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Abstract

This study investigates the impact of pose variation, particularly extreme poses such as
the profile view, on the performance of biometric recognition systems. The study employs
the Local Binary Pattern (LBP) approach in combination with convolutional neural
networks (CNNs) to extract discriminative features from facial images. Feature-level
and decision-level fusion techniques are utilized to enhance the system’s performance.
The experiments are conducted on the CFPW dataset, which consists of frontal and
profile faces captured under diverse conditions. The results demonstrate that multimodal
approaches outperform unimodal ones, with the fusion of frontal and profile images
using the AlexNet model achieving the highest accuracy rate of 96.40%. This finding
underscores the significance of incorporating multiple modalities, specifically frontal
and profile images, to achieve robust and accurate face recognition. By combining
these modalities, the system effectively mitigates the challenges posed by pose variation,
resulting in improved recognition performance. The extraction of valuable features is
crucial for the development of accurate face recognition systems. This study employs the
LBP approach in conjunction with CNNs to extract discriminative features from facial
images, enabling effective facial representation. To enhance the system’s performance,
feature-level and decision-level fusion techniques are employed. Feature-level fusion
combines features acquired from both frontal and profile faces, while decision-level fusion
combines classification decisions from individual classifiers. These fusion techniques
leverage the complementary information provided by different modalities, improving
overall recognition accuracy. The findings emphasize the effectiveness of multimodal
approaches in biometric recognition systems. The utilization of multiple modalities,
along with appropriate fusion techniques, enables the system to overcome limitations
associated with pose variation and enhance the accuracy and reliability of face recognition.
These insights contribute to the advancement of biometric recognition systems and open
avenues for more robust and versatile applications in various domains.
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Chapter 1

Introduction

In recent years, face recognition has emerged as the dominant biometric method in the
fields of computer vision and pattern recognition. It finds widespread application in
individual verification and identification in various practical domains, including finance,
security and surveillance, commerce, and education. It is even integrated into consumer
products such as mobile phones and social media platforms to provide user authentication
and personalization. Despite numerous algorithms and procedures having been developed
to improve the performance of face recognition, the complexities of this research area
have made it a persistently challenging field [1].

The Overall Structure of the Face Recognition System. The face recognition systems
generally consist of four main steps indicated in Figure 1.1. Face Detection, pre-processing,
Feature Extraction, and Face Recognition [2]. This system uses an image as an input
and the output is the identity of the individual identified in the given image.

Figure 1.1: The basic architecture of the Face Recognition System

Face detection is identifying a specific area of an image as potentially containing a face.
The facial features are acquired from the extracted face in the next stage. Finally, during
the face classification process, the acquired features are compared with database values
to identify a face. Many methods for face recognition are created by varying these four
processes and combining them. Each of these processes will be briefly covered in the
following paragraph:

1



2 Chapter 1 Introduction

• Face Detection: Facial detection is a critical component of facial recognition
systems that seek to distinguish human faces from other objects within input
images. This detection step is particularly useful in situations where input images
contain multiple objects and individuals. Once a face is detected, image processing
techniques can be applied to isolate and enhance the facial features, making
subsequent facial recognition steps more accurate and effective.

• Pre-processing: During this phase, detected faces undergo processing to reduce
noise and adjust for variations in illumination. Pre-processing, a crucial step in
face recognition systems, involves a range of operations including image registra-
tion, scaling, face normalization, noise reduction, detection, and resizing. These
procedures work in tandem to improve the accuracy of face recognition. Following
pre-processing, the analysed faces can then undergo feature extraction to identify
and extract distinctive facial features for use in subsequent recognition steps.

• Feature Extraction: The next phase in the face recognition process is feature
extraction, which involves the application of powerful transformation techniques.
This step involves reducing the dimensionality of the image while retaining sig-
nificant features, resulting in a smaller yet still meaningful representation. The
identification and isolation of crucial facial features that can be utilized for recogni-
tion or verification is a vital part of the feature extraction process. One approach
to accomplish this is to use a feature extraction technique, which extracts and
analyzes facial features at this stage. The resulting analysis transforms the image
into a vector with a stable dimension and a set of constant points, representing the
position of the extracted features.

• Face Recognition: The final step in the face recognition process is the classification
phase, which utilizes robust classifiers such as fully connected neural networks
and deep neural networks. This approach involves comparing the detected and
processed face with a database of labelled faces to determine the identity of the
person in question.

1.1 Problem background

Face verification has become a critical component in various domains, including security,
surveillance, and mobile authentication. However, traditional face verification systems
typically assume that faces are presented in frontal view, which is often not the case in real-
world scenarios. In practice, faces are often presented at different angles, including profile
views, which can make face verification challenging. This is particularly problematic
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in unconstrained settings, where different pose conditions and facial expressions can
further complicate face verification. Additionally, the challenge of face verification in
the wild is exacerbated by the lack of standardization in image capture devices and
lighting conditions. In outdoor settings, lighting conditions can be unpredictable, making
it difficult to capture high-quality images.

The lack of accurate and reliable frontal-to-profile and in-the-wild face verification in such
scenarios presents a significant challenge for the development of robust face recognition
systems. This issue has significant implications for security and privacy, as inaccurate
face verification can lead to false identification, leading to the wrongful conviction or
misidentification of individuals. Therefore, there is a pressing need for research to address
these challenges and develop more robust face verification systems that can accurately
and reliably verify faces presented at different angles in real-world settings.

Moreover, there is a growing concern surrounding the potential for failure in face
verification systems. Recent studies have revealed that facial recognition systems are
prone to producing inaccurate or unreliable results, particularly when processing images
with posture variations or distinct facial features. This issue can lead to misidentification,
which can ultimately make the system unreliable. As a result, it is important to address
this challenge by developing and implementing more robust and accurate face recognition
technologies. Therefore, there is a pressing need for research to address these challenges
and develop more robust face verification systems that can accurately and reliably verify
faces presented at different angles in real-world settings. This requires the development
of innovative techniques that can overcome the challenges posed by lighting conditions
and environmental factors. It also involves addressing the issue of bias in face verification
systems to ensure that they are fair and accurate for all individuals. By developing more
accurate and reliable face verification systems, we can improve security and privacy in
real-world scenarios.

1.2 Motivation behind the Research

Over the past decade, face recognition technology has evolved dramatically. starting
with limited, carefully obtained photos, the researchers have focused their attention on
the different problems of face identification in unconstrained contexts. Face identification
for unconstrained photos is a challenging task, due to variations in position, illumination,
expression, age, and occlusion. When features of the entire face are not visible the
challenge of the pose variation becomes more significant. These scenarios frequently
occur in various real-world contexts, such as surveillance and photo tagging, when it is
relatively normal for a person to avoid looking directly into the camera [3]. The majority
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of face recognition systems have typically been created to identify faces from a frontal
view, which is regarded as the most informative angle. however, because fewer facial
features are visible in the profile view, it is more difficult to identify faces in this view [3].

Face detection and recognition systems rely on various methods, but they can be affected
by factors such as pose, presence or absence of structural components, facial expression,
occlusion, image orientation, imaging conditions, and time delay (for recognition). Many
available applications developed by researchers are limited in their capabilities as they
can typically only handle one or two of these effects, often with a narrow focus on specific
well-structured applications. Developing a robust face recognition system that can work
effectively under all conditions and encompass a wide scope of effects is challenging.

In summary, frontal-to-profile face recognition in uncontrolled environments is significant
due to the following reasons:

• Frequent occurrence in various applications.

• Substantial degradation in performance of existing algorithms when comparing
frontal faces to profile faces in real-world scenarios.

• Human performance in frontal-to-profile face comparisons is only marginally worse
compared to frontal-to-frontal comparisons.

Overall, these factors emphasize the critical need for robust frontal-to-profile face
recognition algorithms to address the challenges posed by uncontrolled environments,
and further research in this area is warranted.

1.3 Problem Statement and Research Questions

Face verification poses a significant challenge due to the inherent variability in facial
appearances caused by factors such as pose, illumination, expression, and occlusion.
These variations can greatly impact the accuracy and reliability of face verification
systems. Many existing face verification approaches primarily concentrate on comparing
frontal face images, assuming ideal conditions and limited variations. However, such
systems often struggle to perform effectively in real-world scenarios where face images are
captured under diverse conditions and from different angles. To address this limitation,
there is a growing demand for robust face verification systems that can handle face
images captured in the wild, including those taken from various viewpoints and under
challenging conditions. The development of such systems is crucial to ensure their
practical applicability and reliability in real-world environments. By expanding the
capabilities of face verification beyond frontal and profile face images, these systems
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can enable accurate identification and verification of individuals captured in non-ideal
conditions, such as surveillance footage, social media images, or images extracted from
video streams.

This master thesis delves deeper into the following research questions, providing compre-
hensive answers and further insights:

1. How can we utilize machine learning and deep learning approaches to develop a face
verification system that can verify face images captured from different angles in the wild?

2. What techniques can we use to address the issue of pose variation and improve the
accuracy of face verification in the wild?

3. How can we effectively differentiate human faces from other objects within input
images using face detection techniques?

4. How can we employ feature extraction methods that will yield more prominent features
and accurate results?

5. How can we develop a robust face verification system that incorporates machine
learning and deep learning techniques to handle illumination changes and poses variations
in real-world scenarios?

6. How can we evaluate the performance of deep learning-based face verification systems
in the wild, and what are their limitations?

This thesis aims to explore these questions by developing a face recognition model that
leverages deep learning algorithms to accurately identify preprocessed human faces with
variations in poses.

1.4 Outline

This section provides an overview of the thesis, outlining its structure and offering a
concise summary of each chapter as listed below:

• Chapter1: Introduction

In this chapter, the thesis introduces its main objective, providing a comprehensive
understanding of the topic and problem statement. It also offers a concise yet
informative introduction to the field of face recognition technology and its diverse
applications.
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• Chapter2: Related Work

This chapter delves into an extensive exploration of accomplished studies and
research that are directly relevant to face recognition methods. It critically exam-
ines previous works in the field, highlighting their methodologies, findings, and
contributions to the advancement of face recognition technology. By analyzing the
existing body of knowledge, this chapter sets the foundation for the subsequent
chapters and establishes the context for the research conducted in this thesis.

• Chapter3: Approach

In this chapter, the thesis presents the main approaches and methods employed
in the study. It introduces a comprehensive overview of the selected techniques,
encompassing popular machine learning and deep learning algorithms that have
been implemented. The chapter provides detailed explanations of these algorithms,
highlighting their relevance to the research objectives and discussing their strengths
and limitations.

• Chapter4: Methodology

In this chapter, the thesis focuses on presenting the dataset and methodologies
employed in the study. The chapter provides a comprehensive overview of the
dataset used, detailing its characteristics, size, and any preprocessing steps under-
taken. Moreover, it highlights the various techniques and algorithms implemented
to enhance the results of the study. The chapter discusses the rationale behind
the selection of these methodologies and provides a clear description of their
implementation process.

• Chapter5: Experimental Evaluation

In this chapter, the thesis thoroughly describes the evaluation of the methodologies
employed to assess the effectiveness and performance of the proposed approach.
The chapter provides a detailed explanation of the experimental setup, including
the chosen evaluation metrics, the specific configurations of the algorithms, and
any relevant parameters used. The chapter further presents the results obtained
from the experiments conducted. This chapter contributes to the overall validity
and reliability of the research, while also enabling the reader to gain a deeper
understanding of the outcomes.

• Chapter6: Conclusion

This chapter provides a comprehensive summary of the work conducted throughout
the research. It highlights the key findings, contributions, and implications of
the study, emphasizing how they align with the initial objectives set forth in the
introduction. The chapter also discusses potential future work that can address
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any identified gaps or limitations in the research. It explores avenues for further
exploration, suggesting areas where additional research can build upon the current
findings. Furthermore, it explores promising approaches or methodologies that
could be employed to overcome any challenges encountered during the study but
were beyond the scope of the research.





Chapter 2

Related Work

Face recognition has been an active subject in the pattern recognition area. Recently,
it has proceeded with the growth of CNNs. Moreover, CNNs have become the best
solutions for various face recognition applications due to their outstanding abilities to
represent and learn distinctive features. Before developing deep learning algorithms,
most conventional face recognition techniques extracted shallow, hand-crafted features
from facial photos, trained those features, and classified identities using Support Vector
Machines (SVMs) or Nearest Neighbors (NNs) approaches. However, deep learning
architectures have been developed and have produced incredibly excellent results for a
variety of visual recognition tasks, including face recognition, because of the availability
of cutting-edge computational capabilities and an increase in the availability of very
large data sets. Massive research has made exceptional improvements in face recognition
built on CNNs, and different methods have indicated remarkable enhancements in face
recognition in the wild with pose variation. While several face recognition approaches
have demonstrated promising outcomes under controlled conditions, the task remains
exceptionally challenging in unconstrained environments. This difficulty arises due to the
limited information available from single-face media investigations, especially when the
quality of the images is low. Moreover, frontal-to-profile face verification has emerged
as a highly active research area within computer vision and biometrics. In recent years,
numerous studies and works have been dedicated to exploring this topic, aiming to
overcome the challenges associated with verifying faces exhibiting frontal and profile
views. The following section will delve into some of the most notable and relevant studies
in this field.

In order to tackle the complex issue of face recognition under pose variation, researchers
have explored and implemented various strategies. One commonly employed technique
involves fitting a Morphable model to the face and subsequently warping it to a canonical

9



10 Chapter 2 Related Work

view. This approach has proven to be effective in mitigating the adverse effects of pose
variation on face recognition accuracy.

Notably, the use of Generic Elastic Models (GEM) [4] and Active Appearance-based
Models for Pose normalization [5] has gained significant traction in the field. These
approaches, initially introduced in [6], have rapidly gained popularity as universal model
fitting techniques for addressing pose variation in face recognition.

GEM provide a flexible framework for modeling and synthesizing facial variations caused
by pose differences. By capturing and characterizing the shape and appearance changes
associated with the pose, GEM allows for robust face normalization, enabling subsequent
recognition algorithms to operate on a consistent and standardized face representation.
Active Appearance-based Models (AAM) for Pose normalization offer another effective
approach to handling pose variations. These models utilize a combination of shape and
texture information to represent facial appearance under different poses. By aligning faces
to a common reference shape and texture, AAM allows for pose-invariant comparisons
and facilitates accurate recognition across varying pose conditions.

Both GEM and AAM techniques have proven successful in mitigating the challenges posed
by face recognition with pose variation. They provide valuable tools for normalizing face
images and establishing a canonical representation that is less susceptible to variations
caused by different poses. As a result, these techniques enhance the accuracy and
reliability of face recognition systems, contributing to the advancement of the field.

The continuous exploration and refinement of these techniques, along with the develop-
ment of novel strategies, hold promising potential for further improvements in addressing
pose variation and enhancing the overall performance of face recognition systems. While
these techniques have shown promising results for faces with limited fluctuations and
minor posture variations, they may not perform as well in real-world scenarios with more
diverse facial expressions and poses. Another category of approaches that have been
explored is subspace learning-based techniques. Canonical Correlation Analysis (CCA)
[7] and Partial Least Square (PLS) [8] are examples of commonly used subspace learning
techniques in this domain. These techniques have shown the potential in improving the
robustness of face recognition systems to variations in poses and expressions encountered
in real-world situations.

Two recent studies, [9] and [10], have demonstrated effective results in recognizing faces
with varying poses using identification-based approaches on datasets such as Multipie and
CMU PIE. In particular, [9] achieved recognition accuracy of 27.1% for Frontal Profile in
Multipie. However, it is important to note that the effectiveness of these techniques in
recognizing faces in wild situations, where images are not controlled, has not yet been



Chapter 2 Related Work 11

proved. Further research is required to evaluate their performance in such scenarios.
Generative models have been a focus of research in the field of pose-invariant face
recognition. These techniques assume that a latent variable is responsible for generating
various identities and poses via a latent factor.

In recent years, [11] has shown solid performance in constrained data sets such as FERET
[12]. Similarly, [13] has demonstrated impressive outcomes on unconstrained datasets
such as LFW, achieving a validation accuracy of 90.07% in an unrestricted scenario.
These results are highly encouraging and point towards the potential of generative models
in face recognition. Another approach to addressing the issue of pose variation in face
recognition is attribute-based recognition [14]. This technique has the potential to be
invariant to posture changes, but it remains unclear whether features can be accurately
determined on profile faces as they are on frontal faces. However, in the case of our
suggested CFP dataset, achieving strong alignment across poses, which is necessary for
many of these approaches, is challenging.

In addition to the pose variation problem, this section also covers approaches that have
demonstrated success in unconstrained settings and ‘in the wild’ data sets like LFW.
In order to address the variability of unconstrained images, several researchers have
developed metric learning algorithms that can learn a transformation of the feature
space. In particular, the LFW dataset has yielded promising results for Cosine Similarity
metric learning [15] and Similarity metric learning [16], achieving an accuracy of 86.73%
under unrestricted circumstances. These results highlight the potential of metric learning
algorithms for face recognition in real-world scenarios.

Along with Deep metric learning methodologies [17] [18], other metric learning approaches
have also been developed by researchers [19], [20]. Performance on LFW is high for
the Joint Bayesian models [21] (90.90% accuracy in an unrestricted scenario) and [22]
(93.18% accuracy). These techniques can only be utilized with the unconstrained protocol
(where identity information or outside training data can be used) because they typically
require identification information during training.

To provide a more comprehensive overview, researchers have explored feature extraction
methods beyond the conventional SIFT, LBP, or HoG. Fisher Vector encoding [23]
(achieving 87.47% accuracy in constrained conditions) and [24] (achieving 84.08% accuracy
in restricted settings) are both effective approaches, but they lack robustness to significant
pose variation. In recent years, researchers have shifted from hand-crafted features to
trained features by leveraging CNNs and deep networks. Notable examples of successful
applications include Deepface [25] (97.35% accuracy), DeepID [26] (99.47% accuracy), and
FaceNet [27] (99.63% accuracy), which represent the state-of-the-art in face recognition
on LFW in the unrestricted context with outside training data.
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In their study, the authors in [3] have assembled Celebrities in Frontal-Profile (CFP)
face data collection specifically designed to facilitate research on frontal-to-profile face
verification in real-world scenarios. This dataset aims to isolate and explore the factor
of pose variation, which is particularly challenging for extreme positions like profiles
where many facial features are obscured. Additionally, the dataset encompasses other
variations commonly encountered in unconstrained environments, thereby simulating "in
the wild" conditions.

During their experimental evaluation, the authors made an intriguing discovery. They
found that when humans performed frontal-profile verification, their accuracy was only
slightly lower at 94.57% compared to frontal-frontal verification, which achieved an
accuracy of 96.24%. This finding implies that humans exhibit a relatively robust ability
to verify faces across varying poses, even under challenging profile conditions.

However, when several state-of-the-art algorithms were subjected to the same evalu-
ation, including Deep learning algorithms, Fisher Vector, and Sub-SML, a significant
performance drop was observed from frontal-frontal to frontal-profile verification. In
fact, each algorithm experienced a decrease in accuracy of more than 10%. Notably, the
Deep learning implementation exhibited a substantially lower accuracy of 84.91% on
frontal-profile verification, in contrast to frontal-frontal verification, where it performed
comparably to human performance.

These results highlight a notable performance gap between automatic face recognition
techniques and human performance when confronted with substantial posture variations
in unrestricted photographs. The disparity in accuracy indicates the inherent difficulty
faced by automatic algorithms in effectively handling pose variations and recognizing
faces under challenging conditions.

The findings from this study shed light on the limitations of current state-of-the-art
algorithms and emphasize the need for further research and innovation in developing
more robust face recognition techniques that can bridge the performance gap with
human abilities. By addressing the challenges posed by pose variations in real-world
scenarios, future advancements in automatic face recognition systems can aim to achieve
performance levels comparable to or even surpassing human performance, thus enhancing
their applicability and effectiveness in a wide range of practical applications.

In their experiments, the authors found that Fisher Vector performs better than HoG
and LBP among various hand-crafted features. Particularly, when combined with metric
learning SubSML, Fisher Vector achieves remarkable accuracy of 80.63% on Frontal-
Profile and 91.3% on Frontal-Frontal datasets, even in restricted settings. These results
highlight the continued difficulty of face recognition in uncontrolled environments with
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significant pose variations, emphasizing the importance of continued research in this field
[3].





Chapter 3

Approach

In this section, the main approaches and methods used in this study are introduced,
including the popular machine learning and deep learning algorithms that have been
implemented. As outlined in the introduction, the face identification framework has
three main components: face detection, feature extraction, and face recognition. In the
following sections, a brief overview of each of these components will be provided before
delving into the details.

3.1 Face Detection Methods

Face detection is a crucial component of the face identification process and serves as the
first step in face recognition. It falls under the domain of computer vision technology,
which involves detecting the position and dimensions of facial images within a digital
photograph while ignoring other objects in the image. This section will briefly overview
the techniques used to detect human faces and facial landmarks.

3.1.1 Haar Cascade Algorithm

The Haar cascade classifier, initially proposed by Viola and Jones in their seminal 2001
publication, Rapid Object Detection using a Boosted Cascade of Simple Features [28],
is OpenCV’s most common object detection algorithm. It is an efficient pre-trained
machine-learning algorithm used to detect faces in an image or a real-time video because
it is trained from a great quantity of positive and negative pictures. This paper uses
Haar cascade detection with an open Computer Vision library (open cv) to identify
human faces. The Haar cascade method eliminates most of the irrelevant features from
images and provides a unique human face. Thus, it will enhance the accuracy of the

15



16 Chapter 3 Approach

face recognition model. The Figure 3.1 represents the flow system of the Haar cascade
classifier.

Figure 3.1: The flow system of the Haar cascade classifier

The Haar cascade algorithm for face detection can be described in three main phases:

1. Haar Feature Selection

The first step is to select the Haar-like features that most effectively detect faces. These
features are rectangular regions of an image that are used to measure the intensity
differences between adjacent areas of the image. Some examples of Haar-like features
include edge features, line features, and four-rectangle features are shown in Figure 3.2
[29].

Figure 3.2: Some examples of Haar features [29].

The algorithm uses a machine-learning technique called AdaBoost to select the most
significant features. AdaBoost trains multiple weak classifiers on the training data, with
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each classifier using a different set of Haar-like features. The weak classifiers are then
combined to form a strong classifier, which is used to detect faces in new images.

2. Integral Image Calculation

The next step is to calculate the integral image of the input image. The integral image
is a 2D array that stores the sum of all the pixels in the input image up to a given pixel.
This calculation can be done efficiently using dynamic programming. The integral image
is used to speed up the calculation of Haar-like features. Instead of computing the sum
of pixel intensities for each feature in the image, the algorithm uses the integral image
to calculate the sum of pixel intensities for each feature in constant time. The integral
image and Haar-like rectangle features are illustrated in Figure 3.3 [30].

Figure 3.3: Illustration of the integral image and Haar-like rectangle features [30].

3. Implementing Cascading Classifiers

The final step is to use the Haar-like features and the integral image to detect faces in
the input image. The algorithm uses a cascade classifier, a sequence of classifiers trained
to progressively eliminate non-face regions of the image. Each classifier in the cascade is
trained to be highly selective and has a low false positive rate. The cascade classifier
operates in stages, with each stage using a different set of Haar-like features to identify
regions of the image that may contain a face. At each stage, the classifier calculates a
feature vector for each region of the image using the integral image. If the feature vector
matches the feature vector of a face, the region is passed to the next stage of the cascade.
Otherwise, the region is rejected as non-face. The cascade classifier can be trained on
many positive and negative samples to improve its accuracy. The classifier can also be
fine-tuned to detect specific types of faces, such as faces in different lighting conditions,
orientations, and expressions [30].
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3.1.2 Multi-Task Cascaded Convolutional Neural Networks (MTCNN)

Facial landmark detection is a crucial step in many facial analysis tasks, including
facial recognition, expression analysis, and virtual try-on systems. This process involves
identifying and locating specific points on a face, such as the corners of the eyes, nose,
and mouth. One popular face detection algorithm that can also perform facial landmark
detection is MTCNN. Introduced in 2016 by Zhang et al [31], MTCNN is a deep learning
architecture that comprises three neural networks that work together to identify both
faces and facial landmarks in images. MTCNN has been proven to be an efficient and
accurate approach for detecting facial landmarks in various applications. MTCNN is
comprised of three networks, namely the Proposal Network (P-Net), Refine Network
(R-Net), and Output Network (O-Net). Each network has a specific task in the face
detection process, as outlined below:

• Proposal Network (P-Net): The P-Net is the first network in the cascade and
is responsible for generating candidate face regions (face proposals) from an input
image. It uses a fully convolutional neural network to scan the entire image and
output a set of bounding boxes that potentially contain faces. The network takes
the entire input image as input and produces a set of candidate boxes with different
sizes and aspect ratios.

• Refine Network (R-Net): The Refine Network (R-Net) is the second network
in the MTCNN cascade. Its main objective is to enhance the accuracy of face
detection by filtering out false positives and refining the bounding boxes produced
by the Proposal Network (P-Net). R-Net takes the candidate boxes generated
by P-Net as input and produces refined bounding boxes that are closer to the
actual face regions. Like P-Net, R-Net is also a fully convolutional neural network.
However, unlike P-Net, it takes candidate boxes rather than the entire image as
input. The use of bounding boxes helps in cropping out unnecessary parts of the
image, eliminating the background and focusing only on the distinctive face region
of the image.

• Output Network (O-Net): The O-Net is the final network in the cascade and its
primary task is to further refine the bounding boxes produced by the R-Net and to
classify them as face or non-face regions. This network takes the refined bounding
boxes produced by the R-Net as input and outputs the final set of bounding boxes
and facial landmarks. The O-Net is also a fully convolutional neural network, but it
is more complex than the previous two networks and can detect finer facial features
such as the eyes, nose, and mouth.
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Figure 3.4 describes the architecture of the layers applied in each step of the cascaded
MTCNN model [32].

Figure 3.4: Stage architecture of the MTCNN model used for face detection and
landmark extraction [32].

As already explained, MTCNN preserves three tasks including facial landmark localization,
bounding box regression, and classification of faces. To create the same class of results,
each stage employs a different number of layers and a different size of Conv. filters.
Three categories describe the outputs. The first set of outputs uses two neurons: one to
detect the presence of a face and the other to calculate its classification score. Bounding
box regression, which represents the top left and lower right of the bounding box by four
neurons, is another component of the output. Five sites on the left eye, right eye, nose,
left mouth corner, and right mouth corner are regressed by facial landmark localization.
This means that ten neurons are required to represent the 10-D variable [32].
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3.2 Feature Extraction Methods

Features in images are defined as significant local intensity changes when shifted over an
image. Edges and corners are notable examples of image features. Feature descriptor
methods, including edge detection, have been employed in various applications, such as
object detection, face recognition, image segmentation, and region separation. In the
context of face recognition, facial features such as eyes and nose are considered significant.
Feature extraction methods aid the classifier model in distinguishing between different
individuals’ faces by extracting effective and prominent information from images. The
face recognition system categorizes images based on the value of simple features. There
are several reasons for utilizing features instead of pixels directly. The most prominent
reason is that features can encapsulate ad-hoc domain information, which is challenging
to learn using a finite amount of training data. The second crucial incentive for using
features is that the feature-based system operates significantly faster than a pixel-based
system [28]. In the following section, some feature extraction methods that are applied
to the dataset images are briefly introduced.

3.2.1 Local Binary Pattern (LBP)

LBP is a method utilized in image processing and computer vision for extracting
features. In 1994, Ojala et al. presented the method, which has subsequently become
extensively employed in various applications, including facial recognition, texture classifi-
cation, and object detection, owing to its simplicity and robustness. The LBP algorithm
is used to represent the texture features of images at a local level and has the advantage
of being insensitive to rotation and grayscale levels. It is a crucial method for identifying
features in an image and can cope with lighting variations.

The LBP method is a simple yet effective way to describe the local texture of an image.
It involves comparing each pixel in an image with its neighboring pixels and encoding the
result as a binary pattern. Specifically, a binary code is generated for each pixel based
on whether the surrounding pixels have a higher or lower intensity value than the center
pixel. This binary code is then used as a feature for that pixel [33]. In simple terms,
the LBP technique segments a facial image into multiple regions extracts LBP features
from each region, and combines them to create a feature vector that represents the facial
descriptor [34]. To assign a binary label to each pixel in an image, the LBP operator
uses a 3×3 neighborhood surrounding that pixel and thresholds it with the center pixel
value. The resulting binary code is then interpreted as a binary integer.
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In other terms, LBP is described as an ordered sequence of binary comparisons of the
pixel intensities of the core pixel and its surrounding pixels for a given pixel position (x,
y). The 8-bit word’s final decimal label value can be stated in the equation 3.1 as follows
[34] and [35]:

LBP (x, y) =
7∑

n=0
2n.S(Ln(x, y) − Lc(x, y)) (3.1)

where the grey value of the centre pixel (x, y) is represented by Lc, the grey values of
the 8 surrounding pixels are denoted by Ln, and function S(k) is expressed as:

S(k) =

1 if k >= 0,

0 otherwise.

The value of this centre pixel serves as a threshold for the LBP operator, which operates
on a pixel’s eight neighbours [36]. A neighbouring pixel receives one if its grey value is
higher (or equal) to the centre pixel, otherwise, it receives zero. The eight ones or zeros
are then combined to form a binary code, which creates the LBP code for the centre
pixel as illustrated in Figure 3.5.

Figure 3.5: The basic LBP operator which labels the pixels in the image [33].

The present study employs LBP as a method for converting acquired images into binary
vectors. The resulting facial feature vectors retain the image pixels within a predetermined
threshold. These vectors are then combined with weights to create a network architecture
pattern for facial classification, utilizing CNN models.

3.2.2 Histogram of Oriented Gradients (HOG)

HOG is a popular feature extraction method used in computer vision and image processing
tasks, particularly in object detection and recognition. The main idea behind the HOG
feature extraction method is to capture and describe the local shape and structure of an
image by analyzing the distribution of gradient orientations. Gradients represent the
changes in intensity values across an image, and they provide important information
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about the edges and boundaries of objects. A step-by-step explanation of the HOG
feature extraction method and its structure is mentioned below:

1. Gradient Computation:

• Calculate the gradients (derivatives) of the image in both the horizontal and vertical
directions.

• Typically, the Sobel operator is used to compute the gradients, resulting in two
gradient images: one for the horizontal gradients (Gx) and one for the vertical
gradients (Gy).

• From the horizontal and vertical gradients, the magnitude and orientation of the
gradient vectors are calculated.

2. Gradient Orientation Binning:

• Divide the image into small cells (e.g., 8x8 pixels).

• For each cell, accumulate the gradient orientations into a histogram.

• The histogram has a predefined number of bins, usually representing a range of
angles (e.g., 0-180 degrees).

• The magnitude of each gradient is also considered and contributes to the corre-
sponding bin.

3. Histogram Normalization:

• Normalize the histograms within a larger block of cells (e.g., 2x2 or 3x3 cells).

• This normalization is performed to enhance the robustness of the features to changes
in illumination and contrast.

• Common normalization methods include L1-norm or L2-norm normalization.

4. Feature Descriptor:

• Concatenate all the normalized histograms from the previous step to form a feature
vector.

• The resulting feature vector represents the local structure and shape information
of the image.



Chapter 3 Approach 23

• The length of the feature vector depends on the number of cells, bins per histogram,
and the size of the blocks.

5. Sliding Window:

• Apply a sliding window across the entire image to extract HOG features at different
spatial locations.

• The sliding window moves in predefined strides and scales to capture features at
various scales.

The HOG feature extraction method effectively captures the local shape information
and is particularly robust against changes in illumination and contrast. It has been
widely used in various computer vision applications, including pedestrian detection, face
detection, and object recognition in images. The structure of the HOG descriptor is
shown in figure 3.6 [37]:

Figure 3.6: HOG Implementation [37].

3.2.3 Principal Component Analysis Algorithm (PCA)

PCA is a statistical technique that is widely employed for reducing the dimensionality of
data, extracting features, and compressing information. It involves a linear transformation
approach that enables the identification of patterns in high-dimensional data by projecting
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it onto a lower-dimensional space while preserving most of the original variance. In face
recognition applications, it can be utilized to extract significant features from images
that aid in person identification. The basic principle underlying PCA for face recognition
is to identify the most essential facial features that accurately represent the face images
in a lower dimensional space [38]. There are several reasons why PCA is suitable for face
recognition:

1. Dimensionality reduction: Face images often contain a high number of pixels,
resulting in a large feature space. PCA helps reduce the dimensionality by transforming
the original data into a lower-dimensional representation, known as eigenfaces. This
reduces computational complexity and memory requirements while preserving essential
facial features.

2. Face representation: PCA captures the most significant variations in face images
by identifying a set of eigenfaces, which are orthogonal vectors representing the principal
components of the face data. These eigenfaces are computed by analyzing the covariance
matrix of the face image dataset. They provide a compact representation of faces,
allowing for efficient face recognition.

3. Discriminative power: PCA focuses on capturing the maximum variance in the
data. In the context of face recognition, this means that the eigenfaces obtained from
PCA tend to represent the most discriminative facial features. By projecting a new face
image onto the eigenface subspace, the algorithm can effectively identify and match faces
based on these discriminative features.

4. Robustness to variations: It is relatively robust to variations in lighting conditions,
pose, and facial expressions, as it captures the underlying structure of face images rather
than relying on specific pixel intensities. This enables effective face recognition even in
the presence of moderate variations in the input images.

In summary, PCA provides a powerful dimensionality reduction technique for face
recognition applications by extracting discriminative features and enabling efficient
matching and identification.

This section presents an overview of the theory of the PCA algorithm in face recognition
and outlines the flow chart for the PCA algorithm, as depicted in Figure 3.7 [39].
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Figure 3.7: The flow chart for the PCA algorithm.

As it is displayed in the flow chart the steps involved in the PCA algorithm are as follows:

• Normalization: This is the first step in PCA, which entails normalizing the
data by subtracting the mean and dividing it by the standard deviation. This
preliminary stage is particularly critical, as PCA is known to be affected by the
scaling of variables.

• Covariance Matrix: computing the covariance matrix of the normalized data
is the next stage. The covariance matrix is a square matrix that includes the
covariances between all pairs of variables. It is employed to determine the linear
correlation between variables.

• Eigenvectors and Eigenvalues: The next step is to calculate the eigenvectors
and eigenvalues of the covariance matrix. The eigenvectors represent the directions
of maximum variance in the data, while the eigenvalues quantify the degree of
variance accounted for by each eigenvector. The eigenvectors are also called the
principal components.
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• Selecting the Principal Components: The next step is to choose the principal
components that describe the most variance in the data. This can be done by
ranking the eigenvalues in descending order and selecting the top k eigenvectors
that explain the most variance, where k is the desired dimensionality of the new
feature space.

• Projection: The final step is to project the data onto the new feature space defined
by the selected principal components. This is done by multiplying the normalized
data by the eigenvectors corresponding to the selected principal components. The
resulting matrix contains the transformed data in the lower-dimensional space.

3.3 Face Recognition Techniques

The recognition phase of a face identification system is the final stage where the system
analyzes and matches the detected face with a known database of labelled faces. In this
process, the system then compares extracted features with the corresponding features of
faces in its database to determine the identity of the person in question. This process
involves using algorithms and classifiers such as fully connected neural networks and
deep neural networks, which have been trained to identify facial features and patterns.
Overall, the recognition phase is crucial in ensuring that the face identification system
can accurately and reliably determine the identity of a person based on their facial
features. This section will provide, a brief overview of the techniques used in the face
recognition system to determine the identity of the individual in question.

3.3.1 Review of Convolutional Neural Network (CNN)

CNNs are a type of neural network that excels at tasks related to classifying and
identifying images. They are multi-layered feed-forward neural networks that consist of
filters, kernels, or neurons with biases, parameters, and trainable weights. Each filter
processes a set of inputs through convolution and, optionally, nonlinearity. Overfitting
can occur in a CNN model when the neural network is complex, and the input data is
small. A high prediction accuracy is achieved if the model has a low loss function on
the training data. However, overfitting occurs when the loss function is large on the
test data, resulting in low prediction accuracy. On the other hand, underfitting may
occur if the model performs poorly on the training data, as the model cannot capture
the relationship between the input examples and the target values. CNNs can be trained
using supervised learning, where the network is given a set of labeled images and learns
to recognize the patterns and features in the input images. They can also be trained
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using unsupervised learning, where the network learns to extract useful features from the
input images without any labeled data. Overall, CNNs have proven to be a powerful tool
in the field of image processing and computer vision, allowing for accurate and efficient
image classification and identification.

A typical CNN architecture is depicted in Figure 3.8 [40]. The structure of CNN consists
of Convolutional, Pooling, Rectified Linear Unit (ReLU), and Fully Connected Layers.

Figure 3.8: The basic architecture of the CNN model [40].

• Convolutional Layer: The convolutional network’s fundamental component,
which handles most of the computational tasks, is the convolutional layer. The
main objective of the convolution layer is to extract features from the input data,
which is a picture. Convolution learns visual attributes from tiny squares of input
images, maintaining the spatial correlation between pixels. By using a group of
learnable neurons, the input image is distorted. As a result, the output image
contains a feature map or activation map, which is then used as input data for the
subsequent convolutional layer [40].

• Pooling Layers: The pooling layer is a key component in convolutional neural
networks (CNNs) that reduces the spatial size of the input image through down-
sampling. Typically, it is applied after a convolutional layer to reduce the spatial
resolution of the feature maps and enhance the network’s efficiency. The most
widely used type of pooling is max pooling, which selects the maximum value in
each local region of the feature map. By adding this layer between convolutional
layers, the network can achieve higher generalization, faster convergence, and
greater robustness to translation and distortion.

• ReLU Layer: ReLU is a non-linear operation that comprises rectifier-using units.
Since it is an element-wise procedure, each pixel is affected, and all negative values
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in the feature map are replaced with zero. To comprehend how the ReLU works, we
assume that x is the neuron input, and the rectifier is defined as f(x) = max(0, x)
in the literature for neural networks.

• Fully Connected Layer: The fully Connected Layer (FCL) describes every
filter in the previous layer as being connected to every filter in the following layer.
High-level features of the input image are represented in the output from the
convolutional, pooling, and ReLU layers. Utilizing these features to divide the
input image into different classes depending on the training dataset is the aim of
using the FCL. It is considered the last pooling layer that delivers the features
to a classifier that utilizes the SoftMax activation function. The sum of output
possibilities from the Fully Connected Layer is 1. Using SoftMax as the activation
function guarantees this. The SoftMax function reduces a vector of arbitrary
real-valued scores to a vector of values that vary from zero to one and add to one
[41]. A SoftMax function is applied to the output of the final fully connected layer
to produce a probability distribution over the output classes. By minimizing the
cross-entropy loss between the predicted probability and the true labels during
training, the network is optimized.

3.3.2 Multi-Layer Perceptron (MLP) classifier

MLP is a popular type of artificial neural network used in various applications of machine
learning and pattern recognition. Also known as feedforward neural networks, MLPs
propagate the input signal through a sequence of layers without loops or cycles between
them. They comprise an input layer, one or more hidden layers, and an output layer.
The input layer receives input data, and the output layer produces the output. The
hidden layers are where most of the computation takes place. Each neuron in a layer is
connected to every neuron in the next layer, with weights assigned to each connection.
The number of neurons in each layer can be adjusted to fit the problem at hand. Each
neuron uses an activation function, such as sigmoid, ReLU, or tanh, to transform its
input into an output. This activation function adds non-linearity to the MLP, enabling
it to learn complex functions. Figure 3.9 [42] depicts an example of an MLP model with
one hidden layer.
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Figure 3.9: The MLP architecture with m inputs, one hidden layer and n outputs [42].

The outputs of an MLP are calculated based on the inputs, weights, and biases as follows:

1) First the weighted sums of input values are determined using the Equation 3.2

tj =
n∑

i=1
(Wi,j , xi) − Bj , j = 1, 2, ..., h (3.2)

where n is the number of input neurons, Wij denotes the link weight from the ith neuron
in the input layer (xi) to the jth neuron in the hidden layer (hj), (xi) shows the ith input
and Bj symbolizes the bias of the jth hidden node.

2) In the second step, by using an activation function, the output value of every neuron
in the hidden layer is computed as follows in Equation 3.3:

Tj = sigmoid(tj) = 1
(1 + exp(−tj)) , j = 1, 2, ..., h (3.3)

3) The final output of the network is described depending on the outputs of the hidden
nodes as below in Equation 3.4, 3.5:

ok =
h∑

j=1
(Wj,k, Ti) − B′

k, k = 1, 2, ..., m (3.4)

Ok = sigmoid(ok) = 1
(1 + exp(−ok)) , k = 1, 2, ..., m (3.5)

Where Wjk is the correlation weight between the jth hidden neuron and the kth output
neuron. B′

k is the bias of the kth hidden neuron [42].
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In summary, MLP can learn complex functions through a series of layers and activation
functions. It is trained using supervised learning algorithms and can be optimized using
various optimization techniques. Careful selection of hyperparameters is necessary to
achieve optimal performance.

3.3.3 AlexNet Classifier Architecture

AlexNet, an influential deep convolutional neural network (CNN) devised by Alex
Krizhevsky, Ilya Sutskever, and Geoffrey Hinton in 2012, has earned wide recognition
as a pioneering model that revolutionized the field of computer vision. It has set new
benchmarks in image classification tasks, exemplified by its victory in the prestigious
ImageNet Large Scale Visual Recognition Challenge (ILSVRC) 2012, a landmark com-
petition in the realm of computer vision [43]. While AlexNet was initially designed for
image classification, its architecture can also be adapted for other computer vision tasks,
such as object detection or image segmentation, by modifying or extending its layers
and incorporating additional techniques. However, at its core, It is a powerful image
classifier.

A defining feature of AlexNet is its deep architecture, comprising eight layers that
encompassed five convolutional and three fully connected layers. This innovative structure
enabled AlexNet to capture complex features from raw image data, including low-level
details such as edges and corners and high-level semantic features such as object parts
and textures. By leveraging this depth, it achieved unparalleled accuracy in image
classification tasks, surpassing earlier models that employed shallower architectures [44].

AlexNet made another significant contribution to the field of deep learning by introducing
Rectified Linear Units (ReLU) as activation functions. This innovation addressed the
notorious vanishing gradient problem often encountered in deep neural networks. This
problem arises when gradients diminish significantly during backpropagation, resulting
in sluggish convergence and subpar performance. By incorporating ReLU activations,
AlexNet effectively mitigated this issue, facilitating faster and more efficient training of the
network. Consequently, ReLU activations enabled it to acquire enhanced representations
of image data, leading to improved classification results.

On the other hand, AlexNet revolutionized the field of deep learning by introducing
dropout regularization as a powerful technique to prevent overfitting during training.
Overfitting, which happens when a neural network becomes overly specialized to the
training data and struggles to generalize to unseen data, is a common challenge in
machine learning. Dropout regularization addresses this issue by randomly setting a
fraction of neurons to zero during each training iteration. This forces the network to rely
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on different sets of neurons for different examples, preventing over-reliance on specific
neurons and promoting more robust generalization. The breakthrough use of dropout
regularization in AlexNet significantly improved its generalization performance, effectively
mitigating overfitting and enhancing its model’s ability to handle real-world data. The
basic architecture of the AlexNet classifier is illustrated in Figure 3.10 [45].

Figure 3.10: Architecture of Alexnet. From left to right (input to output) five convolu-
tional layers with Max Pooling after layers 1,2, and 5, followed by a three-layer fully
connected classifier (layers 6-8). The number of neurons in the output layer is equal to

the designed number of output classes [45].

AlexNet’s network structure is composed of 8 layers, which consist of 5 convolutional
layers, 2 fully connected layers, and a softmax output layer. A summary of the architecture
is presented below at a conceptual level:

• Input Layer: AlexNet takes an input image of size 227x227x3 (where 3 is the
number of colour channels - red, green, and blue).

• Convolutional Layer 1: This layer consists of 96 filters of size 11x11x3 that are
applied with a stride of 4, producing 96 feature maps of size 55x55x96. A rectified
linear unit (ReLU) activation function is applied to the output of each filter.

• Max Pooling Layer 1: A max pooling operation is applied to each of the 96
feature maps produced by the first convolutional layer, resulting in 96 feature maps
of size 27x27x96.

• Convolutional Layer 2: This layer consists of 256 filters of size 5x5x48 (where
48 is the number of feature maps produced by the first convolutional layer). The
filters are applied with a stride of 1, producing 256 feature maps of size 27x27x256.
ReLU activation is again applied to each output.

• Max Pooling Layer 2: A max pooling operation is applied to each of the 256
feature maps produced by the second convolutional layer, resulting in 256 feature
maps of size 13x13x256.
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• Convolutional Layer 3: This layer consists of 384 filters of size 3x3x256. The
filters are applied with a stride of 1, producing 384 feature maps of size 13x13x384.
ReLU activation is applied to each output.

• Convolutional Layer 4: consists of 384 filters of size 3x3x192 (where 192 is the
number of feature maps produced by the previous layer). The filters are applied
with a stride of 1, producing 384 feature maps of size 13x13x384. ReLU activation
is applied to each output.

• Convolutional Layer 5: This layer consists of 256 filters of size 3x3x192. The
filters are applied with a stride of 1, producing 256 feature maps of size 13x13x256.
ReLU activation is applied to each output.

• Max Pooling Layer 3: A max pooling operation is applied to each of the 256
feature maps produced by the fifth convolutional layer, resulting in 256 feature
maps of size 6x6x256.

• Flatten Layer: The output of the last max pooling layer is flattened into a 1D
vector of length 9216.

• Fully Connected Layer 1: This layer consists of 4096 neurons and is fully
connected to the flattened output of the previous layer. ReLU activation is applied
to each neuron.

• Fully Connected Layer 2: This layer consists of 4096 neurons and is fully
connected to the previous layer’s output. ReLU activation is applied to each
neuron.

• Output Layer: The final layer of AlexNet is a softmax layer that outputs a
probability distribution over the possible classes of the input image. For the
ImageNet dataset, there are 1000 possible classes, so the output layer consists of
1000 neurons.

Moreover, the training process of AlexNet involves optimizing the network’s parameters
(weights and biases) based on a loss function, typically cross-entropy loss, which measures
the dissimilarity between the predicted class probabilities and the ground truth labels.
This process enables the network to learn to make accurate predictions and generalize
its knowledge to unseen images during the testing or inference phase [45].
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Methodology

The previous chapter serves as a crucial cornerstone in this research, offering a compre-
hensive analysis and synthesis of the current state of technologies. Through an extensive
study of numerous research papers, a thorough survey was conducted to identify the most
suitable methods for the development of a new face recognition system. This investigation
revealed multiple approaches that can be utilized, and after careful consideration, a
combination of knowledge-based and image-based methods was selected for the face
detection component. Additionally, a neural network approach was chosen for the face
recognition part. These decisions were primarily driven by their seamless applicability
and high reliability in achieving accurate and efficient face detection and recognition.

In this section, the focus shifts to presenting the dataset and methodologies employed
in this study. The chosen dataset provides a comprehensive collection of face images,
carefully curated to represent a diverse range of individuals and pose variations. This
dataset acts as a foundation for evaluating and refining the proposed methodologies.
To enhance the accuracy and performance of the face recognition system, a range of
techniques and algorithms have been implemented. These include preprocessing steps
to improve the quality of the input images, feature extraction methods to capture
discriminative facial characteristics, and advanced classification algorithms to accurately
identify individuals. The utilization of these techniques aims to optimize the recognition
results and ensure robust performance in various scenarios.

Figure 4.1 provides an insightful overview of the key steps and phases involved in
the proposed method. It illustrates the sequential flow of the system, highlighting
the crucial stages of face detection, feature extraction, and classification. This visual
representation aids in understanding the overall structure and progression of the developed
system. By presenting the dataset and methodologies utilized, this section establishes a
solid foundation for the subsequent analysis. The integration of various techniques and

33
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algorithms enables the system to deliver enhanced face recognition capabilities, ultimately
contributing to advancements in the field of biometric identification.

Figure 4.1: The Workflow of Proposed Face Recognition System

4.1 Dataset

The Celebrities in Frontal-Profile in the Wild (CFPW) data set used in this study is a
collection of face images especially assembled to investigate the challenges associated
with utilizing unconstrained face recognition models. The data collection is essentially a
combination of constrained and unconstrained conditions with different ages of the same
individual. The pictures are taken from freely available internet platforms but have been
edited to meet particular "frontal" and "profile" postures. The fact that all other variants
are unrestricted, allows us to explore the issue of pose variation in a more controlled
manner [2].
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The data set comprises a total of 7,000 images, featuring 500 individuals. For each
individual, there are 10 frontal photographs and 4 profile photographs available. The
original photos within the data set exhibit significant variation in terms of pixel size,
with certain profile photographs lacking an ear or not being rotated by 90 degrees. To
ensure a balanced data set, we constructed an evaluation subset by selecting samples
from 140 individuals out of the total 500. In order to enhance performance, only a
specific number of frontal and profile photographs per participant are chosen for this
experiment. To accomplish this, we establish a threshold based on image size, specifically
opting for pictures with dimensions equal to or greater than 150x200 pixels (height x
width). Following dimension-based filtering, four frontal face images and four profile
photographs are selected for each individual. Figure 4.2 provides a visual representation
of some image samples from the CFPW data set [3].

Figure 4.2: Sample Images from Celebrities in Frontal-Profile in the Wild (CFPW)
data set [3].

4.2 pre-processing

Pre-processing is crucial in computer vision to handle images and produce the optimal
image size and resolution. The original pictures in the dataset may contain unwanted
noise and various light conditions, with different dimensions and colours. The pre-
processing technique decreases probable noise and converts the image into a unique space
thereby enabling effective classification and facilitating subsequent steps through the
extraction of relevant features. By applying pre-processing procedures to the images, the
CNN approach benefits from enhanced reliability and accelerated performance. These
pre-processing techniques serve to eliminate distractions and enhance the overall quality
of the input data, allowing CNN to focus on extracting meaningful patterns and features
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that are crucial for accurate analysis and classification tasks [46]. As a result, CNN can
operate with greater efficiency and effectiveness, leading to improved performance in
terms of both reliability and speed. The fundamental image pre-processing steps are
illustrated in Figure 4.3.

Figure 4.3: Block diagram of image pre-processing.

The following pre-processing methods are applied to transform the images:

• Normalization: It is a crucial step in image processing, especially when dealing
with photos captured under uncontrolled illumination conditions, as the distribution
of concentration levels may vary significantly. To address this challenge, a series of
procedures were employed to ensure consistent levels of image intensity throughout
the dataset. By applying normalization techniques, variations in lighting conditions
are effectively mitigated, resulting in images that exhibit more uniform and balanced
intensity levels. This process aids in reducing the influence of external factors such
as lighting variations, shadows, and highlights, which can hinder accurate face
recognition. The resulting normalized facial images possess enhanced clarity and
consistency, which is advantageous for subsequent analysis and recognition tasks.
The normalization process facilitates the extraction of discriminative facial features
and contributes to achieving a higher recognition rate by reducing the impact of
inconsistent illumination conditions on the overall performance of the recognition
system.

• Binarization: The binarization method is used to separate the white and black
pixels of an image by applying thresholding to the pixel values. It can be categorized
as either global or local, depending on the thresholding approach employed. Global
thresholding involves selecting an intensity value as the threshold for distinguishing
between white and black in the entire image. On the other hand, local thresholding
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divides the image into overlapping regions and applies partial segmentation methods
within each region. Global binarization may not be suitable for images with noise or
texture since it does not account for these factors. In such cases, it is recommended
to use adaptive thresholding, which adjusts the threshold value dynamically to
accommodate variations in the image.

• Resizing: In computer vision, image resizing is a crucial pre-processing step
that plays a significant role in optimizing various tasks. By resizing images,
we effectively eliminate unnecessary elements and focus on the essential content.
This technique not only helps conserve memory resources but also significantly
improves computational speed. Moreover, resizing images to smaller dimensions
is particularly beneficial when working with deep learning models, as they tend
to train more efficiently on smaller images. Thus, by resizing images, we can
expedite the training process while still capturing the critical information needed
for accurate analysis.

• Gray Scaling: It is a procedure for transforming images where the pixel values
are determined by the brightness of the image. Since processing colored images
can be challenging for a CNN architecture, grayscale conversion is often employed.
By converting images to grayscale, facial recognition using CNN can be effectively
performed without relying on color information from the input picture. This
approach ensures that facial features can be accurately detected and recognized,
regardless of color variations.

4.3 Implementation

This study focuses on applying face recognition models to the CFPW dataset, which
comprises frontal and profile face images. The model will take input data in the form of
128x128 pixel images and generate output classes corresponding to each celebrity. The
dataset is organized into folders, with each folder containing two sub-folders: frontal and
profile. As previously mentioned, the dataset includes 7000 images from 500 individuals,
with each user having 10 frontal and 4 profile photographs. The original photos in the
dataset vary in terms of pixel size significantly. Thus, to ensure a well-balanced dataset
for our evaluation subset, we carefully selected samples from 140 individuals out of the
total 500. In order to enhance performance, we specifically choose a limited number of
frontal and profile photographs from each participant for this experiment. This selection
process involves establishing a threshold based on image size, where we opt for pictures
with dimensions equal to or greater than 150x200 pixels (height x width). After applying
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this dimension-based filtering, we ultimately select four frontal face images and four
profile photographs for each person.

Initially, the data will undergo pre-processing, and the face detection method will be
employed to extract the region of interest. Subsequently, the accuracy of the models
will be assessed by applying the classifier to the cropped photos and extracting features
from each image independently. The implementation of the project is divided into the
following five distinct phases:

4.3.1 Data Pre-processing

The pre-processing phase in face recognition involves several steps to ensure the data
is appropriately prepared for subsequent analysis. In this study, the implementation
of the pre-processing stage includes resizing, grayscale conversion, normalization and
binarization. By implementing these pre-processing steps, the face recognition system
can effectively prepare the images for subsequent feature extraction and classification
stages, leading to more accurate and reliable recognition results.

As previously stated, the dataset comprises images that display considerable diversity
in terms of their size and dimensions, presenting obstacles to maintaining consistency
during analysis and processing. To address this issue, a crucial step is to resize the
images to a standardized dimension, ensuring uniformity throughout the dataset. In
this particular study, the images are resized to a resolution of 128x128 pixels, enabling
effective comparability and facilitating subsequent computational operations. Images
can be binarized and normalized before or after the face detection phase. In the case of
grayscale images, normalization involves subtracting the minimum value of the image
data from the grayscale values and subsequently dividing it by the maximum value of
the grayscale image. This process ensures that the grayscale data is scaled and adjusted
to a standardized range, facilitating further analysis and comparison.

4.3.2 Face Detection

Once the images have undergone pre-processing, the next step is to extract the region
of interest, which specifically refers to the face in this study. In this regard, two face
detection methods have been employed: the Haar Cascade and the MTCNN. The Haar
Cascade algorithm is rooted in the concept of Haar-like features, utilizing a machine
learning approach to detect patterns that signify facial features. This algorithm has
proven to be effective in identifying facial characteristics by leveraging learned patterns
and employing classification techniques.
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The Haar Cascade method effectively filters out irrelevant features from images, enabling
the identification of distinct human faces. This method employs two essential parameters:
the scale factor and min_neighbors. The scale factor determines the extent to which
the image size should be reduced during detection. We have chosen a scale factor of
1.1, striking a balance between resizing rate and detection speed. This ensures that the
reduction in size is not too significant, allowing for efficient detection.

On the other hand, min_neighbors define the number of neighbors required in each
rectangle for a detection to be considered valid. A higher value may result in more
accurate detection but can also lead to a higher chance of missing certain faces. For
our experiment, we have set the min_neighbors to 9, ensuring a reasonable balance
between precision and avoiding false negatives. Additional parameters, such as minsize
and maxsize, remain unchanged in this context and are not explicitly modified for our
experiment. Figure 4.4 shows an example of an extracted face using the Haar Cascade
algorithm. [fig a] demonstrate the original image and [fig b] depicts cropped image which
solely focuses on the extracted face itself. Once the Haar Cascade algorithm determines
the facial region, we extract this area by cropping it out from the original image and
discarding the surrounding context and unrelated details.

[fig a] [fig b]

Figure 4.4: sample of original and extracted faces

After applying the Haar cascade classifier, we employ the MTCNN algorithm to identify
facial features such as lips, eyes, and nose in the given images. Once the MTCNN process
accurately determines the bounding boxes for faces, we represent them as rectangular
shapes. It enables us to extract valuable information about the precise locations and
shapes of facial features. Figure 4.5 indicates marked facial features and bounding boxes
using MTCNN.
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Figure 4.5: Finding facial landmarks using MTCNN

In summary, the combined power of the Haar Cascade classifier and MTCNN elevates our
facial analysis capabilities. The precise detection of facial landmarks through MTCNN
enhances our ability to extract meaningful insights from facial images, facilitating a
deeper understanding of facial features and their spatial relationships. These valuable
advancements allow for more accurate and reliable facial analysis, ultimately contributing
to a wide range of applications in various domains.

4.3.3 Feature Extraction

As mentioned earlier, features in images are significant local intensity variations resulting
from shifts in pixel values across an image. Notably, edges and corners can be deemed
as crucial features within an image. Employing edge detection and feature descriptor
techniques proves beneficial in identifying image features that enhance the performance
of face recognition. In this study, we have utilized robust feature detectors and extractors
on the datasets, facilitating effective analysis.

The HOG technique leverages the magnitude and angle of gradients within a given
region to construct informative histograms. Several essential parameters shape the HOG
algorithm: orientation, determining the number of orientation bins per cell; pixel per cell,
defining the cell size in pixels; and cell per block, specifying the block configuration. In
this context, we utilize 9, (8,8), and (2,2) as orientation, pixel-per-cell, and cell-per-block
values, respectively. These parameters are implemented using the Skimage Python library,
which offers effective methods for HOG analysis. In the subsequent phase, we employ
the LBP algorithm to extract the most prominent features from the data. One of the
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primary advantages of LBP lies in its robustness to rotation and grey scale variations.
LBP serves as a fundamental technique for identifying distinctive characteristics within
an image, while effectively adapting to changes in lighting conditions. This method
incorporates two crucial parameters: "p" and "r." The former denotes the number of
points forming the circular neighbourhood, while the latter represents the radius of the
neighbourhood circle. Various parameter values have been explored; however, we have
found that for our specific dataset, the most suitable choices are 2 for "p" and 8 for "r".
It returns the resulting LBP image, where each pixel contains the binary code computed
using the LBP algorithm. The LBP algorithm assumes a grayscale input image. To
ensure compatibility, we can leverage the capabilities of the OpenCV library to convert
the image from BGR to grayscale. Additionally, it is important to note that all input
images provided to the LBP function must have the same size. Consequently, we resized
the images to a standardized dimension of 128x128 pixels.

To enhance the feature representation, we perform feature fusion by merging and nor-
malizing the results obtained from LBP and HOG. This fusion process yields combined
features that capture the complementary strengths of both techniques. The Canny edge
detection technique has been employed on the project dataset to enhance the visibility
of image edges. This method proves highly effective in detecting prominent features
within an image. However, due to the susceptibility of Canny methods to noise, the
initial step involves a lowpass filtering process, such as Gaussian blur, to minimize image
noise. Subsequently, the derivative is computed along the horizontal (x-axis) and vertical
(y-axis) directions by convolving the image with Sobel x and y operators, respectively.
This computation allows for the retrieval of both the magnitude and phase of the image.
Furthermore, the obtained edges undergo maximum suppression to reduce their thickness.

The Canny edge detection function, available in the Python library, encompasses several
adjustable parameters that influence the segmentation process. These parameters include
a lower threshold, a higher threshold, and a second gradient. Setting appropriate
threshold values is crucial for effective segmentation, while the second gradient parameter
determines the level of edge detection within the image. In our study, we have chosen a
lower threshold of 100, and a higher threshold of 200, and utilized the second gradient.
The result of the feature extraction and feature fusion algorithms is illustrated in figure
4.6.
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Figure 4.6: Feature Extraction and Feature Fusion

4.3.4 Split Data into Train and Test Subsets

The dataset consists of 8 face images per subject, comprising four frontal faces and four
profile faces. To ensure equitable distribution, 80 percent of the face images will be
utilized for training, with the remaining 20 percent allocated for testing. To maintain
balance, the stratify feature will be employed, ensuring an equal number of training and
test images for each subject.

As previously mentioned, the experiment involves three distinct image subsets. One
subset exclusively contains frontal faces, another consists solely of profile faces, and the
third subset combines both frontal and profile faces. Consequently, for each subject,
there will be 3 training images and 1 test image in separate subsets for frontal and profile
faces. Additionally, the third subset, comprising merged frontal and profile faces, will
have 6 training samples and 2 testing images. Table 4.1 shows the distribution of data
for the train and test set for each subset.

After splitting data into train and test subsets we normalize the images in each subset.
To standardize the features of a dataset, we can utilize the StandardScaler() function
from the sklearn library in Python. By creating an instance of the StandardScaler class,
we can effectively scale the features of our dataset. The fit_transform() method is
applied to the training data (X_train), which calculates the mean and standard deviation
of the features and transforms the data accordingly. On the other hand, the transform
method is used to apply the same scaling transformation to the testing data (X_test)
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Table 4.1: Distribution of data for train and test subsets.

Class Name #of People #of Images #of Images for training #of Images for testing

Frontal 140 560 420 140

Profile 140 560 420 140

Frontal-Profile 140 1120 840 280

based on the parameters learned from the training data. This ensures that the training
and testing datasets are scaled consistently.

4.3.5 Dimensionality Reduction using PCA algorithm

As previously stated, the PCA algorithm is widely utilized in face recognition applications
for its effectiveness in dimensionality reduction. It aims to extract the most informative
features from high-dimensional data while minimizing the loss of relevant information.
In the context of face recognition, it can significantly reduce the dimensionality of face
images by projecting them onto a lower-dimensional subspace.

It is highly suitable for face recognition applications due to its exceptional capabilities
in dimensionality reduction, face representation, discriminative power, and robustness
to variations. By reducing the dimensionality of face images, PCA significantly reduces
computational complexity and memory requirements while preserving essential facial
features. Through the identification of eigenfaces, which represent the principal compo-
nents of face data, it captures the most significant variations in face images, providing a
compact and efficient representation for face recognition.

Moreover, PCA’s focus on capturing maximum variance enables the identification of dis-
criminative facial features, allowing for accurate matching and recognition. Additionally,
PCA exhibits robustness to variations in lighting conditions, pose, and facial expressions,
making it reliable in recognizing faces under diverse circumstances. Thus, it stands as
an ideal choice for face recognition applications, offering unparalleled performance in
multiple critical aspects.

Machine learning and deep learning models are specifically designed to operate on vectors.
When working with image data, which is typically represented in matrix form, it is
necessary to convert it into a vector format. Thus, before applying the PCA algorithm,
we reshape the images into a 2D vector representation.
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4.3.5.1 PCA Projection

To implement the PCA algorithm, initially, we import the PCA class from the scikit-
learn library, which is used for performing dimensionality reduction. Then an instance of
the PCA class is created, specifying that we want to reduce the dimensionality of the data
to two components. Later the PCA model is fitted to the input data. This step calculates
the principal components based on the covariance matrix of the data and determines the
transformation matrix that maps the original data to the reduced-dimensional space. The
fitted PCA model is then used to transform the input data into the reduced-dimensional
space. The result contains the transformed data, where each sample is represented by its
corresponding two principal components. The scatter plot for the PCA Projection of 20
people is illustrated in figure 4.7:

Figure 4.7: PCA Projection of 20 people

4.3.5.2 Finding Optimum Number of Principal Component

In this section, An instance of the PCA class is created without specifying the number
of components. By default, the algorithm will compute as many components as there
are features in the input data. Then, the PCA model is fitted to the input data. This
step calculates the principal components based on the covariance matrix of the data
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and determines the transformation matrix. After creating an instance of the PCA class,
pca.fit(x_train) fits the PCA model to the training data (x_train), calculating the
principal components and their corresponding explained variances. The result is displayed
by the plot using the matplotlib library in Python. The plot shows a line graph where
the x-axis represents the components (usually ordered from 1 to the number of features in
the x_train), and the y-axis represents the corresponding explained variances. The graph
helps visualize how much variance in the original data is explained by each principal
component as shown in figure 4.8:

Figure 4.8: Finding Optimum Number of Principal Component

In the figure above, we observe that using 90 or more Principal components results in
representing the same data. This indicates that the majority of the data’s variance can be
captured using these 90 components. Thus we proceed with the classification process by
utilizing these 90 PCA components, reducing the data’s dimensionality while maintaining
the essential information. The next step is to generate the average faces and eigenfaces
from the PCA analysis. The average face helps us understand the common characteristics
and serves as a reference for comparison, while eigenfaces enable dimensionality reduction,
feature extraction, and face reconstruction. Then we perform dimensionality reduction
on the training and test data. Using the PCA model, the dimensionality reduction
transformation applies to the training data (x_train). The transform() method is used
to project the data onto the principal components obtained during the training phase.
This step reduces the dimensionality of the training data from the original feature space
to the space defined by the principal components. The same dimensionality reduction
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transformation is performed using the PCA model on the test data (x_test). The test
data is projected onto the same principal components obtained from the training data.
This ensures that the dimensionality reduction is consistent between the training and
test datasets, allowing for proper evaluation and comparison. The reduced-dimensional
data will be used as input for machine learning models or other analysis techniques to
benefit from lower-dimensional representations of the data.

4.3.6 Classification

After performing image pre-processing and extracting crucial features, the processed
data can be inputted into classifiers. Given our objective of distinguishing individual
faces within the dataset, our model must serve as a classifier capable of labeling the
results. In this study, we utilize two powerful deep learning classifiers: the MLP and
AlexNet, Both models have been pre-trained on extensive datasets, such as ImageNet,
and exhibit CNN architectures, rendering them well-suited for the task at hand. Before
building the model we need to convert categorical labels into one-hot encoded vectors.
we use to_categorical() function from the Keras.utils module which is widely used
in multi-class classification tasks to convert the target variables into one-hot encoded
format. This format is commonly used in deep learning frameworks, including Keras, as
it provides a suitable representation for training models to predict categorical variables
with multiple classes.

The accuracy and performance of a deep learning model are greatly influenced by the
choice of various method parameters. By carefully defining the appropriate loss function,
activation function, learning rate, and number of hidden nodes, we can effectively impact
the convergence and overall performance of the model. For instance, utilizing the
softmax function in the last layer enables the generation of probabilities for all potential
classes, ensuring that their summation equates to one. Consequently, the class with the
highest probability is identified as the model’s output, enhancing the interpretability and
reliability of the model’s predictions. To construct the MLP model, we employ a series of
steps involving multiple dense layers, dropout regularization, and a softmax output layer.
Subsequently, the model is compiled, incorporating the desired optimizer, loss function,
and evaluation metrics outlined below:

• we initialize a sequential model using the Sequential() function from Keras. This
allows us to build a neural network model in a sequential manner, where each layer
is added one after another.
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• The add() method is used to add a Dense layer to the model. The first Dense layer
has 256 units and uses the ReLU activation function. It also specifies input_dim=90,
indicating that the expected input shape for this layer is 90 features.

• A Dropout layer is added after the first Dense layer with a dropout rate of 0.2.
Dropout helps prevent overfitting by randomly setting a fraction of the input units
to 0 during training, reducing interdependencies between neurons.

• Additional Dense and Dropout layers are added to the model, gradually reducing
the number of units. This pattern of adding layers with decreasing number of units
is a common approach in deep learning architectures.

• The final Dense layer is added with 140 units, representing the number of classes in
the multi-class classification task. It uses the softmax activation function to output
the probability distribution over the classes.

• The number of training epochs is set to 150, indicating how many times the model
will iterate over the training data during training.

• The batch size is set to 128, which determines the number of samples that will be
propagated through the network at once.

• The ReduceLROnPlateau() callback is created, which monitors the validation
accuracy. If no improvement is observed in the validation accuracy for 2 epochs
(patience=2), the learning rate is reduced by a factor of 0.1 (factor=0.1).

• The model is compiled with the Adam optimizer, which adapts the learning rate
during training. The learning rate is set to 0.001 (lr=1e-3).

• The loss function is set to ’categorical_crossentropy’, which is commonly used
for multi-class classification tasks. The model will also compute and report the
accuracy metric during training.

• Finally, we provide a summary of the model’s architecture including the layer type,
output shape, and the number of parameters in each layer.

The next step is to implement the AlexNet model for face classification in Python
using the TensorFlow library. After importing the necessary libraries, We define the
alexnet_model function, which takes the input shape and number of classes as argu-
ments and returns the AlexNet model. Inside the model function, we create a sequential
model using tf.keras.models.Sequential(). We add the layers of the AlexNet model
one by one using model.add(). Each layer is instantiated with specific parameters
such as the number of filters, kernel size, strides, padding, and activation function. The
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model starts with two convolutional layers followed by max-pooling layers (layers 1-4).
The next three convolutional layers (layers 5-7) do not have pooling layers in between.
The model continues with another max pooling layer (layer 8) and then a flatten layer
(layer 9) to convert the output from the previous layers into a 1D feature vector. Two
fully-connected layers with ReLU activation are added (layers 10 and 12). Dropout layers
with a regularization rate of 0.5 are included after each fully-connected layer to prevent
overfitting (layers 11 and 13). Finally, an output layer with softmax activation is added
to classify the input into the specified number of classes (layer 14). The alexnet_model
function returns the constructed model. We define the input_shape (128x128x3) and
the num_classes (140 in this case) for our specific classification task. Then the instance
of the AlexNet model is created by calling alexnet_model(input_shape, num_classes).
We compile the model using the Adam optimizer, sparse categorical cross-entropy loss
function, and accuracy as the evaluation metric. The model summary is printed us-
ing model.summary(), which provides a detailed overview of the model architecture,
including the shape and number of parameters in each layer.

The specific choices made in the model architecture of AlexNet, such as the number
of filters, kernel sizes, and activation functions, are crucial for achieving effective face
classification. we discuss these choices and their relevance to the task of face classification
below:

• Number of Filters

The number of filters employed in the convolutional layers plays a vital role in
capturing distinctive features from face images. By increasing the number of filters,
the model becomes capable of extracting a wider range of complex and diverse
features. AlexNet implements a progressive increase in the number of filters in
deeper layers. This approach facilitates the acquisition of hierarchical features,
starting from 96 filters in the first layer, 256 in the third layer, 384 in the fifth
and sixth layers, and finally 256 in the seventh layer. This hierarchical progression
enables the model to learn a spectrum of features, ranging from low-level edges
to high-level object parts and structures, ultimately enhancing face classification
performance.

• Kernel Sizes

The selection of kernel sizes profoundly impacts the receptive field of each convolu-
tional layer and influences the size of the learned features. Smaller kernel sizes focus
on capturing intricate details, while larger kernel sizes emphasize global structural
elements. In this model, larger kernel sizes are employed in the earlier layers (11x11
in the first layer and 5x5 in the third layer) to capture broader patterns and edges
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that provide a foundation for subsequent feature extraction. Conversely, smaller
kernel sizes (3x3) are employed in the deeper layers to extract more localized and
fine-grained facial features, enabling a more comprehensive representation.

• Activation Functions

Activation functions introduce non-linearity to the model, enabling the exploration
of complex relationships between features and enhancing the model’s discriminative
power. AlexNet leverages the Rectified Linear Unit (ReLU) activation function,
which has demonstrated remarkable efficacy in training deep neural networks. ReLU
effectively mitigates the vanishing gradient problem, expedites training convergence,
and introduces sparsity within the network. These advantages enhance the model’s
capacity for generalization, reduce overfitting, and enable the acquisition of highly
informative facial features during face classification.





Chapter 5

Experimental Evaluation

In this chapter, we will provide a detailed description of the experimental setup conducted
to evaluate our proposed face recognition system. This encompasses the selection of
evaluation metrics, the specific configurations of the algorithms used, and the relevant
parameters employed. Additionally, we will present the outcomes obtained from these
experiments. To begin with, the evaluation metrics chosen for assessing the performance
of our face recognition system were primarily focused on accuracy rates. The accuracy
metric provides an overall indication of the system’s ability to correctly identify indi-
viduals. The experimental setup employed both unimodal and multimodal approaches
for face recognition. The unimodal approach utilized the frontal face and profile face
images separately, while the multimodal approach incorporated both frontal and profile
face images. The inclusion of profile face images was motivated by the idea that acquir-
ing features from different angles can enhance the system’s ability to recognize faces
accurately.

5.1 Experimental Setup

The dataset utilized in this study comprises 140 individuals sourced from the CFPW-
Dataset. To ensure comprehensive coverage, four frontal face images and four profile
images were selected for each person. These 140 individuals were carefully chosen from a
larger pool of 500 individuals available in the CFP dataset. This selection was necessary
due to the presence of numerous profile images lacking ear visibility or not being rotated
by the standard 90° angle. To accurately identify and analyze the facial features, both
frontal and profile faces were detected using the Haar cascade algorithm. To extract the
most crucial facial characteristics, various feature extraction methods, such as LBP and
HOG, were employed. Additionally, the PCA algorithm was utilized to reduce the image
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dimensions. Ultimately, to identify the individuals in the dataset, two different CNN
classifiers, namely MLP and AlexNet, were employed.

The reliability and efficiency of the proposed method are thoroughly assessed through
extensive experimentation conducted on the dataset. After extracting the features from
the frontal and profile face images, the next step involves combining them into a single
sample. This fusion process aims to leverage the complementary information present in
both the frontal and profile views of the same individual. By combining the features, the
system can create a more comprehensive representation of the face, potentially improving
recognition accuracy. Once the features from the frontal and profile faces are fused
into a single sample, the system proceeds with decision-level fusion. In this stage, the
final decision is made by consolidating the decisions obtained from the fused features.
A majority voting scheme is employed, where each individual feature contributes to a
vote, and the decision with the highest number of votes is considered a final decision.
The decision-level fusion with majority voting helps mitigate the potential errors or
uncertainties in individual feature-based decisions. By considering multiple perspectives
and combining the decisions, the system aims to enhance the overall robustness and
accuracy of the face recognition process

5.2 Experimental Results

Among the unimodal systems as shown in 5.1, the MLP model achieved an accuracy
of 81.50% for frontal face recognition, while the CNN model, specifically AlexNet,
outperformed the MLP with an accuracy of 89.45% for frontal face recognition. This
indicates the superior capability of CNN models in capturing intricate facial features and
patterns, resulting in more accurate recognition. For profile face recognition, the MLP
model achieved an accuracy of 78.56%, while the CNN (AlexNet) model obtained an
accuracy of 80.34%. Although the CNN model’s performance was slightly better, both
models demonstrated reasonable accuracy rates for profile face recognition, which can be
challenging due to the variation in facial features across different angles.

Moving on to the multimodal systems shown in 5.2, combining different modalities such as
LBP, PCA, and MLP further improved the recognition accuracy. The combination of the
LBP, PCA, and MLP approach yielded an accuracy of 84.13% for frontal face recognition
and 82.04% for profile face recognition. This suggests that incorporating additional
modalities can enhance the system’s ability to capture diverse facial characteristics
and improve its performance. Moreover, fusing features from both frontal and profile
faces using the LBP, PCA, and MLP techniques resulted in an accuracy of 88.25%,
indicating the benefits of utilizing multiple viewpoints for face recognition. This approach



Chapter 5 Experimental Evaluation 53

demonstrates that considering facial features from different angles can lead to more robust
and accurate recognition results. Additionally, combining the powerful AlexNet CNN
model with LBP further improved the system’s performance. For frontal face recognition,
the AlexNet + LBP approach achieved an accuracy of 90.83%, while for profile face
recognition, the accuracy was 86.68%. The fusion of both frontal and profile faces using
AlexNet and LBP resulted in an outstanding accuracy rate of 96.40%. These results
emphasize the importance of leveraging advanced deep learning models and incorporating
complementary modalities for achieving highly accurate face recognition. The recognition
rates of faces under the identification mode of unimodal and multimodal systems with
the proposed systems are shown in Table 5.1 and Table 5.2 for the experiments applied
to CFPW dataset.

Table 5.1: Recognition Rate for Unimodal System.

Algorithms Traits Recognition Rate (%)

Unimodal systems

MLP
CNN (AlexNet)
MLP
CNN (AlexNet)

Frontal Face
Frontal Face
Profile Face
Profile Face

81.50
89.45
78.56
80.34

Table 5.2: Recognition Rate for Multimodal System.

Algorithms Traits Recognition Rate (%)

Multimodal systems

LBP + PCA + MLP
LBP + PCA + MLP
LBP + PCA + MLP
AlexNet + LBP
AlexNet + LBP
AlexNet + LBP

Frontal Face
Profile Face
Frontal + Profile
Frontal Face
Profile Face
Frontal + Profile Face

84.13
82.04
88.25
90.83
86.68
96.40

Overall, the findings highlight the significance of employing multimodal approaches and
integrating various techniques such as deep learning models, feature fusion, and different
modalities to enhance the performance of face recognition systems. The multimodal
systems consistently outperformed their unimodal counterparts, demonstrating the effec-
tiveness of leveraging multiple sources of information. The high accuracy rates achieved
by these systems provide promising prospects for real-world applications, including
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security systems, access control, and identity verification, where accurate and reliable
face recognition is crucial.

The analysis of the learning curve for model loss in AlexNet has been illustrated in Figure
5.1 which involves studying the decrease in loss function value over multiple training
iterations or epochs. The learning curve provides insights into how the model’s loss
decreases and converges as it learns from the training data. As it is shown, there will be
no significant improvement in the loss value of the model. Hence we decided to stop at
epoch number 50.

Figure 5.1: AlexNet Model Loss
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Conclusions

In this study, the extraction of valuable features plays a critical role in the develop-
ment of an accurate face recognition system. To achieve this, the LBP approach is
employed in conjunction with CNNs. This combined approach allows for the extraction
of discriminative features from facial images, enabling effective facial representation.

Furthermore, the performance of the system is further enhanced through the utilization
of feature-level and decision-level fusion techniques. Feature-level fusion combines the
extracted features from multiple modalities, while decision-level fusion combines the
classification decisions made by individual classifiers. These fusion techniques leverage
the complementary information provided by different modalities, thereby improving the
overall recognition accuracy.

To evaluate the system’s performance, extensive experiments are conducted on the diverse
CFPW dataset. This dataset includes frontal and profile face images captured under
various conditions, mimicking real-world scenarios. The results of these experiments
demonstrate that multimodal approaches outperform unimodal ones, highlighting the
importance of considering multiple modalities for effective biometric recognition.

Remarkably, the fusion of frontal and profile images using the AlexNet model yields
the highest accuracy rate of 96.40%. This outcome underscores the significance of
incorporating multiple modalities, specifically frontal and profile images, to achieve robust
and accurate face recognition. By combining these modalities, the system effectively
mitigates the challenges posed by pose variation, resulting in improved recognition
performance.

The findings from this study emphasize the effectiveness of multimodal approaches
in biometric recognition systems. The utilization of multiple modalities, along with
appropriate fusion techniques, enables the system to overcome the limitations associated
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with pose variation and enhance the accuracy and reliability of face recognition. These
insights contribute to the advancement of biometric recognition systems and pave the
way for more robust and versatile applications in various domains.

The multimodal recognition systems employed in this study demonstrate a level of
accuracy that is consistent with numerous other related studies. These studies have
consistently shown that multimodal biometric systems surpass unimodal biometric
systems. The reason behind this superiority lies in the abundance of biometric sources,
which provide a wealth of information and discriminant features that are crucial for
the recognition process. However, it is important to acknowledge the trade-off between
accuracy and processing time when considering multimodal systems. These systems
require additional time for certain recognition steps, such as acquiring data from multiple
sources and performing fusion at different levels. While the benefits of increased accuracy
are evident, it is crucial to carefully balance these advantages against the potential delays
introduced by the additional processing requirements.

6.1 Future Directions

Future work can focus on several avenues to further improve and expand the capabilities
of the multimodal face recognition system.

• Integration of Additional Modalities: While this study considered the fusion
of frontal and profile face images, future research can explore the integration of
additional modalities, such as thermal images or 3D facial scans. Combining these
modalities can provide richer and more comprehensive information, potentially
enhancing the system’s ability to handle challenging scenarios with greater accuracy.

• Exploration of Advanced Fusion Techniques: This study employed feature-
level and decision-level fusion techniques, which proved effective in improving
recognition accuracy. However, there are other fusion strategies, such as score-
level fusion or hybrid fusion methods, that could be explored to further boost the
system’s performance. Investigating novel fusion techniques and evaluating their
impact on recognition accuracy would be a valuable direction for future research.

• Robustness to Occlusions and Disguises: In real-world scenarios, faces are
often partially occluded by objects or individuals, and people may attempt to
disguise their appearance. Future work can focus on developing techniques that are
robust to occlusions and disguises, ensuring accurate recognition even in challenging
conditions. This could involve incorporating attention mechanisms, adversarial
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training, or advanced image inpainting algorithms to reconstruct occluded or
disguised facial regions.





Appendix A

Poster

Figure A.1: The Poster

The code for the proposed method is available in the following GitHub Repository:
https://github.com/mahboubeh1987/master-thesis-code
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