University of
Stavanger

FACULTY OF SCIENCE AND TECHNOLOGY

MASTER THESIS

Springsemester, 2023
Open
Author: Jakob Hauga Qd,é&é W
¢ (author signattire)
Supervisor: Associate Professor Charlotte Obhrai
Master thesis title: Wind resource analyses at Westermost Rough Wind Farm
Keywords: Offshore wind, reanalysis data, Number of pages: 80

Atmospheric stability,

. + appendices/other: 104
WindPRO, WASP.

Stavanger, 02.07.2023

date/year




Abstract

A transition towards renewable energy sources is a pressing concern for society and government
officials, and the offshore wind industry is more relevant than ever. The industry has the
potential to meet Europe’s energy demand by seven times, if fully realized. Reliable wind
resource assessments and energy production methods are vital in order to determine the
feasibility of new offshore wind farms and for technology to evolve. According to the IEC
61400-12-1 standard procedure for power curve validation of wind turbines, measurements of
the wind speed is taken at hub height. The standard procedure assumes that the hub height wind
speed makes a sufficient representation of the wind speed experienced across the entire rotor
swept area. As the wind industry is moving offshore and the turbine rotor gets bigger, the IEC

61400-12-1 assumption becomes questionable.

This thesis examines the theoretical energy output of a reference wind turbine through hub
height wind speed (HHWS) and rotor equivalent wind speed (REWS) and compare it to the
actual power output retrieved from SCADA. A new method for calculating the real power curve
through SCADA data has also been applied and deals with the velocity deficit caused by rotor
distortion. The thesis further examines the validity of complementing reanalysis data with local
measurements through scaling, using WindPRO and WASP. This method could be strongly
beneficial when the data quality in the local measurements is low.
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1 Introduction

Climate change, limited energy supply, and a growing cost of energy (‘’CoE’’) has made the
shift towards renewable energy sources a hot topic for society and government officials.
Greenhouse gas emissions in the EU were reduced by 25% between 1990 and 2019, thanks to
new policy initiatives and economic factors (EEA, 2022). However, going forward, a faster
pace in the reduction of greenhouse gas emissions to accomplish the European Climate Law's
aim of climate neutrality by 2050 is needed. The European Commission agreed on March 30,
2023, to boost the European Union's binding renewable objective for 2030 from 32% to a
minimum of 42.5%, nearly doubling the EU's renewable energy contribution (European

Commission, 2023).

The offshore wind industry is a promising application of wind power with the potential to meet
Europe’s energy demand by seven times if fully realized (Stiesdal, 2019, p.11). The global
interest in offshore wind power exploitation has grown significantly, mainly due to increased
energy demand and the substantially greater wind speed ratios compared to onshore, resulting
in the possibility of larger turbines and higher energy outputs. Since the building of the world’s
first offshore wind farm in Vindeby, Denmark, in 1991, individual wind farms have developed
from 5 megawatts (‘’MW’’) to more than 1000 MW (Stiesdal, 2019, p.11). During the period
2020-2021, offshore installation increased from 35.5 gigawatts (‘’"GW*’) to 55.7 GW (Bojek,
2022). Despite its promising potential and rapid technical advancements, the offshore wind
sector is still in its infancy, with limited integration among supply chain participants and a need
for more demand, order, and inventory transparency and collaboration (Stiesdal, 2019, p.16).
In order to be competitive against fossil fuel-based technologies, CoE of offshore wind power
needs to be reduced, and the sharing of knowledge within the industry needs to be improved
(Stiesdal, 2019, p.16).

Reliable wind resource assessments are critical in offshore wind farm development.
Meteorological data for this purpose is typically delivered as a time series, which entails large
volumes of data. There are several data sources, ranging from refined mesoscale model data to
local observations. It is not unusual for local measurements to have gaps or incorrect data; it is
also unusual to find coherent local measurements collected over long periods (Dorrego et al.,
2022). As aresult, various studies have been conducted to investigate the validity of reanalysis
data as an alternative to measured data. Model data is frequently accessible in entire series and

for long-term periods stretching back in time. Nevertheless, the model data is known to have



inaccuracies. Accurate evaluation of wind speed characteristics at wind turbine relevant height
is critical in the wind energy field since an error of roughly 1% in wind speed estimation can
lead to a 2% mistake in wind energy (Azad et al., 2011).



1.1 Objectives and outline

In this thesis, different analyses are performed based on data from the Westermost Rough wind
farm. For a better overview of the thesis, its main objectives are outlined below and will be
presented in thes same order in the results and discussion chapters.

e Compare different methods for determining the atmospheric stability.

The thesis compares the Bulk Richardsen and the Gradient Richardsen methods in
determining atmospheric stability. The calculations have been conducted by using LiDAR

data from a Leosphere Windcube which is positioned close to the center of the wind farm.

e Use LIDAR data to calculate energy output through hub height wind speed and
rotor equivalent wind speed.

The energy output predicted though the hub height wind speed ("HHWS’’) and rotor
equivalent wind speed ("REWS’’) is compared to the actual production SCADA data.

e Obtain the real power curve through SCADA data.

As a part of the thesis, a novel idea on obtaining the real power curve using SCADA data
as proposed by Dai et al (2022) has been tested. The method relies on applying moving
average filter (MAF) to the wind speed, and the idea is that the wind experienced on the

nacelle anemometer is heavily distorted compared to the wind experienced on the rotor.

e Scale reanalysis data to LiDAR on-cite measurements for long-time correction and
compare the energy prediction to actual energy production.

The thesis also examines the validity of complementing reanalysis data with local

measurements (LIDAR) through transfer functions (scaling). This is done due to the low

availability of LiDAR data in the reference period (12%), which is often the case for wind



projects. This part of the thesis is done in WindPRO, using local measurements (LiDAR),
NORA3, NEWA, and ERA5 for comparison.

e Compare performance of the Jensen wake model and the Eddy-viscosity wake
model.

Both the Jensen and the Eddy-viscosity models are used in WindPRO as part of the Annual

Energy Production (AEP) calculation. The deficits due to wake are compared for the

individual turbines and presented.

e Performance check for the wind farm using SCADA data in WindPRO

Performance check is a powerful module in WindPRO that through the use of production
data, error codes, and wind data, makes analyses of the wind farm operation. The module
also quantifies how much energy has been lost according to the error codes chosen, and

compares the actual and potential production.

Turbine AO1 (Appendix3, figure 49) has been chosen as reference turbine for some of the
calculations throughout this thesis. This turbine was chosen through preliminary wake studies,
where A01 showed to experience the least wake impact (figure 44) among all the 35 turbines
at Westermost Rough. The turbine could therefore be assumed to be the turbine experiencing

the least amount of disturbed wind.



2 Theory

2.1 Boundary Layer Meteorology

The troposphere spans from ground level to a height of roughly 11 kilometers, while the
underlying surface frequently modifies only the first kilometers of altitude. The boundary layer
is a part of the troposphere and is defined as the portion that is immediately impacted by the
presence of the earth's surface and responds to surface forcings in a timeframe of little more
than one hour (Stull, 1988). The boundary layer may be further divided into altitude portions,
with the surface layer accounting for approximately 10%. Inside this layer, mechanical shear
rather than buoyancy dominates turbulence. The logarithmic wind profile is based on the
assumption that wind speed grows near-logarithmically in the surface layer. When the wind
blows over the sea surface, the depth of the boundary layer changes rather slowly in both space
and time. Because of the substantial amount of mixing within the top layer of the ocean, the sea
surface temperature experiences small fluctuations throughout a diurnal cycle, as opposed to
on-land circumstances. Water may also absorb a lot of heat from the sun without causing any
noticeable temperature changes. A slow fluctuation in sea surface temperature equals a slow
variation in surface boundary layer force. Vertical particle motion and advection of air masses
over the ocean surface are the major contributors to variations in boundary layer depth offshore.
When an air mass with one temperature crosses an ocean with a different temperature, the air
mass changes as its temperature equilibrates to the sea surface's temperature (Stull, 1988). As
a result, the offshore boundary layer becomes thinner, resulting in less turbulence and more

stability.

2.2 Atmospheric Stability

The thermal stability of the atmosphere causes it to cycle between discrete states. Air parcels
near the surface will be heated when the earth is heated by the sun. The heat transfer from the
earth will eventually become considerable, and the rise in temperature gradient will result in
turbulent mixing. Without the heat of the sun, the ground transforms from a heat source to a
heat sink in the evening. As air parcels migrate below, the lower atmosphere becomes more
stratified. The theory is the same for offshore conditions. However, the sea surface temperature
does not follow a diurnal cycle, and stability is seasonally determined rather than diurnal.
When describing wind profiles in the atmospheric boundary layer, it is critical to acknowledge

atmospheric stability. Even though it is commonly acknowledged that unstable



atmospheric conditions can result in increased turbulence, it is frequently overlooked in
simulations of wind turbine (WTG) load and motion offshore (Putri et al., 2019). Air is
classified as a Newtonian fluid, with stress proportional to deformation rate, and can thus be
represented using the Navier-Stokes equation. Turbulence kinetic energy (°TKE”’) is a
significant quantity used to analyze the boundary layer where buoyant thermals and mechanical
eddies can generate turbulence (Wang et al., 2021a). The turbulence intensity (“°TI’’) is
measured using the TKE theorem, which is derived from the Navier-Stokes equation. The TKE
may be calculated by calculating the root mean square (‘’RMS’’) value of the variations in flow

velocity, which is defined as a turbulent flows mean KE per unit mass (Magnusson et al., 1996):

1
Kinetic energy = Emvz [1]

Kinetic ener
gy =TKE
m [2]

TKE =~ (@7 + 07 + w7
—E(u +v'2 +w'?) [3]

Where the components in equation 3, u',v'and w’, represent the fluctuating velocity
components in each direction (Celik, 1999). The fluctuation velocities are time-dependent and

needs to be derived to equation 4 in order to see the changes with time:

OTKE _ g om0V _ 0wk _ 10w [4]
a0, @) T UW S, 0z p 0z €
a b c d e f

Where a, is the change in TKE with respect to time; b is the buoyant term; c is the shear term;
d is the transport of TKE by turbulent eddies; e is the transport of TKE by pressure perturbation;
and f is the decay due to dissipation (Stull, 1988).



The formula determines whether kinetic energy is produced or consumed (buoyancy or shear).
Each term can be both a producer and a consumer. When the TKE lowers over time, the
atmospheric boundary layer (’ABL’’) gets less turbulent; when the TKE increases over time,

the ABL becomes more turbulent.

2.3 Turbulence

In contrast to surfaces on land, the sea surface roughness is not constant but strongly dependent
on wind speed due to the wave height that governs from the wind, hence the surface roughness
length will increase with an increase of wind speed (Csandy, 2001). Turbulence intensity is
dependent on the roughness length and therefore a function of the wind speed (Vickers and
Mahrt, 1997). To get a better understanding of the marine boundary layer and the operation and
environment of offshore wind turbines, the understanding of T1 over open sea surface is crucial.
Turbulence intensity is often calculated from 10 minutes mean data retrieved from on-cite
measurements, and is a relationship between the horizontal wind speed variance, a,,, and mean
wind speed u (Tlrk and Emeis, 2010):

5
rr =2 ol
u

The ratio between the longitudinal wind speed variance and the friction velocity u,, is given

by:

02 = 6.25 X u? [6]

For load calculations on wind turbines an important measure is the 90" percentile of the T1 for
a given wind speed bin (Emeis, 2014). The IEC 61400-3 (2005) recommends the following

wind speed dependence:

u 7
— _ 11.28 (1.44ms™ VI, 7]

Oygp = In (Zh)
Zo

Where u,, is the hub height wind speed; z;, is the hub height; I, is the hub height turbulence

intensity average at a wind speed of 15 m/s; z, is the roughness length (determined through the



charnock relation, equation 10). The first right hand side component of equation 7 calculates
the mean wind speed standard deviation for a thermally neutral stratification using a logarithmic
wind profile (Emeis, 2014). The second term in equation 7 assumes a gaussian distribution for
the wind speed standard deviation, hence the 90% percentile of the wind speed standard
deviation, g,,9, is 1.28 times the magnitude of standard deviation, of the wind speed standard
deviation (Emeis, 2014).

2.4 Wind Profiles

2.4.1 Wind Shear

Wind shear can be described as the variation of wind speed with height. Wind shear is especially
important to understand as it causes a direct impact on the available power at different turbine
hub heights, and significantly influence the cyclic loading experienced by the turbine blades
(Ray et al., 2006).

2.4.2 Power Law Profile

The vertical velocity profile is commonly required for estimating the KE that is available for
wind turbines. In several situations, velocity measurements are limited in height. The wind
profile depicts how wind speed varies with height above ground. It might be represented by an
idealized model profile, most often the power law or logarithmic profile models. The power
law profile is defined as follows:

« [8]
U(z) = U(H) (%)

Where U(z) represents the average wind speed; U(H) is wind speed at hub height; H is the
distance in height between sea surface and rotor hub; z is the height used for reference; « is the
power law exponent which according to the DNV-RP-C205 standard is set to 0.14.

The power law is frequently employed as the fundamental wind profile in wind power
evaluation due to its simplicity for calculating wind speeds at turbine heights less than 50 meters
from the near-surface reference height, or when correcting data from diverse heights to a
standard height (Robeson, 1997).



2.4.3 Logarithmic Profile
The power law profile has limited use since it cannot account for surface roughness or the effect
of atmospheric stability. The other very popular profile of use is the logarithmic profile, defined

as follows:

v = (2) .

a A

Where U(z) represents the wind speed at height; u, is the friction velocity; k, represents the
Von Karman constant = 0.4 (DNV-RP-C205); z, is the parameter for terrain roughness; z is
height.

The Charnock relation (Charnock, 1955) is extensively used to explain the change in sea surface

roughness length as a function of wind speed and may be stated as:

[10]

Where A, is the Charnock constant; U, is the friction velocity; g the acceleration of gravity.

The DNV standards make use of this relationship.

2.4.4 Stability-corrected Logarithmic Wind Profile

The atmospheric stability conditions have a considerable impact on the wind speed profile. The
profiles given in equation 8 and 9 are both independent of atmospheric stability. To account for
this, The DNV-RP-C205 suggests a logarithmic model with stability adjustments. The equation
is as follows:

u [11]

* zZ
U(Z) = k_ (lng—l[’)

The introduction of the stability-dependent function, W, which is reliant on the non-dimensional

stability parameter, separates this new equation from equation 9.

[12]

N



Where z is the height; and L is the Monin-Obukhov length. The dimensionless stability
parameter is negative under steady conditions, building a more substantial wind velocity. Under
unstable conditions, the reverse is true. Because the stability-dependent function is zero when
the circumstances are neutral, atmospheric conditions have no effect on wind speed under those

conditions.

2.4.5 Monin-Obukhov Length
Monin-Obukhov similarity theory (‘’MOS’’), has been the scientific standard approach for the

past four decades when describing the surface layer atmospheric turbulence (Grachev and
Fairall, 1997). The Monin-Obukhov (’MO”’) length is defined as the distance in altitude
where turbulence is buoyancy dominated, rather than shear dominated. The MO length can be

expressed as:

e, [13]
kag(Wlev)S

Where u, is the friction velocity; 8, the mean virtual potential temperature; k,the von karman

constant (0.4); and (w’8,)¢ the surface virtual potential temperature flux.

Following Holtsag (2014) we distinguish between the different stability classes based on their
respective MO length in table 1. To determine stability, different approaches can be utilized.
Some of the most popular include the Eddy-correlation method, Bulk Richardson number, and

the Gradient Richardson number.

Class Boundaries Stability Class
200 " <0 very unstable
—-500 < L -200 unstable
L] > 500 neutral
200 < L <£500 stable
0<L<200 very unstable

Table 1: Stability class boundaries (Holtsag et al., 2014).

*The MO length is derived from on-site measurements.
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2.4.6 Gradient Richardson Number

The Richardson number (Ri) is a critical nondimensional parameter when measuring the
competition between the destabilizing influence of mechanical shear, and the stabilizing real
Brunt-Vaisala frequency, that is, a measure of buoyancy (Geernaert, 2003). It is a coarse

measure of expected turbulence. The gradient Richardson number can be expressed as:
d
g (%) [14]

oo (42)

Where the top part of the equation is the vertical density gradient multiplied with the
acceleration of gravity. The bottom part is the horizontal wind speed’s vertical gradient squared,
multiplied with the unperturbed density. The Ri is negative when the heat flux is upward
oriented (unstable), whereas the opposite is true for positive Ri values. The different stability
classes can be distinguished based on the Ri number as suggested by Obhrai et al (2012),
presented in table 2:

Gradient Richardson Number Stability Class
Ri <-5.34 very unstable
-5.34 <=Ri<-2.26 unstable
-2.26 <=Ri <-0.569 weakly unstable
-0.569 <=Ri < 0.083 neutral
0.083 <= Ri < 0.196 weakly stable
0.196 <= Ri < 0.49 stable
0.49 <= Ri very stable

Table 2: Gradient Richardson number and corresponding stability class (Obhrai et al., 2012)

2.4.7 Bulk Richardson Number

The bulk Richardson number (Rib) is an approximation of the Ri. It is structured as a
approximation of local gradients by finite differences across layers (Weisman and Klemp,
1986). The Richardson bulk number is given by:
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() 26,4, [15]

Rib = e+ @)

Where T, is the absolute virtual temperature; A6, is the differences in the virtual potential
temperature across a layer of thickness A,. AV and AU are the change in horizontal wind

components when traversing through the same layer.

2.5 Distribution Models

As we are experiencing an increase in energy demand, researchers have increased their focus
on improving the efficiency of the wind power generation The first step in the development of
wind energy is to assess the characteristics and the potential of wind energy. The wind speed
distribution at a particular location determines the wind energy available, and the energy

conversion systems performance (Chen and Blaabjerg, 2009).

The KE in the airflow is converted into electrical energy via wind turbines. The wind speed has
a statistically significant positively skewed distribution. Wind power, on the other hand,
exhibits volatility, intermittent characteristics and randomness, leading wind farm power output
to significant fluctuate (Shi et al., 2021). In wind farm analysis, design planning, construction
and O&M, several probability distribution models have been used. Many probability
distribution models have been utilized in wind farm analysis, design planning, building,

operation and maintenance (Wang et al., 2021b).

2.5.1 Two-Parameter Weibull Distribution

The most commonly used density function with regards to wind speed modelling is the Weibull
distribution (Sarkar et al., 2019):

=) o[-0

The Weibull distribution (Weibull, 1951) is a well-tested distribution that may be utilized in
wind speed modeling. The shape parameter, k, and the scale parameter, a, are required by the
Weibull distribution. Both the wind speed and its standard deviation are used to calculate the
parameters. The shape parameter affects the width of the data distribution, whereas the scale
parameter regulates the abscissa scale (Shi et al., 2021). Despite its ease of use, the two-
parameter Weibull distributions performance is reduced when fitting low wind speeds, and
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much worse when the wind speed data contains a large number of null values (Akgul et al.,
2016). To properly fit and characterize the wind regimes, it is necessary to eliminate null values
before fitting.

2.5.2 Rayleigh Distribution

When the two-parameter Weibull distribution possess a shape parameter equal to 2, it forms the
Rayleigh distribution (Shi et al., 2021):

X 1 5.2 [17]

r6) =z |3 () |
The Rayleigh distribution is of relevance when modeling wind speed and evaluating the
performance of wind turbines (Saleh et al., 2012). It is more convenient than the Weibull
distribution as it only contains one parameter that is easier to estimate. The Rayleigh
distribution assumes that the long-term wind vector is zero. At sea, the wind vector significantly

deviates from zero. This relatively limits the applicability of the distribution to sea winds (Perrin
et al., 2006).

2.5.3 Gamma Distribution

The generalized Gamma distribution is another distribution of popular use in wind speed
modeling (Aries et al., 2018) and reads as following:

k [18]

fx) = %xmexp (—ax)

Where a and T represents the scale parameter and the shape parameter, respectively.
The distribution is representing the sum of all the exponentially distributed stochastic variables

identified by the scale and shape parameter (Aries et al., 2018).

2.5.4 Kernel Density Estimation

The Weibull, Rayleigh, and Gamma distributions are all parametric distributions. Although
there are certain advantages with these distributions in wind speed modeling, selecting a
qualifying distribution remains difficult (Shi et al., 2021). The model may not accurately
characterize the actual wind regimes, and the estimated parameter values may fail statistical

tests (Xu et al., 2015). However, when using a nonparametric model, the model does not have
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to make any assumptions on the theoretical wind speed distribution or estimate the parameters
of any distributions (Xu et al., 2015). One of the most frequently used nonparametric models is
the kernel density estimation (KDE) (Qin et al., 2011). The KDE gets the probability density

function from the sample data:

F@ == K@ ]
i=1

Where n is the number of samples; h is the bandwidth; K(a) the kernel function; and the relative
distance between estimated and sample value is given by a which can be further described as:

[20]

X — X

h

a =

Where X is a fixed location, and xi an observation. There are several kernel functions used to
generate KDE functions, the Gaussian kernel function is the most utilized kernel function in the

generation of KDE functions (Han et al., 2019):

k@ = 5] -
@ =7

KDE models are very adaptable and stable. Recently, Han et al. (2019) conducted a study on
wind speed data from 698 wind stations at different locations in China. The results from the
study showed that the KDE model outperformed the Weibull distribution along with 18 other
popular parametric distributions. Anyhow, correct bandwidth selection is vital for the model to
do a good fit. Otherwise, the model could experience over-fitting and under-fitting which will
affect the estimated value (Han et al., 2019).

2.6 The Wind Turbine Power Curve

The WTG power curve depicts the relationship between WTG power output and wind speed,
and essentially captures the performance of wind turbines. Accurate power curve models are a
valuable tool in wind power forecasts and assist in wind farm growth. The relationship between

the wind speed and the power for a vertical-axis wind turbine can be expressed as follows:

0 Vour <V <V [22]
p(v) ={q() Vip <V <1,
P‘r v‘r S U S Uout
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Where p(v) is the electrical power output in Watts; v;, is the cut-in wind speed (m/s); v,y IS
the cut-out wind speed (m/s); v, is the rated wind speed (m/s); B. is the rated power output in
watts; and q(v) is the non-linear relationship between wind speed and power (Carillo et al.,

2013). The power curve is illustrated in figure 1.

rated

o
o
=
&

a(v)
@ .
cut-in Wind speed cut-out

Figure 1: Power curve representation.

2.6.1 Momentum theory

As described by momentum theory, it is possible to express the power of a WTG to capture

wind energy as:

1
P= EpSvd (w2 —v32) [23]

Where p is the air density; S is the rotor swept area; v, is the wind speed that passes through
the WTG rotor; v, is the wind speed upstream of the WTG rotor; and v, is the wind speed
downstream of the WTG rotor. Hansen (2015) describes the relationship between the upstream
wind speed, v, the wind speed passing though the rotor, v, and the downstream wind speed,

v,, as:

Vy, =204 —Vq [24]

With the use of equation 24, equation 23 can now be expressed as:
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P = 2pSv2(vy — vg) [25]

Subsequently, equation 25 can be expressed as (Dai et al., 2016):

+ Vg [26]

2.6.2 Power Curve Correction Using SCADA Data

One of the key issues to be solved in the operation and maintenance process of a wind turbine
is to accurately obtain the wind turbine performance. In order to calculate the theoretical power
output of a wind turbine using wind data it is necessary to know the specific turbine’s power
curve that describes the relationship between the wind speed and the turbine’s power output.
This sub chapter follows Dai et al (2022) paper ’Study on Obtaining Real Power Curve of
Wind Turbines Using SCADA Data’’ in order to obtain the real power curve for the Siemens-
Gamesa-6.0 WTG that is used at Westermost rough. The Power curve model can be expressed

as:

1
P= Eansz(v, w, B, YIv? [27]

With R being the radius of the rotor; C,, the power coefficient; w the rotational speed of rotor;

B the pitch angle; and y the yaw angle (all available from the SCADA data). The wind speed
retrieved from the SCADA data is provided by anemometers installed on the nacelle, which is
not the true incoming wind speed (Dai et al., 2016). As the wind travels through the rotor plane
before it reaches the anemometer, a portion of the wind energy will already have been absorbed
by the rotor which results in smaller measures by the anemometer than the actual incoming
wind speed. As of this, if the SCADA data wind speed is directly used in analysis, there must
be a significant deviation (Dai et al., 2022). Therefore, correcting the wind speed SCADA
through moving average filtering before performing the power curve modelling will yield a

more precise power curve.
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2.6.2.1 Moving Average Filtering (MAF)

Because the effect of wind velocity on generator power is the result of wind in a specific period,
modelling the power curve using velocity averages rather than the instant values is more
reasonable. There is also a lag effect between variations in wind velocity and power variation
to consider (Dai, et al., 2022). The primary reason for this is that the WTG rotor is a large
inertial system. The moving average filtering (MAF) method is using a sliding window of
certain size in order to determine the average of data points within the set window. The discrete

expression of the moving average filter can be expressed as:

N
1
y(n) = N—“kZOx(n — k) (28]

Where y(n) is the output of the filter; x(n) is the input of the filter; and N is the window length
of the MAF filter. Before the process of filtering, the null values are filled with zeros. Also, if
a zero value is located in between two measurements it is repaired by averaging the adjacent

data. If multiple zeros is occurring consecutively, the data is rejected:

( x(n) = 0,if x(n)is null
i x(n—1)+x(n+1)
x(n) =

5 Jif x(n) =0,x(n—1)>0andx(n+1) >0 [29]
x(n) =0,if x(n+1) =0,x(n+2)=0,..

2.7 Power Performance Estimation

Power performance measurement is essential in the wind industry since it serves as the
foundation for the wind turbine's power production forecast. A WTG power performance
measurement consists of simultaneously monitoring the wind speed in front of the turbine and

the turbine's power output.

To describe the wind field around the wind turbine in flat terrain, the IEC 61400-12-1 standard
for wind turbine power performance assessment only requires the measurements of wind speed
at hub height and air density (derived from temperature and pressure data). However, other
wind characteristics, such as the variation of wind direction with height (veer), the horizontal
wind speed with height above ground (shear), and the fast variation of wind speed around the
10-min average wind speed (turbulence), have been shown to influence the power performance

of large WTGs (Wagner et al., 2011). That is why, in practice, the power curve measured in
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accordance with the current standard is specific both to the meteorological conditions and the

location during the test.

Antoniou et al. (2009), and VanLuvanee et al. (2009) discovered that power generation reduced
with increased shear in their investigations. They also discovered that wind speed profiles
having a greater wind speed gradient above hub height than below hub height (such as those
produced by low level jets) experienced increase in power production. Their findings suggests
that profiles that deviate from a power law shape may have a bigger power deviation than those
that closely resemble a power law.

2.7.1 Hub Height Wind Speed
Traditionally, estimating the hub-height wind speed (HHWS) has been critical for a

comprehensive wind resource assessment. The wind speed is extrapolated or interpolated in
order to determine the wind speed at hub height. The power output is calculated through the

equation:

[30]

1 3
P=§CPAV

Where P is the power output in watts; C,, is the power coefficient; A is the rotor swept area; and
V is the hub height wind speed. IEC 61400-12-1 standard assumes that the hub height wind
speed makes a sufficient representation of the wind speed across the whole turbine rotor swept
area. The assumption becomes rather questionable as we experience growth in turbine rotor
diameter and the wind speed difference experienced by the different rotor sections becomes

significant. The wind profile interaction with a large rotor can be visualized in figure 2.
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Figure 2: Hub height wind speed (HHWS)

It is assumed that in case of the wind shear coefficient being constant, the difference between
the hub height wind speed and the rotor equivalent wind speed is usually small (Van Sark et al.,
2019). However, an experiment carried out by Bratton and Womeldorf (2011) showed that,
in some cases, a constant wind shear coefficient was insufficient in describing the wind shear
profile. Wharton and Lundquist (2012) performed a similar experiment, where their findings
showed to support Bratton and Womeldorf’s: The difference of the HHWS and REWS could
be significant.

2.7.2 Rotor Equivalent Wind Speed

Wind shear, directional shear, and direction variations are known to restrict power generation
capacity, whereas turbulent intensity increases it. However, an elaborate superposition of these
influences reshapes the properties of the power estimate, indicating the need for a new
formulation (Choukulkar et al. 2016). Wind resource assessments have traditionally been done
using meteorological towers, which give measurements at hub height (Choulkular et al. 2016).
As technology advances, we witness an increase in both hub height and rotor swept area. We
have also moved offshore, which provides us with a different basis for including atmospheric
stability. The influence of both mechanical shear and atmospheric stability is now more
important, and point measurements from met-towers are no longer a suitable depiction of
turbine-wind interaction (e.g. Wharton and Lundquist 2012; Wagner et al. 2009; Sumner et al.

2006). Rotor equivalent wind speed u,, can be expressed as:
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[31]

In which A is the rotor disk total area; A; is the area of the i-th segment of the rotor disk; and
u; represents the wind speed at each segment. The segments are used to weight wind speeds to
the area centers as illustrated in figure 3(a) . The area of the i-th segment can be determined

through the equation:

[32]

R—nh
A; = R?cos™? (T) — (R — h)v2Rh — h?

The segment area can be determined through equation 32 by utilizing the arc sine function as
illustrated in figure 3(b). When establishing the first segment from the top it is assumed that
radius of rotor rotation area is R, and the height of the sector is h. Further, the segment lengths

can be found by following:

[33]

1 . nh+1
SPPEY L)
np 2

Where n,, is the total number of sectors. The relationship between rotor equivalent wind speed

to hub height wind speed can be found through the following equation (Ryu et al., 2022):

3
VREWS Z [1+_<._ nh+1)>x£la
VHHWS 2 H

[34]
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Figure 3: REWS rotor segments (a); rotor area segments thorugh arc cosine function (b).

2.7.3 Annual Energy Production
According to the IEC 61400-12-1 (10, p.32) standard, the annual energy production (AEP) is

calculated as described in the equation:

N P._4 + P
AEP =Ny ) [F(V) = (V)] (52 ) [35]
k=1
Where Nh is the total number of hours in one year (8769); N is the number of bins; Vk is wind
speed normalized and averaged in bin k; Pk is the power output normalized and averaged in bin
k. The IEC 61400-12-1 also states that is should be assumed zero power for wind speeds above

and below the range of the relevant power curve.

2.8 Wakes

Due to the energy extraction from the wind, WTG farms cause tens of kilometers of atmospheric
wakes which results in reduced wind speeds and increase in downstream turbulence intensity

of the wind farm (Hasager et al., 2015). For a wind farm that has many WTGs in operation, the
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wake of the turbines start to overlap and form a combines wake from the wind farm (Ahsbahs
et al., 2020). It is important to take the resulting velocity deficit into account for more accurate
energy yield calculations. Wind farm wakes are also known to be dependent of the atmospheric
stability (Hansen et al., 2012; Platis et al., 2018). Accurate wake modelling is important for
wind plant layout optimalization and is also essential in the work of creating effectual control
strategies (Meyers et al., 2022; Veers et al., 2022).

2.8.1 Wake models

2.8.1.1 The Jensen Wake Model

The Jensen wake model is a mass-conserving engineering wake model with its purpose to
estimate the downstream wind speed of a WTG at a distance x, u, when subjected to an inflow
wind speed at hub height, u, (Pefia et al., 2016). The model is of popular use due to its
reasonably accurate results despict its simplicity (Sebastiani et al., 2021). The normalised

velocity deficit using the Jensen model is found as:

2—a2 [36]
<1 +a (%))

In this equation, u, is the inflow wind speed at hub height; a the wake decay coefficient; and
a is the axialy induction factor. Further, the wake expansion radius r; can be expressed as

follows:
_|1l—a [37]
=T / 1-2a

Where 1y is the rotor radius. The axial induction factor a is dependent on the thrust coeficcient,
Ct, and can be calculated from their relationship:

u Uy

(1-y1-¢) [38]
2

a =

The wake decay constant determines the size of the expanded wake downstream the WTG
(Yang and Cho, 2019) and can be determined by using the turbine hub height, h, and the local

surface roughness length of the wind farm, z,, following the formula:
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0.5
In (ﬁ) [39]

Zg

a =

The model is a good approximation for the near wake, less or equal to two rotor diameters
downstream, but not efficient in describing the far wake. The model relies on the assuption that
the radial speed within the wake is constant and is expanding radially with the rate k,,, (Pefia et
al., 2016). The Wind Atlas Analysis and Application Program (WasP) suggests a wake decay
coeficcient (°"WDC’’) of 0.04, however, DTU have later found (2018) that a WDC of 0.06
yields more accuracy for offshore conditions (Rathmann et al.,, 2018). A schematic
representation of the Jensen wake model is given in figure 5.

n=ax+r,
0 " u

Figure 4: Schematic representation; Jensen wake model (Yang and Cho, 2019).

2.8.1.2 The Eddy viscisity Wake Model (Ainsle Wake Model)

Eddy viscosity hypothesis is a prominent approach for determining the turbulent Reynold
stresses in wind turbine wake modeling (Scott et al., 2023). The model is based on the
assumption that the flow is axisymmetric, stationary without rotation, and fully turbulent
(Sebastiani et al., 2021). These assumptions result in the Euler equations, as expressed by

cylindrical coordinates:

v ou av_ [40]

—=0
r 6x+6r

== [41]
u—+v T

ou ou vt [ou 0%u
ox d r
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In which u and v respectively are the axial and radial velocity components; and where r is the
radial position. The Euler equations is solved through a numerical scheme which determines
the velocity field inside the wake starting from an initial downstream distance of 2D (Sebastiani
et al., 2021). Both the Eddy viscosity and the Jensen wake models have the ability to evaluate
the reduction of speed within a wake. However, when several turbines are clustered there is a
need for evaluating the combined wake effects. The most common used method for this purpose

is the sum of squares (Katic et al., 1986).

2.8.1.3 Wind Farm Model

Inside a WTG farm, local wakes are superposed in the effort to estimate the speed deficit, &, at
the n’th turbine, &,,. That way, as suggested by Katic et al (1986), it can be applied a quadratic
sum of the square of all local speed deficits, sub-indexed i . The method is utilized in WASP,
which is integrated in WindPRO:

6.y = (Z % )E [42]

The speed received at the nth turbine, u,, is then given as u,, = uy(1 — §,). If the interspace
between the local turbine and an upstream turbine is not aligned with the direction of the wind,
a partial wake interaction may be experienced by the local turbine (Pefia et al., 2016). Partial
wake interaction can be visualized in figure 5. The partial wake interaction can be determined

as the relationship between the intersecting area of the wake and the rotor area as follows:

2a onerlap

[43]
(1+e@)) *
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Figure 5: Overlapping wake and rotor areas (Yang and Cho, 2019)

2.9 Model Evaluation — Goodness of fit

In climate, air quality, and meteorology research studies, the root mean square error (‘" RMSE’’)
has long been employed as a standard statistical tool to quantify model performance (Chai et
al., 2014). The RMSE is the standard deviation of the prediction errors (residuals). It is an
effective tool for analyzing how concentrated the data is to the line of best fit (Christie and
Neill., 2021). RMSE can be described through the formula:

1 n
RMSE = j—z S; — 0? [44]

Where S; are the predicted variable values; O; are the observations; and n is the number of

observations.

2.10 Climate Reanalysis Data

Reanalysis data sets have increasingly become of interest amongst researchers for large scale
wind power analyses, mainly because they cover long time spans and large areas (Rose and
Apt, 2015). Long-term wind data is essential for developers and financers of wind projects as
it reduces uncertainties about future revenues of proposed wind plants. It is also important for
operation and maintenance of existing wind farms as it makes it possible to estimate rare event
probabilities. Finally, it gives a a good basis for assessing cycles and trends in wind resource

(Rose and Apt, 2015). Reanalysis data is collected through meteorological stations over many
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decades and is further combined with today’s weather models to deliver a complete and

consistent picture of the past weather (Hersbach et al., 2018).

It is shown that mesoscale model data can have some directional bias (Dorrego et al., 2022). In
the northern parts of Europe, an observation is that the wind speeds for East and North-East
directions is too low, and for South-West they often are too high (EMD, 2023b). A reason for
the observed bias might be direction inaccuracies. Often, the measurements can be wrongly
calibrated by direction or contain periods with offsets caused by measurement equipment
(EMD, 2023b).

2.10.1 NORAS

The three kilometers Norwegian Reanalysis (NORAZ3) is a 15- year mesoscale hindcast of the
North Sea, Barents Sea, and the Norwegian Sea. The nonhydrostatic numerical weather forecast
model HARMONIE-AROME, with a horizontal resolution of three kilometers, runs resolved
deep convection and produces fields of hindcast that effectively is the downscale of the ERA 5
reanalysis (Haakenstad et al., 2021). The available NORAS3 data through EMD download in

WindPRO is given in Table 3, and contains the data used for calculation in chapter 6.4.1.

NORA3
Reference period 01.01.1999 — 31.12.2022
Observation 60 - min averages
Temperature 2
Relative humidity 2
Observation heights (m) Mean wind speed 10, 20, 50, 100, 250, 500
Wind direction 10, 20, 50, 100, 250, 500.

Table 3: NORAS data set available through WindPRO

2.10.2 NEWA

The New European Wind Atlas (NEWA) is the descendant of the 1989 European Wind Atlas
(EWA, Troen and Petersen, 1989) and is one of the more recent data sets. The data set aims to
provide a freely available, high resolution wind energy resource data set for Europe
(Dorenkamper et al., 2020) . Offshore, NEWA uses satellite data to validate data at 10 meters

above sea level. Furthermore, a validation at 100 meters above sea level is performed by
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extrapolating the wind speed at 10 meters by utilizing the log-law relationship (Badger et al.,
2016). The available NEWA data through EMD download in WindPRO is given in Table 4,
and contains the data used for calculation in chapter 6.4.1.

NEWA
Reference period 01.01.2009 - 31.12.2018
Observation 30 - min averages
Temperature 100, 200
Observation heights (m) Mean wind speed 100, 200
Wind direction 100, 200

Table 4: NEWA data set available through WindPRO

2.10.3 ERAS

The European Centre for Medium Range Weather forecasts (ECMWF) has long experience
with the use of reanalysis data. The ERAS reanalysis data set is their fifth-generation
atmospheric reanalysis and covers the period from 1950 to present date, with a grid resolution
of 31 km (Hersbach et al., 2020). The data set provides hourly estimates of atmospheric,
oceanic, and climate variables and covers 137 levels from surface to 80km height (Hersbach et
al., 2018b). The available ERAS data through EMD download in WindPRO is given in Table
5, and contains the data used for calculation in chapter 6.4.1.

ERA5S
Reference period 01.01.1990 - 31.03.2023
Observation 60 - min averages
Temperature 2
Relative humidity 2
Stability (1/L) 2
Solar irradiation 2
Observation heights (m) Mean wind speed 10, 100
Wind direction 10, 100

Table 5: ERAS data set available through WindPRO
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3 Software
In this chapter the software and modules that have been used in this thesis will be presented.

3.1 WindPRO

The program used for energy analyses in this thesis is WindPRO, which is a wind resource
analysis program developed by the Danish software and consulting company EMD
International. The program uses Wind Atlas Analysis and Application Program (WASP) as
calculation engine. The WASP engine is developed by RIS@ and was first introduced in 1987.
WASsP’s procedure for estimating the wind speed can be described through the wind atlas
method (Woo et al., 2012); the method converts the Weibull distribution of the wind data
measured into generalized wind statistics. This is done by removing the effects caused by
roughness length, obstacles, and the topography. The WASP engine then makes the assumption
that the prediction site and the measurement site are located in the same climatic region, and
then applies generalized wind statistics to the site of production (Woo et al., 2012). According
to Lars Landberg et al (2003) at offshore locations the controlling terrain parameter is the

surface roughness and not orographic effects.

The WindPRO software has a wide range of applications from calculating energy, uncertainty
quantifications, wind data analyses, site suitability assessment, to calculating environmental
impact. WindPRO is also a strong tool for post construction analyses. WindPRO contains of
different modules that handle the different tasks. In this chapter, only the modules and objects
used for analyses will be presented briefly. The data input depends upon the module of choice,
anyhow, WTG power curve and specification along with meteorological data are required to
complete a calculation of the energy output. The meteorological data may consist of actual local
measurements that can be imported from a file, or it can be added from third party reanalysis

data sets.

Information regarding modules out of scope for this thesis can be found at EMD-international

official web page.
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3.1.1 Modules and Objects

3.1.1.1 BASIS
The BASIS module is a preliminary module and serves as a backbone for the other WindPRO
modules. It gives a graphical user interface of the wind farm project, as well as park information

containing turbine layout and spacing.

3.1.12 PARK

PARK is a flexible tool that is used in calculation of the Annual Energy Production (“’AEP’’)
for one or several wind farms. The module combines flow and wake models together with the
site data to determine the energy yield of the WTG-s. Multiple sets containing wind data can
be used in a PARK calculation. The module takes by default the nearest set of wind data unless

else is specified (Nielsen, 2016)

3.1.1.3 Measure Correlate Predict

The Measure-Correlate-Predict (MCP) module is a tool for long time correction of local wind
data and is based on the correlation with long-term reference data. This module is proficient
when comparing graphs and determining correlation between local data and reference data. The
module makes it possible to long-term correct the local measurements with a long-term
reference by applying time-shifts and filling gaps. The MCP is a very powerful tool when you
have a sound amount of data that contains gaps and out of range values and you need to correct
it to a coherent time-series. When the data quality is very low for your local measurements, the
MCP module can be utilized purely as a comparison tool. For this instance, you want to scale
meso-scale data to your local measurements. This is an iterative process, and the MCP module
can be used between iterations to see the current correlation between the reference data and

local data (Jogararu, 2018).

3.1.1.4 Performance Check

Performance check is a set of tools used to analyse wind turbine SCADA data. The module has
the ability to quantify losses, lower the AEP uncertainty, and improve pre-construction
estimates. The analyses is based on error codes typically retrieved from SCADA, or by user

specifications if SCADA does not contain error codes.
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3.1.1.5 METEO Object
WindPRO offers a range of different objects that carries different data and is placed in the
project. A METEO object serves as a point of measuring that holds measurement data. This can

be local measurements (e.g., LIDAR or mast), or reference data from meso-scale data.

3.1.1.6 AREA Data
Tool for digitizing and importing areas as closed polygons, each with similar characteristics.

The sea surface is described using the Area object.

3.1.1.7 WTG Area

The WTG Area Object is used together with the PARK module and defines the area that is used
to cite the WTG’s. All the WTG-s in the wind project that are used for analyses are linked to
this object.
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4 Current research

4.1 Previous studies at Westermost Rough wind farm

The Westermost Rough (WMR) wind farm has been a popular location for studies related to
wake generation because of the turbine layout and geographical location. Nygaard et al (2018)
presented dual-Doppler measurements of the wake generated behind the WMR wind farm.
Through radar measurements they were able to track the evolution of the wakes through the
farm and further downstream. The study found through measurements that the wake region
extends at least 17 km downstream WMR. The measurements were then compared with two
different engineering wake models, the top-down wake model and the Park model. Both models
predicted correctly up to 10km behind WMR. The Park model does not consider shift in wind
direction behind the wind farm and thus overestimated the wind speed on lines aligned on the
turbine rows. Two years later Nygaard et al (2020) presented two new models for wind turbine
interactions effect including a recipe for combining them. The first being an extension of the
Park model which incorporates both the atmospheric turbulence, and the turbulence generated
in the wake itself. This modified model proved a better fit to describe wake recovery over longer
distance which is beneficial when considering wake effects from neighboring wind farms.
Ahsbahs et al’s (2020) recent work showed a good agreement between Doppler radar
measurements and SAR images at WMR in cases without any stable atmospheric stratification.

4.2 Reanalysis data

Haakenstad et al (2021) did a performance study of the NORA3 reanalysis data set where they
compared surface wind speeds assured from offshore observing stations that was retreived from
the Norwegian Meteorological Institute, and made an comparison to NORA10 and ERAS. The
validation period was 2004-18. The best-performing reanalysis data set was NORAS3, followed
by NORAU10. The least-performing data set was ERAS.

Solbrekke et al (2021) did a validation study of NORAS3 for the Norwegian Sea and the North
Sea during the period 2004 — 2016. They conclude that the NORA3 data set is well suited for
estimating the wind power but gives a rather conservative estimate on the offshore wind
metrics. They found that the NORAS3 wind speeds typically is 5% lower than actual wind

speeds, which gives an offshore wind power underestimation of 10-20%.
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4.3 Wake models

There are different wake models being used to calculate the energy deficits in wind modelling.
Both the Jensen and the Eddy viscosity are engineering wake models that are is simpler and

require less computational power than more advanced models.

Shakoor et al (2016) did a comparative study of different wake models offshore, including the
Jensen and the Eddy viscosity model. They conclude that both models have the possibility of

high errors in accuracy compared to real measurements.

Vanluvanee (2006) compared the practical aspects and simulation results from three different
wake models: the Eddy viscosity, Larsen, and Jensen wake model. They found that the Eddy
viscosity model showed high prediction accuracy for measurements on the wake width for
larger down-stream distances, while Jensen outperforms the Eddy viscosity model for shorter

distances.

Sarensen et al (2006) did a validation of the wake model performance for large offshore wind
farms where they present the results of a case study done at Horns Rev wind farm from 2005 to
2006 using WindPRO, and the calculated wake losses are compared to actual observed wake
losses. The case study indicated that the Jensen wake model was more precise in predicting the
wake loss observed than the Eddy viscosity model. Their main results concluded that the Jensen
wake model with a wake decay coefficient of 0.04 is more conservative than the Eddy viscosity

model.

4.4 Wind Profiles

Gryning et al. (2007) discovered, through examination of meteorical readings from a 160-meter
mast at Havsgre in Denmark, and a 250 meter tall TV tower in Hamburg in Germany, that wind
profiles that are based on surface-layer theory and Monin-Obukhov scaling are only valid up to
80 meters for neutral atmospheric conditions, and fairly less for adiabatic atmosphere. Above
80 meters, deviations occurred progressively. With technological advances wind turbines
become larger and the turbine hub height will be positioned outside the limitations of what

Monin-Obhukov scaling is valid for, necessitating the extension of wind profiles.
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4.5 Rotor Equivalent wind speed

Ryu et al (2022) did an analysis of the vertical wind shear effects on the prediction accuracy in
offshore wind energy production, applying the the rotor equivalent wind speed. The analysis
was conducted for the Anholt offshore wind farm using two years of SCADA data and
compared the two methods to actual power output. They concluded with REWS being more
accurate at predicting the higher wind speeds and had a more accurate prediction than the
HHWS. Overall, the REWS method showed better prediction accuracy than the HHWS.
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5 Materials and Methods

5.1 The Westermost Rough Wind Farm

The wind farm studied in this thesis is the Westermost Rough wind farm in England operated
by @rsted, the largest offshore wind farm developer in the world. The WMR wind farm is a
medium sized offshore wind farm situated at the southeast coast of England, eight kilometers
off the Holderness coast, and has a covering area of 32km?. The wind farm consists of 35
turbines of the type Siemens-Gamesa SWT-6.0-154 and has the potential to yield a combined
total capacity of 210 MW (@rsted, 2015). The turbines have a monopile substructure each
weighing up to 800 tons and has a diameter of 6.5m. Figure 6a displays an overview of the park,
whereas figure 6b displays the wind farm layout. Internal spacings between the turbines can be

found in Appendix 3 fig. 49, and table 34.
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Figure 6: Overview of WMR wind park (a); enlarged overview WMR wind park with field layout (b).
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Westermost Rough Project Timeline (@rsted)

May 2007 Awarded leasing agreement to develop a wind Farm at WMR.
Nov. 2011 Consent awarded.

Feb. 2013 Onshore construction began.

Jan. 2014 Offshore construction began.

Aug. 2014 First turbine erected.

Sep. 2014 First power generated.

Jul. 2015 Fully commissioned and Operational.

Table 6: Westermost Rough Project Timeline. Ref: ( www.orstedcdn.azureedge.net).

The WMR project was the first commercial deployment of the Siemens-Gamesa SWT-6.0-154
wind turbines (@rsted, 2015), and the project timeline from awarded leasing agreement to fully
commissioned and operational is given in table 6. The turbines stand 177m tall from sea level
to the highest reach of the blade tip. The wind farm specifications can be found in table 7. The

Siemens Gamesa SWT-6.0-154 technical parameters are provided in table 8.

Item Content
Wind Turbines Siemens-Gamesa SWT-6.0-154
Number of turbines 35
Nominal Power [MW] 6
Hub Height [m] 106
Rotor diameter [m] 154
Water depth [m] 16-26
Distance to shore [km] 8
Wind farm area [km?] 32
Power regulation Pitch regulated, variable speed

Table 7: Technical specification SWT-6.0-154. Ref: (https://www.siemensgamesa.com/products-and-services/offshore/wind-
turbine-swt-6-0-15).
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The Siemens Gamesa SWT-6.0-154 turbine parameters from datasheet

Content Value
Rated power 6,000,0 kW
Cut-in wind speed 4.0m/s
Rated wind speed 13.0 m/s
Cut-out wind speed 25.0 m/s
Survival wind speed 70.0 m/s
Rotor speed, max 11.0 U/min
Tip speed 89 m/s

Table 8: Siemens Gamesa SWT-6.0-154 Datasheet. Ref: (https://en.wind-turbine-models.com/turbines/657-siemens-swt-6.0-
154).

5.1.1 Offshore Wind Lidar

Average wind speed increases with height and reduces the braking effect of ground-based
barriers. For this reason, turbine hub heights increase in elevation in order to exploit the
resources which can be found at higher altitudes. State of the art wind turbines now have hub
heights of 120 to 160 meters, and the rotary blades may reach as high as 200 meters at blade
tip. When planning a wind project this can be challenging as the towers used for wind
measurements seldom exceeds 100 meters altitude. Doppler LIiDAR systems has been
introduced in wind resource assessment as they are very precise in measuring air movement
and fluctations at higher elevations. The WindCube LiDAR rotates a laser beam in cone shape
using pulsed heterodyne technology. The wind speeds and direction are determined by detecting

the Doppler shift of the laser.

At the WMR wind farm the LIiDAR is of the model type WindCube manufactured by
Leosphere, and is installed on the roof deck of the offshore substation Z01 at a height of 33.8
m from the Lowest Astronomical Tide (LAT). The data received from the LiDAR is given in
10 minutes average observation during the reference period 13 January 2016 to 6 December
2017. For calculation purposes in this study the height has been assumed to 34 meters. Table 9
contains description and content available from the wind cube at WMR. The location of the

substation Z01 is depicted in figure 7.
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Description Content

Type Leosphere WindCube
Observation 10-min averaged
Accuracy 0.1m/s (speed), 2 degrees (dir)
Reference period 2016.01.13 - 2017.12.06
Height above MSL' [m] 33.8 (34 for analysis)
Location GPS Roof deck Z01 sub-station

Wind speed 40, 60, 70, 80, 100, 120, 140, 160, 180, 250, 270, 290

Observation height [m] Wind dir* 40, 60, 70, 80, 100, 120, 140, 160, 180, 250, 270, 290
Air Pressure 33.8
Air temperature 33.8
Relative humidity 33.8

Table 9: Content description of the Leosphere Windcube located at WMR substation Z01.

T To correctly calculate height above Lowest Astronomical tide (LAT), the height of the LIDAR lens must be considered

(33.8 m above LAT). For example: if the configured measuring height is 10m, true height of measurement is 43.8 m above
LAT.

* Wind direction for every measuring height must be corrected according to the offset value (direction between LiDAR
reference angle 0 and north), which depending on when the measurement were taken, is +4deg and -129deg.
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Figure 7: Lidar location on roof deck of substation Z01. Ref: (Westermost Rough Lidar documentation report — Dong energy,
prepared 25 May 2016)

5.1.2 Offshore Buoy

Inside the WMR wind farm a wave buoy manufactured by Fugro Oceanor of the model
SEAWACTH Midi is installed. The data retrained from the buoy is given in table 10.
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Description Content

Type SEAWATCH Midi

Observation 30-min averaged

Sampling period 2016.01.01 — 2017.12.31

Location 53°50.250°N, 000°09.500’E

Observation depth [m] Current direction 2, 3,6, 9, 12, 15, 18, 21, 24, 27, 30, 33
Current speed 2,3,6,9,12, 15,18, 21, 24, 27, 30, 33
Water temperature Sea surface

Table 10: Buoy data SEAWATCH Midi

5.2 Data Quality and Filtering

With different data sources covering different measurement periods this thesis uses the period
2016.01.13 — 2017.12.06 as the reference period. This period serves as the reference period as
it is the shortest of all the different data sources (LiDAR).

5.2.1 LIiDAR

Due to the position of the LIDAR, the wind observation does have the potential to be distorted
as wake generates downstream of a wind turbine. All the data is handled in separate collumn
vectors and sorted to have the same start and end date, and follows the same time step. SCADA
data contained double sampling of june 2017 which had to be removed in order to align the
data. The oceanographic data attained from the buoy are stored as 30 minute averages which
for more detailed measurements is interpolated to 10 minutes observations. During the
reference period 13 January 2016 to 6 December 2017, the LIiDAR data had some significant
deficiencies, and it is natural to assume that it was out of service for longer stretches during the
reference period. 100% 10-min average samplings calls for 99775 measurements while our
dataset only contains about 11256 measurements of windspeed (each height), 11437
measurements of temperature, and 11256 measurements of direction (each height), hence a data
quality of 11.28 — 11.46%. Figure 8 shows significant gaps in the wind speed time series at hub
height.
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Figure 8: Wind speed time series LiDAR at hub height (106m)

Following Obhrai et al (2012), the data was filtered in order to remove non-stationary
conditions which conformed the three criteria: i) a variation in temperature more than 0.5C, ii)
a variation in wind speed of more than 10% and iii) a change in wind direction of more than
10 in between consecutive values. For stability calculations, windspeeds lower than 2 m/s along
with negative air and sea temperature were filtered out from the dataset. The data quality before
and after filtering using Obhrai 2012 is presented in table 11. Due small deviations in quality
among the different turbines, only wind speed and direction for 106m is presented, however,
the filtering is applied to all heights. The wind rose for the hub height pre- and post-calibration
is depicted in figure 9 and 10 respectively.

Data description Pre-filtering Post-filtering Filtered [%]
Wind speed (106 m) 11256 10134 9.97%
Wind direction (106 m) 11256 10241 9.02%
Air temperature 11437 11134 2.65%

Table 11: data quality pre and post-filtering.
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Figure 9: Wind Rose at hub height before filtering. Based on 11256 measurements of 10-min averages during the reference
period.
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Figure 10: Wind Rose at hub height after filtering. Based on 10134 measurements of 10 min-averages during the reference
period.
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5.2.2 Buoy

The Buoy data set containing water temperature had some significant outlier data which was
filtered and smoothed as it does not experience critical diurnal changes. The data from the buoy
was given in 30-minutes measurements which was interpolated to 10-minutes measurements.
The smoothed data gives us 99775 10-minutes measurements of water temperature during the
reference period. The wave height and direction measurements had very few outliers and had a
data quality of 98.64% during the reference period. A wave rose is depicted in figure 11.

Wave Rose

W (270°)

Figure 11: Wave rose during the reference period based on 98418 measurements.

5.2.3 SCADA data

The SCADA data had great consistency for all the turbines. There were no significant
deviations in the data availability between the different turbines, however, most of the turbines
had a double sampling of June 2017 which had to be removed. Because of low deviations the
following data availability for the AO1 turbine, presented in table 12, can be assumed

approximate equal, and representative for all turbines.
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Data Number of samples Available samples Availability [%]

Wind Speed 99775 97370 97.59
Wind Speed standard dev. 99775 97370 97.59
Mean active power output 99775 97396 97.62
Ambient Temperature 99775 97371 97.59
RPM 99775 97370 97.59
Pitch position 99775 97370 97.59
Yaw position 99775 97370 97.59

Table 12: representation of available data thorugh turbine A01 SCADA during the reference period.

Figure 12 and 13 display the wind speed density from the A01 SCADA data fitted with different
distributions. The Weibull parameters are given in table 13.
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Figure 12: Different distributions fit to the SCADA wind-speed for the A01 turbine.

Parameter Value
Estimated scale parameter: 10.1687
Estimated shape parameter: 2.3357
95% Confidence interval for scale parameter: [10.1373, 2.3233]
95% Confidence interval for shape parameter: [10.2002, 2.3482]

Table 13: Two-parameter Weibull parameters.
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Figure 13: Kernel distribution fit to SCADA wind speed for turbine A01
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6 Results

6.1 Stability
In determination of the atmospheric stability at WMR both the Bulk Richardson number and

Gradient Richardson number were used for comparison. Since the only measure for temperature
we have is at the same altitude as where the LIDAR is positioned (34m), the temperature from
the turbine CO3 SCADA data had to be used in order to get temperature from two altitudes in
order to calculate the gradient Richardson number. The turbine C03 was chosen as it is located
closest to the LIiDAR and we can assume little variation in temperature between the C03 to the
LiDAR, for a complete overview of the wind farm with labeled turbine numbers see Appendix
3, figure 49. Figure 14 shows the stability for different heights normalized to the lowest
measuring height, 74m, where the right hand side contains stability measure using gradient
richardson, and left hand side for bulk richardson. The data used in analysis is the post filtered

LiDAR data as presented in chapter 5.2.

Bulk Richardson Gradient Richardson
1.6 T T T T T T T T 1.6
O Measured o] O Measured
15k o e MO Theory || 15h o e MO Theory
’ @) @ Bin Averages § ® Bin Averages
© O

14 Q0

8

-
w
T

5
U106m/U74m

U106m/U74m

-
-
T

25 -2 15 -0.5 0 0.5 1 1.5 2 ‘25 2 45 4 05 0 0.5 1 1.5 2

Stability parameter z/L Stability parameter z/L
(@) (b)

44



Stability parameter z/L

(9)

1.6 T T T T T T : .

1.6 T T T T T T T T
o é © O Measured o| © Measured
15 S o© e MO Theory 15+ OLP ° M_O Theory
’ g ® Bin Averages ® Bin Averages
o 09 @OCO O
1.4 @& © 1.4 ©o
£ £
N X113
5 1.3 5
£ £
J1.2 212
S =)
1.1 1.1
1
0.9 ! 0.9
-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5
Stability parameter z/L Stability parameter z/L
(c) (d)
1.6 T T 1.6 T T T R T T T
O  Measured o O  Measured
15 e MO Theory 15+ ) e MO Theory
@ Bin Averages ® Bin Averages
@08 e L4
1.4 S Q@g o 1 1.4
£ O e} £
X 13 & ob S 13
2 o 2
: E
312 A 312
= =}
1.1 1.1
1 1 )
& © 0083 o
0.9 NS .GD . © I(QO o, (?On . Q 0.9 Q Lo .
-2.5 1.5 1 -0.5 0 0.5 1.5 2 25 -2 1.5 -1 -0.5 0 0.5 1 1.5
Stability parameter z/L Stability parameter z/L
(e) ()
1.6 T T T T 1.6 T —O r T T T
35 a . 50 [T
o o 8@ O Measured © oo GCD) O@o O  Measured
150 © o o6 % e MO Theory || 150 5 o0 © 80| e MO Theory
s} @ Bin Averages i ® Bin Averages
g n
14 1.4 b
£ £
Y13 S13
2 2 o
5 £ [}
B 1.2 3 1.2
) 5
1.1 1.1
1 1 L
0.9 0.9 :
-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5

Stability parameter z/L

(h)

Figure 14: Comparison of bulk richardson (B) to gradient richardson (G); B U106m/U74m (a); G U106m/U74m (b); B
U114m/U74m (c); G U114m/U74m (d); B U134m/U74m (e); G U134m/U74m (f); B U154m/U74m (g); G U154m/U74m (h).
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The root mean square error (RMSE) for (a) to (h) is presented in table 14.

Height (m) Bulk Gradient
106 0.0609 0.0668
114 0.0813 0.0886
134 0.1093 0.1225
154 0.1378 0.1641
174 0.1658 0.1999
194 0.1961 0.2405

Table 14: RMSE comparison Bulk Vs Gradient method using 45 bins.

6.1.1 Turbulence

The wind speed is normalized at 74m and sorted into stability classes using the gradient
Richardson number and wind speed distribution for each stability class is determined. Figure
15 and 16 shows the turbulence intensity and the 90" percentile turbulence at hub height

respectively.
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Figure 15: Turbulence intensity for different stability classes at hub height (106m)
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Figure 16: 90th percentile turbulence intensity for different stability classes at hub height (106m)

6.2 Power Calculations Using LIiDAR data

The second objective of this thesis was to apply the hub height wind speed and rotor equivalent
wind speed to the LIDAR data and compare the energy output to the actual energy generated in
the SCADA data. For this calculation turbine C03 was chosen as reference turbine as this is the
turbine placed closest, adjacent, to the LIDAR and it is assumed that the turbine experiences
the same wind as the LiDAR. The calculations in this sub-chapter will be conducted for one
turbine only, C03. The power curve used for this calculation is presented in-depth in chapter
6.3 “’Power Curve Correction’’. Because of large gaps in the LIDAR data during the reference
period, the longest period with coherent LIDAR data was used for analyses and spans from 13
January 2016 to 17 February 2016 (figure 17) and contains 4884 10-minutes measurements. A

sectionally binned representation of the wind speed and direction is given in figure 18.
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Figure 17: LiDAR wind speed at hub height from 13.01.2016 to 17.02.2016 based on 4884 10-min measurements.
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Figure 18: sectionally binned wind speeds based on 4884 10-min measurements with O degrees being North.

The turbine rotor was split into five segments with equal distance to each other, with the lowest
centre (U1) being 44.4 meters above sea water level (°SWL’”). The sections are determined in
accordance with Chapter 2.7.2 . The five sections of the area (A1-A5) are used to weight the
wind speeds at the area centers. Figure 20 displays the WTG rotor with segment centres. Table
15 shows the segment details after splitting in accordance with equation 32 and 33. It should be

reminded that the distance from SWL to the rotor tip at the bottom is 29 meters.
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Figure 19: Rotor split into segments
Segment  wind speed  segment segment segment segment height  Wind Speed
height [m] weighting [%]  bottom [m]  top [m] [m] [m/s]
A5 167.6 5.20 152.2 183 30.8 11.4762
A4 136.8 25.23 1214 152.2 30.8 11.1477
A3 106 39.13 90.6 121.4 30.8 10.7482
A2 75.2 25.23 59.8 90.6 30.8 9.5449
Al 44.4 5.20 29 59.8 30.8 8.1572

Table 15: Segment details.

The rotor equivalent wind speed is then determined by utilizing equation 31. For power output

calculation we use the power curve which will be described in the next chapter (chapter 6.3).

Table 16 gives the power output determined by using REWS, and HHWS compared to actual

production for the period.
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Method Energy [MWh]

Hub height wind speed 4281
Rotor equivalent wind speed 4 473
SCADA 4 900

Table 16: Power output the period 13 Jan — 17 Feb 2016.

6.3 Power curve correction

One of the objectives of this theses was to compare a “’real power curve’’ obtained through
SCADA data and MAF as described in chapter 2.6.1, to standard turbine specific power curve.
After filtering the SCADA data through equation 25, we want to determine the filter output
through equation 24. The critical problem when using the MAF filters is to determine the filters
window length. The filter window should be appropriate in length to compare trends in wind
speed change and power change. In the determination of correct length of window through
iteration, we choose one week of SCADA data as reference (1008 10-min samples). It should
be noted that one week of data is rather arbitrary, but as long as the window is long enough to
clearly see trends and patterns in the data, which is the main objective, it is considered sufficient.
The MAF with chosen window length is then applied to the whole reference period. Here, the
turbine AOL is used as the reference turbine. Figure 20 to 22 shows the filtered wind speeds

with different window lengths. The basis for choosing A01 is explained in chapter 1.1.
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Figure 20: MAF with filter window length N = 10 during a one week period.
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Figure 21: MAF with filter window length N = 20 during a one period.
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Figure 22: MAF with filter window length N = 30 during a one week period

After filtering, the wind speed fluctuations are reduced. The magnitude of reduction depends
on the filter length of choice. There is good consistency of trend in wind speed and power. Dai
et al (2022) stresses that the window length value only serves as an approximate value due to
the wind conditions complexity, and that it is not that the longer filter window length, the better.
But a smaller window length as long as the consistency of trends is present is favourable. That
is why in this theses we proceed with a window length of N = 10.
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Figure 23: comparison raw wind speed (blue) and corrected wind speed through MAF with filter length N = 10 (red).
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We can tell from figure 23 that the wind speed fluctuation has been reduced as a result of the
filtering, and the filtered wind speed has a small delay in time when compared to the raw wind
speed. This delay slightly increases with the increase of window length, N. According to the
momentum theory of an ideal WTG and combined with the anemometer installation position,
the difference between the measured and actual wind speeds is roughly compensated.
Proceeding to model the power curve only a scatterplot can be obtained from SCADA data. For
this reason, various fitting forms were tested using the curve fitting toolbox in MATLAB,
including Polynomial fit (figure 24), Fourier fit (figure 25), sum of sine (figure 26), and

Gaussian fit (figure 27). The figures 24 — 27 contains all yaw angles.
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Figure 24: Corrected power curve with polynomial fit.
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Figure 25: Corrected power curve with fourier fit.
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Figure 27: Corrected power curve with Gaussian fit.

The different fits were then analysed together with the raw fitted power curve (only applied the
filtering, no MAF) (figure 28) in the curve fitting toolbox. Table 17 presents the goodness of
fit for the raw power curve and the corrected power curve fitted with Fourier fit, which showed
the best fit.
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Figure 28: raw power curve with fourier fit.

Coefficients Power curve corrected Power curve raw SCADA
a0 3859 (3833,3885) 4010 (3932, 4089)
al -1175 (-1215,-1135) -1832 (-2069, -1596)
bl 2949 (2917, 2980) -2444 (-2517, -2371)
a2 954 (944.7, 963.2) 134 (-73.48, 341.5)
b2 627.3 (574.9, 679.7) -1207 (-1223, -1192)
a3 -323.6 (-350.5, -296.7) -196.8  (-332.9, -60.72)
b3 -166.7 (-199, -134.4) -282.8 (-344, -221.5)
ad -82.93 (-116.3, -49.55) -211.3  (-343.4, -79.32)
b4 369.8 (355.7, 383.8) -304.8  (-370.7, -238.8)
a5 125.9 (101.5, 150.2) -118.3  (-194.8, -41.71)
b5 -117.1 (-131.6, -102.6) -105.4  (-159.4, -51.41)
a6 -140 (-150.9, -129.2) -128.6  (-179.9, -77.28)
b6 -43.9 (-60.28, -27.51) -66.09  (-122.6, -9.622)
at 28.54 (23.62, 33.45) -51.15  (-72.66, -29.64)
b7 50.55 (40.16, 60.94) -16.93 (-47.6, 13.75)
a8 8.203 (5.509, 10.9) -45.66  (-49.76, -41.55)
b8 -45.04 (-48.88, -41.2) 10.7 (-12.88, 34.27)

Goodness of fit

SSE 1.6e+09
R-square 0.9969
Adjusted R-square 0.9969
RMSE 126.6505

1.868e+09
0.9951
0.9951
150.6

Table 17: Coeficcient with 95% confidence bounds comparison.
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Both the power curves are compared in table 18, from cut in wind speed 4m/s, to rated wind
speed, 13m/s. By examining the table, we can clearly tell that the corrected power curve yields

lower power output for the same wind speeds between cut-in and rated.

Wind speed [m/s] Power curve raw [kKW] Cp  Power curve corrected [KW] Cp
4 267 0.37 258 0.35
5 670 0.47 578 0.4
6 1303 0.53 1150 0.46
7 2137 0.55 1866 0.47
8 3111 0.53 2779 0.47
9 4220 0.51 3758 0.45
10 5185 0.46 4793 0.42
11 5832 0.38 5627 0.37
12 5962 0.30 5956 0.3
13 5979 0.24 5977 0.24

Table 18: Comparison of power curves
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6.4 WindPRO

In this sub chapter the work and results for WindPRO will be presented. The chapter is further
split into three sub chapters as follows:

Chapter 6.4.1 “’Project setup and Annual Energy Production (‘’AEP’’)’’: Both power curves
determined in chapter 6.3 will be utilized for comparison in AEP calculation using reanalysis
data scaled to local LiDAR data using transfer functions. The main purpose for this chapter is
to determine the suitability for reanalysis data scaling when we have small ampunts of local
data available. For this thesis’ instance, our local data only covers 12% of the reference period.

Data used in this analysis is presented in chapter 5.2.1 (LiDAR) along with reanalysis data.

Chapter 6.4.2 “>Wake models’’: As a part of the AEP calculation, the Jensen wake model and
the Eddy-viscosity (Ainsle) wake model is used for energy reduction. This chapter compares

the two models and displays turbine-by-turbine reduction in energy due to wakes.

Chapter 6.4.3 ©° Performance check’’: the performance check is a stand-alone module in

WindPRO where the individual turbines SCADA data is used together with power curve.

As WindPRO is a very practical software and the knowledge of the software is mainly for
industry, chapter 6.4 will be presented as “’step by step’’ approach. It should be noted that
WindPRO requires the use of MATLAB or other numeric computing software in some of the
iterative processes. Illustrations given in this chapters are made both through MATLAB and

WindPRO. For a better overview the source will be given in the figure citation.

6.4.1 Project Setup and Annual Energy Production

The first step in the setup was to import the geo-reference map of Westermost Rough with the
correct coordinate and datum (WGS84) information. When starting a new WindPRO project
WTG’s can either be imported as a shapefile or placed one by one at the desired location.
Another option is to import the existing wind turbines from the EMD server, which is a
comprehensive source for WTG positions worldwide. The server is based on data downloaded
2019-12-04. Westermost Rough has not experienced any modification with regards to turbine
position since that period and can be assumed accurate. The Siemens Gamesa SWT-6.0-154
wind turbine is not part of the EMD wind turbine catalogue, so the first step is to create a new
wind turbine that has the same properties as the SWT-6.0-154. The basic information is
retrieved from the producer’s technical data sheet as presented in table 7 and 8, (chapter 5.1) as
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both the power curves are to be tested we create two new power curves. The two power curves

with their respevtive power coefficient can be seen in figure 29 and 30.

Power Curve corrected (Dai et al., 2022)

Figure 29: Corrected power curve (red), Power coefficient (green); WindPRO.

s | Vi 5 , : i |

Figure 30: Raw power curve (red), Power coeficcient (green); WindPRO.

Now that the turbines have been positioned by the EMD database and validated with the use of
the turbine metadata retrieved by @rsted. the WMR wind park turbine layout can be seen in
figure 31.
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Figure 31: Westermost Rough park layout. Turbines (blue) and cite center (orange); WindPRO.

Next, we place METEO Objects within the wind farm. One object containing the local
measurement data retrieved from LiDAR. Since the LIiDAR is placed on the roof of the
substation Z01 and we know the substation coordinates, we can name the METEO object Z01
and place it within the correct coordinates. The LiDAR data is imported as ASCII time series.
In the import setup, we choose the type of data, sub-type (mean, std, max, min), and unit. We
also choose the specific heights the data is representing. In the data setup we choose the lower
and higher limits of the data. Here we can add or delete signals to the different heights. Because
of small amount of LIDAR measurements within the reference period, calculating the annual
energy produced (AEP) done solely with the use of LIDAR measurements can not be done and
is why we want to examine the possibility of using reanalysis data scaled to local measurements,
in order to make a coherent time series for the whole reference period. We create anew METEO
object for the reanalysis data and proceed to download the data sets of interest directly from the
EMD. When downloading the reanalysis data in to the METEO object, we select the relevant
third party reanalysis data sets NEWA, NORA3, the Global assimilation dataset ERA5 and
check for coverage in the area around the WMR wind farm. The location of the datasets relative

to the wind farm is depicted in figure 32.
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Figure 32: WMR wind park with location of reanalysis data given with colour codes; MATLAB

Now the measured data (LiDAR) from METEOQ object is the basis, and interpolations together
with WasP calculated transfer functions (scaler) gives the calculated wind speed, wake
reductions, and output power at each turbine for each time step. The method for scaling is an
iterative process that starts by choosing the LIDAR data that we want to calibrate the reanalysis
data to. For this we have chosen to use 74 — 214 meters, as 74m is the lowest measurement
available on site, and the wind turbine blade tip does not exceed 214m. The LiDAR data that is
used in METEO Analyzer! is: wind speed, wind direction and wind speed standard deviation
for all height, along with sea surface temperature. The lowest measurement also includes
temperature and relative humidity. We choose which METEO object we want to scale from, in
which we start with the NORAS3 data, and run the EMD default scaler. Now, a new scaled data
series is created through transfer functions. By examining the newly created time series to the
local measurement at hub height during a concurrent period we see clear trends and similarity.

A good tool for comparison is the radar graph presented in figure 35 which displays the wind

1 METEO Analyzer: the METEO analyzer is a tool that works directly on the data located in the Meteo objects.
The analyzer has the ability to work on data from multiple objects in parallel and is therefore suitable for
creating new time series based on a scaler and immediately compare it with other measurements (e.g.
downscaled meso data to a local measurement) which is essential for post calibration of the scaler so that
scaled data matches the measured data better. The meteo analyzer is also suitable for substituting/filling data
from one signal to another.
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speed and direction on concurrent time stamps for the LIDAR data and the raw NORA3 data

before doing any scaling.

Mean wind speed [m/s]

Figure 33: Comparison during reference period 16.01.2016 — 06.12.2017. Wind speed and direction at hub height. LIDAR
data (purple), raw NORA3 (blue); WindPRO

The two radar graphs in figure 33 shows a decent correlation, but are not completely aligned.
To bring the correlation to a higher, we create a scaler based on the ratios from Figure 33. One
important measure of the scaler is to bring the meso data as close to the measured wind
distribution (weibull fit) as possible. Figure 34 shows the Weibull distribution of both the raw
NORAS and the LIDAR measurements. By examining the two Weibull distributions we can
tell there is a deviation and we therefore proceed to scaling.
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Figure 34: Weibull distribution raw NORAS3 (blue) and LiDAR measurements (purple) both at hub height; WindPRO.

The post calibration of the scaler is carried out in accordance with EMD manual: we start by
extracting the data from the radar graph, which contains the mean wind speed at different
directions presented in table 19.

Mean Wind Speeds at direction

Angle Local measurement NORA3 Ratio

360 9.106399977 8.611711237 1.0334000
330 7.947962941 7.386914597 1.075951649
300 7.853478217 7.502077113 1.046840508
270 7.37772279 7.574436464 0.974029266
240 6.761111121 7.874660921 0.858590762
210 6.357105276 8.549430151 0.743570643
180 9.749479744 9.517286816 1.024396967
150 11.2316556 10.1213912 1.109694841
120 11.59393587 9.882118498 1.173223725
90 9.836360775 9.509897979 1.034328738
60 7.71897261 8.240999645 0.936654889
30 9.677093054 8.833116543 1.095546856

Table 19: Directional ratios of local measuremnt (LiDAR) to raw NORAS.

We can tell from the table that the NORAS3 data under-predicts at in north direction (0 degrees)
and overpredicts in direction east to south. Now that the ratios have been determined we can
return to the scaler and correct section-wise it according to table 19. After the sectional
configuration the scaler is shaped as shown in figure 35, where the black circle indicates the

base case (all ratios =1), and blue shape shows section wise correction.
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— Correction factors: Sector

Figure 35: Scaler with added correction factors section wise, blue shape illustrates the sectional configurations of the scaler;
WindPRO

Now that we have calculated the ratios for the different directions, the MCP module is used to
analyze the correlation between the local measurements and the scaled long-term reference
data. Comparing the data statistics of the local measurements and the sectional corrected
NORAS data as illustrated in table 20.

Count measured wind speed (LIDAR) NORAZ3 sectional corr.
mean [m/s]  Std.dev [m/s] mean [m/s]  Std.dev [m/s]
1856 9.61 4.8 10.75 5.2

Table 20: MCP module Comparison LiDAR data to the sectional corrected NORA3

Based on the assumption that the cumulative distributions of the modelled data shall be the
same as the measured, the information in table 20 can be utilized and the following relationship
is used:

Umodel ~ Umean,model _ Umeas — Umean,meas [45]
StDev, model StDev, meas

From this relationship the following formulas for the needed calibration can be derived:

MainScale = Zmeasured [46]

Omodel
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Where 0,,cqsureq 1S the wind speed standard deviation for measured (LiDAR) data, and 6,041

is the standard deviation og the model data available in table 20.

Omeasured

MainOf fset = Umeanmeas — ( [47]

) X umean,model
Omodel

Once we have determined the main scale and offset value, we return to the METEO analyzer
to correct the scaler. We now create the final time series which is the scaled NORAS3 data. By
examining the Weibull distribution for the two datasets in figure 36, we can clearly see a good
correlation. The new radar graph comparison (figure 37) also shows a good match.
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Figure 36: Weibull distribution of scaled NORA3 (red) at hub height, and LiDAR data (green) at hub height; WindPRO.

Mean wind s_peed [mis]

Figure 37: Radar graph of scaled NORA3 (blue) at hub height, and LiDAR data (purple) at hub height; WindPRO.
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Once we have completed the new time series with the scaler, we calculate the AEP in the PARK
calculation module. The procedure followed in this chapter has been applied to NORA3, ERA5,
and NEWA data sets in order to compare and find the best fit for WMR. The results are
compared to the actual SCADA data and presented in tables. There have been tested two
different power curves (corrected and raw) and two different wake models (Jensen and eddy-
viscosity wake model). The results will be presented in separated tables and in a comparing
graph. The full production analysis for the different data sets can be found in Appendix 1(a) to
(d). Table 21 presents the daily averaged correlation between the reanalysis data and LiDAR

data before and after scaling.

NORA3 ERAS NEWA

Scaled meso Correlation to LIDAR — Energy 0.980 0.983 0.943
(daily averaged)

Scaled meso Correlation to LIDAR - Wind speed 0.983 0.985 0.956
(daily averaged)

Raw meso data correlation to LIDAR 0.977 0.979 0.927
Energy (Daily averaged)

Raw meso data correlation to LIDAR 0.982 0.983 0.945

Wind speed (Daily averaged)

Table 21 : The correlation is between concurrent samples: 1856, approximately 2,5 months during the reference period.

It should be mentioned that the correlations would have been more sensitive to change if

averaged to a narrower time ineterval.

The following tables 22 — 25, and figure 39 shows the AEP using the scaled reanalysis data for

different scenarios given by the table captions. The different scenarios can be seen in figure 38.

NORA3 ERA5 NEWA SCADA
Production [MWh/y] 806 823.0 883180.20 899259.40 867 369
Turbine average [MWhly] 23 052.09 25 233.72 25693.13 24794.8
Wake Loss [%] average year 6.61 6.00 5.97 -
Capacity factor [%] 39.4 43.2 44 -
Full load hours [hours/year] 3458 3785 3854 -

Table 22: Production table using power curve corrected and Jensen wake model with scaled reanalysis data.
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NORA3 ERAS NEWA SCADA

Production [MWh/y] 780 630.0 865422.20 879996.40 867 369
Turbine average [MWhl/y] 22 303.71 24 726.35 2514274 24 794.8
Wake Loss [%] average year 9.88 7.90 7.98 -
Capacity factor [%] 38.2 42.3 43 -
Full load hours [hours/year] 3 346 3709 3771 -

Table 23: Production table using power curve corrected and eddy-viscosity wake model with scaled reanalysis data.

NORA3 ERA5 NEWA SCADA
Production [MWh/y] 863636.90 936211.20 952592.10 867 369
Turbine average [MWhly] 24 675.34 26 748.89 27 216.92 24 794.8
Wake Loss [%] average year 6.61 5.82 5.78 -
Capacity factor [%] 42.2 45.8 46.6 -
Full load hours [hours/year] 3701 4012 4083 -

Table 24: Production table using raw power curve and Jensen wake model with scaled reanalysis data.

NORA3 ERA5 NEWA SCADA
Production [MWh/y] 844 850.0 919 091.0 934 150.10 867 369
Turbine average [MWhly] 24 138.57 26 259.74 26 690.01 24 794.8
Wake Loss [%] average year 8.65 7.53 7.61 -
Capacity factor [%] 41.3 44.9 45.7 -
Full load hours [hours/year] 3621 3939 4 003 -

Table 25: Production table using raw power curve and eddy-viscosity model with scaled reanalysis data.
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Figure 38: Comparison of AEP thourgh different sources using scaled reanalysis data; MATLAB.

For comparison the same methodology is followed for the raw meso-data to see the impact of
the 12 % of LIiDAR data used in scaling. Table 26-29 shows the raw reanalysis data with

different configurations.

NORA3 ERA5 NEWA SCADA
Production [MWh/y] 974 230 887 343 969 378 867 369
Turbine average [MWh/y] 25 052 22 817 24 956 24 794.8
Wake Loss [%] average year 55 6.4 5.6 -
Capacity factor [%] 47.6 43.4 47.4 -
Full load hours [hours/year] 4175 3803 4154 -

Table 26: Production table using raw reanalysis data, corrected power curve, and Jensen wake model.
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NORA3 ERAS NEWA SCADA

Production [MWh/y] 953 616 870 038 949 238 867 369
Turbine average [MWhly] 24 522 24 956 24 409 24 794.8
Wake Loss [%] average year 7.5 6.2 7.6 -
Capacity factor [%] 46.6 43.1 46.4 -
Full load hours [hours/year] 4 087 3833 4 068 -

Table 27: Production table using raw reanalysis data, corrected power curve, and Eddy-viscosity wake model

NORA3 ERA5 NEWA SCADA
Production [MWh/y] 1028 180 942 971 1021782 867 369
Turbine average [MWhly] 26 439 24 248 26 274 24 794.8
Wake Loss [%] average year 5.3 6.2 54 -
Capacity factor [%] 50.3 46.1 50 -
Full load hours [hours/year] 4 406 4041 4 379 -

Table 28: Production table using raw reanalysis data, raw power curve, and Jensen wake model.

NORA3 ERA5S NEWA SCADA
Production [MWh/y] 1 008 606 924 810 1002 713 867 369
Turbine average [MWhly] 25936 23781 25784 24 794.8
Wake Loss [%] average year 7.1 8.0 7.2 -
Capacity factor [%] 49.3 45.2 49 -
Full load hours [hours/year] 4 323 3963 4 297 -

Table 29: Production table using raw reanalysis data, raw power curve, and Eddy-viscosity wake model.
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Figure 39: Comparison of AEP thourgh different sources using raw reanalysis data; MATLAB.

When comparing figure 38 to 39, ERADS best fit for WMR when comparing the AEP to actual
SCADA data. Figure 40 shows the time series for the raw ERAD5, the scaled ERAS5, and the raw
lidar data in a period where we have concurrent data. Figure 42 shows the scaled ERA5S together

with the raw ERA5 over one month. Both figure 41 and 42 is given for comparison.
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Figure 40: Raw ERAG5 (red), LiDAR measurement ( green), scaled ERAS (purple); WindPRO.
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We can tell from figure 40 that the scaled ERA5 follows the LiDAR trends, but struggles to
capture the short-term fluctuations. The displayed period is from 07.05.2016 - 19.05.2016.

Mean wind speed (m/s] (UTE+00:00) Dublin, Edinburgh, Liskoa, Landon

M0872016  MA12016  01A3R2016 01152016 DIAM7/2016 0148206 01212006 01232016 017252016 MA272016  01/29/2016  01/31/2016 02022016 02042016 02062016 02082016

Figure 41: Scaled ERAS5 (green), Raw ERAS (red); WindPRO.

By examining figure 41, we can see that the scaled ERA5 adds both higher peeks and lower
throughs compared to the raw ERA 5. The displayed period is from 09.01.2016 — 08.02.2016.

The sector-wise energy production [MWh/y] and wake losses for the whole park, using the
ERAJS corrected data together with corrected power curve and Eddy viscosity wake model, is

shown in figure 42. The complete analysis for this scenario can be found in Appendix 2.
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Figure 42: Energy [MWh/year] based on section including wake losses; WindPRO
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6.4.2 Wake models

In the following, wake reduction is presented in percentage by the different models. Results for
the corrected power curve only is presented as it seems to give a more realistic description of
the power generated by the WTG-s. Wake reduction as a percentage of the AEP is preented in
figure 43, with different scaled reanalysis data, (a) to (f). For section wise wake reduction of

scenario (b), see Appendix 2, table 32.

When using the Eddy viscosity model, the parameter we need to choose is the surface
roughness. For normal offshore conditions, EMD recommends to use 0,0002. This is also what
is used in this thesis. The choice of wake decay constant is crucial when using the Jensen wake
model. A coefficient of 0.06 is applied in this thesis, which according to DTU’s findings in

2018 yields more accuracy for offshore conditions.
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Figure 43: Percentage wake loss MATLAB were (a) ERAS5 using Jensen Wake model; (b) ERAS5 using Eddy viscosity model;
(c) NEWA using Jensen Wake model; (d) NEWA using Eddy Viscosity model; (€) NORA3 using Jensen Wake model; (f)
NORAZ3 using Eddy Viscosity model.
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6.4.3 Performance Check -post construction

This sub-chapter is not an continuation of the previous result chapters but serves as a stand-
alone chapter. None of the power curves described in chapter 7 are utilized in the performance
check as one of the module tasks is to assign filter codes that indicates stopped or suboptimal
performance and applied to all the 35 turbines specific power curves, based solely on SCADA

data. The SCADA data is paired and loaded in to their respective turbine.

Actual production is used to calculate the potential production when the WTG is normal
operation with no faults or stoppage. For periods when there are faults or stops, production is
determined using the wind speed experienced at the nacelle, and the historic power curve. The
potential production is long-term corrected by using an energy index to correctly establish the
normalized production. Following this, expected long-term future losses are subtracted to get
to the expected future production. The NET production calculation is based on the parameters
in table 30.

NET production calculation basis

Turbine type Siemens Gamesa SWT-6.0-154 154
Number of turbines 35
Production data set SCADA

Production data period Jan/2016 — dec/2017
Reference data set NORA3

Reference data period Jan/1999 — dec/2022

Table 30: Net production calculation basis.

The power curve (historical) is the turbine specific power curve based on the analysis operation
period’s filtered SCADA data. The discrepancy between potential and actual production is
characterized as lost production. Actual losses are those incurred during the operation period
under consideration. Potential production is characterized as the production that could have
become realized if the turbine had been running at full capacity, and it is determined by using
the nacelle wind speed together with the historical power curve. According to EMD, normalized
production can be defined as the production a wind farm would generate in a regular year with
no losses (except for electrical losses and wake losses). Expected losses are the anticipated

future losses, which may include electrical losses and losses due to degradation if specified.
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For the individual turbine power curves, self-consumption has been omitted. The measured
binned power curve is the result of normal operational data and is used to calculate losses for
time stamps that have been filtered as a “’stop’’ or “’suboptimal’” operating period. The power
curve for WTG AO0L1 is displayed in figure 44 where the red dots are the measured data, pink
dots are the filtered data, and green dots are the binned measured data. Because of the black
circumference of the dots, measurements displays as black whenever there is a high

measurement density.
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Figure 44: Power curve A01; WindPRO

Because the nacelle wind speed is influenced by the operational mode of the WTG the IEC
61400-26-1 recommends correcting for the potential bias. The correction filter is applied to the
nacelle wind speeds during periods, where the turbine has nor operated in an ideal way to correct
for the bias. Because error codes were not given by the SCADA data, it was manually inserted
to WindPRO. The error codes chosen are: (1) stop when wind speed is more than 4m/s and
power less or equal to 5 % of rated power. (2) for steep part- stop when wind speed is more
than 4m/s and power below wind speed shifted PC is 1 m/s. (3) for flat part — stop when power

is below rated power. (4) stop when above cut out wind speed.

Actual losses are calculated for each time step that coincides with an error occurrence as the

difference between measured power and potential power based on the power curve (historic)
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and the corrected wind speed experienced at the nacelle. The production analysis is presented
in table 31.

WTG [1] [2] [3] [4] [5] [61 [7]
[MWh]  [%] [MWh] / [MWh/y] LT corr.fac* [MWh/y] [%] [MWh/y]

All 1766681 3,86 1837624 / 918812 0,997 916500 5,36 867369
C03 51140 2,17 52274 | 26137 0,997 26069 3,67 25112
B04 45926 7,98 49907 / 24953 0,997 24886 9,48 22527
E04 51701 3,54 53600 / 26800 0,997 26733 5,04 25384
BO5 49906 2,43 51148 / 25574 0,997 25499 3,93 24498
C06 50236 3,33 51965 / 25983 0,997 25910 4,83 24659
BO3 50328 3,64 52231 / 26115 0,997 26049 5,14 24710
Co2 48060 6,64 51480 / 25740 0,997 25672 8,14 23581
EOS5 51793 2,06 52881 / 26441 0,997 26370 3,56 25432
EO3 48916 5,24 51623 / 25812 0,998 25752 6,74 24015
B06 49189 4,63 51578 / 25789 0,998 25728 6,13 24150
B02 48254 5,48 51050 / 25525 0,997 25454 6,98 23678
EO6 48637 2,81 50042 / 25021 0,998 24971 4,31 23896
E02 50701 3,99 52806 / 26403 0,998 26340 5,49 24895
A04 50374 4,35 52668 / 26334 0,997 26263 5,85 24726
AO05 50266 6,25 53618 / 26809 0,998 26748 7,75 24675
Cco7 49812 3,66 51704 / 25852 0,998 25797 5,16 24466
D07 51310 3,20 53007 / 26504 0,997 26431 4,70 25189
FO4 49888 3,40 51646 / 25823 0,997 25753 4,90 24491
AO3 50800 5,72 53880 / 26940 0,997 26871 7,22 24932
Cco1 49269 3,99 51316 / 25658 0,997 25587 5,49 24183
D01 51695 2,81 53188 / 26594 0,997 26523 4,31 25381
FO5 49592 4,29 51816 / 25908 0,997 25829 5,79 24333
FO3 48109 2,75 49471 [ 24736 0,998 24690 4,25 23639
BO7 50905 3,06 52514 / 26257 0,997 26183 4,56 24988
A06 53611 2,10 54761 / 27380 0,997 27311 3,60 26328
EO7 51874 4,08 54083 / 27041 0,997 26973 5,58 25466
BO1 51066 3,13 52718 / 26359 0,997 26290 4,63 25072
A02 49897 5,22 52645 / 26322 0,998 26282 6,72 24516
EO1 51721 4,36 54077 / 27038 0,998 26974 5,86 25394
FO6 52135 2,31 53365 / 26683 0,997 26614 3,81 25601
F02 51246 3,14 52905 / 26452 0,997 26384 4,64 25160
A07 53628 2,05 54748 [ 27374 0,998 27308 3,55 26339
A01 52158 4,97 54885 / 27443 0,998 27375 6,47 25604
FO7 51926 3,83 53995 / 26998 0,997 26927 5,33 25491
FO1 50614 2,72 52029 / 26015 0,998 25953 4,22 24857

Table 31 : [1]Actual Production [2]Actual losses [3]Potential production [4]LT corr.factor*
[5]Normalized production AEP [6]Expected total losses
[7] Net production AEP

*The long-time correction factor is based on the ratio between normalized production AEP and

potential energy production.

The monthly losses for the whole wind farm during the reference period are displayed in figure
45.
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Figure 45: Monthly losses for all turbines; WindPRO.
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7 Summary and Discussion

This chapter is separated in-to the six main objectives of the thesis for a better overview. Let us
recall the thesis main objectives.

(1) Compare different methods for determining the atmospheric stability.

In determination of the atmospheric stability at Westermost Rough wind farm both the bulk
Richardson number and Gradient Richardson number were used for comparison. For the bulk
method under steady conditions where the stability parameter is negative, the bin averages can
to some degree be described by the MO theory (logarithmic law) for measures at low elevation.
The same is true for neutral conditions when the stability parameter is zero. For unsteady
conditions where the stability parameter is positive the methods show strong inadequacy. The
deviation from theory increases with elevation and shows inadequacy for all stability conditions
at high altitudes. The same applies when using the gradient Richardson number, although this
method showed worse results for all heights and the RMSE value difference between the two
methods showed an increase along with elevation. The findings from this study support Gryning
et al (2007) study on the validity of Monin Obukhov scaling at higher altitudes, and the need

for extended wind profiles to describe shear at high altitude.

(2) Use LIDAR data to calculate Energy output through hub height wind speed and
rotor equivalent wind speed.

The Hub height wind speed was was compared to the rotor equivalent wind speed in order to
best predict the energy output. Data from LiDAR containing measurements from 13.01.2016 to
17.02.2016 were used for this analysis as it was the longest period with coherent measurements.
Both methods was then compared to the SCADA data power output for the same period. Within
the short period of measurement available, allthough both HHWS and REWS underestimated
the power output, the power output were best predicted using REWS. This supports Ryu et al
(2022) conclusion on REWS ability to predict higher wind speeds. Both in this thesis and the
study carried out by Ruy et al at Anholt wind park, REWS had a more accurate prediction than
the HHWS.

(3) Obtain the real power curve through SCADA data.

The objective for chapter 6.3 was to obtain the real power curve through the use of SCADA

data, inspired by a novel idea by Dai et al (2022). The idea is based on the assumption that the
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wind speed experienced by the anemometer installed at the nacelle, downwind of the WTG
rotor, is not of the same magnitude as the wind speed experienced at the WTG rotor. To
compensate for the difference between the measured and actual wind speed the wind speed was
corrected by applying moving average filtering (MAF). In order to see the impact of different
window lengths, the illustrations in chapter 6.3 is based on one week of measurements (1008
10-min measurements). The wind speed was tested corrected with window lengths of 10 to 30.
The chapter applied N=10 as window length of choice, as this window length succeeds to
describe the consistency of trends without smoothing the graph too much. It should be
emphasized that the length is an approximate value. The corrected wind speed is presented in a
graph along with the raw wind speed. As a result of MAF the corrected wind speed had a

reduction in wind speed fluctuations with a small delay in time compared to the raw wind speed.

The corrected power curve was compared against the raw power curve where the corrected
power curve showed a more conservative power output than the raw power curve for the same
wind speeds from cut-in to start of rated. This matches the assumption put out by Dai et al
(2022) that the wind speed recorded at the anemometer is distorted, and that the WTG requires

higher wind speeds to match the recorded power output.

(4) Scale reanalysis data to LIiDAR on-cite measurements for long-time correction and
compare the energy prediction to actual energy production.
In chapter 6.4, the main objective was to determine the suitability of the different reanalysis
data sets (NORA3, NEWA, and ERA5) when scaled to very scarce amount of local LIDAR
measurements. The data sets are tested along with the Jensen wake model, and the Eddy
viscosity wake model. Both the corrected power curve and the raw power curve were also
tested.

All the reanalysis data sets showed too large power production before scaling (raw), for all
scenarios (figure 39). When applying offset value and sectional correction to the scaler, the
power output decreased for all data sets, making them come closer to the actual SCADA data.
The ERA 5 data set seems to experience the least configurations out of the data sets. The main
assumption for this is that the ERAS data set had the highest correlation before applying scaler,
and maintaing highest correlation after (table 21). Anyhow, this does not explain the strong
improvement of the NORAS data after applying the scaler. It should be mentioned again that
the correlation is based on daily averages and only includes concurrent data. If WindPRO had

the ability to show correlation with smaller time steps it would be more convenient to see the
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connection. In other words, when looking at a larger averaged for correlation, the difference of
correlation should be smaller than when using smaller averaged, which strengthens the first

assumption.

Another assumption that also confirms the findings retrieved by the studies carried out by
Solbrekke et al (2021) and Haakenstad et al (2021) (chapther 4.2) that the NORA3 windspeeds
typically is 5% lower than the actual wind speeds can be drawn by studying the difference in
total load hours for the NORAS3 data before and after the scaling of the data set. After applying
the scaler, NORA3 experiences a significant reduction in total load hours which indicates that
the raw NORA3 wind speeds has too many measurements within range of the power curve (too
low wind speeds), and when applying the scaler, a fair amount of the measurements ends up

outside the range of the power curve.

When evaluating this specific site, the ERA5 dataset yielded an over-all better result than the

other data sets when comparing energy output to the actual SCADA data.

(5) Compare performance of the Jensen wake model and the Eddy viscosity wake
model.

The Jensen wake model and the Eddy viscosity wake model were tested for the different
scenarios in chapter 6.4. When examining the wake distributions in chapter 6.4.2, figure 43.
We can see that the middle turbines positioned at upwind row F experience the most wake
reductions, while the most down-wind turbines, row A experiences the least. This may seem
counter intuitive but can be explained by the fact that the distance between adjacent turbines in
a row is shorter than the distance to the closest turbine from a different column. The distances
between the turbines can be found in Appendix 3, table 34. Also, good park arraying can
contribute to this phenomenon. The main yaw-direction is given in arrows can be seen in

Appendix 3, Figure 50.

Based on the illustrations in chapter 6.4.2, figure 43, the turbine C03 seems to experience
significant wake losses even tho it only has one adjacent turbine in the row. A reasenable
explanation for this is that the offshore sub-station Z01 (LiDAR) is placed adjacent to this
turbine (Appendix 3, figure 49).
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In this thesis, the Eddy viscosity model proved to be the most conservative wake model. This
does not coincide with Sgrensen et al (2006) comparison on model performance as their
findings showed that the Jensen wake model yielded the most conservative results. It should be
mentioned that Serensen’s study used a wake decay constant of 0.04. In this thesis a wake decay
constant of 0.06 is used, resulting in quicker recovery of the wind field behind the turbine.
Appendix 5, figure 52 contains an extract from Sgrensen et al (2006) comparing park efficiency
using the Jensen wake model together with a wake decay constant of 0.04, and one using 0.075.

The two different wake decay constant clearly shows an impact on park efficiency.

(6) Performance check for the wind farm using SCADA data in WindPRO

The final objective of this thesis was to perform a post construction performance check of the
Westermost rough wind farm in WindPRO. The results are presented in chapter 6.4.3, table 31
which describes the actual power production, actual losses, potential production, normalized
production AEP, expected total losses, and net production AEP. The monthly losses in kWh
for the whole park can be visualized though figure 45, chapter 6.4.3. The results shows
significant larges losses for January and February 2016 than the rest of the reference period. As
the same months in 2017 does not experience the same trends it can not be linked to a seasonal
bias. Anyhow, longer measuring period would be necessary to describe trends in energy losses.
It should be mentioned that we would have received a more precise result if we had the actual

error codes from turbine log files.
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Appendices

Appendix 1 — Turbine Production

(a) Turbine production using corrected power curve and Jensen wake model

WTG  NORA3 WL[%] ERA5 WL[%] NEWA WL[%] SCADA

A01 24 018.00 2.9 26 080.60 2.8 26 595.79 2.7 24 238.00
AO2 23 771.00 3.9 25 848.40 3.7 26343.4 3.6 23 858.00
AO3 23 687.40 43 25 781.50 3.9 26 265.65 3.9 24 459.00
AO4 23 731.60 4.1 25 817.90 3.8 26 303.46 3.7 24 815.00
AO5 23 720.80 4.1 25 788.70 3.9 26 247.96 3.9 24039.00
A06 23 852.10 3.6 25911.10 3.5 26 424.87 3.3 25 466.00
AO7 24049.10 2.8 26 145.90 2.6 26 652.38 2.5 24 281.00
BO1 23 262.50 6 25 440.30 5.2 25 851.39 5.4 25522.00
BO2 22 572.40 8.8 24 821.70 7.5 25221.54 7.7 26 232.00
BO2 22 889.40 7.5 25 088.10 6.5 25 468.64 6.8 23 700.00
BO3 22 828.40 7.8 25 019.80 6.8 25 445.89 6.9 26 249.00
BO4 22 866.90 7.6 25 084.20 6.5 25 463.81 6.8 25 483.00
BO5 22 837.30 7.7 25 045.30 6.7 25453.31 6.8 25 820.00
BO6 22 916.40 7.4 25116.90 6.4 25 559.09 6.5 24 526.00
BO7 23 364.10 5.6 25 525.00 4.9 26 004.24 4.8 24.304.00
co1 22 936.90 7.3 25 159.30 6.3 25 600.42 6.3 25 251.00
o3 22 524.80 9 24 805.30 7.6 25207.33 7.7 25512.00
06 22 798.30 7.9 25 001.80 6.8 25 440.09 6.9 24 473.00
co7 23 121.90 6.6 25 315.90 5.7 25 775.45 5.7 23 565.00
DO1 22 757.30 8 25 036.50 6.7 25491.2 6.7 24 980.00
D07 23 202.10 6.2 25372.10 5.5 25794.71 5.6 24 965.00
E01 22 900.80 7.5 25112.20 6.4 25 585.4 6.4 25 204.00
E02 22 842.30 7.7 25 010.50 6.8 25 510.52 6.6 24 102.00
EO3 22 855.40 7.6 25037.20 7.6 25557.06 6.5 23 925.00
E04 22 951.30 7.3 25 113.50 6.4 25 614.91 6.3 24 823.00
E05 22 957.60 7.2 25 105.10 6.4 25 610.68 6.3 24 907.00
E06 22 892.00 7.5 25061.10 6.6 25557.38 6.5 24370.00
E07 23 098.90 6.7 25 274.80 5.8 25 769.8 5.7 25 244.00
Fo1 22 935.40 7.3 25 164.60 6.2 25594.35 6.3 25 480.00
FO2 22 595.50 8.7 24 823.20 7.5 25271.32 7.5 23 345.00
FO3 22 532.90 8.9 24 770.80 7.7 25201.73 7.8 24 700.00
FO4 22 519.00 9 24 754.30 7.8 25 237.04 7.6 24279.00
FO5 22 451.90 9.3 24 708.90 7.9 25 176.68 7.9 25 225.00
FO6 22 551.90 8.9 24 799.70 7.6 25267.7 7.5 25011.00
FO7 23 029.40 6.9 25 238.00 6 25 694.21 6 25 467.00
Total 806 823.00 6.85  883180.20 6.00 899 259.40 5.97 867 820.00
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(b) Turbine production using corrected power curve and Eddy-viscosity wake model

WTG

AO01
AO02
AO3
AO4
AO05
A06
AO07
BO1
BO2
BO2
BO3
BO4
BO5
BO6
BO7
Cco1
Co3
C06
Cco7
D01
D07
EO1
EO2
EO3
EO4
EO5
EO6
EO7
FO1
FO2
FO3
FO4
FO5
FO6
FO7

Total

NORA3

23 788.50
23 380.70
23 292.00
23 364.70
23 414.50
23 585.70
23 902.30
22 614.50
21586.70
22 019.30
21944.50
21965.90
22 005.40
22 111.50
22 839.90
22 265.10
21561.00
21911.80
22 529.80
22 030.20
22 617.40
22 164.80
21761.20
21748.00
21911.20
21946.60
21 881.00
22 527.10
22 249.00
21462.90
21 530.60
21 316.80
21 365.30
21 545.60
22 488.50

780 630.00

WL [%]
3.9
5.5
5.9
5.6
5.4
4.7
3.4
8.6

12.8
11
11.3
11.2
11.1
10.6
7.7
10
12.9
11.5

11
8.6
10.4
12.1
12.1
11.5
11.3
11.6

10.1
13.3
13
13.9
13.7
12.9
9.1
9.88

ERAS
25933.90
25584.30
25527.20
25590.10
25 563.00
25 709.90
26 081.50
25 038.40
24 150.60
24 494.00
24 420.90
24 497.10
24 478.30
24 558.40
25172.40
24742.70
24 220.30
24 402.30
24 942.20
24 566.00
24 970.80
24 626.10
24 227.70
24 207.70
24 349.40
24 335.90
24 333.80
24 898.70
24 746.50
24 058.00
24 097.80
23 899.40
23 963.70
24 145.00
24 888.20

865 422.20

89

WL [%]
3.4
4.7
4.9
4.7
4.8
4.2
2.9
6.7

10
8.8
9
8.8
8.8
8.5
6.2
7.8
9.8
9.1
7.1
8.5
7
8.3
9.8
9.8
9.3
9.4
9.4
7.3
7.8
10.4
10.2
11
10.7
10.1
7.3
7.90

NEWA
26 444.90
26 075.00
26 007.60
26 079.80
26 025.10
26 249.10
26 563.80
25 319.50
24 460.90
24 765.60
24 754.60
24 730.50
24 782.70
24 909.40
25 599.80
25105.10
24 501.40
24 788.60
25 370.70
24 991.00
25399.20
25071.90
24 711.40
24 753.40
24 849.30
24 847.80
24 824.50
25 382.20
25 118.60
24 431.60
24 493.00
24 336.10
24 376.10
24 543.80
25 332.00
879 996.00

WL [%]
3.2
4.6
4.8
4.6
4.8
3.9
2.8
7.3

10.5
9.4
9.4
9.5
9.3
8.8
6.3
8.1

10.3
9.3
7.1
8.5

7
8.2
9.6
9.4
9.1
9.1
9.1
7.1
8.1

10.6

10.4

10.9

10.8

10.2
7.3

7.98

SCADA
25225.00
24 370.00
24 473.00
24 526.00
24 304.00
24 823.00
24 279.00
25 244.00
24 281.00
26 249.00
25 466.00
23 858.00
24 815.00
23 700.00
23 925.00
24 980.00
24 238.00
24 039.00
25 251.00
24 965.00
25512.00
25480.00
25 820.00
26 232.00
24 459.00
25522.00
25 483.00
24 907.00
25 467.00
24 700.00
24 102.00
23 565.00
25204.00
23 345.00
25011.00

867 820.00



(c) Turbine production using raw power curve and Jensen wake model

WTG

AO1
A02
AO3
A04
AO5
A06
AO7
BO1
BO2
B02
BO3
BO4
BOS
BO6
BO7
co1
co3
Co6
co7
D01
D07
E01
E02
E03
E04
EO5
E06
E07
FO1
FO2
FO3
FO4
FOS
FO6
FO7

Total

NORA3

25 665.60
25410.30
25324.30
25 368.80
25354.20
25 489.20
25697.40
24 889.60
24 181.60
24 501.90
24 437.90
24 481.70
24 449.00
24 527.30
24 989.60
24 556.00
24 134.00
24 412.20
24742.00
24 380.70
24 825.60
24 523.90
24 471.20
24 481.10
24 583.90
24 587.30
24 519.40
24 723.00
24 556.70
24 212.60
24 147.60
24 135.90
24 064.80
24 164.20
24 646.40

863 636.90

WL [%]
2.9
3.8
4.2

3.5
2.7
5.8
8.5
7.3
7.5
7.3
7.5
7.2
5.4
7.1
8.7
7.6
6.4
7.7

7.2
7.4
7.3

6.9
7.2
6.4
7.1
8.4
8.6
8.7
8.9
8.5
6.7
6.61

ERAS
27 613.30
27 368.00
27 299.90
27 337.00
27 302.50
27 426.80
27 671.50
26 960.90
26 331.20
26 597.00
26 522.20
26 590.50
26 550.70
26 623.00
27 041.40
26 678.40
26 314.60
26 514.60
26 833.70
26 562.40
26 893.40
26 637.00
26 530.80
26 554.90
26 630.70
26 619.10
26 573.80
26 793.10
26 684.20
26 334.50
26 277.70
26 263.10
26 215.50
26 307.90
26 755.90
936 211.20

90

WL [%]
2.8
3.6
3.9
3.7
3.9
3.4
2.6
5.1
7.3
6.4
6.6
6.4
6.5
6.3
4.8
6.1
7.3
6.6
5.5
6.5
5.3
6.2
6.6
6.5
6.2
6.3
6.4
5.7

6
7.3
7.5
7.5
7.7
7.4
5.8

5.82

NEWA
28 135.30
27 867.80
27 786.30
27 825.20
27 764.50
27 940.90
28 174.20
27 381.80
26 741.60
26 985.40
26 958.20
26 983.10
26 969.10
27 070.90
27 519.00
27 128.50
26726.10
26 965.00
27 292.00
27 022.70
27 320.00
27 121.40
27 045.80
27 087.90
27 146.70
27 137.30
27 080.20
27 291.60
27 127.50
26 797.80
26727.10
26 762.90
26 699.10
26 789.50
27 219.70
952 592.10

WL [%]
2.6
3.5
3.8
3.7
3.9
3.3
2.5
5.2
7.4
6.6
6.7
6.6
6.6
6.3
4.7
6.1
7.5
6.6
5.5
6.4
5.4
6.1
6.4
6.2

6

6
6.2
5.5
6.1
7.2
7.5
7.3
7.6
7.3
5.8
5.77

SCADA
25 225.00
24 370.00
24 473.00
24 526.00
24 304.00
24 823.00
24 279.00
25 244.00
24 281.00
26 249.00
25 466.00
23 858.00
24 815.00
23 700.00
23 925.00
24 980.00
24 238.00
24 039.00
25 251.00
24 965.00
25512.00
25 480.00
25 820.00
26 232.00
24 459.00
25522.00
25 483.00
24 907.00
25 467.00
24 700.00
24 102.00
23 565.00
25 204.00
23 345.00
25011.00
867 820.00



(d) Turbine production using raw power curve and Eddy-viscosity wake model

WTG

AO1
A02
AO3
A04
AO5
A06
AO7
BO1
BO2
B02
BO3
BO4
BOS
BO6
BO7
co1
co3
Co6
co7
D01
D07
E01
E02
E03
E04
EO5
E06
E07
FO1
FO2
FO3
FO4
FOS
FO6
FO7

Total

NORA3

25521.90
25 140.00
25 055.50
25121.90
25 157.90
25 319.20
25629.70
24 413.70
23 457.60
23 840.60
23769.10
23 804.90
23 829.20
23 922.00
24 621.10
24 096.80
23 440.00
23 769.20
24 344.00
23 905.30
24 445.60
24 023.30
23 659.50
23 632.80
23 806.10
23 826.50
23764.30
24 362.50
24 096.40
23 371.70
23 427.80
23 243.00
23 276.70
23 439.70
24 314.50

844 850.00

WL [%]
3.4
4.9
5.2
4.9
4.8
4.2

3
7.6
11.2
9.8
10
9.9
9.8
9.5
6.8
8.8
11.3
10
7.9
9.5
7.5
9.1
10.5
10.6
9.9
9.8
10.1
7.8
8.8
11.5
11.3
12
11.9
11.3

8.65

ERAS
27 474.50
27 107.90
27 054.10
27 114.70
27 084.90
27 233.30
27 616.50
26 569.40
25 677.60
26 012.00
25931.20
26 013.30
25988.40
26 068.70
26 701.00
26 277.20
25749.10
25 930.60
26 478.40
26 117.40
26 518.40
26 175.00
25776.00
25754.10
25 899.30
25 877.70
25 870.20
26 442.90
26 288.80
25 596.30
25639.30
25 443.80
25499.60
25 678.60
26 430.80
919 091.00

91

WL [%]
3.3
4.6
4.7
4.5
4.6
4.1
2.8
6.4
9.6
8.4
8.7
8.4
8.5
8.2

6
7.5
9.3
8.7
6.8

8
6.6
7.8
9.2
9.3
8.8
8.9
8.9
6.9
7.4
9.9
9.7

10.4
10.2
9.6
6.9
7.53

NEWA
27 998.20
27 610.90
27 538.40
27 608.10
27 550.50
27 771.30
28 094.20
26 866.40
26 008.10
26 298.10
26 284.80
26 265.10
26 313.10
26 430.10
27 128.40
26 658.20
26 042.90
26 332.00
26 903.70
26 555.20
26 946.60
26 643.60
26 289.10
26 325.50
26 422.50
26 408.10
26 374.70
26 929.90
26 683.80
25 995.80
26 054.90
25 900.60
25933.70
26 095.20
26 888.40
934 150.10

WL [%]
3.1
4.4
4.7
4.4
4.6
3.9
2.7

7
10

9

9
9.1
8.9
8.5
6.1
7.7
9.8
8.8
6.9
8.1
6.7
7.8
9
8.9
8.5
8.6
8.7
6.8
7.6
10
9.8
10.3
10.2
9.7
6.9
7.61

SCADA
25225.00
24 370.00
24 473.00
24 526.00
24 304.00
24 823.00
24 279.00
25 244.00
24 281.00
26 249.00
25 466.00
23 858.00
24 815.00
23 700.00
23 925.00
24 980.00
24 238.00
24 039.00
25 251.00
24 965.00
25512.00
25 480.00
25 820.00
26 232.00
24 459.00
25522.00
25483.00
24 907.00
25 467.00
24 700.00
24 102.00
23 565.00
25204.00
23 345.00
25011.00

867 820.00



(e) Turbine production using raw meso-data, raw power curve, and Jensen model

WTG

AO1
AO2
AO3
AO4
AO5
A06
AO07
BO1
BO2
BO2
BO3
BO4
BO5S
BO6
BO7
co1
co3
C06
co7
DO1
D07
E01
E02
EO3
E04
E05
E06
E07
Fo1
FO2
FO3
FO4
FO5
FO6
FO7

Total

NORA3

30 281.00
30 035.50
29954.60
29992.00
29963.00
30 098.50
30312.80
29 569.00
28914.70
29203.70
29 140.30
29 185.10
29 159.40
29 239.30
29 669.70
29 259.50
28 880.10
29 137.10
29 444.60
29 130.30
29 510.00
29 245.50
29 207.50
29 209.20
29 305.50
29 298.90
29 250.10
29424.60
29 263.30
28 967.50
28902.40
28904.10
28 839.00
28 930.20
29 352.50

1028180.50

WL [%]
2.4
3.2
3.5
3.3
3.4

3
2.3
4.7
6.8
5.9
6.1
5.9

6
5.8
4.4
5.7
6.9
6.1
5.1
6.1
4.9
5.7
5.9
5.9
5.5
5.6
5.7
5.2
5.7
6.6
6.8
6.8

7
6.8
5.4

5.32

ERAS

27 861.80
27 590.30
27 514.20
27 551.90
27 521.30
27 658.40
27 926.90
27 171.80
26 505.00
26 769.70
26 694.00
26 755.00
26 718.20
26 796.90
27 245.10
26 882.20
26 478.90
26 693.60
27 018.00
26 757.20
27 092.00
26 836.50
26 716.20
26737.70
26 822.30
26 809.90
26 763.70
26 988.80
26 896.20
26 519.30
26 449.60
26431.20
26 379.50
26 475.90
26 941.40
942970.60

92

WL [%]

3
3.9
4.2
4.1
4.2
3.7
2.7
5.4
7.7
6.8

7
6.8

7
6.7
5.1
6.4
7.8

7
5.9
6.8
5.7
6.5

7
6.9
6.6
6.6
6.8

6
6.3
7.6
7.9

8
8.1
7.8
6.2

6.18

NEWA
30092.00
29 831.00
29736.80
29777.80
29723.90
29 898.80
30 141.50
29353.70
28737.70
28 965.40
28 938.80
28 957.60
28 933.90
29049.70
29490.60
29 116.40
28 716.00
28 964.60
29 260.60
29010.50
29304.10
29 100.50
29032.30
29 059.20
29 126.60
29112.80
29 066.40
29 257.60
29 120.80
28 794.60
28 716.40
28 751.50
28 687.70
28 775.10
29 179.60

1021 782.50

WL [%]
2.5
3.4
3.7
3.6
3.7
3.2
2.4
4.9
6.9
6.2
6.3
6.2
6.3
5.9
4.5
5.7

7
6.2
5.2

6
5.1
5.7

6
5.9
5.7
5.7
5.9
5.2
5.7
6.7

7
6.9
7.1
6.8
5.5

5.45

SCADA
25 225.00
24 370.00
24 473.00
24 526.00
24 304.00
24 823.00
24 279.00
25 244.00
24 281.00
26 249.00
25 466.00
23 858.00
24 815.00
23 700.00
23 925.00
24 980.00
24 238.00
24 039.00
25 251.00
24 965.00
25512.00
25 480.00
25 820.00
26 232.00
24 459.00
25 522.00
25 483.00
24 907.00
25 467.00
24 700.00
24 102.00
23 565.00
25 204.00
23 345.00
25011.00
867 820.00



(F) Turbine production using raw meso-data, raw power curve, and Eddy-viscosity model

WTG

AO01
A02
AO03
A04
AO05
A06
AO07
BO1
BO2
BO2
BO3
BO4
BO5
BO6
BO7
Cco1
Co3
Co6
co7
D01
D07
EO1
EO2
EO3
EO4
EO5
E06
EO7
FO1
FO2
FO3
FO4
FO5
FO6
FO7

Total

NORA3

30 129.60
29764.50
29 676.90
29737.40
29 747.30
29907.70
30 237.50
29 057.30
28 136.40
28 510.50
28 426.00
28 467.60
28 497.40
28 582.50
29 268.30
28 745.20
28 135.10
28447.70
29 006.40
28 611.70
29 109.40
28 728.80
28 407.20
28 362.60
28 539.90
28 547.50
28 500.40
29 052.80
28 778.40
28 108.70
28 169.60
27 995.60
28 027.80
28 188.00
28 996.60

1008606.30

WL [%]
2.9
4.1
4.3
4.2
4.1
3.6
2.5
6.3
9.3
8.1
8.4
8.2
8.2
7.9
5.7
7.4
9.3
8.3
6.5
7.8
6.2
7.4
8.4
8.6

8

8
8.1
6.4
7.2
9.4
9.2
9.8
9.7
9.1
6.5
7.12

ERAS

27 711.00
27 307.70
27 250.90
27 315.50
27 292.10
27 450.90
27 867.20
26 749.90
25 815.40
26 141.20
26 065.80
26 136.80
26 119.70
26 202.00
26 882.00
26 458.60
25 881.20
26 071.10
26 641.00
26 291.20
26 690.80
26 346.00
25914.30
25 895.40
26 046.80
26 027.90
26 013.90
26 618.10
26 481.60
25 740.10
25 780.90
25567.40
25 623.60
25 807.90
26 604.40
924810.30

93

WL [%]
3.5
4.9
5.1
4.9

5
4.4
3
6.8
10.1
9
9.2
9

9
8.8
6.4
7.9
9.9
9.2
7.2
8.4
7.1
8.3
9.8
9.8
9.3
9.4
9.4
7.3
7.8
10.4
10.2
11
10.8
10.1
7.4
7.99

NEWA
29945.84
29550.45
29 468.60
29542.13
29 488.75
29714.73
30051.38
28 813.73
27 976.03
28 251.90
28 235.53
28 214.06
28 262.67
28 383.61
29072.74
28 624.13
28 000.53
28 311.65
28 840.80
28 518.60
28 901.57
28 609.74
28 267.49
28 286.07
28 396.10
28 375.73
28 347.09
28 882.86
28672.79
27 980.25
28 034.52
27 881.63
27 908.09
28 066.24
28 834.89

1002 712.92

WL [%]

3
4.3
4.6
4.3
4.5
3.8
2.7
6.7
9.4
8.5
8.5
8.6
8.5
8.1
5.8
7.3
9.3
8.3
6.6
7.6
6.4
7.3
8.4
8.4

8
8.1
8.2
6.5
7.1
9.4
9.2
9.7
9.6
9.1
6.6

7.21

SCADA
25 225.00
24 370.00
24 473.00
24 526.00
24 304.00
24 823.00
24 279.00
25 244.00
24 281.00
26 249.00
25 466.00
23 858.00
24 815.00
23 700.00
23 925.00
24 980.00
24 238.00
24 039.00
25 251.00
24 965.00
25512.00
25 480.00
25 820.00
26 232.00
24 459.00
25 522.00
25 483.00
24 907.00
25 467.00
24 700.00
24 102.00
23 565.00
25 204.00
23 345.00
25 011.00
867 820.00



(9) Turbine production using raw meso-data, corrected power curve, and Jensen model

WTG

AO01
AO02
AO3
AO4
AO05
A06
AO07
BO1
BO2
BO2
BO3
BO4
BO5
BO6
BO7
Cco1
Cco3
C06
Cco7
D01
D07
EO1
EO2
EO3
EO4
EO5
EO6
EO7
FO1
FO2
FO3
FO4
FO5
FO6
FO7

Total

NORA3

28 738.60
28 499.00
28 418.80
28 457.80
28 434.30
28 566.90
28 771.00
28 029.30
27 377.00
27 668.80
27 607.30
27 650.10
27 622.50
27 700.80
28 128.50
27 719.60
27 339.20
27 594.50
27 901.30
27 577.20
27 969.40
27 697.90
27 659.20
27 661.40
27 758.00
27 755.70
27 702.60
27 880.70
27 719.80
27 422.90
27 359.50
27 357.30
27 291.30
27 384.30
27 807.40

974 229.90

WL [%]
2.5
3.3
3.6
3.4
3.5
3.1
2.4
4.9
7.1
6.1
6.3
6.2
6.3

6
4.5
5.9
7.2
6.4
53
6.4
5.1

6
6.1
6.1
5.8
5.8

6
5.4
5.9
6.9
7.2
7.2
7.4
7.1
5.6

5.54

ERA5

26 252.00
25994.10
25920.90
25957.80
25934.90
26 066.70
26 323.90
25 578.00
24 925.10
25187.90
25119.30
25178.80
25 140.80
25215.30
25 652.40
25 290.90
24 898.90
25104.70
25424.70
25 158.00
25493.30
25 233.80
25117.50
25 145.90
25 228.20
25 220.20
25174.40
25 395.80
25304.10
24 936.00
24 872.00
24 852.00
24 799.70
24 893.10
25352.10
887343.20
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WL [%]
3.1
4
43
4.2
4.2
3.8
2.8
5.6
8

7
7.3
7
7.2
6.9
5.3
6.6
8.1
7.3
6.1
7.1
5.9
6.8
7.3
7.2
6.9
6.9
7
6.2
6.6
7.9
8.2
8.2
8.4
8.1
6.4
6.40

NEWA
28 586.70
28 334.20
28 245.00
28 286.00
28 237.80
28411.40
28 642.40
27 853.20
27 237.90
27 470.70
27 446.20
27 464.40
27 444.40
27 555.90
27 991.10
27 612.90
27 216.90
27 459.70
27 760.70
27 498.70
27 797.00
27 593.80
27 524.60
27 557.30
27 624.20
27 614.40
27 568.20
27 762.50
27 618.50
27 296.60
27 220.70
27 255.20
27 189.50
27 276.80
27 681.90
969 337.40

WL [%]
2.6
3.5
3.8
3.6
3.8
3.2
2.4
5.1
7.2
6.4
6.5
6.4
6.5
6.1
4.6
5.9
7.3
6.4
5.4
6.3
5.3

6
6.2
6.1
5.9
5.9
6.1
5.4
5.9

7
7.3
7.1
7.4
7.1
5.7

5.64

SCADA
25 225.00
24 370.00
24 473.00
24 526.00
24 304.00
24 823.00
24 279.00
25 244.00
24 281.00
26 249.00
25 466.00
23 858.00
24 815.00
23 700.00
23 925.00
24 980.00
24 238.00
24 039.00
25 251.00
24 965.00
25512.00
25 480.00
25 820.00
26 232.00
24 459.00
25 522.00
25 483.00
24 907.00
25 467.00
24 700.00
24 102.00
23 565.00
25 204.00
23 345.00
25 011.00
867 820.00



(h) Turbine production using raw meso-data, corrected power curve, and Eddy-viscosity

wake model.

WTG NORA3 WL [%] ERA5 WL [%] NEWA WL [%] SCADA

A01 28 571.60 3 26188.50 3.7 28 426.70 3.2 25 225.00
A02 28 206.70 4.3 25703.00 5.1 28 040.50 4.5 24 370.00
A03 28 120.90 4.6 25746.00 5.3 27 962.70 4.7 24 473.00
A04 28 185.00 4.4 25708.10 5.1 28 035.70 4.5 24 526.00
A05 28 205.10 43 25695.40 5.1 27 989.90 4.6 24 304.00
A06 28 365.20 3.7 25851.30 4.6 28 218.50 3.9 24 823.00
A07 28 683.80 2.7 26254.70 3.1 28 541.30 2.8 24 279.00
BO1 27 500.30 6.7 25148.10 7.1 27 293.10 7 25 244.00
B02 26 570.90 9.8 24219.20 10.6 26 444.00 9.9 24 281.00
B0O2 26 952.60 8.5 24552.30 9.3 26 732.70 8.9 26 249.00
BO3 26 871.90 8.8 24483.70 9.6 26 716.20 9 25 466.00
BO4 26 910.40 8.7 24550.80 9.4 26 693.70 9.1 23 858.00
BOS 26 939.90 8.6 2453530 9.4 26 746.10 8.9 24 815.00
BO6 27 028.10 83 24616.90 9.1 26 866.00 8.5 23 700.00
BO7 27 710.50 6 25479.90 6.7 27 552.10 6.1 23 925.00
co1 27 180.60 7.8 24952.00 8.2 27 091.60 7.7 24 980.00
co3 26 561.90 9.9 24282.60 10.3 26 470.60 9.8 24 238.00
C06 26 879.20 8.8 24467.20 9.7 26 777.90 8.8 24 039.00
co7 27 442.20 6.9 25035.00 7.6 27 319.50 6.9 25 251.00
DO1 27 021.60 8.3 24869.00 8.9 26 970.10 8.1 24 965.00
D07 27 540.40 6.5 25071.10 7.4 27 367.20 6.8 25512.00
EO1 27 142.50 7.9 24718.60 8.7 27 063.80 7.8 25 480.00
E02 26 811.00 9 24385.90 10.3 26 716.20 9 25 820.00
EO3 26 769.00 9.2 24374.30 10.4 26 740.70 8.9 26 232.00
E04 26 944.70 8.6 24519.00 9.8 26 848.70 8.5 24 459.00
EO5 26 961.40 8.5 24407.50 9.9 26 836.70 8.6 25522.00
E06 26 911.20 8.7 24598.80 9.9 26 812.30 8.7 25 483.00
E07 27 476.80 6.8 25003.00 7.7 27 357.10 6.8 24 907.00
FO1 27 198.80 7.7 24963.40 8.2 27 133.10 7.6 25 467.00
FO2 26 519.60 10 24 129.00 10.9 26 441.60 9.9 24 700.00
FO3 26 576.90 9.8 24269.10 10.8 26 497.10 9.7 24 102.00
FO4 26 401.70 10.4 23955.10 11.6 26 340.00 10.3 23 565.00
FO5 26 435.00 10.3 24 113.20 11.3 26 364.70 10.2 25 204.00
FO6 26 599.00 9.7 24198.70 10.7 26 527.20 9.6 23 345.00
FO7 27 419.40 7 24992.60 7.7 27 302.80 7 25 011.00
Total 953 615.80 7.55 870038.30 8.38 949 238.10 7.61 867 820.00
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Appendix 2 — Analysis of Best Scenario

Sector

[1]
[2]
[3]
[4]
[5]

Sector

[1]
[2]
[3]
[4]
[5]

[1]
[2]
[3]
[4]
[5]

ON
77009
3823
5.0
73186

349

6S
95189
4919

5.2
90 269

430

Total

939 644

74 223
7.90
865 422

4121

INNE
32 908
2983
9.1
29 925

143

7SSW
138 397
8 217
5.9
130 179

620

2ENE
32 316
4 659
14.4
27 656

132

8WSW
173511
16 218

9.3
157 292

749

3E 4ESE SSSE
27 209 33 269 53 348
2541 1854 7602
9.3 5.6 14.2
24669 31415 45 747
117 150 218
9w 10WNW 1INNW
155 317 57412 63 759
11 828 3749 5828
7.6 6.5 9.1
143 489 53 662 57 932
683 256 276

Table 32 : PARK production sectional analysis using scaled ERA 5 with corrected power curve and Eddy viscosity wake model.
[1] is the model based energy (MWHh); [2] is the decrease due to wake losses (MWh); [3] is the percentage decrease due to
wake losses (%); [4] is the resulting energy (MWHh); and [5] is the full load equivalent (Hours/year).
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Full Load Equivalent [Hours/year]

oN
800
700
600
11 NNW 500 2 ENE
400
300
200
10 WNW 8Q 3E

Total 1 NNE

9w 4 ESE

8 WSW 5 SSE

7 SSW 6S

Figure 46: Full Load Equivalent by sector [Hours/year] using scaled ERA 5 with corrected power curve and Eddy viscosity
wake model. Figure represents data from [5] in table 29.
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Hour/Month Grand

[MWh] 1 2 3 4 5 6 7 8 9 10 11 12 | Total
0 3133 4012 3327 3354 3027 2483 2781 2855 3133 3921 3540 1985 | 37552
1 3101 385 3458 3354 3021 2339 2915 2829 3151 3867 3524 1912 | 37325
2 3068 3629 3547 335 3016 2419 2882 2737 3043 3879 3558 1940 | 37073
3 3032 3840 3630 3201 3041 2367 2828 2621 2989 3951 3648 2002 | 37149
4 3116 3835 3526 3117 3086 2385 2816 2510 3013 398 3797 2080 | 37267
5 3103 3963 3476 3074 3142 2400 2728 2458 3041 3957 3927 2105 | 37375
6 3167 3950 3421 2990 3176 2291 2574 2501 3074 3931 4053 2167 | 37295
7 3148 3938 3389 2873 3119 2334 2479 2428 3087 3867 4047 2167 | 36876
8 3101 3932 3201 2873 3027 223 2368 2436 3116 3913 3933 2116 | 36251
9 3123 4067 3334 2742 2983 2174 2248 2391 3099 3810 3923 2051 | 35944
10 3042 3922 3054 2424 2654 1992 1960 2320 2857 3629 3552 1972 | 33378
11 3072 3899 2964 2398 2817 2042 2038 2382 2931 3676 3464 1985 | 33669
12 3058 3801 2896 2416 2867 2271 2066 2467 3028 3732 3491 1951 | 34043
13 2978 3655 293 2501 2972 2453 1963 2510 3125 3768 3541 1950 | 34353
14 2957 3650 2968 2511 3123 2521 2106 2446 3100 3780 3537 1980 | 34679
15 2900 3619 3021 2566 3104 2512 2156 2573 3082 3808 3544 2057 | 34941
16 2842 3658 2967 2663 3094 2601 2109 2666 2930 3748 3485 2068 | 34833
17 2914 3671 2985 2816 3173 2555 2267 2757 2855 3866 3478 2104 | 35442
18 3070 3756 2984 2949 3262 2496 2038 2750 2958 3854 3601 2174 | 3589
19 3135 3815 3049 2981 3332 2423 1970 2609 3022 3859 3778 2107 | 36081
20 3158 3970 3167 3229 3374 2392 2014 2728 3148 3879 3784 2005 | 36849
21 3160 4031 3194 3223 333 2423 2188 2780 3193 3923 3751 1977 | 37179
22 3124 3919 3131 3203 3135 2473 2320 2737 3245 3784 3675 2016 | 36762

23 3219 3 897 3186 3320 3135 2503 2410 2791 3212 3903 3610 2025 | 37211

Grand Total 73720 92286 76811 70136 74016 57086 56223 62281 73431 92293 88241 48898 | 865422

Table 33: PARK time varying AEP using scalaed ERA5, corrected power curve and Eddy viscosity wake model. The table
shows the mean yield per month and hpur [MWh]. The results include wake losses and any curtailment losses.
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Monthly yield

[Mwh]

Figure 47: PARK time varying AEP using scalaed ERA5, corrected power curve and Eddy viscosity wake model. Figure
displays monthly mean yield and includes wake losses and any curtailment losses and is based on the 210 MW windfarm
consisting of 35 turbines.
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Figure 48: PARK time varying AEP using scalaed ERAS, corrected power curve and Eddy viscosity wake model. Figure
displays the duration curve of the 210 MW wind farm consisting 35 turbines. The results includes wake losses and any
curtailment losses.
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Appendix 3 - Park Layout and spacing

Windfarm information

Created by:
Jakob Hauga
The license can only be used for educational purposes

Exported from windPRO
https://www.windPRO.com

Figure 49: Park Layout created in google earth with input data from WindPRO.
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WTG distances

Horizontal
Nearest WTG distance
number of rotor

[m] distances
Cco3 B02 981 6.4
BO4 BO5 955 6.2
E04 EO5 966 6.3
BO5 BO6 922 6
Co6 co7 977 6.3
BO3 B02 920 6
B02 Cco1 948 6.2
EO5 E06 905 5.9
EO3 E02 908 5.9
BO6 BO5 922 6
B0O2 BO3 920 6
E06 EO5 905 5.9
EO2 EO3 908 5.9
A04 A05 968 6.3
A05 A06 923 6
co7 Co6 977 6.3
D07 EO7 1133 7.4
AO03 A02 898 5.8
FO4 FO5 944 6.1
Cco1 B02 948 6.2
D01 EO1 1103 7.2
FO5 FO6 917 6
FO3 FO2 954 6.2
BO7 BO6 969 6.3
A06 A05 923 6
EO7 EO6 946 6.1
AO2 A03 898 5.8
BO1 B02 951 6.2
EO1 EO2 939 6.1
FO6 FO7 904 5.9
FO2 FO1 951 6.2
A07 A06 959 6.2
A01 A02 1010 6.6
FO7 FO6 904 5.9
FO1 FO2 951 6.2

Table 34: WTG spacing inside the WMR wind farm. Table displays closest WTG in horizontal distance by meter, and by
number of rotor diameters.
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NORA3 using Jensen Wake model




Appendix 4 — Shear Analysis

Shear extrapolated wind speeds based on 74m mean measured
(Matrix 214,00m; 194,00m; 174,00m; 154,00m; 134,00m; 114,00m; 104,00m; 94,00m; 74,00m;)

-

oo

@ N EBNNE ENE B E MESE I SSE @S @SSsW @ wWsw OW [l WNW {ll NNW

Figure 51: Shear extrapolated wind speeds based on 74m mean measured. Figure displays directional wind shear for scaled
ERAS5; WindPRO.

Shear by direction - radar

~ Matrix 194,00m; 174,00m; 154,00m; 134,00m; 114,00m; 104,00m; S4,00m; 74,00m;

Figure 52: Shear by direction presented in radar graph. Figure displays wind shear for scaled ERA5; WindPRO.
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Appendix 5 - Wake decay coefficient

Measured vs. calculated PARK efficiency for Homs Rev based
on N.O. Jensen Park model, Wake decay contract 0,04
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Measured vs. calculated PARK efficiency for Homs Rev based
on N.O. Jensen Park model, Wake decay contract 0,075

110%

100%

90%

80%

T0%

60% -
—&— Measured, all directions

Calculated

50% T
3 4 5 6 7 8 9 10 11 12 13

Wind speed m/s

14 15

16

17

(b)

Figure 53: Park efficiency comparison, WDC=0.04 (a); WDC=0.075(b). ref: Sgrensen et al (2006).
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