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Abstract

This Master’s thesis addresses the problem of resource allocation in Network Function
Virtualization (NFV) within the context of a smart city considering isolation. The
objective of the thesis is to minimize the long-term cost and maximize the revenue and
acceptance rate of the infrastructure provider. A resource allocation model is proposed,
utilizing a state-of-the-art proximal policy optimization (PPO) training algorithm, and
its performance is evaluated under decreasing available resources.

In this thesis, we first introduce the smart city and the basic NFV and reinforcement
learning (RL) concepts. Then we review the existing literature on resource allocation in
NFV. Further, we introduce our problem definition and solution as well as our proposed
NFV-compatible isolation levels.

The results we produce demonstrate that the proposed solution exhibits increased
performance overall compared to a leading heuristic algorithm called global resource
capacity (GRC), especially in terms of the long-term revenue-to-cost ratio (LTRCR) of
at the most 20%, and in terms of the 25x reduction in time spent allocating per slice
request (SR).
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Chapter 1

Introduction

The infrastructure provider (InP) is one of the major actors in modern networks and is
responsible for providing and operating physical infrastructure. In modern cloud-based
networks, the infrastructure is centered around data centers (DC) and multi-access
edge computing (MEC). Resource allocation entails how these resources are allocated
to provide networks to different kinds of areas and industries, such as in smart cities.
Optimizations that reduce allocations’ overhead and resource usage allow the InP to
reduce costs and increase revenue as more tenants can be supported using fewer resources.

In smart cities, the tenants that the InP support are called smart city vertical industries
(SCVIs), and they offer unique services that require networks with specific characteristics.
Network slices are introduced in 5G networks as the slicing of a physical network into
several virtual networks, where every slice is a combination of network functions (NFs)
and configuration that provides specific characteristics. The tenants will interact with
the slice broker (SB) actor, who will interpret their requirements. The SB will then
request the resource allocation of network slices from the InP by sending SRs and pay
for successful allocations.

Traditional NFs have been implemented using specialized hardware provided by the InP,
which limits the flexibility and scalability of the network. To overcome these limitations,
NFV has emerged as a technology that enables the virtualization of NFs on top of
commodity hardware such as DCs and MECs. Virtualization also allows us to research
the need for isolation between these virtual network functions (VNFs).

1



2 Chapter 1 Introduction

While the InP’s goal is to support as many network slices as possible, isolating these
network slices is paramount. This is because the operation of one network slice must not
affect others maliciously or accidentally for the InP to be able to provide network slices
as specified. Our thesis will distinguish the different ways that isolation can be enabled
and provide our isolation levels.

This thesis focuses on the problem of resource allocation in NFV in a smart city scenario
while considering isolation. Our goal is to reduce the number of resources allocated by
the InP so that the cost of the InP is minimized and that the number of network slices
that are successfully allocated is maximized to increase the generated revenue of the InP.

Research on the usefulness of RL in resource allocation is still needed. Deep reinforcement
learning (DRL) has recently gotten much attention and has taken advantage of deep
neural networks (DNN). Here it is reasonable to think that DRL is a field that can
provide performant and scalable solutions to resource allocation due to the general and
dynamic nature of the task. It has been shown in previous research that DRL methods
are performant in large, complex, and dynamic environments where the state and action
space is large.

Only a few papers propose DRL resource allocation solutions, and only some of them use
gradient ascent-based methods. Still, none have been published yet where PPO has been
used for allocating resources and embedding links while considering isolation. Gradient
ascent-based methods optimize the policy parameters by iteratively updating them in
the direction of the gradient of the expected reward. PPO is an algorithm in DRL that
combines ideas from policy gradient methods and trust region methods to ensure stable
and efficient learning. It balances the exploration of new policies with the exploitation
of currently known good policies. We will use a state-of-the-art PPO DRL algorithm
to tackle resource allocation in an SCVI scenario considering isolation and compare our
results with previous research.
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1.1 Objectives

1. Conduct a comprehensive review of the existing literature on resource allocation in
NFV.

2. Define the levels of isolation required in NFV to ensure the security and reliability
of the network.

3. Introduce the problem description.

4. Implement the solution model and test its performance.

5. Evaluate the solution model using appropriate metrics and compare the results to
an existing solution.

6. Conclude the findings and discuss the implications of the results, highlighting the
strengths and limitations of the proposed solution model.

7. Provide recommendations for future work, including potential extensions to the
solution model and areas for further research.
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1.2 Contributions

• Resource allocation model trained using the PPO training algorithm.

• Realistic simulation

– Considers both ingress and egress. Ingress refers to the entry point of data or
traffic into the network slice, while egress refers to the exit point.

– Novel isolation definition that aligns with the principles of network slicing.
Network slicing enables the creation of virtual networks tailored to specific
requirements. The proposed isolation definition is compatible with NFV and
ensures the effective isolation of network slices.

– Considers various resources (CPU, RAM, storage, and bandwidth) and con-
straints (isolation, ingress, and egress).

• Demonstrating the competitive performance of the proposed solution compared to
an existing approach.

The contributions of this thesis lie in the approach to the VNF-FGE problem while
considering isolation and ingress and egress, the competitiveness of this approach, and
how it can be used in relevant smart city environments. The thesis gives a systematic and
clear definition of isolation levels and, importantly, distinguishes between using containers
and virtual machines. The isolation levels presented are ETSI NFV compatible. The
thesis implements the solution model and tests its performance under various scenarios,
including network loads and resource availability. The evaluation methodology employs
appropriate metrics, such as resource utilization and acceptance rate, and compares the
results to existing research in the field. The thesis concludes the findings and discusses
the implications of the results, highlighting the strengths and limitations of the proposed
solution model. Finally, it provides recommendations for future work, including potential
extensions to the solution model and areas for further research.
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1.3 Outline

The second chapter will provide an overview of the essential components and terms of
the thesis. The third chapter will categorize the related work and present the previous
methods and their properties.

The fourth chapter will give the problem description and formulation, propose isolation
levels in the NFV, and define each level. Further, it will explain the advantages and
disadvantages of the different levels and the considerations that went into proposing
these levels. How the isolation levels fit into the current NFV architecture will also be
discussed. Then the chapter will discuss the chosen DRL approach and scenario, why
the approach to the problem differs from previous work and the reasoning behind the
related choices. In addition, the chapter will discuss how this thesis contributes to the
current field of research.

The fifth chapter documents the simulation environment, related properties, and the
evaluation methodology employed. The quantitative results are presented, compared to
GRC, and finally analyzed. In the final chapter, the thesis will conclude the presented
work and try to give some future directions.





Chapter 2

Background

This chapter provides an overview of essential components and terms related to the
thesis topic. We explore fundamental concepts and technologies. Understanding these
core elements lays the groundwork for further exploration and analysis of the following
chapters. Table 2.1.
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8 Chapter 2 Background

Acronym Definition

NF Network Function
VNF Virtual Network Function

VNF-FG VNF-Forwarding Graph
VNF-FGE VNF-FG Embedding Problem
VNF-TR VNF-Traffic Routing Problem

NFV Network Function Virtualization
NFV MANO NFV Management and Orchestration

NFVI NFV Infrastructure
NFVO NFV Orchestrator
VIM Virtual Infrastructure Manager
EM Element Manager

OSS/BSS operational and business services
RL Reinforcement Learning

DRL Deep Reinforcement Learning
DNN Deep Neural Networks
PPO Proximal Policy Optimization
SCVI Smart City Vertical Industries

5G Fifth-Generation Networking
eMBB enhanced Mobile Broadband

URLLC Ultra Reliable Low Latency Communication
IoT Internet of Things

MIoT Massive Internet of Things
V2X Vehicle to Everything
SB Slice Broker
SR Slice Request

QoS Quality of Service
SLA Service Layer Agreement
InP Infrastructure Provider
SN Substrate Network
DC Data Center

MEC Mobile Edge Computing
VM Virtual Machine

Table 2.1: Acronyms in Background
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2.1 Smart cities

Smart cities are urban areas that leverage data collection and advanced technologies,
including 5G networks, to enhance their citizens’ quality of life, improve their operations’
efficiency, and promote sustainable growth [1].

In a smart city, various critical and non-critical services require different communication
technologies for data collection and operation.

2.2 Network Slices

A network slice combines NFs and configuration that provides certain characteristics.
In fifth-generation networking (5G) the 3rd Generation Partnership Project [2] have
defined four standard network slice types;

• Enhanced Mobile Broadband (eMBB) - Offers enhanced mobile networks over
mobile networks currently seen in 4G, especially in terms of speed, capacity, and
mobility in three dimensions.

• Ultra Reliable Low Latency Communication (URLLC)- Provides ultra-low latency
and high-reliability communication for critical real-time applications.

• Massive Internet of Things (MIoT) - Enables communication between massive
amounts of internet of things (IoT)-devices. Low data rates, low power consumption,
and massive connectivity characterize MIoT.

• Vehicle to Everything (V2X) - Provides connectivity to and between vehicles in
motion and the entities around the vehicles.
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2.3 Smart City Vertical Industries

Smart city vertical industries (SCVI) [3] fit well with the network slice paradigm because
vertical industries in a smart city require different network slices to be productive. This
is because a vertical industry is a segment of the city that might offer a unique service or
produce a specific product that requires specific network slice characteristics.

An example of an SCVI requiring specific characteristics in a network slice is the public
transportation market, where airports and train stations require eMBB due to the high
density of people and their mobile devices. Another example is industries where factories
operate machines with real-time monitoring, control, and coordination, leading to im-
proved operational efficiency and safety, which requires URLLC. The smart agriculture
industry is an example of an SCVI that requires the MIoT network slice. It relies on many
low-power, low-data-rate connections for crop, livestock, and environmental monitoring
using sensors. Moreover, healthcare is an example where an ambulance might be required
to communicate with every other vehicle and traffic light to reach the destination as fast
and safely as possible. This can be accomplished by using the V2X slice type.

eMBB

URLLC

MIoT

V2X

Figure 2.1: 5G-Slice Examples
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2.4 Isolation

In our case, the performance, security, and reliability of our SCVI cannot be compromised.
Each vertical industry might provide critical services, and as such, we must restrict
network slices from influencing the operation of each other, both accidentally and
maliciously.

Network slice isolation is discussed in several papers among Gonzalez et al. [4], which
introduce this concept as the property that enables network slices to operate without
the influence of others.

Network slice isolation can be defined as encompassing several levels. Wong et al. [5], for
example, proposes eight levels of isolation.

Our isolation levels definition is given in Figure 4.2. In general, the network slice isolation
concept can be thought of as the network segmentation of the slices, isolating the traffic
of different slices. Then secondly, the virtualization of the hardware resources isolates
software components from the underlying hardware and each other.

2.5 Infrastructure Provider

The InP is the entity responsible for providing the underlying physical infrastructure,
such as servers, storage, and network resources, to support the allocation of VNFs. InP is
typically a service provider or a cloud provider who owns and manages the infrastructure.

As the infrastructure owner, the InP also bears power usage costs, maintenance, and
more. The InP is incentivized to keep its infrastructure operational and as well utilized
as possible. This is because the revenue generated by the InP comes from selling the
creation and operation of network slices, and this revenue can only be generated as long
as the infrastructure is operational. Moreover, how well the InP allocates the resources
determines how many network slices can fit and be sold.
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2.6 Multi-tenancy

In the context of 5G network slicing, multi-tenancy refers to the ability of the network
infrastructure to support multiple independent tenants within a shared physical infras-
tructure [6]. Each tenant can have its network slice, which provides dedicated network
resources and services customized to their specific requirements.

Multi-tenancy allows for better resource utilization since resources can be dynamically
allocated to different SCVIs based on their requirements, which means that the InP can
fit and sell the creation of more network slices. For example, suppose one SCVI requires
more processing power while another requires more storage. In that case, the InP can
allocate the appropriate resources to each SCVI based on their needs and not reserve
unnecessary resources that another SCVI can use.

2.7 Data Centers and Multi-Access Edge Computing

MEC

DC

MEC

DC
DC/MEC

SN

NF NF NF3

Specialized hardware providing 
NFs is replaced with generalized 

hardware  

Figure 2.2: DC and MEC

Modern computers and data centers (DCs) have various hardware components, including
general-purpose CPUs, memory, storage, and network cards. These components are
designed to be scalable and interchangeable, resulting in cost-effective upgrades, main-
tenance, and replacements. Routers, firewalls, and load balancers can be replaced or
complemented by DCs.

Multi-access edge computing (MEC) has been proposed to improve edge-cloud computing
in networks. MEC hosts offer mostly the same features that the DCs offer, but closer to
the edge of the network and end-user, but at a smaller scale. This allows the slices to
reduce latency and improve QoS as the traffic moves through fewer links and DCs.
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2.8 Substrate Network

The underlying infrastructure the InP manage and offer is called the substrate network
(SN), where the network slices are allocated. Figure 2.3 shows the SN with its DCs,
MECs, and physical links; in this case, there are two InPs that own different parts of the
SN.

InP1

InP2

MEC

DC

DC

DC

MEC

MEC MEC

DC

DC

Figure 2.3: The SN

2.9 NFV

NFV moves the functionality of the network from specialized hardware into virtual
network functions (VNFs) and centralizes the management and provisioning of the VNFs
[7]. NFV is one of the ways that network slicing can be accomplished because it enables
greater automation and orchestration and allows slices to be allocated and isolated in
software and not hardware. The virtualization of the NFs to software-based VNFs reduces
the cost of the network slices as software is more easily extensible and is easily placed on
more generalized hardware like DCs and MECs.

Two primary virtualization technologies are used for implementing NFV: containerization
and virtual machines (VMs). Containerization involves running applications and their
dependencies in isolated containers sharing the same operating system kernel. This is an
easy way to package and deploy network functions, making it ideal for VNFs. On the
other hand, VMs run guest operating systems on top of a hypervisor, which isolates the
VMs from the host operating system. While VMs provide greater isolation and security,
they are less efficient and more resource-intensive than containers.
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In Figure 2.4, we see how the standard ETSI NFV architecture is envisioned. Here
the Virtualization block can be implemented with containerization or VM. In the NFV
architecture, the management and orchestration (NFV MANO) control plane is separated
from the data plane. The virtual infrastructure manager (VIM) manages the NFV
infrastructure (NFVI). Also, importantly the VNF manager interfaces with the element
manager (EM) and the VNF itself to deploy and keep the VNF operational. In our
case, the NFV orchestrator (NFVO) works with creating and optimizing the allocation
of network slices, while the operational and business services (OSS/BSS) provide an
interface for requesting network slices.

VIM

VNFM

NFVO

Os-Ma

NFVI

EM

VNF

DC/MEC

Virtualization

Ve-Vnfm-vnfVe-Vnfm-em

NF-V
i

NFV MANO

Legend

NFV – Network Function Virtualisation

NFVI – NFV Infrastructure
DC – Data center
MEC – Multi-access Edge Computing

VNF – Virtual Network Function
EM – Element Management system

OSS – Operations Support System
BSS – Business Support System

MANO – MANagement and Orchestration
NFVO – NFV Orchestrator
VNFM – VNF Manager
VIM – Virtual Infrastructure Manager

OSS/BSS

Figure 2.4: ETSI NFV architecture [8]
(release 3)
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2.10 Forwarding Graph

The blueprint of a network slice before it is allocated is in our thesis, the VNF forwarding
graph (VNF-FG), and it describes the way traffic flows through a chain of VNFs and also
contains the logical links(Figure 2.5). In the VNF-FG, an ingress and an egress VNF
must exist that define the origin and destination of the traffic, which might then force a
minimum amount of links that need to be embedded to complete the forwarding graph.

VNF VNFIN EG

Figure 2.5: The VNF-FG

2.11 Placement Problem

The placement problem refers to placing the VNFs in the VNF-FG onto the SN and is
referred to as VNF-P. The VNF-P affects the processing power and traffic used and, in
turn, the cost of the service. Every placement incurs a cost, as the infrastructure to run
the VNF is bought from the InP, and the cost of deploying and starting the VNF comes
in addition to the resource and traffic used when running the VNF.

Many placements on a single SN node might benefit from lower overall costs due to
sharing specific software components, i.e., when grouped as containers, and due to reduced
network usage, as traffic must pass through fewer links. However, many placements on a
single node will exceed the different resource capacities and overload and fail the node.
In contrast, an entirely spread-out placement on many nodes is costly as traffic must
traverse many links and will lead to poor utilization.
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2.12 Forwarding Graph Embedding Problem

Individual VNFs cannot be applied interchangeably throughout the VNF-FG. The traffic
must be routed in a specific order, often denoted by the traffic routing problem (VNF-TR).
For example, if a firewall-VNF is present in the VNF-FG, it may be applied first to
ensure the subsequent VNFs receive the firewall-filtered traffic [9]. When the VNF-P
and T problems are combined, we call it the forwarding graph embedding problem
(VNF-FGE)[7].

In figure Figure 2.6, we see how a VNF-FG might be allocated on the SN by the InP.
The green straight arrows show the links of the VNF-FG, while the stippled ones show
how the InP chose to embed the links in the SN, which implements the traffic routing
of the VNF-FG. Following the NFV structure, here the VNFs are placed inside containers.

C1

EM1

VNF
1

C6

EM6

VNF
6

C4

EM4

VNF
4

InP

MEC

DC

DC

MEC

A

A
B

C

C7

EM7

VNF
7

VNF
6

B C
VNF
4

IN1 EG1A

Figure 2.6: Placement and embedding of VNF-FG
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2.13 Slice Broker

The slice broker (SB) is the entity that buys the allocation of network slices from the
InP. The SCVIs interact with the SB, which interprets requirements and creates an SR
that is forwarded to the InP. We use an online environment where the InP must allocate
SRs as they arrive from the SB.

2.14 SRs

The SRs define the required VNF-FG, resources, and service level agreement (SLA) that
the SCVI expects to use. The SLA specifies various performance metrics, availability
targets, scalability requirements, and other QoS parameters that the InP commits to
meeting. These metrics can include parameters like response time, throughput, latency,
packet loss, availability percentage, and other relevant indicators.

Furthermore, the SLA also outlines the penalties or remedies that may be applicable if
the service provider fails to meet the agreed-upon service level objectives. These penalties
or remedies could involve financial compensation, service credits, additional support, or
other remedies as agreed upon in the SLA. The VNF-FG describes the logical topology
of the VNFs, their required interconnections, and, importantly, the ordering of the VNFs.
The SR specifies the required resources, such as CPU and RAM, and the link bandwidth
and isolation requirements.

VNF VNF
VNF-FG

IN EG

Requirements of 
Each VNF:

CPU
RAM

Isolation Level

SR

SLA

Requirements of 
Each Link:
Bandwidth

Figure 2.7: SR
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2.15 Roles

SB sends SRs to the InP and pays 
for the resources that are allocated

SB
SRs

SB interprets need of 
SCVIs

The ownership of the resulting 
network slice is returned to the SB

InP

SCVI 1

SCVI 2

SCVI 3

InP gains revenue 
from the SRs it 
accepts, and pays 
the OpEx related to 
the allocation

Figure 2.8: Relationship between the SCVI, SB, and InP

We see the relationship between the SCVI, SB, and InP in Figure 2.8. The InP manages
the SN and its resources and allocates the SRs received from the SB. The SB is responsible
for creating SRs by interpreting the needs of SCVIs. The SR requirements define the
VNF-FG and the necessary service resources. The InP generates revenue from selling the
allocations to the SB and pays the OpEx related to the allocation, which means that the
InP has the incentive to maximize the number of allocated network slices and minimize
the number of resources used.

In Figure 2.9, an overviewing model of our thesis problem is given. From the left side,
we see the SB interpreting the needs of the SCVI shown with a downward arrow. The
SB then interfaces with the InP’s OSS/BSS layer and sends the SRs. The InPs NFV
MANO stack is then responsible for allocating the requested network slices.

In this example, the three allocated network slices are shown represented by their VNF-
FG at the top. The way each VNF has been placed is given by the line to the middle
"NFV" layer. At the middle layer, either a container VM is used, and we will get back to
the reasoning behind this in chapter 4.

At the bottom, the SN is shown along with its DCs and MECs, and the embedded links
are indicated with the stippled arrows.
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2.16 RL

Acronym Definition

RL Reinforcement Learning
(An agent performing an action based on a policy receives a reward,
which adjusts the policy of the agent)

DRL Deep Reinforcement Learning (Deep neural network agent)
MC Markov Chain (stochastic state model)

MRP Markov Reward Process
(Extension to MC adding rewards for good states)

MDP Markov Decision Process
(Extension to MRP adding decision-making to agents - policy and action)

STM State Transition Matrix
(Represents the possible transitions from one state to another
with their associated probability)

Episode Collection of samples of the state
Horizon The maximum sample count of an episode
Epoch Set of episodes after which the policy is updated
SVF State Value Function

(Value based on the discounted value of entering a state)
OVF Optimal Value Function

OSVF Optimal State Value Function
O(S)AVF Optimal (State) Action Value Function (q∗(s, a))

AVF Action Value Function
SARSA State–action–reward–state–action

On-policy Update policy based on actions taken
Bootstrapping An estimate of state or action value is updated based on experience

Table 2.2: Markov Chain Acronyms

Symbol Definition

S Set of States
s ∈ S Particular state

A Set of Actions
a ∈ A Particular action

t Time Step
r Reward
γ Discounting Factor
π Policy

Rt Discounted Reward
vπ SVF
qπ AVF

Table 2.3: Notation Used
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2.16.1 MC

To understand RL properly, we must first look at the basic structure of a Markov chain
(MC). An MC is a state model where the next state is given a stochastic probability. An
important distinction here is that the likelihood in this chain is known and not "random",
i.e., the following possible states are known as well as their transition probability; of
course, the sum of probabilities must be one.

Every state must be unique in an MC, and a new state is transitioned for every step
when a discrete time space is used. However, the probability of the following state
can not depend on the previous state; this we call the Markov property (MP). The
state transition matrix (STM) shows the possible transitions from one state to another
with the associated probabilities while adhering to the MP. In addition, the STM has
mathematical properties which make it useful for computations of the MC state.

2.16.2 MRP

The Markov reward process (MRP) adds state rewards to the MC, meaning transitioning
into a state makes the agent receive an immediate reward. This reward will represent
behavior that is defined as good. An episode is a collection of measured samples of our
MC.

The return in a Markov Reward Process (MRP) is calculated as the sum of rewards in
an episode, but it is useful to discount the reward received as we step forward in time.

Rt =
∞∑

k=0
γkrt+k+1 (2.1)

In the reward function (Equation 2.1)[10], Rt is the return at time step t, γ is the discount
factor between zero and one, and rt+k is the reward at time step t + k. A discount
factor close to one will adjust the model towards receiving the most reward over time.
However, when the discount factor is adjusted the other way, the model will prioritize
the immediate rewards higher.

In the real world, reward-discounting can be analogous to the economy, where there is
an incentive to spend or reward immediately due to the inflation of currencies, where the
saved currency becomes less valuable with time. This is also very useful in mathematics
and informatics because the sum of samples can be easily limited to achieve some specified
accuracy.

We get the expected return if we average the discounted return in a Markov Reward
Process (MRP) over a collection of episodes called an epoch. The state value function
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(SVF) describes the long-term return of being in a certain state s[10].

vπ(s) = E [Rt | st = s] (2.2)

In the SVF, vπ(s) is the expected return from state s, E is the expectation under policy
π, and R is the reward function.

Using the Bellman equation, we can decompose the SVF into the immediate reward rt+1

and the discounted reward γvπ(st+1) of the successor state st+1. This is useful as the
Bellman equation can be solved, although the O(n3) time complexity means that solving
it might only be useful for small perfect information models.

The Bellman equation for the SVF can be written as[10]:

vπ(s) =
∑

a

π(a|s)
∑
s′,r

p(s′, r|s, a)[r + γvπ(s′)] (2.3)

where π(a|s) is the probability of taking action a in state s, p(s′, r|s, a) is the probability
of transitioning to state s′ and receiving reward r after taking action a in state s.

2.16.3 MDP

The Markov decision process (MDP) adds decision-making to the model; the central
concept is that the agent operates based on a policy that dictates which action the agent
should take each episode. In the MDP, probability does not directly decide the state
transition; instead, the agent might behave entirely deterministically using a policy that
chooses only the action that will lead to the most valuable state or with a probabilistic
policy where some distribution chooses the action to take.

The MDP consists of a set of states S where each state s ∈ S, a set of actions A where
each action a ∈ A, and a transition function P (s′|s, a) that gives the probability of
reaching state s′ after taking action a in state s, and a reward function R(s, a, s′) that
gives the immediate reward for this transition.

The action value function describes (AVF) the value of taking the action a in the state s

adhering to policy π[10].

qπ(s, a) = E [Rt | st = s, at = a] (2.4)

The policy π maps each state to an action. The goal of an agent is to find an optimal
policy π∗ that maximizes the expected return, which is the sum of discounted rewards
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over time. The value function vπ(s) measures the expected return from state s under
policy π, and the action-value function qπ(s, a) measures the expected return from taking
action a in state s and then following policy π.

The optimal policy π∗ is better than or equal to all other policies[10],

π∗ ≥ π,∀π (2.5)

The π∗ achieves the optimal state value function v∗ (OSVF) and optimal action value
function q∗ (OAVF).

vπ∗(s) = v∗(s),

qπ∗(s, a) = q∗(s, a)
(2.6)

The OSVF v∗(s) tells us the maximum SVF[10].

v∗(s) = max
π

vπ(s) = max
a

qπ∗(s, a) (2.7)

The OAVF is the maximum SAVF[10].

q∗(s, a) = max
π

qπ(s, a) (2.8)

The Bellman equation for the AVF can be written as[10]:

qπ(s, a) =
∑
s′,r

p(s′, r|s, a)[r + γ
∑
a′

π(a′|s′)qπ(s′, a′)] (2.9)

where π(a|s) is the probability of taking action a in state s, p(s′, r|s, a) is the probability
of transitioning to state s′ and receiving reward r after taking action a in state s. And
for the OAVF, the Bellman equation is[10]:

q∗(s, a) =
∑
s′,r

p(s′, r|s, a)[r + γ max
a′

q∗(s′, a′)] (2.10)
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Model-based or model-free terms are used in the RL field to describe how the model
perceives the environment states. Model-based methods give the agent perfect information
about the environment. Many games provide the player with perfect information,
including chess, and these games might be solved using model-based methods. Still,
model-based methods become infeasible to compute when the state and action space are
very large. Model-free methods make more sense in a more general environment as the
methods can perceive parts of the environment and learn from experience rather than
perfect information. This is also more analogous to human learning, where humans do
not learn with perfect information about the environment but rather by perceiving the
environment through senses, which are not entirely accurate.

2.16.4 Summary

Li [10] gives a great explanation and summary of the current different RL methods:
dynamic programming, monte carlo, temporal difference learning, policy optimization,
and DRL. The DRL and policy optimization methods are the most relevant for this thesis.
Here Li [10] notes that compared to temporal difference learning policy optimization
usually have better convergence properties. However, a big issue with these methods is
that they might converge to local optimums and not global optimums, which in that
case, means that the agent’s learned policy may not reach close to the optimal policy in
a reasonable timeframe.
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2.16.5 DRL

In deep RL, deepness refers to the presence of multiple layers of nodes in the neural
network. Deep RL methods have been shown to give better results than shallow models(see
Table 3.3 paper [11] where Q-Learning loses to DRL methods).

Sun et al. [12] mentions current research on DRL and its problems. They note the
curse of dimensionality as one of these problems. The curse refers to the nature of
many-dimensional models and the exponential data required to use them when the
dimensionality increases. This curse can be understood in this context as the problem of
increased time and data spent when using increasingly complex models and is certainly
a much-researched subject within DRL.

[12] also states that the "low convergence speed, and exploration and exploitation balance"
as additional concerns in DRL, and here the low convergence speed is related to the
implementation speed of the thesis, as the convergence can be practically understood
as the time where there is little or nothing to gain from further learning, here there is
significant variation between the different algorithms.

Exploration and exploitation balance goes into the same convergence concept but describes
how the RL algorithm will learn and how greatly the algorithm will prioritize exploring
new actions that might provide a different reward over exploiting the actions known to
give the greatest reward. This concept is important, and we must ensure a good balance
such that PPO converges to the optimal policy.
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2.16.6 Policy Gradient Methods

For our thesis, policy gradient methods (PGMs) are the most important, Weng [13]
summarizes a list of the current different PGMs. Considering the curse of dimensionality,
it is clear that when the state space increases, the usefulness of model-based methods
decreases because of the time complexity.

An advantage of the gradient methods is that we do not have to compute the entire AVF
of the model; instead, using partial derivatives, we can approximate the SVF by using
the sampled experience. We can instead sample episodes and sum the AVFs, which will
approximate the actual AVF of the model, which we can then use to adjust our policy in
the direction of the maximum SAVF (OAVF).

PGMs tend to converge faster than value-based methods [13]. Again the optimal policy
will be to receive the maximum rewards, but the reward function(Equation 2.11) is
different from in MRPs.

J(θ) =
∑
s∈S

dπ(s)vπ(s) =
∑
a∈A

πθ(a|s)qπ(s, a) (2.11)

Here the reward function J(θ) represents the expected discounted reward when following
policy π.

∇θJ(θ) = Eπ[∇θ ln πθ(a|s)Âπ(s, a)] (2.12)

Further, the gradient can be represented as in Equation 2.12 where ∇θJ(θ) θ is the
expected reward gradient, which defines the reward that the agent will receive following
policy πθ(a|s) beginning from the current state. The first term gives the log probability
of taking action a in state s, denoted as ∇θ ln πθ(a|s). The policy gradient describes
whether a local minimum has been achieved.

The second term describes the advantage function Âπ(s, a), which is the difference
between the AVF and SVF. This function represents the advantage of taking action a in
state s compared to the average action under the policy πθ(a|s). And so, it gives the
value of the action relative to the average action for the current state.

Finally, the update rule can be written as:

θk+1 = θk + α∇θJ(θk), (2.13)
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After computing the gradient of the expected return with respect to the policy parameters,
we use Equation 2.13 to update the policy parameters iteratively during the learning
process.

In this Equation 2.13, θk denotes the current values of the policy parameters at the k-th
iteration, and θk+1 denotes the updated values of the policy parameters at the (k + 1)-th
iteration. The update is performed by taking a step in the direction of the gradient,
scaled by a learning rate α, which is a hyperparameter that determines the step size.





Chapter 3

Related Work

In this chapter, we present an overview of earlier research and findings, offering insights
into the existing research in the field. Examining past endeavors gives us valuable insights
into prevailing trends, challenges, and potential solutions researchers have explored.

3.1 NFV

Acronym Definition

NF Network Function
NFV Network Function Virtualization
VNF Virtual Network Function

VNF-FG Virtual Network Function Forwarding Graph
VNF-P Virtual Network Function Placement

VNF-TR Virtual Network Function Traffic Routing
VNF-FGE Virtual Network Function - Forwarding Graph Embedding problem

Table 3.1: NFV Acronyms

Sun et al. [12] shows a lot of the NFV-related acronyms used in their survey, but note
that these acronyms and descriptions will vary slightly from other surveys like [7].

Understanding the evolution of network functions is important to the thesis, and [12]
does a good job of describing the lineage of research around NFs. In this context, it is
important to distinguish between the NFs, traditionally provided physically in specialized
hardware, and the VNFs, provided entirely virtually in software. This evolution from
NF to VNFs has reduced the cost of network slices and improved scalability, but there
are more resources to be saved when solving the VNF-FGE problems; the first of these
problems to solve is the VNF-P problem.

29
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The routing model in [12] assumes that the service request that is made contains an
ordering of VNF that is strict and that there is no concurrency in the way traffic flows
through the VNF-FG. Therefore traffic must flow sequentially, even though there might
exist VNFs that can be interchangeably computed in order and optimizations that take
advantage of this.

Mirjalily and Luo [9] provides an overview of service function chaining and some good
diagrams for understanding the standard ETSI NFV architecture. In this regard, it
shows how the different parts of the architecture parts will interact, as well as some of
the application scenarios.

Sun et al. [12] defines the different placement problem variant models: chaining, placing,
embedding, and routing. The placing model is the most basic in terms of complexity, as
it focuses on optimizing the VNF locations in the SN alone. We will, however, separate
the placing and routing terms and tackle placing, embedding, and routing all at once,
which we call the VNF-FGE problem.

As Sun et al. [12] notes, the placement problem research shows that no single algorithm fits
every scenario, even when looking at only the P problem and not adding TR complexity.
However, this is an area where we might see learning-based algorithms perform well
because the unclear and complex scenarios suit a well-learned, complex, and generalist
solution. RL and DRL solutions might become general enough to fit many scenarios.

Sun et al. [12] provides comprehensive tables encompassing papers describing parts of
the VNF-FGE problem categorizing them in the cloud, backbone, mobile, IoT, and
heterogeneous networks while describing the objectives, constraints, and algorithms used.
The five network types will be important in our smart city environment, and the tables
give good oversight into the five classes.
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3.2 Isolation

As mentioned in the introduction and background, a table and diagram that introduce
our isolation definition are provided in Figure 4.2 and Figure 4.3. The subject of isolation
in NFV is not new, and as such, many papers are discussing the matter. Gonzalez et al.
[4] provides a good overview of the current state of this isolation, and Wong et al. [5]
goes into detail about the new concept of network slice isolation which is interesting for
the thesis, as the different slices of our smart city network mustn’t influence each other
as mentioned in the introduction.

What is missing from current research is the combination of 5G network slice isolation,
smart cities, and VNF-FGE with DRL; here, we can only find [3]. Gohar [3] provides a
DRL solution to the VNF-FGE problem that beats some of the competition; we will try
to improve this result by using a different DRL algorithm. The paper [3] uses an integer
to represent the isolation level of a computational platform (CP), which we will also do.
However, our isolation definition is different and takes a more systemic approach.
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3.3 Solutions to VNF-FGE

3.4 Exact

Paper Type Algorithm SN Metrics Performance

[14] Exact LBBD Random Runtime, SN Utilization ILP < LBBD
[15] Exact, Approximating, Heuristic ILP, LP, HA Random Runtime, Cost LP < ILP < HA
[16] Meta Heuristic MHA Random Fat-Tree Packet Loss, SN Utilization, Path Length HA(CLBP) < MHA
[3] DRL DRL Random Acceptance Rate, Long Time Cost Ratio MCT < DRL
[11] DRL A-DDPG Random Cost Q-Learning < NFV-Deep < DDPG < A-DDPG
[17] DRL MADRL Multiple Delay, Cost, Acceptance Ratio, Throughput HA < MADRL

Table 3.2: Simulation parameters - General

Paper Algorithm HW Links Nodes SRs

[14] LBBD CPU or RAM BW 30, 36, 40, 60 5-50
[15] ILP, LP, HA CPU BW 25, 50, 75, 100, 125, 150, 175, 200 ?
[16] MHA CPU BW 250 500
[3] DRL CPU, RAM, Storage, Isolation BW 110 2000
[11] A-DDPG CPU, Latency BW, Latency 10, 20, 30, 40, 50 10-100
[17] MADRL CPU, RAM BW 37, 65, 100, 225 up to 30000

Table 3.3: Simulation parameters - Specifics

The exact solutions optimally solve the VNF-FGE problem, finding the best placement
and routing possible for each SR. So in the case of exact solutions, the problem is
not to find a way to give the exact solution but to find one using the least amount of
computational resources; as the VNF-P and T problems are themselves NP-hard, there
can not be a solution that is computed in polynomial time that is O(nk). Often, solutions
use Integer Linear Programming (ILP) and Mixed Integer Programming (MIP).

Ayoubi et al. [14] recently proposed an exact solution to solving the VNF-FGE problem
using a Logic-Based Benders Decomposition (LBBD) Approach. Benders decomposition
is a mathematical method that simplifies linear programming problems; in short, the
technique allows for creating a smaller sub-problem which will, when checked, be the
solution or reduce the original problem.

In [14], the physical network is represented as an undirected graph consisting of nodes
and logical links with a finite computing and bandwidth capacity. This model is similar
to many others solving the P and T problems, and we will use a similar setup. However,
we will also model storage and the level of isolation of each node like in [3]. What Ayoubi
et al. [14] finds is that their method performs better overall compared to an ILP solution
up to 700 times in fact in terms of processing time, and compared to a heuristic k-shortest
path, their solution gives better acceptance rate and processing time.

Xu et al. [15] proposes using a more traditional ILP-based exact solution than [14], and
the authors state that this exact solution is not scaleable to large problems due to the fact
the placement problem NP-hard, but [14] show that an LBBD solution can be improved.
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3.5 Meta Heuristic

Meta-heuristic algorithms work by iteratively evaluating solutions and then modifying
them to improve their quality. These modifications are guided by rules or heuristics that
determine which solutions to accept or reject based on some evaluation criteria.

Zhou et al. [16] distinguishes between two types of scalability, vertical and horizontal.
Vertical scaling refers to VNFs being duplicated or otherwise allowed to consume more
of the resources of a single network node, while horizontal scaling is when the VNFs
are instead placed across the network. This distinction is important since scaling up
vertically is cheaper and faster, as mentioned in the introduction, and is a concern that
we will consider. But as Zhou et al. [16] notes, the resilience to burst traffic depends on
the idle resources on the node in question, and many times, horizontal placement must
be used even though vertical placement might be preferred.

Zhou et al. [16] also discovers that prioritizing burst resilience means that placing the
VNFs from the same SFC (Service Function Chain) onto the same node is worse than
placing VNFs from different SFCs onto the same hardware. This is because the probability
that the VNF will receive burst traffic is related to SFC burst probability. Therefore it
follows that if one VNF in the SFC gets burst traffic, so will other VNFs too, and this
combined need for vertical scaling will more likely overflow into forced horizontal scaling
when it first happens.

However, this burst resilience might come at the cost of isolation, which [16] has not
discussed. Zhou et al. [16] propose their own binary search and bisection algorithm and
compares it to a cluster-based heuristic algorithm and finds that their algorithm performs
better when considering packet-loss in a "bursty" environment
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3.6 RL

(("reinforcement learning" AND NOT "deep reinforcement learning")
AND "VNF" AND NOT "survey" AND NOT "arxiv")
AND ("VNF-FGE" OR "VNF-FG embedding"
OR "VNF*P*R" OR
(("placement" OR "deployment") AND ("routing" OR "scheduling")))

Figure 3.1: Dimensions RL only search query

Using an advanced search query (Figure 3.1) in the search engine Dimensions, we find
published articles using only RL methods and not DRL. Here we only want to find
published and peer-reviewed articles that solve the VNF-FGE problem. From the query
used on the 10th of February 2023, we can gather that this specific area of research has
only been active since 2020, with only seven published articles returned.

Cai et al. [18] considers a parallelized SFC (PSFC) where traffic can be routed in the
VNF-FG such that the ordering is not forced. Two VNFs can be computed in parallel if
none are dependent on the other, and the VNFs are not writing and reading the packets
passing through them, similar to the concepts and problems of multi-threading in CPUs.
This can be useful in URLLC as it reduces the latency of the SFC.

However, the parallelization induces a higher cost of the SFC due to the memory used to
hold the packets of the node that finishes first and, eventually, the computation used
to merge the packets of both nodes at the dependent node. It is possible that a DRL
method could take advantage of PSFC, but then the complexity of the model would be
increased as what VNFs could be parallelized would have defined, as well as the wanted
trade-off between cost and latency based on the slice type.

Cai et al. [18] use a Q-learning-based RL method to optimize the P and R problems.
Q-learning has become a standard RL that finds the optimal policy that gives the OSVF.
Deep Q-learning improves on this method, but PPO methods are known to out-compete
the deep Q-learning methods. Cai et al. [18] show that their algorithm performed best
when the learning rate was set to 0.6, but as we are using a DRL method which is quite
different, it is unlikely that this is the best learning rate for our purposes.

https://app.dimensions.ai
https://app.dimensions.ai
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3.7 DRL

(("DRL" OR "deep RL" OR "deep reinforcement learning")
AND "VNF" AND NOT "survey" AND NOT "arxiv")
AND ("VNF-FGE" OR "VNF-FG embedding"
OR "VNF*P*R" OR
(("placement" OR "deployment") AND ("routing" OR "scheduling")))

Figure 3.2: Dimensions DRL search query

Paper Algorithm Hidden Layers Learning Rate Discount Episodes Batch Size Epochs

[3] DRL ? 0.005 0.998 100 100 ?
[11] A-DDPG 3 0.01 0.8 3000 64 ?
[17] MADRL ? 0.05, 0.01 0.99 500 256 10000

Table 3.4: DRL Hyperparameters

Similarly to in Figure 3.1, we find published articles using DRL methods with Figure 3.2.
From the query used on the 10th of February 2023, again, we see that this specific area
of research has only been active since 2020, with only ten published articles returned.
Considering the significant development in RL and DRL in general in the last few years,
it is reasonable to think that more will be published in the next years.

Gohar [3] uses a DRL method to optimize the network broker’s cost but also considers
the isolation aspect of NFV. The performance of the DRL solution is found to be 12%
better than other algorithms, including monte-carlo tree search, which is a classic RL
method. The paper uses a four-layer neural network as the learning agent to create the
policy network, similar to what we will present in this thesis. Gohar [3] uses a policy
gradient ascent-based algorithm using the common softmax method.

https://app.dimensions.ai
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He et al. [11] uses an Attention mechanism-based deep deterministic policy gradient
(ADDP) method to train their agent. Their paper seeks to solve the VNF-FGE like ours
and notably considers cost and QoS. He et al. [11] takes care not only to consider the
cost of the "NFV-operator", or as we have called it the SB, but also the network revenue
and cost. Interestingly the paper uses an attention model in the learning process to focus
on the learning to more important nodes to increase the learning efficiency. A drawback
of [11] is that the paper only considers the processing capacity of the nodes and delay
and link capacity and delay, not the storage capacity or isolation level.

He et al. [11] find that they achieve the best performance with a learning rate of 0.01.
Further, they compare their A-DDPG algorithm to DDPG, NFVdeep [26], and Q-learning
methods. They find that the A-DDPG method returns the greatest reward, even more
than DDPG, while also taking less time to compute.

He et al. [11] also find that the performance of the A-DDPG fluctuates less than the
others during the learning process but that they have to ensure the right batch size, which
is the number of samples processed before the weights are updated. This is especially
important as small batch sizes tend to increase the learning rate. However, too small a
size will cause the loss function to fluctuate greatly as the gradient estimate is inaccurate.
But again, a too-large batch size becomes too memory intensive and slow and worse,
leading to reaching a local optimum, not the global.

Very recently Wang et al. [17] showed how a multi-agent DRL could be used to solve the
VNF-FGE. Wang et al. [17] claim to be the first to use a DRL solving the VNF-FGE
while also considering a dynamic topology, that is, a network topology where new nodes
and links might become a part of the network while old ones might stop working and
disappear. This is important as the solution will allow the same trained network to be
applied to multiple different topologies without incurring the cost of training anew. As
the name suggests, the method is based on training multiple agents, but the training is
conducted using the DDPG method. Wang et al. [17] does model memory capacity in
addition to processing and link capacity.
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Problem Model

4.1 Description

The SRs that are simulated are received in an online manner and are thus not known to
the agent beforehand. The ingress and egress nodes, as well as DC and MEC nodes, are
modeled, giving a more realistic simulation as the origin and destination of the VNF-FGs
are restricted to nodes close to the user.

Due to our novel approach to the isolation levels in NFV, we will give comprehensive
diagrams, definitions, explanations, and considerations of isolation later. For the simu-
lation, the isolation will be described as a constraint in the SR and a property of the
nodes in the SN.

4.1.1 Actors

There are several important parts to the simulation model; firstly, there are two actors:
the SB and the other the InP. The InP is responsible for managing the SN and its resources
and allocating SRs that it receives from the SB. Conversely, the SB is responsible for
buying allocations from the InP by sending SRs.

37
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SB

The SB interprets the needs of SCVI tenants and creates SRs. Then the SB pays for the
resources defined in the SRs, which are sent to the InP if accepted.

The SR (Figure 2.7) requirements define the VNF-FG, which contains the ingress and
egress and the required resources needed to provide the service. It is up to the SB to
interpret the request, allocate the resources needed, and do so efficiently so that more
SRs can be allocated. If the SB allocates an SR, we say that the SR is accepted.

InP

In our simulation model, the InP owns the DC, MEC, and links that make up the SN and
allocates resources as efficiently as possible according to the received SRs. To achieve this
goal, the InP needs to manage the SN’s resources, including processing power, memory,
and storage capacity, and ensure that they are allocated in a way that meets the SRs
requirements while considering the isolation levels. The InP sells allocations to the SB
and pays for the OpEx.

SB sends SRs to the InP and pays 
for the resources that are allocated

SB
SRs

SB interprets need of 
SCVIs

The ownership of the resulting 
network slice is returned to the SB

InP

SCVI 1

SCVI 2

SCVI 3

InP gains revenue 
from the SRs it 
accepts, and pays 
the OpEx related to 
the allocation

Figure 4.1: Relationship between the SCVI, SB, and InP

Due to considering the VNF-FGE, SRs are only accepted when the InP completes both
the allocation of resources and the embedding of links in the SN. The embedding of the
links is based on the VNF-FG given in the SR and is the corresponding path that connects
the allocated resources in the SN such that the network slice satisfies the requirements
of the SR.

The Waxman network topology is chosen for the SN as it provides a natural structure
seen in many types of networks, which is more realistic than a random topology. The SN
consists of DCs and MECs, which are connected with links.



Chapter 4 Problem Model 39

4.1.2 Objectives

The InP is tasked with allocating the received SRs. The InP’s allocation objectives are:

• Maximizing long-term Profit of the InP

– Maximizing long term Revenue − Generated from accepting SRs.

∗ Maximizing acceptance rate − By accepting as many SRs as possible.

– Minimizing long term Cost − Incurred from allocating resources.

The revenue gained by the InP is defined by the number of resources requested in the
SRs that the InP manages to accept. The cost, however, is measured by the resources
allocated by the InP consistent with OpEx. Thus we are, in effect, maximizing the profit
of the InP.
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4.1.3 Assumptions

In our model, we make the following assumptions:

• Online − SRs are received at any time.

– Lifetime − SRs have any lifetime. The lifetime of an SR is defined by its
arrival and departure time. Therefore the InP will not only allocate but also
deallocate the resources.

• Acceptance − SRs are accepted or rejected. The acceptance is based on whether or
not the InP manages to allocate the SB.

Ingress and Egress

The ingress and egress must be allocated on a MEC in the SN. This constraint complicates
the InPs’ task as it must now also ensure that the MEC is available to facilitate further
allocation in the future.

In addition, the allocation becomes dependent on the location of the MEC as they define
the available ingress and egress points of the service, which can force the use of more
links if the only possibility left is to allocate ingress and egress on different MECs.
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Consolidation

A one-to-one relationship between the VNFs and DC or MEC to restrict the influence
of one slice to another, or to reduce the impact of a single VNF failure that will fail
multiple VNFs because of failing the underlying DC or MEC. However, when using the
proposed isolation levels we can guarantee the isolation of all slices even if some VNFs are
consolidated on the same DC or MEC. Consolidation means that VNFs can be allocated
on the same DC or MEC. Due to the isolation being enabled by virtualization technology,
we can also guarantee that a single VNF will not fail others and can be quickly reinstated.

Domain Advantages Disadvantages

Resource
Utilization

− Efficient use of SN resources
reduces CapEx and OpEx.
− Less links and traffic required
reduces OpEx.
− Greater flexibility.

− Increased complexity of allo-
cation.

Performance − Lower latency due to closer
proximity of VNFs.

− Greater risk of performance
degradation due to resource
contention.

Management − Simplified deployment and
operation.

− Increased complexity in trou-
bleshooting and diagnosis due
to shared resources.

Reliability − Virtualization enables faster
restoration of VNFs in case of
VNF failure

− Failure of a single DC MEC
fails multiple VNFs.

Table 4.1: Advantages and disadvantages of consolidation.

4.1.4 Parameters

In our model, we consider the following parameters:

• CPU − Processing power in units

• RAM − Random access memory in GiB

• Storage − Storage in GiB

• Isolation Level − Level of isolation in units

• Bandwith − Bandwidth capacity in Gib/s
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4.1.5 Isolation

Traditionally security in network infrastructure was inherent due to using a single domain
and single trusted operator approach, but when considering slicing in modern networks,
multi-tenancy requires considering security and isolation in the design of the system [5].

Inter-slice-isolation ensures that tenants’ slices will be unaffected by other tenants’ slices.
Firstly slices will not be affected in regards to performance and reliability, such that the
failure of a slice will not spread to other slices or consume more resources than allocated,
and so that other slices do not experience reduced performance. Secondly, in regard to
security, the misoperation whether intentional or not, will not affect other slices.

To achieve inter-slice-isolation it is possible to reserve each DC or MEC to a single slice,
but this is quite an inefficient approach as this does not necessarily fully utilize the DC
or MEC. Moreover, such an approach makes placing less flexible which might lead to
suboptimal placements and routing which impact the performance of the slice and the
cost for the INP. Instead, we will in our definition consolidate VNFs from different slices
onto the same DC or MEC by adopting intra-slice-isolation such that each placed VNF
is isolated from all other VNFs on the same DC or MEC, regardless of the parent slice.

In our definition network slice traffic is isolated such that different network slices can only
receive traffic designated to the network slice. This type of isolation can be implemented
by segmenting the network logically using existing technologies such as subnetting, access
control lists (ACLs), virtual local area networks (VLANs), or the extended VLAN version
called VXLANS. We see this network segmentation in Figure 4.3 and Figure 4.4 in the
stippled box denoted "NS".

Secondly, we consolidate (section 4.1.3) VNFs on the same DC or MEC with the
advantages that brings. However, this leads to the problem of isolation between VNFs
as VNFs are no longer inherently physically isolated. Our isolation levels solve this
problem by using virtualization to provide isolation between the VNFs and enable
intra-slice-isolation.

We define three isolation levels where the third level is the most isolated. In our definition,
we place containerization at the lowest level of isolation, because containerization provides
sufficient isolation for most applications. Here each VNF is deployed in a container
alongside its required services. Importantly this level shares a host operating system (OS)
on top of the DC or MEC, which means that VNFs placed with this level of isolation on
the same DC or MEC will share the same kernel but will have separate services.

The definition leaves out a potential level zero where there would be no isolation and
where VNFs would be placed together on "bare metal" without any virtualization layer.
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However, such a level would indeed not be isolated and therefore feature the disadvantages
of not isolating such as only OS-level security and isolation and increased difficulty of
management, deployment, and redeployment. Moreover, we see that the general cloud
infrastructure and NFV are moving towards using virtualization not only for isolation
but for ease of management.

We place the Dedicated VM level over Containerization as it is more isolated. This is
because at this level each VNF placed on the same DC or MEC is deployed within a
separate virtual machine (VM) so that each VNF operates on its own kernel with its
own services, whereas the "Containerization" level would share the kernel between VNFs.
The isolation of containers can be improved by using isolation methods or with intrusion
detection systems and kernel security hardening, but the isolation remains inherently
weaker than for VMs [19].

Finally, we define the third and most isolated level as dedicating a DC or MEC as this
level features even stronger hardware-level isolation than the second level. Here each
VNF reserves a DC or MEC and is physically separated from other VNFs.

In Figure 4.2 we see the isolation level definitions and in Figure 4.3 we see the different
levels visualized at the bottom together with the axis of the level of isolation. On the
top of Figure 4.3 we see the difference between levels 1 and 2 visually.

In Figure 4.4 the isolation of each slice and VNF is visually represented as the purple
stippled jagged lines. In this diagram, we also visualize the consolidation of different
VNFs on the same node but note that the consolidated VNFs are always of the same
level and that for the third level, each DC and MEC is reserved for a single VNF.

Aspect Containerization VMs

Isolation Method OS-level virtualization Hardware-level virtualization
(Using namespaces, cgroups, (Using hypervisor, contextualization

host based intrusion detection and filters)
and kernel security hardning)

Resource Sharing Shared OS kernel Separate OS instances

Performance Lightweight and efficient Overhead due to hardware virtualization

Startup Time Fast startup Slow startup

Footprint Smaller footprint Larger footprint

Isolation Less isolation due to shared OS kernel More isolation no sharing and hypervisor
Vulnerabilities can spread Vulnerabilities are contained to VM

Table 4.2: Containerization Vs. VMs
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Level Type Description Implementation

3 Dedicated
DC/MEC

VNFs have a one-to-one relationship
with the underlying DC or MEC and
are physically separated from other
VNFs, this is considered the most iso-
lated level.

Achieved by reserving dedicated DC or
MEC to VNF.

2 Dedicated
VM

Each VNF runs in a dedicated virtual
machine (VM), with its own separate
virtualized operating system, services,
and kernel. No part of the VM is shared
between two VNFs.

Achieved by deploying each VNF in its
own VM using virtualization technol-
ogy such as VMWare, KVM, or Hyper-
V. Each VM is assigned dedicated re-
sources such as CPU, memory, and stor-
age.

1 Containerization Each VNF runs in a dedicated container
with its own services, but the VNFs
share a common virtualized operating
system and kernel. [20].

Achieved by deploying each VNF in its
own container using a containerization
technology such as Docker or Kuber-
netes. Each container is assigned dedi-
cated resources such as CPU, memory,
and storage.

Figure 4.2: Levels of isolation
Level 3 is the most isolated

VM
1

VM
2

VM
3

DC/MEC

C1 C2 C3

Level of 
Isolation  1 2 3

OS

Kernel

VNF2
Services

OS

Kernel

VNF3
Services

OS

Kernel

VNF1
Services

Legend

NFV – Network Function Virtualization

NFVI – NFV Infrastructure
DC – Data center
MEC – Multi-access Edge Computing
OS – Operating System

NF – Network Function
VNF – Virtual Network Function
EM – Element Management system

C – Container
VM – Virtual Machine

SCVI – Smart City Vertical Industry
SB – Slice Broker
NS – Network Segment

OSS – Operations Support System
BSS – Business Support System
MANO – MANagement and Orchestration
NFVO – NFV Orchestrator
VNFM – VNF Manager
VIM – Virtual Infrastructure Management

VNF2
Services

VNF1
Services

VNF3
Services

Kernel

OS

EM1

VNF1

EM2

VNF2

EM3

VNF3

NS1 NS2

EM1

VNF1

EM2

VNF2

EM3

VNF3

NS1 NS2

VM
1

VM
2

VM
3

EM1

VNF1

EM2

VNF2

EM3

VNF3

C1 C2 C3

EM1

VNF1

EM2

VNF2

EM3

VNF3

NFVI

VM
1

VM
2

VM
3

EM1

VNF1

EM2

VNF2

EM3

VNF3

NS1 NS2

DC/MECDC/MEC DC/MEC

VIM

VNFM

NFVO

OSS/BSS

SRs

SB

SCVI

DC/MEC
NFVI NFVI

NFV MANO 
must be 
present

NFV MANO

DC/MEC

Os-Ma

Figure 4.3: Levels of Isolation: Anatomy



Chapter 4 Problem Model 45

VM
6

VM
4

VIM

VNFM

NFVO

VNF
13

C1 C2 C3

EM1

VNF
1

EM2

VNF
2

EM3

VNF
3

NS1 NS2NFV

C6 C7

EM6

VNF
6

EM7

VNF
7

NS1 NS2

C4 C5

EM4

VNF
4

EM5

VNF
5

NS1 NS2

VM
1

VM
2

VM
3

EM8

VNF
8

EM9

VNF
9

EM10

VNF
10

NS2 NS1

EM11

VNF
11

EM13

VNF
13

NS3

NS3

S1

VNF
7

VNF
6

S2

NFV MANO

NF-Vi

Ve-Vnfm-vnf
Ve-Vnfm-em

OSS/BSS

InP1

InP2

VNF
4

VNF
9

VNF
3

S3 IN3 EG3

IN2 EG2

IN1 EG1

VNF
5

VM
7

EM14

VNF
14

NS3VM
5

EM12

VNF
12

NS3

VNF
12

SN MEC

DC

DC

DC

MEC

MEC MEC

DC

Legend

DC – Data center
MEC – Multi-access Edge Computing
OS – Operating System

NF – Network Function
VNF – Virtual NF
IN – Ingress
EG – Egress 
EM – Element Management system

C – Container
VM – Virtual Machine

NS – Network Segment
S – network Slice

SCVI – Smart City Vertical Industry
SB – Slice Broker
OSS – Operations Support System
BSS – Business Support System

NFV – NF Virtualization
MANO – MANagement and Orchestration
NFVO – NFV Orchestrator
VNFM – VNF Manager
VIM – Virtual Infrastructure Manager
NFVI – NFV Infrastructure

Os-Ma

DC

SRs

SB

SCVI

NFVI

Symbols

Isolation

Isolation

– Logical Link

– Embedded link 

– Isolation

Figure 4.4: Isolation in NFV



46 Chapter 4 Problem Model

4.2 Definition

4.2.1 SN

The parameters are given in Table 4.4 and Table 4.5.

Parameter Unit Distribution Type Data Type

CPU Units Uniform Resource Float
RAM GiB Uniform Resource Float
STO GiB Uniform Resource Float
ISL Level Uniform Constraint Int

Table 4.4: DC/MEC parameter value ranges.

Parameter Unit Distribution Type Data Type

BW Mib/s Uniform Resource Float

Table 4.5: Link parameter value ranges.

Symbol Definition

NS Set of SN nodes

ns ∈ NS Individual SN node

MS ⊂ NS Subset of MEC nodes

ms ∈ MS Individual MEC node

P S
N Set of ns configurations

P AR(ns) Parameter value for a ns,

i.e. CP U(ns) gives the CPU value

LS Set of logical links

ls ∈ LS Individual SN link

P S
L Set of ls configurations

P AR(ls) Parameter value for a ls,

i.e. BW (ns) gives the bandwidth value

GS = {NS , LS , P S
N , P S

L } Undirected graph representation of SN

Table 4.6: Symbol Definitions for the SN
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The SN is represented as an undirected graph (Equation 4.1) of SN nodes and logical
links.

GS = {NS , LS , P S
N , P S

L } (4.1)

The set of SN nodes is defined as NS and individual nodes are defined as ns.

ns ∈ NS (4.2)

The resources available for every ns are the processing power (CPU in units), RAM
available (RAM in GiB), and the level of isolation provided (ISL in units [1-3]) and
whether or not the node is a MEC if not it is DC.

For the set of links LS the bandwidth capacity (BW in Mib/s) is available

ls ∈ LS (4.3)

P S
N is denoted as the set of ns configurations. The configuration value of a specific

parameter can be retrieved with PAR(ns) for the node or PAR(ls) for links.
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4.2.2 SR

The parameters are given in Table 4.7 and Table 4.13.

Parameter Unit Distribution Type Data Type

CPU Units Uniform Resource Float
RAM GiB Uniform Resource Float
STO GiB Uniform Resource Float
ISL Level Uniform Constraint Int
IOE Boolean N/A Constraint Int

Table 4.7: VNF Parameters

Parameter Unit Distribution Type Data Type

BW Mb/s Uniform Resource Float

Table 4.8: Logical link parameters

Symbol Definition

DV Directed graph representation of the VNF-FG

nv ∈ NV Individual VNF

P V
N Set of nv configurations

P AR(nv) Parameter value for a nv ,

i.e. CP U(ns) gives the CPU value

LV Set of logical links

lv ∈ LS Individual SN link

P V
L Set of lV configurations

P AR(lv) Parameter value for a lv ,

i.e. BW (nv) gives the bandwidth value

DV = {NV , LV , P V
N , P V

L } Directed graph representation of SR

Table 4.9: Symbol Definitions for the SR
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The VNF-FG is represented as a directed graph (Equation 4.4) of VNFs and logical links.

DV = {NV , LV , P V
N , P V

L } (4.4)

Due to the direction of the graph, the ordering of the VNFs comes naturally. The set of
VNFs is defined as NV and individual VNFs are defined as nv(Equation 4.5).

nv ∈ NV (4.5)

The resources demanded by every nv are the processing power (CPU in units), RAM
(RAM in GiB), and the level of isolation provided (ISL in units [1-3]) and whether or
not the VNF is an ingress or egress (IOE, 1 or 0).

For every link lv the demanded bandwidth capacity (BW in Mib/s.)

Lv ∈ LV (4.6)

P V
N is denoted as the set of nv configurations and P V

L as the set of lv configurations. The
configuration value of a specific parameter can be retrieved with PAR(ns) for the node
or PAR(ls) for links.
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4.3 Solution

It is important that the DRL model learns and is optimized toward lowering cost and
increasing the revenue for the InP. This will be done by rewarding the model for allocating
as many SRs as possible while using as few resources of the SN as possible.

The VNF-FGE solution can be understood as a mapping process that maps the VNFs of
the VNF-FG of an SR to appropriate SN nodes.

For the allocation of resources in the physical network, SRs that meet certain conditions
will be accepted. Specifically, the resources of the ns must have greater or equal resources
compared to the requested resources in the nv. These resources include CPU, RAM,
storage (STO), and isolation level (ISL). Additionally, the constraints of the physical
network must be satisfied.

Similarly, for logical links, the same conditions apply. The bandwidth in the SN must be
of greater or equal capacity to the requested bandwidth in the VNF-FG.

Once an SR is accepted, the resource parameters in the SN will be updated to reflect the
utilization of resources. However, there is an exception when the node has an isolation
level of 3. In this case, the resources of the ns will be fully reserved and set to zero.

Finally, when the lifetime of a service request is over, the resources of the SN will be
restored to their previous values.
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4.3.1 Parameter Specification

Parameter Distribution Data Type Minimum Maximum

CPU Uniform Float 50 100
RAM Uniform Float 50 100
STO Uniform Float 50 100
ISL Uniform Int 1 3

Table 4.10: DC/MEC parameter value ranges.

Parameter Distribution Data Type Minimum Maximum

BW Uniform Float 50 100

Table 4.11: Link parameter value ranges.

Parameter Distribution Data Type Minimum Maximum

CPU Uniform Float 1 50
RAM Uniform Float 1 50
STO Uniform Float 1 50
ISL Uniform Int 1 3
IOE N/A Bool 0 1

Table 4.12: SR parameter value ranges.

Parameter Distribution Data Type Minimum Maximum

BW Uniform Float 1 50

Table 4.13: Logical Link parameter value ranges.
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4.3.2 Evaluation

Acceptance Rate

The acceptance rate (AR) is the ratio of accepted to received SRs. This ratio is an
important measure of the performance of the InP, as the revenue comes directly from
accepting SRs. Therefore, the revenue is maximized when the AR approaches one. The
AR is the ratio of accepted to arrived SRs and is calculated as follows:

AR = lim
T →∞

∑T
t=0 Accepted(DV , t)∑T
t=0 Arrived(DV , t)

(4.7)

Long-Term Average Revenue

Long-term average revenue (LTAR) is the limit of the total revenue from allocating SRs
divided by the time as the time approaches infinity. Thus it is a measure of how much
revenue the InP can generate from allocating SRs over a long period. LTAR is written
as:

LTAR = lim
T →∞

1
T

Revenue(DV , t) (4.8)

Long-Term Average Cost

Similarly to LTAR Long-Term Average Cost (LTAC) is the limit of the total cost of
leasing resources from the InP.

LTAC = lim
T →∞

1
T

Cost(DV , t) (4.9)

LTRCR

The LTRCR considers both LTAR and LTAC and so it provides a full picture of the
feasibility of the InP. LTRCR considers the ratio between LTAR and LTAC and is written
as follows:

LTRCR = lim
T →∞

∑T
t=0 Revenue(DV , t)∑T

t=0 Cost(DV , t)
(4.10)

Objective

The objective of this thesis will be to maximize AR and LTAR and minimize LTAC
jointly.
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4.3.3 SN Generation

The SN Generator generates a virtual SN following a JSON configuration (Table 4.14)
using the Networkx python library. The seed is chosen to generate a specific SN every
time the configuration is used, if set to −1 a new seed is chosen each time.

The size of the SN can be any positive integer; however, scaling the size up reduces
the performance of running simulations and training greatly as the increased amount of
nodes and edges has to be loaded in memory and processed. A larger SN will be easier
to embed nodes and edges on but will lead to an increased state space for the policy and
value function networks of the DRL model, which require more computation and will
lead to slower training.

On the other hand, decreasing the size of the SN makes it more likely to not be a fully
connected graph due to the fact that edges between nodes are not guaranteed but instead
given by the alpha and beta parameters. The alpha parameter determines the impact
of the distance between two nodes on the connection likelihood, and a smaller value
decreases the impact so that it is more likely for nodes farther away to connect. A higher
Beta parameter gives a higher randomness of the graph generation. Because of the
likelihood that the SN will not be connected for smaller SNs, we guarantee a connected
graph by retrying the generation until it qualifies as a connected graph, but this only
applies if the seed is set to −1.

The MEC parameter specifies the number of nodes that will be randomly chosen as
MECs and must therefore be less or equal to the total number of SN nodes; the rest of
the nodes will be DCs.

Parameter Data Type Minimum Maximum

Seed Integer -1 Int Max
Nodes Integer 1 Int Max
Alpha Float 0 1
Beta Float 0 1
MEC Integer 0 |NS |

Table 4.14: SN Generation Parameters

Figure 4.5 shows an example SN with only 20 nodes for display purposes. Here the nodes
are colored based on the isolation level, and the parameters of the node are displayed at
the bottom right of each node.
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Figure 4.5: Example of small SN
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Algorithm 4.1 SubstrateGenerator
1:
2: function GenerateSubstrateNetwork(generationAttempts = 0)
3: generationAttempts← generationAttempts + 1
4: SN ← None
5: |NS | ← configuration[′nodes′]
6: SN ← generateNetwork(configuration, |NS |)
7:
8: if not networkx.is_connected(SN ) then
9: return generateSubstrateNetwork(generationAttempts)

10: end if
11:
12: setSNParameters(SN , P S

N )
13: if configuration[’includeIngressEgress’] then
14: setSNEdgeNodes(SN )
15: end if
16:
17: return SN

18:
19: end function
20:
21:
22: function generateNetwork(parameters, nodecount)
23: GLOBAL_CURRENT_SEED← CURRENT_SEED
24: networkType← parameters[′topology_type′].upper()
25:
26: Match networkType
27: Case’WAXMAN’
28: return networkx.waxman_graph(n = nodecount, β = parameters[’beta’], α =

parameters[′alpha′], seed = getAndUpdateSeed())
29:
30: Case’ERDOS-RENYI’
31: return networkx.erdos_renyi_graph(n = nodecount, p = parameters[′p′], seed =

getAndUpdateSeed(), directed = parameters[′directed′])
32:
33: end function
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4.3.4 SR Generation

A virtual SR is generated following a JSON configuration (Table 4.15) using the Networkx
python library. As the training and simulation will need a large number of unique SRs,
compared to only needing one SN, the SR generator has been built to be able to generate
large amounts of SRs efficiently.

Parameter Data Type Minimum Maximum

Seed Integer -1 Int Max
Number of SRs Integer 1 Int Max

Nodes Integer 1 Int Max
Directed Boolean 0 1

Branching Probability Float 0 1

Table 4.15: SR Generation Parameters

The seed is derived from the SN generation seed and as such choosing a seed value of −1
will give randomized sets of SRs every time while any other seed will generate the same
set every time.

The SR generator outputs sets of randomized SRs and the generation of any non-zero
positive integer amount is possible.

If the "directed" value is set to 1 the SR will be considered as a linear directed acyclic
graph (LDAG) where ordering is considered.

The "Branching Probability" parameter defines the likelihood of branching of the VNF-FG
and in our case, we only consider one branch, but in the case of parallelization, a greater
probability can be chosen to allow branching.
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Algorithm 4.2 SR Generator
1:
2: function GenerateServiceRequest
3: getAndUpdateSeed()
4:
5: chainLength← np.floor(getParameterValue(configuration["request_attributes"]))
6: splitProb← configuration["branch_probability"]
7:
8: DAG← generateBranchingDAG(chainLength, splitProb)
9: setVirtualParameters(DAG, configuration)

10:
11: DV ← ServiceRequest(DAG, V NID)
12: V NID ← V NID + 1
13: return DV

14:
15: end function
16:
17:
18: function GenerateRequests
19: requests← {}
20: count← configuration["number_of_instances"]
21:
22: for in range(count)
23: DV ← generateServiceRequest()
24: requests[ID(DV )]← DV

25:
26: arrivals, departures, requests← generateLifeTimes(requests, startTime)
27: return arrivals, departures, requests
28:
29: end function
30:
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4.4 DRL Training

4.4.1 Environment
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Figure 4.6: Overview of DRL environment

We train the agent in a Gym 0.21.0 environment that interfaces with our simulator. The
weights of the agent’s policy and value network are updated using the PPO algorithm.
We provide the PPO algorithm with the necessary functionality to train by implementing
a custom environment.
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State Space

The input layer of the agent takes in a state from the environment and is what the agent
observes about the environment. The state space might be modeled as an MDP, but
when only partial information about the true state is observable by the agent we can
model the state using a partial observable MDP (POMDP). In our testing, we try both
a complete state space and a partial version.

When using a POMDP we only perceive information that is necessary for the completion
of its task as a larger than necessary state space will slow down the learning and operation
of the agent due to increasing the computations needed to update weights of the layers
of the policy network and value function network while learning and needed for the
operation of the agent when learning is completed.

Therefore we want to minimize the state space while providing the necessary information
to the agent in the case of the POMDP. The agent must know the resources and
constraints of VNFs and substrate nodes to be able to make a good judgment about
where to place VNFs, in addition, the edges of the SR and SN will complicate the solution
as the agent must perceive information about the edges or at least the proximity of the
nodes to be able to reduce the cost of the accepted SRs as the edges play a part in this
calculation.

• Edge Information - In this complete state space we provide the state of each node
in the SN including the current value of each resource, and the static constraint
values as well as IDs for all the nodes in the SN. In addition, we provide IDs of the
nodes from which the edge is between for all edges in the SN. Finally, the request
is fully represented with all the requirements and constraints of the VNFs as well
as an index that states the current VNF for placement. The size of the space is
given as:

|SPEdge| =

|NS | · (|ps
n|+ 1)

+

|LS | · 2

+

maxLength(NV ) · |pv
n|+ 1

(4.11)
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• Distance Information In this POMDP model we remove information that is
less important. We still provide the state of each node in the SN including the
current value of each resource, and the static constraint values but instead of
using IDs about nodes to provide information about edges, we give the normalized
shortest distance between the SN node where the previous VNF of the current
request was placed, and in the case of the first VNF of a request where there is no
previous placement the value will be set to zero. In addition, we only provide the
requirements of the current VNF to be placed. The size of the space is given as:

|SPDistance| =

|NS | · (|ps
n|+ 1)

+

|pv
n|

(4.12)

The agent will receive an up-to-date vector with the current state where all values are
normalized based on their respective maximum and minimum values. As previously seen
in the "Edge Information" compared to the "Distance Information" the state space is a
lot larger and therefore the algorithm for producing it is more complex.
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Algorithm 4.3 EdgeInformation
1: i← 0
2: vectorLength← |SPEdge|
3: environmentVector← np.zeros(shape=(vectorLength))
4: lastSNNodeID← |NS | − 1
5:

6: for ns ∈ NS do
7: environmentVector[i]← ID(ns)/lastSNNodeID)
8: i← i + 1
9: for parval ∈ PAR(ns) do

10: environmentVector[i]← normalizeParameterAccordingToMax(parval)
11: i← i + 1
12: end for
13: end for
14:

15: for ls ∈ LS do
16: environmentVector[i]← fromNodeID(ls)
17: i← i + 1
18: environmentVector[i]← toNodeID(ls)
19: i← i + 1
20: end for
21:

22: for nv ∈ NV do
23: for parval ∈ PAR(nv) do
24: environmentVector[i]← normalizeParameterAccordingToMax(parval)
25: i← i + 1
26: end for
27: end for
28: for lv ∈ LV do
29: environmentVector[i]← fromNodeID(lv)
30: i← i + 1
31: environmentVector[i]← toNodeID(lv)
32: i← i + 1
33: end for
34: currentNormalizedNodeID← self.currentRequestNodeID/lastRequestID
35: environmentVector[i]← currentNormalizedNodeID
36: return environmentVector
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Algorithm 4.4 DistanceInformation
1: i← 0
2: vectorLength← |SPDistance|
3: environmentVector← np.zeros(shape=(vectorLength))
4: lastSNNodeID← |NS | − 1
5:

6: distances← getNormalizedPathLengthsTo(prevouslyPlacedOnSNNodeID)
7: for ns ∈ NS do
8: environmentVector[i]← ID(ns)/lastSNNodeID)
9: i← i + 1

10: for parval ∈ PAR(ns) do
11: environmentVector[i]← normalizeParameterAccordingToMax(parval)
12: i← i + 1
13: environmentVector[i]← distances[ns]
14: i← i + 1
15: end for
16: end for
17:

18: for parval ∈ PAR(currentRequestNode) do
19: environmentVector[i]← normalizeParameterAccordingToMax(parval)
20: i← i + 1
21: end for
22: return environmentVector
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Step Function

In implementing our OpenAi Gym interface we need to provide the state space, but also
the custom step and reset functions such that the agent and PPO can interface with
our resource allocation simulator. We define a step as the placement of one node from
the currently arrived request. The agent will receive a state space vector and produce
an action that represents where the agent chooses to place the current VNF, and this
action is an integer within the action space which is the size of a number of SN nodes
(0 <= a < |NS |, a ∈ N0).

The step function will take the action that the agent produced and return a new state
to the agent along with a reward. The step function also calls a function to increment
the internal simulation time so that when there are no new arrivals of SRs time will be
skipped. The step function calls different internal simulation functions such that the
simulation proceeds and updates information used for statistics and logging.
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Algorithm 4.5 StepFunction(action)
1:

2: reward← 0
3: episodeFinished← false

4: isPlacementSuccess← place(action)
5:

6: if isPlacementSuccess then
7: reward← reward + getPlacementReward()
8: if isNodesPlaced() then
9: isEdgesEmbedded← embedEdges(action)

10:

11: if isEdgesEmbedded then
12: reward← reward + getAcceptanceReward()
13: episodeFinished← true

14: else
15: edgeFailure()
16: episodeFinished← true

17: end if
18:

19: else
20: episodeFinished← true

21: nodeFailure()
22: end if
23: end if
24:

25: updateSimulation()
26: updateStatistics()
27: updateLogging()
28: return getNewState(), reward, episodeFinished
29:
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Reset Function

The reset function’s task is to ready the environment for a new episode. In our case,
we have found that in regards to learning the best is to only do a full release of all
resources after all the arrivals of the full scenario have been processed which is in our
case 1000. Therefore we can see in Algorithm 4.6 that the reset is deferred until all SRs
are processed.

We also find that whether these 1000 SRs are generated randomly every time or a single
set of 1000 SRs are re-used makes little to no difference. Therefore we will reuse the
same set of 1000 SRs for training and generate a different set of 1000 SRs when the agent
is evaluated after the completion of the training.

Algorithm 4.6 ResetFunction(action)
1:

2: reward← 0
3: episodeFinished← false

4: isPlacementSuccess← place(action)
5:

6: if isAllRequestsDone() then
7: releaseEmbeddings()
8: if configuration[reuseRequests] then
9: arrivals← initialArrivalsCopy

10: departures← initialDeparturesCopy
11: else
12: (arrivals, departures, requests)← GenerateRequests()
13: end if
14: end if
15:

16: updateSimulation()
17: return getNewState()
18:
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Rewards

The PPO algorithm should learn our agent to optimize our objective, including minimizing
the LTAC and maximizing the LTAR and AR. To do so, we must create a reward system
that encapsulates the objective so that the agent will be optimized toward a policy that
best fits the objective.

We determine that there are mainly three ways the reward can be implemented. Firstly
we can reward the agent for every accepted SR; we call this the acceptance reward.
Secondly, it is also possible to reward the agent per VNF it places; we call this the
placement reward. Thirdly a combination of the first two methods can be used.

It is reasonable to assume that giving a placement reward for choosing an appropriate SN
node will optimize the maximum VNFs placed and the acceptance rate. This comes from
the fact that the acceptance of an SR relies entirely on the placement of all its VNFs,
and as such, increasing the likelihood of a successful placement will indeed increase the
likelihood of the acceptance of a request. However, it is also necessary to optimize the
placement regarding the link cost and, therefore, the proximity and consolidation of
placed VNFs in an SR to reduce the required links. Therefore we will adopt a combined
approach to the reward to provide the full optimization information needed easily.

The acceptance reward can be modeled in many ways, and the most obvious one is to
model it as close to the objective as possible. The AR is inherent to getting an acceptance
reward, so we only need to represent the two other objective metrics. In this regard,
we will try using the LTRCR as an acceptance reward. Still, it’s worth noting that
the perceived importance of policy changes will diminish over time as the LTRCR is a
running average that eventually spans the arrival of 1000 SRs.

AccRewLTRCR = LTRCR

We believe that the LTRCR has a disadvantage in learning because it is a running average.
This means that the efficiency of an accepted SR in terms of LTRCR matters less and
less as the episode progresses, which comes in addition to the reward being discounted by
the PPO. Therefore we also test a per SR revenue-to-cost ratio as an acceptance reward:

AccRewRCR = Revenue(DV )
Cost(DV )

We also try simply the revenue of the SR minus the cost of allocation:

AccRewRMC = Revenue(DV )− Cost(DV )
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Another more complicated variant of the AccRewRMC which rewards the revenue minus
costs of extra embedded edges in comparison to the SR links and adds the LTAR:

AccRewRMEC = Revenue(DV )− (Cost(LV )− Cost(LS
V )) + LTAR

In addition, we will try a simpler form of acceptance reward that is less similar to the
objective to test whether simplifying the reward will also make it easier to learn or not
and the performance of a simpler reward. Therefore we call this acceptance reward
a simple reward. The simple reward will convey only the most basic and important
information to the PPO algorithm, firstly the number of edges embedded in comparison
to the edges present in the SR will be considered to convey to what degree the acceptance
of the SR has optimized for the least amount of links used in the SN. Moreover, the
difficulty of achieving this optimization will be considered by rewarding the length of the
SR. The simple reward formula is given as follows:

AccRewSimple = |NV |+ |LV | − |LS
V |

where:

|NV | : Number of nodes in the currently accepted SR

|LV | : Number of logical links in the currently accepted SR

|LS
V | : Number of embedded links in the SN

that corresponds to the currently accepted SR

Finally, we try another simple variant, dividing the number of SR links by the number
of embedded links. In this reward function, we get a reward based on the difficulty of
placement, which comes from the number of SR links, and then we scale this number
by how efficiently we managed to place the VNFs, which comes from the number of
embedded links:

AccRewSRLtoSNL = |L
V |
|LS

V |

where:

|LV | : Number of logical links in the currently accepted SR

|LS
V | : Number of embedded links in the SN

that corresponds to the currently accepted SR
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Evaluation

In this chapter, we compare our results to our implementation of GRC proposed by Gong
et al. [21]. All the objective function metrics will be used for evaluation. We will show
the PPO learning and evaluation process in Appendix A, and show the results from our
trained model compared to the GRC in section 5.2.

5.1 Setup

5.1.1 GRC

We change a part of the GRC algorithm to support the additional resources available in
our thesis to make a fair comparison (algorithm 5.1). Otherwise, the algorithm stays the
same.

Algorithm 5.1 GetResources
1: resources← {None}|NS |

2: resourceSum← 0
3: i← 0
4: for ns in NS do
5: availableResources← CPU(ns) + RAM(ns) + STO(ns)
6: resources[i]← availableResources
7: resourceSum← resourceSum + availableResources
8: i← i + 1
9: end for

10: return resources
resourceSum

69
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5.1.2 PPO

We use the version of PPO called PPO-clip, where the change in policy parameters
is clipped to improve learning stability. PPO-clip updates the policy parameter θ to
maximize the clipped surrogate objective function LCLIP (θ). Similarly to Equation 2.13,
the update process Equation 5.1 iterates until it converges.

θk+1 = θk + α∇θLCLIP (θk) (5.1)

Here, the learning rate is also α, and ∇θLCLIP (θk) is the gradient of the clipped surrogate
objective function with respect to the policy parameter at iteration k.

LCLIP (θ) = Et

[
min

(
rt(θ)Ât, clip

(
rt(θ), 1− ϵ, 1 + ϵ

)
Ât

)]
(5.2)

Here, θ is the policy parameter, Ât is the estimated advantage function at time t, and
rt(θ) is the probability ratio of the new policy to the old policy at time t given the current
state and action, which is expressed as:

rt(θ) = πθ(at|st)
πθold

(at|st)
(5.3)
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5.1.3 Model Simulation

The simulation of the model differs from the training process regarding how actions from
the model are used. In the training process, actions are picked non-deterministically
according to the PPO entropy parameter. When simulating, however, the best action
according to the model is always chosen first, and should this action not be possible,
the simulation will pick the next action until possible, or there are no more actions
(Algorithm 5.2). In addition, the seed is updated after the SN generation and before the
SR generation such that the SN is the same as when training, but SRs are unique to the
simulation.

Algorithm 5.2 Model Simulation
1:

2: incrementSeed(1000000)
3: generateRequests()
4: model← PPO.load
5: timesToEmbedd← []
6:

7: while simulationTime ̸= maximumTime do
8: action← model.predict(obs, deterministic = True)
9: obs_tensor← torch.tensor(np.array([obs]))

10: Probs← model.policy.get_distribution(obs_tensor).distribution.probs
11: sortedDistribution← torch.sort(probs)
12: indices← list(np.array(sortedDistribution.indices)[0])
13:

14: for SNNodeID in indices do
15: if sufficcientNodeResources(SNNodeID, RequestID, RequestNodeID) then
16: action← SNNodeID
17: break
18: end if
19: end for
20:

21: obs, done← SNEnv.step(action)
22: end while
23:
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5.1.4 SN

Parameter Value

Seed 123
Nodes 100
Alpha 0.5
Beta 0.5
MEC 30

Table 5.1: SN

We use the same SN with seed 123 for DRL training and evaluation. We choose an SN
size of 100 as this is a reasonable number of nodes that can still be computed and trained
on and chosen by previous papers Table 3.3.

We choose 30% of the SN as MECs as this number will allow us to test the impact of
constraining the ingress and egress VNFs to a smaller percentage of the SN. The nodes
of the SN are given parameters according to Table 4.10.

5.1.5 SRs

Parameter Training Evaluation

Seed Derived SN Generator Seed Derived SN Generator Seed
Number of SRs 1000 1000

Nodes Uniform(4-8) Uniform(4-8)
Average Lifetime 250 250, 500, 1000, 2000, 4000
Arrival Rate (λ) 0.04 0.04

Directed 1 1
Branching Probability 0 0

Table 5.2: SRs

Each SR generated will consist of 4 to 8 VNFs, given by a uniform distribution. In our
case, the SR will be a linear directed acyclic graph (LDAG) as we consider the ordering
of VNFs, and thus we set the "directed" value to 1.

We generate a set of 1000 SRs for DRL training purposes and a different set of 1000 SRs
for evaluation results to ensure that the DRL model is not unfairly optimized towards
the evaluation SR set.

The lifetime of each SR is given randomly by the Poisson distribution. We set the
intensity such that the average is 250 for the training of our model, but we will evaluate
lifetimes of 250, 500, 1000, 2000, and 4000 time units. We set the arrival rate(λ) to 0.04
for four arrivals per 100 time units.
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5.1.6 DRL Training

We begin PPO training using the default hyperparameters. Then, we tune the parameters
through extensive testing and choose the best reward functions; the full training process
can be seen in Appendix A.

Exp. Learning
rate

Epochs Steps Batch
Size

Ent
Coef.

Clip
Range

γ Gae λ Clip
Range
VF

VF
Coef.

1 0.0003 10 2048 64 0.01 0.1 0.99 0.95 0.2 0.5
50 0.00005 10 8192 256 0.3 0.1 0.99 0.99 0.2 0.5

Table 5.3: Default PPO hyper parameters (1), Vs. tuned parameters (50)

Experiment Acceptance Reward Placement Reward

1 RMEC 0.001
50 SRLtoSNL 0.01

Table 5.4: Worst (1) Vs. best reward functions (50).

In Figure 5.1 and Figure 5.2 we show the training of the PPO agent according to the two
configurations listed in Table 5.3 and Table 5.4. The placement fail rate (PFR) is graphed
in the two figures, and this metric tells us how often the agent fails at placing nodes as
a percentage. Note, however, that this metric only counts the fails that happen when
the agent tries placing a VNF, so when a placement fails, if there are more VNFs left,
these cannot fail or be placed as the whole SR is discarded after the first fail. However,
it is still a good measure of the general performance of the agent, where of course, lower
values are better.

The same goes for the placement rate (PR), which also does not count VNFs that were
never considered for placement, and a positive gradient in this metric indicates a general
improvement.

The mean reward shows how the agent was rewarded, and when comparing different
reward functions, this graph will be of a different scale. However, a positive trend tells
us that the agent’s policy is improving regarding the acceptance and placement reward.
Still, importantly, the agent’s real performance relies on reward functions that describe
the objective.
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Legend

LTRCR AR

PRPFR

Mean Reward

Before Tuning

After Tuning

Figure 5.1: Training performance using default Vs. tuned hyperparameters and reward
functions. Here 5 million steps are shown.
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Legend

LTRCR AR

PRPFR

Mean Reward

Before Tuning

After Tuning

Figure 5.2: Training performance using default Vs. tuned hyperparameters and reward
functions. Here 70 million steps are shown. We stopped after 5M steps for the untuned

training since there were no significant developments.
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5.2 Results and Analysis

We present our simulation results comparing our PPO model to GRC with an average
SR lifetime of 250 (Figure 5.3), 500 (Figure 5.4), 1000 (Figure 5.5), 2000 (Figure 5.6),
and 4000 (Figure 5.7) time units. In addition we show the allocation time per SR when
a lifetime of 250 is selected in Figure 5.8.

5.2.1 AR

The AR shows expected results when comparing the lifetimes for higher lifetimes where
fewer resources are available over time; the AR is lower. From these graphs, we can see
that the AR for lifetimes 250 (Figure 5.3) and 500 (Figure 5.4) GRC performs better than
our model. However, our model performs better in higher lifetimes (1000 (Figure 5.5),
2000 (Figure 5.6), and 4000 (Figure 5.7)). The AR results indicate that our model
performs worse in regards to AR when there are many resources available compared to
GRC. Conversely, the results also indicate that when there is more resource contention,
our model manages to make better placements that, over time, allow for the acceptance
of more SRs.

5.2.2 LTAR

The LTAR of our model shows close to equal performance to GRC in 250 (Figure 5.3)
and 500 lifetime (Figure 5.4) and slightly better in the rest of the plots (1000 (Figure 5.5),
2000 (Figure 5.6), and 4000 (Figure 5.7)), which means that our model can extract as a
little more revenue than GRC in the long term.

5.2.3 LTAC

LTAC for our model shows an improvement over GRC in all the plots. However, the
difference is greatest for 250 lifetime (Figure 5.3) where there is a 19% improvement,
and this difference seems to dwindle as the lifetime is increased as there is only a 5%
improvement for 4000 lifetime.
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5.2.4 LTRCR

Our model’s LTRCR is substantially higher than GRC in all the lifetimes tested. For
250 lifetime (Figure 5.3), there is a 20% increase over GRC, while this difference also
decreases with the increase of the lifetime, and for 4000 lifetime we see an improvement
of 11%. The LTRCR results show that our model is up to 20% more efficient.
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Figure 5.3: Results with an average lifetime of 250
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Figure 5.4: Results with an average lifetime of 500

84,50 %

80,89 %

70

75

80

85

90

95

100

0 100 200 300 400 500 600 700 800 900 1000

%

SRs

AR

PPO

GRC

0,14

0,15

0,12

0,14

0,16

0,18

0,2

0,22

0,24

0 100 200 300 400 500 600 700 800 900 1000

SRs

LTAC

PPO

GRC

0,14

0,13

0,12

0,125

0,13

0,135

0,14

0,145

0,15

0,155

0,16

0 100 200 300 400 500 600 700 800 900 1000

SRs

LTAR

PPO

GRC

0,99

0,86

0,8

0,85

0,9

0,95

1

1,05

1,1

1,15

1,2

0 100 200 300 400 500 600 700 800 900 1000

SRs

LTRCR

PPO

GRC

Figure 5.5: Results with an average lifetime of 1000
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Figure 5.6: Results with an average lifetime of 2000
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Figure 5.7: Results with an average lifetime of 4000
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5.2.5 Allocation Time

The allocation time graph shows how much time was spent per SR allocation. Here we
see that our model is 25x faster in terms of its allocation time. While the allocation time
does not impact our problem model it is reasonable to assume that in real-world scenarios
this difference could be quite important, i.e., in situations where a SR is not relevant
after a certain time period. Or where the arrival rate is so high that not falling behind
on allocations becomes important. It is imaginable that allocation time will important
in URLLC given its latency requirements.

GRC has not only a higher average time consumption but also more unstable results
with a peak going as high as 153 ms which is a 3x deviation from the average. Our model
consistently performs around 2 ms with only slight deviations.
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Figure 5.8: Average computational time per accepted SR
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5.2.6 Overall Performance

Viewing the AR in combination with LTRCR gives a good understanding of the overall
performance of our solution in comparison to GRC. Since the LTRCR is a ratio between
the LTAR and LTAC, it gives information about both, though we can look at LTAR and
LTAC for more details. Due to the metrics being the respective long-term averages, the
graphs look spikier in the beginning because of the smaller average. Therefore we can
disregard the first few spikes between 0-100 SRs. When understanding the results, the
trends of the graphs tell us how the performance changes as SRs arrive. At the same
time, the final value gives us the total average and is a representative measure of the
total performance in the simulation.

In the results from 250 (Figure 5.3) and 500 lifetime (Figure 5.4) we see that GRC is
about 3% better in terms of AR, however since the LTRCR results show a 20% difference
in favor of our solution, we can argue that our solution is better overall. At the same
time, it trades some AR for a higher LTRCR. This is what we see from training, too:
if the agent receives a relatively bigger reward from placements only, the agent will
learn to prioritize maximizing only the AR at the cost of LTRCR, and we assume that
we could produce an agent that would perform similarly to GRC in if we had chosen
placements rewards only. In addition, we assume that using the same reward functions, a
performance gain that would equalize our solution to GRC or exceed it in the AR metric
for lower lifetimes would be possible given more time; either from more fine-tuning of the
PPO hyperparameters, from a longer training time or a combination of the two. This 3%
difference might also be due to an overtraining on the training SR set, which of course
GRC is not susceptible to. In addition, the performance will vary for each SR test set,
and the results might not be the same choosing a different seed for the SN.

In the higher lifetimes (1000 (Figure 5.5), 2000 (Figure 5.6), and 4000 (Figure 5.7)), we
easily see that our model performs better in all metrics. Again we see that the LTRCR
is substantially higher, but in this case, the AR is also higher. The improved LTRCR
mostly comes from the reduced LTAC, but in these higher lifetimes, also the LTAR
exceeds GRC’s.

Considering the around 25x decreased allocation time per SR compared to GRC, the
advantage of our solution is increased. Overall the results show that our solution performs
better, especially regarding LTRCR and allocation time.



Chapter 6

Conclusions

Our thesis introduced the basic concepts of resource allocation for SCVI in smart cities
and RL. Furthermore, our thesis discussed the related work in this field of research,
especially regarding DRL solutions to the VNF-FGE problem. We defined isolation
levels in NFV to ensure network security and reliability. Our isolation levels definition
aligns with the principles of network slicing and is compatible with NFV. We also gave a
comprehensive problem definition and solution that allows us to understand the specifics
of the problem and implementation. In our DRL training, we extensively experimented
to arrive at much-improved hyperparameters and reward settings and documented our
steps in tables and graphs with relevant metrics. Finally, we discussed our evaluation
settings and results and gave insight into the metrics.

In training the model, we quickly found that the complete state space variant we proposed
was many times slower than the partial version, which caused us to discard it and continue
only with the partial state space due to the time constraints of the thesis. Moreover, we
found simpler reward functions to yield the best training results.

Our objective was to minimize the LTAC and maximize the LTAR and AR. We developed
a resource allocation model trained using the state-of-the-art PPO algorithm to achieve
this objective. We tested our model using different average SR lifetimes and demonstrated
improved performance compared to GRC. The results show that our model can help to
increase the LTRCR of resource allocation for SCVIs in a smart city by 20% compared to
GRC. Our results also reveal our DRL model’s 25x allocation time improvement versus
GRC, which greatly improves the SR allocation time of the InP.
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6.1 Future Directions

Future work may better separate the different SCVIs by introducing different classes of
SRs with different ranges of resources and constraints based on real-world data instead
of the mix we have in our thesis, which is a weakness of our work. Furthermore, future
research may go more into simulating SLAs where, i.e., maximum network latency is
constrained and where the maximum response time to an SR is considered, as it is
conceivable that these constraints can improve the realism of the simulation and the
real-world performance of the resource allocation in terms of URLLC.

Future research might go into isolation levels in NFV and their impact and if the
simulation of these levels can be more realistic by simulating how the containers and
VMs will work or improving our definitions.

In our DRL training, we were not able to get a higher explained variance value than
around 0.2-0.3, which seems to indicate that we do not fully realize the potential of PPO,
as this explained variance could go up to one when the value function network is very
good at predicting rewards. If this value could be increased by future work, this could
reduce the training time needed and perhaps increase the solution performance.



Appendix A

PPO Training

A.1 Default Parameters

We begin testing using the default PPO parameters from the Stable Baselines 3 library.
We will test parameters that greatly impact the training time towards the end to save
time; this includes the epochs, steps, and batch size parameters.

• learningTimesteps: 10000

• learning_rate: 0.0003

• n_epochs: 10

• n_steps: 2048

• batch_size: 64

• ent_coef : 0.01

• clip_range: 0.1

• gamma: 0.99

• gae_lambda: 0.95

• clip_range_vf : 0.2

• normalize_advantage: true

• vf_coef : 0.5

• max_grad_norm: 0.5
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A.2 Acceptance Reward

Firstly we will try two of our acceptance reward functions and state space variants
to assess their viability because we assume that the reward function will significantly
impact the final results and the training speed. The tables below show the parameters
tested in blue and those we choose to continue testing in green. Note that in Figure A.1,
Figure A.1 and Figure A.3, the scale of the LTRCR is not correct due to a mistake, but
the relative difference between the graphs is still correct.

Experiment
Acceptance

Reward
Placement

Reward
State
Space

1 RMEC 0.001 Distance
2 LTARCR 0.001 Distance
3 RMEC 0.001 Edge
4 Simple 0.001 Distance

Table A.1: 1-4

From Figure A.1, we compare the performance of the state space, comparing the reduced
state space distance information (1 in purple) and the complete state space edge infor-
mation (3 in orange). We see that the performance of the edge information is relatively
lacking in every regard except for the LTRCR, where it is only slightly better. Using
PPO on the larger edge information state space means learning is comparatively slower.
Therefore, we will continue using the distance information state space.

Among the other experiments with the distance information state space, we see that it
is the simple acceptance reward (4 in blue) and LTRCR (2 in green) that perform the
best, however in terms of the LTRCR metric, the simple acceptance reward provides the
best results by far, so we will use this reward function in the following experiments in
combination with the distance information state space.
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Legend
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Figure A.1: 1-4
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A.3 Placement Reward

We now try different placement rewards to increase our AR as the placement reward will
incentivize placements and, therefore, acceptance of ARs.

Experiment
Acceptance

Reward
Placement

Reward
State
Space

5 Simple 0.01 Distance
6 Simple 0.1 Distance
7 Simple 1.0 Distance
8 Simple 0.5 Distance

Table A.2: 6-9

In Figure A.2, we find that increasing the placement reward does increase the PR and
AR, but this comes at the cost of the LTRCR. Using 1 for the placement reward (7 in
purple) seems too high, and 0.5 (8 in green) is the sweet spot for the placement reward
when combined with the simple reward.
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A.4 Hyperparameter Tuning

In the case of our hyperparameter tuning, we show the parameters we tried in Table A.3;
however, we will only show the best training experiments marked in green compared to
each other.

Exp. Learning
Rate

Epochs Steps Batch
Size

Ent
Coef.

Clip
Range

γ Gae λ Clip
Range
VF

VF
Coef.

9 0.0003 10 2048 64 0.01 0.1 0.99 0.93 0.2 0.5
10 0.0003 10 2048 64 0.01 0.1 0.99 0.97 0.2 0.5
11 0.0003 10 2048 64 0.01 0.1 0.99 0.99 0.2 0.5
12 0.0003 10 2048 64 0.01 0.1 0.99 0.85 0.2 0.5
13 0.0003 10 2048 64 0.01 0.2 0.99 0.99 0.2 0.5
14 0.0003 10 2048 64 0.01 0.3 0.99 0.99 0.2 0.5
15 0.0003 10 2048 64 0.01 0.05 0.99 0.99 0.2 0.5
16 0.0003 10 2048 64 0.01 0.2 0.99 0.99 0.2 0.3
17 0.0003 10 2048 64 0.01 0.2 0.99 0.99 0.2 0.7
18 0.0001 10 2048 64 0.01 0.1 0.99 0.99 0.2 0.5
19 0.0006 10 2048 64 0.01 0.1 0.99 0.99 0.2 0.5
20 0.001 10 2048 64 0.01 0.1 0.99 0.99 0.2 0.5
21 0.0002 10 2048 64 0.01 0.1 0.99 0.99 0.2 0.5
22 0.00005 10 2048 64 0.01 0.1 0.99 0.99 0.2 0.5
23 0.00001 10 2048 64 0.01 0.1 0.99 0.99 0.2 0.5
24 0.00005 10 512 64 0.01 0.1 0.99 0.99 0.2 0.5
25 0.00005 10 1024 64 0.01 0.1 0.99 0.99 0.2 0.5
26 0.00005 10 4096 64 0.01 0.1 0.99 0.99 0.2 0.5
27 0.00005 10 6144 64 0.01 0.1 0.99 0.99 0.2 0.5
28 0.00005 10 8192 64 0.01 0.1 0.99 0.99 0.2 0.5
29 0.00005 10 8192 32 0.01 0.1 0.99 0.99 0.2 0.5
30 0.00005 10 8192 128 0.01 0.1 0.99 0.99 0.2 0.5
31 0.00005 10 8192 256 0.01 0.1 0.99 0.99 0.2 0.5
32 0.00005 10 8192 512 0.01 0.1 0.99 0.99 0.2 0.5
33 0.00005 5 8192 256 0.01 0.1 0.99 0.99 0.2 0.5
34 0.00005 20 8192 256 0.01 0.1 0.99 0.99 0.2 0.5
35 0.00005 50 8192 256 0.01 0.1 0.99 0.99 0.2 0.5
36 0.00005 10 8192 256 0.001 0.1 0.99 0.99 0.2 0.5
37 0.00005 10 8192 256 0.005 0.1 0.99 0.99 0.2 0.5
38 0.00005 10 8192 256 0.2 0.1 0.99 0.99 0.2 0.5
39 0.00005 10 8192 256 0.3 0.1 0.99 0.99 0.2 0.5

Table A.3: Hyperparameter Testing

In Figure A.3, the overall performance is more promising after hyperparameter training
(37 in purple), even if the training starts off slower.
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A.5 Revised Acceptance and Placement Reward Functions

Due to our experiences with the training thus far, we aim to try different acceptance
reward functions that are similar but perhaps better or worse than our simple acceptance
reward. The experiments are given in Table A.4.

Experiment Acceptance Reward Placement Reward

43 RMC 0.5
44 RCR 0.5
45 SRLtoSNL 0.5
46 LTRCR 0.5

47 RCR 0.1
48 SRLtoSNL 0.1
49 SRLtoSNL 0.05
50 SRLtoSNL 0.01

Table A.4: 43-50
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From experiment 43-46 (Figure A.4) we find that AccRewSRLtoSNL and AccRewRCR

give the best results, though it seems that all functions are viable except for AccRewRMC ,
which only does well in the PR metric.

LTRCR AR

PRPFR

Mean Reward

Legend
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Figure A.4: 43-46
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Trying different placement reward values for the best acceptance reward functions in
experiment 47-50 (Figure A.5) gives quite a jump in learning performance and increases
the values PPO converges to both in terms of AR and LTRCR in comparison to our best
simple acceptance reward training (38 in purple).
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Figure A.5: 47-50
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