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Abstract 
 

 

Integration of 3D model production from a single 2D RGB picture using 

machine learning into mainstream human 3D modelling requires significant 

evaluation data with an appropriate reference value relative to structured light 

approach scanning. The purpose of this work is to bridge the gap between the 

structured light technique and the machine learning algorithm generation 

method through a comparative analysis based on qualitative criteria such as 

accuracy and efficiency. The subsequent research was undertaken in two parts. 

Phase 1 centered on the experimental setup of the data collecting approach 

utilizing several scanning techniques on the sample model in a controlled 

setting, whereas phase 2 focuses on the analysis of the subsequent data to 

determine functional equivalency. The most significant finding of the 

comparison study is the practicality of the PIFuHD machine learning algorithm 

with respect to the Artec EVA scanner in terms of efficiency and equivalent 

precision. Despite the advancements in Machine learning algorithm for 

generative 3D modeling, major improvements are necessary to achieve 

functional parity with the structured light scanning approach in terms of 

accuracy. 
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Chapter 1  Introduction 

Utilizing 3D modeling has proved useful for furthering research, increasing design processes, and 

improving educational outcomes [1]. Traditional anthropometric measures do not depict the three-

dimensional shape of the human body, and with the advent of CAD software and 3D scanning 

technologies, 3D human modeling has become a need for engineering product design [2]. However, 

structured light approach 3D scanning technologies, despite their significance, are not accessible to 

the general public or researchers due to their expense and demand for specialist technicians. In 

addition, they demand the continual presence of 3D models that require specialized training to 

maintain a still position and zero motion conditions, which is taxing for the models. The particular 

models may not have the time or stamina to be present in a controlled environment, which is 

required for 3D scanning utilizing the structured light approach employed by the Artec EVA Scanner. 

This challenge has led to the development of machine learning scanning technology, which has led to 

a novel method of capturing 3D data of human models that does not require any further equipment 

than a computer on which to execute the application. This new developing approach of 3D scanning 

employs open-source deep learning algorithms, making it possible for customers to receive 3D 

model data for their desired model from a single RGB photograph. This makes the acquisition of a 3D 

model economical, user-friendly, and extremely efficient in terms of speed and mobility. But for the 

seamless integration of this technology to work in the current 3D modelling industry, a comparative 

reference value is required that can enable body data "consumers" to comprehend these 3D body 

digitalization technologies and make well-informed selections when selecting the most appropriate 

solution for their specific company requirements. 

The objective of the work described in this paper was to investigate a qualitative and comparative 

evaluation of the Structured light technique and the machine learning scanning method for 

anthropometric data, utilizing standard sample, data collecting processes, and analytic procedures. 

Although similar studies on the compatibility and dependability of different scanning methods have 

been conducted in the past, this study is unique in that it compares data collected from the newly 

established deep learning algorithms Learned Vertex Descent and PIFuHD to structured light 

methods such as the Artec EVA scanner utilizing similar procedures for data collection and analysis. 

 

The research objective will establish the following results: 

• Comparative examination of the precision and effectiveness of the 3D structured light 

scanning and Machine Learning scanning technologies 

• Comprehensive and impartial evaluation of the functional equivalency of machine learning 

scanning vs structured light 3D scanning in the human 3D modelling sector 

 

1.1  Objective 

This thesis will examine the basic concepts, data gathering methodologies, and processing workflows 

of structured light and machine learning-based 3D scanning approaches. By exposing the technical 

complexities of each technique, we want to clarify their basic distinctions and parallels. 
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Evaluation of Accuracy and Precision: The accuracy and precision of the reconstructed models is a 

crucial component of 3D scanning. The qualitative performance measures of both strategies will be 

evaluated. This study will assist discover situations when one strategy performs better than the 

other. 

Data Complexity and Processing Efficiency Various applications require differing degrees of data 

complexity. We will study the scalability and efficiency of each technique in terms of data amount, 

complexity, and processing resources needed. This knowledge will be essential for selecting the best 

appropriate strategy in real-world situations. 

Application and Use Situations: To highlight the real-world consequences of our findings, this thesis 

will examine and explain particular use cases in which each technique shines or suffers difficulties. In 

doing so, we want to provide light on the domain-specific applicability of the structured light 

approach and machine learning-based 3D scanning techniques. 

1.2  Scope and Limitations: 

This investigation will compare the structured light approach with 3D scanning techniques based on 

machine learning. Existing 3D scanning techniques, such as laser-based and photogrammetry-based 

technologies, will be omitted from this study to keep a focused scope. In addition, the scope of the 

study will be restricted to commercially accessible and open-source implementations of the chosen 

methodologies. 

1.3 Organization of the Thesis: 

The thesis will be structured into several chapters, each addressing specific aspects of the 

comparative analysis. The organization will be as follows: 

1. Introduction: Provides an overview of the research problem, objectives, scope, and 

limitations. 

2. Literature Review: Surveys the existing body of literature on 3D scanning, structured light 

method, and machine learning-based approaches, and highlights the gaps and contributions 

of this thesis. 

3. Methodology: Describes the research methodology, experimental setup, and data collection 

procedures for evaluating the two 3D scanning techniques. 

4. Comparative Analysis: Presents the results of the qualitative assessment, comparing the 

structured light method and machine learning-based approach in terms of accuracy, 

efficiency, and applicability. 

5. Discussion: Analyzes the findings, interprets the results, and discusses the implications of the 

comparative analysis. 

6. Conclusion: Summarizes the research outcomes, reiterates the key findings, and proposes 

future research directions. 

By conducting a thorough comparative analysis of the structured light method and machine learning-

based 3D scanning techniques, this thesis endeavors to contribute to the advancement of 3D 

scanning technologies and inform decision-making processes for their practical implementation in 

various industries and research domains. 
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Chapter 2 Related Work 

2.1 Human 3D Modelling 

3D human modelling is the state-of-the-art modern-day anthropometric assessment method that 

allows us to recover the 3D geometry and appearance of human body in a digital format from various 

scanning and modeling techniques using several sources like light, pictures, movies, or depth data 

[1]. These digital formats may include Proprietary 3D file formats, such as AutoCAD’s DWG files or 

Blender’s BLEND files, which are used specifically for their respective optimized programs. Neutral 

digital file formats include STL, OBJ, 3MF, etc., which are cross-platform, so they can be used to 

create a file in one program and transmit it to someone using a different program, and they will be 

able to open and edit the file. The data format of these digital 3D files consists of four primary 

features, which are the model's geometry, its surface texture, scene details, and its animation [2]. 

Using these digital formats gives us the opportunity to make a virtual digitalized representation of 

the real physical human body, which can be used in broad range and field of applications.  Ergonomic 

analysis utilizing a digital human model created by ergonomic human modeling tools such as 3DSSPP  

has been introduced to facilitate a more rapid and cost-effective design process [3-5]. In virtual 

reality simulations, the majority of virtual objects are represented by three-dimensional models, 

which consist of a collection of triangles with common edges and vertices [6]. Integration of human 

factors in any system of simulation-based engineering requires involvement of the 3D human model 

data solely for demographic purpose. Human-Centered Design in Aviation is a collaborative effort 

between pilots and human factors engineers in aircraft development and operation. Pilots bring vital 

operating environment knowledge and are the primary demographic for designing product solutions 

[7].  Anthropometry and biomechanics studies is one of the major field of science which requires 

accurate 3D human model for design purpose as they are used for risk assessment and safety 

evaluations of assistive technologies for rehabilitation purpose of patient specific product [8]. 

Some of the core challenges that human 3D modelling faces are accuracy and efficiency of the entire 

process. Human body shape estimation from natural images is extremely difficult due to variables 

such as the diversity of human bodies, clothing, and points of view [9]. The structured light method is 

frequently employed in human 3D modeling, but it presents its own unique challenges. An obstacle 

is the precision of the 3D reconstruction, particularly when dealing with small or complex objects. In 

the case of machine learning image based algorithm, the shallow depth of field affects image-based 

3D reconstruction and can result in a 3D model with a lower resolution [10]. In 3D human shape 

estimation, estimating the full 3D shape of a person from a single RGB image remains an open 

problem. Model-based approaches can generate accurate meshes of bare, undergarmented human 

bodies, but they are incapable of estimating details and non-modeled elements such as hair or 

clothing [11]. In terms of speed and efficiency, structured light method requires more time to 

capture the image, and demands unwavering presence of the model itself, which can be exhausting 

for the model too. While single RGB image-based 3D modelling software can process the 

construction of 3D model without the constant presence of the model, it requires the estimation of 

3D position from 2D position. Optimization of a 3D human model's projection to 2D predictions can 

also be computationally costly and ambiguous [12].  
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2.1.1 Human 3D modelling for Sports Engineering 

In recent years, the application of 3D human modeling in sports engineering design has received 

considerable interest. This method has several benefits in terms of shape and form preservation, 

adaptability, repeatability, and high culture throughput [13]. In addition, 3D human modeling based 

on imaging technology has been utilized to collect and evaluate the real-time motions of athletes. 

Researchers may create sports analysis systems that give real-time feedback and insights into an 

athlete's performance by recording the movements of players using 3D imaging technology. This data 

may be utilized to identify improvement areas, optimize training regimens, and avoid injuries[14]. 

One such noteworthy illustration is the Aerodynamic investigation of tucked positions in alpine skiing 

[15]. In this study, experiments were done in a wind tunnel utilizing 3D scans of male and female 

athletes for this investigation. The effect of arm configurations in various postures, such as low-

tucked, high-tucked, and flying postures, was investigated. Consistent patterns were identified 

between tests and simulations of computational fluid dynamics, emphasizing the significance of arm 

posture in aerodynamics. In this study, the 3D model of the sample skiers obtained through 3D 

modelling technology played a vital role in the digital assessment of the performance of index in a 

competitive sport such as alpine skiing. 

 

2.2  3D Scanning using Structured Light Method (STL)  

The structured light method is a 3D scanning approach that use the optical triangulation concept to 

gather 3D data and build 3D representations of objects or surfaces. This approach entails projecting 

structured grating fringes onto a subject or object and recording the deformation of the pattern 

using cameras or sensors. As the fringes travel through the subject, they are converted into 

measurement fringes, and the distance between each pattern point may be measured to provide a 

3D morphological representation [16].  

The structured light method is a widely utilized technique for 3D human body scanning. The process 

involves projecting a known light pattern onto the body's surface and capturing the pattern's 

deformation of the human body surface with cameras. This technique permits the collection of 

anthropometric data, such as surface, volume, and cross-sectional measurements [17]. Using the 

collected depth information, a 3D representation of the item surface is reconstructed. This may be 

accomplished by triangulating the depth measurements from several perspectives to derive the 3D 

coordinates of each surface point [18]. The generated 3D model may be viewed and examined for a 

variety of purposes. 

Numerous industries, including forensic medicine, breast surgery, historical clothing, and 

anthropometry, have developed a significant interest in three-dimensional (3D) scanning using 

structured light.. Structured light scanning mitigates the drawbacks of conventional documentation 

methods and gives more accurate 3D findings. The Pico Scan 3D scanner, which was developed 

expressly for structured light scanning, is capable of recreating hairy, moist, and dark-skinned areas 

that are difficult to capture using photogrammetry or laser scanning. The validity of 3D 

measurements based on structured light scanning has been demonstrated, and more research is 

underway to scan open wounds with depth data[19]. Structured light 3D scanning has been 

investigated as a method for making 3D models of displayed clothes in the subject of historical 

clothing. While photogrammetry and 3D modeling tools have been widely utilized, structured light 

scanning offers a novel technology with potential accuracy and methodological advantages [20]. 
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2.2.1  Artec EVA 3D Scanner 

The portable Artec EVA scanner is a structured light scanning equipment for 3D surface scanning. It is 

simple to use, collects both geometry and texture data, and has been effectively used in a variety of 

human applications. The scanner is useful for collecting comprehensive 3D models of the human 

body and other items due to its user-friendliness, precision, and ability to accommodate subject 

movement [21, 22]. The method of 3D scanning with the Artec EVA scanner entails collecting the 

object's or body part's form and surface characteristics. The operator swings the portable scanner 

around the subject to obtain numerous perspectives. The scanner projects structured light patterns 

onto the surface, and its cameras or sensors capture the deformation of the patterns. Using software 

such as Artec Studio, the collected data is then processed to create a 3D model of the human part 

[23]. 

2.3  Machine Learning Scanning Technology: 

As a 3D scanning technology, machine learning algorithms utilize machine learning techniques to 

evaluate and understand 3D data received from diverse sources, such as RGB photos, 3D scans, 

medical images, and point clouds, and produces a 3D model based on that information using its 

working principle.  

The operating principles of machine learning algorithms as a 3D scanning technology involve 

numerous fundamental characteristics. Initially, the algorithms use enormous 3D data sets to 

discover patterns and correlations within the data. This procedure, called as training, includes 

providing labeled samples of 3D models and their respective properties or attributes to the 

algorithms [24]. The algorithms then evaluate the data using statistical approaches and uncover 

patterns that may be utilized to make predictions or produce new 3D models. Second, the algorithms 

leverage a variety of feature extraction and representation strategies. In the context of 3D scanning, 

these approaches entail extracting pertinent characteristics from 3D data, such as form, texture, or 

geometric qualities [25]. The machine learning algorithms then learn to correlate these traits with 

certain groups or categories of 3D objects. In addition, the algorithms may leverage various machine 

learning models, including deep learning models, to manage the complexity and high dimensionality 

of 3D data. Due to their capability to develop hierarchical representations of the input, deep learning 

models, such as convolutional neural networks (CNNs), are very good at evaluating and interpreting 

3D data [26]. These models are composed of numerous layers of linked nodes that learn to extract 

increasingly abstract properties from incoming data. In addition, algorithms may be trained using 

various optimization approaches, such as gradient descent, to iteratively alter model parameters and 

reduce the discrepancy between expected and actual outputs [27]. This process, known as model 

optimization or training, enables algorithms to enhance their performance over time and provide 

more accurate predictions or more realistic 3D models. 

In 3D human modeling, one use of machine learning techniques is the development of realistic 3D 

clothed human body models. The methods use parametric models for 3D bodies and clothing to 

capture body form and position, which are fundamental elements of 3D human modeling [19]. 

Traditional models are often learnt from minimally-clothed 3D scans and have difficulty generalizing 

to the complexity of clad humans in popular photos and movies. To overcome this issue, researchers 

have built generative 3D mesh models that can learn the deformation of clothes using 3D scans of 

various positions and types of clothing. Effectively expanding the depiction of the human body 
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model to include clothes, these models may create garment samples for various body forms and 

positions [19]. 

2.3.1  Learned Vertex Descent 

Learned Vertex Descent (LVD) is an unique optimization approach in which a network use local image 

or volumetric data to anticipate repeatedly per-vertex paths toward an ideal body/hand surface. It 

blends gradient descent optimization with deep neural networks for precise and efficient posture 

estimation. The suggested method is immediately transferable to diverse jobs with little network 

modifications, and it can accommodate a greater variety of body forms than prior state-of-the-art 

methods [28]. 

In contrast to prior methods that directly regress the parameters of a low-dimensional statistical 

body model (e.g., SMPL) from input photos, this method is trained in an ensemble of per vertex 

neural fields networks [28]. On the basis of neural characteristics collected from the present vertex 

projection, the network predicts, in a distributed fashion, the vertex fall direction towards the ground 

truth. At inference, this network, named LVD, is utilized within a gradient-descent optimization 

pipeline until convergence, which often happens in a fraction of a second even when all vertices are 

initialized as a single point. A comprehensive examination reveals that the method is capable of 

capturing the underlying body of clothed humans with vastly varied body forms, representing a 

major advance over the current state of the art [28]. 

LVD combines the benefits of traditional optimization with learning-based techniques. LVD captures 

out-of-mean structures substantially more precisely than all past work. Unlike optimization 

techniques, it does not suffer from local minima, and it converges in only six rounds. The superior 

performance is attributable to the distributed per-vertex predictions and the error feedback loop – 

the current vertex estimate is iteratively validated against the image evidence, a feature present in all 

optimization schemes but absent in learning-based methods for human shape estimation [28]. 

 

2.3.2  PIFuHD: Multi-Level Pixel-Aligned Implicit Function for High-Resolution 3D 

Human Digitization 

PIFuHD is an end-to-end, multi-level framework that infers the 3D geometry of clothed people at an 

unprecedentedly high 1k picture resolution in a pixel-aligned manner, preserving the original inputs' 

features without post-processing. This method is distinct from coarse-to-fine methods in that no 

explicit geometric representation is mandated at coarse levels. Instead, implicitly encoded 

geometrical context is conveyed to higher levels without prematurely establishing explicit 

geometrical determinations [29].  

This technique was originally presented in Pixel-Aligned Implicit Function (PIFu) encoding [30]. The 

pixel-aligned structure of the representation enables the smooth, principled fusion of the learnt 

holistic embedding via coarse reasoning with the picture characteristics learned from the high 

resolution input. Each level integrates increasingly more information than the previous level, with 

the final geometry determination done only at the highest level. For a comprehensive 

reconstruction, the system must retrieve the unseen backside from a single picture. As with poor 

resolution input, missing information that cannot be predicted from visible data will produce in 

predictions that are too smooth and blurry. Conditioning the multi-level pixel-aligned form inference 

with the inferred back-side surface normal eliminates ambiguity and considerably enhances the 
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perceived quality of the reconstructions, resulting in a more constant degree of detail between the 

viewable and occluded portions [29]. 

 

2.4  Comparative Analysis Approach 

Since its creation in the 1980s, the 3D imaging business has expanded rapidly. There are currently 

several types of 3D surface imaging systems, each employing unique hardware, software, computer 

vision algorithms, and landmarks, resulting in varying measurement locations and degrees of 

precision and accuracy. While manufacturers and independent studies have evaluated the systemic 

and random errors of specific 3D surface imaging systems, factors such as population samples, 

landmarking, measurement definitions, data cleaning processes, and analysis methods impede the 

ability to make informed comparisons between systems and manually collected data [1].  

The objective of the comparative analysis method is to examine the efficacy of 3D scanning 

technology and machine learning scanning technology in 3D human modeling.  This approach has 

two goals: first, to propose a methodology to assess the accuracy and efficiency of different body 

measurement extraction methods (e.g., body scanners, machine learning algorithm) using consistent 

criteria, and second, to collect data and conduct the corresponding analyses for the first instance of 

the proposed methodology [1]. The accuracy of a 3D model relates to how closely it resembles the 

genuine human anthropometry. Considerations for efficiency include processing time and 

computational demands. Complexity of human traits, data quality, scanner setup, algorithm design, 

and processing resources may all impact the comparison. 

In the previous studies, using a comparative analysis methodology, the performance and precision of 

multiple 3D scanning methods for human 3D modeling were examined. A research aims to assess the 

quality and precision of surface models and landmark data derived from contemporary clinical CT 

scanning, 3D structured light scanning, photogrammetry, and the MicroScribe digitizer. In a 

topographical analysis, the study evaluated 13 distinct photogrammetric software applications and 

compared surface models created by different approaches for four articulated human thighs[31]. The 

accuracy and quality of surface models vary depending on the scanning technology and 

reconstruction software utilized, as demonstrated by the study's findings. Compared to the 

MicroScribe digitizer, the 3D structured light scanning and photogrammetry techniques generated 

surface models with more precision and detail. However, the clinical CT scanning approach produced 

the most accurate and comprehensive surface models of the studied procedures. The study also 

highlighted the need of selecting suitable software tools for photogrammetry to achieve accurate 

and trustworthy findings[31]. 
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Chapter 3  Methodology 

3.1 General Research Design 

The design of the study was observational with repeated measurements, and it was done in two 

phases during which a series of 3D Scanned images were obtained from participants using three 

scanning techniques. 

In the first step, an experimental apparatus was developed to acquire 3D scans of two different 

people in different interval standing in a controlled lighting setting. The structured light approach 

was utilized directly in a controlled setting to acquire 3D data for further data processing. In order to 

remove outlier variables while comparing the different scanning approaches, high-resolution photos 

of the sample models were captured using the exact same setup for machine learning scanning. The 

experience of the user and the models are documented for further analysis. 

In step 2, the scanned 3D data are postprocessed in their respective algorithm software, and the final 

3D photos are analyzed in conjunction with the user's and model's documented experiences. After 

analyzing both the 3D data and the recorded experience data, a final side-by-side comparison is 

performed. 

3.2  Experimental Setup 

3.2.1  Sample Selection 

There was a total of 2 participants in the trial. The recruitment of the test sample model 1 was co-

ordinated by the author through personal connection. Test sample model 2 data is a previously 

collected data from the study “Aerodynamic investigation of tucked positions in alpine skiing” by 

Knut Erik Teigen Gilijarhus [15]. All participants were volunteers who gave informed agreement for 

their data to be used in the study. 

      

         Figure 1: Test Input Sample 1            Figure 2: Test Input Sample 2 
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3.2.2 Artec EVA Scanner Data Collection 

Using the Artec EVA scanner, we performed a series of procedures to acquire data. First, the scanning 

environment was provided optimal lighting condition using 4 different light panel in 4 different 

directions. Next, the scanner was correctly configured and calibrated. This required connecting the 

scanner to a computer and installing the required software. We installed the Artec Studio 15. The 

program offered an intuitive interface for managing the scanner and collecting scans. 

After setting up the scanner, we commenced data collection with test sample 1. The user carried in 

his back pocket a portable battery attached to the scanner. The scanner was held in one hand while 

the laptop computer was held in the other. The representative model stood in the centre of the 

regulated, lit atmosphere. As soon as the scanner began scanning, it produced a structured pattern 

of light onto the model being scanned. The scanner's cameras, which are positioned at various 

angles, caught the light patterns. During the process of data gathering, the scanner was moved 

around the model to obtain scans from various angles. This enabled us to obtain a more accurate and 

comprehensive depiction of the scanned model. The scanner was also utilized to acquire texture 

data, which was incorporated to the 3D model as visual details. The scanner then applies 

sophisticated algorithms to the collected light patterns to recreate a 3D representation of the 

scanned object in the computer.  

The 3D representation was postprocessed in the Artec Studio 15 software in the laptop computer 

and a stereolithographic file (stl.) was created in the computer from which the required 3D model 

and the mesh data were collected for analysis. 

3.2.3 Learned Vertex Descent Data Collection 

The learned Vertex Descent python code was available on Github. We cloned the repository from the 

github and uploaded it sandbox which is a platform for running the code. While running code, the 

input image of sample 1 and 2 was uploaded. After the runtime of the code was finished, the a 

stereolithographic file (stl.) of both sample 1 and 2 were obtained which was later used in the 

analysis. 

3.2.4 PIFuHD Data Collection 

In order to start data collection using the PIFuHD, we obtained the RGB image of test sample 1 and 2 

in their respective optimally lighted set up. To run the input in high resolution, a computing unit of 

high computational resources is required which was unavailable in our domain. But the issue was 

quickly resolved using Google Colab. 

Google Colab is a well-known platform for doing Python-based deep learning tasks. It offers a Jupyter 

Notebook environment and significant hardware resources, such as the Nvidia K80 GPU with 12 GB 

of RAM and 4.1 TFLOPS capability [32]. The PIFuHD demo code was available on google colab using 

which we ran the input image of both sample 1 and 2. In neural rendering, a neural network and a 

differentiable renderer are employed to create a 3D model from a single RGB picture using PIFuHD. 

After running the code, the obj. file  of the sample 1 and 2 was available in the pifuhd result directory 

which was later used for analysis. 
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3.3 Comparative Analysis Setup 

3.3.1 Qualitative Assessment 

When picking a 3D imaging method using digital technologies, the 3D digital object that depicts the 

body surface of the subject is a crucial factor [1]. 

To visually assess the accuracy of the 3D Models provided by each of the scanning methods, the 

rendered image of the front, back, side and top view of both sample 1 and sample 2 were set in a 

side-by-side comparison. All models utilize the same axis convention. The camera orientation varies 

based on the view: the front camera faces negative Z, the rear camera faces positive Z, the leftside 

camera faces negative X, and the rightside camera faces positive X. 

To measure the density and level of detail of the model, 3D mesh triangles and vertices are also 

visually assessed. 

3.3.2 Comparative Assessment 

After data collection, the data of both the qualitative visual assessment of sample 1 and 2, and the 

documented experience of the data collection are run through some comparative assessment. The 

criteria for the comparative assessments are accuracy of the 3D images obtained from the model to 

the original input, and the efficiency of the data collection process. 

The accuracy quality of a 3D mesh model can be assessed in terms of fidelity, element quality, and 

mesh complexity. Fidelity is the degree to which the mesh model accurately replicates the model. 

This characteristic was assessed by observing the pose estimation, the geometric detail and the 

surface texture of the 3D model. Element quality refers to the geometric qualities of the triangles or 

elements that make up the mesh. The mesh model's element quality is determined by analyzing 

geometric-based indicators such as aspect ratio and edge length [33]. Mesh complexity is 

proportional to the mesh's density and amount of detail. A denser mesh often comprises more 

triangles and vertices, resulting in a more accurate depiction of the model being represented. The 

mesh triangle and vertices are both observed and counted for the accuracy assessment of the 

models derived from both sample 1 and 2 for all three scanning techniques. 

The efficiency of the data gathering process was evaluated based on the scanning techniques' speed, 

usability, portability, and computing load requirements. Speed influences how long it takes for the 

complete procedure to follow up on sample 1 and 2 and generate the final 3D model output. In order 

to determine the practicability of the three scanning approaches, the user-friendliness or difficulty 

level of the entire data gathering procedure for both the user and the model is evaluated. Portability 

is a crucial notion in terms of efficiency, since it directly influences the speed and usability of data 

collecting. Last but not least, the computational load demand is evaluated, since it will define the 

hardware requirements essential for the experiment to even begin. 
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Chapter 4 Experimental Results and Comparative Analysis 

4.1 Qualitative Assessment 

Visual assessment of the 3D pictures generated by digital scanning techniques illustrates the 

scanning performance with 3D images, including image fidelity, quality, artifacts, and accuracy. Table 

1 and Table 2 showcases the 3D images of the outcome of 3D Scans on test input sample 1 using 

Artec EVA Scanner, Learned Vertex Descent and PIFuHD from different comparable angle. Here based 

on the data collection section, we are using a live specimen as test input data for on hand real time 

output.  

 

Figure 3: Test Input Sample 1  

Sample1 Artec EVA Scanner LVD PIFuHD 

Side 
View 

   
3D 
Mesh 
Triangle 
View 

   
3D 
Mesh 
Vertices 
View 

   
Table 1 : Qualitative Assessment of 3D images of the 3D Scanning of Sample 1 using Artec Eva 3D Scanner 

(STL). Learned Vertex Descent and PIFuHD : Side View, 3D Mesh Triangle View and 3D Mesh Vertices View 
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Sample
1 

Artec EVA Scanner LVD PIFuHD 

Front 
View 

   
Back 
View 

   
Top 
View 

   
Table 2: Qualitative Assessment of 3D images of the 3D Scanning of Sample 1 using Artec Eva 3D Scanner 

(STL). Learned Vertex Descent and PIFuHD : Front , Back and top View 
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Table 3 and Table 4 represents the 3D images of the final outcome of 3D Scans on test input sample 2 

using Artec EVA Scanner, Learned Vertex Descent and PIFuHD from different comparable angle. Here 

based on the data collection section, we are using a predetermined test input directly from the Knut 

Erik research article as test input data for output in the purpose of sports engineering. 

 

Figure 4: Test Input Sample 2 

Sample
2  

Artec EVA Scanner LVD PIFuHD 

Side 
View 

   
3D 
Mesh 
Triangl
e view 

   
3D 
Mesh 
Vertex 
View 

   
Table 3 : Qualitative Assessment of 3D images of the 3D Scanning of Sample 2 using Artec Eva 3D Scanner 

(STL). Learned Vertex Descent and PIFuHD: Side View, 3D Mesh Triangle View and 3D Mesh Vertices View 
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Sample
1 

Artec EVA Scanner LVD PIFuHD 

Front 
View 

   
Back 
View 

   
Top 

View 

   
Table 4 : Qualitative Assessment of 3D images of the 3D Scanning of Sample 2 using Artec Eva 3D Scanner 

(STL). Learned Vertex Descent and PIFuHD : Front , Back and top View 
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4.2 Comparative Assessment: 

4.2.1 Accuracy Comparison 

4.2.1.1 Comparison of the accuracy achieved by Structured Light Method (STL) 

• Fidelity: If we make a side by side comparison between Test Sample Input 1 and 2 , and Artec 

EVA Scanner section of Table 1, Table 2, Table 3 and table 4, it can be derived from visual 

assessment that , in terms of pose estimation, geometric details and surface texture, Artec 

EVA Scanner managed to capture high fidelity 3D model of both test input sample 1 and 2 

retaining the original geometry of the model. 

• Element Quality: If we take a closer look at the 3D mesh triangle view section of the Artec 

EVA Scanner from table 1 and 3 of input sample 1 and 2 respectively, we can see low aspect 

ratio of the elements suggesting a more uniform or symmetrical part that is of higher quality. 

The edge length of the elements are close to uniformity which also emphasizes better quality 

• Mesh Complexity: : The mesh count of EVA scans of sample 1 and 2 in terms of triangles are 

500000 and 211182 respectively. The mesh count of EVA scans of sample 1 and 2 in terms of 

vertices are 248866 and 105,593. These numbers are higher number of mesh triangles and 

vertices representing denser and high level of detail complexity. 

 

4.2.1.2 Comparison of the accuracy achieved by Learned Vertex Descent (LVD) 

• Fidelity: We make a side-by-side comparison between Test Sample Input 1 and 2, and LVD 

section of Table 1, Table 2, Table 3 and Table 4. It can be derived from visual assessment that, 

in terms of pose estimation, LVD retains the pose of sample 1 but completely loses for 

sample 2. In terms of geometric details and surface texture, LVD fails to retain both of them, 

both in sample 1 and sample 2. This determines the fidelity capture of LVD is very low for 

both input samples. 

• Element Quality: If we observe the 3D mesh triangle view section of the LVD from table 1 

and table 3 of input sample 1 and 2 respectively, we can see that the triangle elements have 

high aspect ratio. We can also see that in both cases, the edge lengths uniformity gets 

distorted drastically in different places. This confirms low element quality in both sample 1 

and 2. 

• Mesh Complexity: The mesh count LVD scans of sample 1 and 2 in terms of triangles are 

13776 and 13780 respectively. The mesh count EVA scans of sample 1 and 2 in terms of 

vertices are 6890 and 6900 respectively. These are very low number of mesh triangles and 

vertices representing thin and low level of detail complexity. 

 

4.2.1.3 Comparison of the accuracy achieved by PIFuHD 

• Fidelity: We account a side-by-side comparison between Test Sample Input 1 and 2, and 

PIFuHD section of Table 1, Table 2, Table 3 and Table 4. By visual assessment, in terms of 

both pose estimation and geometric details, PIFuHD retains them both in sample 1 and 

sample 2. In terms of surface texture, PIFuHD losses details both in sample 1 and sample 2. 

• Element Quality: When we observe the 3D mesh triangle view section of the PIFuHD from 

table 1 and table 3 of input sample 1 and 2 respectively, the find the aspect ratio to be low. 

But in both cases, we see some deformation in edge lengths losing the quality of the 

elements. A medium quality of element of the triangles can be assessed from this 

observation for both samples. 
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• Mesh Complexity: The mesh count PIFuHD scans of sample 1 and 2 in terms of triangles are 

112088 and 110324 respectively. The mesh count EVA scans of sample 1 and 2 in terms of 

vertices are 336264 and 330972 respectively. By this observation we can say that a high 

number of mesh triangles and vertices are found. This showcases dense and high level of 

detail complexity in both samples. 

 

4.2.1.4 Comparative assessment of the Accuracy of three techniques 

By using the comparative accuracy assessment formula from our earlier study of data 

analysis, we showcase a comparison of characteristics of sample 1 and 2 3D images in terms 

of fidelity, element quality and mesh quality for all the above cases of 3D scanning method. 

Table 5 represents a side-by-side comparison of them. 

 

Accuracy Artec EVA LVD PIFuHD 

Samples 1 2 1 2 1 2 

Fidelity High High Low Lowest Medium Medium 

Element Quality High High Low Low Medium Medium 

Mesh Complexity High High Low Low High High 
Table 5: Comparative Accuracy Assessment of 3D images of the 3D Scanning of Sample 1 and 2 using Artec 

Eva 3D Scanner (STL). Learned Vertex Descent and PIFuHD : Fidelity, Element Quality and Mesh Quality 

 

4.2.2 Efficiency Assessment 

4.2.2.1 Comparison of the Efficiency achieved by Structured Light Method (STL) 

• Speed: The scanning speed of the Artec EVA scanner depends on the dexterity of the 

operator. In our sample one test scenario, it took around 60 minutes to scan the entire body. 

It took us 10 minutes to post-process the final obj. file format in the Artec Studio application. 

This took us a total of 70 minutes time from scanning to getting the final output of the 3D 

model of sample one. 

• Ease of Use: Artec EVA scanner requires the co-operation of both the user and the model 

simultaneously at the same time. This demands the unwavering physical presence of the test 

sample model in a still motion while the user takes the scanner in his hand and moves 

around the model to take the scan. The user needs to hold the computer connected in his 

hand while skilfully move around the model to take scanner making it difficult to use. The 

model also cannot move while the scan is being taken making it exhausting for the model as 

well.   

• Portability: While the Artec EVA is limited in portability when connected with an AC current 

setup, it can be possible to move with it by optional battery pack to offer full portability [34]. 

• Computational load requirements: The software, Artec Studio 15 for the Artec EVA requires 

min. 12 GB of RAM for Artec Eva (SD mode) and NVIDIA graphics card with at least 2GB of 

VRAM. Highly recommended for best computation speeds is an NVIDIA card with a CUDA 

computing capacity of at least 6.1 and 8+ GB of VRAM [34]. 

4.2.2.2 Comparison of the Efficiency achieved by Learned Vertex Descent (LVD) 

• Speed: The scanning speed of the LVD depends on the computational time required to 

process the sample input image. It took us 5mins to run all the program code involved in the 

algorithm present in google collab.  
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• Ease of Use: The usability of LVD is highly convenient as it only requires the picture of the 

test subject and not the presence of the subject. As a result, just by acquiring the single RGB 

picture of the test subject, and putting it as a input while running the algorithm, any person 

can acquire a 3D model of the model. 

• Portability: The program fully runs on a programmed algorithm. The portability depends on 

what kind of computer is run with it. For a desktop computer, typically with high 

specifications requirement, the portability is limited. However, with a laptop computer, the 

program becomes fully portable. 

• Computational load requirements: While the specification of the computation load 

requirements is not explicitly specified based on the source of the algorithm, our program 

run on a specification of 16GB of RAM with NVIDIA graphics card with 4GB of VRAM. 

4.2.2.3 Comparison of the Efficiency achieved by PIFuHD 

• Speed: Similar to the LVD, the scanning speed of PIFuHD depends on the computational time 

required to process the sample input image. But the computational time also depends on 

the picture resolution of RGB image. In our case, we are limited to using 256-pixel version of 

the image which took approximately 10 minutes to run all the program code involved in the 

algorithm present in google collab. 

• Ease of Use: The ease of usage is comparable to LVD. In our situation, it was feasible to 

operate the computer on any computer utilizing the Google Collaborate platform, which was 

really efficient and user-friendly. This also did not require the presence of the model itself, 

other than a sample input image of the model, making it incredibly simple to utilize. 

• Portability: The software operates entirely on a predefined algorithm. The portability is 

dependent on the type of computer used. The mobility of a desktop computer with high-

specification requirements is often limited. With a laptop computer, though, the software 

becomes completely portable. Using the Google Collaborator platform, however, the 

software becomes even more platform-agnostic, since it can be accessed from any Internet-

connected computer in the globe. 

• Computational load requirements: The processing demands of PIFuHD are anticipated to 

necessitate substantial computational resources for implicit function reconstruction, 

differentiable rendering, and optimization. Specific hardware requirements and execution 

time may vary based on the selected implementation and data collection. The minimum 

VRAM computational requirements to run on computer is 12GB of VRAM. 

4.2.2.4 Comparative assessment of the Efficiency of three techniques 

By using the comparative efficiency assessment formula from our earlier study of data 

analysis, we showcase a comparison of efficiency of 3D scanning our test input sample 1 in 

terms of speed, ease of use, portability and computational load requirement for all the 

above cases of 3D scanning method. Table 6 represents a side-by-side comparison of them. 

Accuracy Artec EVA LVD PIFuHD 

Samples 1 2 1 2 1 2 

Fidelity High High Low Lowest Medium Medium 

Element Quality High High Low Low Medium Medium 

Mesh Complexity High High Low Low High High 
Table 6: Comparative Efficiency Assessment of the 3D Scanning of Sample 1 using Artec Eva 3D Scanner 

(STL). Learned Vertex Descent and PIFuHD: Speed, Ease of Use, Portability and Computational Load 

Requirements 
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Chapter 5 Discussion 

5.1 Evaluation of Accuracy and Efficiency 

In terms of 3D human modeling, the objective of this study was to acquire a comparative evaluation 

of the accuracy and efficacy of machine learning scanning in comparison to structured light scanning. 

While it was expected that, among the three scenarios, the scanned images of the sample model 

obtained from the Artec EVA scanner maintained the highest level of similarity in terms of pose 

estimation, geometric properties, and surface texture details, the deep learning algorithm PIFuHD 

demonstrated significantly better performance than the learned vertex descent algorithm in terms of 

fidelity, element quality, and mesh complexity. While PIFuHD struggled with texture detail, it 

exhibited mesh complexity for both Sample 1 and Sample 2 comparable to that of Artec EVA. In 

terms of efficiency, the Artec EVA required the greatest time and a high level of expertise to operate. 

Another challenging criterion for the sample models was the necessity of continual model presence 

while getting scanned by the Artec EVA. In contrast, both PIFuHD and LVD were simple to operate 

and took minimal time. PIFuHD also had the most mobility of all the technologies, which was an 

intriguing outcome. The ability to conduct the algorithm scanner anywhere in the globe with access 

to the internet and a computer and without requiring the presence of the model was a very 

realizable accomplishment. 

5.2 Functional Equivalency of Application and Use Situations 

A second purpose of the study was to conduct a thorough and unbiased evaluation of the functional 

equivalence of machine learning scanning vs structured light 3D scanning in the human 3D modeling 

industry. Structured light technique scanning and machine learning scanning both have their own 

benefits and drawbacks. The purpose of the procedures may only be selected according to the needs 

of the body model customer. Therefore, a real functional equivalence cannot be achieved. For 

instance, if we consider our earlier example of 3D human modeling for sports engineering in alpine 

skiing, computational fluid dynamics will demand the maximum level of model accuracy to obtain 

the ground truth performance index value [35]. This is only possible with the use of structured light 

technology, such as the Artec EVA scanner. In contrast to machine learning scanning, efficiency is 

compromised in order to attain this objective. Alternatively, if the body model consumer cannot 

afford the time and money necessary for the scanning of the 3D model and just requires a 3D model 

near enough to the sample, machine learning algorithm scanning is better. This relates to our earlier 

example of scanning a human model in order to create garment samples for various body shapes and 

apparel styles [18]. 

5.3 Limitation of the Study 

In both instances of the aim, the result and interpretation of the study were limited by significant 

restrictions. First, a shortage of processing resources made high-resolution machine learning 

scanning impractical. PIFuHD demands inputs of high resolution and large computational processing 

capacity in order to provide more accurate results, which skews the real performance of PIFuHD's 

output value. Second, the absence of a consistent way of data collection and data analysis for various 

3D scanning technologies makes it very challenging to achieve functional equivalence criteria for 

comparison analysis. Due to a lack of time and resources, insufficient sample data were collected to 

confirm the study's repeatability. Due to a lack of time and resources, other developing machine 

learning scanning techniques were not evaluated as part of this study as well. 
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Chapter 6 Conclusion 

In our comparison study, the structured light scanning, and machine learning scanning methods were 

evaluated and compared based on the precision of the 3D scanned model and the efficacy of the 3D 

scanning process for data collecting. According to the research findings, the precision of the 

structured light approach is unmatched compared to that of the machine learning scanning method. 

Images scanned using the Artec EVA scanner feature the highest fidelity, element quality, and mesh 

complexity, resulting in the highest quality 3D model output. During the machine learning scanning, 

PIFuHD's fidelity and element quality were modest, but its mesh complexity was high. The LVD has 

the lowest values for fidelity, element quality, and mesh complexity, making it the least accurate 3D 

scanning method in terms of precision.In terms of efficiency, LVD was the simplest and quickest to 

use, while also being highly portable and requiring minimal computing effort. PIFuHD yielded the 

same outcome in terms of usability, but it was the most portable and required the most processing 

power. While Artec EVA needed the least amount of computing load, it required the longest time and 

was the most complex to use. The Artec EVA has the lowest portability among all scanning methods. 

In the human 3D modeling sector, the functional equivalency of machine learning scanning vs 

structured light 3D scanning is still disputed and ambiguous, according to the research. In our 

evaluation, the accuracy and efficiency of the structured light approach and machine learning 

scanning were inconsistent, rendering the functional equivalency subjective dependent on the body 

model consumer's intended use. 

Future research will aim to promote the adoption of improved methods, parameters, and criteria for 

evaluating the repeatability and compatibility of measuring methods, as well as the introduction of 

superior methods for establishing reference values and benchmarks when extracting comparative 

assessment data. In order to reach functional equivalence standards in the 3D modelling industry, 

more emerging state-of-the-art machine learning scanning methods will be considered as part of 

those comparative assessments with a larger sample size and higher computation load resources for 

more accurate comparison of the Human 3D modeling. 
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