝑧. Δ𝑉 and Δ𝑈 are the change in horizontal wind 

components when traversing through the same layer.  

2.5 Distribution Models 

As we are experiencing an increase in energy demand, researchers have increased their focus 

on improving the efficiency of the wind power generation The first step in the development of 

wind energy is to assess the characteristics and the potential of wind energy. The wind speed 

distribution at a particular location determines the wind energy available, and the energy 

conversion systems performance (Chen and Blaabjerg, 2009). 

The KE in the airflow is converted into electrical energy via wind turbines. The wind speed has 

a statistically significant positively skewed distribution. Wind power, on the other hand, 

exhibits volatility, intermittent characteristics and randomness, leading wind farm power output 

to significant fluctuate (Shi et al., 2021). In wind farm analysis, design planning, construction 

and O&M, several probability distribution models have been used. Many probability 

distribution models have been utilized in wind farm analysis, design planning, building, 

operation and maintenance (Wang et al., 2021b). 

2.5.1 Two-Parameter Weibull Distribution 

The most commonly used density function with regards to wind speed modelling is the Weibull 

distribution (Sarkar et al., 2019): 

 

𝑝(𝑈) = (
𝑘

𝛼
) (
𝑥

𝛼
)
𝑘−1

exp [−(
𝑥

𝛼
)
𝑘

] 

 

[16] 

 

The Weibull distribution (Weibull, 1951) is a well-tested distribution that may be utilized in 

wind speed modeling. The shape parameter, k, and the scale parameter, a, are required by the 

Weibull distribution. Both the wind speed and its standard deviation are used to calculate the 

parameters. The shape parameter affects the width of the data distribution, whereas the scale 

parameter regulates the abscissa scale (Shi et al., 2021).  Despite its ease of use, the two-

parameter Weibull distributions performance is reduced when fitting low wind speeds, and 



 

13 

much worse when the wind speed data contains a large number of null values (Akgül et al., 

2016). To properly fit and characterize the wind regimes, it is necessary to eliminate null values 

before fitting. 

2.5.2 Rayleigh Distribution 

When the two-parameter Weibull distribution possess a shape parameter equal to 2, it forms the 

Rayleigh distribution (Shi et al., 2021): 

 

𝑓(𝑥) =
𝑥

𝛼2
exp [−

1

2
(
𝑥

𝛼
)
2

] 

[17] 

 

The Rayleigh distribution is of relevance when modeling wind speed and evaluating the 

performance of wind turbines (Saleh et al., 2012). It is more convenient than the Weibull 

distribution as it only contains one parameter that is easier to estimate. The Rayleigh 

distribution assumes that the long-term wind vector is zero. At sea, the wind vector significantly 

deviates from zero. This relatively limits the applicability of the distribution to sea winds (Perrin 

et al., 2006). 

2.5.3 Gamma Distribution  

The generalized Gamma distribution is another distribution of popular use in wind speed 

modeling (Aries et al., 2018) and reads as following: 

 

𝑓(𝑥) =
𝛼𝑘

Γ(𝑘)
𝑥𝑘−1exp (−𝛼𝑥) 

[18] 

 

Where 𝛼 and Γ represents the scale parameter and the shape parameter, respectively.  

The distribution is representing the sum of all the exponentially distributed stochastic variables 

identified by the scale and shape parameter (Aries et al., 2018).  

2.5.4 Kernel Density Estimation  

The Weibull, Rayleigh, and Gamma distributions are all parametric distributions. Although 

there are certain advantages with these distributions in wind speed modeling, selecting a 

qualifying distribution remains difficult (Shi et al., 2021). The model may not accurately 

characterize the actual wind regimes, and the estimated parameter values may fail statistical 

tests (Xu et al., 2015). However, when using a nonparametric model, the model does not have 
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to make any assumptions on the theoretical wind speed distribution or estimate the parameters 

of any distributions (Xu et al., 2015). One of the most frequently used nonparametric models is 

the kernel density estimation (KDE) (Qin et al., 2011). The KDE gets the probability density 

function from the sample data: 

 
𝑓(𝛼) =

1

𝑛ℎ
∑𝐾(𝑎)

𝑛

𝑖=1

 

 

[19] 

 

Where n is the number of samples; h is the bandwidth; K(a) the kernel function; and the relative 

distance between estimated and sample value is given by 𝑎 which can be further described as:  

 

𝛼 =
𝑥 − 𝑥𝑖
ℎ

 

[20] 

 

 Where x is a fixed location, and xi an observation. There are several kernel functions used to 

generate KDE functions, the Gaussian kernel function is the most utilized kernel function in the 

generation of KDE functions (Han et al., 2019):  

 

𝐾(𝛼) =
1

√2𝜋
𝑒
[−
(𝑥−𝑥𝑖)

2

2ℎ2
]
 

[21] 

 

KDE models are very adaptable and stable. Recently, Han et al. (2019) conducted a study on 

wind speed data from 698 wind stations at different locations in China. The results from the 

study showed that the KDE model outperformed the Weibull distribution along with 18 other 

popular parametric distributions. Anyhow, correct bandwidth selection is vital for the model to 

do a good fit. Otherwise, the model could experience over-fitting and under-fitting which will 

affect the estimated value (Han et al., 2019).  

2.6 The Wind Turbine Power Curve 

The WTG power curve depicts the relationship between WTG power output and wind speed, 

and essentially captures the performance of wind turbines. Accurate power curve models are a 

valuable tool in wind power forecasts and assist in wind farm growth. The relationship between 

the wind speed and the power for a vertical-axis wind turbine can be expressed as follows:  

 

𝑝(𝑣) = {

0          𝑣𝑜𝑢𝑡 < 𝑣 < 𝑣𝑖𝑛  

𝑞(𝑣)         𝑣𝑖𝑛 ≤ 𝑣 < 𝑣𝑟
𝑃𝑟           𝑣𝑟 ≤ 𝑣 ≤ 𝑣𝑜𝑢𝑡

 

 

[22] 
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Where p(v) is the electrical power output in Watts; 𝑣𝑖𝑛 is the cut-in wind speed (m/s); 𝑣𝑜𝑢𝑡 is 

the cut-out wind speed (m/s); 𝑣𝑟 is the rated wind speed (m/s); 𝑃𝑟 is the rated power output in 

watts; and q(v) is the non-linear relationship between wind speed and power (Carillo et al., 

2013). The power curve is illustrated in figure 1. 

 

Figure 1: Power curve representation. 

2.6.1 Momentum theory 

As described by momentum theory, it is possible to express the power of a WTG to capture 

wind energy as:  

 

𝑃 =
1

2
𝜌𝑆𝑣𝑑(𝑣1

2 − 𝑣2
2) [23] 

Where 𝜌 is the air density; S is the rotor swept area; 𝑣𝑑 is the wind speed that passes through 

the WTG rotor; 𝑣1 is the wind speed upstream of the WTG rotor; and 𝑣2 is the wind speed 

downstream of the WTG rotor.   Hansen (2015) describes the relationship between the upstream 

wind speed, 𝑣1, the wind speed passing though the rotor, 𝑣𝑑, and the downstream wind speed, 

𝑣2, as:  

 

𝑣2 = 2𝑣𝑑 − 𝑣1 [24] 

With the use of equation 24, equation 23 can now be expressed as:  
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𝑃 = 2𝜌𝑆𝑣𝑑
2(𝑣1 − 𝑣𝑑) [25] 

Subsequently, equation 25 can be expressed as (Dai et al., 2016): 

 

 

𝑣1 =
𝑃

2𝜌𝑆𝑣𝑑
2 + 𝑣𝑑 [26] 

 

2.6.2 Power Curve Correction Using SCADA Data 

One of the key issues to be solved in the operation and maintenance process of a wind turbine 

is to accurately obtain the wind turbine performance. In order to calculate the theoretical power 

output of a wind turbine using wind data it is necessary to know the specific turbine’s power 

curve that describes the relationship between the wind speed and the turbine’s power output. 

This sub chapter follows Dai et al (2022) paper ‘’Study on Obtaining Real Power Curve of 

Wind Turbines Using SCADA Data’’ in order to obtain the real power curve for the Siemens-

Gamesa-6.0 WTG that is used at Westermost rough.  The Power curve model can be expressed 

as:  

 
𝑃 =

1

2
𝜌𝜋𝑅2𝐶𝑝(𝑣, 𝜔, 𝛽, 𝛾)𝑣

3 

 

[27] 

With R being the radius of the rotor; 𝐶𝑝 the power coefficient; 𝜔 the rotational speed of rotor; 

𝛽 the pitch angle; and 𝛾 the yaw angle (all available from the SCADA data). The wind speed 

retrieved from the SCADA data is provided by anemometers installed on the nacelle, which is 

not the true incoming wind speed (Dai et al., 2016). As the wind travels through the rotor plane 

before it reaches the anemometer, a portion of the wind energy will already have been absorbed 

by the rotor which results in smaller measures by the anemometer than the actual incoming 

wind speed. As of this, if the SCADA data wind speed is directly used in analysis, there must 

be a significant deviation (Dai et al., 2022). Therefore, correcting the wind speed SCADA 

through moving average filtering before performing the power curve modelling will yield a 

more precise power curve. 
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2.6.2.1 Moving Average Filtering (MAF) 

Because the effect of wind velocity on generator power is the result of wind in a specific period, 

modelling the power curve using velocity averages rather than the instant values is more 

reasonable. There is also a lag effect between variations in wind velocity and power variation 

to consider (Dai, et al., 2022). The primary reason for this is that the WTG rotor is a large 

inertial system. The moving average filtering (MAF) method is using a sliding window of 

certain size in order to determine the average of data points within the set window. The discrete 

expression of the moving average filter can be expressed as: 

 

𝑦(𝑛) =
1

𝑁 + 1
∑𝑥(𝑛 − 𝑘)

𝑁

𝑘=0

 

 

[28] 

Where y(n) is the output of the filter; x(n) is the input of the filter; and N is the window length 

of the MAF filter. Before the process of filtering, the null values are filled with zeros.  Also, if 

a zero value is located in between two measurements it is repaired by averaging the adjacent 

data.  If multiple zeros is occurring consecutively, the data is rejected:  

 

{
 

 
𝑥(𝑛) = 0, 𝑖𝑓 𝑥(𝑛)𝑖𝑠 𝑛𝑢𝑙𝑙

𝑥(𝑛) =
𝑥(𝑛 − 1) + 𝑥(𝑛 + 1)

2
, 𝑖𝑓 𝑥(𝑛) = 0, 𝑥(𝑛 − 1) > 0 𝑎𝑛𝑑 𝑥(𝑛 + 1) > 0 

𝑥(𝑛) = 0, 𝑖𝑓 𝑥(𝑛 + 1) = 0, 𝑥(𝑛 + 2) = 0,…

 

 

[29] 

 

2.7 Power Performance Estimation 

Power performance measurement is essential in the wind industry since it serves as the 

foundation for the wind turbine's power production forecast. A WTG power performance 

measurement consists of simultaneously monitoring the wind speed in front of the turbine and 

the turbine's power output. 

To describe the wind field around the wind turbine in flat terrain, the IEC 61400-12-1 standard 

for wind turbine power performance assessment only requires the measurements of wind speed 

at hub height and air density (derived from temperature and pressure data).  However, other 

wind characteristics, such as the variation of wind direction with height (veer), the horizontal 

wind speed with height above ground (shear), and the fast variation of wind speed around the 

10-min average wind speed (turbulence), have been shown to influence the power performance 

of large WTGs (Wagner et al., 2011). That is why, in practice, the power curve measured in 
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accordance with the current standard is specific both to the meteorological conditions and the 

location during the test. 

Antoniou et al. (2009), and VanLuvanee et al. (2009) discovered that power generation reduced 

with increased shear in their investigations. They also discovered that wind speed profiles 

having a greater wind speed gradient above hub height than below hub height (such as those 

produced by low level jets) experienced increase in power production. Their findings suggests 

that profiles that deviate from a power law shape may have a bigger power deviation than those 

that closely resemble a power law. 

2.7.1 Hub Height Wind Speed 

Traditionally, estimating the hub-height wind speed (HHWS) has been critical for a 

comprehensive wind resource assessment. The wind speed is extrapolated or interpolated in 

order to determine the wind speed at hub height. The power output is calculated through the 

equation:  

 

𝑃 =
1

2
 𝐶𝑝 𝐴 𝑉

3 

[30] 

 

Where P is the power output in watts; 𝐶𝑝 is the power coefficient; A is the rotor swept area; and 

V is the hub height wind speed.  IEC 61400-12-1 standard assumes that the hub height wind 

speed makes a sufficient representation of the wind speed across the whole turbine rotor swept 

area. The assumption becomes rather questionable as we experience growth in turbine rotor 

diameter and the wind speed difference experienced by the different rotor sections becomes 

significant. The wind profile interaction with a large rotor can be visualized in figure 2. 
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Figure 2: Hub height wind speed (HHWS) 

It is assumed that in case of the wind shear coefficient being constant, the difference between 

the hub height wind speed and the rotor equivalent wind speed is usually small (Van Sark et al., 

2019). However, an experiment carried out by Bratton and Womeldorf (2011)    showed that, 

in some cases, a constant wind shear coefficient was insufficient in describing the wind shear 

profile. Wharton and Lundquist (2012) performed a similar experiment, where their findings 

showed to support Bratton and Womeldorf’s: The difference of the HHWS and REWS could 

be significant.  

2.7.2 Rotor Equivalent Wind Speed 

Wind shear, directional shear, and direction variations are known to restrict power generation 

capacity, whereas turbulent intensity increases it. However, an elaborate superposition of these 

influences reshapes the properties of the power estimate, indicating the need for a new 

formulation (Choukulkar et al. 2016). Wind resource assessments have traditionally been done 

using meteorological towers, which give measurements at hub height (Choulkular et al. 2016).  

As technology advances, we witness an increase in both hub height and rotor swept area. We 

have also moved offshore, which provides us with a different basis for including atmospheric 

stability. The influence of both mechanical shear and atmospheric stability is now more 

important, and point measurements from met-towers are no longer a suitable depiction of 

turbine-wind interaction (e.g. Wharton and Lundquist 2012; Wagner et al. 2009; Sumner et al. 

2006). Rotor equivalent wind speed 𝑢𝑒𝑞 can be expressed as:  
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𝑢𝑒𝑞 = √∑
𝐴𝑖
𝐴
𝑢𝑖
3

𝑛ℎ

𝑖=1

3

 

 

[31] 

 

In which A is the rotor disk total area; 𝐴𝑖 is the area of the i-th segment of the rotor disk; and 

𝑢𝑖 represents the wind speed at each segment. The segments are used to weight wind speeds to 

the area centers as illustrated in figure 3(a) . The area of the i-th segment can be determined 

through the equation:  

 

𝐴𝑖 = 𝑅2 cos−1 (
𝑅 − ℎ

𝑅
) − (𝑅 − ℎ)√2𝑅ℎ − ℎ2 

[32] 

 

The segment area can be determined through equation 32 by utilizing the arc sine function as 

illustrated in figure 3(b). When establishing the first segment from the top it is assumed that 

radius of rotor rotation area is R, and the height of the sector is h. Further, the segment lengths 

can be found by following:  

 

ℎ𝑖 = 𝐻 +
1

𝑛ℎ
[𝑖 − (

𝑛ℎ + 1

2
)] × 𝐷 

[33] 

 

 Where 𝑛ℎ is the total number of sectors. The relationship between rotor equivalent wind speed 

to hub height wind speed can be found through the following equation (Ryu et al., 2022):  

 

𝑉𝑅𝐸𝑊𝑆
𝑉𝐻𝐻𝑊𝑆

= √∑
𝐴𝑖
𝐴

𝑛ℎ

𝑖=1

[1 +
1

𝑛ℎ
( 𝑖 − (

𝑛ℎ + 1

2
)) ×

𝐷

𝐻
]

3𝑎3

 

[34] 

 

 



 

21 

 

(a)                                                                 (b) 

  Figure 3: REWS rotor segments (a); rotor area segments thorugh arc cosine function (b).  

 

 

2.7.3 Annual Energy Production  

According to the IEC 61400-12-1 (10, p.32) standard, the annual energy production (AEP) is 

calculated as described in the equation:  

 

𝐴𝐸𝑃 = 𝑁ℎ∑ [F(Vk) − F(Vk−1)]
𝑁

𝑘=1
(
𝑃𝑘−1 + 𝑃𝑘

2
) [35] 

Where Nh is the total number of hours in one year (8769); N is the number of bins; Vk is wind 

speed normalized and averaged in bin k; Pk is the power output normalized and averaged in bin 

k.  The IEC 61400-12-1 also states that is should be assumed zero power for wind speeds above 

and below the range of the relevant power curve.  

2.8 Wakes  

Due to the energy extraction from the wind, WTG farms cause tens of kilometers of atmospheric 

wakes which results in reduced wind speeds and increase in downstream turbulence intensity 

of the wind farm (Hasager et al., 2015). For a wind farm that has many WTGs in operation, the 
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wake of the turbines start to overlap and form a combines wake from the wind farm (Ahsbahs 

et al., 2020). It is important to take the resulting velocity deficit into account for more accurate 

energy yield calculations. Wind farm wakes are also known to be dependent of the atmospheric 

stability (Hansen et al., 2012; Platis et al., 2018). Accurate wake modelling is important for 

wind plant layout optimalization and is also essential in the work of creating effectual control 

strategies (Meyers et al., 2022; Veers et al., 2022).  

2.8.1 Wake models 

2.8.1.1 The Jensen Wake Model 

The Jensen wake model is a mass-conserving engineering wake model with its purpose to 

estimate the downstream wind speed of a WTG at a distance 𝑥, u, when subjected to an inflow 

wind speed at hub height, 𝑢0 (Peña et al., 2016). The model is of popular use due to its 

reasonably accurate results despict its simplicity (Sebastiani et al., 2021). The normalised 

velocity deficit using the Jensen model is found as:  

 

𝛿𝑢 = 𝑢0

(

 
 2𝑎

(1 + 𝛼 (
𝑥
𝑟1
))

2

)

 
 

 

 

[36] 

In this equation, 𝑢0 is the inflow wind speed at hub height; 𝛼 the wake decay coefficient; and  

𝑎 is the axialy induction factor. Further, the wake expansion radius 𝑟1 can be expressed as 

follows:  

 

𝑟1 = 𝑟0√
1 − 𝑎

1 − 2𝑎
 [37] 

Where 𝑟0 is the rotor radius. The axial induction factor a is dependent on the thrust coeficcient, 

Ct, and can be calculated from their relationship: 

 

𝑎 =
(1 − √1 − 𝐶𝑡)

2
 

[38] 

The wake decay constant determines the size of the expanded wake downstream the WTG 

(Yang and Cho, 2019) and can be determined by using the turbine hub height, h,  and the local 

surface roughness length of the wind farm, 𝑧0, following the formula:  
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𝛼 =

0.5

ln (
ℎ
𝑧0
) 

 

 

[39] 

The model is a good approximation for the near wake, less or equal to two rotor diameters 

downstream, but not efficient in describing the far wake.  The model relies on the assuption that 

the radial speed within the wake is constant and is expanding radially with the rate 𝑘𝑤 (Peña et 

al., 2016). The Wind Atlas Analysis and Application Program (WasP) suggests a wake decay 

coeficcient (‘’WDC’’) of 0.04, however, DTU have later found (2018) that a WDC of 0.06 

yields more accuracy for offshore conditions (Rathmann et al., 2018). A schematic 

representation of the Jensen wake model is given in figure 5. 

 

Figure 4: Schematic representation; Jensen wake model (Yang and Cho, 2019).  

 

2.8.1.2 The Eddy viscisity Wake Model (Ainsle Wake Model) 

Eddy viscosity hypothesis is a prominent approach for determining the turbulent Reynold 

stresses in wind turbine wake modeling (Scott et al., 2023). The model is based on the 

assumption that the flow is axisymmetric, stationary without rotation, and fully turbulent 

(Sebastiani et al., 2021). These assumptions result in the Euler equations, as expressed by 

cylindrical coordinates: 
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In which u and v respectively are the axial and radial velocity components; and where r is the 

radial position. The Euler equations is solved through a numerical scheme which determines 

the velocity field inside the wake starting from an initial downstream distance of 2D (Sebastiani 

et al., 2021). Both the Eddy viscosity and the Jensen wake models have the ability to evaluate 

the reduction of speed within a wake. However, when several turbines are clustered there is a 

need for evaluating the combined wake effects. The most common used method for this purpose 

is the sum of squares (Katic et al., 1986).   

2.8.1.3 Wind Farm Model 

Inside a WTG farm, local wakes are superposed in the effort to estimate the speed deficit, 𝛿, at 

the n’th turbine, 𝛿𝑛. That way, as suggested by Katic et al (1986), it can be applied a quadratic 

sum of the square of all local speed deficits, sub-indexed 𝑖 . The method is utilized in WAsP, 

which is integrated in WindPRO:  

 

𝛿𝑢𝑗 = (∑𝛿𝑢𝑖 
2

𝑛

𝑖=1

)

1
2

 

 

[42] 

The speed received at the nth turbine, 𝑢𝑛, is then given as 𝑢𝑛 = 𝑢0(1 − 𝛿𝑢). If the interspace 

between the local turbine and an upstream turbine is not aligned with the direction of the wind, 

a partial wake interaction may be experienced by the local turbine (Peña et al., 2016). Partial 

wake interaction can be visualized in figure 5. The partial wake interaction can be determined 

as the relationship between the intersecting area of the wake and the rotor area as follows:   

 

𝛿𝑢 = 𝑢0

(

 
 2𝑎
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𝑥
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2
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[43] 
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Figure 5: Overlapping wake and rotor areas (Yang and Cho, 2019) 

 

2.9 Model Evaluation – Goodness of fit  

In climate, air quality, and meteorology research studies, the root mean square error (‘’RMSE’’) 

has long been employed as a standard statistical tool to quantify model performance (Chai et 

al., 2014). The RMSE is the standard deviation of the prediction errors (residuals). It is an 

effective tool for analyzing how concentrated the data is to the line of best fit (Christie and 

Neill., 2021). RMSE can be described through the formula: 

 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ 𝑆𝑖 − 𝑂𝑖

2
𝑛

𝑖=1
 [44] 

 
  

Where 𝑆𝑖 are the predicted variable values; 𝑂𝑖 are the observations; and n is the number of 

observations.  

2.10 Climate Reanalysis Data  

Reanalysis data sets have increasingly become of interest amongst researchers for large scale 

wind power analyses, mainly because they cover long time spans and large areas (Rose and 

Apt, 2015). Long-term wind data is essential for developers and financers of wind projects as 

it reduces uncertainties about future revenues of proposed wind plants. It is also important for 

operation and maintenance of existing wind farms as it makes it possible to estimate rare event 

probabilities. Finally, it gives a a good basis for assessing cycles and trends in wind resource 

(Rose and Apt, 2015).  Reanalysis data is collected through meteorological stations over many 
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decades and is further combined with today’s weather models to deliver a complete and 

consistent picture of the past weather (Hersbach et al., 2018).  

It is shown that mesoscale model data can have some directional bias (Dorrego et al., 2022). In 

the northern parts of Europe, an observation is that the wind speeds for East and North-East 

directions is too low, and for South-West they often are too high (EMD,  2023b). A reason for 

the observed bias might be direction inaccuracies. Often, the measurements can be wrongly 

calibrated by direction or contain periods with offsets caused by measurement equipment 

(EMD,  2023b).  

2.10.1 NORA3 

The three kilometers Norwegian Reanalysis (NORA3) is a 15- year mesoscale hindcast of the 

North Sea, Barents Sea, and the Norwegian Sea. The nonhydrostatic numerical weather forecast 

model HARMONIE-AROME, with a horizontal resolution of three kilometers, runs resolved 

deep convection and produces fields of hindcast that effectively is the downscale of the ERA 5 

reanalysis (Haakenstad et al., 2021).  The available NORA3 data through EMD download in 

WindPRO is given in Table 3, and contains the data used for calculation in chapter 6.4.1.  

NORA3   

Reference period      01.01.1999 – 31.12.2022 

Observation           60 - min averages 

 

     Temperature    2 

     Relative humidity   2 

Observation heights (m) Mean wind speed  10, 20, 50, 100, 250, 500 

     Wind direction  10, 20, 50, 100, 250, 500. 

 

Table 3: NORA3 data set available through WindPRO 

2.10.2 NEWA 

The New European Wind Atlas (NEWA) is the descendant of the 1989 European Wind Atlas 

(EWA, Troen and Petersen, 1989) and is one of the more recent data sets. The data set aims to 

provide a freely available, high resolution wind energy resource data set for Europe 

(Dörenkämper et al., 2020) . Offshore, NEWA uses satellite data to validate data at 10 meters 

above sea level. Furthermore, a validation at 100 meters above sea level is performed by 
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extrapolating the wind speed at 10 meters by utilizing the log-law relationship (Badger et al., 

2016).   The available NEWA data through EMD download in WindPRO is given in Table 4, 

and contains the data used for calculation in chapter 6.4.1.  

NEWA 

Reference period      01.01.2009 – 31.12.2018 

Observation           30 - min averages 

 

     Temperature    100, 200 

Observation heights (m) Mean wind speed   100, 200 

     Wind direction   100, 200 

 

Table 4: NEWA data set available through WindPRO 

2.10.3 ERA5 

The European Centre for Medium Range Weather forecasts (ECMWF) has long experience 

with the use of reanalysis data. The ERA5 reanalysis data set is their fifth-generation 

atmospheric reanalysis and covers the period from 1950 to present date, with a grid resolution 

of 31 km (Hersbach et al., 2020). The data set provides hourly estimates of atmospheric, 

oceanic, and climate variables and covers 137 levels from surface to 80km height (Hersbach et 

al., 2018b). The available ERA5 data through EMD download in WindPRO is given in Table 

5, and contains the data used for calculation in chapter 6.4.1.  

ERA5 

Reference period      01.01.1990 – 31.03.2023 

Observation           60 - min averages 

 

     Temperature    2 

     Relative humidity   2 

                                               Stability (1/L)    2 

                                               Solar irradiation   2 

Observation heights (m) Mean wind speed   10, 100 

     Wind direction   10, 100 

 

Table 5: ERA5 data set available through WindPRO 
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3 Software 

In this chapter the software and modules that have been used in this thesis will be presented.  

3.1 WindPRO 

The program used for energy analyses in this thesis is WindPRO, which is a wind resource 

analysis program developed by the Danish software and consulting company EMD 

International. The program uses Wind Atlas Analysis and Application Program (WAsP) as 

calculation engine. The WAsP engine is developed by RISØ and was first introduced in 1987. 

WAsP’s procedure for estimating the wind speed can be described through the wind atlas 

method (Woo et al., 2012); the method converts the Weibull distribution of the wind data 

measured into generalized wind statistics. This is done by removing the effects caused by 

roughness length, obstacles, and the topography. The WAsP engine then makes the assumption 

that the prediction site and the measurement site are located in the same climatic region, and 

then applies generalized wind statistics to the site of production (Woo et al., 2012).  According 

to Lars Landberg et al (2003) at offshore locations the controlling terrain parameter is the 

surface roughness and not orographic effects. 

The WindPRO software has a wide range of applications from calculating energy, uncertainty 

quantifications, wind data analyses, site suitability assessment, to calculating environmental 

impact. WindPRO is also a strong tool for post construction analyses. WindPRO contains of 

different modules that handle the different tasks. In this chapter, only the modules and objects 

used for analyses will be presented briefly. The data input depends upon the module of choice, 

anyhow, WTG power curve and specification along with meteorological data are required to 

complete a calculation of the energy output. The meteorological data may consist of actual local 

measurements that can be imported from a file, or it can be added from third party reanalysis 

data sets.  

 Information regarding modules out of scope for this thesis can be found at EMD-international 

official web page.  
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3.1.1 Modules and Objects 

3.1.1.1 BASIS 

The BASIS module is a preliminary module and serves as a backbone for the other WindPRO 

modules. It gives a graphical user interface of the wind farm project, as well as park information 

containing turbine layout and spacing.  

3.1.1.2 PARK 

PARK is a flexible tool that is used in calculation of the Annual Energy Production (‘’AEP’’) 

for one or several wind farms. The module combines flow and wake models together with the 

site data to determine the energy yield of the WTG-s. Multiple sets containing wind data can 

be used in a PARK calculation. The module takes by default the nearest set of wind data unless 

else is specified (Nielsen, 2016) 

3.1.1.3 Measure Correlate Predict  

The Measure-Correlate-Predict (MCP) module is a tool for long time correction of local wind 

data and is based on the correlation with long-term reference data. This module is proficient 

when comparing graphs and determining correlation between local data and reference data. The 

module makes it possible to long-term correct the local measurements with a long-term 

reference by applying time-shifts and filling gaps. The MCP is a very powerful tool when you 

have a sound amount of data that contains gaps and out of range values and you need to correct 

it to a coherent time-series.  When the data quality is very low for your local measurements, the 

MCP module can be utilized purely as a comparison tool. For this instance, you want to scale 

meso-scale data to your local measurements. This is an iterative process, and the MCP module 

can be used between iterations to see the current correlation between the reference data and 

local data (Jogararu, 2018).  

3.1.1.4 Performance Check 

Performance check is a set of tools used to analyse wind turbine SCADA data. The module has 

the ability to quantify losses, lower the AEP uncertainty, and improve pre-construction 

estimates. The analyses is based on error codes typically retrieved from SCADA, or by user 

specifications if SCADA does not contain error codes.  
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3.1.1.5 METEO Object  

WindPRO offers a range of different objects that carries different data and is placed in the 

project. A METEO object serves as a point of measuring that holds measurement data. This can 

be local measurements (e.g., LiDAR or mast), or reference data from meso-scale data. 

3.1.1.6 AREA Data  

Tool for digitizing and importing areas as closed polygons, each with similar characteristics. 

The sea surface is described using the Area object. 

3.1.1.7 WTG Area 

The WTG Area Object is used together with the PARK module and defines the area that is used 

to cite the WTG’s. All the WTG-s in the wind project that are used for analyses are linked to 

this object.  
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4 Current research  

4.1 Previous studies at Westermost Rough wind farm  

The  Westermost Rough (WMR) wind farm has been a popular location for studies related to 

wake generation because of the turbine layout and geographical location.  Nygaard et al (2018) 

presented  dual-Doppler measurements of the wake generated behind the WMR wind farm. 

Through radar measurements they were able to track the evolution of the wakes through the 

farm and further downstream. The study found through measurements that the wake region 

extends at least 17 km downstream WMR.  The measurements were then compared with two 

different engineering wake models, the top-down wake model and the Park model. Both  models 

predicted correctly up to 10km behind WMR. The Park model does not consider shift in wind 

direction behind the wind farm and thus overestimated the wind speed on lines aligned on the 

turbine rows.  Two years later Nygaard et al (2020) presented two new models for wind turbine 

interactions effect including a recipe for combining them. The first being an extension of the 

Park model which incorporates both the atmospheric turbulence, and the turbulence generated 

in the wake itself. This modified model proved a better fit to describe wake recovery over longer 

distance which is beneficial when considering wake effects from neighboring wind farms.  

Ahsbahs et al’s (2020) recent work showed a good agreement between Doppler radar 

measurements and SAR images at WMR in cases without any stable atmospheric stratification.  

4.2 Reanalysis data 

Haakenstad et al (2021) did a performance study of the NORA3 reanalysis data set where they 

compared surface wind speeds assured from offshore observing stations that was retreived from 

the Norwegian Meteorological Institute, and made an comparison to NORA10 and ERA5. The 

validation period was 2004-18. The best-performing reanalysis data set was NORA3, followed 

by NORA10. The least-performing data set was ERA5.  

Solbrekke et al (2021) did a validation study of NORA3 for the Norwegian Sea and the North 

Sea during the period 2004 – 2016. They conclude that the NORA3 data set is well suited for 

estimating the wind power but gives a rather conservative estimate on the offshore wind 

metrics. They found that the NORA3 wind speeds typically is 5% lower than actual wind 

speeds, which gives an offshore wind power underestimation of 10-20%. 



 

32 

4.3 Wake models 

There are different wake models being used to calculate the energy deficits in wind modelling. 

Both the Jensen and the Eddy viscosity are engineering wake models that are is simpler and 

require less computational power than more advanced models.  

Shakoor et al (2016) did a comparative study of different wake models offshore, including the 

Jensen and the Eddy viscosity model.  They conclude that both models have the possibility of 

high errors in accuracy compared to real measurements.  

Vanluvanee (2006) compared the practical aspects and simulation results from three different 

wake models: the Eddy viscosity, Larsen, and Jensen wake model. They found that the Eddy 

viscosity model showed high prediction accuracy for measurements on the wake width for 

larger down-stream distances, while Jensen outperforms the Eddy viscosity model for shorter 

distances.  

Sørensen et al (2006) did a validation of the wake model performance for large offshore wind 

farms where they present the results of a case study done at Horns Rev wind farm from 2005 to 

2006 using WindPRO, and the calculated wake losses are compared to actual observed wake 

losses. The case study indicated that the Jensen wake model was more precise in predicting the 

wake loss observed than the Eddy viscosity model. Their main results concluded that the Jensen 

wake model with a wake decay coefficient of 0.04 is more conservative  than the Eddy viscosity 

model.  

4.4 Wind Profiles 

Gryning et al. (2007) discovered, through examination of meteorical readings from a 160-meter 

mast at Høvsøre in Denmark, and a 250 meter tall TV tower in Hamburg in Germany, that wind 

profiles that are based on surface-layer theory and Monin-Obukhov scaling are only valid up to 

80 meters for neutral atmospheric conditions, and fairly less for adiabatic atmosphere. Above 

80 meters, deviations occurred progressively. With technological advances wind turbines 

become larger and the turbine hub height will be positioned outside the limitations of what 

Monin-Obhukov scaling is valid for, necessitating the extension of wind profiles.   

 



 

33 

4.5 Rotor Equivalent wind speed 

 

Ryu et al (2022) did an analysis of the vertical wind shear effects on the prediction accuracy in 

offshore wind energy production, applying the the rotor equivalent wind speed. The analysis 

was conducted for the Anholt offshore wind farm using two years of SCADA data and 

compared the two methods to actual power output. They concluded with REWS being more 

accurate at predicting the higher wind speeds and had a more accurate prediction than the 

HHWS. Overall, the REWS method showed better prediction accuracy than the HHWS.  
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5 Materials and Methods 

5.1 The Westermost Rough Wind Farm 

The wind farm studied in this thesis is the Westermost Rough wind farm in England operated 

by Ørsted, the largest offshore wind farm developer in the world. The WMR wind farm is a 

medium sized offshore wind farm situated at the southeast coast of England, eight kilometers 

off the Holderness coast, and has a covering area of 32𝑘𝑚2. The wind farm consists of 35 

turbines of the type Siemens-Gamesa SWT-6.0-154 and has the potential to yield a combined 

total capacity of 210 MW (Ørsted,  2015). The turbines have a monopile substructure each 

weighing up to 800 tons and has a diameter of 6.5m. Figure 6a displays an overview of the park, 

whereas figure 6b displays the wind farm layout. Internal spacings between the turbines can be 

found in Appendix 3 fig. 49, and table 34.  

  

 

(a)                                                                     (b) 

Figure 6: Overview of WMR wind park (a); enlarged overview WMR wind park with field layout (b). 
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Westermost Rough Project Timeline (Ørsted) 

May 2007  Awarded leasing agreement to develop a wind Farm at WMR. 

Nov. 2011  Consent awarded. 

Feb. 2013  Onshore construction began. 

Jan. 2014  Offshore construction began.  

Aug. 2014  First turbine erected. 

Sep. 2014  First power generated.  

Jul. 2015  Fully commissioned and Operational.  

Table 6: Westermost Rough Project Timeline. Ref: ( www.orstedcdn.azureedge.net).  

The WMR project was the first commercial deployment of the Siemens-Gamesa SWT-6.0-154 

wind turbines (Ørsted, 2015), and the project timeline from awarded leasing agreement to fully 

commissioned and operational is given in table 6. The turbines stand 177m tall from sea level 

to the highest reach of the blade tip. The wind farm specifications can be found in table 7. The 

Siemens Gamesa SWT-6.0-154 technical parameters are provided in table 8.  

          Item             Content 

Wind Turbines    Siemens-Gamesa SWT-6.0-154  

Number of turbines     35 

Nominal Power [MW]     6 

Hub Height [m]     106  

Rotor diameter [m]     154 

Water depth [m]                16-26 

Distance to shore [km]    8 

Wind farm area [𝑘𝑚2]    32 

  Power regulation     Pitch regulated, variable speed 

Table 7: Technical specification SWT-6.0-154. Ref: (https://www.siemensgamesa.com/products-and-services/offshore/wind-

turbine-swt-6-0-15). 

http://www.orstedcdn.azureedge.net/
https://www.siemensgamesa.com/products-and-services/offshore/wind-turbine-swt-6-0-15
https://www.siemensgamesa.com/products-and-services/offshore/wind-turbine-swt-6-0-15
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The Siemens Gamesa SWT-6.0-154 turbine parameters from datasheet 

  Content      Value 

 

         Rated power                6,000,0 kW 

         Cut-in wind speed      4.0m/s 

         Rated wind speed     13.0 m/s  

         Cut-out wind speed     25.0 m/s 

         Survival wind speed      70.0 m/s 

         Rotor speed, max     11.0 U/min 

         Tip speed       89 m/s  

Table 8: Siemens Gamesa SWT-6.0-154 Datasheet. Ref: (https://en.wind-turbine-models.com/turbines/657-siemens-swt-6.0-

154). 

 

5.1.1 Offshore Wind Lidar 

Average wind speed increases with height and reduces the braking effect of ground-based 

barriers. For this reason, turbine hub heights increase in elevation in order to exploit the 

resources which can be found at higher altitudes. State of the art wind turbines now have hub 

heights of 120 to 160 meters, and the rotary blades may reach as high as 200 meters at blade 

tip. When planning a wind project this can be challenging as the towers used for wind 

measurements seldom exceeds 100 meters altitude.  Doppler LiDAR systems has been 

introduced in wind resource assessment as they are very precise in measuring air movement 

and fluctations at higher elevations. The WindCube LiDAR rotates a laser beam in cone shape 

using pulsed heterodyne technology. The wind speeds and direction are determined by detecting 

the Doppler shift of the laser.  

At the WMR wind farm the LiDAR is of the model type WindCube manufactured by 

Leosphere, and is installed on the roof deck of the offshore substation Z01 at a height of 33.8 

m from the Lowest Astronomical Tide (LAT). The data received from the LiDAR is given in 

10 minutes average observation during the reference period 13 January 2016 to 6 December 

2017. For calculation purposes in this study the height has been assumed to 34 meters. Table 9 

contains description and content available from the wind cube at WMR. The location of the 

substation Z01 is depicted in figure 7. 

https://en.wind-turbine-models.com/turbines/657-siemens-swt-6.0-154
https://en.wind-turbine-models.com/turbines/657-siemens-swt-6.0-154
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Description       Content 

Type                       Leosphere WindCube 

Observation             10-min  averaged 

Accuracy       0.1m/s (speed), 2 degrees (dir) 

Reference period      2016.01.13 – 2017.12.06 

Height above MSL† [m]             33.8 (34 for analysis) 

Location GPS                 Roof deck Z01 sub-station  

 

    Wind speed 40, 60, 70, 80, 100, 120, 140, 160, 180, 250, 270, 290 

Observation height [m]  Wind dir*  40, 60, 70, 80, 100, 120, 140, 160, 180, 250, 270, 290

    Air Pressure     33.8 

    Air temperature    33.8  

    Relative humidity    33.8 

Table 9: Content description of the Leosphere WIndcube located at WMR substation Z01. 

†  To correctly calculate height above Lowest Astronomical tide (LAT), the height of the LiDAR lens must be considered 

(33.8 m above LAT). For example: if the configured measuring height is 10m, true height of measurement is 43.8 m above 

LAT. 

*. Wind direction for every measuring height must be corrected according to the offset value (direction between LiDAR 

reference angle 0 and north), which depending on when the measurement were taken, is +4deg and -129deg.  

 

Figure 7: Lidar location on roof deck of substation Z01. Ref: (Westermost Rough Lidar documentation report – Dong energy, 

prepared 25 May 2016) 

5.1.2 Offshore Buoy 

Inside the WMR wind farm a wave buoy manufactured by Fugro Oceanor of the model 

SEAWACTH Midi is installed. The data retrained from the buoy is given in table 10.  
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Description       Content 

Type                    SEAWATCH Midi 

Observation       30-min averaged 

Sampling period             2016.01.01 – 2017.12.31 

Location            53°50.250’N, 000°09.500’E 

 

Observation depth [m]          Current direction      2, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33 

            Current speed       2, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33 

           Water temperature Sea surface  

Table 10: Buoy data SEAWATCH Midi 

5.2 Data Quality and Filtering  

With different data sources covering different measurement periods this thesis uses the period 

2016.01.13 – 2017.12.06 as the reference period. This period serves as the reference period  as 

it is the shortest of all the different data sources (LiDAR).  

5.2.1 LiDAR  

Due to the position of the LiDAR, the wind observation does have the potential to be distorted 

as wake generates downstream of a wind turbine.  All the data is handled in separate collumn 

vectors and sorted to have the same start and end date, and follows the same time step. SCADA 

data contained double sampling of june 2017 which had to be removed in order to align the 

data.  The oceanographic data attained from the buoy are stored as 30 minute averages which 

for more detailed measurements is interpolated to 10 minutes observations.  During the 

reference period 13 January 2016 to 6 December 2017, the LiDAR data had some significant 

deficiencies, and it is natural to assume that it was out of service for longer stretches during the 

reference period. 100% 10-min average samplings calls for 99775 measurements while our 

dataset only contains about 11256 measurements of windspeed (each height), 11437 

measurements of temperature, and 11256 measurements of direction (each height), hence a data 

quality of 11.28 – 11.46%. Figure 8 shows significant gaps in the wind speed time series at hub 

height. 
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Figure 8: Wind speed time series LiDAR at hub height (106m) 

Following Obhrai et al (2012), the data was filtered in order to remove non-stationary 

conditions which conformed the three criteria: i) a variation in temperature more than 0.5C, ii) 

a variation in wind speed of more than 10% and iii)  a change in wind direction of more than 

10 in between consecutive values. For stability calculations, windspeeds lower than 2 m/s along 

with negative air and sea temperature were filtered out from the dataset. The data quality before 

and after filtering using Obhrai 2012 is presented in table 11. Due  small deviations  in quality 

among the different turbines, only wind speed and direction for 106m is presented, however, 

the filtering is applied to all heights. The wind rose for the hub height pre- and post-calibration 

is depicted in figure 9 and 10 respectively.  

Data description  Pre-filtering  Post-filtering         Filtered [%] 

 Wind speed (106 m)                   11256       10134  9.97% 

 Wind direction (106 m)      11256       10241  9.02% 

 Air temperature                  11437                         11134  2.65%        

Table 11: data quality pre and post-filtering.  
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Figure 9: Wind Rose at hub height before filtering. Based on 11256 measurements of 10-min averages during the reference 

period.  

 

Figure 10: Wind Rose at hub height after filtering. Based on 10134 measurements of 10 min-averages during the reference 

period.  
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5.2.2 Buoy 

The Buoy data set containing water temperature had some significant outlier data which was 

filtered and smoothed as it does not experience critical diurnal changes. The data from the buoy 

was given in 30-minutes measurements which was interpolated to 10-minutes measurements. 

The smoothed data gives us 99775 10-minutes measurements of water temperature during the 

reference period. The wave height and direction measurements had very few outliers and had a 

data quality of 98.64% during the reference period. A wave rose is depicted in figure 11.  

 

Figure 11: Wave rose during the reference period based on 98418 measurements. 

5.2.3 SCADA data 

The SCADA data had great consistency for all the turbines. There were no significant 

deviations in the data availability between the different turbines, however, most of the turbines 

had a double sampling of June 2017 which had to be removed. Because of low deviations the 

following data availability for the A01 turbine, presented in table 12, can be assumed 

approximate equal, and representative for all turbines. 
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Data     Number of samples              Available samples       Availability [%] 

Wind Speed     99775                  97370              97.59 

Wind Speed standard dev.       99775          97370              97.59 

Mean active power output    99775       97396              97.62 

Ambient Temperature   99775       97371              97.59 

RPM      99775       97370              97.59 

Pitch position     99775       97370              97.59 

Yaw position      99775                                    97370                                 97.59 

 Table 12: representation of available data thorugh turbine A01 SCADA during the reference period.  

 

Figure 12 and 13 display the wind speed density from the A01 SCADA data fitted with different 

distributions. The Weibull parameters are given in table 13.   

 

 

Figure 12: Different distributions fit to the SCADA wind-speed for the A01 turbine.  

Parameter       Value 

 

Estimated scale parameter:      10.1687 

Estimated shape parameter:       2.3357 

 

95% Confidence interval for scale parameter:   [10.1373, 2.3233] 

95% Confidence interval for shape parameter:               [10.2002, 2.3482] 

Table 13: Two-parameter Weibull parameters.  
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Figure 13: Kernel distribution fit to SCADA wind speed for turbine A01 
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6 Results 

6.1 Stability  

In determination of the atmospheric stability at WMR both the Bulk Richardson number and 

Gradient Richardson number were used for comparison. Since the only measure for temperature 

we have is at the same altitude as where the LiDAR is positioned (34m), the temperature from 

the turbine C03 SCADA data had to be used in order to get temperature from two altitudes in 

order to calculate the gradient Richardson number. The turbine C03 was chosen as it is located 

closest to the LiDAR and we can assume little variation in temperature between the C03 to the 

LiDAR, for a complete overview of the wind farm with labeled turbine numbers see Appendix 

3, figure 49. Figure 14 shows the stability for different heights normalized to the lowest 

measuring height, 74m, where the right hand side contains stability measure using gradient 

richardson, and left hand side for bulk richardson.  The data used in analysis is the post filtered 

LiDAR data as presented in chapter 5.2.  

    Bulk Richardson          Gradient Richardson 

 

(a)           (b) 
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   (c)          (d)  

 

   (e)            (f)    

 

   (g)           (h)  

Figure 14: Comparison of bulk richardson (B) to gradient richardson (G); B U106m/U74m (a); G U106m/U74m (b); B 

U114m/U74m (c); G U114m/U74m (d); B U134m/U74m (e); G U134m/U74m (f); B U154m/U74m (g); G U154m/U74m (h). 
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The root mean square error (RMSE) for (a) to (h) is presented in table 14.  

 Height (m)   Bulk    Gradient 

 106    0.0609     0.0668 

 114    0.0813     0.0886 

 134    0.1093     0.1225 

 154    0.1378     0.1641 

 174    0.1658     0.1999 

 194    0.1961     0.2405 

 Table 14: RMSE comparison Bulk Vs Gradient method using 45 bins.  

6.1.1 Turbulence 

The wind speed is normalized at 74m and sorted into stability classes using the gradient 

Richardson number and wind speed distribution for each stability class is determined. Figure 

15 and 16 shows the turbulence intensity and the 90th percentile turbulence at hub height 

respectively.  

 

Figure 15: Turbulence intensity for different stability classes at hub height (106m) 
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Figure 16: 90th percentile turbulence intensity for different stability classes at hub height (106m) 

6.2 Power Calculations Using LiDAR data  

The second objective of this thesis was to apply the hub height wind speed and rotor equivalent 

wind speed to the LiDAR data and compare the energy output to the actual energy generated in 

the SCADA data. For this calculation turbine C03 was chosen as reference turbine as this is the 

turbine placed closest, adjacent, to the LiDAR and it is assumed that the turbine experiences 

the same wind as the LiDAR. The calculations in this sub-chapter will be conducted for one 

turbine only, C03. The power curve used for this calculation is presented in-depth in chapter 

6.3 ‘’Power Curve Correction’’. Because of large gaps in the LiDAR data during the reference 

period, the longest period with coherent LiDAR data was used for analyses and spans from 13 

January 2016 to 17 February 2016 (figure 17) and contains 4884 10-minutes measurements. A 

sectionally binned representation of the wind speed and direction is given in figure 18.  
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Figure 17:  LiDAR wind speed at hub height from 13.01.2016 to 17.02.2016 based on 4884 10-min measurements.  

 

Figure 18: sectionally binned wind speeds based on 4884 10-min measurements with 0 degrees being North.  

The turbine rotor was split into five segments with equal distance to each other, with the lowest 

centre (U1) being 44.4 meters above sea water level (‘’SWL’’). The sections are determined in 

accordance with Chapter 2.7.2 . The five sections of the area (A1-A5) are used to weight the 

wind speeds at the area centers. Figure 20 displays the WTG rotor with segment centres. Table 

15 shows the segment details after splitting in accordance with equation 32 and 33. It should be 

reminded that the distance from SWL to the rotor tip at the bottom is 29 meters.  
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Figure 19: Rotor split into segments 

 

 

Segment      wind speed       segment    segment         segment        segment height     Wind Speed  

                    height [m]   weighting [%]       bottom [m]     top [m]           [m]                             [m/s] 

A5         167.6                   5.20                    152.2              183                 30.8                       11.4762 

A4         136.8                 25.23                    121.4              152.2              30.8                       11.1477 

A3                  106                   39.13                     90.6               121.4              30.8                       10.7482 

A2                  75.2                  25.23                     59.8               90.6                30.8                        9.5449 

A1                  44.4                   5.20                      29                  59.8                30.8                        8.1572 

Table 15: Segment details.   

The rotor equivalent wind speed is then determined by utilizing equation 31. For power output 

calculation we use the power curve which will be described in the next chapter (chapter 6.3). 

Table 16 gives the power output determined by using REWS, and HHWS compared to actual 

production for the period.  
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                     Method                                        Energy [MWh] 

           Hub height wind speed   4 281 

       Rotor equivalent wind speed  4 473 

            SCADA    4 900  

Table 16: Power output the period 13 Jan – 17 Feb 2016.  

                         

6.3 Power curve correction 

One of the objectives of this theses was to compare a ‘’real power curve’’ obtained through 

SCADA data and MAF as described in chapter 2.6.1, to standard turbine specific power curve. 

After filtering the SCADA data through equation 25, we want to determine the filter output 

through equation 24. The critical problem when using the MAF filters is to determine the filters 

window length. The filter window should be appropriate in length to compare trends in wind 

speed change and power change. In the determination of correct length of window through 

iteration, we choose one week of SCADA data as reference (1008 10-min samples). It should 

be noted that one week of data is rather arbitrary, but as long as the window is long enough to 

clearly see trends and patterns in the data, which is the main objective, it is considered sufficient. 

The MAF with chosen window length is then applied to the whole reference period. Here, the 

turbine A01 is used as the reference turbine. Figure 20 to 22 shows the filtered wind speeds 

with different window lengths.  The basis for choosing A01 is explained in chapter 1.1.  
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Figure 20: MAF with filter window length N = 10 during a one week period. 

 

 

Figure 21: MAF with filter window length N = 20 during a one period. 
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Figure 22: MAF with filter window length N = 30 during a one week period 

After filtering, the wind speed fluctuations are reduced. The magnitude of reduction depends 

on the filter length of choice. There is good consistency of trend in wind speed and power. Dai  

et al (2022) stresses that the window length value only serves as an approximate value due to 

the wind conditions complexity, and that it is not that the longer filter window length, the better. 

But a smaller window length as long as the consistency of trends is present is favourable. That 

is why in this theses we proceed with a window length of N = 10.   

 

Figure 23: comparison raw wind speed (blue) and corrected wind speed through MAF with filter length N = 10 (red). 
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We can tell from figure 23 that the wind speed fluctuation has been reduced as a result of the 

filtering, and the filtered wind speed has a small delay in time when compared to the raw wind 

speed. This delay slightly increases with the increase of window length, N. According to the 

momentum theory of an ideal WTG and combined with the anemometer installation position, 

the difference between the measured and actual wind speeds is roughly compensated. 

Proceeding to model the power curve only a scatterplot can be obtained from SCADA data. For 

this reason, various fitting forms were tested using the curve fitting toolbox in MATLAB, 

including Polynomial fit (figure 24), Fourier fit (figure 25), sum of sine (figure 26), and 

Gaussian fit (figure 27). The figures 24 – 27 contains all yaw angles.   

 

Figure 24: Corrected power curve with polynomial fit.  

 

 

Figure 25: Corrected power curve with fourier fit. 
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Figure 26: Corrected power curve with sum of sine fit. 

 

 

Figure 27: Corrected power curve with Gaussian fit. 

The different fits were then analysed together with the raw fitted power curve (only applied the 

filtering, no MAF) (figure 28) in the curve fitting toolbox. Table 17 presents the goodness of 

fit for the raw power curve and the corrected power curve fitted with Fourier fit, which showed 

the best fit.  
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Figure 28: raw power curve with fourier fit.  

 

Coefficients              Power curve corrected             Power curve raw SCADA 

a0               3859 (3833,3885)   4010 (3932, 4089) 

a1              -1175 (-1215,-1135)   -1832  (-2069, -1596) 

b1                                            2949  (2917, 2980)   -2444  (-2517, -2371) 

a2    954  (944.7, 963.2)   134  (-73.48, 341.5) 

b2    627.3  (574.9, 679.7)   -1207  (-1223, -1192) 

a3    -323.6  (-350.5, -296.7)  -196.8  (-332.9, -60.72) 

b3    -166.7  (-199, -134.4)   -282.8  (-344, -221.5) 

a4    -82.93  (-116.3, -49.55)  -211.3  (-343.4, -79.32) 

b4    369.8  (355.7, 383.8)    -304.8  (-370.7, -238.8)  

a5    125.9  (101.5, 150.2)   -118.3  (-194.8, -41.71) 

b5    -117.1  (-131.6, -102.6)   -105.4  (-159.4, -51.41) 

a6    -140  (-150.9, -129.2)   -128.6  (-179.9, -77.28) 

b6    -43.9  (-60.28, -27.51)  -66.09  (-122.6, -9.622) 

a7    28.54  (23.62, 33.45)   -51.15  (-72.66, -29.64) 

b7    50.55  (40.16, 60.94)     -16.93  (-47.6, 13.75) 

a8    8.203  (5.509, 10.9)   -45.66  (-49.76, -41.55) 

b8    -45.04  (-48.88, -41.2)  10.7  (-12.88, 34.27) 

Goodness of fit 

SSE              1.6e+09         1.868e+09 

R-square              0.9969             0.9951 

Adjusted R-square             0.9969             0.9951 

RMSE            126.6505             150.6 

Table 17: Coeficcient with 95% confidence bounds comparison.  
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Both the power curves are compared in table 18, from cut in wind speed 4m/s, to rated wind 

speed, 13m/s. By examining the table, we can clearly tell that the corrected power curve yields 

lower power output for the same wind speeds between cut-in and rated.  

Wind speed [m/s] Power curve raw [kW]   Cp Power curve corrected [kW]   Cp 

4   267   0.37  258   0.35 

5   670   0.47  578   0.4 

6   1303   0.53  1150   0.46 

7   2137   0.55  1866   0.47 

8   3111   0.53  2779   0.47 

9   4220   0.51  3758   0.45 

10   5185   0.46  4793   0.42 

11   5832   0.38  5627   0.37 

12   5962   0.30  5956   0.3 

13   5979   0.24  5977   0.24 

 

Table 18: Comparison of power curves 
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6.4 WindPRO 

In this sub chapter the work and results for WindPRO will be presented. The chapter is further 

split into three sub chapters as follows:  

Chapter 6.4.1 ‘’Project setup and Annual Energy Production (‘’AEP’’)’’: Both power curves 

determined in chapter 6.3 will be utilized for comparison in AEP calculation using reanalysis  

data scaled to local LiDAR data using transfer functions. The main purpose for this chapter is 

to determine the suitability for reanalysis data scaling when we have small ampunts of local 

data available. For this thesis’ instance, our local data only covers 12% of the reference period. 

Data used in this analysis is presented in chapter 5.2.1 (LiDAR) along with reanalysis data.  

Chapter 6.4.2 ‘’Wake models’’: As a part of the AEP calculation, the Jensen wake model and 

the Eddy-viscosity (Ainsle) wake model is used for energy reduction. This chapter compares 

the two models and displays turbine-by-turbine reduction in energy due to wakes.  

Chapter 6.4.3 ‘’ Performance check’’: the performance check is a stand-alone module in 

WindPRO where the individual turbines SCADA data is used together with power curve.  

As WindPRO is a very practical software and the knowledge of the software is mainly for 

industry, chapter 6.4 will be presented as ‘’step by step’’ approach. It should be noted that 

WindPRO requires the use of MATLAB or other numeric computing software in some of the 

iterative processes. Illustrations given in this chapters are made both through MATLAB and 

WindPRO. For a better overview the source will be given in the figure citation.  

6.4.1  Project Setup and Annual Energy Production 

The first step in the setup was to import the geo-reference map of Westermost Rough with the 

correct coordinate and datum (WGS84) information. When starting a new WindPRO project 

WTG’s can either be imported as a shapefile or placed one by one at the desired location. 

Another option is to import the existing wind turbines from the EMD server, which is a 

comprehensive source for WTG positions worldwide. The server is based on data downloaded 

2019-12-04. Westermost Rough has not experienced any modification with regards to turbine 

position since that period and can be assumed accurate. The Siemens Gamesa SWT-6.0-154 

wind turbine is not part of the EMD wind turbine catalogue, so the first step is to create a new 

wind turbine that has the same properties as the SWT-6.0-154. The basic information is 

retrieved from the producer’s technical data sheet as presented in table 7 and 8, (chapter 5.1) as 
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both the power curves are to be tested we create two new power curves. The two power curves 

with their respevtive power coefficient can be seen in figure 29 and 30.  

 

Figure 29: Corrected power curve (red), Power coefficient (green); WindPRO. 

 

Figure 30: Raw power curve (red), Power coeficcient (green); WindPRO.  

Now that the turbines have been positioned by the EMD database and validated with the use of 

the turbine metadata retrieved by Ørsted. the WMR wind park turbine layout can be seen in 

figure 31.  
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Figure 31: Westermost Rough park layout. Turbines (blue) and cite center (orange); WindPRO. 

 

Next, we place METEO Objects within the wind farm. One object containing the local 

measurement data retrieved from LiDAR. Since the LiDAR is placed on the roof of the 

substation Z01 and we know the substation coordinates, we can name the METEO object Z01 

and place it within the correct coordinates. The LiDAR data is imported as ASCII time series.   

In the import setup, we choose the type of data, sub-type (mean, std, max, min), and unit. We 

also choose the specific heights the data is representing. In the data setup we choose the lower 

and higher limits of the data. Here we can add or delete signals to the different heights. Because 

of small amount of LiDAR measurements within the reference period, calculating the annual 

energy produced (AEP) done solely with the use of LiDAR measurements can not be done and 

is why we want to examine the possibility of using reanalysis data scaled to local measurements, 

in order to make a coherent time series for the whole reference period. We create a new METEO 

object for the reanalysis data and proceed to download the data sets of interest directly from the 

EMD. When downloading the reanalysis data in to the METEO object, we select the relevant 

third party reanalysis data sets NEWA, NORA3, the Global assimilation dataset ERA5 and 

check for coverage in the area around the WMR wind farm.  The location of the datasets relative 

to the wind farm is depicted in figure 32.  
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Figure 32:  WMR wind park with location of reanalysis data given with colour codes; MATLAB 

Now the measured data (LiDAR) from METEO object is the basis, and interpolations together 

with WasP calculated transfer functions (scaler) gives the calculated wind speed, wake 

reductions, and output power at each turbine for each time step.    The method for scaling is an 

iterative process that starts by choosing the LiDAR data that we want to calibrate the reanalysis 

data to. For this we have chosen to use 74 – 214 meters, as 74m is the lowest measurement 

available on site, and the wind turbine blade tip does not exceed 214m. The LiDAR data that is 

used in METEO Analyzer1 is: wind speed, wind direction and wind speed standard deviation 

for all height, along with sea surface temperature. The lowest measurement also includes 

temperature and relative humidity. We choose which METEO object we want to scale from, in 

which we start with the NORA3 data, and run the EMD default scaler. Now, a new scaled data 

series is created through transfer functions. By examining the newly created time series to the 

local measurement at hub height during a concurrent period we see clear trends and similarity. 

A good tool for comparison is the radar graph presented in figure 35 which displays the wind 

 
1 METEO Analyzer: the METEO analyzer is a tool that works directly on the data located in the Meteo objects. 
The analyzer has the ability to work on data from multiple objects in parallel and is therefore suitable for 
creating new time series based on a scaler and immediately compare it with other measurements (e.g. 
downscaled meso data to a local measurement) which is essential for post calibration of the scaler so that 
scaled data matches the measured data better. The meteo analyzer is also suitable for substituting/filling data 
from one signal to another.  
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speed and direction on concurrent time stamps for the LiDAR data and the raw NORA3 data 

before doing any scaling.  

 

Figure 33: Comparison during reference period 16.01.2016 – 06.12.2017. Wind speed and direction at hub height. LiDAR 

data (purple),  raw NORA3 (blue); WindPRO 

The two radar graphs in figure 33 shows a decent correlation, but are not completely aligned. 

To bring the correlation to a higher, we create a scaler based on the ratios from Figure 33. One 

important measure of the scaler is to bring the meso data as close to the measured wind 

distribution (weibull fit) as possible. Figure 34 shows the Weibull distribution of both the raw 

NORA3 and the LiDAR measurements. By examining the two Weibull distributions we can 

tell there is a deviation and we therefore proceed to scaling.  
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Figure 34: Weibull distribution raw NORA3 (blue) and LiDAR measurements (purple) both at hub height; WindPRO. 

The post calibration of the scaler is carried out in accordance with EMD manual: we start by 

extracting the data from the radar graph, which contains the mean wind speed at different 

directions presented in table 19.  

Mean Wind Speeds at direction   

Angle  Local measurement NORA3 Ratio 

360 9.106399977 8.611711237 1.0334000 

330 7.947962941 7.386914597 1.075951649 

300 7.853478217 7.502077113 1.046840508 

270 7.37772279 7.574436464 0.974029266 

240 6.761111121 7.874660921 0.858590762 

210 6.357105276 8.549430151 0.743570643 

180 9.749479744 9.517286816 1.024396967 

150 11.2316556 10.1213912 1.109694841 

120 11.59393587 9.882118498 1.173223725 

90 9.836360775 9.509897979 1.034328738 

60 7.71897261 8.240999645 0.936654889 

30 9.677093054 8.833116543 1.095546856 

  Table 19: Directional ratios of local measuremnt (LiDAR) to raw NORA3. 

We can tell from the table that the NORA3 data under-predicts at in north direction (0 degrees) 

and overpredicts in direction east to south. Now that the ratios have been determined we can 

return to the scaler and correct section-wise it according to table 19. After the sectional 

configuration the scaler is shaped as shown in figure 35, where the black circle indicates the 

base case (all ratios =1), and blue shape shows section wise correction.   
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Figure 35: Scaler with added correction factors section wise, blue shape illustrates the sectional configurations of the scaler; 

WindPRO 

Now that we have calculated the ratios for the different directions, the MCP module is used to 

analyze the correlation between the local measurements and the scaled long-term reference 

data. Comparing the data statistics of the local measurements and the sectional corrected 

NORA3 data as illustrated in table 20.  

Count              measured wind speed (LiDAR)      NORA3 sectional corr.   

        mean [m/s]     Std.dev [m/s]             mean [m/s]     Std.dev [m/s]   

1856                9.61                  4.8     10.75              5.2 

Table 20: MCP module Comparison LiDAR data to the sectional corrected NORA3 

Based on the assumption that the cumulative distributions of the modelled data shall be the 

same as the measured, the information in table 20 can be utilized and the following relationship 

is used:  

 
𝑢𝑚𝑜𝑑𝑒𝑙 − 𝑢𝑚𝑒𝑎𝑛,𝑚𝑜𝑑𝑒𝑙

𝑆𝑡𝐷𝑒𝑣,𝑚𝑜𝑑𝑒𝑙
=
𝑢𝑚𝑒𝑎𝑠 − 𝑢𝑚𝑒𝑎𝑛,𝑚𝑒𝑎𝑠

𝑆𝑡𝐷𝑒𝑣,𝑚𝑒𝑎𝑠
 [45] 

From this relationship the following formulas for the needed calibration can be derived:  

 

Main𝑆𝑐𝑎𝑙𝑒 =
𝜎𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑

𝜎𝑚𝑜𝑑𝑒𝑙
 [46] 
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Where 𝜎𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 is the wind speed standard deviation for measured (LiDAR) data, and 𝜎𝑚𝑜𝑑𝑒𝑙 

is the standard deviation og the model data available in table 20.  

 

𝑀𝑎𝑖𝑛𝑂𝑓𝑓𝑠𝑒𝑡 =  𝑢𝑚𝑒𝑎𝑛,𝑚𝑒𝑎𝑠 − (
𝜎𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑
𝜎𝑚𝑜𝑑𝑒𝑙

) × 𝑢𝑚𝑒𝑎𝑛,𝑚𝑜𝑑𝑒𝑙 [47] 

Once we have determined the main scale and offset value, we return to the METEO analyzer 

to correct the scaler. We now create the final time series which is the scaled NORA3 data. By 

examining the Weibull distribution for the two datasets in figure 36, we can clearly see a good 

correlation. The new radar graph comparison (figure 37) also shows a good match.  

 

Figure 36: Weibull distribution of scaled NORA3 (red) at hub height, and LiDAR data (green) at hub height; WindPRO. 

 

Figure 37: Radar graph of scaled NORA3 (blue) at hub height, and LiDAR data (purple) at hub height; WindPRO.  
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Once we have completed the new time series with the scaler, we calculate the AEP in the PARK 

calculation module. The procedure followed in this chapter has been applied to NORA3, ERA5, 

and NEWA data sets in order to compare and find the best fit for WMR. The results are 

compared to the actual SCADA data and presented in tables. There have been tested two 

different power curves (corrected and raw) and two different wake models (Jensen and eddy-

viscosity wake model). The results will be presented in separated tables and in a comparing 

graph. The full production analysis for the different data sets can be found in Appendix 1(a) to 

(d). Table 21 presents the daily averaged correlation between the reanalysis data and LiDAR 

data before and after scaling.  

                                                                               NORA3                ERA5         NEWA 

Scaled meso Correlation to LiDAR – Energy          0.980  0.983  0.943       

(daily averaged) 

Scaled meso Correlation to LiDAR - Wind speed   0.983  0.985  0.956     

(daily averaged) 

Raw meso data correlation to LiDAR   0.977  0.979  0.927 

Energy (Daily averaged)   

Raw meso data correlation to LiDAR  0.982  0.983  0.945 

Wind speed (Daily averaged)   

Table 21 :  The correlation is between concurrent samples: 1856, approximately 2,5 months during the reference period.   

It should be mentioned that the correlations would have been more sensitive to change if 

averaged to a narrower time ineterval.  

 The following tables 22 – 25, and figure 39 shows the AEP using the scaled reanalysis data for 

different scenarios given by the table captions. The different scenarios can be seen in figure 38.  

                                                          NORA3 ERA5  NEWA SCADA 

Production [MWh/y]   806 823.0 883 180.20 899 259.40 867 369 

Turbine average [MWh/y]  23 052.09 25 233.72 25 693.13 24 794.8 

Wake Loss [%] average year  6.61  6.00  5.97         - 

 

Capacity factor [%]   39.4  43.2  44        - 

Full load hours [hours/year]  3 458  3 785  3 854        - 

Table 22: Production table using power curve corrected and Jensen wake model with scaled reanalysis data.  
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                                                          NORA3 ERA5  NEWA SCADA 

Production [MWh/y]   780 630.0 865 422.20 879 996.40 867 369 

Turbine average [MWh/y]  22 303.71 24 726.35 25 142.74 24 794.8 

Wake Loss [%] average year  9.88  7.90  7.98         - 

 

Capacity factor [%]   38.2  42.3  43        - 

Full load hours [hours/year]  3 346  3 709  3 771        - 

Table 23: Production table using power curve corrected and eddy-viscosity wake model with scaled reanalysis data. 

                                                          NORA3 ERA5  NEWA SCADA 

Production [MWh/y]   863 636.90 936 211.20 952 592.10 867 369 

Turbine average [MWh/y]  24 675.34 26 748.89 27 216.92 24 794.8 

Wake Loss [%] average year  6.61  5.82  5.78         - 

 

Capacity factor [%]   42.2  45.8  46.6        - 

Full load hours [hours/year]  3 701  4 012  4 083        - 

Table 24: Production table using raw power curve and Jensen wake model with scaled reanalysis data. 

                                                          NORA3 ERA5  NEWA SCADA 

Production [MWh/y]   844 850.0 919 091.0 934 150.10 867 369 

Turbine average [MWh/y]  24 138.57 26 259.74 26 690.01 24 794.8 

Wake Loss [%] average year  8.65  7.53  7.61         - 

 

Capacity factor [%]   41.3  44.9  45.7        - 

Full load hours [hours/year]  3 621  3 939  4 003        - 

Table 25: Production table using raw power curve and eddy-viscosity model with scaled reanalysis data.  
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Figure 38: Comparison of AEP thourgh different sources using scaled reanalysis data; MATLAB. 

 

For comparison the same methodology is followed for the raw meso-data to see the impact of 

the 12 % of LiDAR data used in scaling. Table 26-29 shows the raw reanalysis data with 

different configurations.  

                                                          NORA3 ERA5  NEWA SCADA 

Production [MWh/y]   974 230 887 343 969 378 867 369 

Turbine average [MWh/y]  25 052  22 817  24 956  24 794.8 

Wake Loss [%] average year  5.5  6.4  5.6         - 

 

Capacity factor [%]   47.6  43.4  47.4        - 

Full load hours [hours/year]  4 175  3 803   4 154        - 

Table 26: Production table using raw reanalysis data, corrected power curve, and Jensen wake model. 
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                                                          NORA3 ERA5  NEWA SCADA 

Production [MWh/y]   953 616 870 038 949 238 867 369 

Turbine average [MWh/y]  24 522   24 956  24 409  24 794.8 

Wake Loss [%] average year  7.5  6.2  7.6          - 

 

Capacity factor [%]   46.6  43.1  46.4        - 

Full load hours [hours/year]  4 087  3 833   4 068        - 

Table 27: Production table using raw reanalysis data, corrected power curve, and Eddy-viscosity wake model 

 

                                                          NORA3 ERA5  NEWA SCADA 

Production [MWh/y]   1 028 180 942 971 1 021 782 867 369 

Turbine average [MWh/y]  26 439  24 248  26 274  24 794.8 

Wake Loss [%] average year  5.3  6.2  5.4         - 

 

Capacity factor [%]   50.3  46.1  50        - 

Full load hours [hours/year]  4 406  4 041  4 379        - 

Table 28: Production table using raw reanalysis data, raw power curve, and Jensen wake model.  

 

                                                          NORA3 ERA5  NEWA SCADA 

Production [MWh/y]   1 008 606 924 810 1 002 713 867 369 

Turbine average [MWh/y]  25 936  23 781  25 784  24 794.8 

Wake Loss [%] average year  7.1  8.0  7.2         - 

 

Capacity factor [%]   49.3  45.2  49        - 

Full load hours [hours/year]  4 323  3 963   4 297        - 

Table 29: Production table using raw reanalysis data, raw power curve, and Eddy-viscosity wake model. 
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Figure 39: Comparison of AEP thourgh different sources using raw reanalysis data; MATLAB. 

 

 

When comparing figure 38 to 39, ERA5 best fit for WMR when comparing the AEP to actual 

SCADA data. Figure 40 shows the time series for the raw ERA5, the scaled ERA5, and the raw 

lidar data in a period where we have concurrent data. Figure 42 shows the scaled ERA5 together 

with the raw ERA5 over one month. Both figure 41 and 42 is given for comparison.  

 

Figure 40: Raw ERA5 (red), LiDAR measurement ( green), scaled ERA5 (purple); WindPRO.  
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We can tell from figure 40 that the scaled ERA5 follows the LiDAR trends, but struggles to 

capture the short-term fluctuations. The displayed period is from 07.05.2016 -  19.05.2016.  

 

 

Figure 41: Scaled ERA5 (green), Raw ERA5 (red); WindPRO.  

By examining figure 41, we can see that the scaled ERA5 adds both higher peeks and lower 

throughs compared to the raw ERA 5. The displayed period is from 09.01.2016 – 08.02.2016. 

The sector-wise energy production [MWh/y] and wake losses for the whole park, using the 

ERA5 corrected data together with corrected power curve and Eddy viscosity wake model, is 

shown in figure 42. The complete analysis for this scenario can be found in Appendix 2.   

 

 

Figure 42: Energy [MWh/year] based on section including wake losses; WindPRO 
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6.4.2 Wake models 

In the following, wake reduction is presented in percentage by the different models. Results for 

the corrected power curve only is presented as it seems to give a more realistic description of 

the power generated by the WTG-s. Wake reduction as a percentage of the AEP is preented in 

figure 43, with different scaled reanalysis data, (a) to (f). For section wise wake reduction of 

scenario (b), see Appendix 2, table 32.  

When using the Eddy viscosity model, the parameter we need to choose is the surface 

roughness. For normal offshore conditions, EMD recommends to use 0,0002. This is also what 

is used in this thesis. The choice of wake decay constant is crucial when using the Jensen wake 

model. A coefficient of 0.06 is applied in this thesis, which according to DTU’s findings in 

2018 yields more accuracy for offshore conditions.  

 

 
   (a)              (b) 
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   (c)              (d) 

 
   (e)        (f)  

Figure 43: Percentage wake loss MATLAB were (a) ERA5 using Jensen Wake model; (b) ERA5 using Eddy viscosity model; 

(c) NEWA using Jensen Wake model; (d) NEWA using Eddy Viscosity model; (e) NORA3 using Jensen Wake model; (f) 

NORA3 using Eddy Viscosity model.  
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6.4.3 Performance Check -post construction 

This sub-chapter is not an continuation of the previous result chapters but serves as a stand-

alone chapter. None of the power curves described in chapter 7 are utilized in the performance 

check as one of the module tasks is to assign filter codes that indicates stopped or suboptimal 

performance and applied to all the 35 turbines specific power curves, based solely on SCADA 

data. The SCADA data is paired and loaded in to their respective turbine. 

Actual production is used to calculate the potential production when the WTG is normal 

operation with no faults or stoppage. For periods when there are faults or stops, production is 

determined using the wind speed experienced at the nacelle, and the historic power curve. The 

potential production is long-term corrected by using an energy index to correctly establish the 

normalized production. Following this, expected long-term future losses are subtracted to get 

to the expected future production. The NET production calculation is based on the parameters 

in table 30.  

                                           NET production calculation basis     

Turbine type     Siemens Gamesa SWT-6.0-154 154  

Number of turbines       35 

Production data set      SCADA 

Production data period     Jan/2016 – dec/2017 

Reference data set      NORA3 

Reference data period      Jan/1999 – dec/2022 

Table 30: Net production calculation basis.  

 

The power curve (historical) is the turbine specific power curve based on the analysis operation 

period’s filtered SCADA data. The discrepancy between potential and actual production is 

characterized as lost production. Actual losses are those incurred during the operation period 

under consideration. Potential production is characterized as the production that could have 

become realized if the turbine had been running at full capacity, and it is determined by using 

the nacelle wind speed together with the historical power curve. According to EMD, normalized 

production can be defined as the production a wind farm would generate in a regular year with 

no losses (except for electrical losses and wake losses).  Expected losses are the anticipated 

future losses, which may include electrical losses and losses due to degradation if specified.  
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For the individual turbine power curves, self-consumption has been omitted. The measured 

binned power curve is the result of normal operational data and is used to calculate losses for 

time stamps that have been filtered as a ‘’stop’’ or ‘’suboptimal’’ operating period. The power 

curve for WTG A01 is displayed in figure 44 where the red dots are the measured data, pink 

dots are the filtered data, and green dots are the binned measured data. Because of the black 

circumference of the dots, measurements displays as black whenever there is a high 

measurement density.  

 

Figure 44: Power curve A01; WindPRO 

Because the nacelle wind speed is influenced by the operational mode of the WTG the IEC 

61400-26-1 recommends correcting for the potential bias. The correction filter is applied to the 

nacelle wind speeds during periods, where the turbine has nor operated in an ideal way to correct 

for the bias. Because error codes were not given by the SCADA data, it was manually inserted 

to WindPRO. The error codes chosen are:  (1)   stop when wind speed is more than 4m/s and 

power less or equal to 5 % of rated power. (2) for steep part- stop when wind speed is more 

than 4m/s and power below wind speed shifted PC is 1 m/s. (3) for flat part – stop when power 

is below rated power. (4) stop when above cut out wind speed.   

Actual losses are calculated for each time step that coincides with an error occurrence as the 

difference between measured power and potential power based on the power curve (historic) 
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and the corrected wind speed experienced at the nacelle. The production analysis is presented 

in table 31. 

WTG   [1]    [2]             [3]                     [4]         [5]           [6]      [7] 
          [MWh]      [%]              [MWh] / [MWh/y]    LT corr.fac*  [MWh/y]   [%]    [MWh/y] 

All            1766681 3,86            1837624 / 918812     0,997   916500  5,36    867369 

 

C03   51140  2,17  52274 / 26137  0,997 26069  3,67  25112 
B04  45926  7,98  49907 / 24953  0,997 24886  9,48  22527 
E04   51701   3,54   53600 / 26800  0,997 26733  5,04  25384 
B05   49906   2,43   51148 / 25574   0,997  25499  3,93  24498 
C06   50236   3,33   51965 / 25983   0,997  25910  4,83  24659 
B03   50328   3,64   52231 / 26115   0,997  26049  5,14 24710 
C02   48060   6,64  51480 / 25740  0,997  25672  8,14 23581 
E05   51793   2,06   52881 / 26441   0,997  26370  3,56  25432 
E03   48916  5,24   51623 / 25812   0,998  25752  6,74  24015 
B06   49189   4,63  51578 / 25789  0,998  25728  6,13  24150 
B02   48254  5,48   51050 / 25525   0,997  25454  6,98  23678 
E06  48637  2,81   50042 / 25021   0,998  24971  4,31  23896 
E02  50701   3,99   52806 / 26403  0,998  26340  5,49  24895 
A04   50374   4,35   52668 / 26334  0,997  26263  5,85  24726 
A05   50266   6,25   53618 / 26809  0,998  26748  7,75  24675 
C07   49812   3,66   51704 / 25852   0,998  25797  5,16  24466 
D07  51310  3,20   53007 / 26504   0,997  26431  4,70  25189 
F04   49888  3,40   51646 / 25823   0,997 25753  4,90  24491 
A03   50800  5,72   53880 / 26940   0,997 26871  7,22 24932 
C01  49269  3,99   51316 / 25658   0,997 25587  5,49 24183 
D01  51695  2,81   53188 / 26594  0,997 26523  4,31  25381 
F05   49592   4,29   51816 / 25908  0,997 25829  5,79  24333 
F03   48109  2,75   49471 / 24736   0,998 24690  4,25  23639 
B07   50905  3,06   52514 / 26257   0,997 26183  4,56  24988 
A06   53611   2,10   54761 / 27380   0,997 27311  3,60  26328 
E07   51874   4,08   54083 / 27041   0,997 26973  5,58  25466 

B01   51066  3,13   52718 / 26359   0,997  26290  4,63  25072 
A02   49897  5,22   52645 / 26322   0,998  26282  6,72  24516 
E01   51721  4,36   54077 / 27038   0,998  26974  5,86  25394 
F06   52135  2,31   53365 / 26683   0,997  26614  3,81  25601 
F02   51246  3,14   52905 / 26452   0,997  26384  4,64  25160 
A07   53628  2,05   54748 / 27374   0,998  27308  3,55  26339 
A01   52158  4,97   54885 / 27443   0,998  27375  6,47  25604 
F07   51926  3,83   53995 / 26998   0,997  26927  5,33  25491 
F01   50614  2,72   52029 / 26015   0,998  25953  4,22 24857 

Table 31 : [1]Actual Production  [2]Actual losses [3]Potential production [4]LT corr.factor* 

 [5]Normalized production AEP [6]Expected total losses  

[7] Net production AEP 

*The long-time correction factor is based on the ratio between normalized production AEP and 

potential energy production.  

The monthly losses for the whole wind farm during the reference period are displayed in figure 

45.  
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Figure 45: Monthly losses for all turbines; WindPRO.  
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7 Summary and Discussion 

This chapter is separated in-to the six main objectives of the thesis for a better overview. Let us 

recall the thesis main objectives.  

(1) Compare different methods for determining the atmospheric stability.  

In determination of the atmospheric stability at Westermost Rough wind farm both the bulk 

Richardson number and Gradient Richardson number were used for comparison. For the bulk 

method under steady conditions where the stability parameter is negative, the bin averages can 

to some degree be described by the MO theory (logarithmic law) for measures at low elevation. 

The same is true for neutral conditions when the stability parameter is zero. For unsteady 

conditions where the stability parameter is positive the methods show strong inadequacy. The 

deviation from theory increases with elevation and shows inadequacy for all stability conditions 

at high altitudes. The same applies when using the gradient Richardson number, although this 

method showed worse results for all heights and the RMSE value difference between the two 

methods showed an increase along with elevation. The findings from this study support Gryning 

et al (2007) study  on the validity of Monin Obukhov scaling at higher altitudes, and the need 

for extended wind profiles to describe shear at high altitude.  

(2) Use LiDAR data to calculate Energy output through hub height wind speed and 

rotor equivalent wind speed.  

The Hub height wind speed was was compared to the rotor equivalent wind speed in order to 

best predict the energy output. Data from LiDAR containing measurements from 13.01.2016 to 

17.02.2016 were used for this analysis as it was the longest period with coherent measurements. 

Both methods was then compared to the SCADA data power output for the same period.  Within 

the short period of measurement available, allthough both HHWS and REWS underestimated 

the power output,  the power output were best predicted using REWS. This supports Ryu et al 

(2022) conclusion on REWS ability to predict higher wind speeds. Both in this thesis and the 

study carried out by Ruy et al at Anholt wind park, REWS had a more accurate prediction than 

the HHWS.  

 

(3) Obtain the real power curve through SCADA data.  

The objective for chapter 6.3 was to obtain the real power curve through the use of SCADA 

data, inspired by a novel idea by Dai et al (2022). The idea is based on the assumption that the 
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wind speed experienced by the anemometer installed at the nacelle, downwind of the WTG 

rotor, is not of the same magnitude as the wind speed experienced at the WTG rotor. To 

compensate for the difference between the measured and actual wind speed the wind speed was 

corrected by applying moving average filtering (MAF). In order to see the impact of different 

window lengths, the illustrations in chapter 6.3 is based on one week of measurements (1008 

10-min measurements). The wind speed was tested corrected with window lengths of 10 to 30. 

The chapter applied N=10 as window length of choice, as this window length succeeds to 

describe the consistency of trends without smoothing the graph too much. It should be 

emphasized that the length is an approximate value. The corrected wind speed is presented in a 

graph along with the raw wind speed. As a result of MAF the corrected wind speed had a 

reduction in wind speed fluctuations with a small delay in time compared to the raw wind speed.  

The corrected power curve was compared against the raw power curve where the corrected 

power curve showed a more conservative power output than the raw power curve for the same 

wind speeds from cut-in to start of rated. This matches the assumption put out by Dai et al 

(2022) that the wind speed recorded at the anemometer is distorted, and that the WTG requires 

higher wind speeds to match the recorded power output.   

(4) Scale reanalysis data to LiDAR on-cite measurements for long-time correction and 

compare the energy prediction to actual energy production.  

In chapter 6.4, the main objective was to determine the suitability of the different reanalysis 

data sets (NORA3, NEWA, and ERA5) when scaled to very scarce amount of local LiDAR 

measurements. The data sets are tested along with the Jensen wake model, and the Eddy 

viscosity wake model. Both the corrected power curve and the raw power curve were also 

tested.  

 All the reanalysis data sets showed too large power production before scaling (raw), for all 

scenarios (figure 39). When applying offset value and sectional correction to the scaler, the 

power output decreased for all data sets, making them come closer to the actual SCADA data. 

The ERA 5 data set seems to experience the least configurations out of the data sets. The main 

assumption for this is that the ERA5 data set had the highest correlation before applying scaler, 

and maintaing highest correlation after (table 21). Anyhow, this does not explain the strong 

improvement of the NORA3 data after applying the scaler. It should be mentioned again that 

the correlation is based on daily averages and only includes concurrent data. If WindPRO had 

the ability to show correlation with smaller time steps it would be more convenient to see the 
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connection. In other words, when looking at a larger averaged for correlation, the difference of 

correlation should be smaller than when using smaller averaged,  which strengthens the first 

assumption.  

Another assumption that also confirms the findings retrieved by the studies carried out by 

Solbrekke et al (2021) and Haakenstad et al (2021) (chapther 4.2) that the NORA3 windspeeds 

typically is 5% lower than the actual wind speeds can be drawn by studying the difference in 

total load hours for the NORA3 data before and after the scaling of the data set.  After applying 

the scaler, NORA3 experiences a significant reduction in total load hours which indicates that 

the raw NORA3 wind speeds has too many measurements within range of the power curve (too 

low wind speeds), and when applying the scaler, a fair amount of the measurements ends up 

outside the range of the power curve.   

When evaluating this specific site, the ERA5 dataset yielded an over-all better result than the 

other data sets when comparing energy output to the actual SCADA data. 

 

 

(5) Compare performance of the Jensen wake model and the Eddy viscosity wake 

model.  

The Jensen wake model and the Eddy viscosity wake model were tested for the different 

scenarios in chapter 6.4.  When examining the wake distributions in chapter 6.4.2, figure 43. 

We can see that the middle turbines positioned at upwind row F experience the most wake 

reductions, while the most down-wind turbines, row A experiences the least. This may seem 

counter intuitive but can be explained by the fact that the distance between adjacent turbines in 

a row is shorter than the distance to the closest turbine from a different column. The distances 

between the turbines can be found in Appendix 3, table 34. Also, good park arraying can 

contribute to this phenomenon. The main yaw-direction is given in arrows can be seen in 

Appendix 3, Figure 50.  

Based on the illustrations in chapter 6.4.2, figure 43, the turbine C03 seems to experience 

significant wake losses even tho it only has one adjacent turbine in the row. A reasenable 

explanation for this is that the offshore sub-station Z01 (LiDAR) is placed adjacent to this 

turbine (Appendix 3, figure 49).   
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In this thesis, the Eddy viscosity model proved to be the most conservative wake model. This 

does not coincide with Sørensen et al (2006) comparison on model performance as their 

findings showed that the Jensen wake model yielded the most conservative results. It should be 

mentioned that Sørensen’s study used a wake decay constant of 0.04. In this thesis a wake decay 

constant of 0.06 is used, resulting in quicker recovery of the wind field behind the turbine. 

Appendix 5, figure 52 contains an extract from Sørensen et al (2006) comparing park efficiency 

using the Jensen wake model together with a wake decay constant of 0.04, and one using 0.075. 

The two different wake decay constant clearly shows an impact on park efficiency.  

 

(6) Performance check for the wind farm using SCADA data in WindPRO 

 

The final objective of this thesis was to perform a post construction performance check of the 

Westermost rough wind farm in WindPRO. The results are presented in chapter 6.4.3, table 31 

which describes the actual power production, actual losses, potential production, normalized 

production AEP, expected total losses, and net production  AEP. The monthly losses in kWh 

for the whole park can be visualized though figure 45, chapter 6.4.3. The results shows 

significant larges losses for January and February 2016 than the rest of the reference period. As 

the same months in 2017 does not experience the same trends it can not be linked to a seasonal 

bias. Anyhow, longer measuring period would be necessary to describe trends in energy losses. 

It should be mentioned that we would have received a more precise result if we had the actual 

error codes from turbine log files.  
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Appendices 

Appendix 1 – Turbine Production 

(a) Turbine production using corrected power curve and Jensen wake model 

WTG NORA3  WL [%] ERA5 WL [%] NEWA  WL [%]  SCADA  

A01 24 018.00 2.9 26 080.60 2.8 26 595.79 2.7 24 238.00 

A02 23 771.00 3.9 25 848.40 3.7 26 343.4 3.6 23 858.00 

A03 23 687.40 4.3 25 781.50 3.9 26 265.65 3.9 24 459.00 

A04 23 731.60 4.1 25 817.90 3.8 26 303.46 3.7 24 815.00 

A05 23 720.80 4.1 25 788.70 3.9 26 247.96 3.9 24 039.00 

A06 23 852.10 3.6 25 911.10 3.5 26 424.87 3.3 25 466.00 

A07 24 049.10 2.8 26 145.90 2.6 26 652.38 2.5 24 281.00 

B01 23 262.50 6 25 440.30 5.2 25 851.39 5.4 25 522.00 

B02 22 572.40 8.8 24 821.70 7.5 25 221.54 7.7 26 232.00 

B02 22 889.40 7.5 25 088.10 6.5 25 468.64 6.8 23 700.00 

B03 22 828.40 7.8 25 019.80 6.8 25 445.89 6.9 26 249.00 

B04 22 866.90 7.6 25 084.20 6.5 25 463.81 6.8 25 483.00 

B05 22 837.30 7.7 25 045.30 6.7 25 453.31 6.8 25 820.00 

B06 22 916.40 7.4 25 116.90 6.4 25 559.09 6.5 24 526.00 

B07 23 364.10 5.6 25 525.00 4.9 26 004.24 4.8 24 304.00 

C01 22 936.90 7.3 25 159.30 6.3 25 600.42 6.3 25 251.00 

C03 22 524.80 9 24 805.30 7.6 25 207.33 7.7 25 512.00 

C06 22 798.30 7.9 25 001.80 6.8 25 440.09 6.9 24 473.00 

C07 23 121.90 6.6 25 315.90 5.7 25 775.45 5.7 23 565.00 

D01 22 757.30 8 25 036.50 6.7 25 491.2 6.7 24 980.00 

D07 23 202.10 6.2 25 372.10 5.5 25 794.71 5.6 24 965.00 

E01 22 900.80 7.5 25 112.20 6.4 25 585.4 6.4 25 204.00 

E02 22 842.30 7.7 25 010.50 6.8 25 510.52 6.6 24 102.00 

E03 22 855.40 7.6 25 037.20 7.6 25 557.06 6.5 23 925.00 

E04 22 951.30 7.3 25 113.50 6.4 25 614.91 6.3 24 823.00 

E05 22 957.60 7.2 25 105.10 6.4 25 610.68 6.3 24 907.00 

E06 22 892.00 7.5 25 061.10 6.6 25 557.38 6.5 24 370.00 

E07 23 098.90 6.7 25 274.80 5.8 25 769.8 5.7 25 244.00 

F01 22 935.40 7.3 25 164.60 6.2 25 594.35 6.3 25 480.00 

F02 22 595.50 8.7 24 823.20 7.5 25 271.32 7.5 23 345.00 

F03 22 532.90 8.9 24 770.80 7.7 25 201.73 7.8 24 700.00 

F04 22 519.00 9 24 754.30 7.8 25 237.04 7.6 24 279.00 

F05 22 451.90 9.3 24 708.90 7.9 25 176.68 7.9 25 225.00 

F06 22 551.90 8.9 24 799.70 7.6 25 267.7 7.5 25 011.00 

F07 23 029.40 6.9 25 238.00 6 25 694.21 6 25 467.00 

Total 806 823.00 6.85 883 180.20 6.00 899 259.40 5.97 867 820.00 
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(b) Turbine production using corrected power curve and Eddy-viscosity wake model 

WTG NORA3  WL [%] ERA5 WL [%] NEWA  WL [%]  SCADA  

A01 23 788.50 3.9 25 933.90 3.4 26 444.90 3.2 25 225.00 

A02 23 380.70 5.5 25 584.30 4.7 26 075.00 4.6 24 370.00 

A03 23 292.00 5.9 25 527.20 4.9 26 007.60 4.8 24 473.00 

A04 23 364.70 5.6 25 590.10 4.7 26 079.80 4.6 24 526.00 

A05 23 414.50 5.4 25 563.00 4.8 26 025.10 4.8 24 304.00 

A06 23 585.70 4.7 25 709.90 4.2 26 249.10 3.9 24 823.00 

A07 23 902.30 3.4 26 081.50 2.9 26 563.80 2.8 24 279.00 

B01 22 614.50 8.6 25 038.40 6.7 25 319.50 7.3 25 244.00 

B02 21 586.70 12.8 24 150.60 10 24 460.90 10.5 24 281.00 

B02 22 019.30 11 24 494.00 8.8 24 765.60 9.4 26 249.00 

B03 21 944.50 11.3 24 420.90 9 24 754.60 9.4 25 466.00 

B04 21 965.90 11.2 24 497.10 8.8 24 730.50 9.5 23 858.00 

B05 22 005.40 11.1 24 478.30 8.8 24 782.70 9.3 24 815.00 

B06 22 111.50 10.6 24 558.40 8.5 24 909.40 8.8 23 700.00 

B07 22 839.90 7.7 25 172.40 6.2 25 599.80 6.3 23 925.00 

C01 22 265.10 10 24 742.70 7.8 25 105.10 8.1 24 980.00 

C03 21 561.00 12.9 24 220.30 9.8 24 501.40 10.3 24 238.00 

C06 21 911.80 11.5 24 402.30 9.1 24 788.60 9.3 24 039.00 

C07 22 529.80 9 24 942.20 7.1 25 370.70 7.1 25 251.00 

D01 22 030.20 11 24 566.00 8.5 24 991.00 8.5 24 965.00 

D07 22 617.40 8.6 24 970.80 7 25 399.20 7 25 512.00 

E01 22 164.80 10.4 24 626.10 8.3 25 071.90 8.2 25 480.00 

E02 21 761.20 12.1 24 227.70 9.8 24 711.40 9.6 25 820.00 

E03 21 748.00 12.1 24 207.70 9.8 24 753.40 9.4 26 232.00 

E04 21 911.20 11.5 24 349.40 9.3 24 849.30 9.1 24 459.00 

E05 21 946.60 11.3 24 335.90 9.4 24 847.80 9.1 25 522.00 

E06 21 881.00 11.6 24 333.80 9.4 24 824.50 9.1 25 483.00 

E07 22 527.10 9 24 898.70 7.3 25 382.20 7.1 24 907.00 

F01 22 249.00 10.1 24 746.50 7.8 25 118.60 8.1 25 467.00 

F02 21 462.90 13.3 24 058.00 10.4 24 431.60 10.6 24 700.00 

F03 21 530.60 13 24 097.80 10.2 24 493.00 10.4 24 102.00 

F04 21 316.80 13.9 23 899.40 11 24 336.10 10.9 23 565.00 

F05 21 365.30 13.7 23 963.70 10.7 24 376.10 10.8 25 204.00 

F06 21 545.60 12.9 24 145.00 10.1 24 543.80 10.2 23 345.00 

F07 22 488.50 9.1 24 888.20 7.3 25 332.00 7.3 25 011.00 

Total 780 630.00 9.88 865 422.20 7.90 879 996.00 7.98 867 820.00 
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(c) Turbine production using raw power curve and Jensen wake model  

WTG NORA3  WL [%] ERA5 WL [%] NEWA  WL [%]  SCADA  

A01 25 665.60 2.9 27 613.30 2.8 28 135.30 2.6 25 225.00 

A02 25 410.30 3.8 27 368.00 3.6 27 867.80 3.5 24 370.00 

A03 25 324.30 4.2 27 299.90 3.9 27 786.30 3.8 24 473.00 

A04 25 368.80 4 27 337.00 3.7 27 825.20 3.7 24 526.00 

A05 25 354.20 4 27 302.50 3.9 27 764.50 3.9 24 304.00 

A06 25 489.20 3.5 27 426.80 3.4 27 940.90 3.3 24 823.00 

A07 25 697.40 2.7 27 671.50 2.6 28 174.20 2.5 24 279.00 

B01 24 889.60 5.8 26 960.90 5.1 27 381.80 5.2 25 244.00 

B02 24 181.60 8.5 26 331.20 7.3 26 741.60 7.4 24 281.00 

B02 24 501.90 7.3 26 597.00 6.4 26 985.40 6.6 26 249.00 

B03 24 437.90 7.5 26 522.20 6.6 26 958.20 6.7 25 466.00 

B04 24 481.70 7.3 26 590.50 6.4 26 983.10 6.6 23 858.00 

B05 24 449.00 7.5 26 550.70 6.5 26 969.10 6.6 24 815.00 

B06 24 527.30 7.2 26 623.00 6.3 27 070.90 6.3 23 700.00 

B07 24 989.60 5.4 27 041.40 4.8 27 519.00 4.7 23 925.00 

C01 24 556.00 7.1 26 678.40 6.1 27 128.50 6.1 24 980.00 

C03 24 134.00 8.7 26 314.60 7.3 26 726.10 7.5 24 238.00 

C06 24 412.20 7.6 26 514.60 6.6 26 965.00 6.6 24 039.00 

C07 24 742.00 6.4 26 833.70 5.5 27 292.00 5.5 25 251.00 

D01 24 380.70 7.7 26 562.40 6.5 27 022.70 6.4 24 965.00 

D07 24 825.60 6 26 893.40 5.3 27 320.00 5.4 25 512.00 

E01 24 523.90 7.2 26 637.00 6.2 27 121.40 6.1 25 480.00 

E02 24 471.20 7.4 26 530.80 6.6 27 045.80 6.4 25 820.00 

E03 24 481.10 7.3 26 554.90 6.5 27 087.90 6.2 26 232.00 

E04 24 583.90 7 26 630.70 6.2 27 146.70 6 24 459.00 

E05 24 587.30 6.9 26 619.10 6.3 27 137.30 6 25 522.00 

E06 24 519.40 7.2 26 573.80 6.4 27 080.20 6.2 25 483.00 

E07 24 723.00 6.4 26 793.10 5.7 27 291.60 5.5 24 907.00 

F01 24 556.70 7.1 26 684.20 6 27 127.50 6.1 25 467.00 

F02 24 212.60 8.4 26 334.50 7.3 26 797.80 7.2 24 700.00 

F03 24 147.60 8.6 26 277.70 7.5 26 727.10 7.5 24 102.00 

F04 24 135.90 8.7 26 263.10 7.5 26 762.90 7.3 23 565.00 

F05 24 064.80 8.9 26 215.50 7.7 26 699.10 7.6 25 204.00 

F06 24 164.20 8.5 26 307.90 7.4 26 789.50 7.3 23 345.00 

F07 24 646.40 6.7 26 755.90 5.8 27 219.70 5.8 25 011.00 

Total 863 636.90 6.61 936 211.20 5.82 952 592.10 5.77 867 820.00 

 

 

 

 

 



 

91 

(d) Turbine production using raw power curve and Eddy-viscosity wake model  

WTG NORA3  WL [%] ERA5 WL [%] NEWA  WL [%]  SCADA  

A01 25 521.90 3.4 27 474.50 3.3 27 998.20 3.1 25 225.00 

A02 25 140.00 4.9 27 107.90 4.6 27 610.90 4.4 24 370.00 

A03 25 055.50 5.2 27 054.10 4.7 27 538.40 4.7 24 473.00 

A04 25 121.90 4.9 27 114.70 4.5 27 608.10 4.4 24 526.00 

A05 25 157.90 4.8 27 084.90 4.6 27 550.50 4.6 24 304.00 

A06 25 319.20 4.2 27 233.30 4.1 27 771.30 3.9 24 823.00 

A07 25 629.70 3 27 616.50 2.8 28 094.20 2.7 24 279.00 

B01 24 413.70 7.6 26 569.40 6.4 26 866.40 7 25 244.00 

B02 23 457.60 11.2 25 677.60 9.6 26 008.10 10 24 281.00 

B02 23 840.60 9.8 26 012.00 8.4 26 298.10 9 26 249.00 

B03 23 769.10 10 25 931.20 8.7 26 284.80 9 25 466.00 

B04 23 804.90 9.9 26 013.30 8.4 26 265.10 9.1 23 858.00 

B05 23 829.20 9.8 25 988.40 8.5 26 313.10 8.9 24 815.00 

B06 23 922.00 9.5 26 068.70 8.2 26 430.10 8.5 23 700.00 

B07 24 621.10 6.8 26 701.00 6 27 128.40 6.1 23 925.00 

C01 24 096.80 8.8 26 277.20 7.5 26 658.20 7.7 24 980.00 

C03 23 440.00 11.3 25 749.10 9.3 26 042.90 9.8 24 238.00 

C06 23 769.20 10 25 930.60 8.7 26 332.00 8.8 24 039.00 

C07 24 344.00 7.9 26 478.40 6.8 26 903.70 6.9 25 251.00 

D01 23 905.30 9.5 26 117.40 8 26 555.20 8.1 24 965.00 

D07 24 445.60 7.5 26 518.40 6.6 26 946.60 6.7 25 512.00 

E01 24 023.30 9.1 26 175.00 7.8 26 643.60 7.8 25 480.00 

E02 23 659.50 10.5 25 776.00 9.2 26 289.10 9 25 820.00 

E03 23 632.80 10.6 25 754.10 9.3 26 325.50 8.9 26 232.00 

E04 23 806.10 9.9 25 899.30 8.8 26 422.50 8.5 24 459.00 

E05 23 826.50 9.8 25 877.70 8.9 26 408.10 8.6 25 522.00 

E06 23 764.30 10.1 25 870.20 8.9 26 374.70 8.7 25 483.00 

E07 24 362.50 7.8 26 442.90 6.9 26 929.90 6.8 24 907.00 

F01 24 096.40 8.8 26 288.80 7.4 26 683.80 7.6 25 467.00 

F02 23 371.70 11.5 25 596.30 9.9 25 995.80 10 24 700.00 

F03 23 427.80 11.3 25 639.30 9.7 26 054.90 9.8 24 102.00 

F04 23 243.00 12 25 443.80 10.4 25 900.60 10.3 23 565.00 

F05 23 276.70 11.9 25 499.60 10.2 25 933.70 10.2 25 204.00 

F06 23 439.70 11.3 25 678.60 9.6 26 095.20 9.7 23 345.00 

F07 24 314.50 8 26 430.80 6.9 26 888.40 6.9 25 011.00 

Total 844 850.00 8.65 919 091.00 7.53 934 150.10 7.61 867 820.00 
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(e) Turbine production using raw meso-data, raw power curve, and Jensen model  

WTG NORA3  WL [%] ERA5 WL [%] NEWA  WL [%]  SCADA  

A01 30 281.00 2.4 27 861.80 3 30 092.00 2.5 25 225.00 

A02 30 035.50 3.2 27 590.30 3.9 29 831.00 3.4 24 370.00 

A03 29 954.60 3.5 27 514.20 4.2 29 736.80 3.7 24 473.00 

A04 29 992.00 3.3 27 551.90 4.1 29 777.80 3.6 24 526.00 

A05 29 963.00 3.4 27 521.30 4.2 29 723.90 3.7 24 304.00 

A06 30 098.50 3 27 658.40 3.7 29 898.80 3.2 24 823.00 

A07 30 312.80 2.3 27 926.90 2.7 30 141.50 2.4 24 279.00 

B01 29 569.00 4.7 27 171.80 5.4 29 353.70 4.9 25 244.00 

B02 28 914.70 6.8 26 505.00 7.7 28 737.70 6.9 24 281.00 

B02 29 203.70 5.9 26 769.70 6.8 28 965.40 6.2 26 249.00 

B03 29 140.30 6.1 26 694.00 7 28 938.80 6.3 25 466.00 

B04 29 185.10 5.9 26 755.00 6.8 28 957.60 6.2 23 858.00 

B05 29 159.40 6 26 718.20 7 28 933.90 6.3 24 815.00 

B06 29 239.30 5.8 26 796.90 6.7 29 049.70 5.9 23 700.00 

B07 29 669.70 4.4 27 245.10 5.1 29 490.60 4.5 23 925.00 

C01 29 259.50 5.7 26 882.20 6.4 29 116.40 5.7 24 980.00 

C03 28 880.10 6.9 26 478.90 7.8 28 716.00 7 24 238.00 

C06 29 137.10 6.1 26 693.60 7 28 964.60 6.2 24 039.00 

C07 29 444.60 5.1 27 018.00 5.9 29 260.60 5.2 25 251.00 

D01 29 130.30 6.1 26 757.20 6.8 29 010.50 6 24 965.00 

D07 29 510.00 4.9 27 092.00 5.7 29 304.10 5.1 25 512.00 

E01 29 245.50 5.7 26 836.50 6.5 29 100.50 5.7 25 480.00 

E02 29 207.50 5.9 26 716.20 7 29 032.30 6 25 820.00 

E03 29 209.20 5.9 26 737.70 6.9 29 059.20 5.9 26 232.00 

E04 29 305.50 5.5 26 822.30 6.6 29 126.60 5.7 24 459.00 

E05 29 298.90 5.6 26 809.90 6.6 29 112.80 5.7 25 522.00 

E06 29 250.10 5.7 26 763.70 6.8 29 066.40 5.9 25 483.00 

E07 29 424.60 5.2 26 988.80 6 29 257.60 5.2 24 907.00 

F01 29 263.30 5.7 26 896.20 6.3 29 120.80 5.7 25 467.00 

F02 28 967.50 6.6 26 519.30 7.6 28 794.60 6.7 24 700.00 

F03 28 902.40 6.8 26 449.60 7.9 28 716.40 7 24 102.00 

F04 28 904.10 6.8 26 431.20 8 28 751.50 6.9 23 565.00 

F05 28 839.00 7 26 379.50 8.1 28 687.70 7.1 25 204.00 

F06 28 930.20 6.8 26 475.90 7.8 28 775.10 6.8 23 345.00 

F07 29 352.50 5.4 26 941.40 6.2 29 179.60 5.5 25 011.00 

Total  1028180.50       5.32 942970.60 6.18 1 021 782.50 5.45 867 820.00 
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(f) Turbine production using raw meso-data, raw power curve, and Eddy-viscosity model  

WTG NORA3  WL [%] ERA5 WL [%] NEWA  WL [%]  SCADA  

A01 30 129.60 2.9 27 711.00 3.5 29 945.84 3 25 225.00 

A02 29 764.50 4.1 27 307.70 4.9 29 550.45 4.3 24 370.00 

A03 29 676.90 4.3 27 250.90 5.1 29 468.60 4.6 24 473.00 

A04 29 737.40 4.2 27 315.50 4.9 29 542.13 4.3 24 526.00 

A05 29 747.30 4.1 27 292.10 5 29 488.75 4.5 24 304.00 

A06 29 907.70 3.6 27 450.90 4.4 29 714.73 3.8 24 823.00 

A07 30 237.50 2.5 27 867.20 3 30 051.38 2.7 24 279.00 

B01 29 057.30 6.3 26 749.90 6.8 28 813.73 6.7 25 244.00 

B02 28 136.40 9.3 25 815.40 10.1 27 976.03 9.4 24 281.00 

B02 28 510.50 8.1 26 141.20 9 28 251.90 8.5 26 249.00 

B03 28 426.00 8.4 26 065.80 9.2 28 235.53 8.5 25 466.00 

B04 28 467.60 8.2 26 136.80 9 28 214.06 8.6 23 858.00 

B05 28 497.40 8.2 26 119.70 9 28 262.67 8.5 24 815.00 

B06 28 582.50 7.9 26 202.00 8.8 28 383.61 8.1 23 700.00 

B07 29 268.30 5.7 26 882.00 6.4 29 072.74 5.8 23 925.00 

C01 28 745.20 7.4 26 458.60 7.9 28 624.13 7.3 24 980.00 

C03 28 135.10 9.3 25 881.20 9.9 28 000.53 9.3 24 238.00 

C06 28 447.70 8.3 26 071.10 9.2 28 311.65 8.3 24 039.00 

C07 29 006.40 6.5 26 641.00 7.2 28 840.80 6.6 25 251.00 

D01 28 611.70 7.8 26 291.20 8.4 28 518.60 7.6 24 965.00 

D07 29 109.40 6.2 26 690.80 7.1 28 901.57 6.4 25 512.00 

E01 28 728.80 7.4 26 346.00 8.3 28 609.74 7.3 25 480.00 

E02 28 407.20 8.4 25 914.30 9.8 28 267.49 8.4 25 820.00 

E03 28 362.60 8.6 25 895.40 9.8 28 286.07 8.4 26 232.00 

E04 28 539.90 8 26 046.80 9.3 28 396.10 8 24 459.00 

E05 28 547.50 8 26 027.90 9.4 28 375.73 8.1 25 522.00 

E06 28 500.40 8.1 26 013.90 9.4 28 347.09 8.2 25 483.00 

E07 29 052.80 6.4 26 618.10 7.3 28 882.86 6.5 24 907.00 

F01 28 778.40 7.2 26 481.60 7.8 28 672.79 7.1 25 467.00 

F02 28 108.70 9.4 25 740.10 10.4 27 980.25 9.4 24 700.00 

F03 28 169.60 9.2 25 780.90 10.2 28 034.52 9.2 24 102.00 

F04 27 995.60 9.8 25 567.40 11 27 881.63 9.7 23 565.00 

F05 28 027.80 9.7 25 623.60 10.8 27 908.09 9.6 25 204.00 

F06 28 188.00 9.1 25 807.90 10.1 28 066.24 9.1 23 345.00 

F07 28 996.60 6.5 26 604.40 7.4 28 834.89 6.6 25 011.00 

Total  1008606.30 7.12 924810.30 7.99 1 002 712.92 7.21 867 820.00 
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(g) Turbine production using raw meso-data, corrected power curve, and Jensen model  

WTG NORA3  WL [%] ERA5 WL [%] NEWA  WL [%]  SCADA  

A01 28 738.60 2.5 26 252.00 3.1 28 586.70 2.6 25 225.00 

A02 28 499.00 3.3 25 994.10 4 28 334.20 3.5 24 370.00 

A03 28 418.80 3.6 25 920.90 4.3 28 245.00 3.8 24 473.00 

A04 28 457.80 3.4 25 957.80 4.2 28 286.00 3.6 24 526.00 

A05 28 434.30 3.5 25 934.90 4.2 28 237.80 3.8 24 304.00 

A06 28 566.90 3.1 26 066.70 3.8 28 411.40 3.2 24 823.00 

A07 28 771.00 2.4 26 323.90 2.8 28 642.40 2.4 24 279.00 

B01 28 029.30 4.9 25 578.00 5.6 27 853.20 5.1 25 244.00 

B02 27 377.00 7.1 24 925.10 8 27 237.90 7.2 24 281.00 

B02 27 668.80 6.1 25 187.90 7 27 470.70 6.4 26 249.00 

B03 27 607.30 6.3 25 119.30 7.3 27 446.20 6.5 25 466.00 

B04 27 650.10 6.2 25 178.80 7 27 464.40 6.4 23 858.00 

B05 27 622.50 6.3 25 140.80 7.2 27 444.40 6.5 24 815.00 

B06 27 700.80 6 25 215.30 6.9 27 555.90 6.1 23 700.00 

B07 28 128.50 4.5 25 652.40 5.3 27 991.10 4.6 23 925.00 

C01 27 719.60 5.9 25 290.90 6.6 27 612.90 5.9 24 980.00 

C03 27 339.20 7.2 24 898.90 8.1 27 216.90 7.3 24 238.00 

C06 27 594.50 6.4 25 104.70 7.3 27 459.70 6.4 24 039.00 

C07 27 901.30 5.3 25 424.70 6.1 27 760.70 5.4 25 251.00 

D01 27 577.20 6.4 25 158.00 7.1 27 498.70 6.3 24 965.00 

D07 27 969.40 5.1 25 493.30 5.9 27 797.00 5.3 25 512.00 

E01 27 697.90 6 25 233.80 6.8 27 593.80 6 25 480.00 

E02 27 659.20 6.1 25 117.50 7.3 27 524.60 6.2 25 820.00 

E03 27 661.40 6.1 25 145.90 7.2 27 557.30 6.1 26 232.00 

E04 27 758.00 5.8 25 228.20 6.9 27 624.20 5.9 24 459.00 

E05 27 755.70 5.8 25 220.20 6.9 27 614.40 5.9 25 522.00 

E06 27 702.60 6 25 174.40 7 27 568.20 6.1 25 483.00 

E07 27 880.70 5.4 25 395.80 6.2 27 762.50 5.4 24 907.00 

F01 27 719.80 5.9 25 304.10 6.6 27 618.50 5.9 25 467.00 

F02 27 422.90 6.9 24 936.00 7.9 27 296.60 7 24 700.00 

F03 27 359.50 7.2 24 872.00 8.2 27 220.70 7.3 24 102.00 

F04 27 357.30 7.2 24 852.00 8.2 27 255.20 7.1 23 565.00 

F05 27 291.30 7.4 24 799.70 8.4 27 189.50 7.4 25 204.00 

F06 27 384.30 7.1 24 893.10 8.1 27 276.80 7.1 23 345.00 

F07 27 807.40 5.6 25 352.10 6.4 27 681.90 5.7 25 011.00 

Total  974 229.90 5.54 887343.20         6.40 969 337.40 5.64 867 820.00 
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(h) Turbine production using raw meso-data, corrected power curve, and Eddy-viscosity 

wake model.  

WTG NORA3  WL [%] ERA5 WL [%] NEWA  WL [%]  SCADA  

A01 28 571.60 3 26 188.50 3.7 28 426.70 3.2 25 225.00 

A02 28 206.70 4.3 25 703.00 5.1 28 040.50 4.5 24 370.00 

A03 28 120.90 4.6 25 746.00 5.3 27 962.70 4.7 24 473.00 

A04 28 185.00 4.4 25 708.10 5.1 28 035.70 4.5 24 526.00 

A05 28 205.10 4.3 25 695.40 5.1 27 989.90 4.6 24 304.00 

A06 28 365.20 3.7 25 851.30 4.6 28 218.50 3.9 24 823.00 

A07 28 683.80 2.7 26 254.70 3.1 28 541.30 2.8 24 279.00 

B01 27 500.30 6.7 25 148.10 7.1 27 293.10 7 25 244.00 

B02 26 570.90 9.8 24 219.20 10.6 26 444.00 9.9 24 281.00 

B02 26 952.60 8.5 24 552.30 9.3 26 732.70 8.9 26 249.00 

B03 26 871.90 8.8 24 483.70 9.6 26 716.20 9 25 466.00 

B04 26 910.40 8.7 24 550.80 9.4 26 693.70 9.1 23 858.00 

B05 26 939.90 8.6 24 535.30 9.4 26 746.10 8.9 24 815.00 

B06 27 028.10 8.3 24 616.90 9.1 26 866.00 8.5 23 700.00 

B07 27 710.50 6 25 479.90 6.7 27 552.10 6.1 23 925.00 

C01 27 180.60 7.8 24 952.00 8.2 27 091.60 7.7 24 980.00 

C03 26 561.90 9.9 24 282.60 10.3 26 470.60 9.8 24 238.00 

C06 26 879.20 8.8 24 467.20 9.7 26 777.90 8.8 24 039.00 

C07 27 442.20 6.9 25 035.00 7.6 27 319.50 6.9 25 251.00 

D01 27 021.60 8.3 24 869.00 8.9 26 970.10 8.1 24 965.00 

D07 27 540.40 6.5 25 071.10 7.4 27 367.20 6.8 25 512.00 

E01 27 142.50 7.9 24 718.60 8.7 27 063.80 7.8 25 480.00 

E02 26 811.00 9 24 385.90 10.3 26 716.20 9 25 820.00 

E03 26 769.00 9.2 24 374.30 10.4 26 740.70 8.9 26 232.00 

E04 26 944.70 8.6 24 519.00 9.8 26 848.70 8.5 24 459.00 

E05 26 961.40 8.5 24 407.50 9.9 26 836.70 8.6 25 522.00 

E06 26 911.20 8.7 24 598.80 9.9 26 812.30 8.7 25 483.00 

E07 27 476.80 6.8 25 003.00 7.7 27 357.10 6.8 24 907.00 

F01 27 198.80 7.7 24 963.40 8.2 27 133.10 7.6 25 467.00 

F02 26 519.60 10 24 129.00 10.9 26 441.60 9.9 24 700.00 

F03 26 576.90 9.8 24 269.10 10.8 26 497.10 9.7 24 102.00 

F04 26 401.70 10.4 23 955.10 11.6 26 340.00 10.3 23 565.00 

F05 26 435.00 10.3 24 113.20 11.3 26 364.70 10.2 25 204.00 

F06 26 599.00 9.7 24 198.70 10.7 26 527.20 9.6 23 345.00 

F07 27 419.40 7 24 992.60 7.7 27 302.80 7 25 011.00 

Total  953 615.80 7.55 870038.30 8.38 949 238.10 7.61 867 820.00 
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Appendix 2 – Analysis of Best Scenario 

 

Sector      0 N            1NNE              2ENE            3E              4ESE             5SSE      

[1]          77 009         32 908              32 316         27 209        33 269           53 348 

[2]           3 823           2 983                4 659          2 541          1 854             7 602         

[3]            5.0                9.1                    14.4           9.3               5.6                 14.2  

[4]         73 186           29 925              27 656        24 669       31 415          45 747 

[5]           349               143                    132              117           150               218  

 

Sector     6S              7SSW               8WSW           9W           10WNW            11NNW     

[1]         95 189          138 397            173 511        155 317         57 412             63 759  

[2]         4 919              8 217                16 218          11 828          3 749               5 828 

[3]           5.2                  5.9                     9.3                7.6               6.5                   9.1 

[4]        90 269          130 179             157 292        143 489        53 662             57 932 

[5]          430                 620                    749              683              256                     276 

 

Total 

[1] 939 644 

[2]  74 223 

[3]          7.90 

[4]         865 422 

[5]          4 121  

Table 32 : PARK production sectional analysis using scaled ERA 5 with corrected power curve and Eddy viscosity wake model. 

[1] is the model based energy (MWh); [2] is the decrease due to wake losses (MWh); [3] is the percentage decrease due to 

wake losses (%); [4] is the resulting energy (MWh); and [5] is the full load equivalent (Hours/year).  
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Figure 46: Full Load Equivalent by sector [Hours/year] using scaled ERA 5 with corrected power curve and Eddy viscosity 

wake model. Figure represents data from [5] in table 29.  
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Table 33: PARK time varying AEP using scalaed ERA5, corrected power curve and Eddy viscosity wake model. The table 

shows the mean yield per month and hpur [MWh]. The results include wake losses and any curtailment losses.  

 

 

Hour/Month 
[MWh] 1 2 3 4 5 6 7 8 9 10 11 12 

Grand 
Total 

              

0 3 133 4 012 3 327 3 354 3 027 2 483 2 781 2 855 3 133 3 921 3 540 1 985 37 552 

1 3 101 3 856 3 458 3 354 3 021 2 339 2 915 2 829 3 151 3 867 3 524 1 912 37 325 

2 3 068 3 629 3 547 3 356 3 016 2 419 2 882 2 737 3 043 3 879 3 558 1 940 37 073 

3 3 032 3 840 3 630 3 201 3 041 2 367 2 828 2 621 2 989 3 951 3 648 2 002 37 149 

4 3 116 3 835 3 526 3 117 3 086 2 385 2 816 2 510 3 013 3 986 3 797 2 080 37 267 

5 3 103 3 963 3 476 3 074 3 142 2 400 2 728 2 458 3 041 3 957 3 927 2 105 37 375 

6 3 167 3 950 3 421 2 990 3 176 2 291 2 574 2 501 3 074 3 931 4 053 2 167 37 295 

7 3 148 3 938 3 389 2 873 3 119 2 334 2 479 2 428 3 087 3 867 4 047 2 167 36 876 

8 3 101 3 932 3 201 2 873 3 027 2 236 2 368 2 436 3 116 3 913 3 933 2 116 36 251 

9 3 123 4 067 3 334 2 742 2 983 2 174 2 248 2 391 3 099 3 810 3 923 2 051 35 944 

10 3 042 3 922 3 054 2 424 2 654 1 992 1 960 2 320 2 857 3 629 3 552 1 972 33 378 

11 3 072 3 899 2 964 2 398 2 817 2 042 2 038 2 382 2 931 3 676 3 464 1 985 33 669 

12 3 058 3 801 2 896 2 416 2 867 2 271 2 066 2 467 3 028 3 732 3 491 1 951 34 043 

13 2 978 3 655 2 936 2 501 2 972 2 453 1 963 2 510 3 125 3 768 3 541 1 950 34 353 

14 2 957 3 650 2 968 2 511 3 123 2 521 2 106 2 446 3 100 3 780 3 537 1 980 34 679 

15   2 900 3 619 3 021 2 566 3 104 2 512 2 156 2 573 3 082 3 808 3 544 2 057 34 941 

16 2 842 3 658 2 967 2 663 3 094 2 601 2 109 2 666 2 930 3 748 3 485 2 068 34 833 

17 2 914 3 671 2 985 2 816 3 173 2 555 2 267 2 757 2 855 3 866 3 478 2 104 35 442 

18 3 070 3 756 2 984 2 949 3 262 2 496 2 038 2 750 2 958 3 854 3 601 2 174 35 894 

19 3 135 3 815 3 049 2 981 3 332 2 423 1 970 2 609 3 022 3 859 3 778 2 107 36 081 

20 3 158 3 970 3 167 3 229 3 374 2 392 2 014 2 728 3 148 3 879 3 784 2 005 36 849 

21 3 160 4 031 3 194 3 223 3 336 2 423 2 188 2 780 3 193 3 923 3 751 1 977 37 179 

22 3 124 3 919 3 131 3 203 3 135 2 473 2 320 2 737 3 245 3 784 3 675 2 016 36 762 

23 3 219 3 897 3 186 3 320 3 135 2 503 2 410 2 791 3 212 3 903 3 610 2 025 37 211 

Grand Total 73 720 92 286 76 811 70 136 74 016 57 086 56 223 62 281 73 431 92 293 88 241 48 898 865422 
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Figure 47:  PARK time varying AEP using scalaed ERA5, corrected power curve and Eddy viscosity wake model. Figure 

displays monthly mean yield and includes wake losses and any curtailment losses and is based on the 210 MW windfarm 

consisting of 35 turbines.  

 

 

 

Figure 48: PARK time varying AEP using scalaed ERA5, corrected power curve and Eddy viscosity wake model. Figure 

displays the duration curve of the 210 MW wind farm consisting 35 turbines. The results includes wake losses and any 

curtailment losses.   
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Appendix 3 –  Park Layout and spacing 

 

 

Figure 49: Park Layout created in google earth with input data from WindPRO.  
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WTG distances    

     

 Nearest WTG 
Horizontal 
distance   

  [m] 
number of rotor 
distances  

C03 B02 981 6.4  
B04 B05 955 6.2  
E04 E05 966 6.3  
B05 B06 922 6  
C06 C07 977 6.3  
B03 B02 920 6  
B02 C01 948 6.2  
E05 E06 905 5.9  
E03 E02 908 5.9  
B06 B05 922 6  
B02 B03 920 6  
E06 E05 905 5.9  
E02 E03 908 5.9  
A04 A05 968 6.3  
A05 A06 923 6  
C07 C06 977 6.3  
D07 E07 1133 7.4  
A03 A02 898 5.8  
F04 F05 944 6.1  
C01 B02 948 6.2  
D01 E01 1103 7.2  
F05 F06 917 6  
F03 F02 954 6.2  
B07 B06 969 6.3  
A06 A05 923 6  
E07 E06 946 6.1  
A02 A03 898 5.8  
B01 B02 951 6.2  
E01 E02 939 6.1  
F06 F07 904 5.9  
F02 F01 951 6.2  
A07 A06 959 6.2  
A01 A02 1010 6.6  
F07 F06 904 5.9  
F01 F02 951 6.2  

Table 34: WTG spacing inside the WMR wind farm. Table displays closest WTG in horizontal distance by meter, and by 

number of rotor diameters.  
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Figure 50: WTG layout and main yaw angle; MATLAB.  
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Appendix 4 – Shear Analysis  

 

 

Figure 51: Shear extrapolated wind speeds based on 74m mean measured. Figure displays directional wind shear for scaled 

ERA5; WindPRO. 

 

 

Figure 52: Shear by direction presented in radar graph.  Figure displays  wind shear for scaled ERA5; WindPRO.  
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Appendix 5 –  Wake decay coefficient  

 

 

(a)                                                                                                            (b) 

Figure 53: Park efficiency comparison, WDC=0.04 (a); WDC=0.075(b). ref:  Sørensen et al (2006). 


