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Abstract

The North Sea region sees a high operational cycle of tools that require frequent main-

tenance check-ups, repairs, and preparations for subsequent operations. Given the

quick-paced nature of these operations, the availability of spare parts at the mainte-

nance workshop is critical for maintaining minimal flow time. Adding to the challenge

is the practice of sourcing spare parts from best-cost countries, leading to a lead time

of approximately one year, thus necessitating an optimal economic order quantity

and reorder point. The balancing act between maintaining sufficient inventory at

the workshop and managing operational expenses through batch ordering of spare

parts is a complex one. Frequent supply requirements contribute to the environmen-

tal impacts through increased spare part scrap rates. With these challenges in mind,

this thesis aims to develop a simulation model capable of quantifying the costs and

benefits associated with reusing repaired spares, as compared to procuring newly

built spares from best-cost countries. To achieve this, a case study focusing on a

specific maintenance workshop within the North Sea region was carried out. The

comprehensive tool repair and spare part supply operations were conceptualized and

modeled using a simulation approach. Two operational scenarios were simulated:

the first, where the maintenance workshop was completely dependent on newly built

spares sourced from best-cost countries, with no inventory stock dedicated for spares

re-usage. In the second scenario, the workshop primarily relied on repaired spares,

with a safety level of new build stock maintained. The results, guided by the research

question probing the impact of implementing a repair-path cycle process within the

maintenance process, showed that the enhanced model significantly outperformed

the baseline model across several key metrics over a model time run of three years.

These include a 78% reduction in lead times, a 116% improvement in worker utiliza-

tion, a 73% reduction in crowding levels, a 52% reduction in scrap rate, and a potential

profit increase of roughly three million NOK (20%). This thesis provides evidence that

the enhanced model, with its focus on repaired spares, presents a more sustainable,

efficient, and profitable solution to the challenges of inventory management in high-

cycle operations. It is important to note, however, that the sensitivity of these results

is closely tied to the high procurement lead times.
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Chapter 1

Introduction

This chapter will provide an overall background on the topic’s relevance in the industrial

world and give more context about oil & gas spare parts inventory management. A

project plan will be presented within the final section of this chapter.

1.1 Background, Relevance & Motivation

Effective inventory management is a critical aspect of any supply chain, particularly

in the oil and gas sector where procurement issues may arise due to geographical

challenges. Previous researches have extensively explored various inventory policies

aimed at optimizing spare part management, these policies can be generally catego-

rized into continuous and periodic review strategies [1].

Koçağa and Şen explored the intricacies of spare part inventory management

where demand lead times and rationing are essential factors. They consider the (T, Q)

policy, which is a periodic review policy with a fixed replenishment order size. While

this strategy offers a certain level of consistency, it may lack the flexibility required to

promptly address variations in demand. Their study identifies strategies for optimally

setting rationing levels and reordering points to improve system performance [2].

Li, Zhang, and Tan delve into spare part management within a testing workshop

setting. They employ a simulation model to study the impact of different inventory

policies on system performance. Their work emphasizes the need for inventory con-

trol policies that are responsive to specific contexts, including both the nature of de-

mand and supply considerations [3].

1



Section 1.2. Research Needs & Gaps

A different approach to inventory management is seen with the (s, Q) policy, a

continuous review strategy that replenishes spare parts when the stock level reaches

certain reorder points. Miranda et al. developed a mixed-integer, nonlinear program-

ming model based on the (s, Q) policy that considers both inventory control and

facility location [4]. While continuous review policies may result in higher inspection

costs, they also provide greater flexibility in responding to demand fluctuations.

In the context of the oil and gas industry, Ali et al. proposed an improved Mainte-

nance, Repair, and Overhaul (MRO) inventory management system. They highlighted

the importance of considering the full life-cycle of spare parts, from initial procure-

ment to eventual disposal. Their proposed system resulted in an increased service

level and reduced average inventory investment, suggesting that a holistic approach

to MRO inventory management can yield substantial benefits [5].

A similar perspective is offered by Saeed & Mojahid, who developed a model and

simulation for inventory management of repairable items in maintenance systems.

This approach not only accounts for the potential reuse of repairable items but also

provides a robust method for handling uncertainties associated with the repair pro-

cess. His findings underline the importance of a repair path cycle in maintenance

systems and the potential cost and time savings that can be realized through its im-

plementation [6].

Finally, integrating demand forecasting into inventory management has been

proven to be beneficial. Van der Auweraer and Boute presented a methodology to

forecast spare part demand using service maintenance information. Accurate de-

mand forecasting can help to reduce stockouts and excessive inventory, contributing

to more efficient inventory management [7].

All the mentioned studies focused on various inventory control policies and lo-

gistical lead time challenges; however, they had no considerations to integrate repair

policies in order to handled the obstacles faced by a short-cycle region. A short-cycle

region is a region of high operational cycle of tools that require frequent maintenance

check-ups, repairs, and preparations for subsequent operations.

1.2 Research Needs & Gaps

As it stands, there is a distinct need for studies that focus on integrating inventory

control policies, and repair policies, under short cycle operational demands with high

logistical lead time challenges to enable managers to comprehensively manage the

entire spare part supply chain. Strategies like Turan et al.’s risk-averse simulation-

2



Section 1.3. Case Company

based approach, which jointly optimizes workforce capacity, spare part stocks, and

scheduling priorities, show potential. However, additional research is necessary to

develop an inventory policy that addresses the unique challenges of the oil and gas

sector, such as geographical constraints and the need for swift offshore operations [8].

The challenges described here are what the case company of this research is deal-

ing with, so the proposed enhancement to the maintenance process flow structure

through a repair path cycle is a promising avenue that needs further exploration.

The inclusion of the repair path cycle in inventory management for industries

like oil and gas where equipment is expensive and can often be repaired rather than

replaced, can help reduce costs, improve resource utilization, and reduce waste.

This would be done in this research by including simulation modeling which is

a effective tool for examining complex inventory systems, allowing decision-makers

to test different strategies and policies without disrupting real-world operations. It

can provide insights into system behavior and performance under various scenarios,

enabling the design of more efficient and effective inventory management system [3].

All in all, a more integrated, demand-responsive, and lifecycle-aware approach to

spare part inventory management seems to be the direction towards a more efficient

and effective system. Therefore, further research is needed to develop an inventory

policy that takes into account the unique challenges within the oil and gas sector.

Applying theoretical frameworks like Queuing Theory, Economic Order Quantity

(EOQ) Model, ABC Analysis, data analytics, and simulation modeling assists in cre-

ating a more responsive and cost-effective inventory management system. The pro-

posed enhancement to the maintenance process flow structure through a repair path

cycle holds potential for reducing maintenance delays and improving the speed of

offshore operations.

1.3 Case Company

This research revolves around the maintenance workshop of a classified for confi-

dentiality reasons company that will be referred to as “Company A” throughout. The

workshop operates on a fleet of tools that are rented out to offshore operations. This

creates a revenue stream for the case company.

The case company has been facing elongated lead times due to repair delays and

stock shortages. This created a challenge on meeting operational demands especially

3



Section 1.4. Research question and Objectives

since they operate as a short cycle region with quick turnarounds as low as two weeks

at a time from the moment the tool is back loaded onshore till the offshore shipping

date. The confidentiality of the case company extends to the tool naming all through-

out the research. All maintenance processes and data gathered came directly from

interviews with a tool specialist at the company, along with the maintenance historical

data provided by them.

1.4 Research question and Objectives

The primary aim of this research is dual in a sense, where firstly, it aims to explore

the implications of introducing a repair-path cycle into the established maintenance

process flow within the case company. This objective is driven by the need to assess

whether such an approach can enhance the effectiveness of the maintenance process,

ultimately benefiting the overall operational performance of the company. Secondly,

this study aims to design a practical, executable model of the repair-path cycle that

specifically targets the reduction of lead times and the improvement of operational

efficiency.

What is the effect of the repair-path cycle on the maintenance process flow

implemented at the case company?

This question seeks to understand the potential effects and improvements that the

introduction of a repair-path cycle might bring about within the current maintenance

procedures of the company. This includes aspects such as process efficiency, resource

allocation, and operational adaptability.

How can the repair-path cycle be modeled practically to illustrate the operational

behavior in terms of lead times and operational efficiency?

This question aims to develop a pragmatical application of the repair-path cycle

that not only theoretically promises improvements, but also delivers tangible benefits

when implemented. This requires careful consideration of the unique operational

characteristics and constraints of the case company when developing the simulation

model, ensuring that the proposed model is not only effective but also feasible within

the company’s operational context.

4



Section 1.5. Research limitations

1.5 Research limitations

In order to fulfill the aims and objectives of this research effectively within the given

timeframe that starts in February 2023 and ends in June 2023, certain boundaries and

delimitations were put in place to focus the scope of the study. These delimitations,

while essential for practical reasons, do impose some constraints on the breadth and

generalizability of the research.

The study is confined to a single tool from the fleet managed by the case company.

By restricting the focus to one tool, the research can delve deeper into the specific

operational intricacies associated with that particular piece of equipment. However,

it should be noted that the findings may not necessarily apply to all tools within the

fleet due to the variations in design, functionality, and maintenance requirements

among different tools.

Furthermore, the research will concentrate on the five most critical components of

the chosen tool. The determination of ’critical’ was made based on the component’s

impact on overall tool functionality and availability along with its maintenance needs

frequency. While this allows for a more focused study of the components that signifi-

cantly influence the tool’s operation and maintenance, it does limit the understanding

of other less critical but potentially impactful components.

The supply chain aspect of the research has also been delimited. The research

assumes a single supply vendor with a fixed supply delay time. This decision was

made to control the number of variables within the study and provide a clearer view

of the system. The assumption of a fixed supply delay time allowed for a focus on

internal operational factors rather than external supply uncertainties, having taken a.

However, in the real-world scenarios, supply times can vary due to numerous factors,

and multiple vendors might be involved, adding complexity to the supply process.

Therefore, the outcomes related to supply logistics should be understood within this

context of simplification.
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1.6 Project Planning

In order to successfully complete this research project within a single semester, a

meticulous week-by-week plan has been designed. The completion deadline for this

project in June 2023, and the plan broke down the distinct stages over the time period

provided. This weekly plan provided a roadmap for the successful completion of the

project within the timeframe. However, it’s also important to note that flexibility was

required to adapt to all unexpected changes or challenges during the research process.

The first four weeks involved establishing the research questions, developing the

study’s framework, and initiating the literature review process. The next four weeks

were planned to be dedicated to data collection; however, the data collection was only

achievable starting in week 7 due to unforeseen delays. This included liaising with

"Company A" to access needed data, such as historical maintenance data, operational

records, and information about the tool under study and its critical components.

The simulation model structure began regardless of the data collection delay and

ended later than scheduled due to the unforeseen model complexities. Moreover,

the thesis writing began two weeks later than scheduled and only ended in week 19.

During this period, the model was thoroughly tested using different scenarios and

refined based on the feedback from these tests.

Weeks 19 to 21 were dedicated to validating the model results from the model and

discussing these findings in the context of the study’s objectives and the reviewed

literature. The project report will also be finalized during this period. Following that,

initial drafting of the project report also began two weeks delayed and the thesis was

submitted after reviews as planned. A better visualization of the plan is provided

below in Figure 1.1.
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Figure 1.1: Project plan.
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1.7 Research structure

The thesis structure following this chapter was divided below:

Chapter 2: Theories and Literature Review - This chapter will review existing liter-

ature on spare part inventory management, inventory control policies, repair policies,

demand forecasting, and simulation. It will provide a theoretical foundation for the

research.

Chapter 3: Research Methodology - This chapter will detail the research approach,

data collection methods, and analysis techniques used in the study.

Chapter 4: Data Collection - This chapter details the methods of collecting the

case company’s data, alongside all parameters and national standards considered,

while also censoring the data in a way that complies with the case company’s privacy.

Chapter 5: Analysis - This chapter will detail the findings from the case study of

Company A, including an analysis of the current inventory management practices

and the application of the proposed inventory policies.

Chapter 6: Results and Discussion - This chapter will discuss the findings of the

research in relation to the research objectives and questions. It will also discuss the

implications of the findings for spare part inventory management in the oil and gas

industry.

Chapter 7: Conclusion - This chapter will provide a summary of the research find-

ings, limitations of the study, and recommendations for future research.
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Chapter 2

Theories & Literature Review

This chapter will review existing theories and literature on spare part inventory man-

agement, inventory control policies, repair policies, national standards, demand fore-

casting, and simulation. It will provide a theoretical foundation for the research.

2.1 Spare Parts Inventory Management

Inventory management is an essential process in any industry. However, in the oil and

gas industry, where equipment failure could lead to costly downtime and safety risks,

efficient spare part inventory management is of great importance. Traditional theo-

retical approaches to inventory management include the Economic Order Quantity

(EOQ) model, the Just-in-Time (JIT) model, and the ABC analysis.

2.1.1 Economic Order Quantity (EOQ) Model

The EOQ model, introduced by Harris in 1913, is a fundamental theory in inventory

management. It attempts to determine the optimal order quantity that minimizes

the total inventory cost, considering the cost of holding inventory, order cost, and

shortage cost. However, its main limitation is its deterministic approach - it assumes

a constant demand and lead time, which is rarely the case in the real world and par-

ticularly in the volatile oil and gas industry [9].
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Section 2.1. Spare Parts Inventory Management

2.1.2 Just-in-Time (JIT) Model

The JIT model, emanating from the Toyota Production System, focuses on reducing

inventory to the bare minimum. The idea is to order parts just when they are needed,

reducing holding costs. JIT works well when suppliers are reliable and the lead times

and demand are predictable. However, in the oil and gas industry, where equipment

often operates in harsh conditions and the failure rates can be unpredictable, JIT could

lead to increased risk of equipment downtime due to parts unavailability [10]

2.1.3 ABC Analysis

ABC Analysis is a method for classifying inventory items based on their importance.

Class A items are the most valuable products, typically accounting for a significant

portion of the company’s total value but only a small portion of total quantity. Class

B items are moderately valuable, while Class C items make up the majority of the

quantity but contribute less to the total value. This method allows managers to focus

their efforts on managing the items that have the greatest impact on the business’s

overall inventory cost [2]. It provides a structured approach but does not explicitly

incorporate the specificities of the oil and gas sector such as high cost of downtime,

varying criticality of parts, and erratic failure patterns [11].

2.1.4 Safety Stock in Streamlining Maintenance Processes

Safety stock is additional inventory held parts to mitigate the risk of stock-outs due to

demand and lead time variability. In the oil and gas industry, maintaining an appro-

priate level of safety stock for critical spare parts can help streamline maintenance

processes and minimize equipment downtime. By replacing a faulty component with

a safety stock item, maintenance can be performed without waiting for the original

component to be repaired and coated, thereby reducing maintenance time and costs.

To determine the optimal safety stock level, several factors should be considered.

These include demand and lead time variability, where greater variability in demand

and lead time requires higher safety stock levels to ensure an acceptable service level

[12]. In the context of ‘Company A’, this variability is very prevalent when it comes

to lead times due to the fact the components are shipped across continents, and

therefore, maintaining the best cost country suppliers would require better inventory

management processes and enhancements, and by extension, the presence of this

research.
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Moreover, service level requirements are to be considered, meaning that having

higher service levels necessitate more safety stock to reduce the risk of stock-outs, and

finally, the cost trade-offs, and these are the costs of carrying safety stock against the

costs of stock-outs, such as lost production and equipment downtime, is essential for

optimal safety stock determination [13].

Finally, integrating safety stock optimization with other inventory management

techniques, such as demand forecasting, ABC analysis, and a stochastic model, de-

velops a comprehensive approach to streamline maintenance processes and meet

operational demands with minimal downtime and costs.

2.2 Replenishment policies

Spare part inventory management has been a topic of extensive research due to its

significance in reducing machine downtime, optimizing resources, and minimizing

costs. The literature reveals a wide range of replenishment and repair policies im-

plemented by various industries, underlining the trade-off decisions that companies

must take in managing their spare part inventories [7]. Two primary areas of focus can

be deduced from the literature being inventory control policies and repair policies.

2.2.1 Inventory Control Policies

Inventory policies can be broadly classified along two dimensions, being review meth-

ods and order sizes. The literature delineates between continuous review policies and

periodic review policies on the one hand, and between fixed quantity orders and vari-

able quantity orders on the other [4].

Continuous review policies demand constant monitoring of inventory levels and

trigger a reorder when a predetermined level, being the reorder point, is reached.

Conversely, periodic review policies involve assessing inventory levels at fixed inter-

vals and ordering accordingly. While continuous review policies offer high levels of

responsiveness, they incur large inspection costs and administrative overheads [14].

Regarding order sizes, fixed quantity orders involve ordering a predetermined

number of spare parts each time, while variable quantity orders flexibly adjust the

order quantity based on the current demand and inventory status. While fixed quan-

tity orders simplify the order process, they may fail to meet variable demand in the

next period, leading to potential breakdown losses [15].
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These stocking policies govern when and how much inventory should be replen-

ished. Among these, the Reorder Point (ROP) policy and the Min-Max policy have been

widely studied. ROP policy sets a predetermined inventory level at which a replen-

ishment order is triggered. In contrast, the Min-Max policy requires a replenishment

order when the inventory reaches the minimum threshold, bringing the stock back

to the maximum level [8]. These strategies are often adopted in industries with high

variability in demand or long lead times for obtaining spare parts [6].

2.2.2 Common Inventory Policies in Practice

Through combining some of the classification dimensions, several notable policies

emerge: the (T, Q) policy, (T, S) policy, (s, S) policy, and (s, Q) policy. The (T, Q) policy

implies a periodic review with a fixed replenishment order size. The (T, S) policy

also involves periodic review but allows for variable order quantities. The (s, S) policy

adopts continuous review with variable order quantities, while the (s, Q) policy follows

a continuous review strategy with fixed order quantities [14].

2.2.3 Limitations and Opportunities in Inventory Policy Research

While these policies have proven effective in numerous scenarios, several studies

have highlighted their limitations, particularly in settings with frequent and unpre-

dictable changes in demand, such as short-cycle operation regions [3]. In these envi-

ronments, traditional stocking policies may result in higher inventory carrying costs

and increased risk of stockouts, necessitating more dynamic and flexible approaches.

Only a few studies have attempted to integrate inventory control with other crucial

aspects of spare part supply chain management, such as supply coordination and

demand forecasting. This lack of comprehensive approaches makes it difficult for

managers to holistically manage the entire spare part supply chain and realize its full

effectiveness.

2.2.4 A Focus on the (T, s, S) Policy

The present study aims to address this research gap by exploring the three-echelon

spare part inventory and supply model under the (T, s, S) policy. This policy, which

combines elements of periodic review and variable order quantities, offers a promis-

ing avenue for optimizing spare part inventory management in a holistic manner. Its
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potential benefits and drawbacks, as well as its applicability in different operational

contexts, will be thoroughly examined.

The (T, s, S) policy is an inventory management strategy that has emerged from

the literature as an effective mechanism for managing variable and uncertain demand

[14]. The policy employs a combination of both periodic review and variable order

quantity systems to optimally manage inventory levels.

Review Period (T): This component of the policy denotes the fixed intervals of

time at which inventory levels are checked, as described in the work of [15]. The

measurement of time ’T’ could be in days, weeks, or months, depending upon the

specific inventory context and operational requirements.

Reorder Point (s): If the inventory level falls below ’s’ units at the time of review,

a replenishment order is triggered. This is consistent with the established principles

of the reorder point system [4]. The specific value of ’s’ is typically determined by

considering the forecasted demand and the desired service level, ensuring a balance

between availability and overstocking.

Order-Up-To Level (S): The ’S’ in the policy refers to the target inventory level post-

replenishment. According to the work of Al-Rifai et al., the quantity ordered under

this policy is variable, with the aim to bring the inventory level up to ’S’ units. This

level is usually set higher than ’s’ to avoid stock-outs, but is also carefully managed to

avoid the costs of excessive inventory.

This policy, as examined within various studies by Al-Rifai et al., Miranda et al., and

Tagaras et al. offers a way to navigate the trade-offs inherent in inventory management

[4, 14, 15]. It achieves this by coordinating regular inventory reviews with variable

replenishment quantities, geared towards a target inventory level, thus balancing the

dual objectives of maintaining service levels and controlling inventory costs. Further

studies are warranted to examine the effectiveness and applicability of this policy

across different operational contexts.
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2.3 Repair Policies

Repair policies, on the other hand, deal with the decision of whether to repair or

replace defective spare parts. Three main strategies discussed in the literature include

Repair and Stock (RS), Stock and Queue (SQ), and Stock and Serve (SS) [16]. RS strategy

focuses on repairing or refurbishing spare parts as needed, while SQ has the spare

parts stocked in inventory without repair or refurbishment and waiting to be repaired

by an external supplier when it is needed.

2.3.1 Integration of policies Applied

Stock and Queue (SQ) policy focuses on storing spare parts in inventory without any

prior repair or refurbishment. Upon demand, these spare parts are sent out for repair

or refurbishment [7]. This policy primarily relies on external suppliers or repair cen-

ters to fulfill the repair requirements. The lead time for repair, which includes the time

spent in queue for servicing, is an important factor under this policy. Despite poten-

tial challenges with lead times, the SQ policy could help in minimizing the need for

extensive internal repair resources and can be beneficial when external repair services

offer cost or quality advantages [8].

The (T, s, S) Policy: As previously discussed, this inventory management strategy

involves regular checks of inventory levels at fixed intervals (T), triggering a replen-

ishment order if the inventory falls below a certain level (s), and adjusting the order

quantity to reach a set inventory level (S) [14, 15]. This policy provides a robust and

flexible framework to balance customer service levels and inventory value cost limi-

tations.

By integrating the SQ and (T, s, S) policies, the research tries to explore the poten-

tial synergies between outsourcing repair tasks to external suppliers and maintaining

optimal inventory levels using a time-based policy. This approach aligns the advan-

tage of reducing the need for substantial internal repair resources with a systematic

method to ensure spare part availability. It not only contributes to the academic un-

derstanding of the interaction between these two policies but also provides valuable

insights for practitioners seeking to improve spare part inventory management in

maintenance service workshops, particularly in short-cycle operation regions as the

case is with the case company issue at hand. This integrative approach, emphasizing

both repair policy and inventory management, offers a novel perspective in the field

of spare part inventory management research.
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2.4 Demand Forecasting

Accurate demand forecasting is essential for effective spare parts inventory manage-

ment in the oil and gas industry. Several forecasting techniques have been proposed

in the literature: Time series analysis: Time series models, such as autoregressive inte-

grated moving average (ARIMA) and exponential smoothing state space model (ETS),

can capture patterns and trends in historical demand data [17, 18].

2.4.1 Intermittent Demand Forecasting in Inventory Management

Intermittent demand forecasting is a critical aspect of inventory management, par-

ticularly for industries where the demand for spare parts is irregular and sporadic,

such as the oil and gas industry. Traditional time series forecasting methods, such

as exponential smoothing and moving averages, are not suitable for intermittent de-

mand due to the presence of zero or near-zero demands for a set of periods, that is

then followed by irregular spikes in demand [19]. As a result, specialized intermittent

demand forecasting methods have been developed to better predict the demand for

spare parts in industries with irregular demand patterns.

Croston’s method is one of the most widely used approaches for intermittent de-

mand forecasting. It involves separately forecasting the demand size and the demand

interval, then combining the two forecasts to estimate the expected demand per pe-

riod. Croston’s method has been demonstrated to be more accurate than traditional

time series forecasting methods for intermittent demand situations [20].

Several variations of Croston’s method have been proposed in the literature to ad-

dress its shortcomings, such as the TSB (Teunter-Syntetos-Babai) method [21]. These

methods aim to improve the accuracy and responsiveness of intermittent demand

forecasting by considering factors such as demand intermittence, the bias in the esti-

mation of demand size and interval, and the variability in the demand process.

Incorporating intermittent demand forecasting methods into the inventory opti-

mization model can significantly enhance the accuracy of demand forecasts for tool

maintenance, especially within the case company’s short turnarounds. This, in turn,

can lead to more effective inventory management and reduced maintenance lead

times and costs. It incorporates two smoothing parameters, alpha for demand size

and beta for demand interval [21].
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It is a novel approach which incorporates distinct simple exponential smoothing

techniques for estimating the probability of demand occurrence and the demand size

separately. The estimate for the probability of occurrence is updated at regular time in-

tervals, whereas the estimate for the demand size is only updated at the end of periods

with positive demand. The forecast for demand per period is obtained by multiplying

the estimates for demand size and demand probability. To ensure accurate predic-

tions, two different smoothing constants are employed, with the demand probability

being updated more frequently compared to the demand size. This approach overall

allows for more precise and dynamic forecasting of intermittent demand.

2.4.2 Python for demand forecasting

As a programming language with comprehensive libraries and robust data handling

capabilities, Python found increasing application in various forecasting techniques,

including demand forecasting for inventory management. The ease of implementa-

tion, the ability to handle large data sets, and the availability of several packages for

statistical analysis make Python a suitable tool for developing forecasting models [22].

Python’s libraries, such as pandas for data manipulation and SciPy and NumPy

for numerical computation, have found significant use in handling and processing in-

ventory data for demand forecasting. More specifically, these libraries can be used for

preparing and manipulating time series data, which forms the basis for intermittent

demand forecasting [23].

For the implementation of intermittent demand forecasting methods, such as the

TSB (Teunter-Syntetos-Babai) modification of Croston’s method, Python can offer a

flexible and efficient coding environment. With the TSB method’s inherent complex-

ity, particularly the separate consideration of demand occurrence probability and

demand size using different exponential smoothing techniques, Python’s ease of use

in defining custom functions and algorithms makes it well-suited for such implemen-

tations.

In the context of TSB’s modified version of Croston’s method, Python can be uti-

lized to develop a forecasting model by firstly setting up two distinct simple exponen-

tial smoothing methods, one for estimating demand size and the other for demand

occurrence probability. This would involve using separate smoothing constants for

each, with the demand probability updated more frequently. The final forecast for

demand per period can be calculated by multiplying the estimated demand size and

probability, which is a process that Python can easily handle through its numerical

computation capabilities.
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Further enhancements to these Python-based forecasting models could incorpo-

rate machine learning libraries such as scikit-learn or TensorFlow. These libraries can

help in automating model tuning and provide options for advanced techniques such

as neural networks for more accurate forecasting [24].

Therefore, Python, with its robust data handling and computation capabilities, is a

powerful tool for demand forecasting. When applied to inventory management in the

oil and gas industry, Python can provide precise, dynamic, and efficient demand fore-

casting models that can substantially contribute to reducing maintenance lead times

and costs. It’s also important to note that as open-source software, Python encour-

ages sharing and collaboration, which may be of value for research and development

teams.

2.5 Inventory Management Standards: ISO 14224 and

NORSOK Z-008

Inventory management in the oil and gas industry necessitates a thorough and sys-

tematic approach for data consistency, reliability, and effective integration. In this

context, the International Organization for Standardization (ISO) 14224 and the NOR-

SOK Z-008 standards are of significant relevance and importance.

2.5.1 ISO 14224 Standard

ISO 14224 provides a comprehensive framework for the collection, exchange, and

analysis of data related to equipment reliability and maintenance within the oil and

gas industry. It offers clear definitions for taxonomy, data structure, and equipment

classification, which prove invaluable in consistent and accurate data collection and

analysis [25].

The ISO 14224 standard is crucial to the proposed inventory enhancement model

as it ensures the data utilized for demand forecasting, safety stock calculations, and

other inventory management techniques accurately represent the operating condi-

tions. Moreover, it outlines guidelines for failure analysis, enabling a better under-

standing of factors impacting equipment performance and their effect on mainte-

nance requirements [26].
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2.5.2 NORSOK Z-008 Standard

The NORSOK Z-008 standard is specifically designed for criticality analysis for main-

tenance purposes. It provides a structured methodology for equipment classification

based on the consequences of potential equipment failure, taking into account safety,

environmental, and production impacts [27].

This standard is instrumental in this research for two key aspects: equipment

criticality classification and risk assessment.

Equipment Criticality Classification: The NORSOK Z-008 standard includes a de-

tailed system for classifying equipment based on its criticality and the implications

of its failure. This classification system complements the ABC analysis, guiding the

prioritization of spare parts for optimization efforts.

Risk Assessment: The NORSOK Z-008 standard also provides a structured ap-

proach for conducting risk assessments, helping identify and address potential risks

linked to equipment failures and maintenance activities. This risk analysis is integral

to the inventory enhancement model, ensuring all significant risk factors are consid-

ered during the process [28]. As part of the risk analysis, NORSOK Z-008 introduces

the concept of unavailability, recognizing the importance of equipment availability

in assessing its criticality [27].

In summary, the combination of the ISO 14224 and NORSOK Z-008 standards

provides a robust framework for inventory management in the oil and gas industry,

making them integral to the development and refinement of the proposed model.

However, they are limited in their categorizations of classification, and this is evident

in the case company’s case due to the fact NORSOK Z-008 only focuses on demand

rates only and not lead times, logistical issues, or high component costs in their clas-

sifications as shown in Figure 2.1 below.
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Figure 2.1: Spare parts risk matrix [27].

2.6 Stochastic Modeling

There are scientific approaches to spare part inventory management involving data-

driven methods, such as the stochastic models, machine learning techniques, and

simulation models, to make informed decisions.

Stochastic models consider the randomness of demand and lead times and are

thus more realistic than the EOQ model [29]. Machine learning techniques, such as

neural networks and support vector machines, have been used to predict the failure

of equipment and thus the demand for spare parts [30]. These methods have shown

promise but require large amounts of high-quality data, which may not always be

available.

The model applied in this research will have some of the previously mentioned

modeling adjectives but will be a stochastic modeling approach with some determin-

istic assumptions based on the data limitations, and therefore, these deterministic

numbers are going to be based from direct sources within ‘Company A’.
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2.6.1 AnyLogic Modelling in Spare Part Inventory Management

AnyLogic is a leading simulation modeling tool. It supports system dynamics, agent-

based, and discrete event simulation methodologies. Using AnyLogic for spare part

inventory management in the oil and gas industry can provide a holistic approach

that takes into account the interdependencies between different parts and systems,

the variability in lead times and failure rates, and the criticality of different parts [31].

A key advantage of simulation modeling in AnyLogic is its capability to deal with

real-life complexities and uncertainties in the model. The model can be validated and

adjusted based on actual operational data, providing accurate and actionable insights

[32].

It can be used to simulate various inventory management strategies (like EOQ, JIT,

and ABC) and compare their performance under different scenarios, helping decision-

makers to choose the most appropriate strategy for their specific situation [33]. It can

also be integrated with machine learning models to further enhance its predictive

capabilities.

This software is a very suitable choice for this research, given its multi-method

modeling capabilities. These capabilities cover discrete-event simulation, agent-based

modeling, and system dynamics, thus permitting the creation of intricate models that

capture the multifaceted nature of inventory stock optimization challenges [34].

Discrete-event simulation is a modeling technique that simulates the operation

of a system as a discrete sequence of events in time. Each event occurs at an in-

stant in time and marks a change of state in the system. In the context of inventory

management, discrete-event simulation could be used to model individual inventory

transactions, such as orders, deliveries, and sales.

Agent-based modeling is another approach to modeling systems composed of

autonomous entities or "agents," each with their own behaviors and interactions.

This method is advantageous in capturing the behavior of individual tools and parts

in the inventory, tracking their states, and monitoring their interactions with other

parts of the inventory system.

System dynamics is a method for understanding the nonlinear behavior of com-

plex systems over time. It deals with internal feedback loops and time delays that

affect the behavior of the entire system. Within the context of inventory management,

system dynamics can be used to model the high-level dynamics of the system, such

as the relationship between demand, supply, and inventory levels.
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Furthermore, AnyLogic offers a graphical user interface, facilitating visual repre-

sentation of processes and results. This feature enhances the comprehensibility and

communication of the model’s structure. The software’s flexibility supports custom

code integration, enabling advanced algorithms’ incorporation, such as intermittent

demand forecasting techniques. Additionally, its built-in tools for designing experi-

ments, executing simulations, and analyzing results pave the way for evaluating differ-

ent scenarios and policies to pinpoint optimal inventory stock optimization strategies.

The software’s scalability ensures its applicability in managing large-scale models and

simulations, rendering it suitable for modeling complex systems such as inventory

management in the energy sector [35].
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Chapter 3

Research Methodology

The methodology of research utilized a combination of quantitative methods, simu-

lation modeling, and forecasting techniques to address the research objectives. The

chosen methods were informed by the literature review and the specific context of the

case company’s operations. By following this methodology, the research aimed to pro-

vide valuable insights into the enhancement of inventory stock management and the

streamlining of the maintenance process flow for the case company.

3.1 Scientific Research Approach

In order to comprehensively address the topic of inventory management enhance-

ment within the context of this thesis, a rigorous scientific approach must be em-

ployed. This includes conducting a thorough literature review by utilizing resources

such as Google Scholar to identify relevant articles, books, and past studies. Conduct-

ing interviews with experienced tool maintenance specialists within the case company

and lecturers at the University of Stavanger (UiS) further supplement the knowledge

base for this research.

In addition to gathering information from online and library resources, it is crucial

to obtain pertinent data and documentation from the case company being investi-

gated. This process requires a significant amount of time, as accesses to internal

documents and datasets may be limited. To ensure the efficiency and effectiveness of

the research, it is essential to differentiate between crucial and non-crucial data, and

to focus on the aspects that are most relevant to the inventory management enhance-

ment of the critical fleet tool under study.
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3.2 Applied Methods of Research

In this research paper, the case study approach is utilized to investigate inventory

management enhancement methods in a real-world context where we took a case

company looking for ways to streamline their maintenance processes, while incor-

porating both quantitative and qualitative research methods. This combination of

methods allows for a comprehensive understanding of the problem faced, facilitating

the development of an effective inventory management model for the case company.

3.2.1 Case Study Approach

The case study approach is a widely used research methodology in various disciplines,

offering researchers an opportunity to investigate a specific phenomenon or issue

in-depth within its real-life context [36]. Case studies could be particularly valuable

for exploring complex systems, generating hypotheses, and building theory. This

research approach can incorporate both quantitative and qualitative data, allowing

for a comprehensive understanding of the subject matter.

3.2.2 Quantitative and Qualitative Approaches Integrated

Quantitative research focuses on the systematic collection and interpretation of nu-

merical data to describe, explain, or predict phenomena [37]. In the context of inven-

tory management enhancement, quantitative research methods, such as statistical

analyses and simulation models, are employed to analyze historical data, identify

patterns, and evaluate alternative policies or strategies. Quantitative methods are

particularly useful for providing objective, measurable, and generalised insights that

can inform decision-making [38].

On the other hand, qualitative research emphasizes the collection and interpreta-

tion of non-numerical data, such as text, images, or processes to gain insights into the

meanings, interpretations, and experiences of individuals or groups [39]. Qualitative

methods, such as interviews, observations, or document analyses, assisted in explor-

ing the contextual factors, organizational practices, and, therefore, helped construct

the inventory management model for the case company. Qualitative research also

helped create a more nuanced understanding of the underlying issues and generate

insights that were not very apparent from quantitative data alone.
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3.3 Research Design

The research design considered for this research is modeling, which is the most effec-

tive approach in the scope of this research since the output of it will address a future

scenario on the spare parts inventory management problem. Its ability to handle the

complex nature of the problem will facilitate the ability of decision-making under the

presented uncertainties. It also allows the representation of all different factors such

as demand patterns, lead times, and maintenance schedules in a structured manner,

which further enables better understanding and analysis of system behavior. The

model however required pragmatic measures, such as the limitation of considered

tools to one only. This was also further limited to the top five critical components

within the chosen tool.

In order to answer the research question “What is the effect of the repair-path cy-

cle on the maintenance process flow implemented at the case company?” and achieve

the research objective, a set of steps were established. These steps begin with analyz-

ing the system at the case company, providing a conceptual model, a computational

model, and making sure the model provides an accurate representation of the real-life

system to validate the approach and provide the enhancement reliably. The steps are

provided in Table 3.1 below for better illustration.

Table 3.1: Methodology design steps
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3.4 Development of model

Through utilizing AnyLogic for modeling the spare parts inventory management is-

sues and bottlenecks, organizations such as the case company, can leverage its pow-

erful features to gain valuable insights, identify optimal strategies, and continuously

improve their inventory management practices. The modeling was mainly deductive

from the theories and literature, however, in certain situations, inductive measures

were taken to produce a practical model that accounts for the enhancements applied.

To begin, a set of key performance indicators should be kept in mind while building

the model. This included the maintenance lead times, worker utilizations, crowding

levels, and overall costs and financial parameters demonstrating feasibility and pro-

viding valuable feedback for continuous improvement efforts of procedures. The aim

towards meeting operational demands needs an inventory management model to be

developed where an integration of the theoretical approaches and scientific methods

discussed in this research are applied.

The model should consider a set of elements, such as the demand forecasting, ABC

analysis, Stochastic inventory modeling, stock management, and accounting for risk

management.

The model’s structural methodology encompasses several critical components.

Starting with accurate demand forecasting, which is achieved through time series

analysis using Python code that incorporates the modified Croston’s method by TSB,

is critical for optimal inventory management, as it enables the prediction of future

spare parts demand. The ABC analysis categorizes spare parts based on importance,

facilitating the prioritization of process enhancement efforts and resource allocation.

Moreover, with a stochastic inventory model, service level constraints are accounted

for through the separation of maintenance requirements for each tool’s needs. The

model also accounts for uncertainty in demand rates and lead times, resulting in

more robust inventory policies tailored to the case company’s unique characteristics

once established and optimized. This way a baseline and an enhanced model can be

developed, verified, and validated.

Once the baseline model is established, the enhanced model will be built including

the same input parameters such as the placement of the same re-order points for the

critical spare parts. Of course, while taking into consideration the above-mentioned

factors such as demand and lead time variability, service level requirements, and cost

trade-offs, which will in theory still result in more streamlined maintenance processes

by minimizing equipment downtime and reducing maintenance time and costs.
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Finally, the inclusion of risk management strategies within the modeling approach

of the enhanced model will be able to mitigate supply chain disruptions’ impacts

and enhance the inventory management system’s overall resilience [40]. This is done

through the establishment of a repaired stock that in turn will be utilized as a main

stock, while the new build stock is placed as a safety stock.
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Chapter 4

Data Collection

This chapter contains the approaches of collecting the case company’s data, the pa-

rameters taken into consideration, standards used for guidance, as well as presenting

and illustrating them, all while protecting the Intellectual propriety belonging to the

company to the highest reasonable level.

4.1 Case Company Data

All data used in this research was collected from the case company, including informa-

tion on demand patterns, lead times, maintenance frequencies, maintenance lengths,

procurement costs, and other relevant factors for the selected components. The data

collection process involved close collaboration with the case company to ensure the

accuracy and completeness of the data. However, gaps naturally occurred within the

data, but that did not stop the model from reflecting a real view on the processes.

The gaps within the data were substituted by values suggested by the tool specialists

within the department, such as the procurement lead time which varied a lot with the

COVID-19 occurrence and was no longer a true representation of these lead times.

4.1.1 Data confidentiality

Data Confidentiality of the collected data was maintained throughout the research

process upon their request, and therefore, the model is built based on their case, but

can be utilized for other maintenance facilities. Any personally identifiable informa-

tion or sensitive data will be anonymized or encrypted to ensure privacy.
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4.1.2 Data Verification and Validation Approach

Data Validation prior to analysis involved checking for completeness, consistency,

and accuracy. This was performed systematically, where continuous interviews took

place with various representatives in the department. Data verification, on the other

hand, ensured that the collected data accurately represented the real-world current

scenario. Any inconsistencies or missing data were addressed and rectified through

collaboration with the case company to set assumptions or estimates.

4.2 Equipment selection approach

The research aimed to gather reliable and comprehensive information necessary for

the spare parts inventory management analysis. ISO 14224 standard provided a hi-

erarchical classification system for equipment, which classified the spare parts and

components used in the research. This classification system enabled a consistent and

organized approach to data collection, allowing for easier comparison and analysis.

The use of this standard helped set the data elements and their attributes that should

be collected for each component. These data elements include information such as

equipment identification, maintenance history, failure data, and repair information.

By following the defined data elements and attributes, the research verified that all

relevant information was captured uniformly.

The standard offered guidelines for data collection methods, including recom-

mended data sources and collection techniques, and therefore, emphasized the im-

portance of data quality management throughout the data collection process. Overall,

it assisted with data validation, verification, and quality control measures to keep the

accuracy, completeness, and reliability of the collected data, gaining robustness of

the subsequent analysis.

4.2.1 Equipment selection

To begin with the select data description, it is worthy to note that there were various

changes happening with the ERP (Enterprise resource planning) systems storing his-

torical maintenance and procurement data before 2021. This caused the quality of

all data before that year to be lower, as it was not possible to access the older systems.

However, there was enough data to narrow down the flagship of the fleet, or in other

words, highlight the highest utilized tool with the shortest maintenance turnarounds.
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This specific tool faced issues in meeting project demands due to the lack of compo-

nents, causing expedited repairs, or expedited procurements, estimated to triple each

of these costs according to the tool specialist. Its components are by far the costliest

for the business to replace had any major failure occurred. Overall, it happened to

have the highest operational velocity with approximately 4 operations per tool a year.

As well as the costliest core components, and high component consumption rates

meaning significant scrap rates.

This tool was by far the most complicated, holding over 50 different components

within. In this research, the top five critical components were chosen for the analysis.

For the sake of this research, this tool is referred to as ‘Tool A’. The tool has two different

component types, core components, and standard replacement parts. The standard

replacement parts were directly excluded from the focus of this research due to the

case company having a lot of preparedness towards it.

4.2.2 Component selection

When it came to the core components, the most critical components selected were

tagged confidentially as to further maintain the data protection for the company.

These tags range from ‘Comp. 1’ till ‘Comp. 5’. They were chosen based on a con-

ducted ABC Analysis to identify and select the components to be modeled. The com-

ponents were classified into three categories (A, B, and C) based on their annual usage

value, which is calculated by multiplying the annual consumption by the unit cost.

Moreover, procurement lead time was accounted for as a fixed average determined

for each component range based on sourcing specialist inputs. The HSE criticalities

on operations stemmed from the NORSOK Z-008 standard categorization of conse-

quences illustrated in Chapter 2. Once categorized, Category A represented the most

critical components with the highest annual usage value, while Category C consisted

of the least critical components with the lowest annual usage value. The analysis al-

lowed for the prioritization of the components and informed the focus of the research.

For better illustration, Table 4.1 is presented below with the consumption rates and

cost of procurement found directly from the historical data. This gave an indication

of the annual costs being accumulated on the business due to the failures of these

components. Therefore, it consistently narrowed down the range till the top five were

chosen and analyzed.
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These 5 components had their re-order quantities set by the department, and

their minimum (min.) and maximum (max.) stock values manually set as well. The

minimum and maximum stock values presented the current range of stock for a tool,

where if it falls below the minimum, an order is placed with the re-order quantity,

and this is further allowed as long as the stock quantity does not exceed the current

maximum set value.

Their consumption rates were driven from the old ERP system and the new one

implemented in 2021. Though the average procurement costs were driven from the

previous orders, these costing values were modified with a multiplication factor to

avoid any traceability to the real company data. Collectively, these parameters and

values provided a comprehensive overview of the inventory stock levels and procure-

ment practices for the selected components. They served as a foundation for the

subsequent analysis and enhancement efforts in improving the overall inventory man-

agement system.

Table 4.1: Selected components from historical inventory values.

The overall data was obtained from a data dump consisting a workshop capacity

of five workers with enough expertise to maintain “Tool A” over a total of 130 total

maintenance visits taken from the new ERP system, where 89 of these visits were used

maintenance on the tool, 41 were unused, and 45 total critical components having

issues on core components from the top selected five in the years 2021 and 2022. There

were some difficulties with the repair tracking data of components in the currently

implemented system at the case company, so it was assumed 60% of used visits have at

least one repair issue based on the tool specialist interview. These values were ratioed

out from the total visits obtained historically and further dissected to be implemented

within the model built.
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4.3 Demand data

The collection of accurate and reliable demand data was crucial for conducting a com-

prehensive analysis of the case company’s inventory management. In this research,

demand data was collected over a period of four years, specifically from 2019 to 2022,

to capture a significant timeframe and account for potential variations in demand

patterns. It focused on gathering information on the demand for the selected ‘Tool A’.

It is worth noting that the demand data exhibited intermittent patterns, with

instances of zero demand occurring due to the inconsistent operations during the

COVID-19 pandemic. Below, Table 4.2 presents an illustration of the intermittent de-

mand occurring in case company which will be further discussed and analyzed in the

following chapter.

Table 4.2: Historical demand data.
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Chapter 5

Analysis

The chapter aims to detail the conceptual and computational analyses performed in

order to build the simulation baseline model and the enhanced model. The forecasting

method and the financial analysis are both present in this chapter. A validation and

verification section is provided at the end of the chapter.

5.1 Analysis Approach

The inventory management enhancements applied for the selected components in

the research can be a complex problem. This is due to the several factors playing a role

in the high maintenance costs and long lead times. After establishing the methodology

approach previously in Chapter 3, and constructing a solid framework for collecting

data in Chapter 4, it is in fact, the analysis that ties it all together. The analysis was

performed conceptually first, followed by the two different software systems, being

Python and Anylogic for implementation.

The collected data was analyzed using various techniques, such as descriptive

statistics, trend analysis, and data visualization, as to gain better understandings of the

currently implemented inventory management system and maintenance process flow.

The analysis aimed to identify patterns, trends, and potential areas for improvement

in the case company’s operations. This drove the research to a narrowed section of the

fleet, and therefore identified the most applicable tool with the highest maintenance

costs and operational demands to be chosen, and further analyzed, being ‘Tool A’.
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5.2 Problem of Interest

To understand the issue this analysis is revolved around, a table was created to high-

light the main drawbacks of the current maintenance process for ‘Tool A’ where there

are elongated lead times within the tool maintenance, having several implications.

The problem is identified by tool specialists and department manager within the case

company. It is considered problematic because it affects offshore operational de-

mands, does not contribute to revenue improvement, and leads to high maintenance

costs. The problem is primarily observed at the maintenance facility (Workshop),

and its impact is felt by offshore operations customers, case company employees,

and asset owners. The issue has been observed over several years of operation and is

detected through data analytics and historical maintenance data. The root cause of

the problem is further identified as the lack of proper inventory stock management,

which is what this analysis will focus on. The Table 5.1 provides an easy to compre-

hend overview of the problem of interest.

Table 5.1: Problem of interest.
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5.3 Solutions of interest

Having now identified the problems faced within the case company’s maintenance

process, there are proposed approaches to reduce the lead time, however these pro-

posed solutions come with investment costs. This is the reason it is critical to identify

the best position for the case company to take. It is the aim to reduce the overall

lead time, and also reduce the maintenance costs on the long run. Based on the tool

specialist’s input on site, it was clear that the approach needed to include structural

changes. This is due to the fact that the having unlimited stock of components would

merely not make any profitable sense to do. This is why the first proposed solution of

interest involved changing the structural process of component repairs, where a com-

ponent is automatically shifted out of the tool once identified as faulty and replaced

with another repaired or new component depending on the current stock levels at the

time. This proposed way involved a cyclic path of bulk repairs that future proofs the

components in a way where the component undergoes repair on the areas with issues

and further repairs on the remaining potential areas where historical data showed

repairs on. It is more than just a repair path cycle, but a future proof of failure that will

in return reduce the failure rates over the coming two years and eliminate any repair

lead time. Once the faulty component is removed and replaced, the tool keeps going

unaffected by it and therefore meets all operational demands with ease, just as if it

had no faults at all.

The second proposed solution depends somewhat on the first, where after this im-

plementation, and the sudden rise in demand happens, there would be contingency

planning in the manner that a local manufacturer would be able to supply the new

build components instead of the best cost country one. These shorter procurement

lead times when components are unable to be repaired would help meet unexpected

rises in operational demands. However, that would multiply the cost of procurement

and accumulate high maintenance costs, so this solution will not be the focus of this

research. The two solutions are presented in Table 5.2 below for better visualization.
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Table 5.2: Solutions of interest.

5.4 Conceptual modeling

A detailed system mapping was developed to conceptualize the flow of materials, in-

formation, and decision-making processes involved in the inventory management.

The interactions between the workshop, warehouse, maintenance activities, and oper-

ational demands are identified and analyzed. The system mapping provided a holistic

view of the inventory management process and facilitated a better understanding of

its complexities.

5.4.1 Baseline system mapping

For the existing baseline case process, the workflow starts with the return of the tool

from offshore operations to the workshop. Upon receiving the tool, the workshop per-

sonnel perform a disassembly if it was used, otherwise, a cleaning process is carried

out. During the disassembly process, standard replacement parts are installed into

the tool if no issues are detected by the quality controllers. However, the effectiveness

of the inventory stock management system is put to the test when issues are identified

and components require repair. At this point, the tool remains idle, waiting for the

faulty part to be repaired, resulting in significant lead time delays that directly impact

operational demands. Figure 5.1 provides a visual representation of the current pro-

cess, highlighting the steps involved in the tool’s journey from offshore operations

to the workshop and the subsequent repair and maintenance stages, till it is back

offshore.
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Figure 5.1: System mapping for current process
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5.4.2 Enhanced system mapping

The objective of this research is to address the identified issue by implementing a so-

lution that enables the dispatch of tools within seven working days from their receipt,

thereby streamlining the repair process and minimizing unnecessary lead times. To

effectively map this process, it is important to emphasize that several steps overlap.

This includes the initial identification of the tool, regardless of whether it has been

used or not. For unused tools and used tools without any faulty components, they

follow the same route as the current baseline process.

Significant structural changes occur when a tool is identified as having issues. This

triggers a component change, regardless of the level of repair needed. The tool then

proceeds through the maintenance flow, while the faulty component is added to a

batch, which in turn gets sent for service and repair once a quantity of three is reached.

The process concludes with an inspection of the repaired tool, which is then returned

to the repaired stock for future utilization on tools that may experience the same com-

ponent failure. This approach ensures the future-proofing of the component while

lessening the need for undue pressure on supporting functions to expedite repairs

and shipping.

To provide a visual representation of the enhanced process, Figure 5.2 is included

below, offering a clearer illustration of the steps involved in the tool’s journey, includ-

ing the identification, repair, and return of components to the stock. This depiction

helps to visualize the proposed enhancements to the existing process.
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Figure 5.2: System mapping for the enhanced process
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5.5 System planning

The purpose of the simulation model is to provide a reflective analysis of the cur-

rent maintenance processes and propose suggested improvements through scenar-

ios. This is tackling the research question at hand being "how the repair-path cycle be

modeled practically to illustrate the operational behavior in terms of lead times and

operational efficiency?"

To begin, the main key performance indicator (KPI) that will be visualized in the

simulation model is the lead time for tool maintenance. This metric will serve as a

measure of efficiency and effectiveness in the maintenance process. This will further

be discussed and evaluated in contrary with the cost of investment and implementa-

tion goes back to the decision-makers.

The model boundary is primarily focused on the workshop process, with the indi-

vidual components (1 to 5) considered as separate agents. Additionally, the "main"

agent encompasses most of the maintenance process, capturing the overall workflow

and interactions among the various components. The model time unit is measured

in hours, and the time horizon for the simulation is based on 3-year timeframe. This

allows for a comprehensive analysis of the long-term performance and trends within

the maintenance process.

In terms of scenarios, the prime scenario considered is the integration of the

repaired-parts cycle process within the maintenance process. This will reflect on vary-

ing factors such as lead time of maintenance, inventory stock shortages, workshop

capacity utilization, and financial feasibility through profit margins. These factors

will help evaluate the overall performance of the enhanced maintenance process.

To ensure the accuracy and reliability of the simulation model, various verification

and validation activities are planned. Verification will involve comparing the compu-

tational model with the conceptual model to ensure that the model functions correctly.

Validation is conducted through interviews with tool specialists at the case company

to validate the representation of the real system in the computational model. Addi-

tionally, input data was carefully verified to ensure its accuracy and consistency with

the actual system. As means of illustration, Table 5.3 is presented below to summarize

the key points tackled within the system planning.
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Table 5.3: System planning structure.

5.6 Analyzed components

There exists three different set of components within ‘Tool A’. Due to the confidentiality

of the Intellectual Property of the company, the ABC analysis categorization vaguely

described what they represented in the data collection chapter (Chapter 3). However,

components that were inputted into the structure of the model, were among many

from which were categorized between A, B or C.

Category A represented the modeled five components that fit into the highest cost

of consumption yearly. Category B defined the rest of the components that did not

fit into the top five, but still pose a threat on the maintenance lead time of the tool

where any of their unavailability still defies and jeopardizes the streamlining of the

maintenance processes. Ideally, Category B should be included within the model, but
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due to time and funding restrictions of the research, Category B was neglected, and

this leaves room for further improvements.

Finally, Category C represented the standard replacement parts, which were ne-

glected due to the high frequency of their changes and therefore, have very high pre-

paredness levels by the Case Company, who allocates them efficiently. Table 5.4 be-

low provides an informative visual illustration of the criticality of each category rang-

ing from the lowest criticality being ‘Low’, to the highest criticality being ‘High’, and

‘Medium’ in-between.

Table 5.4: Criticality categorizations.

5.7 Tool demand forecasting model

A python model was constructed on the basis of forecasting the upcoming smoothed

demand months from the end of the input monthly coming from Chapter 3 demand

data obtained through the case company. It is basically an implementation of the

Teunter-Syntetos-Babai (TSB) modification of Croston’s method. The TSB modifi-

cation builds on the original Croston’s method by introducing separate smoothing

parameters for demand size and inter-demand interval and updates these parameters

differently based on whether a demand occurs or not.

To begin, the Croston_TSB function starts by setting up the necessary data struc-

tures and initializes the level (a), probability (p), and forecast (f) arrays. It first iden-

tifies the first non-zero demand in the time series and uses it to initialize a[0], p[0],
and f[0]. This approach follows the TSB method’s original assumption of a demand

occurrence at t=0, which is used to initialize the parameters.

The function then loops over the entire historical time series. If a demand is regis-

tered at time t (demand > 0), it updates the average demand (a[t]) using the alpha 0.1

smoothing factor and the probability of demand (p[t]) with a fixed beta 0.1 smooth-

ing factor. This allows the inter-demand interval to update immediately upon the

occurrence of demand.
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If no demand occurs (demand=0), the average demand (a[t]) remained unchanged,

while the probability of demand (p[t]) was updated according to the (1-beta) factor.

This allowed the model to gradually neglect zero demand periods and give more

weight to recent inter-demand intervals. The function also produced a forecast at

every time step by multiplying the current estimates of a[t] and p[t]. For future peri-

ods, it carried forward the last known values of a, p, and f from the historical periods.

Finally, the function returned a pd.DataFrame that included the original demand,

forecasted values, level (a), probability (p), and forecast error (Demand - Forecast) for

every period in the time series. This output allowed for a comprehensive breakdown

of the model’s performance, including bias, and other aspects.

It is important to note that any forecasting model, has its effectiveness dependent

on the nature of the demand data and the appropriateness of the chosen smoothing

parameters alpha and beta. They should be selected based on cross-validation or

other model selection procedures to ensure the best forecasting performance, but for

the purpose of this research, the alpha and beta smoothing parameters were merely

assumed in line with the recommendation in the scientific literature. A representation

of the model code is presented below in Figure 5.3.
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Figure 5.3: Python model for forecasting demand

5.7.1 Forecasting model visualization

The demand forecasting model was validated using cross-validation measures, such

as Mean Absolute Error (MAE). The validation process ensured the reliability and

accuracy of the forecasts generated by the model. The end result was then plotted in

Figure 5.4 below to show the smoothed forecasted demand in comparison to how the

historical demand was over the periods of 2019 to 2022, stemming from the obtained

case company’s historical demand data. The model was able to successfully smooth

the historical demand and produce a smoothed future forecast of 6.143295 monthly

demand.
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Figure 5.4: Forecasted demand graph

5.8 Baseline Model

An AnyLogic baseline model was developed to simulate the existing inventory man-

agement process for the five core components. The model incorporated the demand

forecasts generated by the Python model, as well as the stochastic inventory manage-

ment enhanced techniques. The input parameters, assumptions, and constraints of

the model were carefully defined based on the case company’s data and operational

requirements identified within Chapter 3.

The model structure started off by building the “main” agent which represented

the current process flow of maintenance within the workshop of the case company,

where each stage was represented by a discrete event as presented in Figure 5.5 below.

The tool is modeled in a way where it comes into the workshop through a source, gets

identified if used or unused. Once that is identified, the tool is then either taken for

unused cleaning and preservation, or disassembled if found used. After disassembly,

the tool is then determined if it has issues, no issues, or needs component replace-

ment. If no issues are found, the tool proceeds for standard used maintenance, but if

repairs are needed, the tool is stored in the workshop shelves as the component gets

outsourced repairs. However, if the tool needs component replacements, then the

tool gets the component replaced if it is on stock, or sits and wait for the component

to arrive causing delays. Once any of the used tool possible outcomes is satisfied, the

tool is ready for assembly, and is then sent out to operations through the sink.
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Figure 5.5: Baseline model maintenance process flow

The discrete events started off with the “source” which represents the source block.

The arrivals are defined by the rate schedule, and its rate schedule is set in a way that

pulls in the demand data from the “arrivalSchedule”. This is shown below in Figure 5.6

for better visualization.

Figure 5.6: Source parameters

The “arrivalSchedule” is a schedule block that allows the model to have repeated

inputs based on a timeframe defined. For this model’s schedule, it was set up in ac-

cordance to forecasted demand from Python, which was then smoothed into a whole

number. This was done through considering every seventh month to have a demand
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of 7.0 while the other six months have a demand 6.0. The schedule was defined by

type Rate, and a monthly unit meaning it is a probabilistic approach to demand ex-

pectation. It was then set to define moments and not intervals, as well as to repeat

every month consistently throughout the model time by selecting custom duration

to repeat every month till the end. The data was then inputted into the table which

had two columns being the “Time” consisting of 12 monthly entries and consecutively

12 “Values” to be entered. The value being the demand of tools incoming. Month 1

and month 8 had a demand of 7.0 while the rest had 6.0. This is better represented in

Figure 5.7 below.

Figure 5.7: Arrival schedule for tools

After the tool is received in the workshop, there are timer starters represented in

four different TimeMeasureStart functions being “issues”, “norepairs”, “unusedtime”

and “CheckoutTimeStart”. These functions are defined by a Single agent, and are

measuring each different process of maintenance. The “issues” is to measure the tool

with issues that can’t be repaired and measures any lead time delays from stock out-

ages. The “norepairs” measures the standard maintenance process time length for

used tools with no unexpected component failures. Moreover, “unusedtime” mea-

sures the lead time for all quick maintenances done on the unused tools. And finally,

the “CheckoutTimeStart” measure the assembly time of tools for all used tool mainte-

nance jobs. For better illustration, one of them being the “repaired” is represented in

Figure 5.8 below.

46



Section 5.8. Baseline Model

Figure 5.8: TimeMeasureStart properties

These TimeMeasureStart blocks are then followed by corresponding TimeMea-

sureEnd blocks in order to end the time measurements of these processes. There are

four blocks in total, and they are corresponding to each of the TimeMeasureStarts. The

“issuesEnd” block is linked to “issues”, similarly, the “norepairsEnd” is linked to the

“norepairs”, the “unusedsEnd” is linked to “unusedtime”, and the “CheckoutTimeEnd”

is linked to “CheckoutTimeStart”. They all have similar Dataset capacity of 100, mean-

ing they can measure a total of 100 tools simultaneously as an overexaggerated value

to not miss any tools not being measured. An example of the “issuesEnd” is presented

below in Figure 5.9 to better show how it is constructed in the model.
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Figure 5.9: TimeMeasureEnd properties

The model is built on the basis of the case company’s workshop, therefore, the

seize block is accounted from the workshop capacity where it takes a worker from

“Worker_Pool” ResourcePool for the job. The worker that way is booked for the job

regardless if it used, unused, with issues or without. The Seize is built upon a Re-

sourcePool, and the ResourcePool is taking its values from a defined parameter called

“Workers” that is accounted for from the real workshop capacity at the case company.

A summary of the seizing set used in the model is presented in Table 5.5 below.

Table 5.5: Seizing of workers.

Once the tool is received, and the time is accounted for, then the tool is identified

whether it is used or unused. That is done using a SelectOutput block named “Use-

48



Section 5.8. Baseline Model

dorUnused” in the model. Through that, a probability is inputted stemming from

the data collection where the number of tools being used historically out of the total

visits in the data collection are ratioed out and that probability being 0.685 is then

implemented to be the probability of the tool being used from offshore. To illustrate

how this block works, the Figure 5.10 is presented below.

Figure 5.10: UsedorUnused SelectOutput

If the tool is identified as unused, there is a track that separates it following the

“UsedorUnused” SelectOutput which takes then the tool through a defined track made

up of two different blocks before being redirected to the Release block “release_Workers”

in order to exit. It starts with the Queue followed by the Delay to perform the needed

cleaning and preservation of the tool, and finally is connected to the Release block

in order to free up the worker to start on a new tool. The Table 5.6 below details this

track’s parameters.
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Table 5.6: UnusedTrack blocks.

Otherwise, once the tool is identified to be used, it goes for disassembly, and that

is represented by a Delay block where the delay time is specified and set to one day

with maximum capacity. Having maximum capacity delays based on the resources

available after the first Seize block plays a role in painting a realistic representation of

the real process. The “Disassembly” Delay block is detailed in Table 5.7 below.

Table 5.7: “Disassembly” delay block.

The disassembly is followed by a SelectOutput5 block called “UsedSplit” in order

to separate potential outcomes of the used tool of the disassembled tool. The rea-

son for using SelectOutput5 instead of SelectOutput is because it has three possible

outcomes. The SelectOutput5 is presented below with its probabilities based on the

data collection, where the number of visits of each outcome was ratioed over the total

amount of visits accounted for from the historical data obtained in Chapter 3. The

probabilities are presented in Figure 5.11 below with 0.326 being for the replacement

being needed, 0.404 being for the repair being needed, and 0.27 being for neither

where the tool has no unforeseen issues.
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Figure 5.11: UsedSplit SelectOutput5

Taking the “NoIssuesTrack” first from the “UsedSplit”, it consists of a Queue fol-

lowed by a Delay in order to present the used maintenance process that includes

standard part The Table 5.8 is presented below to show the parameters used for this

track.

Table 5.8: NoIssuesTrack blocks.

The second potential track is the “RepairComponentTrack”, and this represents

the need to outsource repairs for failed components. This is done by adding a Release

block to remove booked workshop workers from the tool and allowing the tool to not

interfere with workshop capacity as it gets repaired. After the Release, there is a Queue

and a Delay to perform the repairs. Once done, the tool is then linked back to a worker

using the Seize block and rejoined into the main flow to be assembled and be sent out.

The properties of this track are represented in the Table 5.9 below.
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Table 5.9: RepairComponentTrack blocks.

The third and final output from the “UsedSplit” is the “ReplaceTrack” and that

is where the issues arose for the case company. To begin the track has a “replace”

release function which releases the workers initially attained for this track. This is

done to add the realistic logic into the model, where if there are stock shortages, the

model would not keep the worker seized until the component is procured. The release

“replace” in turn has its properties set to “Release: All seized resources” and is followed

by a SelecOuput5 called “ComponentSplit” that separates each needing replacement

component from the finalized critical components. The probabilities assigned within

“UsedSplit” are the ratios of each component replacement over the total amount of

component replacements accumulated over 2021 and 2022 for the case company, then

converted into a percentage so as to have it be a probability. This is implemented as

shown below in Figure 5.12

Figure 5.12: ComponentSplit SelectOutput5
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For each of the probabilities, a defined set of discrete events exist, and to have a

functioning inventory management discrete event flow, we need hold blocks to be

activated when stock shortages occur. For whichever of the five components that

needs replacement, there exists a hold block for it. For Comp. 1 that is “hold1”, for

Comp. 2 it is “hold2”, for Comp. 3 it is “hold3”, for Comp. 4 it is “hold4”, and finally

Comp. 5 has “hold5”. These act as blockages and are activated through a designated

state chart for each.

In total, there are five different tracks stemming from the “ComponentSplit”, and

all five tracks follow the same logic of component replacement. They all begin with

a Queue which receives and accounts for all replacement demands needed by the

used tool, and this is followed by a hold which blocks the replacement in case there

are stock shortages. Once the component is identified to be on stock, the hold will

not be activated, and there would be a seize block to attain a workshop worker for

the replacement followed by a Delay for accounting time and inventory changes due

to the replacement activity before the tool is rejoined back onto the main flow for

assembly and checkout.

For better distinction, the five identified components in Chapter 3 were assigned

to a corresponding replacement track. In other words, Comp. 1 follows the first track

with “Qreplace1” Queue, Comp. 2 follows the second track with “Qreplace2” Queue,

and so on till Comp. 5, which follows the fifth track with “Qreplace5” Queue. The

properties of these five tracks of replacement are represented in the Table 5.10 below.

Table 5.10: ReplaceTrack blocks.
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Once the tool is done with any of the previously discussed tracks following a used

tool maintenance process, the tool is then ready for assembly. The tracks are all re-

joined into the main process flow, and they are met with a Queue, followed by a Delay,

and finally a Release block to free up the workshop workers for new jobs. Once the

workers are returned to the “Worker_Pool”, a Sink is used for tool exiting. The Ta-

ble 5.11 below illustrates the properties of the checkout section of the process flow.

Table 5.11: Assembly and Checkout blocks.

Having covered the discrete events flow process, it is important to support that

with the necessary functions such as the Stock blocks, Parameters, and State charts

within the “main” agent.

The Hold blocks discussed previously are all linked to their corresponding state

charts. A visualization of the state charts is presented below in Figure 5.13, and the

“hold1” Hold block state chart is highlighted and will be further explained.
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Figure 5.13: Hold state charts

The highlighted state chart follows the same exact logic as the rest, therefore, the

replication of the same steps with modification of numbers to match each Hold block

will result in the same output. So, only the highlighted one is detailed below in Ta-

ble 5.12.

Table 5.12: Hold1 Statechart properties.
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The Hold function keeps checking for when it needs to be activated using an inter-

nal transition within the state “Unhold1” where it remains open and unblocked until

the “h1_on” condition is met. This is detailed within Figure 5.14 presented below.

Figure 5.14: Unhold1 internal transition

The “main” agent extends to cover the stocks and parameters used to keep track of

the inventory being utilized throughout the maintenance process flow. This is done

by assigning a Stock to each of the components in this research, and two parameters.

The first parameter is for the batch supplied to the stock, and the second parameter

is for the re-ordering point of the batch to fill up the stock. These two parameters

exist for each stock and are labeled by numbers, so “Batch1”, “Reorder_point1” are for

“SparePartsStock1” and they are all linked to Comp. 1. The rest follow the same logic

and correspond to the remaining components. The Figure 5.15 below illustrates the

used stocks and parameters.
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Figure 5.15: Baseline model stocks

The parameters used within this section were based upon the data collection in

Chapter 3, and follow the current parameters utilized by the company. Table 5.13

below shows all properties within these parameters and stocks.
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Table 5.13: Baseline model stocks inputs.

Finally, the “main” agent includes five other agents as shown on the left side of

Figure 5.5. The agents are responsible for the supply chain of the procured compo-

nents from the best cost country. They are called “orderp1” for Comp. 1, “orderp2” for

Comp. 2, “orderp3” for Comp. 3, “orderp4” for Comp. 4 and “orderp5” for Comp. 5.

By going inside one of these agents, each one contains a state chart and a set of

discrete events which represent the supply chain process of these components. Tak-

ing “orderp1” in details as an example to give an understanding of how this process

functions will further show the interconnections between the state chart and the dis-

crete events within to end with the refilling of “SparePartsStock1” Stock as presented

in Figure 5.16 below.
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Figure 5.16: “orderp1” agent process flow

The overview above consists of a state chart that triggers a supply order that is

based on the stock falling below the re-order point threshold. This takes the order

into the “enter” Enter block initiating the discrete events flow. Along the discrete

events flow, there is a TimeMeasureEnd plotted in order to keep track that the supply

is going correctly following the tool specialist’s inputs from the case company. Below

is Table 5.14 breaking down each discrete event block, along with the state chart states

and transitions’ properties.

Table 5.14: “orderp1” agent blocks properties.
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The parameters of each agent, such as “orderp1” correspond to refilling the compo-

nent’s dedicated stock, being “SparePartsStock1”. This in turn means that the replica-

tion of these steps within the other agents will give the same output through modifying

the Stock, Batch and Hold blocks names within the properties of the blocks.

5.9 Enhanced Model

In order to apply the mapped conceptual enhanced system discussed previously

within AnyLogic, some structural modifications within the baseline model were ap-

plied. It was modified to implement the repaired-parts cycle system, which involved

replacing faulty components from stock and returning the repaired part back to stock

for future use. The modified model aimed to streamline the maintenance process flow,

reduce lead times, and minimize procurement expenditures on the long run through

future proofing existing components. The model incorporated the demand forecasts

and inventory management techniques discussed in the literature review to ensure

its effectiveness and relevance to the case company’s operations.

The model structure was built on the baseline model but with some modifications

within the “main” agent which represented the enhanced process flow of maintenance,

and this is shown in Figure 5.17 below. The maintained tool would follow the same

inputs “source” and “arrivalSchedule”, seizing of workers “Seize_Workers”, identifi-
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cation procedure “UsedorUnused”, unused maintenance flow “NoIssuesTrack”, and

checkout process from “CheckoutTimeStart” until the “sink” exit. Agents “orderp1”,

“orderp2”, “orderp3”, “orderp4”, and “orderp5” were used as is from the baseline model.

The main differences only occurred within the used maintenance procedures “Re-

placeTrack”, Stocks blocks, and State charts.

Figure 5.17: Enhanced model maintenance process flow

To begin with the model structure differences, the first change is witnessed in the

“UsedSplit” SelectOutput. This is different from the SelectOutput5 used in the baseline

model due to the removal of the “RepairComponentTrack” process flow. This meant

that there are only two possible outputs now, either it has repairs, or has no issues

and follows the “NoIssuesTrack”. The probabilities were changed to 0.73 to suit this

structural modification meaning there is a 73% probability the tool encounters at least

one component with issues. This is presented below in Figure 5.18 stemming from

the historical maintenance data collection in Chapter 3.

Figure 5.18: Enhanced model “UsedSplit”
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Once the tool is identified to be used, it is then taken to the “ComponentSplit”

SelectOutput5 which is the same block used within the baseline model. However, from

that point, there are a lot of changes within each of the five tracks with component

issues. With the new structural change of including repaired-path cycle, the tool is not

to be affected by component failures. In other words, whether the failure is repairable

or not, the tool will have the component replaced, and the component is serviced and

returned to stock.

The flow begins with a Delay for removing the faulty component, then a Split block

which separates the tool from the faulty component. This is done so the tool can have

its component replaced while the originally failed component is being repaired. Once

the component has been separated by the Split block, it is taken into a Batch block.

This is done based on the tool specialist’s interview at the case company, where the

business is looking for maintenance cost reductions through bulk repairs. Once the

bulk size specified is reached, the tool goes through a Service block which has a Delay

time within which accounts for the proposed future proofing of components. This

is finally followed by a Sink block once the services are performed and the repaired

components are returned to stock. For instance, Comp. 1 now has “scrapper1” Stock

to scrap irreparable components, and “repairedstock1” being the main utilized stock

rather than “SparePartStock1” which was used in the baseline model. The “SparePart-

Stock1” Stock is still used, but merely as a backup stock that is used in case shortages

within the “repairedstock1” exist.

On the other hand, the tool once separated goes through a Release block which

releases the worker currently assigned to it in case there are stock shortages. This

means the worker is not obligated to wait for the stock availability in order to work,

but can alternatively be busy with other tools in the meanwhile. Following that, a Hold

block exists to stop the flow when no stock is available at that moment. In case the

Hold is inactive, a Queue is placed to take in tools needing component replacements,

and is followed by a new Seize block. This Seize block brings back a free workshop

worker in order to replace the component now on stock through a Delay block for

replacement. Once done, the tool is rejoined on back on the main process flow in

order to be assembled and checkout.

This way, the tool maintenance flow is independent of component failures and

can be streamlined drastically. To better illustrate the changes, Table 5.15 below is

created detailing the first track starting with “Replace1” which similar to the baseline

model, represents Comp. 1.
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Table 5.15: Enhanced model ReplaceTrack blocks.

The remaining tracks out of “ComponentSplit” follow the same exact logic, but

each reflects its corresponding component. For example, the second track starting

with “Remove2” represents Comp. 2 and so forth. This indicates that the replication

of these steps, alongside the modification of the Stock names will result in a similar

output for all remaining components.

Moving onto the Stock blocks and State charts, the same Hold state charts used

in Figure 5.13 were applied within the enhanced model. However, two new Stock

blocks were created to account for repaired components as a first defense line when

failures occur, and another to account for the scrapping of tools that have reached their

product life cycle and cannot be further repaired. The Figure 5.19 below visualizes the

new Stock blocks implemented and the new state charts used for these Stock blocks.
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Figure 5.19: Enhanced model stock structures
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The figure displays three Stock Blocks and two new state charts utilized for each

component. Taking Comp. 1 in details for example, the state chart “statechart_ scrap1”

is used to scrap irreparable Comp. 1 parts, and another “statechart_shift1” is used to

shift inventory stocks between the “SparePartStock1” and the “repairedstock1” Stock

blocks when needed for replacements. Moreover, “scrapper1” Stock is added to count

all repaired components and initiate the scrapping when needed. Finally, a new vari-

able is added to accumulate scraps “Acc_scrap1” and acts as a counter to visualize the

number of scraps by the end of the model time. A detailed overview on properties

and inputs of the taken example is provided in Table 5.16.

Table 5.16: Enhanced model Comp. 1 Inventory management system properties.
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The remaining components have the same exact inventory management structure

and follow the same logic. So, applying the same structure to the remaining compo-

nents and modifying the names of the Stock blocks, Parameters, and Variable will

result in the same output.

Each of the components has a dedicated batching stock such as “Batch1” for Comp.

1 which is responsible for the re-order quantity when needed. Moreover, each com-

ponent has a dedicated repaired parts stock post servicing faulty components that

gets utilized on demand for other needing tools, such as “repairedstock1” for Comp. 1.

However, if no repaired components are on stock, the tool is able to utilize new build

stocks such as “SparePartsStock1” for Comp. 1. Once the new build stock drops below

a threshold specified as a re-order point, such as “Reorder_point1” for Comp. 1, a new

supply order is placed similar to the baseline model. Finally, a separate stock such as

“scrapper1” for Comp. 1 keeps count of the amount of repaired tools to account for

needed scraps over time, as a way of keeping the model as realistic and reflective of

the real workshop as possible. All the inputs are provided below in Table 5.17.

Table 5.17: Enhanced model stocks inputs.
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5.10 Financial parameters of interest

The financial analysis of the model for the problem under discussion requires con-

sidering two main factors. The first being the current financial burden associated

with elongated lead times and high maintenance costs, and the potential financial

implications of implementing the proposed repaired-path cycle solution.

Currently, the case company incurs significant costs due to the inefficient inven-

tory management system. The prolonged lead times for tool maintenance not only

increase the operational costs but also affect revenue generation. Offshore opera-

tional delays translate into lost opportunities and financial losses due to missed con-

tracts. Additionally, high maintenance costs, especially when components need to

be repaired or replaced, further strain the financial resources of the company. These

costs are a direct result of the current operational inefficiencies, and they highlight

the urgency for a restoration of the inventory management system.

The proposed solution, being the integration of a repair path cycle into the mainte-

nance process, necessitates an upfront investment. This investment includes setting

up the repair cycle system, and implementing a bulk repair strategy. However, this

cost is likely to be offset by the potential savings due to a reduction in lead time, a

decrease in the rate of failures, and a streamlined maintenance process. While exact

cost calculations will require specific data regarding the investment required and the

expected savings, the overall trend suggests a positive net present value (NPV) for this

solution in the long run.
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Specific cost figures and financial plots would be needed to validate these assump-

tions and provide a detailed cost-benefit overview. To do that, financial stocks were

added to account for the repairs and procurement costs.

To account for revenues and costs, a set of financial figures were taken from the

case company with a multiplication factor due to the confidentiality. The values are

separated in three categories, the revenue from sending tools back offshore, the av-

erage cost of future proofing the top five selected component repairs, and the cost of

procurement from the data collection in Chapter 4. In Table 5.18 below are the two

advised average repair costs used within the model for financial evaluating purposes.

Table 5.18: Financial parameters.

In order to implement these revenues and costs within the model, Output blocks

were implemented in both the baseline and the enhanced models. These Output

blocks were “Revenue” for the tool output revenue calculation, “repairCost” for the

accounting of tool repairs, and “ProcurementCost” for the sourcing of new build com-

ponents when necessary. The Figure 5.20 below shows the structure of the financial

parameters’ calculations.

Figure 5.20: Financial parameters structure

In order to better illustrate these parameters, and the way they operate, the Ta-

ble 5.19 below details each equation used within the baseline and the enhanced mod-

els.
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Table 5.19: Financial blocks properties

5.11 Verification and validation of the inventory man-

agement model

The developed inventory enhancement model needed to be critically tested for its

accuracy and functionality. This process was guided by a series of stages aiming to

ensure that the model is not only theoretically sound but also practically effective in

minimizing maintenance time and cost while meeting operational demands.

First, historical data was verified from the case company, and that included de-

mand, lead times, frequency and duration of maintenance, and the procurement costs

of spare parts. This information laid the groundwork for the calibration of the model

parameters, which included selecting appropriate methods of demand forecasting,

inventory policies, and safety stock levels.

Next, the tool specialist from the case company provided their expertise during

this verification stage, contributing to the model’s practical accuracy. The comments

provided are as follows:
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• Seize and release blocks the placement within the AnyLogic model structure for

the workshop workers to reflect the exact periods of worker allocation in order

to accurately replicate the real process.

• Batching of three components for the repairing process of the repair-path cycle

before sending them due to the cost savings on repairs.

• Logistical delay time inputs and probabilities for the different maintenance

paths were verified to reflect an accurate representation of the workshop distri-

butions.

All the previously mentioned points were taken into account, and consequently,

the model was revised. Following this, the validity of the inventory model was veri-

fied through several simulation runs with varying inputs, with outcomes checked for

reliability and consistency.

This cooperative process involved both academic supervisors and the tool special-

ist from the case company, ensuring a comprehensive validation of the model’s inputs.

These simulations served to evaluate the model’s effect on maintenance times and

costs by varying the inputs.

The inventory enhancement model can be further integrated within the company’s

fleet in the future for its final evaluation and validation, and the model’s performance

can be closely monitored using the established KPIs to ensure that it continuously

meets the needed operational objectives effectively.
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Chapter 6

Results & Discussion

The results of the study are expected to contribute to the broader field of inventory man-

agement in the oil and gas industry, offering practical implications for practitioners

and decision-makers.

6.1 Results and Discussion Outline

This chapter offers a comprehensive exploration and discussion of the results gath-

ered from the comparative analysis between the baseline and enhanced models in the

context of a spare parts inventory management system built within them. The results

were evaluated using a range of performance metrics such as the maintenance lead

times, workforce efficiency, and financial aspects all to provide invaluable insights

into the effectiveness of the incorporated repair-path cycle. Both models used sim-

ilar demand data sources, and initial inventory stock inputs. This helped establish

a common basis of comparison between both maintenance process and inventory

management approaches.

6.2 Lead Time Assessment

An initial comparative evaluation of lead times yielded a noteworthy decrease in the

average lead time within the improved model. The mean lead time for the improved

model was a mere 22% of the original, indicating a significant boost in the promptness

of tool dispatch from the workshop. This reduction in lead time is associated with

the introduction of the repair-path cycle, accelerating component replacements and

repairs.
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In order to better understand how these differences were analyzed, it is critical to

begin with the baseline model which has almost 20% of the tools falling between the

range 0 and 500 hours, while approximately 75% of the tools falling just short of the

1000 hours mark. Only few abnormalities were noticed on three short spikes on the

right side of Figure 6.1 exceeding 4500 hours and demonstrating a six-month delay.

However, when the model simulated all three years set for the model time, an average

of 888.65 hours per tool was the lead time for tools experiencing at least one issue, has

it been a repair or a replacement. This further showed the inefficiency of the currently

implemented process flow of maintenance and how that holds the tool captive until

the component is either found new on stock for replacement or has been repaired

and ready to be assembled. The Figure 6.1 below visually represents all these findings

and illustrates the percentage of tools on the y-axis over the accumulated lead times

on the x-axis.

Figure 6.1: Baseline model lead times of tools with issues

As for the enhanced model, the lead times showed a lot of differences. This is ma-

jorly due to the fact that the tool detaches from the failed component. It is rational to

assume the positive effect of it, but in no way was this the best possible achieved result

due to the lack of optimization within the inventory stock inputs. Once the model was

run through all three years, there was a clear shift in the lead time peaks where now

over 90% of the tools had a lead time between 0 and 500 hours with just around 5%

over 500 hours and a negligible range of abnormal cases witnessing 3000 hours of lead

time and others reaching 5000 hours seen on the right side of the histogram Figure 6.2

below. However, as mentioned previously, these were the result of the lack of stock

optimization and were not enough to discredit the major improvements resulted from

the enhancement of the inventory management process flow. This is backed by the

great reduction in lead times averaging 193.09 hours for tools that experienced at least

one critical component issue.
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Figure 6.2: Enhanced model lead times of tools with issues

The enhanced model achieved congruent lead times to the baseline model in

instances free of complications, suggesting that the repair-path cycle did not produce

unnecessary delays or difficulties in the maintenance process. It implies through

the 2 histograms, Figure 6.3a being the baseline model and Figure 6.3b being the

enhanced model in Figure 6.3 below, that the introduction of the repair-path cycle

did not detrimentally influence the maintenance procedures for tools not requiring

component repairs or replacements.
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(a) Baseline model lead times of tools with no issues

(b) Enhanced model lead times of tools with no issues

Figure 6.3: Baseline and enhanced models lead times of tools with no issues

6.3 Worker Utilization Analysis

The examination of worker utilization charts demonstrated a notable improvement

within the enhanced model. Worker utilization surged from 0.73 in the baseline model

to an impressive 1.58 in the enhanced model. This indicated a more efficient deploy-

ment of the workforce, as the repair-path cycle allowed for seamless maintenance

activities progression and minimized the idle time for workers. This improvement in

worker utilization is a critical contributor to the overall improved performance of the

system and will be discussed in detail within this section.

To gain a comprehensive understanding of the system’s existing conditions, a time

plot was generated and illustrated in Figure 6.4a. This graphic explains the individ-

ual worker utilization rates over the span of a three-year model run, plotted on an

hourly basis along the x-axis. The data unveiled an unexpected pattern of high worker

utilization abruptly plummeting to zero, periods in which all workers were idle.
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In addition, it was observed that a significant proportion of worker utilization

was clustered between the zero to two range, indicating that frequently only one or

two workers were engaged. Comparatively, instances, where all workers were put to

work, were uncommon and relatively few, pointing out the inefficiencies in the case

company’s deployment of workers.

Nevertheless, the time plot did not provide detailed frequency data for each of

these worker utilization levels. So, to address this, a histogram was introduced to

provide a more in-depth breakdown of the frequency of each worker utilization level

over the evaluated period.

Figure 6.4b showcases a histogram that compellingly illustrates the substantial

potential for boosting productivity. This graph outlines the worker utilization pat-

terns in the initial system, providing a baseline against which improvements can be

measured. It reveals that the workers were idle nearly 50% of the time during the three-

year period, signifying predominant inefficiencies. This extended idleness could be

attributed to lengthy repair delays or periods of inventory shortage, which resulted in

workers having no tasks to perform.

Such a high degree of worker idle time underscores the inefficacy of the currently

established process flow and strongly emphasizes the importance and necessity of

the research at hand. This study aims to explore potential remedies for these lapses,

highlighting opportunities to make the system more efficient and productive. The

histogram also showed the highest peak of workers utilized being at one worker at

almost 35% of the time, while two workers deployment only happened for just under

15% of the time. Going further to the right-hand side of the histogram, lower peak

times could be observed for three to five workers’ utilization, accumulating under

10% of the total run time. Finally, the overall mean was found to be 0.73 meaning the

highest range of deployment fell between idle and one worker showing how only one

worker was depended on mostly.
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(a) Worker utilization time plot

(b) Worker utilization histogram

Figure 6.4: Baseline model overview of worker utilization during model run time

As for the enhanced model workflow, it detached the tool from the failed compo-

nent and sends it for repair, and once repaired, it got returned to the repaired stock.

This process ensured a smoother flow of maintenance activities, allowing the workers

to maintain a consistent work rate rather than experiencing downtime due to waiting

for repair tasks, and improving the efficiency of the system.

To demonstrate this, a time plot depicted in Figure 6.5a gave an insightful visual-

ization of the worker utilization for maintenance tasks during the course of the model

run time. It highlighted how the saturated frequency of workers utilized was now dis-

tributed between the range one to three workers operating simultaneously rather than

just two of them as seen in the baseline model for the majority of the model run time.

Furthermore, it uncovered moments of peak demand, during which all five workers

were concurrently deployed due to high tool requirements. However, the chart fell

short of specifying precise percentages of worker utilization. So, a histogram was

incorporated in Figure 6.5b to elaborate on each worker’s engagement frequencies.
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The histogram demonstrated the workers’ idle time vast reductions to less than

that 25% of the total time, while over 30% of the time only one worker was engaged.

Additionally, more than 20% of the time saw a simultaneous utilization of two workers.

Concurrent requirement for three workers was observed during roughly 12% of the to-

tal time. The need for four workers was limited to about 7% of the three-year run time,

and a mere 4% of the time necessitated the employment of all five workers simultane-

ously. All in all, an average of 1.58 workers utilization was obtained, demonstrating

that between one and two workers were mostly needed.

This data offers the company valuable insights over the three-year period, where

only around 4% of the time required the deployment of five workers simultaneously

post enhancement. Hence, it suggests that the majority of the lead time reduction

is contingent on the utilization of just four workers. This further highlights the pos-

sibility for additional cost savings in maintenance by trialing the model with fewer

workers and comparing the impacts on lead times against the financial benefits of

reduced wages.

(a) Worker utilization time plot

(b) Worker utilization histogram

Figure 6.5: Enhanced model overview of worker utilization during model run time
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In conclusion, the notable increase in worker utilization as a result of the repair-

path cycle implementation demonstrates the effectiveness of this new process in im-

proving the productivity and efficiency of the inventory management system. How-

ever, it also underlines the need for continuous monitoring and adjustments to main-

tain an efficient work environment for the workshop workers.

6.4 Crowding Analysis

An analysis of the crowding time plots and histograms revealed a clear contrast be-

tween the baseline and the enhanced model. The initial model displayed escalated

crowding levels by the end of the model time, implying an extended accumulation of

tools in the workshop. Conversely, the advanced model indicated reduced crowding

levels, suggestive of a more streamlined maintenance process and fewer bottlenecks.

The implementation of the repair-path cycle played a pivotal role in curtailing tool

waiting times and expediting the maintenance process. The crowding effect can be

crucial when taking into consideration the ergonomics and stress levels caused by it

on the workshop employees.

Frankly, seeing a continuously high number of tools in the workshop being de-

layed due to the current repair process will ultimately push the workers to expedite

disassembles and assemblies. That in turn will lead to higher injury risks, and lower

overall quality of maintenance in order to meet the operational demands on time.

Through analyzing the baseline model time plot in Figure 6.6a, it is clear that for

the first year of the model, the crowding frequencies were more or less stable under

a controlled pattern, peaking at six tools. As the model run time progressed, there

was a slight increase in crowded tools peaking once at 10 tools within the second year.

However, an alarming surge in the crowded tools was evident in the third year as the

delays accumulated due to stock shortages and repairs. This caused the third year to

be the worst, peaking at 22 crowded tools and calling for a change before such drastic

deterioration and loss of control occurs.

In order to detail the amount of tool crowding occurring at once, a histogram is

implemented in Figure 6.6b. It showed approximately 60% of the model run time

having five or less tools at once within the workshop, representing a low amount to

no crowding at all and upright control. However, the remaining 40% of time saw six

or more tools in the workshop creating a backlog that kept accumulating over the

latter years and raising the need for overtime for workers until the highest crowding

reached 22 tools at once. This overall demonstrated that the high amount of backlog
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witnessed within roughly 40% of the model time dragged the mean of tool crowding

to reach 5.33 tools in the workshop at all times.

All in all, a high concentration of tools in the workshop, accompanied by the rela-

tively low worker utilization for the baseline case, demonstrates an increased pressure

on getting the tools out and causes additional stress on all parties involved. Over time,

these strains can cause workers to develop serious musculoskeletal disorders, such

as repetitive strain injuries or back problems, which are associated with high costs for

both the employees and the case company in terms of medical expenses and reduc-

tion in productivity.

(a) Crowding time plot

(b) Crowding histogram

Figure 6.6: Baseline model overview of tool crowding during model run time

As for the enhanced model, an initial overview of the enhancement was intro-

duced over a time plot in Figure 6.7a, where there was a huge reduction in the overall

crowding numbers of tools maintained simultaneously as the majority of peaks were

visualized at three tools or lower. Nevertheless, in extreme cases, it peaked at seven

tools. This clearly demonstrated the positive impact of the repair-path cycle as the
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peak was now reduced to less than a third of the baseline, and the graph surge wit-

nessed previously was eliminated.

Moreover, a histogram was added to analyze the differences in peaks of tools over

the model run as shown in Figure 6.7b below. The enhanced model showed around

23% of time with zero crowding of tools for maintenance while having the highest

peak of approximately 32% with one tool to maintain at a time. Ultimately, around

95% of the three-year period of model run-time witnessed five tools or less crowded

within the workshop. This showed a significant amount of backlog reduction. Very

low peak points could be seen with six tools simultaneously maintained and a one-off

negligible peak for seven tools. The crowding of tool spikes majorly concentrated

between the ranges zero and two resulting in a diminished mean of 1.59 tools after

the implementation of the repair-path cycle.

(a) Crowding time plot

(b) Crowding histogram

Figure 6.7: Enhanced model overview of tool crowding during model run time
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Finally, after implementing the repair-path cycle within the enhanced model there

was a relatively overall reduction of tool crowding in the workshop, thus, leading to im-

provements in both the physical ergonomics and the stress levels among the workshop

employees. Reduced crowding would allow for easier navigation and less physically

strenuous tasks, where it develops a safer, and more reliable work environment. Sim-

ilarly, with less crowding, workers would experience lower cognitive load and stress

levels, contributing to increased job satisfaction and performance.

6.5 Financial Aspects Evaluation

In applying both the baseline and the improved models, three key financial aspects

were considered. These included the repair costs for malfunctioning components,

the expenses incurred for acquiring new build parts, and the revenues derived from

tool rentals for offshore operations. While this financial evaluation is not exhaustive,

it offers substantial insight into the primary structural distinctions between the two

maintenance procedures and inventory management approaches, hence, labor and

administrative costs were not factored in.

Further, it was affirmed through interviews with the tool specialist at the company

upon enquiry that there are no holding costs for necessary tools and components

due to the presence of an onsite warehouse. This mitigates the need for additional

financial allocation for storage.

The financial assessment of the two models yielded critical comparative insights.

The enhanced model demonstrated more impressive profit margins than its baseline

counterpart. A financial timeline illustrating the revenues, repair costs, and procure-

ment expenses indicated a significant surge in profit margins, estimated at about 3

million. This boost is primarily due to the operational efficiencies of the improved

model and the consequential reduction in lead times.

A cooperative combination of decreased repair expenses and increased revenue

generation played a considerable role in the financial enhancements observed in

the revised model. This proves the viability of the enhanced model in elevating the

company’s financial performance.

In an effort of visualizing the differences between both model runs, the baseline

model financial analysis was introduced over a time plot in Figure 6.8 below presenting

the accumulated revenues and costs across the next three years. The graph showed a

fairly linear line of revenue, demonstrating how despite the previously seen backlogs

of maintenance, the workshop was able to maintain consistent tool output to meet
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demands over an increased maintenance lead time period. Overall, the revenue had

reached 18,630,000 NOK by the end of the model run, while the repair costs reached

1,950,000 NOK, and the Procurement costs 1,537,200 NOK. This left the baseline case

a profit of 15,142,800 NOK.

Figure 6.8: Baseline model financial overview of tools during model run time

As for the enhanced model, there were some differences when it came to the final

values outputted at the end. However, similar trends on the time plot shown in Fig-

ure 6.9 could be observed showing that both models were able to continuously output

tools at the end of the day, despite their differences in delay times. The final values

revealed an increase in gross revenue, shown by the 21,870,000 NOK gross revenue.

However, repair costs were slightly higher than the baseline reaching 2,100,000 NOK

due to the higher dependence on repairs, with the procurement costs not being sig-

nificantly different and sitting at 1,564,400 NOK by the end of the third year. This left

the case company with an increased net profit reaching 18,205,600 NOK.

Figure 6.9: Enhanced model financial overview of tools during model run time

Despite higher repair costs, the enhanced model leverages efficiencies to increase

gross revenue and ultimately, net profit. The increase in revenue and profit indicates

that the improved model has successfully mitigated the inefficiencies inherent in the
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baseline model, leading to more productive use of resources and lower lead times.

However, it was expected to see lower procurement costs for the enhanced model,

but with the increased circulation of tool maintenance, more tools were maintained

leading to a similar procurement cost output by the end of the model run time. This

shows the relative advantage of the enhanced model, where if the model were to take

similar tool maintenance capacity throughout the model run time, lower costs would

have been achieved.

In summary, while both models have their merits, the enhanced model appears to

offer a more efficient and profitable solution for the case company. These insights can

guide strategic decision-making to optimize the balance between costs, lead times,

and revenue generation.

6.6 Model Evaluation and Discussion

In this study, a comparison was conducted between the baseline and enhanced mod-

els in terms of their operational efficiency, crowding levels, and financial performance.

Both models presented distinct attributes and showed differing strengths and weak-

nesses, but overall, the enhanced model proved superior in several key areas.

In terms of lead times, the enhanced model showed a significant reduction com-

pared to the baseline model. The average lead time in the enhanced model was only

22% of that in the baseline model, a reduction largely due to the introduction of the

repair-path cycle. This cycle facilitated quicker component replacements and repairs,

drastically speeding up tool dispatch from the workshop. For the baseline model,

the average lead time during the three-year simulation was 888.65 hours, but the en-

hanced model showed a substantial decrease to 193.09 hours, even accounting for

outlier cases.

Worker utilization also improved significantly in the enhanced model. The aver-

age utilization surged from 0.73 in the baseline model to 1.58 in the enhanced model,

suggesting that the repair-path cycle led to a more efficient use of the workforce. It

reduced idle time for workers and enabled a smoother flow of maintenance activities.

While the baseline model saw workers idle for about half of the time, idle time was

reduced to less than 25% in the enhanced model, with a higher frequency of simulta-

neous worker utilization.

Crowding levels in the workshop were another area of improvement. The baseline

model showed escalating tool accumulation over time, peaking at 22 tools in the third

year, raising ergonomic and stress concerns among the workers. In comparison, the

83



Section 6.6. Model Evaluation and Discussion

enhanced model reduced the crowding levels significantly, with a peak of only seven

tools. This reduction in crowding resulted in a safer, more efficient work environment

and reduced the average number of tools in the workshop at any given time.

On the financial front, the enhanced model outperformed the baseline model

despite higher repair costs. The operational costs in the baseline model ate into the

profit margins, resulting in a net profit of 15,142,800 NOK. In contrast, the enhanced

model, while having marginally higher repair costs, saw a considerable increase in

revenue, yielding a net profit of 18,205,600 NOK. The operational efficiencies and

shorter lead times in the enhanced model led to more effective resource utilization,

outweighing the increased repair costs.

Collectively, these results suggest that the introduction of the repair-path cycle in

the spare parts inventory management system results in considerable improvements

as it offers a more sustainable and profitable solution. It successfully mitigates the

crowding issues inherent in the baseline model, enhancing operational efficiency,

worker well being, and ultimately, financial performance. These findings substantiate

the effectiveness of the proposed approach, aligning with works of other researchers.

Table 6.1 is presented below demonstrating all obtained results for comparison pur-

poses.

Table 6.1: Summary of result metrics.
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The insights drawn from this comparison can guide decision-makers strategically

in optimizing workshop operations, leading to improved balance between costs, lead

times, and revenue generation. It’s worth noting that real-life implementation may

present unforeseen challenges that were not apparent in the model. Therefore, on-

going monitoring and adjustment will be necessary as part of the implementation

process.

It’s critical to remember that the findings presented are based on the specific case

study and the data accumulated for this research. Further validation of the improved

model’s performance can be pursued via real-world implementation and comparison

with actual operational data.

All simulated indicators can potentially be measured in the real-world application.

Such as the tool maintenance velocities, lead times, and worker utilization within the

maintenance workshop, however, even after implementation, there will be noticed

differences from the obtained results due to the lack of coverage of all components

present on tool and the accuracy of logging times from workshop employees.
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Chapter 7

Conclusion

The chapter aims to provide a holistic overview of what was achieved throughout the

research and open the door for further future improvements.

In summary, the research question revolving around what effects the implemen-

tation of a repaired-path cycle process within the maintenance process can do to the

lead time of tool maintenance was answered within the enhanced model showing its

outperformance of the baseline model in several key metrics. This included opera-

tional efficiency with 78% reduction in lead times, worker utilization improvement

by 116%, crowding levels reduction by 73%, scrap rate reduction by 52%, and a finan-

cial performance increase by roughly three million NOK (20%) in profit generation.

Overall, the findings from this thesis suggest that the enhanced model offers a more

sustainable, efficient, and profitable solution. These insights can guide strategic deci-

sions in optimizing workshop operations with such geographical constraints, where

the sensitivity of these results highly depended on the high procurement lead times.

Regarding the second research question of how this repair-path cycle can be prac-

tically modeled is answered through the utilization of a visual simulation approach

rather than an analytical one, due to the higher transparency and understanding of

complexities. Moreover, structural practicalities such as the extracting and imple-

menting probabilities from the real-world historical data in order to feed the splitting

pathways of maintenance. This also extends to the shifting of stocks to cover up the

needs of the maintained tools by shifting components between new build stocks and

repaired stocks through a state chart in the enhanced Anylogic model.

Though there is a well-known simulation modeling approach structure applied

in the scientific world, these two aspects made the model more practical for the case

presented and provided solutions for issues that were unforeseen previously during

the construction of the baseline model.
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This thesis aimed to enhance the inventory management system of a case com-

pany, driven by the challenges of long lead times in the offshore operations context.

Utilizing both AnyLogic and Python, models of the existing system and an enhanced

system were developed to conduct comparative analyses. The need for shorter lead

times in such a short cycle region underpinned this research, with the ultimate goal

of increasing tool utilization frequency and profit margins.

The enhanced model, in particular, incorporated a repair-path cycle and a split-

ting approach that detached tools from failed parts. This allowed the repair of failed

components independently, while the tool was fitted with a replacement part from

the repair stock and promptly dispatched. Coupled with the min-max stock values

and re-order points system, these strategic modifications resulted in reduced lead

times and more efficient inventory management.

The implementation of the repair-path cycle introduced batch processing of tools

for repairs, leading to cost efficiencies. This batch repair approach further under-

pinned a future-proofing strategy. In this strategy, multiple areas of the tool were

repaired at once, irrespective of the current failure, aiming to reduce the frequency of

heat treatments and, therefore, the tool’s yield strength reductions. Such a compre-

hensive repair strategy, if executed correctly, could substantially decrease scrap rates

and ensure the future reliability of the tools.

Nevertheless, it’s important to acknowledge that real-life implementation may

present challenges that weren’t apparent in the models. Geographic constraints, vary-

ing long procurement lead times, and the inclusion of all the different components

within the tool posing challenges when implementing the enhanced model. There-

fore, continuous monitoring, adjustments, and future research should be a crucial

part of the implementation process. This can be assisted by the scaling up of the model

to include higher levels of data points in order to reflect each and every component

within the discussed tool. The model implemented included the top five components,

however, there are forty other core components which in turn will reduce the realistic

reflection on real-life implementation. Once achieved, the model can further scale

up by including the whole fleet of tools as different agents within the model being

maintained at the workshop in hand. This requires drastically higher time allocation,

and data budgeting for software development.

Further research can build upon the work conducted in this thesis, with various

paths promising potential improvements. One such area could be the development

and evaluation of alternative future-proofing strategies or enhancements to the repair-

path cycle stock inputs. This exploration could yield significant benefits in terms

of operational efficiency and tool life-cycle management. This optimization can be

achieved through finding the optimal stock value inputs. It can be represented by the
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minimum inventory stock values that reflect an elimination of holdings happening

throughout the model run time. And therefore, showing no delays at all caused by

the repairs and/or replacements. Once this optimization is obtained, the variation of

inventory stock policies becomes achievable as to suit the needs and requirements

tailored for the case company at hand. Alongside this, investigating more sophisti-

cated stock management techniques, such as dynamic stock optimization based on

real-time data, could lead to noteworthy advancements in the model’s performance.

Such advancements in stock management can be particularly effective when paired

with advanced optimization algorithms.

The integration of more advanced optimization algorithms could also serve to

significantly boost the effectiveness of the inventory management system. Notably,

techniques such as Particle Swarm Optimization, and Simulated Annealing having

demonstrated their utility in addressing inventory management challenges. An article

by Xu et al., for instance, successfully applied a dynamic programming-based particle

swarm optimization algorithm to inventory management under uncertain conditions.

The incorporation of such sophisticated optimization algorithms into the existing

model offers a compelling direction for future research, potentially revolutionizing

the system’s efficiency and profitability [41].

In light of the growing emphasis on sustainable business practices, future research

could focus on how the enhanced model could help such companies advance their

environmental performance. Potential modifications might include strategies to min-

imize material waste, diminish energy consumption, and consider the life-cycle im-

pacts of distinct inventory management approaches. As explained by Srivastava, the

intersection of inventory management and environmental consciousness, often re-

ferred to as Green Inventory Management, represents a significant opportunity for

operational improvement while fulfilling sustainability goals [42].

Ultimately, this study serves as a stepping stone towards achieving a more effective,

efficient, and sustainable workshop operation, paving the way for future research and

improvements.
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