
Approved by the Dean 30 Sep 21
Faculty of Science and Technology

FACULTY OF SCIENCE AND TECHNOLOGY

MASTER’S THESIS

Study programme / specialisation:
Computational Engineering
Department of Energy Resources

The spring semester, 2023

Open / Confidential

Author: John Emeka Udegbunam & Reynel Isaac Villabona Gonzalez

Supervisor at UiS: Nan Zhang

Co-supervisor: Rong Chunming

External supervisor(s):

Thesis title: A Federated Computational Workflow for Analysis of DISKOS Digital
Palynological Slides

Credits (ECTS):30

Keywords: Computational Workflow,
Federated Computation, DISKOS, Digital
Palynological Slides, Palynological
Slides, Image Processing,
Object detection, Classification,
watershed segmentation.

Pages: 61
+ appendix: 101 pages

Stavanger, 15/07/2023

Approved by the Dean 30 Sep 21
Faculty of Science and Technology

ABSTRACT

A novel federated computational workflow for analyzing digital palynological slide images
is implemented in this thesis. The slide data files, typically exceeding 3GB, present sig-
nificant data mobility and computation challenges. The novel distributed computational
framework is implemented to address privacy concerns and the challenges associated with
moving large data. The idea is to move computational to the data location, optimally
utilizing local computational capacity and reducing data movement.

Trained deep-learning models deployed in a containerized environment leveraging the
Docker technology are integrated in the workflow with a user-friendly interface, and users
can run processes with the trained models.
The workflow processes include reading slide image files, generating tiled images, and
identifying and removing undesirable tiles such as blank tiles. Object detection with
the watershed segmentation algorithm identifies tiles with potential microfossils. The
identified dinoflagellates are classified with a trained convolution neural network (CNN)
model. The classification results are sent to the host and shared with the users.

The federated computational approach effectively addresses the challenges related to mov-
ing and handling large palynological slide images, creating a more efficient, scalable, and
distributed pipeline. Collaborative efforts involving domain experts for model training
with more annotated slide images will improve the effectiveness of the workflow.

i

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to my family, both in Colombia and the
USA, for their unwavering support throughout my journey. Their constant presence
and encouragement have played an instrumental role in shaping me into the person and
professional I am today. I am forever grateful for their unconditional love and for instilling
in me the importance of family values.

To my friends, both back in Colombia and those I have made in Stavanger, I extend my
heartfelt appreciation. Your friendship has been a constant source of happiness, guidance,
and joy in my life. You have become my second family, always there to offer advice and
share unforgettable moments together.

I would like to extend my sincere thanks to Nan Zhang and Jungwon Seo for their
invaluable guidance and mentorship. Their time and expertise have been instrumental
in leading us to success in completing this thesis. Their dedication to our growth and
development has been truly inspiring.

A special mention goes to Robert Williams for his kind assistance in explaining the
digital paleontology process at NPD. His willingness to share information and support us
in achieving our objectives has been greatly appreciated.

I am also grateful to John Emeka, my thesis partner, for his hard work and dedication in
accomplishing all the objectives of this thesis. His commitment and collaboration have
been invaluable, and I am fortunate to have had him by my side throughout this journey.

I would also like to express my gratitude to every person I have encountered since making
the decision to live abroad. Each one of you has taught me something new and contributed
to my personal and professional growth. Lastly, I extend my thanks to Norway for
welcoming me with open arms and providing me with a second home over the past two
years.

This thesis would not have been possible without the love, support, and guidance from
my family, friends, mentors, John Emeka, and all those who have touched my life along
this remarkable journey. Thank you all for your contributions, encouragement, and belief
in me.

ii

CONTENTS

Abstract i

Acknowledgements ii

Contents iv

List of Figures iv

List of Tables vi

Abbreviations 1

1 Introduction 2
1.1 Objectives . 4
1.2 Thesis Structure . 5

2 Theory 6
2.1 Digital Palynology . 6

2.1.1 Digital palynology at NPD . 7
2.2 Large-Scale Image Processing . 8
2.3 Federated Computing . 10
2.4 Object Detection and Classification . 12
2.5 Docker and Containerization . 13
2.6 Gaps in Current Research . 15

3 Materials and Data 16
3.1 Digital Slide Preparations . 16
3.2 Materials . 17
3.3 Data Generation . 18

3.3.1 Slide object and visualization . 19
3.3.2 Tiled image generation . 19
3.3.3 Labeled image extraction . 21
3.3.4 Data preprocessing . 22

4 Methodology 24
4.1 Federated Computational Workflow . 24

iii

iv CONTENTS

4.1.1 Workflow design . 24
4.1.2 User interface . 26
4.1.3 Docker implementation . 31
4.1.4 Large-scale image processing . 33
4.1.5 Challenges and solutions . 34

4.2 Palynological Image Analysis Workflow 35
4.2.1 Read image . 36
4.2.2 Clean tiles . 38
4.2.3 Watershed segmentation . 40
4.2.4 Annotation extraction . 41
4.2.5 Image classification . 43
4.2.6 Challenges and solutions . 45

5 Results and Discussion 47
5.1 Results . 47

5.1.1 Implemented computational workflow 48
5.1.2 Palynological image analysis . 48

5.2 Discussion . 52
5.3 Limitations . 53

6 Conclusion 55

Appendix 62

LIST OF FIGURES

1.0.1 A digital palynological slide image . 2
1.0.2 A centralized image processing. 4
1.0.3 A schematic of federated computation. 4

2.1.1 A sample of paleontological slide. 7
2.1.2 A digitalized and annotated paleontological slide image 8
2.2.1 Transfer time in an ordinary computing transfer process. 9
2.3.1 A centralized computing model. 11
2.3.2 A federated computing model. 11
2.5.1 An application containerized and deployed with Docker 13
2.5.2 The proposed Docker container for palynological slide processing. 15

3.1.1 Palynological slide digitalization and annotation at NPD. Geologist Robert
Williams identifies and annotates dinoflagellates on a digital palynologi-
cal slide. The machine behind him is a slide scanner used for scanning
the NPD huge database of palynological slides derived from microplank-
ton, pollen, and spores from wellbores drilled on the NCS. Picture: Arne
Bjørøen (The NPD, 2023). 16

3.1.2 A digital palynological slide with the wellbore information 17
3.3.1 A list of slide data compressed as TAR files. 19
3.3.2 Extracting slide data from a TAR file with 7-Zip File Manager. 19
3.3.3 A simplified workflow for reading slide images and tile generation. . . . 20
3.3.4 Selected classes of dinoflagellates. 21

4.1.1 A schematic of the federated computational workflow. 25
4.1.2 The starting point of DAG. 26
4.1.3 Directed acyclic graph (DAG) . 26
4.1.4 The user registration inputs. 27
4.1.5 User Interface and created TXT files. 28
4.1.6 Checking processed containers. 28
4.1.7 A successful user registration. 29
4.1.8 Show result button process. 29
4.1.9 Show no result message. 30
4.1.10 Removed process workflow. 30
4.1.11 Removed process Docker workflow. 31
4.1.12 Checking processes run on already built container. 31

v

vi LIST OF FIGURES

4.1.13 Folder renamed and Docker file creation. 32
4.1.14 Base image creation. 32
4.1.15 Build image and run container. 33
4.1.16 Transmission of image analysis file. 33
4.1.17 Execution of image analysis file. 34
4.2.1 The palynological image analysis workflow. 36
4.2.2 A graphical representation of zoom levels. 37
4.2.3 An illustration of downsampling effect. 37
4.2.4 The output of slide image reading process. 38
4.2.5 Selection of zoom level and resolution. 39
4.2.6 Selection of clean tiles for deep learning tasks. 39
4.2.7 The outputs of tile cleaning process. 40
4.2.8 A schematic of the watershed segmentation process. 40
4.2.9 The output of watershed segmentation process. 41
4.2.10 The initialization of the annotation extraction process. 42
4.2.11 The annotation extraction process. 43
4.2.12 Visualizing the annotation extraction output. 43
4.2.13 The training process for the classification model. 44
4.2.14 Dinoflagellate classification with the trained deep-learning model. 45
4.2.15 The classification output displayed on the Dash app 45

5.1.1 Watershed segmentation. 47
5.1.2 The implemented computational workflow. 48
5.1.3 Correct dinoflagellate class predictions. 49
5.1.4 Incorrect dinoflagellate class predictions. 50
5.1.5 Training/validation loss and accuracy. 50
5.1.6 The confusion matrix showing correct and incorrect predictions. 51
5.1.7 The evaluation metrics for the classification model. 51
5.1.8 Dinoflagellate identification with the Mask RCNN model. 52

LIST OF TABLES

3.2.1 Digital palynological slides for image analysis and classification. 18
3.3.1 Dinoflagellates and counts . 22
3.3.2 Selected classes of dinoflagellates . 23
3.3.3 Classification datasets . 23

5.1.1 Model Accuracy . 51

vii

ABBREVIATIONS

• UI User Interface

• NPD Norwegian Petroleum Directorate

• DAG Directed acyclic graph

• CNN Convolutional neural network

• MRXS An extension for digital slide image

• NCS Norwegian Continental Shelf

• PY An extension for Python based files

• RCNN Region-based Convolutional Neural Network

• TXT An extension for text files

1

CHAPTER

ONE

INTRODUCTION

Digital paleontology is an innovative field that utilizes image processing techniques to
analyze and classify palaeontological data (Livezey & Zusi, 2007). One significant source
of this data is digital palynological slides. A digital slide image can exceed 3GB in size and
provides valuable insights into the Earth’s historical biosphere (Livezey & Zusi, 2007).

Figure 1.0.1 shows a region of interest extracted from a palynological slide image. Each
slide contains valuable information that can be analyzed using advanced analytical tech-
niques such as convolutional neural networks (CNNs) (Punyasena et al., 2022). Re-
searchers can efficiently analyze large volumes of pollen samples by automating pollen
taxa scanning and classifying microfossils using CNNs (Punyasena et al., 2022).

Digital techniques offer a more efficient and accurate approach compared to traditional
manual methods (Mohammad et al., 2020). The integration of digital image processing
and advanced analytical techniques has greatly enhanced the capabilities of digital pa-
leontology in studying and understanding the morphology and diversity of microfossils
(Johnson et al., 2016).

Data files used in various fields can introduce significant challenges regarding data mobil-

Figure 1.0.1: A digital palynological slide image

2

CHAPTER 1. INTRODUCTION 3

ity, computational time, and data processing. In digital paleontology, the size of digital
palynological slides, which can exceed 3GB, makes it difficult to move them when ana-
lyzing hundreds of slides. Transferring whole slide images from storage to the processing
location increases the computational time and associated costs (Lamani et al., 2014).
In plant omics and mass spectrometry imaging, large-scale data sets can easily reach tens
of gigabytes, posing challenges in data processing (Gemperline et al., 2016).
In the life sciences, genomic data analysis involves handling datasets of variable sizes,
ranging from large files (1-10 GB per file) to small files (<100 MB), presenting difficulties
in data availability and management (Afgan et al., 2015).
Also, in fluid flow analysis, the large scales of spatiotemporal flow data generate massive
file sizes, making data analysis, sharing, and visualization challenging (Gao, 2020). La-
beling large volumes of data in sound lung analysis is labor-intensive and impedes more
extensive research studies (Gemperline et al., 2016).
The challenges highlight the need for efficient data handling and processing techniques
to overcome the limitations of the large data file size.

The processing of large datasets require considerable computational resources. The high
resource demands can strain traditional computation systems, where data is moved to
centralized processing units, causing to bottlenecks and inefficiencies (Kong et al., 2020).
Traditional methods are often ineffective when applied to high-dimensional and complex
data, as the data tend to be sparse and distances between points become similar (Cordeiro
et al., 2013). This limitation hinders clustering large and complex datasets (Cordeiro et
al., 2013).

Training computationally intensive machine-learning algorithms such as support vector
machine (SVM) can be challenging when dealing with large training datasets (Guo et
al., 2015). Parallel SVM algorithms such as RASMO have been developed to optimize
SVM training with distributed computing resources (Guo et al., 2015). However, high-
performance computing resources required for large data processing can be limited and
costly, especially in resource-limited settings (Mabvakure et al., 2019).

Alternative approaches and infrastructure are needed to solve the challenges associated
with handling large datasets ((Sha et al., 2020); (Mabvakure et al., 2019)). These chal-
lenges highlight the need for a more efficient method for handling and analyzing digital
palynological slides.
Figure 1.0.2 illustrates the traditional data processing. In this approach, users transfer
their data to a centralized computation location.

Cloud computing and data analysis have achieved considerable advancements in recent
years. However, handling and processing large-scale data such as digital palynological
slides remains a challenging frontier. The computational demand and data mobility
challenges associated with high-resolution, large slide images pose critical challenge in
digital palynology research ((Petersen et al., 1992); (K. Zhang et al., 2015)).

The present study proposes a novel federated computation workflow to address the lim-
itations of traditional centralized approaches. The proposed workflow leverages parallel
computing techniques to mitigate the high computational power requirements (Gutierrez
et al., 2008). The study seeks to solve the computational and data mobility challenges.
Moving the computation logic to the data location can improve data handling efficiency,
minimize resource-intensive data transfers, and optimize local computational capabilities.

4 CHAPTER 1. INTRODUCTION

Figure 1.0.2: A centralized image processing.

The proposed innovative methodology has the potential to improve digital paleontology
and inspire extensive research explorations.
Figure 1.0.3 presents a schematic of the proposed workflow for palynological slide analysis.

Figure 1.0.3: A schematic of federated computation.

1.1 Objectives
The main objective of this thesis is to implement a federated computational workflow
for the analysis of digital palynological slide images. The innovative workflow is adapted
to solve the inherent challenges associated with data mobility and expensive computa-
tional demands of centralized image processing methods. By strategically moving the
computation to the data source, the goal is to maximize local computational resources
and minimize the need for large-scale data transfers.

CHAPTER 1. INTRODUCTION 5

This thesis will develop a customizable workflow with a user-friendly interface. The idea
is to allow users tailor the workflow to their needs, such that users can add or remove
processes based on their specific data requirements. The flexibility feature simplifies user
interaction and ensures the workflow remains adaptable to different analysis scenarios.

Also, the present study aims to train and deploy deep-learning models in a containerized
environment leveraging the Docker technology. The models are integrated in the work-
flow, and users can run processes such as microfossil detection and classification task with
the trained models.

1.2 Thesis Structure
A brief outline of the thesis is presented in this section. The thesis comprises preliminary
pages, six chapters, a list of references, and the Appendix.

Chapter 1. presents the introduction and objectives the present study aims to achieve.

Chapter 2. presents a literature review of previous studies and discusses concepts and
technologies relevant to the research.

Chapter 3. presents materials and data used in the research, including data generation
and preprocessing.

Chapter 4. discusses the methodology and tools adopted in this study. This chapter
comprises two parts. It presents the federated computational workflow and image pro-
cessing techniques, with emphasis on deep-learning models and microfossil identification
methods.

Chapter 5. presents the results of slide image analysis tasks, the workflow example
cases, and discussion.

Chapter 6. presents the conclusion, summarizing findings and challenges encountered
while implementing the proposed workflow for palynological slide image processing.

CHAPTER

TWO

THEORY

This chapter presents theories and concepts that form the foundation of this research.
The concept of federated computing, its relevance, and its potential application in over-
coming existing limitations will be discussed. Object detection and classification tech-
niques also form a crucial part of the discussion, providing insights into current methods
and their applicability to digital palynological slide analysis.

The application of Docker and containerization in modern computing practices has gained
a wide acceptance. The present study will evaluate the merits of using the Docker tech-
nology in the proposed research methodology.

2.1 Digital Palynology
Palynology is the study of microfossils. A subdiscipline of geology, palynology is defined
in (Jarzen, 2022) as the study of plant pollen, spores, and certain microscopic plankton
organisms in both living fossilized forms.

The field has many important applications in petroleum exploration and production. It
aids geoscientists in identifying potential hydrocarbon-bearing formations and evaluat-
ing the source rocks to understand the geological history of the area, hence supporting
informed decision-making. Other areas where palynology is relevant to the petroleum
industry include providing valuable insights for stratigraphic correlation, source rock
analysis, biostratigraphy, basin analysis, and paleoenvironmental reconstruction.

Digital palynology represents a significant advancement in paleontological research. It
was initially conceived to address the need for more comprehensive sampling and im-
proved resolution in traditional palynology that requires extensive labor for microscopic
analysis of plant fossils (Stillman & Flenley, 1995). This interdisciplinary field has gained
substantial attention due to its ability to unlock previously inaccessible data in slide
images. This enables researchers to gain better insights into past climatic conditions,
ecosystems, and evolutionary patterns. The importance of digital palynology is such that
it has the potential to transform how paleontological data are processed and interpreted
(Holt & Bennett, 2014).

6

CHAPTER 2. THEORY 7

Existing techniques in digital palynology comprise several image analysis methods, from
basic slide scanning to more complex procedures involving image segmentation, feature
extraction, and classification (Holt & Bennett, 2014). While considerable progress has
been achieved in this area, the existing techniques have some limitations, especially when
handling large and complex slide images. The techniques have made it possible to conduct
automated pollen identification using databases of classified spores and pollen (Holt &
Bennett, 2014).
Subsequent sections will present challenges associated with traditional techniques and
potential solutions, and hence the relevance of the novel methodology proposed in this
thesis.

2.1.1 Digital palynology at NPD

The Norwegian Petroleum Directorate (NPD) Avatara-p project signifies significant progress
in the digitalization of palynology. The initiative focuses on digitizing microfossils com-
posed of acid-resistant carbon-hydrogen-oxygen biopolymers that are abundant and often
better preserved than their contemporary counterparts in the seabed (R. Williams, 2023).
Figure 2.1.1 presents a sample of a palynological slide before digitalization.

Figure 2.1.1: A sample of paleontological slide.

Palynology plays an important role in petroleum exploration by providing an analyt-
ical tool for economic risk reduction through an improved understanding of paleoen-
vironments, paleogeography, and basin history. The NPD has sought to transform the
painstaking and slow process of palynology into a more efficient and automated procedure
through digitalization (R. Williams, 2023).

The Avatara-p project employed a high-resolution slide scanner (3DHistech P1000) to
digitalize palynological slides. The project has produced approximately forty thousand
digital palynology slides from roughly 300 exploration and development wells. This grow-
ing dataset, currently amounting to 57 terabytes, is accessible through the Diskos platform
(R. Williams, 2023).

8 CHAPTER 2. THEORY

Figure 2.1.2 shows an annotated and digitalized palynological slide image from the NPD
((The NPD, 2023).

Figure 2.1.2: A digitalized and annotated paleontological slide image

The main goal of the Avatara-p project is to deploy machine learning applications to
process the vast data archive of digital slides. Such a step can help gain new insights into
Norway’s geological history and further simplify the analysis of microplankton, pollen,
and spores (R. Williams, 2023). It opens an exciting opportunity in digital palynology,
leveraging advanced image processing technologies to enhance understanding of paleon-
tological phenomena.

2.2 Large-Scale Image Processing

Large-scale image processing in digital palynology is a challenging task due Teams to
the large size of palynological slides that can exceed 3GB (Wright et al., 2012). This
creates significant computational demands and necessitates robust solutions for storage,
transmission, and processing (Wright et al., 2012). Existing desktop-based solutions rely
on local computing capabilities, limiting scalability needs and hence require the data to
be stored locally (Wright et al., 2012). The use of digital slide imaging is a future solution
in the field of anatomic pathology, where glass slides will be replaced by scanned images
((Wright et al., 2012); (Al-Janabi et al., 2011)).
Palynology, encompassing the study of pollen and non-pollen palynomorphs, plays an
important role in academic and industrial research for correlation and interpretation of
subsurface geology on local and regional scales (Stefanowicz, 2023). Non-pollen paly-
nomorphs are often found in palynology slides (Shumilovskikh et al., 2021).

CHAPTER 2. THEORY 9

Common challenges in large-scale image processing, such as data handling and computa-
tional efficiency, are well-documented in the literature ((Z. Li et al., 2018); (N. Li et al.,
2013); (W. Li et al., 2023); (Silva et al., 2022); (Xu et al., 2017)). Data handling involves
issues related to the storage, retrieval, and transmission of large image files ((Z. Li et al.,
2018); (Silva et al., 2022)). It is important to have storage solutions that can effectively
handle the large data volumes (Silva et al., 2022). Computational efficiency refers to the
time and resource-intensive nature of analyzing extensive image data (Z. Li et al., 2018).

Figure 2.2.1 shows how long will take to transfer 3GB of data at the world’s average in-
ternet speed (BroadbandSearch, Accessed: July 12, 2023) using data transfer calculator
(Expedient, Accessed: July 12, 2023).
Traditional image analysis algorithms often prove inadequate for large-scale image pro-
cessing due to their inability to efficiently process and analyze such vast amounts of data
((Z. Li et al., 2018); (Xu et al., 2017)). Techniques such as Fourier domain structured
low-rank matrix recovery (Ongie & Jacob, 2017) and parallel implementation of algo-
rithms (N. Li et al., 2013) have been proposed as alternatives to traditional methods.
By contrast, the use of high-performance computing (W. Li et al., 2023) and machine
learning-based frameworks (Silva et al., 2022)) have shown promising results in address-
ing the challenges. These challenges are relevant in medical imaging ((Z. Li et al., 2018);
(W. Li et al., 2023); (Xu et al., 2017)) and fields like cryo-electron microscopy (Cossio
et al., 2017) and digital pathology (W. Li et al., 2023).

Figure 2.2.1: Transfer time in an ordinary computing transfer process.

Existing solutions to the challenges in large-scale image processing comprise a wide range
of strategies including hardware advancements and software solutions ((Abudayyeh et al.,
2004); (Siegel et al., 1992)). Hardware advancements involve using powerful servers and
high-performance computing clusters to handle the computational demands (Abudayyeh
et al., 2004). Software solutions include the implementation of parallel processing al-
gorithms and efficient data structures for efficient data handling and analysis (Sherman
et al., 2019).

Despite the solutions, limitations persist in addressing the challenges of large-scale image
processing ((Abudayyeh et al., 2004); (Siegel et al., 1992)). These challenges require
multidisciplinary efforts spanning software, hardware, and applications (Siegel et al.,
1992). Further developments in software architecture and data structures aim to enhance
efficiency and reduce memory overhead, enabling the analysis of larger datasets ((Sherman

10 CHAPTER 2. THEORY

et al., 2019); (Sherman et al., 2020)). Also,studies have explored software and hardware
models to address these challenges (Saito et al., 2012).

The storage and transfer of large image files continue to be time and resource-intensive
processes, and image analysis algorithms still struggle with the complexity and diversity
of data presented in palynological slides ((Y. Zhang et al., 2012); (George et al., 2012);
(Hunt et al., 2002)). Efforts to improve the efficiency of storage and transfer methods
and enhance image analysis algorithms are ongoing, recognizing the need to address these
challenges (Y. Zhang et al., 2012). The complexity and diversity of data in palynological
slides require advanced algorithms capable of effectively processing and analyzing such
vast amounts of information ((Górka et al., 2014); (Hunt et al., 2002)). Research in vari-
ous domains such radiation lung injury (Y. Zhang et al., 2012), gene analysis (Chandriani
& Ganem, 2010), and paleoenvironmental studies (Hunt et al., 2002) contributes to the
understanding of difficulties in storing, transferring, and analyzing large image files.

Addressing these limitations is the main focus of this thesis. By moving the computational
logic closer to the data location and leveraging federated computing principles, the goal
solve the prevailing challenges in large-scale image processing. The following sections will
discuss proposed solutions and their implementation in the research methodology.

2.3 Federated Computing

Federated computing is an emerging computational paradigm in the era of big data. The
approach presents a unique solution to address the challenges encountered in extensive
scale image processing ((Ye et al., 2020);(Mohammadi & Thornburg, 2020)). At the
core of federated computing is an approach that enables distributed computing nodes to
collaboratively process data while ensuring data privacy and locality (Ye et al., 2020).
This decentralized approach allows for efficient and secure processing of large-scale image
data sets without centralizing the data (Ye et al., 2020). By leveraging intelligent sensors
and advanced computing capabilities, federated computing supports the processing and
analysis of data in distributed environments (Mohammadi & Thornburg, 2020). It offers
a promising solution to overcome the limitations of centralized processing in large-scale
image processing tasks (Ye et al., 2020).

In traditional centralized computing models, transferring data to a central location or
server for processing can be resource-intensive and problematic, especially when dealing
with large datasets such as those in digital palynology ((Anveden & Meding, 2007);(Op-
penheimer et al., 2005))
Figure 2.3.1 illustrates the centralized computing concept.

Compared to the centralized approach, federated computing introduces a paradigm shift
by bringing the computation to the data location instead of moving the data (Oppen-
heimer et al., 2005). By executing processing tasks at the data source itself, federated
computing mitigates the need for extensive data transfer and maximizes local computa-
tional resources ((Ali et al., 2018); (Alazzam et al., 2022)).
Figure ?? illustrates the federated computing model. This approach has gained accep-
tance in various domains such including skin exposure assessment (Anveden & Meding,
2007), wide-area platforms (Oppenheimer et al., 2005), air traffic control communica-
tion analysis (I. Williams et al., 2002), and large-scale video stream analytics (Ali et al.,

CHAPTER 2. THEORY 11

2018). It offers a promising solution for solving data movement challenges and max-
imizing computational efficiency in large-scale image processing tasks (Alazzam et al.,
2022).

Figure 2.3.1: A centralized computing model.

Federated computing addresses issues related to data transfer and storage and enables
harnessing of collective computational power from distributed nodes in a network ((Lee
et al., 2012); (Xiaofeng et al., 2022a); (Bagnasco et al., 2015)). By enabling parallel
processing across multiple nodes, federated computing significantly reduces the time re-
quired for analyzing large datasets ((Lee et al., 2012);(Bagnasco et al., 2015); (Shuvo
et al., 2023)). This approach has been applied in estimating long-term exposure to am-
bient PM2.5 concentrations (Lee et al., 2012), sparse federated learning with hierarchical
personalized models (Xiaofeng et al., 2022b), interoperating cloud-based virtual farms
(Bagnasco et al., 2015), civil aviation passenger value analysis (S. Chen, 2023), and effi-
cient acceleration of deep learning inference on resource-constrained edge devices (Shuvo
et al., 2023).

Figure 2.3.2: A federated computing model.

12 CHAPTER 2. THEORY

However, federated computing has challenges in handling heterogeneity in system archi-
tectures, ensuring synchronous computation, and managing network latency among the
distributed nodes ((Brendan et al., 2016); (Cao et al., 2021); (Kimovski et al., 2018)).
The challenges are attributed to the decentralized nature of federated computing and the
need to coordinate and synchronize computations across multiple nodes ((Brendan et al.,
2016); (Cao et al., 2021)).

To address the challenges, researchers have proposed solutions such as communication-
efficient learning algorithms(Brendan et al., 2016), the use of Direct Acyclic Graph
(DAG)-based blockchain for device asynchrony and anomaly detection (Cao et al., 2021),
and the development of ultra-scale computing architectures for efficient deployment and
management (Kimovski et al., 2018). The advancements aim to solve the challenges and
harness the potential of federated computing in analyzing digital palynological slides.

The federated computational workflow proposed in this thesis will demonstrate how the
challenges can be solved to leverage the benefits of federated computing in the analysis
of digital palynological slide images.

2.4 Object Detection and Classification

Object detection and classification are deep-learning tools for analyzing whole slide images
in digital palynology, where identifying and categorizing microfossils on slide images is
of the main focus. This section reviews current algorithms and techniques such the
watershed segmentation algorithm and the use of Convolutional Neural Networks (CNNs)
in classifying microfossils.

The watershed algorithm (OpenCV, 2023), a classical image segmentation technique, is
an effective tool for object detection. It treats the grayscale image as a topographical
relief, with bright areas considered high regions and dark areas as low regions. This
’flooding’ mechanism enables the algorithm to separate distinct objects in an image, even
if they are touching or slightly overlapping. In digital palynology, this could mean the
efficient separation of adjacent or closely located microfossils on a slide.

Compared with watershed segmentation, Region-based CNN (RCNN) algorithm offers a
more advanced solution for object detection. The algorithm involves a two-step process.
First, the algorithm extract bounding boxes and load masks of the objects found in an
image. Then it utilizes CNN algorithm networks to identify the objects within these
boxes. Faster RCNN and Mask RCNN (Gad, 2021) are two commonly used networks
in this category. The adaptability and accuracy of RCNNs make them a useful tool for
identifying diverse microfossils found in palynological slides.

The thesis work (Nesse, 2020) presented an extensive comparative classification study of
dinoflagellates on palynological slide images with eight pre-trained CNN networks, lever-
aging transfer learning. The results were satisfactory.
However, the present research focuses on integrating microfossil detection and classifica-
tion tasks and the proposed federated workflow for analyzing palynological slide images.

It is important to mention that while existing techniques have been successfully applied
in various fields, their application in digital palynology presents diverse challenges. The
complexity and diversity of palynological data and the large size of slide images require

CHAPTER 2. THEORY 13

careful calibration and optimization of the algorithms.
The methodology proposed in this thesis will discuss how the existing techniques can be
adapted to solves challenges encountered in handling large digital palynological data.

2.5 Docker and Containerization

Docker and containerization have emerged as essential tools in modern computing, offer-
ing efficiency, portability, and scalability in software development and deployment ((Wu
et al., 2020);(Kim et al., 2022); (Venugopal, 2017);(L. Chen et al., 2018); (Robidas &
Legault, 2022)). Containers encapsulate applications into discrete units, bundling to-
gether all the necessary elements such as libraries, dependencies, and environment vari-
ables required for the application to run reliably and consistently across different com-
puting environments ((Wu et al., 2020);(Venugopal, 2017);(Robidas & Legault, 2022)).
Figure 2.5.1 illustrate an app deployment with Docker, popular containerization tool.

Docker enables packaging of software packages into containers, providing a standardized,
self-contained unit that can be used for software development and running applications on
any system (Wu et al., 2020). Containerization techniques such Docker and Kubernetes
are employed for computation and storage resource allocation. The containerization
tools offer advantages such as lower system overhead and shorter launch time compared
to virtual machine technology (L. Chen et al., 2018). Containerization has also been
widely used in various domains such cheminformatics, bioinformatics, and computational
material science for the distribution of applications (Robidas & Legault, 2022).

Figure 2.5.1: An application containerized and deployed with Docker

Docker offers several advantages in large-scale image processing and analysis in digital
palynology. Docker containers guarantee the reproducibility of computational environ-
ments across various computing nodes (Boettiger, 2015). This is crucial in a federated
computing framework where different nodes may have heterogeneous system architec-
tures. Docker containers encapsulate all the necessary dependencies and configurations,
ensuring consistent deployment and execution of applications across different environ-
ments (Boettiger, 2015).
Docker has been widely adopted in bioinformatics, demonstrating its effectiveness in pro-
viding reproducible and portable computational environments (Lindenbaum & Redon,
2017). The Docker application in bioinformatics promotes the development and sharing
of tools and workflows, enabling researchers to analyze large-scale image data efficiently.

Docker containers have other interesting features that offer several advantages for large-
scale image processing. The containers are lightweight and standalone, eliminating the
"it works on my machine" problem ((Z. Li et al., 2017);(Alston & Rick, 2020)). This

14 CHAPTER 2. THEORY

means that the computational logic packaged into a Docker container for image process-
ing can be reliably executed across all nodes, independent of their underlying system
configurations (Z. Li et al., 2017).
Also, Docker containers provide a portable environment that contains the entire com-
puting environment, including software, dependencies, libraries, and configuration files,
bundled into one package (Alston & Rick, 2020). This ensures the reproducibility of
the analysis and mitigates compatibility issues between different operating systems or
program versions (Alston & Rick, 2020). The lightweight nature of Docker containers,
compared to hypervisor-based virtualization, allows for efficient resource utilization and
minimizes performance overhead ((Z. Li et al., 2018); (Hanussek et al., 2021)). These
advantages make Docker containers valuable for large-scale image analysis, enabling con-
sistent and reproducible execution across distributed computing nodes.

Resource isolation can be implemented with the Docker technology. This allows each
Docker container to have its resource limits, enabling efficient utilization of system re-
sources ((Keskin & Ince, 2021); (Gowri, 2019); (Al-Dhuraibi et al., 2017)). This feature
is required for processing large datasets that will potentially consume significant system
resources (Keskin & Ince, 2021). The ability to set container resource limits ensures that
each container operates within its allocated resources and prevents resource contention,
optimizing resource utilization (Al-Dhuraibi et al., 2017). This capability is beneficial in
scenarios where multiple containers are running concurrently such as in cloud-based ap-
plications or high-performance computing environments ((Gowri, 2019); (Sauvanaud et
al., 2020)). By providing resource isolation, Docker enhances the efficiency of large-scale
image processing tasks and ensure that system resources are optimized.

The present research methodology uses Docker to build a containerized environment that
hosts the object detection algorithm and classification models
Figure 2.5.2 illustrates the proposed Docker container. Each node in the federated system
runs the Docker container, processing assigned palynological slide images and contributing
to the overall task. The approach brings the computation to the data, reducing the need
for data transfer and making efficient use of local computational resources ((Haque et al.,
2020);(Massaoudi et al., 2021); (Tommasini, 2021)). By leveraging Docker containers, the
computational logic can be reliably executed across different nodes, ensuring consistency
and reproducibility in the analysis (Haque et al., 2020).

Working with Docker containers presents challenges such as container management and
orchestration, networking between containers, and ensuring data persistence ((Haque et
al., 2020); (Yamanaka et al., 2022);(Bedhief et al., 2022)).
The present research leverages the Docker technology to implement the proposed com-
putational workflow for analyzing digital palynological slides, considering the challenges
presented in (Haque et al., 2020). Networking between containers can be achieved through
proper configuration and container networking features (Yamanaka et al., 2022). Ensur-
ing data persistence can be achieved through the use of persistent volumes or other storage
solutions (Haque et al., 2020).

CHAPTER 2. THEORY 15

Figure 2.5.2: The proposed Docker container for palynological slide processing.

2.6 Gaps in Current Research
Existing research in digital palynology has drawbacks. One of the major concerns is
the handling and processing of large image datasets. Traditional methods often rely on
centralized models that require large data transfer across networks. The inefficient and
resource-intensive approach poses scalability issues as data volumes increase.

While previous studies have explored object detection and classification techniques, their
application in digital palynology remains relatively unexplored. Considering the com-
plexity and diversity of palynological data, adapting and optimizing the microfossil iden-
tification techniques for a specific dataset is a challenging task.
Also, there are a few research on the application of federated computing in this domain,
and applying containerized environments such as Docker to reproducibility issues and
improve efficiency in distributed computations remains underexplored.

This thesis aims to address these gaps. To solve the challenges, the Docker technology is
integrated in the federated computational workflow for efficient and reliable processing of
digital palynological slide images. The proposed workflow implemented in a containerized
reproducible environment provides a robust solution to challenges associated with large
data transfers and scalability.

CHAPTER

THREE

MATERIALS AND DATA

The research materials and data used in the present study are presented in this chapter.
Also, data generation and preprocessing procedures are discussed.

3.1 Digital Slide Preparations
The NPD provided the digital palynological slide images used for objection detection and
classification tasks. The directorate reported it has produced more than thirty thousand
digital palynological slides from 284 released wellbores drilled on the Norwegian Continen-
tal Shelf (NCS). This huge dataset of 57 terabytes is available in Diskos, a decentralized
archive solution for storing and sharing seismic, wellbore, and production data(The NPD,
2023).

Figure 3.1.1: Palynological slide digitalization and annotation at NPD.
Geologist Robert Williams identifies and annotates dinoflagellates on a digital palynolog-
ical slide. The machine behind him is a slide scanner used for scanning the NPD huge
database of palynological slides derived from microplankton, pollen, and spores from well-
bores drilled on the NCS. Picture: Arne Bjørøen (The NPD, 2023).

16

CHAPTER 3. MATERIALS AND DATA 17

Experts at the NPD produce palynological slides with core samples from wellbores on
the NCS. The wellbore depths from which the core samples were drilled are recorded and
used for labeling palynological slides.
To produce a palynological slide, a small sample from a core is grounded and dissolved
in an acid such as hydrochloric and hydrofluoric acids. The acid used depends on the
material composition of the source formation. The sample is then washed with tap water
and a few drops are placed on a microscopic slide and left overnight to dry. The last step
is slide labeling. A coverslip with resin is placed on the sample, and the slide is labeled
to indicate the source wellbore and procedure used in producing the slide.

Further palynological slide preparations involve scanning the slide samples with Panno-
ramic 1000 from 3DHistech and annotating selected digital slides with CaseViewer from
the same company. 3DHistech (3DHistech, 2020) is a digital pathology company based
in Budapest, Hungary.
Figure 3.1.1 shows Geologist Robert Williams identifying and annotating dinoflagellates
on a digital palynological slide.
Figure 3.1.2 shows microfossils on a digital palynological slide with the wellbore infor-
mation. The label indicates the core sample was drilled at a depth of 3069.3m from a
wellbore named 2/4-C-11.

Figure 3.1.2: A digital palynological slide with the wellbore information

A research visit to the NPD and a detailed discussion with the expert geologist gave
valuable insights into palynological analysis at the directorate. In collaboration with
medical pathologists from Finland, leveraging improved imaging technologies, the NPD
has created a huge palynological knowledge base. The knowledge database has helped
increase understanding of the geological history of the NCS with the vast processing of
microplankton, pollen, and spores.

3.2 Materials

Sixteen digital palynological slides from five wells on the NCS were analyzed in the
preliminary study. The source rocks were of the Danian and Kimmeridgian geological
ages and yielded varying distributions of microfossils depending on depositional depths.

18 CHAPTER 3. MATERIALS AND DATA

Table 3.2.1: Digital palynological slides for image analysis and classification.

Slide Name Well Depth Geological Age
2_4-C-11 10052.7 ftC.mrxs 2/4-C-11 10052.7 ft Danian
2_4-C-11 10070 ftC.mrxs 2/4-C-11 10070 ft Danian
DigitalSlide_C1M_4S_1.mrxs 2/4-C-11 10076.9 ft Danian
DigitalSlide_C1M_3S_1.mrxs 2/4-C-11 10076.9 ft Danian
DigitalSlide_C1M_3S_1.mrxs 2/4-C-11 10072.7 ft Danian
25_11-5 1731.4 mC.mrxs 25/11-5 1731.4 m Danian
25_11-5 1731.7 mC.mrxs 25/11-5 1731.7 m Danian
25_11-5 1732 mC.mrxs 25/11-5 1732 m Danian
2_7-14 10658 ftC.mrxs 2/7-14 10658 ft Danian
16_3-2 1998.80 mC.mrxs 16/3-2 1998.80 m Early Kimmeridgian
16_3-2 2000.3 mC.mrxs 16/3-2 2000.3 m Early Kimmeridgian
1_6-6 ST2 4876 mDC.mrxs 1/6-6 4876 m N/A
1_6-6 ST2 4990 mDC.mrxs 1/6-6 4990 m N/A
1_6-6 ST2 5107 mDC.mrxs 1/6-6 5107 m N/A
1_6-6 ST2 5224 mDC.mrxs 1/6-6 5524 m N/A
1_6-6 ST2 5323 mDC.mrxs 1/6-6 5323 m N/A

Table 3.2.1 presents a list of digital palynological slides obtained from the NPD. However,
only seven selected slides that produced desired results provided datasets used for further
analyses. Factors considered in the slide selection include image quality and population
sizes of identified dinoflagellates. All the digital palynological slides from Well 2\4-C-11
produced good tiled images and large populations of dinoflagellates and were used for
data generation. Also, the slide derived from Well 2\7-14 and the first slide from Well
16\3-2 were selected. The slide images derived from Well 1\6-6 produced the poorest
quality tiles filled will dark debris, with insignificant numbers of dinoflagellates.

3.3 Data Generation

The datasets used for segmentation and classification tasks were derived from the seven
selected digital palynological slides. The geologist at the NPD had annotated six slide
images, while the seventh slide has no annotations.
Each slide image is saved as an MRXS file, with a folder containing the slide metadata
and a list of DAT files. Annotated slides have annotation details saved as XML files, in
addition to metadata folders and MRXS files.

Figure 3.3.1 presents palynological slide data from Well 1/6-6 compressed into TAR files,
while Figure 3.3.2 demonstrates how to extract slide data from the TAR file shown on
the window of 7-Zip File Manager.

CHAPTER 3. MATERIALS AND DATA 19

Figure 3.3.1: A list of slide data compressed as TAR files.

Figure 3.3.2: Extracting slide data from a TAR file with 7-Zip File Manager.

3.3.1 Slide object and visualization

The first step in data generation is the creation of a slide image object with the OpenSlide
class. OpenSlide(PyPI, 2022) is a Python library used for image analysis for reading and
manipulating whole slide image files. Compared with digital pathological slides used in
medical research, the palynological slides analyzed are high-resolution images.
The file named process_palyslides.ipynb presents an algorithm for reading and ma-
nipulating slide image files. The Python code is given in the Appendix.
The slide image processing procedure adopted in this thesis followed similar steps pre-
sented in (DigitalSreeni, 2022).

To read a slide file, the MRXS file path is passed as an input argument to the OpenSlide
constructor to read and load the slide image. The slide variable is instantiated as an
OpenSlide object that can be used to retrieve information about the slide image and
perform further analysis. The slide information that can be extracted from the slide
object includes pixel data, slide metadata, dimensions, different levels of the slide image,
and objective power.
Objective power refers to the magnification power of an objective lens used in capturing
the slide image. The selected slide images have an objective power of 40, indicating the
specimen images observed through an objective lens will appear 40 times larger than
when viewed with human eyes.

3.3.2 Tiled image generation

The slide images are too larger and hence must be broken down into smaller images with
desired dimensions. For example, an image size of 256 x 256 pixels is more acceptable.
Figure 3.3.3 presents a simplified palynological workflow for reading slide images and
generating tiled images for deep learning tasks.

20 CHAPTER 3. MATERIALS AND DATA

The algorithm for extracting tiled images from a palynological slide is also implemented
in the code process_palyslides.ipynb presented in the Appendix.

The DeepZoomGenerator function is used to generate smaller images called tiles from
the slide object created with the OpenSlide class. The generator accepts desired tile size
and slide object as arguments. Other parameters specified are overlap and limit bounds
parameters. In this case, the overlap parameter is set to 0, indicating no overlap between
neighboring tiles, while the limit bounds parameter is set to False. This allows tile
generation to exceed the bounds of the slide image.

Figure 3.3.3: A simplified workflow for reading slide images and tile generation.

The get_tile method is used to extract tiles at specified coordinates and zoom levels.
There are 20 zoom levels in a tile object derived from each slide image. The first zoom
level has an index of 0 and the last has an index of 19. The number of tiled images
generated increases with the zoom level, with Level 20 having the highest number of
tiles. The choice of zoom level varies with image analysis workflows.

3.3.2.1 Data cleaning

The desired sizes of tiled images considered in this study are 256 and 512. However, tiles
appearing on the bounds of a slide image may not have the desired size. Also, blank and
poor-quality tiles are generated with tiles having desired microfossil images.

To generate clean tiles that passed specified thresholds, a deep learning network YOLOv4
Tiny is integrated with the tile generation algorithm. YoLOv4 Tiny is a variant of the
YOLOv4 algorithm (Bochkovskiy et al., 2020) optimized for faster detection of objects
in videos and images. The configuration and weights files of the YOlOv4 Tiny network
are downloaded and saved in the required directory.
The setup ensures tiles generated have good quality and undesirable tiles are discarded.

CHAPTER 3. MATERIALS AND DATA 21

3.3.3 Labeled image extraction

(a) (b)

(c) (d)

(e) (f)

Figure 3.3.4: Selected classes of dinoflagellates.

22 CHAPTER 3. MATERIALS AND DATA

Annotated images are required for training deep learning algorithms used for object
identification and classification tasks. To extract labeled images from annotated slide
images, the MRXS file and the corresponding annotation XML files are required.
Labeled image extraction is implemented in the algorithm classify_microfossils.ipynb
presented in the Appendix.
Figure 3.3.4 presents selected classes of dinoflagellates from the six annotated slide images.

For a given pair of MRXS and XML files containing the annotation details of dinoflagel-
lates present in a slide image, the algorithm iterates over the files and extracts "label",
"image", and "annotation" for each microfossil and stores the data in a dictionary. A list
of data stored in dictionaries for all the dinoflagellates extracted from the six annotated
slides is converted to a dataframe using Pandas.

3.3.4 Data preprocessing

While only "label" and "image" data are required for training Convolutional Neural
Networks (CNNs) considered in the classification workflow, "annotation" data for each
labeled image is required for training object identification algorithms such as Mask RCNN
and Faster RCNN.

Table 3.3.1: Dinoflagellates and counts

Class Count

Senoniasphaera inornata 173
Fibrocysta axialis 121
Palaeoperidinium pyrophorum 117
Spongodinium delitiense 65
Cribroperidinium "prominoseptatum" 18
Spongodinium delitiense (operculum) 13
Dingodinium tuberosum 2
Sentusidinium pilosum 2
Systematophora areolata 2
Gonyaulacysta jurassica 2
Acanthaulax venusta 2
Tubotuberella apatela 2
Dingodinium tuberculosum 2
Scriniodinium inritibile 1
Thalassiphora pelagica 1
Sirmiodinium grossii 1
Cribroperidinium "prominoseptatum" 1
Leptodinium mirabile 1
Endoscrinium galeritum reticulatum 1
Danea californica 1
Cribroperidinium sp. 1
Chytroeisphaeridia cerastes 1

Total 530

The labeled data stored on the dataframe are preprocessed to filter out classes with a few

CHAPTER 3. MATERIALS AND DATA 23

records. In the object detection and classification tasks, only dinoflagellate classes with
more than two records are considered. The filtered dataset is then split into training and
validation datasets for training deep learning models.
Table 3.3.1 presents the classes and number of dinoflagellates extracted from the anno-
tated slide images before data preprocessing.
Table 3.3.2 presents selected classes of microfossils with more than two records.

Table 3.3.2: Selected classes of dinoflagellates

Class Count

Senoniasphaera inornata 173
Fibrocysta axialis 121
Palaeoperidinium pyrophorum 117
Spongodinium delitiense 65
Cribroperidinium "prominoseptatum" 18
Spongodinium delitiense (operculum) 13

Total 507

Table 3.3.3 presents the sizes of the classification datasets used for training, validating,
and evaluating the performance of the trained model.

Table 3.3.3: Classification datasets

Class Dataset

Training Test Validation

Senoniasphaera inornata 138 35 9
Fibrocysta axialis 96 25 9
Palaeoperidinium pyrophorum 93 24 9
Spongodinium delitiense 52 13 8
Cribroperidinium "prominoseptatum" 14 4 5
Spongodinium delitiense (operculum) 10 3 6

Total 403 104 46

CHAPTER

FOUR

METHODOLOGY

The focus of the thesis research is the implemented methodology that combines the prin-
ciples of federated computing, large-scale image processing, object detection, and classifi-
cation techniques to analyze digital palynological slides. This chapter presents a compre-
hensive overview of the federated computational workflow’s architecture and functional
mechanisms with a detailed discussion of the object detection and classification meth-
ods. It is important to understand the relevance of the proposed novel computational
approach and how the workflow successfully addresses the challenges associated with
analyzing large-scale palynological slide images. The chapter is divided into two main
sections: the federated computational workflow and the microfossil detection and classi-
fication techniques. Each section is further subdivided into several subsections detailing
individual components and operations.

4.1 Federated Computational Workflow
The present research implements a novel approach to handling large-scale digital palyno-
logical slides.
Figure 1.0.3 presents a federated computational workflow. The workflow allows the com-
putational logic to be moved to the data location as an alternative to moving the data to
the computation location. This represents a significant step in overcoming the mobility
challenges posed by large-size data files. The following subsections provide a detailed de-
scription of the workflow, design considerations that motivated its implementation, and
operational mechanisms.

4.1.1 Workflow design

Figure 4.1.1 shows the design of federated computation workflow. The framework is based
on a strategic response to two main challenges in handling large-scale digital palynology
slides - computational efficiency and data mobility. Because digital palynological slides
are large-size data, typically exceeding 3GB, moving them around for processing can be
challenging and inefficient. For this reason, the workflow was constructed based on the
idea it is more efficient to move the computation to data.

24

CHAPTER 4. METHODOLOGY 25

Figure 4.1.1: A schematic of the federated computational workflow.

26 CHAPTER 4. METHODOLOGY

The workflow is activated on Airflow by switching the Boolean on-off switch shown in
Figure 4.1.2 when a new participant comes onboard, registering through the specially
developed user interface. During the registration, the participant writes an MRXS file
path located in the user’s system, containing the unprocessed digital palynological slide,
and the name the user wants to be identified within the federated computation and selects
a process the participant wants to run on the file.

Figure 4.1.2: The starting point of DAG.

Figure 4.1.3 presents the DAG system, designed to automatically scan for new partici-
pants at predefined time intervals of 5 minutes. Identifying a new participant activates
the next steps of the workflow. These steps involve creating a Docker container on the
participant’s machine and launching the image processing workflow.

Figure 4.1.3: Directed acyclic graph (DAG)

The Docker container’s creation is a significant part of the workflow because it packages
the computation logic and resources necessary for handling digital palynological slides.
Once created, the Docker container operates in the local environment of the participant’s
machine, effectively bringing the computation logic to the data. This approach eliminates
the need to move large slide MRXS files, solving data mobility issues and making the
entire process significantly more efficient.

The workflow design approach allows the processing of large-scale images with maximum
computational efficiency, minimal data mobility, and optimal use of local resources. It
represents a breakthrough in handling large-scale digital palynological slides, creating
new possibilities for further exploration and research in the field.

4.1.2 User interface

The user interface (UI) is critical to the federated computation workflow, and it acts as
the primary point of interaction between users and the system. Designed with simplicity
and functionality, UI aids the user registration process and initiates data entry.

CHAPTER 4. METHODOLOGY 27

4.1.2.1 Registration

During registration, users are presented with three input fields to provide the necessary
information to participate in the federated computational network. These inputs include
the "Username," "File path," and "Select a process".
Figure 4.1.4 shows UI and input fields.

Figure 4.1.4: The user registration inputs.

The "Username" input allows users to enter their desired username or identifier within
the federated computational network. The username will be used to recognize and dif-
ferentiate users within the network.

In the "File path" input, users must specify the file path of an unprocessed slide image
in their local system. This path is the location from which the system retrieves the slide
data for processing. Users should provide an accurate file path to ensure successful data
retrieval.

The "Select a process" input allows users to choose the specific process or processes they
wish to include in the federated computational workflow. This selection empowers users
to customize their analysis based on their individual requirements and preferences. Users
can select one or multiple processes from the available options to tailor the workflow.

By providing these inputs during the registration phase, users establish their presence
in the federated computational network and configure the initial parameters for data
processing and analysis.

4.1.2.2 Create container

When users click the Create Container button, the information provided during the reg-
istration phase, including the username and the selected process, will be saved in a text
file named "participants.txt". If the username contains a blank space, it will be replaced
by an underscore. Also, the file path entered by the user will be stored in another text

28 CHAPTER 4. METHODOLOGY

file called file "paths.txt".
Figure 4.1.5 shows UI with the created text files. These files serve as the reference for the
workflow because they are periodically checked every 5 minutes to identify any changes
or updates.

Figure 4.1.5: User Interface and created TXT files.

Before a successful registration is completed, the system performs a thorough verification
process. It checks the values entered by the user against the entries in the "processed
container.txt" file shown in Figure 4.1.5, which contains information about previously
processed containers. The verification step helps determine whether the user is new to
the system or has already registered a container, ensuring accurate handling of user data
and preventing duplicate registrations.

Figure 4.1.6: Checking processed containers.

After a successful container registration, a message will be displayed indicating that the
container has been registered successfully.
Figure 4.1.7 shows a successful user registration. This notification confirms that the user’s
container is now part of the federated computational workflow, ready to run the specified
processes and contribute to the analysis of digital palynological slides.

CHAPTER 4. METHODOLOGY 29

Figure 4.1.7: A successful user registration.

4.1.2.3 Show results

When a user clicks the "Show Results" button, the system scans the "processed con-
tainer.txt." Then it goes to the "Host1" system, the "Organizer" of the network, to look
for the user’s folder and extract details regarding the processed container, associated pro-
cesses, and the corresponding files. This enables the retrieval of the generated results,
which are then displayed coherently, grouped by container name.
Figure 4.1.8 shows the operation.

Figure 4.1.9 shows the UI displaying no results. If the "processed container.txt" file is
either non-existent or empty, a message stating "No results available" promptly appears
on the UI, ensuring users are informed about the absence of processed data. This diligent
notification maintains transparency and provides clarity in the context of this thesis.

Figure 4.1.8: Show result button process.

The system functionalities also include the presence of a "Remove Process" button when
the "Processed container.txt" file is updated with processes.
Figure 4.1.10 shows the remove process workflow. This feature allows users to delete
previously executed processes, facilitating corrections and adjustments to the processed
data. The availability of this option enhances the flexibility and integrity of the obtained
results within the framework.

30 CHAPTER 4. METHODOLOGY

Figure 4.1.9: Show no result message.

The implemented workflow allows users to visualize processed container results. It scans
the "processed container.txt" file, displays the results in an organized manner, and com-
municates the absence of processed data when necessary. Also, the system provides a
"Remove Process" button for users to make corrections and adjustments, ensuring the
accuracy and quality of the research results.

4.1.2.4 Removed process

The "Remove Process" functionality within the UI is vital to the workflow. When the
button is clicked, the system initiates a series of checks and actions to ensure the proper
removal of the selected process and associated files.

When the remove process is activated, the workflow first verifies the existence of the
process within the "processed container.txt" file. If the process is found, the system
proceeds to locate the corresponding user’s folder within the host1 or organizer of the
network system. The files associated with the process are identified and promptly deleted,
ensuring the elimination of any remnants as is shown in Figure 4.1.10.

Figure 4.1.10: Removed process workflow.

The system updates the "processed container.txt" file, removing the entry of the deleted
process. This ensures accurate tracking and maintains the integrity of the container
processing history.

In cases where the removed process is the last one associated with a specific user, the
workflow undertakes additional steps to ensure a thorough cleanup. In addition to delet-
ing the related files and removing the process from the "processed container.txt" file, the
system stops the container associated with the user. It also eliminates the Docker image

CHAPTER 4. METHODOLOGY 31

and Dockerfiles created during the process, effectively freeing up resources and minimiz-
ing unnecessary storage usage.
Figure 4.1.11 shows the UI displaying removed process Docker workflow.

Figure 4.1.11: Removed process Docker workflow.

After successfully removing the process, the UI provides a message confirming the suc-
cessful completion of the operation. This informative notification ensures transparency
and clarity, keeping users informed of the status and outcome of their actions.

The "Remove Process" functionality within the UI enables users to manage and maintain
their data integrity effectively. The system ensures a streamlined and efficient workflow by
conducting thorough checks, removing associated files, updating the processing history,
and performing container and Docker cleanup when necessary.

4.1.3 Docker implementation

Docker plays an important role in implementing the federated computational workflow.
As a platform that automates the deployment of applications inside lightweight, portable
containers, Docker provides an efficient means of running our image processing tasks.
The implementation of Docker follows a specific condition. If there is no existing Docker
container running with the same name as the registered username, the Docker image will
be created. However, if a container is already running, the PY file will be copied to the
existing container for execution unless the process is already run.
Figure 4.1.12 shows the Docker implementation.

Figure 4.1.12: Checking processes run on already built container.

When the MRXS path file from the registered user and the username are received in the
folder where the MRXS file is located, a Dockerfile is written with the instructions to

32 CHAPTER 4. METHODOLOGY

"COPY" the MRXS.
Figure 4.1.13 shows renamed folder and Docker file creation. The Dockerfile is written
using a "Base Docker Image" that already contains shared dependencies and packages,
and the operation is shown in Figure 4.1.14.

Figure 4.1.13: Folder renamed and Docker file creation.

The Dockerfile image is created, and the "Host1" will send an instruction to the folder
where the Dockerfile is to be built and run the container on the user’s machine.
Figure 4.1.15 shows the process. This container serves as a self-contained execution
environment for large-scale image processing. Docker ensures the necessary dependencies,
including the Python script for processing, are encapsulated within this container. This
allows for seamless execution, independent of the underlying system.

Figure 4.1.14: Base image creation.

CHAPTER 4. METHODOLOGY 33

The image processing script is then transmitted to the Docker container, which the con-
tainer runs on the slide MRXS file.
Figure 4.1.16 shows the transmission of the image file, This allows the computation logic
to be moved to the data, in contrast to the traditional approach of transferring large
datasets to the processing domain. The Docker container returns the processed data and
metadata to the host system once the computation is completed.

Figure 4.1.15: Build image and run container.

The application of Docker in the workflow introduces several advantages such as resource
isolation and portability across different systems. Resource isolation ensures each Docker
container has its resources independent of other containers. Also, Docker facilitates scale-
up capabilities as additional Docker containers can be readily spun up or down depending
on the computational demand. This level of flexibility and scalability would not be
possible with traditional virtual machines.

Figure 4.1.16: Transmission of image analysis file.

4.1.4 Large-scale image processing

In the federated computational workflow, large-scale image processing occurs within the
Docker container initiated on the user’s machine. The Docker container handles the large
digital palynological slide files the user submits.

The Python script used for the image processing is transmitted to the Docker container,
and it runs in the container.
Figure 4.1.17 shows the processing of slide image files. This script takes the necessary
processing steps such as splitting the large slide images into smaller tiled images, applying
required preprocessing operations, and extracting the relevant features from these tiles.

34 CHAPTER 4. METHODOLOGY

Figure 4.1.17: Execution of image analysis file.

It is important to mention that the need for large-scale data is minimized by performing
these intensive processing tasks inside the Docker container and directly on the user’s
machine. This method substantially reduces the time and computational resources that
would have been spent if these large slide files were first transferred over the network.
Also, Docker provides a more scalable solution to the problem of large-scale image pro-
cessing.

Once the processing is completed, the Docker container packages the processed data and
metadata and returns them to the host system. The data are then available to be used
in the subsequent steps of the workflow such as microfossil detection and classification
task.

4.1.5 Challenges and solutions

The implementation of the federated computation workflow for processing large-scale
digital palynological slides encountered some challenges. The size of the MRXS files
and the computational demands of the image processing tasks posed significant hurdles.
However, devised several solutions were devised to solve the issues.

One of the main challenges was managing the computational resource requirements of the
workflow. Because the MRXS files are large, processing them locally can easily stretch
the system’s resources. To mitigate the problem, a federated computing approach that
distributes the computational load across multiple machines was adopted. By leveraging
the power of distributed computing, we could efficiently process large-scale image data
without straining individual systems.

Another significant challenge was ensuring efficient and secure data transfer between
the Docker containers and the host system. Considering the large file sizes involved,
data transfers take considerable time and pose security risks. To address the issue,
the workflow was designed to minimize data transfers by processing the data within
the Docker containers, reducing the need for data movement. This approach expedited
the processing time and enhanced data security by keeping the data within controlled
containerized environments.

CHAPTER 4. METHODOLOGY 35

Challenges were encountered in creating a user-friendly and intuitive interface that could
facilitate user interaction with the system. Potential mistakes and errors during the
user registration and data uploading process were anticipated. A robust web-based UI
using Dash, incorporating comprehensive error handling and validation mechanisms was
developed to handle the issues. This ensures the interface can handle different user
inputs, providing informative error messages and guiding users to correct mistakes. This
user-centered approach enhances the overall user experience and minimizes frustration or
confusion.

The solutions significantly improved the efficiency, security, and usability of our federated
computation workflow, making it a viable method for processing large-scale digital pa-
lynological slides. By addressing the challenges related to computational resources, data
transfer, and UI design, a robust framework was developed. The framework streamlines
the image processing workflow while ensuring the accuracy and reliability of the results.

4.2 Palynological Image Analysis Workflow

The federated computation workflow incorporates advanced computer vision techniques
for detecting and classifying microfossils on digital palynological slides. This crucial step
enables the identification and classification of microfossils present in the slides, offering
a powerful mechanism for analyzing vast amounts of data. The following subsections
provide a detailed overview of the image analysis processes implemented in the workflow.

The image analysis workflow encompasses several interdependent processes integrated
into the Dash application. The development of these processes involved meticulous plan-
ning and consideration of the dependencies between them. The first process is the slide
image reading to extract the necessary data from the slides for further analysis. Also,
tiled images are generated from the slide at this stage.

The data cleaning process is another important step in the image analysis workflow. Once
the slide image is read and tiles are generated, cleaning eliminates unwanted tiled images
such as blank tiles or tiles with undesirable images. The cleaned tiled images serve as
inputs for the subsequent object detection and classification tasks.

The watershed segmentation algorithm from OpenCV (OpenCV, 2023), a popular seg-
mentation technique, identifies and separates individual objects on the cleaned tiled im-
ages to facilitate classification. This procedure partitions the image into regions based
on intensity and spatial information, facilitating the precise localization of microfossils.
The results obtained from the watershed segmentation serve as inputs for the subsequent
classification task.

The classification process utilizes a trained CNN model to classify microfossils identified
on tiles. This trained model analyzes the features of the dinoflagellates and assigns them
to predefined classes. Annotation details of labeled dinoflagellates are extracted using
the provided XML and MRXS file paths. The annotation details are converted into a
readable format for object detection with the Mask RCNN algorithm.

Figure 4.2 presents the workflow for palynological slide image analysis. The image anal-
ysis workflow, implemented within the Dash application, encompasses the slide image
reading, data cleaning, object detection with the Watershed algorithm, and classification

36 CHAPTER 4. METHODOLOGY

with a trained RCNN model. The processes are interconnected, ensuring the accurate
identification and categorization of microfossils. The extraction of annotations and their
integration into the classification process further enhances the accuracy of the analysis.

Figure 4.2.1: The palynological image analysis workflow.

4.2.1 Read image

The "Read Image" process is a crucial initial step in the image analysis workflow. It
involves utilizing a Python script that employs the OpenSlide library to extract essen-
tial data from the digital palynological slide for further analysis. The script begins by
importing the necessary libraries, including the OpenSlide package. It then locates the
MRXS file in the specified directory.

The OpenSlide method is used to open and access the image data once the slide is located.
To facilitate efficient navigation and analysis at different levels of resolution of a tile object
obtained from the slide, the script utilizes the DeepZoomGenerator from OpenSlide. This
generator produces tiles of varying sizes, enabling effective slide examination.

The number of deep zoom levels and downsample factors for the levels are determined
from the slide metadata. These factors indicate the level of magnification or downsam-
pling applied to the slide image. The script calculates the total number of tiles in the
slide at the highest deep zoom level by analyzing the metadata.

The number of deep zoom levels in the digital palynological slide refers to the different
levels of magnification available for viewing and analyzing the image. Each deep zoom
level represents a specific level of detail and resolution. Higher zoom levels provide a more
detailed view of the slide, allowing for a closer examination of individual components such
as microfossils. By contrast, lower zoom levels offer a broader overview of the entire slide,
enabling a more comprehensive understanding of its structure.
Figure 4.2.2 presents a graphical representation of zoom levels.

CHAPTER 4. METHODOLOGY 37

Figure 4.2.2: A graphical representation of zoom levels.

The downsample factors are values that indicate the level of downsampling applied to
the image at each zoom level. Downsampling involves reducing the image resolution by
discarding some fine details. The downsample factors determine the level of compres-
sion or reduction in image quality. Higher downsample factors result in lower resolution
and smaller file sizes, making the image more manageable for processing and analysis.
However, higher downsample factors may lead to some loss of information or fine details,
particularly at lower zoom levels.
Figure 4.2.3 illustrates the downsampling effect.

Figure 4.2.3: An illustration of downsampling effect.

The total number of tiles in the slide image at the highest deep zoom level represents the
subdivision of the slide into smaller tiled images for efficient analysis and navigation. The
tiles allow for a regional manipulation of the slide, enabling the detection and analysis of
microfossils at a localized level. The number of tiles extracted from the slide increases
with the deep zoom level. Each tile represents a specific region of the slide image with

38 CHAPTER 4. METHODOLOGY

vertical and horizontal coordinates, and desirable tiles serve as inputs for further slide
image analysis.

After extracting the necessary data, the script closes the slide to release system resources.
The output of the "Read Image" process is a JSON object that contains the downsample
factors, the number of deep zoom levels, and the total number of tiles in the slide.
Figure 4.2.4 shows the process output displayed on the Dash app. The total of tiles at
the highest zoom level and best resolution level indicates the space available for the user,
and the number of tiles is smaller at a lower resolution.

Figure 4.2.4: The output of slide image reading process.

4.2.2 Clean tiles

The "Clean Tiles" process is a crucial step in the image analysis workflow that focuses
on removing unwanted or blank tiles from the read image. This process ensures that
subsequent analysis is performed only on meaningful and informative regions by elimi-
nating unwanted tiles using the YOLOv4-Tiny algorithm. The following steps outline
the procedure for cleaning the tiles.

After reading the slide image, the user is prompted to select a resolution and zoom levels.
Figure 4.2.5 shows the UI with the zoom level and resolution selection options. The
values are extracted from the JSON file generated during the "Read Image" process.
The resolution level determines the size of the tiles, while the zoom level determines the
level of image magnification.

CHAPTER 4. METHODOLOGY 39

Figure 4.2.5: Selection of zoom level and resolution.

The cleaning process begins with tiled image generation with the DeepZoomGenerator
from the OpenSlide deepzoom module. This tool generates tiles of the specified resolution,
effectively dividing the slide image into a grid of smaller regions for analysis. The division
of the slide into tiles enables efficient examination and targeted evaluation.

For each tile, a series of evaluations are performed with the pre-trained deep-learning
model to determine its relevance and suitability for further analysis. The tile is first
converted to grayscale using the OpenCV library, simplifying subsequent analysis. The
mean pixel intensity of the grayscale tile is then calculated. Tiles with a pixel intensity
above a certain threshold are considered for further evaluation. In addition to pixel
intensity, the percentage of white pixels within each tile is assessed. Tiles with a high
percentage of white pixels, indicating blank or irrelevant regions, are discarded.
Figure 4.2.6 illustrates the data cleaning with YOlOv4-Tiny. The filtering process ensures
that only tiles containing significant information are retained. The tiles that satisfy the
predetermined criteria are saved in the output folder named Clean Tiles.

Figure 4.2.6: Selection of clean tiles for deep learning tasks.

40 CHAPTER 4. METHODOLOGY

The "Clean Tiles" process also provides valuable metadata, including the number of
tiles that passed the cleaning process and the total number of tiles at the selected zoom
level. This information serves as a measure of the effectiveness of the cleaning procedure.
The number of tiles that successfully pass the cleaning process indicates the presence of
significant regions within the digital palynological slide. By contrast, the total number
of tiles at the selected zoom level provides information about the scale of the analysis.

The outputs of the "Clean Tiles" process are saved in a JSON file. This file serves as
a record of the cleaning results and is later accessed by the Dash app to display the
information to the user.
Figure 4.2.7 shows outputs displayed after the "Clean-Tiles" operation. The JSON file
ensures that the metadata remains persistent and readily available for future reference.

Figure 4.2.7: The outputs of tile cleaning process.

4.2.3 Watershed segmentation

The "Apply Watershed" process is a crucial step in the image analysis workflow. It is
a preliminary object detection used to detect potential microfossils on the cleaned tiles.
The process utilizes the watershed algorithm from OpenCV to separate microfossil images
from the background, enhancing subsequent object detection and classification tasks.
Figure 4.2.8 shows a schematic of the watershed segmentation process.

Figure 4.2.8: A schematic of the watershed segmentation process.

From Figure 4.2.8, the watershed script first defines the input folder path where the
cleaned tile images are stored. The algorithm also requires an output folder path where
segmented images will be segmented. If the output folder does not exist, the script creates
it.

For each image in the input folder, the following prcesses are performed:

CHAPTER 4. METHODOLOGY 41

1. Load the image and convert it to grayscale.

2. Apply thresholding to create a binary image, separating the foreground (microfos-
sils) from the background.

3. Perform morphological opening to remove small objects and noise.

4. Apply distance transform to obtain the distance map, representing the distance of
each pixel from the background.

5. Apply thresholding to the distance map to obtain the foreground markers.

6. Apply the watershed algorithm to segment the foreground markers and obtain the
labels.

7. Convert the grayscale image to a 3-channel format for visualization purposes.

8. Apply the watershed segmentation algorithm to the 3-channel image, using the
markers to define the regions.

9. Save the segmented image to the output folder, marking the microfossils with a
distinctive color.

This important information stored in a JSON file enables further analysis and identi-
fication of the segmented microfossils. The JSON file acts as a persistent and readily
accessible metadata source, ensuring its availability for future reference. The stored data
is later accessed by the Dash application, allowing the user to visualize and explore the
segmentation results conveniently.
Figure 4.2.9 shows the output of the watershed segmentation process.

Figure 4.2.9: The output of watershed segmentation process.

The watershed algorithm has the potential for microfossil quantification to evaluate their
various characteristics. For example, microfossil size, shape, and distribution on a slide
can be quantitatively analyzed. This can provide better insights into paleontological
research, including species abundance, community composition, and ecological patterns.

4.2.4 Annotation extraction

The extraction of microfossil annotation details is an important process in the workflow.
Figure 4.2.10 shows the UI with the process initialization.

42 CHAPTER 4. METHODOLOGY

Figure 4.2.10: The initialization of the annotation extraction process.

The user activates annotation extraction in the workflow through the UI by providing
the XML file path and the corresponding MRXS file. The process involves locating and
copying the MRXS image file and the XML file into the Docker environment or creating
a Docker container with the files if necessary. The extraction process is then executed
in the Docker environment with a PY file. Figure 4.2.11 shows the execution of the
annotation extraction process.

The XML file is parsed using the ElementTree library to create a tree structure. The
annotation sections in the XML file contain microfossil annotation details such as the
name, type, and polygon points for each labeled dinoflagellate.
The polygon points are extracted and transformed into a list of coordinate tuples for
each annotation. These points define the boundaries of the region of interest within the
MRXS image file. A rectangular region is calculated by determining the minimum and
maximum x and y values from the polygon points.

The regions of interest are extracted from the slide image based on the calculated coordi-
nates. These regions represent the labeled images associated with the annotations. The
labeled images and their corresponding annotation details are stored in dictionaries and
converted to a Pandas dataframe. It is important to mention that labeled images are
converted from RGBA to RGB images before further analysis.

CHAPTER 4. METHODOLOGY 43

Figure 4.2.11: The annotation extraction process.

Figure 4.2.12 shows the output from the process displayed on the dash application. The
annotation extraction process provides labeled images that serve as training data or
references for subsequent analysis and classification tasks in the computational workflow.

Figure 4.2.12: Visualizing the annotation extraction output.

4.2.5 Image classification

This section is divided into two subsections, model training and classification. The train-
ing subsection focuses on building and training a CNN algorithm with the training and
validation datasets presented in Table 3.3.3. It is important to mention that the training
process occurs on the host server, and the outputs, such as the trained model and training
history, are also saved there.

4.2.5.1 Model training

The model training with the definition of the input arguments to the deep-learning algo-
rithm including the directories of the training and validation datasets, the target image
size, batch size, the number of classes, and the number of epochs. Data augmentation
and normalization techniques are applied to the training dataset using the ImageData-
Generator from the Keras library. This helps increase the diversity of the training data,
enabling the classification model to learn characteristic features and reduce overfitting
problems. The validation set is rescaled to ensure consistency.

A CNN model is built using the sequential API from Keras, consisting of convolutional
layers with increasing filter sizes, max-pooling layers for downsampling, and dense layers
for classification. The model is compiled with the Adam optimizer, categorical cross-
entropy loss function, and accuracy metric.

44 CHAPTER 4. METHODOLOGY

The training process involves fitting the model to the training data and validating it on
the validation data for a specified number of epochs. The steps per epoch and validation
steps are determined based on the batch and dataset sizes. The training progress is stored
in a history object.

The trained model is saved as an h5 file, and the training history is saved as a pickle file.
The files serve as inputs for future use and analysis.
Figure 4.2.13 present the model training process for classification task .

Figure 4.2.13: The training process for the classification model.

4.2.5.2 Classification

The user initiates the classification process by providing the path to the image file or the
folder containing multiple image files through the UI. The system accesses the specified
path and checks if a container is already created. If a container exists, the images are
copied into the Docker environment with the trained model. The classification process is
then executed in the Docker environment.
Figure 4.2.14 presents the classification process for predicting dinoflagellate classes with
the trained CNN model. The source code is presented in classify_microfossils.ipynb
given in the Appendix.

The image is resized using an OpenCV library to match the desired size. The model’s
class indices and class labels are defined. The image is preprocessed by normalizing the
pixel values and expanding the dimensions. The model predicts the probabilities of the
preprocessed image class.

CHAPTER 4. METHODOLOGY 45

Figure 4.2.14: Dinoflagellate classification with the trained deep-learning model.

The predicted class index is obtained by selecting the class with the highest probability.
The corresponding class label is retrieved from the predefined class labels list. The
predicted class label is returned as the output and displayed on the Dash application
(Figure 4.2.15).

Figure 4.2.15: The classification output displayed on the Dash app

The classification process can be repeated for multiple images or applied to a folder
containing multiple image files.

The training subsection describes the process of building and training the CNN model
using data augmentation and normalization techniques. The classification subsection
explains how the pre-trained model is utilized to classify individual images by resizing,
preprocessing, and predicting the class label. The processes enable the automated clas-
sification of digital palynological images, facilitating efficient analysis and interpretation.

4.2.6 Challenges and solutions

Implementing object detection and classification using the watershed algorithm and the
CNN presented its challenges. The complexity and variation in the morphological features
of pollen grains often resulted in overlapping regions in the watershed segmentation. The
CNN model also required considerable computational resources and time for training,
considering the extensive range of pollen types.

To handle the problem of overlapping regions in the watershed segmentation, a series of
morphological operations such as dilation and erosion were applied to separate the over-

46 CHAPTER 4. METHODOLOGY

lapping regions. Also, noise filtering techniques were applied to eliminate any unwanted
artifacts from the image.

This study leveraged transfer learning, using pre-trained weights, during the training of
the Mask RCNN network for microfossil detection. Training the model was computation-
ally expensive and was prone to compatibility issues. For this reason, only the trained
CNN model was deployed for deep-learning tasks on the computational workflow.

The thesis work (Nesse, 2020) presented an extensive comparative classification of di-
noflagellates on palynological slides with eight pre-trained CNN networks, leveraging
transfer learning. However, the present research focuses on building the implemented
computational workflow for palynological slide image analysis.

While the challenges were substantial, the adopted solutions successfully handled the
aforementioned issues. The result was an effective and efficient system that can accurately
detect and classify dinoflagellates from digital palynological slides, demonstrating the
robustness of the implemented methodology.

CHAPTER

FIVE

RESULTS AND DISCUSSION

5.1 Results

The results from watershed segmentation, object detection with Mask RCNN, classi-
fication task with the trained CNN model, and implemented federated computational
workflow are presented in this section.

(a) (b)

(c) (d)

Figure 5.1.1: Watershed segmentation.

47

48 CHAPTER 5. RESULTS AND DISCUSSION

5.1.1 Implemented computational workflow

The implementation of a federated computation workflow for the analysis of large-scale
digital palynological slides has proven to be successful. The developed workflow ad-
dresses the challenges posed by the size of the .mrxs files and the computational demands
of the image processing tasks. By adopting a distributed computing framework, the
computation logic was shifted to the data location, optimizing the utilization of local
computational capacity and reducing the need for data movement.

The workflow as is shown in figure 5.1.2 begins with user registration via a Dash interface,
where users input their username, the path of the .mrxs file to be processed, and the
selected process. This information is stored in "participants.txt" for user management
and in "file paths.txt" for easy access to the unprocessed slides. The Directed Acyclic
Graph (DAG) running in Airflow regularly checks for new participants every 5 minutes,
triggering the necessary processes.

Figure 5.1.2: The implemented computational workflow.

The technology stack used in the implementation includes Dash, Airflow, and Docker.
Dash provides a user-friendly interface for registration and result visualization. Airflow
handles workflow management, ensuring the sequential execution of the necessary steps.
Docker containerizes the processes, allowing for easy replication and scalability. Each
component of the DAG performs specific tasks, such as creating Dockerfiles, building
Docker images, running containers, sending PY files, and storing the process outputs.

The distributed nature of the workflow effectively addresses the challenges associated
with handling large palynological slides. By processing the data within the Docker con-
tainers, data transfers are minimized, reducing processing time and improving security.
The results displayed in the Dash application mainly consist of metadata from the slide
analysis. The detected objects are counted and classified using a trained Convolutional
Neural Network (CNN), providing valuable information to users.

5.1.2 Palynological image analysis

5.1.2.1 Watershed segmentation

The Python code classify_microfossils presented in the Appendix implemented the
watershed segmentation algorithm applied to selected tiled images during the preliminary

CHAPTER 5. RESULTS AND DISCUSSION 49

analysis. Figure 5.1.1 presented the results, showing dinoflagellates on the tiled images
correctly segmented from the foreground.

5.1.2.2 Classification

The datasets presented in Table 3.3.3 were used in training and validating the classifica-
tion model and evaluating the model performance.
Figure 5.1.3 shows correctly predicted dinoflagellate classes, while Figure 5.1.4 shows two
examples of dinoflagellates the classifier predicted incorrectly.

(a) (b)

(c) (d)

(e) (f)

Figure 5.1.3: Correct dinoflagellate class predictions.

50 CHAPTER 5. RESULTS AND DISCUSSION

(a) (b)

Figure 5.1.4: Incorrect dinoflagellate class predictions.

Figure 5.1.5 shows accuracy and loss achieved during the model training and validation
after 17 epochs.

Figure 5.1.6 presents the confusion matrix for the model evaluation. The matrix summa-
rizes the performance of the classifier, showing at a glance correct and incorrect classifica-
tions. For example, the model correctly classified Cribroperidinium "prominoseptatum",
Palaeoperidinium pyrophorum, and Senoniasphaera inornata dinoflagellate classes. For
Fibrocysta axialis, Spongodinium delitiense, and Spongodinium delitiense (operculum)
classes, the numbers of incorrect classification are three, one, and one, respectively.

Figure 5.1.5: Training/validation loss and accuracy.

CHAPTER 5. RESULTS AND DISCUSSION 51

Figure 5.1.6: The confusion matrix showing correct and incorrect predictions.

Figure 5.1.7 presents a summary of evaluation metrics extracted from the confusion ma-
trix data. Accuracy, precision, recall, and f1-score are evaluation metrics used to assess
the performance of the trained deep-learning model.

Figure 5.1.7: The evaluation metrics for the classification model.

Table 5.1.1: Model Accuracy

Accuracy Value
Training 0.82

Validation 0.83
Test 0.89

Table 5.1.1 summarizes the model accuracy achieved during training, validation, and

52 CHAPTER 5. RESULTS AND DISCUSSION

testing. The results show the trained model generalizes well on unknown data with an
accuracy of 0.89, eliminating the problem of overfitting.

5.1.2.3 Dinoflagellate detection

The Mask RCNN algorithm is trained with the dataset presented in Table 3.3.2 and
the corresponding annotation detail of each microfossil record. Figure 5.1.8 presents the
results of the microfossil identification task. The results show the deep-learning model
correctly identified the microfossil class Palaeoperidinium pyrophorum (Figure 5.1.8a).
However, the model failed to identify Spongodinium delitiense correctly, predicting the
class as Palaeoperidinium pyrophorum (Figure 5.1.8b).

(a) (b)

Figure 5.1.8: Dinoflagellate identification with the Mask RCNN model.

5.2 Discussion
The implementation of the federated computation workflow for the analysis of large-
scale digital palynological slides has proven to be successful. The developed workflow
addresses the challenges posed by the size of the MRXS files and the computational
demands of the image processing tasks. By adopting a distributed computing framework,
the computation logic is shifted to the data location, optimizing the utilization of local
computational capacity and reducing the need for data movement.

The workflow begins with user registration via a Dash interface, where users input their
username, the MRXS file path to be processed, and the selected process. This informa-
tion is stored in "participants.txt" for user management and in "file paths.txt" for easy
access to the unprocessed slides. The Directed Acyclic Graph (DAG) running in Airflow
regularly checks for new participants every 5 minutes, triggering the necessary processes.

The technology stack used in the implementation includes Dash, Airflow, and Docker.
Dash provides a user-friendly interface for registration and result visualization. Airflow
handles the workflow management, ensuring the sequential execution of the necessary
steps. Docker is utilized to containerize the processes, allowing for easy replication and

CHAPTER 5. RESULTS AND DISCUSSION 53

scalability. Each component of the DAG performs specific tasks, such as creating Dock-
erfiles, building Docker images, running containers, sending PY files, and storing the
output of the processes.

The distributed nature of the workflow effectively addresses the challenges associated
with handling large palynological slide images. By processing the data within the Docker
containers, data transfers are minimized, reducing processing time and improving security.
The results displayed in the Dash application mainly consist of metadata from the slide
analysis. The workflow is designed to perform watershed segmentation, dinoflagellate
identification, and classification task with trained deep-learning models such as Mask
RCNN and CNN respectively, providing valuable information to users.

The performance of the trained deep-learning models in identifying and classifying mi-
crofossils has been discussed. The CNN model achieved an accuracy of 0.82 and 0.89 for
training and performance evaluation, respectively. The results are satisfactory.
The dinoflagellate detection with Mask RCNN is the most challenging task implemented
in this work. Because the model performance needs improvement, dinoflagellate detec-
tion with the trained Mask RCNN is not included in the implemented computational
workflow. However, the results are presented in the section above.

The quality of the results obtained through the federated computation workflow has been
evaluated in comparison to traditional or manual approaches. The workflow offers faster
processing times and provides valuable interpretations of the slide data. The ability to
determine possible microfossil types enhances the understanding of the slide’s paleonto-
logical context.

The novel federated computation workflow presented in this thesis demonstrates its scal-
ability and potential applications in analyzing digital palynological slide images. The
ability to process large-scale datasets efficiently and accurately provides valuable insights
to researchers. However, further improvements can be made, including implementing
secure authentication, expanding the training dataset for the classification model, and
developing a public web application to allow for broader accessibility.

5.3 Limitations

Various challenges were encountered during the development and implementation of the
computational workflow. These included integrating multiple technologies and managing
potential user errors. Robust error-handling mechanisms were implemented in the Dash
application to ensure smooth user interactions and prevent invalid inputs.

Limitations and areas for improvement in the system design, performance, and function-
ality were identified. The sequential order of certain processes and the lack of security
measures are among the areas that require attention. Also, the public release of the
Dash application and the transformation of other PCs into real servers are aspects to be
considered for future enhancements.

Setting up the simulation environment for the microfossil detection and training Mask
RCNN were computationally challenging tasks. The deep-learning model was built on
old versions of TensorFlow and Keras, with many dependencies, and hence suffered severe
compatibility issues. The initial plan was to train and deploy the Mask RCNN model

54 CHAPTER 5. RESULTS AND DISCUSSION

in the implemented computational workflow. Because the results were less satisfactory,
considering the time limitation, microfossil classification with the trained CNN model
was adopted as an option and was implemented in the workflow.

CHAPTER

SIX

CONCLUSION

A novel federated computational workflow for analyzing palynological slide images is
developed and implemented in this thesis. Its scalability, efficiency, and automation give
researchers a powerful tool for analyzing and understanding paleontological data. The
workflow establishes the foundation for future advancements and new possibilities.

The workflow’s contribution to digital palynological slide analysis is significant, offering an
automated and scalable approach. The ability to predict the geological age of slides based
on their microfossil contents opens up possibilities for stratigraphic column construction.
Collaborative efforts involving domain experts for model training and providing more
labeled slide images will further improve the accuracy and effectiveness of the workflow.

The novel computation workflow implemented in this thesis demonstrates its potential to
revolutionize the analysis of digital palynological slide images, providing a more informed
understanding of the geological history of source rocks.
Future research and development should focus on refining the system, addressing the
limitations, and exploring potential extensions. The integration of secure authentication
mechanisms, the enhancement of model training with a larger dataset, and the trans-
formation of the workflow into a publicly accessible web application are key areas for
improvement. Also, incorporating a machine learning model to predict the geological age
of source rocks will further enhance the functionality and usefulness of the workflow.

55

REFERENCES

3DHistech. (2020). The digital pathology company [Last accessed 08 July 2023]. https:
//www.3dhistech.com/. (Cit. on p. 17)

Abudayyeh, O., Cai, H., Fenves, S., Law, K., O’Neill, R., & Rasdorf, W. (2004). Assess-
ment of the computing component of civil engineering education. J. Comput. Civ.
Eng., 18 (3), 187–195. https://doi.org/10.1061/(asce)0887-3801(2004)18:3(187)
(cit. on p. 9)

Afgan, E., Coraor, N., Chilton, J., Baker, D., & Taylor, J. (2015). Enabling cloud bursting
for life sciences within galaxy. Concurrency Computat.: Pract. Exper., 27 (16),
4330–4343. https://doi.org/10.1002/cpe.3536 (cit. on p. 3)

Alazzam, M., Alassery, F., & Almulihi, A. (2022). Federated deep learning approaches
for the privacy and security of iot systems. Wireless Communications and Mobile
Computing, 1–7. https://doi.org/10.1155/2022/1522179 (cit. on pp. 10, 11)

Al-Dhuraibi, Y., Paraiso, F., Djarallah, N., & Merle, P. (2017). Autonomic vertical elastic-
ity of docker containers with elasticdocker. https://doi.org/10.1109/cloud.2017.67
(cit. on p. 14)

Ali, M., Anjum, A., Yaseen, M., Zamani, A., Balouek-Thomert, D., Rana, O., ..., &
Parashar, M. (2018). Edge enhanced deep learning system for large-scale video
stream analytics. https://doi.org/10.1109/cfec.2018.8358733 (cit. on p. 10)

Al-Janabi, S., Huisman, A., & Diest, P. (2011). Digital pathology: Current status and
future perspectives. Histopathology, 61 (1), 1–9. https://doi.org/10.1111/j.1365-
2559.2011.03814.x (cit. on p. 8)

Alston, J., & Rick, J. (2020). A beginner’s guide to conducting reproducible research.
https://doi.org/10.32942/osf.io/h5r6n (cit. on pp. 13, 14)

Anveden, I., & Meding, B. (2007). Skin exposure in geriatric care ? a comparison between
observation and self-assessment of exposure. Contact Dermatitis, 57 (4), 253–258.
https://doi.org/10.1111/j.1600-0536.2007.01211.x (cit. on p. 10)

Bagnasco, S., Colamaria, F., Colella, D., Casula, E., Elia, D., Franco, A., ..., & Vino,
G. (2015). Interoperating cloud-based virtual farms. J. Phys.: Conf. Ser., 664 (2),
022033. https://doi.org/10.1088/1742-6596/664/2/022033 (cit. on p. 11)

Bedhief, I., Kassar, M., & Aguili, T. (2022). Empowering sdn-docker based architecture
for internet of things heterogeneity. J Netw Syst Manage, 31 (1). https://doi.org/
10.1007/s10922-022-09702-3 (cit. on p. 14)

Bochkovskiy, A., Wang, C.-Y., & Liao, H.-Y. M. (2020). Yolov4: Optimal speed and
accuracy of object detection. ArXiv, abs/2004.10934 (cit. on p. 20).

Boettiger, C. (2015). An introduction to docker for reproducible research. SIGOPS Oper.
Syst. Rev., 49 (1), 71–79. https://doi.org/10.1145/2723872.2723882 (cit. on p. 13)

56

REFERENCES 57

Brendan, M., Eider, M., Daniel, R., Seth, H., & y, A. (2016). Communication-efficient
learning of deep networks from decentralized data. https://doi.org/10.48550/
arxiv.1602.05629 (cit. on p. 12)

BroadbandSearch. (Accessed: July 12, 2023). Average internet speed around the world.
(Cit. on p. 9).

Cao, M., Cao, B., Hong, W., Peng, M., & Bai, X. (2021). Dag-fl: Direct acyclic graph-
based blockchain empowers on-device federated learning. https://doi.org/10.1109/
icc42927.2021.9500737 (cit. on p. 12)

Chandriani, S., & Ganem, D. (2010). Array-based transcript profiling and limiting dilu-
tion reverse transcription-pcr analysis identify additional latent genes in kaposi’s
sarcoma associated herpesvirus. J Virol, 84 (11), 5565–5573. https://doi.org/10.
1128/jvi.02723-09 (cit. on p. 10)

Chen, L., Xu, J., Ren, S., & Zhou, P. (2018). Spatio–temporal edge service placement:
A bandit learning approach. IEEE Trans. Wireless Commun., 17 (12), 8388–8401.
https://doi.org/10.1109/twc.2018.2876823 (cit. on p. 13)

Chen, S. (2023). A federated learning-based civil aviation passenger value analysis method
and maas construction considerations in the epidemic background. https://doi.
org/10.5772/intechopen.107115 (cit. on p. 11)

Cordeiro, R., Faloutsos, C., & Júnior, C. (2013). Data mining in large sets of complex
data. https://doi.org/10.1007/978-1-4471-4890-6 (cit. on p. 3)

Cossio, P., Rohr, D., Baruffa, F., Rampp, M., Lindenstruth, V., & Hummer, G. (2017).
Bioem: Gpu-accelerated computing of bayesian inference of electron microscopy
images. Computer Physics Communications, (210), 163–171. https://doi.org/10.
1016/j.cpc.2016.09.014 (cit. on p. 9)

DigitalSreeni. (2022). Processing whole slide images as tiles. YouTube. https ://www.
youtube.com/watch?v=tNfcvgPKgyU. (Cit. on p. 19)

Expedient. (Accessed: July 12, 2023). File transfer time calculator. (Cit. on p. 9).
Gad, A. (2021). Mask r-cnn for object detection and segmentation using tensorflow 2.0

[Last accessed 10 July 2023]. https://github.com/ahmedfgad/Mask-RCNN-TF2b.
(Cit. on p. 12)

Gao, H. (2020). Super-resolution and denoising of fluid flow using physics-informed con-
volutional neural networks without high-resolution labels. https ://doi .org/10.
48550/arxiv.2011.02364 (cit. on p. 3)

Gemperline, E., Keller, C., & Li, L. (2016). Mass spectrometry in plant-omics. Anal.
Chem., 88 (7), 3422–3434. https://doi.org/10.1021/acs.analchem.5b02938 (cit. on
p. 3)

George, S., Milea, A., & Shaw, P. (2012). Proliferation in the normal fte is a hallmark of
the follicular phase, not brca mutation status. Clinical Cancer Research, 18 (22),
6199–6207. https://doi.org/10.1158/1078-0432.ccr-12-2155 (cit. on p. 10)

Górka, P., Pietrzak, P., Kotunia, A., Zabielski, R., & Kowalski, Z. (2014). Effect of method
of delivery of sodium butyrate on maturation of the small intestine in newborn
calves. Journal of Dairy Science, 97 (2), 1026–1035. https://doi.org/10.3168/jds.
2013-7251 (cit. on p. 10)

Gowri, A. (2019). Impact of virtualization technologies in the development and manage-
ment of cloud applications. ijisae, 7 (2), 104–110. https://doi.org/10.18201/ijisae.
2019252789 (cit. on p. 14)

58 REFERENCES

Guo, W., Alham, N., Liu, Y., Li, M., & Qi, M. (2015). A resource aware mapreduce
based parallel svm for large scale image classifications. Neural Process Lett, 44 (1),
161–184. https://doi.org/10.1007/s11063-015-9472-z (cit. on p. 3)

Gutierrez, E., Romero, S., Trenas, M., & Zapata, E. (2008). Parallel quantum computer
simulation on the cuda architecture. Proceedings of the International Conference
on Computational Science, 700–709. https://doi.org/10.1007/978-3-540-69384-
0_75 (cit. on p. 3)

Hanussek, M., Bartusch, F., & Krüger, J. (2021). Performance and scaling behavior of
bioinformatic applications in virtualization environments to create awareness for
the efficient use of compute resources. PLoS Comput Biol, 17 (7), e1009244. https:
//doi.org/10.1371/journal.pcbi.1009244 (cit. on p. 14)

Haque, M., Iwaya, L., & Babar, M. (2020). Challenges in docker development. https :
//doi.org/10.1145/3382494.3410693 (cit. on p. 14)

Holt, K. A., & Bennett, K. D. (2014). Principles and methods for automated palynology.
New Phytologist, 203, 735–742. https://doi.org/10.1111/nph.12848 (cit. on pp. 6,
7)

Hunt, C., el-Rishi, H., & Hassan, A. (2002). Reconnaissance investigation of the pa-
lynology of holocene wadi deposits in cyrenaica, libya. Libyan stud., (33), 1–7.
https://doi.org/10.1017/s0263718900005070 (cit. on p. 10)

Jarzen, D. M. (2022). Palynology [Last accessed 07 July 2022]. https://www.floridamuseum.
ufl.edu/paleobotany/palynology/. (Cit. on p. 6)

Johnson, T., Battison, L., Garwood, R., Hickman-Lewis, K., & Brasier, M. (2016). Ad-
vanced analytical techniques for studying the morphology and chemistry of pro-
terozoic microfossils. SP, 448, 81–104. https://doi.org/10.1144/sp448.4 (cit. on
p. 2)

Keskin, T., & Ince, G. (2021). An ensemble learning approach for energy demand fore-
casting in microgrids using fog computing, 170–178. https://doi.org/10.1007/978-
3-030-85577-2_20 (cit. on p. 14)

Kim, Y., Donovan, R., Ren, Y., Bian, S., Wu, T., Purawat, S., ..., & Li, G. (2022). Smart
connected worker edge platform for smart manufacturing: Part 1—architecture
and platform design. J Adv Manuf Process, 4 (4). https://doi.org/10.1002/amp2.
10129 (cit. on p. 13)

Kimovski, D., Ristov, S., Matha, R., & Prodan, R. (2018). Multi-objective service oriented
network provisioning in ultra-scale systems, 529–540. https://doi.org/10.1007/
978-3-319-75178-8_43 (cit. on p. 12)

Kong, Q., Cao, Y., Iqbal, T., Wang, Y., Wang, W., & Plumbley, M. (2020). Panns: Large-
scale pretrained audio neural networks for audio pattern recognition. IEEE/ACM
Trans. Audio Speech Lang. Process., 28, 2880–2894. https://doi .org/10.1109/
taslp.2020.3030497 (cit. on p. 3)

Lamani, X., Horst, S., Zimmermann, T., & Schmidt, T. (2014). Determination of aromatic
amines in human urine using comprehensive multi-dimensional gas chromatogra-
phy mass spectrometry (gcxgc-qms). Anal Bioanal Chem, 407 (1), 241–252. https:
//doi.org/10.1007/s00216-014-8080-5 (cit. on p. 3)

Lee, S., Serre, M., Donkelaar, A., Martin, R., Burnett, R., & Jerrett, M. (2012). Compar-
ison of geostatistical interpolation and remote sensing techniques for estimating
long-term exposure to ambient pm 2.5 concentrations across the continental united
states. Environ Health Perspect, 120 (12), 1727–1732. https://doi.org/10.1289/
ehp.1205006 (cit. on p. 11)

REFERENCES 59

Li, N., Zeng, L., He, Q., & Shi, Z. (2013). Parallel implementation of apriori algorithm
based on mapreduce. IJNDC, 2 (1), 89. https://doi.org/10.2991/ijndc.2013.1.2.3
(cit. on p. 9)

Li, W., Mikailov, M., & Chen, W. (2023). Scaling the inference of digital pathology deep
learning models using cpu-based high-performance computing. IEEE Trans. Artif.
Intell., 1–15. https://doi.org/10.1109/tai.2023.3246032 (cit. on p. 9)

Li, Z., Kihl, M., Lu, Q., & Andersson, J. (2017). Performance overhead comparison be-
tween hypervisor and container based virtualization. https://doi.org/10.1109/
aina.2017.79 (cit. on pp. 13, 14)

Li, Z., Zhang, X., Müller, H., & Zhang, S. (2018). Large-scale retrieval for medical image
analytics: A comprehensive review. Medical Image Analysis, (43), 66–84. https:
//doi.org/10.1016/j.media.2017.09.007 (cit. on pp. 9, 14)

Lindenbaum, P., & Redon, R. (2017). Bioalcidae, samjs and vcffilterjs: Object-oriented
formatters and filters for bioinformatics files. Bioinformatics, 34 (7), 1224–1225.
https://doi.org/10.1093/bioinformatics/btx734 (cit. on p. 13)

Livezey, B., & Zusi, R. (2007). Higher-order phylogeny of modern birds (theropoda, aves:
Neornithes) based on comparative anatomy. ii. analysis and discussion. Zoological
Journal of the Linnean Society, 149 (1), 1–95. https://doi.org/10.1111/j.1096-
3642.2006.00293.x (cit. on p. 2)

Mabvakure, B., Rott, R., Dobrowsky, L., Heusden, P., Morris, L., Scheepers, C., &
Moore, P. (2019). Advancing hiv vaccine research with low-cost high-performance
computing infrastructure: An alternative approach for resource-limited settings.
Bioinform Biol Insights, (13), 117793221988234. https : / / doi . org / 10 . 1177 /
1177932219882347 (cit. on p. 3)

Massaoudi, M., Abu-Rub, H., Refaat, S., Chihi, I., & Oueslati, F. (2021). Deep learning
in smart grid technology: A review of recent advancements and future prospects.
IEEE Access, 9, 54558–54578. https://doi.org/10.1109/access.2021.3071269 (cit.
on p. 14)

Mohammad, N., Yusof, M., Ahmad, R., & Muad, A. (2020). Region-based segmentation
and classification of mandibular first molar tooth based on demirjian’s method. J.
Phys.: Conf. Ser., 1502 (1), 012046. https://doi.org/10.1088/1742-6596/1502/1/
012046 (cit. on p. 2)

Mohammadi, J., & Thornburg, J. (2020). Connecting distributed pockets of energyflex-
ibility through federated computations:limitations and possibilities. https://doi.
org/10.48550/arxiv.2009.10182 (cit. on p. 10)

Nesse, A. B. (2020). Classifying dinoflagellates in palynological slides using convolutional
neural networks [A master thesis at the Department of Information Technology -
Automation and Signal Processing]. https://uis.brage.unit.no/uis-xmlui/handle/
11250/2680067. (Cit. on pp. 12, 46)

Ongie, G., & Jacob, M. (2017). A fast algorithm for convolutional structured low-rank
matrix recovery. IEEE Trans. Comput. Imaging, 4 (3), 535–550. https://doi.org/
10.1109/tci.2017.2721819 (cit. on p. 9)

OpenCV. (2023). Image segmentation with watershed algorithm [Last accessed 13 July
2023]. https://docs.opencv.org/4.x/d3/db4/tutorial_py_watershed.html. (Cit.
on pp. 12, 35)

Oppenheimer, D., Chun, B., Patterson, D., Snoeren, A., & Vahdat, A. (2005). Service
placement in shared wide-area platforms. https : / /doi . org/10 . 1145/1095810 .
1118581 (cit. on p. 10)

60 REFERENCES

Petersen, K., Fuchs, M., Moreshet, S., Cohen, Y., & Sinoquet, H. (1992). Computing tran-
spiration of sunlit and shaded cotton foliage under variable water stress. Agronomy
Journal, 84 (1), 91–97 (cit. on p. 3).

Punyasena, S., Haselhorst, D., Kong, S., Fowlkes, C., & Moreno, J. (2022). Automated
identification of diverse neotropical pollen samples using convolutional neural net-
works. Methods Ecol Evol, 13 (9), 2049–2064. https ://doi . org/10 .1111/2041 -
210x.13917 (cit. on p. 2)

PyPI. (2022). Openslide python [Last accessed 10 July 2023]. https://pypi.org/project/
openslide-python/. (Cit. on p. 19)

Robidas, R., & Legault, C. (2022). Calcus: An open-source quantum chemistry web plat-
form. J. Chem. Inf. Model., 62 (5), 1147–1153. https://doi.org/10.1021/acs.jcim.
1c01502 (cit. on p. 13)

Saito, K., Takato, M., Sekine, Y., & Uchikoba, F. (2012). Biomimetics micro robot with
active hardware neural networks locomotion control and insect-like switching be-
haviour. International Journal of Advanced Robotic Systems, 5 (9), 226. https :
//doi.org/10.5772/54129 (cit. on p. 10)

Sauvanaud, C., Dholakia, A., Guitart, J., Kim, C., & Mayes, P. (2020). Big data de-
ployment in containerized infrastructures through the interconnection of network
namespaces. Softw Pract Exper, 50 (7), 1087–1113. https://doi.org/10.1002/spe.
2793 (cit. on p. 14)

Sha, W., Guo, Y., Yuan, Q., Tang, S., Zhang, X., Lu, S., & Cheng, S. (2020). Artificial
intelligence to power the future of materials science and engineering. Advanced
Intelligent Systems, 4 (2), 1900143. https://doi.org/10.1002/aisy.201900143 (cit.
on p. 3)

Sherman, T., Gao, T., & Fertig, E. (2019). Cogaps 3: Bayesian non-negative matrix
factorization for single-cell analysis with asynchronous updates and sparse data
structures. https://doi.org/10.1101/699041 (cit. on p. 9)

Sherman, T., Gao, T., & Fertig, E. (2020). Cogaps 3: Bayesian non-negative matrix
factorization for single-cell analysis with asynchronous updates and sparse data
structures. BMC Bioinformatics, 21 (1). https://doi.org/10.1186/s12859-020-
03796-9 (cit. on p. 10)

Shumilovskikh, L., O’Keefe, J., & Marret, F. (2021). An overview of the taxonomic groups
of non-pollen palynomorphs. SP, 511 (1), 13–61. https://doi.org/10.1144/sp511-
2020-65 (cit. on p. 8)

Shuvo, M., Islam, S., Cheng, J., & Morshed, B. (2023). Efficient acceleration of deep
learning inference on resource-constrained edge devices: A review. Proc. IEEE,
111 (1), 42–91. https://doi.org/10.1109/jproc.2022.3226481 (cit. on p. 11)

Siegel, H., Abraham, S., Bain, W., Batcher, K., Casavant, T., DeGroot, D., ..., & Wah,
B. (1992). Report of the purdue workshop on grand challenges in computer ar-
chitecture for the support of high performance computing. Journal of Parallel
and Distributed Computing, 16 (3), 199–211. https : / /doi . org / 10 . 1016 / 0743 -
7315(92)90033-j (cit. on p. 9)

Silva, C., Dainys, J., Simmons, S., Vienožinskis, V., & Audzijonyte, A. (2022). A scalable
open-source framework for machine learning-based image collection, annotation
and classification: A case study for automatic fish species identification. Sustain-
ability, 21 (14), 14324. https://doi.org/10.3390/su142114324 (cit. on p. 9)

REFERENCES 61

Stefanowicz, S. (2023). Detection, identification and clustering of palynomorphs using ai
and machine learning. https://doi.org/10.5194/egusphere-egu23-14198 (cit. on
p. 8)

Stillman, E. C., & Flenley, J. R. (1995). The needs and prospects for automation in
palynology. Unknown Journal, Unknown Volume, Unknown Pages (cit. on p. 6).

The NPD. (2023). New diskos data type: Multi-gigapixel palynology slides [Last accessed
08 July 2023]. https://www.npd.no/en/news/general-news/2023/new-diskos-
data-type-multi-gigapixel-palynology-slides/. (Cit. on pp. 8, 16)

Tommasini, R. (2021). Velocity on the web, 85–94. https://doi.org/10.1007/978-3-030-
62476-7_8 (cit. on p. 14)

Venugopal, M. (2017). Containerized microservices architecture. ijecs, 11 (6). https://doi.
org/10.18535/ijecs/v6i11.20 (cit. on p. 13)

Williams, I., Mills, S., Fox, C., Pfleiderer, E., & Mogilka, H. (2002). The relationship be-
tween air traffic control communication events and measures of controller taskload
and workload. Air Traffic Control Quarterly, 10 (2), 69–83. https://doi.org/10.
2514/atcq.10.2.69 (cit. on p. 10)

Williams, R. (2023). Nature’s microplastics. Retrieved April 2, 2023, from https : / /
geoexpro.com/natures-microplastics/. (Cit. on pp. 7, 8)

Wright, A., Smith, D., Dhurandhar, B., Fairley, T., Scheiber-Pacht, M., Chakraborty,
S., ..., & Coffey, D. (2012). Digital slide imaging in cervicovaginal cytology: A
pilot study. Archives of Pathology & Laboratory Medicine, 137 (5), 618–624. https:
//doi.org/10.5858/arpa.2012-0430-oa (cit. on p. 8)

Wu, Y., Zhang, Y., Wang, T., & Wang, H. (2020). Characterizing the occurrence of
dockerfile smells in open-source software: An empirical study. IEEE Access, (8),
34127–34139. https://doi.org/10.1109/access.2020.2973750 (cit. on p. 13)

Xiaofeng, L., Yinchuan, L., Yunfeng, S., & Qing, W. (2022a). Sparse federated learning
with hierarchical personalized models. https://doi.org/10.48550/arxiv.2203.13517
(cit. on p. 11)

Xiaofeng, L., Yinchuan, L., Yunfeng, S., & Qing, W. (2022b). Sparse federated learning
with hierarchical personalized models. https://doi.org/10.48550/arxiv.2203.13517
(cit. on p. 11)

Xu, Y., Li, Y., Shen, Z., Wu, Z., Gao, T., Fan, Y., ..., & Chang, E. (2017). Parallel
multiple instance learning for extremely large histopathology image analysis. BMC
Bioinformatics, 18 (1). https://doi.org/10.1186/s12859-017-1768-8 (cit. on p. 9)

Yamanaka, H., Teranishi, Y., Kawai, E., Nagano, H., & Harai, H. (2022). Design and im-
plementation of an edge computing testbed to simplify experimental environment
setup. IEICE Trans. Inf. Syst., E105.D(9), 1516–1528. https://doi.org/10.1587/
transinf.2022edk0003 (cit. on p. 14)

Ye, D., Yu, R., Pan, M., & Han, Z. (2020). Federated learning in vehicular edge computing:
A selective model aggregation approach. IEEE Access, (8), 23920–23935. https:
//doi.org/10.1109/access.2020.2968399 (cit. on p. 10)

Zhang, K., Wang, K., Yuan, Y., Guo, L., Lee, R., & Zhang, X. (2015). Mega-kv. Proc.
VLDB Endow., 8 (11), 1226–1237. https://doi.org/10.14778/2809974.2809984
(cit. on p. 3)

Zhang, Y., Zhang, X., Rabbani, Z., Jackson, I., & Vujaskovic, Z. (2012). Oxidative stress
mediates radiation lung injury by inducing apoptosis. International Journal of
Radiation Oncology*Biology*Physics, 83 (2), 740–748. https://doi.org/10.1016/j.
ijrobp.2011.08.005 (cit. on p. 10)

APPENDIX

DAG .PY FILE

1. dag: Here we define the arguments of the dag to set up the dag to run every five
minutes

2. check_participants: It receives as input the participant file path, and the it
checks it, if it is empty then it returns an empty list, so the workflow understands
that there is not participant waiting to be processed.

3. is_participant_processed:receives as input the username and the process se-
lected by the user, so it can check if it was already processed.

4. decide_next_task: This function actually decided which way to take if should
the workflow create a new docker container or should just copy the files. It receives
the output from the is_participant_processed function, if it positive, then it would
just copy the files, otherwise would create a container.

5. create_folders_and_dockerfiles: This function creates the docker files on the
folder path given by the user, depends on what the file path ends with, then it
would change the structure of the dockerfile.

6. build_and_run_containers:This function takes the username as input and
then it will send an execution command to where the dockerfile is so it will spin up
this process to create the image and later the container.

7. copy_file_to_containers:This function takes the username and process selected
as input, an according to the process selected it will copy a .py file different for each
selection also the username determine in which container should the .py file be copy
in.

8. execute_command_in_containers:This function takes the username and pro-
cess selected as inputs to determine how the execution command should be struc-
tured. Also according to each different process selected it takes the output of the
execution command and save it in a different way for each different process.

9. save_container_info:This functions takes the username and the process selected,
to register it as processed.

10. remove_first_line:This function takes the file path and participants files and
cleans them.

62

11. check_participants_task:This defines the task arguments of check_participants
function

12. is_processed_task:This defines the task arguments of is_processed function,
so we can see that it takes the arguments passed from the first task which is
check_participants_task

13. branch_task:This defines the task arguments of decide_next_task function

14. create_folders_and_dockerfiles_task: This defines the task arguments of
create_folders_and_dockerfiles function

15. build_and_run_containers_task: This defines the task arguments of build_
and_run_containers function. Here also the username and process selected is taken
from the firs task.

16. copy_file_to_containers_task: This defines the task arguments of copy_file_
to_containers function. Here also the username and process selected is taken from
the firs task.

17. execute_command_in_containers_task: This defines the task arguments of
execute_command_in_containers function. Here also the username and process
selected is taken from the firs task.

18. save_container_info_task: This defines the task arguments of save_container
_info function. Here also the username and process selected is taken from the firs
task.

19. remove_first_line_participants_task: This defines the task arguments of re-
move_first_line function. Here the task takes as argument the participants file, so
it cleans it.

20. remove_first_line_file_paths_task: This defines the task arguments of re-
move_first_line function. Here the task takes as argument the file paths file, so it
cleans it.

21. create_files_if_not_exist(): This function checks if two files (participants_file
and file_paths_file) exist in the specified paths. If any of the files does not exist,
it creates an empty file at the respective path.

APP .PY FILE

1. show_results():This function retrieves information from the processed_containe
rs_file and generates HTML content to display the results. It reads the file line by
line, extracts container, process selection, file path, and response file information. It
then generates a set of unique combinations, groups the results by user, and creates
a table with the relevant information.

2. update_output(n_clicks): This function is a callback function triggered by the
show-results button click. It checks the number of clicks and displays the results
accordingly. If the number of clicks is odd, it shows the results; otherwise, it displays
a message indicating that no results are available.

3. create_container(n_clicks, file_path, username, process_selection): Thi
s function is a callback function triggered by the crear-container button click. It

63

handles the creation of a container based on the provided input parameters. It
performs various validations, such as checking if the file path and username are not
empty, if the file path contains blank spaces, and if a process selection is made. It
also checks if the combination of username, process selection, and file path already
exists in the processed_containers_file. If the validations pass, it registers the
container by adding the username and process selection to the participants_file
and the file path to the file_paths_file.

4. remove_process(n_clicks, username, file_path, process_selection): This
function is a callback function triggered by the remove-process button click. It
handles the removal of a process from the processed_containers_file. It reads the
file, filters the lines based on the provided username, process selection, and file
path, removes the corresponding process-related files and directories, and updates
the processed_containers_file by removing the filtered lines.

5. handle_extraction_slide_button(n_clicks, xml, file_path, username, p
rocess_selection): This function is a callback function triggered by the extract-
annotations -button button click. It handles the extraction of annotations from a
slide. It validates the provided XML and file path, creates a directory for the user
if it doesn’t exist, saves the XML path and values in a JSON file, and updates the
participants_file and file_paths_file.

6. handle_clean_slide_button(n_clicks, resolution, zoom, file_path, user-
name, process_selection):This function is a callback function triggered by the
clean-slide-button button click. It handles the cleaning of tiles from a slide. It
validates the provided resolution, zoom, and file path, creates a directory for the
user if it doesn’t exist, saves the resolution and zoom values in a JSON file, and
updates the participants_file and file_paths_file.

7. create_dropdown_with_title(title, dropdown_id, options, value): This
function generates an HTML dropdown component with a title label. It takes a
title, dropdown ID, options, and default value as parameters and returns the HTML
div containing the title label and the dropdown component.

Read_image .PY file

The read_image function loads an image in the .mrxs format, extract information about
zoom levels and tiles, and return this information in JSON format. The function utilizes
the openslide library to handle the image loading and deep zoom generation. By providing
essential details about the image, such as zoom factors and the total number of tiles, it
aids in further analysis and processing of the image data.

Clean_tiles .PY file

The clean_tiles function involves the processing of images in the .mrxs format. The
function utilizes the openslide and cv2 libraries to load the image, extract tiles at a
specific zoom level, and perform various image processing operations. The goal is to
identify and save tiles that meet certain criteria, such as having a mean pixel intensity
above a threshold and a low percentage of white pixels. The function saves the selected
tiles as individual .jpg images in a specified folder and returns information about the
number of processed tiles and the total number of tiles at the given zoom level.

64

Apply_ Watershed .PY file

The apply_watershed function applies the watershed algorithm to segment and label
images in the specified input folder. It reads each image file, converts it to grayscale,
and performs various image processing operations such as thresholding, morphological
opening, and distance transform to identify the foreground objects (microfossils) from
the background. It then applies the watershed algorithm to segment the foreground
markers and obtain the labels. The segmented image is visualized by assigning a specific
color to the segmented regions. Finally, the segmented images are saved in the output
folder, and the function returns the count of the segmented images in JSON format. This
function allows for automatic segmentation and labeling of images based on the watershed
algorithm, enabling further analysis and interpretation of the segmented data.

Extract Annotations .PY file The extract_labeled_images function processes MRXS
and XML files to extract labeled images. It opens the MRXS slide, parses the XML file for
annotations, and extracts regions of interest based on the provided polygon points. The
function then returns a list of labeled data, where each data entry contains an image and
its corresponding label. This function facilitates the extraction of specific image regions
annotated in the palyslides, enabling further analysis and utilization of the labeled data.

Split_classes .py file

The script code counts the number of records per class in a dataset and filters out classes
with only one record. It then splits the filtered data into training and validation sets,
ensuring that both sets have a balanced representation of classes. The code also provides
information about the number of training and validation samples, as well as the number
of unique class labels in each set.

Training .py file

The build_and_train_cnn function constructs and trains a CNN model for image clas-
sification. It takes the training and validation directories, image size, batch size, number
of classes, and epochs as inputs. Data augmentation and normalization are applied to
the training set, while only rescaling is performed on the validation set. The CNN model
consists of convolutional and pooling layers, followed by flattening and dense layers. It is
compiled with an optimizer, loss function, and evaluation metric. The model is trained
using the data generators created from the directories, and the training history is saved.
The trained model and history are stored, and the function returns the training history.

Classify Image .PY file

The resize_image function performs image classification using a pre-trained model. It
loads an image file from the specified directory and resizes it to the desired size using
OpenCV. The loaded image is then converted to RGB format. The code uses a pre-trained
model loaded from an H5 file to predict the class label of the resized image. The model’s
class indices and corresponding labels are defined in a list. The image is preprocessed by
normalizing the pixel values. The preprocessed image is passed through the model to ob-
tain predictions. The predicted class label is retrieved based on the maximum prediction
value, and it is returned in JSON format. This code enables automated classification of
images based on the pre-trained model, providing the predicted class label for a given
image.

65

Model Training .PY file

The plot_training_history function is used to visualize the training and validation ac-
curacy and loss from a training history. Given a training history object, the function
extracts the epochs and metrics such as training loss, training accuracy, validation loss,
and validation accuracy. It then plots the accuracy and loss curves on separate sub-
plots using the Matplotlib library. The left subplot shows the training and validation
accuracy over epochs, while the right subplot displays the training and validation loss.
The function also sets appropriate titles, axis labels, and legends for the plots. Finally,
it uses plt.tight_layout() to improve the spacing between the subplots and displays the
plot using plt.show(). Overall, this function provides a convenient way to visualize the
performance of a model during training.

Model history .PY file

In this script, a saved model and training history are loaded from their respective files.
The model is loaded using the load_model function from Keras, and the history is loaded
using the pickle module. The training metrics (loss and accuracy) and validation met-
rics (loss and accuracy) are then accessed from the history object. The code also in-
cludes commented-out lines that print the training and validation metrics. Finally, the
plot_training_history function is called to visualize the training and validation accuracy
and loss curves using the loaded training history.

Model evaluation .PY file

The code loads a pre-trained model and a set of class labels. It then iterates over a
directory of test images, resizes each image, preprocesses it, and performs predictions
using the loaded model. The true labels and predicted labels are stored in separate
lists. The code calculates performance metrics such as accuracy, precision, recall, and F1-
score, and displays a confusion matrix and classification report. Additionally, it visualizes
the predicted images along with their corresponding predicted labels. Overall, the code
enables evaluating the model’s performance on the test images and provides insights into
its classification accuracy.

66

DAG

July 10, 2023

[]: from airflow import DAG
from airflow.operators.python_operator import PythonOperator,␣

↪BranchPythonOperator
from datetime import datetime, timedelta
import os
import docker
import subprocess
import cv2
import numpy as np
import sys
from io import StringIO
import json

default_args = {
'owner': 'airflow',
'start_date': datetime(2023, 6, 10),
'retries': 1,
'retry_delay': timedelta(minutes=1)

}

dag = DAG('execute_python', default_args=default_args, schedule_interval='*/5 *␣
↪* * *')

###

def check_participants(participants_file):
if not os.path.isfile(participants_file):

print("Participants file not found.")
return [] # Returns an empty list if the file doesn't exist."

participants = []
with open(participants_file, 'r') as f:

lines = f.readlines()

1

if not lines: # Check if the file is empty
print("Participants file is empty.")
return [] # Return an empty list if the file is empty.

for line in lines:
line = line.strip()
if line:

username, process = line.split(' - ')
participants.append((username, process))

return participants

##

#Check if a participant is already in the processed list.
def is_participant_processed(username, process_selection):

if not os.path.isfile(processed_containers_file) or os.
↪stat(processed_containers_file).st_size == 0:

return False

with open(processed_containers_file, 'r') as f:
for line in f:

line = line.strip()
if line:

stored_username, stored_process_selection, file_path_processed␣
↪= line.split(' - ')

if stored_username == username and stored_process_selection ==␣
↪process_selection:

return True
return False

##

Check if a participant is already in the processed list.
def decide_next_task(**kwargs):

is_processed = kwargs['ti'].xcom_pull(task_ids='is_processed')
if is_processed:

return 'copy_file_to_containers'
else:

return 'create_folders_and_dockerfiles'

##

def create_folders_and_dockerfiles():
Read the file path
with open('/home/reynel1995/Thesis/file_paths.txt', 'r') as f:

2

file_paths = f.read().splitlines()

if file_paths:
file_path = file_paths[0] # Get the first path

if file_path.endswith('.jpg') or file_path.endswith('.png'):
Check if a participant is already in the processed list.

linux_file_path = os.path.normpath(file_path).replace("\\", "/").
↪replace("C:", "/mnt/c")

current_dir = os.path.dirname(linux_file_path)

Get the filename without the extension.
file_name = os.path.splitext(os.path.basename(file_path))[0]
directory_path = os.path.join(os.path.dirname(file_path), file_name)

dockerfile_content = f"""
Use a base Python image
FROM base-image

Set the working directory to /app
WORKDIR /app

Copy the file to the container in the /app folder
COPY {os.path.basename(linux_file_path)} /app/

CMD tail -f /dev/null
"""

with open(f"{current_dir}/Dockerfile", "w") as dockerfile:
dockerfile.write(dockerfile_content)

else:

Get the filename without the extension.
linux_file_path = os.path.normpath(file_path).replace("\\", "/").

↪replace("C:", "/mnt/c")

current_dir = os.path.dirname(linux_file_path)

Get the filename without the extension
file_name = os.path.splitext(os.path.basename(file_path))[0]
directory_path = os.path.join(os.path.dirname(file_path), file_name)

dockerfile_content = f"""
Use a base Python image

3

FROM base-image

Set the working directory to /app
WORKDIR /app

Copy the file to the container in the /app folder
COPY {os.path.basename(linux_file_path)} /app/
COPY {os.path.basename(directory_path)} /app/{os.path.

↪basename(directory_path)}

CMD tail -f /dev/null
"""

with open(f"{current_dir}/Dockerfile", "w") as dockerfile:
dockerfile.write(dockerfile_content)

else:
print("No file paths found.")

###

def build_and_run_containers(username):
container_id = username

Read the file paths file.
with open('/home/reynel1995/Thesis/file_paths.txt', 'r') as f:

file_paths = f.read().splitlines()

if file_paths:
file_path = file_paths[0] # Get the first path

folder_path = os.path.dirname(file_path) # Remove the file name from␣
↪the path

try:
Build the image from the Dockerfile using the Linux shell.
build_command = f"docker build -t {container_id} {folder_path}"
subprocess.run(build_command, shell=True, check=True)

print(f"Container {container_id} image built successfully.")

Execute the container using the docker run command and assign it␣
↪the name container_id

run_command = f"docker run -d --name {container_id} {container_id}"
subprocess.run(run_command, shell=True, check=True)

4

print(f"Container {container_id} started.")

except subprocess.CalledProcessError as e:
print(f"Failed to build or run container {container_id}: {str(e)}")

else:
print("No file paths found.")

##

def copy_file_to_containers(username, process_selection):
Determine the source file based on the process
if process_selection == 'read_image':

source_file = '/home/reynel1995/Thesis/host_1/read_image.py'
elif process_selection == 'clean_tiles':

source_file = '/home/reynel1995/Thesis/host_1/clean_tiles.py'
elif process_selection == 'apply_watershed':

source_file = '/home/reynel1995/Thesis/host_1/apply_watershed.py'
elif process_selection == 'classify_image':

source_file = '/home/reynel1995/Thesis/host_1/classify_image.py'
else:

raise ValueError("Invalid process.")

try:
Get the container ID (participant name)
container_id = username

Copy the file to the container
copy_command = f"docker cp {source_file} {container_id}:/app/"
os.system(copy_command)

print(f"File {source_file} copied to container {container_id} volume.")

If process_selection is 'clean_tiles', also copy the values.json file
if process_selection == 'clean_tiles':

values_file = f'/home/reynel1995/Thesis/host_1/{username}/values.
↪json'

copy_values_command = f"docker cp {values_file} {container_id}:/app/
↪"

os.system(copy_values_command)

If process_selection is 'classify_image', also copy the values.json␣
↪file

if process_selection == 'classify_image':
model_file = f'/home/reynel1995/Thesis/host_1/model.h5'
copy_values_command = f"docker cp {model_file} {container_id}:/app/"
os.system(copy_values_command)

5

print(f"File {model_file} copied to container {container_id} volume.
↪")

except docker.errors.NotFound as e:
print(f"Container {container_id} not found: {str(e)}")

except docker.errors.APIError as e:
print(f"Failed to copy file {source_file} to container {container_id}␣

↪volume: {str(e)}")

###

def execute_command_in_containers(username, process_selection):
Determine the source file based on the process selection
if process_selection == 'read_image':

source_file = '/home/reynel1995/Thesis/host_1/read_image.py'
elif process_selection == 'clean_tiles':

source_file = '/home/reynel1995/Thesis/host_1/clean_tiles.py'
elif process_selection == 'apply_watershed':

source_file = '/home/reynel1995/Thesis/host_1/apply_watershed.py'
elif process_selection == 'classify_image':

source_file = '/home/reynel1995/Thesis/host_1/classify_image.py'
else:

raise ValueError("Invalid process selection.")

Command to be executed in the containers
command = f"python /app/{os.path.basename(source_file)}"
print(command)

client = docker.from_env()

output_directory = "/home/reynel1995/Thesis/host_1" # Output directory

try:
Get the container ID (participant name)
container_id = username

Execute the command in the container
container = client.containers.get(container_id)
print(container)
response = container.exec_run(command)

output = response.output.decode()

6

If process_selection is 'clean_tiles', also copy the values.json file
if process_selection == 'read_image':

data = json.loads(output)

factors = data["factors"]
num_deepzoom_levels = data["num_deepzoom_levels"]
Tiles_totales = data["Tiles_totales"]

Tiles_totales_float = "{:,.0f}".format(Tiles_totales)
Tiles_totales_float

print(f"Command '{command}' executed in container {container_id}.")

Create the directory for the container within the output directory
container_directory = os.path.join(output_directory, container_id)
os.makedirs(container_directory, exist_ok=True)

Copy the images from the container to the output directory on␣
↪your localhost

#os.system(f"docker cp {container_id}:/app/watershed_images␣
↪{container_directory}")

Save the response to a file within the container_directory
response_file = os.path.join(container_directory,␣

↪"response_read_image.txt")
with open(response_file, "w") as f:

f.write(f"The resolution levels are {factors}, the lower the␣
↪better.\n")

f.write(f"The zoom levels are from 1 to␣
↪{num_deepzoom_levels-1}, the higher the better.\n")

f.write(f"There are {Tiles_totales_float} tiles in the best␣
↪resolution level {factors[0]} and the higher zoom {num_deepzoom_levels-1}.
↪\n")

Save factors and num_deepzoom_levels to a JSON file
variables_file = os.path.join(container_directory, "variables.json")
with open(variables_file, "w") as f:

json.dump({"factors": factors, "num_deepzoom_levels":␣
↪num_deepzoom_levels-1}, f)

if process_selection == 'clean_tiles':

data = json.loads(output)

7

Tiles = data["Tiles"]
Total_tiles = data["Total_tiles"]
resolution = data["resolution"]
zoom = data["zoom"]

print(f"Command '{command}' executed in container {container_id}.")

Create the directory for the container within the output directory
container_directory = os.path.join(output_directory, container_id)
os.makedirs(container_directory, exist_ok=True)

Save the response to a file within the container_directory
response_file = os.path.join(container_directory,␣

↪"response_clean_tiles.txt")
with open(response_file, "w") as f:

f.write(f"The slide with the resolution {resolution} and zoom␣
↪{zoom} choosen is divided in {Total_tiles} tiles.\n")

f.write(f"Only {Tiles} tiles were saved in User system.
↪{Total_tiles - Tiles} were cleaned!\n")

Save factors and num_deepzoom_levels to a JSON file
variables_file = os.path.join(container_directory, "clean_tiles.

↪json")
with open(variables_file, "w") as f:

json.dump({"Tiles": Tiles, "Total_tiles": Total_tiles}, f)

if process_selection == 'apply_watershed':

data = json.loads(output)

count_watershed_images = data["count_watershed_images"]

print(f"Command '{command}' executed in container {container_id}.")

Create the directory for the container within the output directory
container_directory = os.path.join(output_directory, container_id)
os.makedirs(container_directory, exist_ok=True)

Save the response to a file within the container_directory
response_file = os.path.join(container_directory,␣

↪"response_watershed_tiles.txt")
with open(response_file, "w") as f:

f.write(f"{count_watershed_images} slides have gotten the␣
↪watershed algorithm.\n")

8

Save factors and num_deepzoom_levels to a JSON file
variables_file = os.path.join(container_directory, "watershed_tiles.

↪json")
with open(variables_file, "w") as f:

json.dump({"count_watershed_images": count_watershed_images}, f)

if process_selection == 'classify_image':

output = output.strip()
output = output[output.find('{'):output.rfind('}') + 1]

data = json.loads(output)

classify_image = data["predicted_class_label"]

print(f"Command '{command}' executed in container {container_id}.")

Create the directory for the container within the output directory
container_directory = os.path.join(output_directory, container_id)
os.makedirs(container_directory, exist_ok=True)

Save the response to a file within the container_directory
response_file = os.path.join(container_directory,␣

↪"response_classify_image.txt")
with open(response_file, "w") as f:

f.write(f"The prediction of the model for the image given is␣
↪{classify_image}.\n")

except docker.errors.NotFound:
print(f"Container {container_id} not found.")

print(f"Results saved to directory {output_directory}")

##

def save_container_info(username, process_selection):
output_directory = "/home/reynel1995/Thesis"
processed_file = os.path.join(output_directory, "processed_container.txt")

Read the file path
with open('/home/reynel1995/Thesis/file_paths.txt', 'r') as f:

9

file_paths = f.read().splitlines()

if file_paths:
file_path = file_paths[0] # Obtener el primer path

if not os.path.isfile(processed_file):
open(processed_file, 'w').close()

with open(processed_file, "a") as f:
f.write(f"{username} - {process_selection} - {file_path}\n")

print(f"Container info saved: Username: {username}, Process Selection:␣
↪{process_selection}, File Path: {file_path}")

print(f"Results saved to directory {output_directory}")

###

def remove_first_line(file_path):
try:

with open(file_path, 'r+') as f:
lines = f.readlines()
if len(lines) > 1:

f.seek(0)
f.writelines(lines[1:])
f.truncate()

else:
f.truncate(0)

except FileNotFoundError:
pass

##

Path of the participants file
participants_file = '/home/reynel1995/Thesis/participants.txt'

Path of the processed containers tracking file
processed_containers_file = '/home/reynel1995/Thesis/processed_container.txt'

Path of the file paths
file_paths_file = "/home/reynel1995/Thesis/file_paths.txt"

###

check_participants_task = PythonOperator(

10

task_id='check_participants',
python_callable=check_participants,
op_args=[participants_file],
provide_context=True,
dag=dag

)

is_processed_task = PythonOperator(
task_id='is_processed',
python_callable=is_participant_processed,
op_kwargs={'username': '{{ ti.

↪xcom_pull(task_ids="check_participants")[0][0] }}',
'process_selection': '{{ ti.

↪xcom_pull(task_ids="check_participants")[0][1] }}'},
provide_context=True,
dag=dag

)

Utilizar el BranchPythonOperator para decidir el siguiente paso
branch_task = BranchPythonOperator(

task_id='branch_task',
python_callable=decide_next_task,
provide_context=True,
dag=dag

)

create_folders_and_dockerfiles_task = PythonOperator(
task_id='create_folders_and_dockerfiles',
python_callable=create_folders_and_dockerfiles,
provide_context=True,
dag=dag

)

build_and_run_containers_task = PythonOperator(
task_id='build_and_run_containers',
python_callable=build_and_run_containers,
op_kwargs={'username': '{{ ti.

↪xcom_pull(task_ids="check_participants")[0][0] }}'},
provide_context=True,
dag=dag

)

copy_file_to_containers_task = PythonOperator(
task_id='copy_file_to_containers',
python_callable=copy_file_to_containers,
op_kwargs={'username': '{{ ti.

↪xcom_pull(task_ids="check_participants")[0][0] }}',

11

'process_selection': '{{ ti.
↪xcom_pull(task_ids="check_participants")[0][1] }}'},

provide_context=True,
dag=dag

)

execute_command_in_containers_task = PythonOperator(
task_id='execute_command_in_containers',
python_callable=execute_command_in_containers,
op_kwargs={'username': '{{ ti.

↪xcom_pull(task_ids="check_participants")[0][0] }}',
'process_selection': '{{ ti.

↪xcom_pull(task_ids="check_participants")[0][1] }}'},
provide_context=True,
dag=dag

)

save_container_info_task = PythonOperator(
task_id='save_container_info',
python_callable=save_container_info,
op_kwargs={'username': '{{ ti.

↪xcom_pull(task_ids="check_participants")[0][0] }}',
'process_selection': '{{ ti.

↪xcom_pull(task_ids="check_participants")[0][1] }}'},
provide_context=True,
dag=dag

)

remove_first_line_participants_task = PythonOperator(
task_id='remove_first_line_participants',
python_callable=remove_first_line,
op_args=[participants_file],
dag=dag

)

remove_first_line_file_paths_task = PythonOperator(
task_id='remove_first_line_file_paths',
python_callable=remove_first_line,
op_args=[file_paths_file],
dag=dag

)

Definir la relación entre las tareas
check_participants_task >> is_processed_task >> branch_task

12

branch_task >> create_folders_and_dockerfiles_task >>␣
↪build_and_run_containers_task >> copy_file_to_containers_task >>␣
↪execute_command_in_containers_task

branch_task >> copy_file_to_containers_task >>␣
↪execute_command_in_containers_task

execute_command_in_containers_task >> save_container_info_task >>␣
↪remove_first_line_participants_task

remove_first_line_participants_task >> remove_first_line_file_paths_task

13

App

July 10, 2023

[]: import dash
from dash import dcc, html
import os
import json
import subprocess
import docker
from dash.dependencies import Input, Output, State
from dash.exceptions import PreventUpdate
import time

processed_containers_file_path = '/home/reynel1995/Thesis/processed_container.
↪txt'

app = dash.Dash(__name__)

def create_files_if_not_exist():
participants_file = '/home/reynel1995/Thesis/participants.txt'
file_paths_file = '/home/reynel1995/Thesis/file_paths.txt'

if not os.path.isfile(participants_file):
with open(participants_file, 'w') as f:

pass

if not os.path.isfile(file_paths_file):
with open(file_paths_file, 'w') as f:

pass

def show_results():

1

output_directory = "/home/reynel1995/Thesis/host_1"

if not os.path.isfile(processed_containers_file_path) or os.
↪stat(processed_containers_file_path).st_size == 0:

return html.Div("No results available.", style={'margin-top': '10px'})
else:

with open(processed_containers_file_path, "r") as file:
processed_containers_file = file.readlines()

unique_combinations = set() # Conjunto para almacenar combinaciones␣
↪únicas de contenedor y proceso

results_by_user = {} # Diccionario para almacenar los resultados␣
↪agrupados por usuario

for container in processed_containers_file:
container_id = container.split(" - ")[0].strip()
process_selection = container.split(" - ")[1].strip()
file_path = container.split(" - ")[2].strip()
combination = (container_id, process_selection, file_path)

Verificar si la combinación ya existe en el conjunto
if combination in unique_combinations:

continue

unique_combinations.add(combination)
response_file = os.path.join(output_directory, container_id)

if process_selection == 'read_image':
response_file = os.path.join(response_file,␣

↪"response_read_image.txt")
elif process_selection == 'clean_tiles':

response_file = os.path.join(response_file,␣
↪"response_clean_tiles.txt")

elif process_selection == 'apply_watershed':
response_file = os.path.join(response_file,␣

↪"response_watershed_tiles.txt")
elif process_selection == 'extract_annotations':

response_file = os.path.join(response_file,␣
↪"response_extraction_annotation.txt")

elif process_selection == 'classify_image':
response_file = os.path.join(response_file,␣

↪"response_classify_image.txt")
else:

continue

if not os.path.isfile(response_file):

2

continue

if container_id not in results_by_user:
results_by_user[container_id] = {'processes': set(), 'files':␣

↪set(), 'outputs': []}

Agregar la información de la fila al usuario correspondiente
results_by_user[container_id]['processes'].add(process_selection)
results_by_user[container_id]['files'].add(file_path)

with open(response_file, "r") as f:
response_content = f.read()

response_lines = response_content.split("\n")
response_list = html.Ul([html.Li(line) for line in response_lines[:

↪-1]])

results_by_user[container_id]['outputs'].append(
html.Tr([

html.Td(container_id, style={'border': '1px solid black',␣
↪'padding': '5px', 'text-align': 'left'}),

html.Td(process_selection, style={'border': '1px solid␣
↪black', 'padding': '5px', 'text-align': 'left'}),

html.Td(file_path, style={'border': '1px solid black',␣
↪'padding': '5px', 'text-align': 'left', 'max-width': '200px', 'word-wrap':␣
↪'break-word'}),

html.Td(response_list, style={'border': '1px solid black',␣
↪'padding': '5px', 'text-align': 'left', 'max-width': '300px', 'word-wrap':␣
↪'break-word'})

])
)

Construir la lista de bloques separados por usuario
user_blocks = []
for user, user_results in results_by_user.items():

processes = ', '.join(user_results['processes'])
files = ', '.join(user_results['files'])

user_block = [
html.H3(f"User: {user}"),
html.Table([

html.Thead(html.Tr([
html.Th("Container", style={'border': '1px solid␣

↪black', 'padding': '5px', 'text-align': 'left'}),
html.Th("Process", style={'border': '1px solid black',␣

↪'padding': '5px', 'text-align': 'left'}),

3

html.Th("File Path", style={'border': '1px solid␣
↪black', 'padding': '5px', 'text-align': 'left'}),

html.Th("Output", style={'border': '1px solid black',␣
↪'padding': '5px', 'text-align': 'left'})

])),
html.Tbody(user_results['outputs'])

],
style={'border': '1px solid black', 'border-collapse':␣

↪'collapse', 'text-align': 'left', 'margin': '10px auto'})
]

user_blocks.append(html.Div(user_block))

return html.Div([
html.H2("Results:"),
*user_blocks

],
style={'text-align': 'left'})

@app.callback(
dash.dependencies.Output('output-container', 'children'),
[dash.dependencies.Input('mostrar-resultados', 'n_clicks')]

)
def update_output(n_clicks):

if n_clicks is not None and n_clicks > 0:
if (n_clicks - 1) % 2 == 0:

return show_results()
else:

return html.Div("No results available.", style={'margin-top':␣
↪'10px'})

else:
return ''

4

@app.callback(
dash.dependencies.Output('create-container-output', 'children'),
[dash.dependencies.Input('crear-container', 'n_clicks')],
[dash.dependencies.State('file-path', 'value'),
dash.dependencies.State('username', 'value'),
dash.dependencies.State('process_selection', 'value')
]

)

def create_container(n_clicks, file_path, username, process_selection):

if n_clicks is not None and n_clicks > 0:
if not file_path or not username:

return html.Div("One field is empty", style={'color': 'red'})

if ' ' in file_path:
return html.Div("File path contains blank spaces",␣

↪style={'color': 'red'})

if not process_selection:
return html.Div("Must select a process from the menu",␣

↪style={'color': 'red'})

username = username.lower().replace(' ', '_') # Replacing spaces with␣
↪underscores and converting to lowercase

processed_containers_file = '/home/reynel1995/Thesis/
↪processed_container.txt'

Verificar si el usuario y el proceso ya existen en el archivo
if os.path.isfile(processed_containers_file):

with open(processed_containers_file, "r") as file:
processed_containers_file = file.readlines()

for line in processed_containers_file:
existing_username, existing_process_selection,␣

↪existing_file_path = line.strip().split(" - ")

5

if existing_username == username and existing_process_selection␣
↪== process_selection and existing_file_path == file_path:

return html.Div("This user and process combination already␣
↪exists", style={'color': 'red'})

if existing_username == username and existing_process_selection␣
↪== process_selection and existing_file_path != file_path:

return html.Div("You must choose a different username",␣
↪style={'color': 'red'})

if process_selection == "classify_image":
if not file_path.endswith('.jpg') and not file_path.

↪endswith('.png'):
return html.Div("For this process, a JPG or PNG file␣

↪path must be specified", style={'color': 'red'})

create_files_if_not_exist()

participants_file = '/home/reynel1995/Thesis/participants.
↪txt'

file_paths_file = '/home/reynel1995/Thesis/file_paths.txt'

with open(participants_file, 'a') as f:
f.write(f'{username} - {process_selection}\n')

with open(file_paths_file, 'a') as f:
f.write(f'{file_path}\n')

return html.Div("Container registered successfully",␣
↪style={'color': 'green'})

if process_selection == "extract_annotations":
if not file_path.endswith('.mrxs'):

return html.Div("For this process, a .mrxs file path␣
↪must be specified", style={'color': 'red'})

xml_input = dcc.Input(id='xml-input', type='text',␣
↪placeholder='Path to XML file')

extract_annotation_button = html.Button(
'Extract Annotations',

6

id='extract-annotations-button',
n_clicks=0,
style={'display': 'inline-block'}

)

return_button_extraction = html.Button(
'Return',
id='return-button-extraction',
n_clicks=0,
style={'display': 'inline-block'}

)

return html.Div(
id='xml-file-id',
children=[

html.Div('You must define a xml file path',␣
↪style={'color': 'red', 'margin-bottom': '10px'}),

xml_input,
html.Div([

extract_annotation_button,
return_button_extraction

], style={'margin-top': '10px'}),
html.Div(id='xml-file-output',␣

↪style={'margin-top': '10px'})
]

)

if existing_username == username and existing_file_path ==␣
↪file_path and process_selection == 'clean_tiles':

Leer el archivo variables.json
variables_file = os.path.join('/home/reynel1995/Thesis/

↪host_1', existing_username, 'variables.json')
with open(variables_file, 'r') as f:

variables_data = json.load(f)

factors = variables_data['factors']
num_deepzoom_levels =␣

↪variables_data['num_deepzoom_levels']

resolution_dropdown = create_dropdown_with_title("Level␣
↪of Resolution", "resolution-dropdown", factors, factors[0])

zoom_dropdown = create_dropdown_with_title("Level of␣
↪Zoom", "zoom-dropdown", range(num_deepzoom_levels + 1), 0)

7

clean_slide_button = html.Button(
'Clean Slide',
id='clean-slide-button',
n_clicks=0,
style={'display': 'inline-block'}

)

return_button = html.Button(
'Return',
id='return-button',
n_clicks=0,
style={'display': 'inline-block'}

)

return html.Div(
id='my-clean-tiles-id',
children=[

html.Div('You must choose a resolution and zoom␣
↪level', style={'color': 'red', 'margin-bottom': '10px'}),

resolution_dropdown,
zoom_dropdown,
html.Div([

clean_slide_button,
return_button

], style={'margin-top': '10px'}),
html.Div(id='clean-slide-output',␣

↪style={'margin-top': '10px'})
]

)

if file_path and file_path.endswith('.mrxs'):
create_files_if_not_exist()

participants_file = '/home/reynel1995/Thesis/participants.txt'
file_paths_file = '/home/reynel1995/Thesis/file_paths.txt'

with open(participants_file, 'a') as f:
f.write(f'{username} - {process_selection}\n')

with open(file_paths_file, 'a') as f:
f.write(f'{file_path}\n')

8

return html.Div("Container registered successfully", style={'color':
↪ 'green'})

else:
return html.Div("File path not valid", style={'color': 'red'})

@app.callback(
Output('remove-process-output', 'children'),
Input('remove-process', 'n_clicks'),
State('username', 'value'),
State('file-path', 'value'),
State('process_selection', 'value')

)

def remove_process(n_clicks, username, file_path, process_selection):
print("n_clicks:", n_clicks)
print("username:", username)
print("file_path:", file_path)
print("process_selection:", process_selection)

if n_clicks > 0:
Ruta del archivo processed_container.txt
container_path = '/home/reynel1995/Thesis/processed_container.txt'
print("container_path:", container_path)

Verificar si el archivo processed_container.txt existe
if os.path.isfile(container_path):

print("processed_container.txt exists")
Leer el contenido del archivo
with open(container_path, 'r') as file:

lines = file.readlines()

Verificar si se encontraron líneas para eliminar
if any(line.startswith(username) and line.

↪endswith(f"{process_selection} - {file_path}\n") for line in lines):
print("Lines to remove found")
Obtener el ID del contenedor
client = docker.from_env()
container_id = client.containers.get(username)
print("container_id:", container_id)

Realizar acciones adicionales según la selección del proceso

9

if process_selection == 'read_image':
print("Process selection: read_image")
command = f"rm /app/read_image.py"
container_id.exec_run(command)

Remove variables.json and read_image_response.txt from␣
↪the host1 folder

host1_folder = f'/home/reynel1995/Thesis/host_1/{username}'
os.remove(os.path.join(host1_folder, 'variables.json'))
os.remove(os.path.join(host1_folder, 'response_read_image.

↪txt'))

elif process_selection == 'clean_tiles':
print("Process selection: clean_tiles")
command = f"rm -r /app/clean_tiles.py /app/paleo_images"
container_id.exec_run(command)

Remove clean_tiles.json, values.json, and␣
↪clean_tiles_response.txt from the host1 folder

host1_folder = f'/home/reynel1995/Thesis/host_1/{username}'
os.remove(os.path.join(host1_folder, 'clean_tiles.json'))
os.remove(os.path.join(host1_folder, 'values.json'))
os.remove(os.path.join(host1_folder, 'response_clean_tiles.

↪txt'))

elif process_selection == 'apply_watershed':
print("Process selection: apply_watershed")
command = f"rm -r /app/apply_watershed.py /app/

↪watershed_images"
container_id.exec_run(command)

Remove clean_tiles.json, values.json, and␣
↪clean_tiles_response.txt from the host1 folder

host1_folder = f'/home/reynel1995/Thesis/host_1/{username}'
os.remove(os.path.join(host1_folder, 'watershed_tiles.

↪json'))
os.remove(os.path.join(host1_folder,␣

↪'response_watershed_tiles.txt'))

elif process_selection == 'classify_image':
print("Process selection: classify_image")
command = f"rm -r /app/classify_image.py"
container_id.exec_run(command)

Remove clean_tiles.json, values.json, and␣
↪clean_tiles_response.txt from the host1 folder

10

host1_folder = f'/home/reynel1995/Thesis/host_1/{username}'
os.remove(os.path.join(host1_folder,␣

↪'response_classify_image.txt'))

Obtener la lista de nombres de usuario únicos en el archivo␣
↪procesado

unique_usernames = [line.split()[0] for line in lines]
print("unique_usernames:", unique_usernames)
count = unique_usernames.count(username)

Verificar si solo queda el último nombre de usuario en el␣
↪archivo procesado

if count == 1:
print("Last user in processed container")
Eliminar el Dockerfile del directorio file_path
dockerfile_path = os.path.join(os.path.dirname(file_path),␣

↪'Dockerfile')
os.remove(dockerfile_path)

container_id.stop()
print("Container stopped")

Eliminar el contenedor Docker
container_id.remove()
print("Container removed")

Eliminar la imagen Docker con el nombre de usuario
client.images.remove(username)
print("Image removed")

Filtrar las líneas que coinciden con el username, process␣
↪selection y file path

filtered_lines = [line for line in lines if not (
line.startswith(username) and line.

↪endswith(f"{process_selection} - {file_path}\n")
)]

Sobreescribir el archivo con las líneas filtradas
with open(container_path, 'w') as file:

file.writelines(filtered_lines)

return html.Div('Process removed successfully.', style={'color':
↪ 'green', 'margin-bottom': '10px'})

else:
return html.Div('No process was found.', style={'color': 'red'})

else:

11

return html.Div('Processed container file not found.',␣
↪style={'color': 'red'})

return html.Div()

@app.callback(
Output('xml-file-output', 'children'),
[Input('extract-annotations-button', 'n_clicks')],
[State('xml-input', 'value'),
State('file-path', 'value'),
State('username', 'value'),
State('process_selection', 'value')]

)
def handle_extraction_slide_button(n_clicks, xml, file_path, username,␣

↪process_selection):
if n_clicks is not None and n_clicks > 0:

if not xml or not file_path:
return html.Div("Please define an xml and .mrxs file path.",␣

↪style={'color': 'red'})

if not file_path.endswith('.mrxs') or not xml.endswith('.xml'):
return html.Div("For this process, both a .mrxs and .xml file path␣

↪must be specified", style={'color': 'red'})

Crear el directorio del usuario si no existe
user_directory = os.path.join('/home/reynel1995/Thesis/host_1',␣

↪username)
if not os.path.exists(user_directory):

os.makedirs(user_directory)

Guardar los valores de resolución y zoom en un archivo JSON dentro␣
↪del directorio del usuario

data = {
'xml': xml

}
json_file = os.path.join(user_directory, 'values.json')

with open(json_file, 'w') as f:
json.dump(data, f)

Actualizar el archivo "participants.txt" con el usuario y el proceso␣
↪correspondiente

participants_file = '/home/reynel1995/Thesis/participants.txt'
with open(participants_file, 'a') as f:

f.write(f'{username} - {process_selection}\n')

12

Actualizar el archivo "file_paths.txt" con el file_path␣
↪correspondiente

file_paths_file = '/home/reynel1995/Thesis/file_paths.txt'
with open(file_paths_file, 'a') as f:

f.write(f'{file_path}\n')

return html.Div("Values saved successfully.", style={'color': 'green'})

return None

@app.callback(
Output('clean-slide-output', 'children'),
[Input('clean-slide-button', 'n_clicks')],
[State('resolution-dropdown', 'value'),
State('zoom-dropdown', 'value'),
State('file-path', 'value'),
State('username', 'value'),
State('process_selection', 'value')]

)
def handle_clean_slide_button(n_clicks, resolution, zoom, file_path, username,␣

↪process_selection):
if n_clicks is not None and n_clicks > 0:

if not resolution or not zoom or not file_path:
return html.Div("Please select a resolution, zoom level, and file␣

↪path.", style={'color': 'red'})

Crear el directorio del usuario si no existe
user_directory = os.path.join('/home/reynel1995/Thesis/host_1',␣

↪username)
if not os.path.exists(user_directory):

os.makedirs(user_directory)

Guardar los valores de resolución y zoom en un archivo JSON dentro␣
↪del directorio del usuario

data = {
'resolution': resolution,
'zoom': zoom

}
json_file = os.path.join(user_directory, 'values.json')

13

with open(json_file, 'w') as f:
json.dump(data, f)

Actualizar el archivo "participants.txt" con el usuario y el proceso␣
↪correspondiente

participants_file = '/home/reynel1995/Thesis/participants.txt'
with open(participants_file, 'a') as f:

f.write(f'{username} - {process_selection}\n')

Actualizar el archivo "file_paths.txt" con el file_path␣
↪correspondiente

file_paths_file = '/home/reynel1995/Thesis/file_paths.txt'
with open(file_paths_file, 'a') as f:

f.write(f'{file_path}\n')

return html.Div("Values saved successfully.", style={'color': 'green'})

return None

def create_dropdown_with_title(title, dropdown_id, options, value):
dropdown = dcc.Dropdown(

id=dropdown_id,
options=[{'label': str(option), 'value': option} for option in options],
value=value,
style={'width': '150px'} # Ajusta el ancho del dropdown

)

return html.Div(
children=[

html.Label(title), # Título del dropdown
dropdown

],
style={'display': 'inline-block', 'margin-right': '20px', 'text-align':␣

↪'center'}
)

@app.callback(
Output('my-clean-tiles-id', 'style'),
Output('create-container-div', 'style'),
Input('return-button', 'n_clicks'),

)

14

def toggle_containers(n_clicks):
if n_clicks and n_clicks > 0:

return {'display': 'none'}, {'display': 'block'}
else:

return {'display': 'block'}, {'display': 'none'}

def generate_button():
if not os.path.isfile(processed_containers_file_path) or os.

↪stat(processed_containers_file_path).st_size == 0:
return None

else:
return html.Div([

html.Button('Remove Process', id='remove-process', n_clicks=0,␣
↪style={'margin-bottom': '20px'}),

html.Div(
id='remove-process-output',
style={'width': '100%', 'margin-left': '10px'}

)
])

@app.callback(
Output('remove-process-container', 'children'),
[Input('remove-process', 'n_clicks')]

)
def hide_button(n_clicks):

if n_clicks > 0:
return ''

else:
return generate_button()

app.layout = html.Div(
style={

'position': 'relative',
'height': '100vh',
'overflow': 'auto',

},

15

children=[
html.Div(

style={
'position': 'fixed',
'top': 0,
'left': 0,
'right': 0,
'bottom': 0,
'background-image': 'url("/assets/kap5-mikrofossiler-2.png")',
'background-size': 'cover',
'background-repeat': 'repeat',
'background-position': 'center',
'opacity': '0.2',
'z-index': -1,

}
),
html.Div(

style={
'position': 'relative',
'margin': '20px auto',
'width': '70%',
'text-align': 'center',
'background-color': 'rgba(255, 255, 255, 0.2)',
'padding': '20px',

},
children=[

html.H1("Digital palynological slides Analyzer",␣
↪style={'text-align': 'center', 'margin-top': '50px'}),

html.Div(
style={'margin-bottom': '5px'},
children=[

dcc.Input(id='username', type='text',␣
↪placeholder='Username', style={'margin-right': '10px','margin-bottom':␣
↪'10px'}),

dcc.Input(id='file-path', type='text',␣
↪placeholder='File path', style={'margin-right': '10px'})

]
),
html.Div(

style={'margin-bottom': '15px'},
children=[

dcc.Dropdown(
id='process_selection',
options=[

{'label': 'Read Image', 'value': 'read_image'},

16

{'label': 'Clean Tiles', 'value':␣
↪'clean_tiles'},

{'label': 'Apply Watershed', 'value':␣
↪'apply_watershed'},

{'label': 'Extract Annotations', 'value':␣
↪'extract_annotations'},

{'label': 'Classify Image', 'value':␣
↪'classify_image'}

],
placeholder='Select a process',
style={'width': '200px', 'margin': 'auto'}

)
]

),
html.Div(

id='create-container-div',
style={'margin-bottom': '10px'},
children=[

html.Button('Initiate process', id='crear-container',␣
↪n_clicks=0, style={'margin-left': '10px'}),

],
),
html.Div(style={'margin-bottom': '40px'},␣

↪id='create-container-output'),
generate_button(),
html.Button('Show Results', id='mostrar-resultados',␣

↪n_clicks=0),
html.Div(

id='output-container',
style={'width': '100%'}

)
]

)
]

)

if __name__ == '__main__':
#app.run_server(debug=True)
app.run_server()

17

read_image

July 10, 2023

[]: import numpy as np
import os
import json

OPENSLIDE_PATH = "/usr/local/lib/python3.8/site-packages/openslide"

if hasattr(os, 'add_dll_directory'):
Python >= 3.8 on Windows
with os.add_dll_directory(OPENSLIDE_PATH):

import openslide
else:

import openslide

import openslide
import glob
from openslide.deepzoom import DeepZoomGenerator

mrxs_file_path = glob.glob("/app/*.mrxs")[0]
slide = openslide.OpenSlide(mrxs_file_path)

def read_image(slide):

factors = slide.level_downsamples

tiles = DeepZoomGenerator(slide, tile_size=factors[0], overlap=0,␣
↪limit_bounds=False)

num_deepzoom_levels = tiles.level_count

level_num= num_deepzoom_levels-1
level_tiles_tot = tiles.level_tiles[level_num][0]*tiles.

↪level_tiles[level_num][1]

slide.close()

1

return json.dumps({"factors": factors, "num_deepzoom_levels":␣
↪num_deepzoom_levels, "Tiles_totales": level_tiles_tot})

output = read_image(slide)
print(output)

2

apply_watershed

July 10, 2023

[]: import numpy as np
import os
import json

OPENSLIDE_PATH = "/usr/local/lib/python3.8/site-packages/openslide"

if hasattr(os, 'add_dll_directory'):
Python >= 3.8 on Windows
with os.add_dll_directory(OPENSLIDE_PATH):

import openslide
else:

import openslide

import openslide
import cv2

input_folder_path = "/app/paleo_images"

def apply_watershed(input_folder_path):

output_folder_path = "/app/watershed_images"

Create the output folder if it does not exist
if not os.path.exists(output_folder_path):

os.makedirs(output_folder_path)

count_watershed_images = 0

Loop through all the images in the input folder
for filename in os.listdir(input_folder_path):

if filename.endswith('.jpg') and not filename.endswith('_seg.jpg'): #␣
↪assuming all images are JPEG files

Load the image and convert it to grayscale
input_img_path = os.path.join(input_folder_path, filename)

1

img = cv2.imread(input_img_path)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

Apply thresholding to separate the foreground (microfossils) from␣
↪the background

ret, thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV+cv2.
↪THRESH_OTSU)

Apply morphological opening to remove small objects and noise
kernel = np.ones((3,3), np.uint8)
opening = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel,␣

↪iterations=2)

Apply distance transform to obtain the distance map
dist_transform = cv2.distanceTransform(opening, cv2.DIST_L2, 5)

Apply thresholding to the distance map to obtain the␣
↪foreground markers

ret, fg_markers = cv2.threshold(dist_transform, 0.5*dist_transform.
↪max(), 255, 0)

Apply watershed algorithm to segment the foreground markers␣
↪and obtain the labels

fg_markers = np.uint8(fg_markers)
unknown = cv2.subtract(opening, fg_markers)
ret, bg_markers = cv2.threshold(unknown, 0, 255, cv2.

↪THRESH_BINARY_INV)
bg_markers = cv2.dilate(bg_markers, kernel, iterations=3)
markers = cv2.add(fg_markers, bg_markers)

Convert the grayscale image to a 3-channel format
img_color = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

Apply the watershed segmentation algorithm
markers = markers.astype(np.int32)
markers_copy = markers.copy()
cv2.watershed(img_color, markers_copy)

Visualize the segmented image and the markers
img_color[markers_copy == -1] = [255,0,0]

Save the segmented image to the output folder
output_img_path = os.path.join(output_folder_path,␣

↪'img_'+str(filename)+'_seg.jpg')
cv2.imwrite(output_img_path, img_color)
count_watershed_images += 1

2

return json.dumps({"count_watershed_images": count_watershed_images })

output = apply_watershed(input_folder_path)
print(output)

3

clean_tiles

July 10, 2023

[]: import numpy as np
import os
import json

OPENSLIDE_PATH = "/usr/local/lib/python3.8/site-packages/openslide"

if hasattr(os, 'add_dll_directory'):
Python >= 3.8 on Windows
with os.add_dll_directory(OPENSLIDE_PATH):

import openslide
else:

import openslide

import openslide
import glob
from openslide.deepzoom import DeepZoomGenerator
import cv2

mrxs_file_path = glob.glob("/app/*.mrxs")[0]
slide = openslide.OpenSlide(mrxs_file_path)

def clean_tiles(slide):

json_file_path = '/app/values.json'
with open(json_file_path, 'r') as f:

data = json.load(f)
resolution = data['resolution']
zoom = data['zoom']

tiles = DeepZoomGenerator(slide, tile_size=resolution, overlap=0,␣
↪limit_bounds=False)

1

level_num= zoom
level_tiles_tot = tiles.level_tiles[level_num][0]*tiles.

↪level_tiles[level_num][1]

folder_path = "/app/paleo_images"

if not os.path.exists(folder_path):
os.makedirs(folder_path)

Idx_max = zoom

count_paleo_images = 0

for col in range(0, tiles.level_tiles[Idx_max][0]):
for row in range(0, tiles.level_tiles[Idx_max][1]):

tile = tiles.get_tile(Idx_max, (col, row))
tile_array = np.array(tile)
gray = cv2.cvtColor(tile_array, cv2.COLOR_RGB2GRAY)
unique_values = np.unique(gray)
if len(unique_values) >= 2 and unique_values[0] != 255 and␣

↪unique_values[1] != 255:
Check if the mean pixel intensity is above a certain threshold
if gray.mean() > 100:

Check if the percentage of white pixels is below a␣
↪certain threshold

white_percentage = np.count_nonzero(gray == 255) / gray.size
if white_percentage < 0.9:

tile_path = os.path.join(folder_path,␣
↪f"tile_{col}_{row}.jpg")

tile.save(tile_path)
count_paleo_images += 1

else:
print(f"Not saving blank tile at column {col} and row {row}")
pass

return json.dumps({"Tiles": count_paleo_images, "Total_tiles":␣
↪level_tiles_tot, "resolution": resolution, "zoom": zoom, })

output = clean_tiles(slide)
print(output)

2

extract_annotation

July 10, 2023

[]: # Extract labeled images from annotated palyslides using MRXS and XML files
Group the labeled data into 21 subfolders according to their class labels

MRXS and XML file paths:

mrxs_paths = [
'C:/Users/emmie/OneDrive/Skrivebord/MasterThesis/PalySlideImages/2_4-C-11␣

↪10052.7 ftC = 3064 mC.mrxs',
'C:/Users/emmie/OneDrive/Skrivebord/MasterThesis/PalySlideImages/2_4-C-11␣

↪10070 ftC = 3069.3 mC.mrxs',
'C:/Users/emmie/OneDrive/Skrivebord/MasterThesis/PalySlideImages/2_7-14␣

↪10658ft 8in C.mrxs',
'C:/Users/emmie/OneDrive/Skrivebord/MasterThesis/PalySlideImages/16_3-2␣

↪1998.80 mC.mrxs',
'C:/Users/emmie/OneDrive/Skrivebord/MasterThesis/PalySlideImages/

↪DigitalSlide_C1M_4S_1.mrxs',
'C:/Users/emmie/OneDrive/Skrivebord/MasterThesis/PalySlideImages/

↪DigitalSlide_C1M_5S_1.mrxs'

]

xml_paths = [
'C:/Users/emmie/OneDrive/Skrivebord/MasterThesis/PalySlideImages/2_4-C-11␣

↪10052.7 ftC = 3064 mC_Annotations.xml',
'C:/Users/emmie/OneDrive/Skrivebord/MasterThesis/PalySlideImages/2_4-C-11␣

↪10070 ftC = 3069.3 mC_Annotations.xml',
'C:/Users/emmie/OneDrive/Skrivebord/MasterThesis/PalySlideImages/2_7-14␣

↪10658ft 8in C_Annotations.xml',
'C:/Users/emmie/OneDrive/Skrivebord/MasterThesis/PalySlideImages/16_3-2␣

↪1998.80 mC_Annotations.xml',
'C:/Users/emmie/OneDrive/Skrivebord/MasterThesis/PalySlideImages/

↪DigitalSlide_C1M_4S_1_Annotations.xml',
'C:/Users/emmie/OneDrive/Skrivebord/MasterThesis/PalySlideImages/

↪DigitalSlide_C1M_5S_1_Annotations.xml'
]

Define a function to extract labeled images from MRXS and XML files

1

def extract_labeled_images(mrxs_path, xml_path):

slide = openslide.OpenSlide(mrxs_path)

tree = ET.parse(xml_path)
root = tree.getroot()

annotations = root.find('destination/annotations')

labeled_data = []
for annotation in annotations:

name = annotation.get('name')
type = annotation.get('type')

polygon_points = annotation.findall('p')
points = [(int(point.get('x')), int(point.get('y'))) for point in␣

↪polygon_points]

Extract region of interest from MRXS image based on polygon points␣
↪given in the XML file.

x_min = min([point[0] for point in points])
x_max = max([point[0] for point in points])
y_min = min([point[1] for point in points])
y_max = max([point[1] for point in points])

region = slide.read_region((x_min, y_min), 0, (x_max - x_min, y_max -␣
↪y_min))

labeled_data.append({'image': region, 'label': name})

slide.close()

return labeled_data

Iterate over the MRXS and XML file paths, extract labeled images,
and store the data in a Pandas dataframe
labeled_data_list = []
for mrxs_path, xml_path in zip(mrxs_paths, xml_paths):

labeled_data = extract_labeled_images(mrxs_path, xml_path)
labeled_data_list.extend(labeled_data)

data = pd.DataFrame(labeled_data_list)

data['image'] = data['image'].apply(lambda img: img.convert('RGB')) # Convert␣
↪to RGBA images to RGB

2

training

July 10, 2023

[]: def build_and_train_cnn(train_dir, val_dir, image_size, batch_size,␣
↪num_classes, num_epochs):

"""

Build and train a CNN model using the provided training and validation␣
↪directories.

Args:

train_dir (str): Directory path for the training dataset.

val_dir (str): Directory path for the validation dataset.

image_size (tuple): Tuple specifying the target image size, e.g.,␣
↪(width, height).

batch_size (int): Batch size for training.

num_classes (int): Number of classes in the classification problem.

num_epochs (int): Number of training epochs.

Raises:

ValueError: If the number of classes doesn't match the number of unique␣
↪labels in the datasets.

"""

1

Data augmentation and normalization for training set

train_datagen = ImageDataGenerator(

rescale=1./255,

rotation_range=20,

width_shift_range=0.2,

height_shift_range=0.2,

shear_range=0.2,

zoom_range=0.2,

horizontal_flip=True

)

Only rescaling for validation set

val_datagen = ImageDataGenerator(rescale=1./255)

Load and augment the training dataset

train_generator = train_datagen.flow_from_directory(

train_dir,

target_size=image_size,

batch_size=batch_size,

class_mode='categorical'

)

2

Load and augment the validation dataset

val_generator = val_datagen.flow_from_directory(

val_dir,

target_size=image_size,

batch_size=batch_size,

class_mode='categorical'

)

Check if the number of classes matches the number of unique labels in the␣
↪datasets

if num_classes != len(train_generator.class_indices):

raise ValueError("Number of classes doesn't match the number of unique␣
↪labels in the datasets.")

Build the CNN model

model = tf.keras.models.Sequential([

tf.keras.layers.Conv2D(32, (3, 3), activation='relu',␣
↪input_shape=(image_size[0], image_size[1], 3)),

tf.keras.layers.MaxPooling2D((2, 2)),

tf.keras.layers.Conv2D(64, (3, 3), activation='relu'),

tf.keras.layers.MaxPooling2D((2, 2)),

tf.keras.layers.Conv2D(128, (3, 3), activation='relu'),

tf.keras.layers.MaxPooling2D((2, 2)),

3

tf.keras.layers.Flatten(),

tf.keras.layers.Dense(128, activation='relu'),

tf.keras.layers.Dense(num_classes, activation='softmax')

])

Compile the model

model.compile(optimizer='adam',

loss='categorical_crossentropy',

metrics=['accuracy'])

Train the model

model.fit(train_generator,

steps_per_epoch=train_generator.samples // batch_size,

validation_data=val_generator,

validation_steps=val_generator.samples // batch_size,

epochs=num_epochs)

Train the model and obtain the history object

history = model.fit(train_generator,

steps_per_epoch=train_generator.samples // batch_size,

epochs=num_epochs,

4

validation_data=val_generator,

validation_steps=val_generator.samples // batch_size)

Convert the function model to a tf.keras model object

model = tf.keras.Model(inputs=model_input, outputs=model_output)

Save the training history

history_model_path = 'C:/Users/emmie/OneDrive/Skrivebord/MasterThesis/
↪ImageClassification/training_history.pkl'

with open(history_model_path, 'wb') as file:

pickle.dump(history.history, file)

Save the model

model_path = 'C:/Users/emmie/OneDrive/Skrivebord/MasterThesis/
↪ImageClassification/model.h5'

#save_model(model, model_path)

model.save(model_path)

Return the history object

return history

5

split_classes

July 10, 2023

[]: # Count the number of records per class
class_counts = data['label'].value_counts()

Filter out classes with only one record
#filtered_data = data[data['label'].map(class_counts) > 1]
filtered_data = data[data['label'].isin(class_counts[class_counts > 1].index)]

Get the unique classes
classes = sorted(filtered_data['label'].unique().tolist())

Split the filtered data into training and validation sets with the same␣
↪classes

train_data = pd.DataFrame()
val_data = pd.DataFrame()
for label in classes:

class_data = filtered_data[filtered_data['label'] == label]
class_train_data, class_val_data = train_test_split(class_data, test_size=0.

↪2, random_state=42)
train_data = pd.concat([train_data, class_train_data])
val_data = pd.concat([val_data, class_val_data])

Get records using using len() function
print("Number of training image data:", len(train_data))

Get the number of records using the .shape attribute
print("Number of validation image data:", val_data.shape[0])

Get number of unique class labels
train_num_classes = len(train_data['label'].unique().tolist())
val_num_classes = len(val_data['label'].unique().tolist())
print(f'Number of training class labels: {train_num_classes}')
print(f'Number of validation class labels: {val_num_classes}')

classes = train_data['label'].unique().tolist()
classes

1

classify_image

July 10, 2023

[]: import os
import cv2
import numpy as np
import matplotlib.pyplot as plt
from keras.models import load_model
import json
import glob
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'

Specify the path to the image file and the desired size
image_files = glob.glob("/app/*.png") + glob.glob("/app/*.jpg")
if image_files:

image_path = image_files[0]

h5_file_path = glob.glob("/app/*.h5")[0]
model = load_model(h5_file_path)

desired_size = (224, 224)

def resize_image(image_path, desired_size):
Check if the image file exists
if not os.path.exists(image_path):

return None

Load the image using OpenCV
image = cv2.imread(image_path)

Check if the image is loaded successfully
if image is None:

return None
Resize the image
resized_image = cv2.resize(image, desired_size)
Convert the resized image to RGB format
resized_image = cv2.cvtColor(resized_image, cv2.COLOR_BGR2RGB)
Get the model's class indices
model_class_indices = model.predict(np.zeros((1, 224, 224, 3))).argmax(axis=1)

1

Define the class labels
class_labels = [

'Acanthaulax venusta',
'Cribroperidinium "prominoseptatum"',
'Dingodinium tuberculosum',
'Dingodinium tuberosum',
'Fibrocysta axialis',
'Gonyaulacysta jurassica',
'Palaeoperidinium pyrophorum',
'Senoniasphaera inornata',
'Sentusidinium pilosum',
'Spongodinium delitiense',
'Spongodinium delitiense (operculum)',
'Systematophora areolata',
'Tubotuberella apatela'

]
Create a dictionary mapping the model's class indices to the class labels
class_mapping = {index: label for index, label in enumerate(class_labels)}

Preprocess the image
preprocessed_image = np.expand_dims(resized_image, axis=0)
preprocessed_image = preprocessed_image / 255.0 # Normalize pixel values to␣

↪the range [0, 1]

Perform the prediction
predictions = model.predict(preprocessed_image)

Get the predicted class label
predicted_class_index = np.argmax(predictions[0])

Print the predicted class index

predicted_class_label = class_labels[predicted_class_index]

return json.dumps({"predicted_class_label": predicted_class_label })

output = resize_image(image_path, desired_size)
print(output)

2

model_training

July 11, 2023

[]: def plot_training_history(history):
"""
Plot the training and validation accuracy versus loss from the training␣

↪history.

Args:
history (History): Training history object returned by model.fit().

"""

Extract the epochs and metrics from the history object
epochs = range(1, len(history['loss']) + 1)

Access the training metrics and loss
training_loss = history['loss']
training_accuracy = history['accuracy']

Access the validation metrics and loss
val_loss = history['val_loss']
val_accuracy = history['val_accuracy']

Plot the accuracy
plt.figure(figsize=(12, 6))
plt.subplot(1, 2, 1)
plt.plot(training_accuracy, label='Training Accuracy')
plt.plot(val_accuracy, label='Validation Accuracy')
plt.title('Training and Validation Accuracy')
plt.ylim(0.3, 0.9)
plt.xticks(np.arange(0, len(epochs) + 1, 2.0))
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.legend(loc='upper left')

Plot the loss
plt.subplot(1, 2, 2)
plt.plot(training_loss, label='Training Loss')
plt.plot(val_loss, label='Validation Loss')
plt.title('Training and Validation Loss')

1

plt.ylim(0.4, 2)
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.xticks(np.arange(0, len(epochs)+1, 2.0))
plt.legend(loc='upper right')

Show the plot
plt.tight_layout()
plt.show()

2

model_history

July 11, 2023

[]: # Load the saved model
model_path = 'C:/Users/emmie/OneDrive/Skrivebord/MasterThesis/

↪ImageClassification/model.h5'
model = load_model(model_path)

Load the training history
history_model_path = 'C:/Users/emmie/OneDrive/Skrivebord/MasterThesis/

↪ImageClassification/training_history.pkl'
with open(history_model_path, 'rb') as file:

history = pickle.load(file)

Access the training metrics and loss
training_loss = history['loss']
training_accuracy = history['accuracy']

Access the validation metrics and loss
validation_loss = history['val_loss']
validation_accuracy = history['val_accuracy']

Print the training and validation metrics
print("Training Loss:", training_loss)
print("Training Accuracy:", training_accuracy)
print("Validation Loss:", val_loss)
print("Validation Accuracy:", val_accuracy)

From the trained model and history object
plot_training_history(history)

1

Model_evaluation

July 11, 2023

[]: def resize_image(image_path, desired_size):
try:

Check if the image file exists
if not os.path.exists(image_path):

print(f"Image file '{image_path}' not found.")
return None

Load the image using OpenCV
image = cv2.imread(image_path)

Check if the image is loaded successfully
if image is None:

print(f"Failed to load image '{image_path}'.")
return None

Resize the image
resized_image = cv2.resize(image, desired_size)

Convert the resized image to RGB format
resized_image = cv2.cvtColor(resized_image, cv2.COLOR_BGR2RGB)

return resized_image

except Exception as e:
print(f"Error occurred while resizing image '{image_path}': {e}")
return None

Define the directory of test images and the desired size
image_dir = 'C:/Users/emmie/OneDrive/Skrivebord/MasterThesis/

↪ImageClassification/test_images'
desired_size = (224, 224)

Load trained model
model_path = 'C:/Users/emmie/OneDrive/Skrivebord/MasterThesis/

↪ImageClassification/model.h5'
model = load_model(model_path)

1

Define class labels
class_labels = [

#'Acanthaulax venusta',
'Cribroperidinium "prominoseptatum"',
'Dingodinium tuberculosum',
'Dingodinium tuberosum',
'Fibrocysta axialis',
'Gonyaulacysta jurassica',
'Palaeoperidinium pyrophorum',
'Senoniasphaera inornata',
'Sentusidinium pilosum',
'Spongodinium delitiense',
'Spongodinium delitiense (operculum)'

'Systematophora areolata',
'Tubotuberella apatela'
]

Create a dictionary to map image filenames to true labels
image_label_map = {

'3.jpg': 'Cribroperidinium "prominoseptatum"',
'4.jpg': 'Cribroperidinium "prominoseptatum"',
'5.jpg': 'Cribroperidinium "prominoseptatum"',
'6.jpg': 'Cribroperidinium "prominoseptatum"',
'7.jpg': 'Cribroperidinium "prominoseptatum"',
'12.jpg': 'Fibrocysta axialis',
'13.jpg': 'Fibrocysta axialis',
'14.jpg': 'Fibrocysta axialis',
'15.jpg': 'Fibrocysta axialis',
'16.jpg': 'Fibrocysta axialis',
'17.jpg': 'Fibrocysta axialis',
'18.jpg': 'Fibrocysta axialis',
'19.jpg': 'Fibrocysta axialis',
'20.jpg': 'Fibrocysta axialis',
'23.jpg': 'Palaeoperidinium pyrophorum',
'24.jpg': 'Palaeoperidinium pyrophorum',
'25.jpg': 'Palaeoperidinium pyrophorum',
'26.jpg': 'Palaeoperidinium pyrophorum',
'27.jpg': 'Palaeoperidinium pyrophorum',
'28.jpg': 'Palaeoperidinium pyrophorum',
'29.jpg': 'Palaeoperidinium pyrophorum',
'30.jpg': 'Palaeoperidinium pyrophorum',
'31.jpg': 'Palaeoperidinium pyrophorum',
'32.jpg': 'Senoniasphaera inornata',
'33.jpg': 'Senoniasphaera inornata',

2

'34.jpg': 'Senoniasphaera inornata',
'35.jpg': 'Senoniasphaera inornata',
'36.jpg': 'Senoniasphaera inornata',
'37.jpg': 'Senoniasphaera inornata',
'38.jpg': 'Senoniasphaera inornata',
'39.jpg': 'Senoniasphaera inornata',
'40.jpg': 'Senoniasphaera inornata',
'43.jpg': 'Spongodinium delitiense',
'44.jpg': 'Spongodinium delitiense',
'45.jpg': 'Spongodinium delitiense',
'46.jpg': 'Spongodinium delitiense',
'47.jpg': 'Spongodinium delitiense',
'48.jpg': 'Spongodinium delitiense',
'49.jpg': 'Spongodinium delitiense',
'50.jpg': 'Spongodinium delitiense',
'51.jpg': 'Spongodinium delitiense (operculum)',
'52.jpg': 'Spongodinium delitiense (operculum)',
'53.jpg': 'Spongodinium delitiense (operculum)',
'54.jpg': 'Spongodinium delitiense (operculum)',
'55.jpg': 'Spongodinium delitiense (operculum)',
'56.jpg': 'Spongodinium delitiense (operculum)',

Add more filename-label pairs as needed
}

Initialize empty lists for true and predicted labels
true_labels_list = []
predicted_labels = []
predicted_images = []

Get the file names in the directory and sort them naturally
image_filenames = natsorted(os.listdir(image_dir))

for filename in image_filenames:
if filename.endswith('.jpg') or filename.endswith('.png'):

Construct the full image path
image_path = os.path.join(image_dir, filename)
image_path = image_path.replace('\\','/') # Replace backslashes with␣

↪forward slash

Resize the image
resized_image = resize_image(image_path, desired_size)

Check if the image was resized successfully
if resized_image is not None:

Perform further processing with the resized image

3

print("Image resized successfully.")

Preprocess the image
preprocessed_image = np.expand_dims(resized_image, axis=0)
preprocessed_image = preprocessed_image / 255.0 # Normalize pixel␣

↪values to the range [0, 1]

Perform the prediction
predictions = model.predict(preprocessed_image, verbose=0)

Get the predicted class label
predicted_class_index = np.argmax(predictions[0])
predicted_class_label = class_labels[predicted_class_index]

Append the true and predicted labels
true_label = image_label_map.get(filename, 'Unknown') # Get the␣

↪true label from the mapping, or use 'Unknown' if not found
true_labels_list.append(true_label)
predicted_labels.append(predicted_class_label)
predicted_images.append(image_path)

Convert the lists of true labels and predicted labels to numpy arrays
true_labels = np.array(true_labels_list)
predicted_labels = np.array(predicted_labels)

print("True Lables:", true_labels)
print("Predicted Labels:", predicted_labels)

Calculate the confusion matrix
cm = confusion_matrix(true_labels, predicted_labels)

Calculate the accuracy
accuracy = accuracy_score(true_labels, predicted_labels)

Calculate the precision
precision = np.nan_to_num(cm.diagonal() / cm.sum(axis=0), nan=0.0)

Calculate the recall
recall = np.nan_to_num(cm.diagonal() / cm.sum(axis=1), nan=0.0)

Calculate the F1-score
f1 = np.nan_to_num(2 * (precision * recall) / (precision + recall), nan=0.0)

print("Confusion Matrix:")
print(cm)

Print the accuracy, precision, recall, and F1-Score

4

print("Accuracy: {:.2f}".format(accuracy))
print("Precision:", end=" ")
for p in precision:

print("{:.2f}".format(p), end=" ")
print()
print("Recall:", end=" ")
for r in recall:

print("{:.2f}".format(r), end=" ")
print()
print("F1-Score:", end=" ")
for f in f1:

print("{:.2f}".format(f), end=" ")
print()

Calculate the weighted F1 score
f1 = f1_score(true_labels, predicted_labels, average='weighted')
Print the F1 score
print("Weighted F1 Score:", round(f1, 2))

Calculate performance metrics for each class with sklearn method
report = classification_report(true_labels, predicted_labels, zero_division=0)
Print the classification report
print("Classification report:",report)

Create heatmap with the seaborn method
Create a list of class labels
labels = np.unique(true_labels)

Plot the heatmap
plt.figure(figsize=(8,6))
sns.heatmap(cm, annot=True, fmt="d", cmap="Blues", xticklabels=labels,␣

↪yticklabels=labels)
plt.title("Confusion Matrix")
plt.xlabel("Predicted Labels")
plt.ylabel("True Labels")
plt.show()

Visualize predicted images
for i in range(len(predicted_images)):

image_path = predicted_images[i]
image_label = predicted_labels[i]
image = plt.imread(image_path)

plt.imshow(image)
plt.title(f"Predicted Label: {image_label}")
plt.axis("off")

5

plt.show()

6

mrcnn_detect_microfossils

July 12, 2023

[]: # Import necessary libraries

import os
import cv2
import numpy as np
from PIL import Image
import matplotlib.pyplot as plt
import matplotlib.patches as patches
import skimage
import glob
import pandas as pd
import hashlib
from mrcnn import utils
from mrcnn import visualize
from mrcnn.visualize import display_images
from mrcnn.model import log
from mrcnn import model as modellib
import tensorflow as tf
from tensorflow import keras
import xml.etree.ElementTree as ET
from mrcnn.utils import Dataset
from mrcnn.model import MaskRCNN
from mrcnn.config import Config
import skimage.draw
import mrcnn
from mrcnn import model as modellib

Set the "path_to_dll" variable to a specific directory path containing DLL␣
↪files.

path_to_dll = "C:/Users/emmie/anacond3/Lib/site-packages/openslide/
↪openslide-win64-20230414/bin"

os.environ["PATH"] = path_to_dll + ";" + os.environ["PATH"]
import openslide

0.0.1 Create a Pandas dataframe of labeled images with their annotation details.

• The 6 pairs of slide images and corresponding XML annotation files are used for this purpose.

1

• The labeled images and their annotations files extracted will be used to train Mask RCNN
network for object identification task.

[]: mrxs_paths = [
'C:/Users/emmie/OneDrive/Skrivebord/MasterThesis/PalySlideImages/2_4-C-11␣

↪10052.7 ftC = 3064 mC.mrxs',
'C:/Users/emmie/OneDrive/Skrivebord/MasterThesis/PalySlideImages/2_4-C-11␣

↪10070 ftC = 3069.3 mC.mrxs',
'C:/Users/emmie/OneDrive/Skrivebord/MasterThesis/PalySlideImages/2_7-14␣

↪10658ft 8in C.mrxs',
'C:/Users/emmie/OneDrive/Skrivebord/MasterThesis/PalySlideImages/16_3-2␣

↪1998.80 mC.mrxs',
'C:/Users/emmie/OneDrive/Skrivebord/MasterThesis/PalySlideImages/

↪DigitalSlide_C1M_4S_1.mrxs',
'C:/Users/emmie/OneDrive/Skrivebord/MasterThesis/PalySlideImages/

↪DigitalSlide_C1M_5S_1.mrxs'

]

xml_paths = [
'C:/Users/emmie/OneDrive/Skrivebord/MasterThesis/PalySlideImages/2_4-C-11␣

↪10052.7 ftC = 3064 mC_Annotations.xml',
'C:/Users/emmie/OneDrive/Skrivebord/MasterThesis/PalySlideImages/2_4-C-11␣

↪10070 ftC = 3069.3 mC_Annotations.xml',
'C:/Users/emmie/OneDrive/Skrivebord/MasterThesis/PalySlideImages/2_7-14␣

↪10658ft 8in C_Annotations.xml',
'C:/Users/emmie/OneDrive/Skrivebord/MasterThesis/PalySlideImages/16_3-2␣

↪1998.80 mC_Annotations.xml',
'C:/Users/emmie/OneDrive/Skrivebord/MasterThesis/PalySlideImages/

↪DigitalSlide_C1M_4S_1_Annotations.xml',
'C:/Users/emmie/OneDrive/Skrivebord/MasterThesis/PalySlideImages/

↪DigitalSlide_C1M_5S_1_Annotations.xml'
]

Define a function to extract labeled data from MRXS and XML files

def extract_labeled_data(mrxs_path, xml_path):
slide = openslide.OpenSlide(mrxs_path) # Open the MRXS file using openslide

tree = ET.parse(xml_path) # Parse the XML file using ElementTree
root = tree.getroot()

annotations = root.find('destination/annotations') # Find the annotations␣
↪element in the XML

2

labeled_data = []
for annotation in annotations:

name = annotation.get('name') # Extract the name attribute of the␣
↪annotation

type = annotation.get('type') # Extract the type attribute of the␣
↪annotation

polygon_points = annotation.findall('p') # Find all the p elements␣
↪inside the annotation

points = [(int(point.get('x')), int(point.get('y'))) for point in␣
↪polygon_points] # Extract the x and y coordinates from the p elements

Extract region of interest from MRXS image based on polygon points
x_min = min([point[0] for point in points]) # Calculate the minimum x␣

↪coordinate
x_max = max([point[0] for point in points]) # Calculate the maximum x␣

↪coordinate
y_min = min([point[1] for point in points]) # Calculate the minimum y␣

↪coordinate
y_max = max([point[1] for point in points]) # Calculate the maximum y␣

↪coordinate

region = slide.read_region((x_min, y_min), 0, (x_max - x_min, y_max -␣
↪y_min)) # Read the region of interest from the MRXS image

annotation_details = {'name': name, 'type': type, 'points': points,␣
↪'xml_file': os.path.basename(xml_path)}

labeled_data.append({'image': region, 'label': name, 'annotations':␣
↪annotation_details}) # Append the labeled data to the list

slide.close() # Close the MRXS slide

return labeled_data

Iterate over the MRXS and XML file paths, extract labeled images
and annotations and store the data in a dataframe
labeled_data_list = []
for mrxs_path, xml_path in zip(mrxs_paths, xml_paths):

labeled_data = extract_labeled_data(mrxs_path,xml_path)
labeled_data_list.extend(labeled_data)

df = pd.DataFrame(labeled_data_list) # Create a dataframe from the labeled data

df['image'] = df['image'].apply(lambda img: img.convert('RGB')) # Convert RGBA␣
↪images to RGB

3

[]: # Count the number of records in each class
class_counts = df['label'].value_counts()

Filter out classes with only two record
#filtered_data = data[data['label'].map(class_counts) > 1]
data = df[df['label'].isin(class_counts[class_counts > 2].index)]

[]: data.head()

[]: classes = sorted(data['label'].unique().tolist())
classes

[]: data['image'][29]

[]: data['label'][29]

[]: data['annotations'][29]

[]: # Count the unique classes
class_counts = data['label'].value_counts()

Print the unique classes and their counts
for class_name, count in class_counts.items():

print(f"Class: {class_name}, Count: {count}")

0.0.2 Data Preparation

0.0.3 Saving Labeled Images and the Corresponding XML Annotation Files

• 1) The following function saves labeled images and the corresponding annotation files.

• 2) The annotation details are saved as separate XML files with the .xml extension.

• 3) The function converts the annotation detail dictionary to an XML string and write it to
the XML file.

[]: ## The function saves images and corresponding annotations files into two␣
↪separate folders.

This file saving format is required for the training Mask RCNN

def save_labeledimages_with_annotations(df, output_dir):
'''
The function accepts dataframe df and output folder
as arguments and extract images and correpoinding xlm files
and saves the data in the output folder with two subfolders
'images' and 'annotations'
'''
Create the output directory if it does not exist
if not os.path.exists(output_dir):

4

os.makedirs(output_dir)

Create subdirectories for images and annotations
images_dir = os.path.join(output_dir, 'images')
annotations_dir = os.path.join(output_dir, 'annotations')
os.makedirs(images_dir, exist_ok=True)
os.makedirs(annotations_dir, exist_ok=True)

Iterate over the rows of the DataFrame
for i, row in df.iterrows():

image = row['image']
annotation_details = row['annotations']

Generate the file name based on the DataFrame index
file_name = str(i)

Generate file paths for image and annotation
file_path_image = os.path.join(images_dir, f"{file_name}.jpg")
file_path_annotation = os.path.join(annotations_dir, f"{file_name}.xml")

Save the image using the file path
image.save(file_path_image)

Save the annotation details as an XML file
annotation_xml = generate_annotation_xml(annotation_details)
with open(file_path_annotation, 'w') as xml_file:

xml_file.write(annotation_xml)

Print the file paths for reference
print(f"Image {i+1} saved: {file_path_image}")
print(f"Annotation XML for Image {i+1}: {file_path_annotation}")

def generate_annotation_xml(annotation_details):
Create the XML structure and populate it with annotation details
annotation = ET.Element('annotation')

name = ET.SubElement(annotation, 'name')
name.text = annotation_details['name']

type = ET.SubElement(annotation, 'type')
type.text = annotation_details['type']

points = ET.SubElement(annotation, 'points')
for x, y in annotation_details['points']:

point = ET.SubElement(points, 'point')
point.set('x', str(x))
point.set('y', str(y))

5

Convert the XML structure to a string
annotation_xml = ET.tostring(annotation).decode()

return annotation_xml

Implementation
The dataframe has 'label','image' , and 'annotations' columns

output_dir = 'C:/Users/emmie/OneDrive/Skrivebord/MasterThesis/Segmentation/
↪dataset'

Save the images with numbering and corresponding annotation XML files
save_labeledimages_with_annotations(data, output_dir)

1 Training Mask RCNN.

[]: # Check TF version
import warnings
warnings.simplefilter(action='ignore', category=FutureWarning)

import tensorflow as tf
tf.__version__

[]: class MicrofossilDataset(Dataset):

'''''
This classs performs the following functions:
- Load custom dataset used for training Mask RCNN
- Extract bounding boxes from annotation details and load masks

'''
def __init__(self):

Initialize other attributes
self.image_info = []

self.class_names = ['Cribroperidinium␣
↪"prominoseptatum"','Fibrocysta axialis',

'Palaeoperidinium pyrophorum','Senoniasphaera inornata',
'Spongodinium delitiense', 'Spongodinium delitiense␣

↪(operculum)']

self.class_info = [
{"id": 1, "name": 'Cribroperidinium "prominoseptatum"',␣

↪"source": "NPD data"},

6

{"id": 2, "name": "Fibrocysta axialis", "source": "NPD data"},
{"id": 3, "name": "Palaeoperidinium pyrophorum", "source": "NPD␣

↪data"},
{"id": 4, "name": "Senoniasphaera inornata", "source":␣

↪"NPD data"},
{"id": 5, "name": "Spongodinium delitiense", "source": "NPD data"},
{"id": 6, "name": "Spongodinium delitiense (operculum)", "source":␣

↪"NPD data"}
]

Reset source_class_ids dictionary
self.source_class_ids = {}

def __len__(self):
return len(self.image_info)

def add_image(self, source, image_id, path, annotation, height, width):
image_info = {

'source': 'NPD data',
'id': int(image_id),
'path': path,
'annotation': annotation,
'height': height,
'width': width

}
self.image_info.append(image_info)

def load_dataset(self, dataset_dir, class_names):

images_dir = os.path.join(dataset_dir, 'images')
annotations_dir = os.path.join(dataset_dir, 'annotations')

Get the list of image files sorted in ascending order
image_files = sorted(os.listdir(images_dir), key=lambda x:␣

↪int(os.path.splitext(x)[0]))

for filename in image_files:
image_id = os.path.splitext(filename)[0] # Get the␣

↪image ID from the filename
img_path = os.path.join(images_dir, filename)
ann_path = os.path.join(annotations_dir, f'{image_id}.

↪xml')
img_path = img_path.replace("\\","/")
ann_path = ann_path.replace("\\","/")

7

if os.path.exists(ann_path):
image = cv2.imread(img_path)
height, width, _ = image.shape

self.add_image(
'source',
image_id=image_id,
path=img_path,
annotation=ann_path,
height=height,
width=width

)

def extract_boxes(self, filename):
tree = ET.parse(filename)
root = tree.getroot()

image_path = filename.replace("annotations", "images")
image_path = os.path.splitext(image_path)[0] + '.jpg'
image = Image.open(image_path)
width, height = image.size

boxes = []
for point in root.findall('.//point'):

x = int(point.attrib['x'])
y = int(point.attrib['y'])
boxes.append([x, y])

return np.array(boxes), width, height

def polygons_to_mask(self, polygons, height, width):
mask = np.zeros((height, width), dtype=np.uint8)
for polygon in polygons:

rr, cc = skimage.draw.polygon(polygon[:, 1], polygon[:,␣
↪0])

rr = np.clip(rr, 0, height - 1)
cc = np.clip(cc, 0, width - 1)
mask[rr, cc] = 255

return mask

def load_mask(self, image_id):
image_info = self.image_info[image_id]
annotation_path = image_info['annotation']

print("ImageID:", image_id)
print("AnnPath:", annotation_path)

8

print(f'Image info for {image_id}: {image_info}')

tree = ET.parse(annotation_path)
root = tree.getroot()

masks = []
class_ids = []

try:
name_element = root.find('name')
class_name = name_element.text
print("ClassName:", class_name)

if class_name not in self.class_names:
masks = np.zeros((image_info['height'],␣

↪image_info['width'], 0), dtype=np.uint8)
class_ids = np.array([])

else:
class_id = self.class_names.index(class_name) +␣

↪1
class_ids.append(class_id)
print("ClassID:", class_id)

points_element = root.find('points')
polygon_points = []
for point_element in points_element.

↪findall('point'):
x = int(point_element.get('x'))
y = int(point_element.get('y'))
polygon_points.append([x, y])

polygon = np.array(polygon_points)
mask = self.polygons_to_mask([polygon],␣

↪image_info['height'], image_info['width'])
masks.append(mask)
print("Number of masks:", len(masks))

except Exception as e:
print("Error occurred:", str(e))

return np.stack(masks, axis=-1), np.array(class_ids)

Training MRCNN
[]: # Define the path to the dataset directory

dataset_dir = 'C:/Users/emmie/OneDrive/Skrivebord/MasterThesis/Segmentation/
↪dataset'

9

class_names = ['Cribroperidinium "prominoseptatum"','Fibrocysta axialis',
'Palaeoperidinium pyrophorum','Senoniasphaera inornata',
'Spongodinium delitiense', 'Spongodinium delitiense␣

↪(operculum)']

Initialize the dataset
dataset = MicrofossilDataset()

Load the dataset
dataset.load_dataset(dataset_dir, class_names)

Set the random seed for reproducibility
np.random.seed(42)

Shuffle the dataset indices
indices = np.arange(len(dataset.image_info))
np.random.shuffle(indices)

Split the dataset into train and validation indices
split_ratio = 0.8 # 80% for training, 20% for validation
split_index = int(split_ratio * len(indices))
train_indices = indices[:split_index]
val_indices = indices[split_index:]

Create the training and validation datasets
train_dataset = MicrofossilDataset()
val_dataset = MicrofossilDataset()

Add the images and annotations to the training dataset
for idx in train_indices:

image_info = dataset.image_info[idx]
train_dataset.add_image(

image_info['source'],
image_id=image_info['id'],
path=image_info['path'],
annotation=image_info['annotation'],
height=image_info['height'],
width=image_info['width']

)

Add the images and annotations to the validation dataset
for idx in val_indices:

image_info = dataset.image_info[idx]
val_dataset.add_image(

image_info['source'],

10

image_id=image_info['id'],
path=image_info['path'],
annotation=image_info['annotation'],
height=image_info['height'],
width=image_info['width']

)

Prepare the datasets
train_dataset.prepare()
val_dataset.prepare()

Set the batch size
batch_size = 1

print("Train records:",len(train_dataset))
print("Validation records.", len(val_dataset))
print("Batch Size:", batch_size)

[]: # Configure RCNN model

class MRCNNConfig(Config):
GPU_COUNT = 1
NAME = "microfossil"
IMAGES_PER_GPU = 1
NUM_CLASSES = 6
STEPS_PER_EPOCH = 50

Define the Mask R-CNN configuration
config = MRCNNConfig()
#config.display()

Directory to save logs and trained model
MODEL_DIR = os.path.join(os.getcwd(), "logs")
MODEL_DIR = "C:/Users/emmie/OneDrive/Skrivebord/MasterThesis/

↪ImageClassification/logs"

Create the Mask R-CNN model
model = MaskRCNN(mode="training", model_dir=MODEL_DIR, config=config)
model = MaskRCNN(mode="training", model_dir="./", config=config)

Load the pre-trained COCO weights (excluding top layers)
pretrained_weights_path = "C:/Users/emmie/OneDrive/Skrivebord/MasterThesis/

↪mask_rcnn_weights/mask_rcnn_coco.h5"
model.load_weights(pretrained_weights_path, by_name=True,␣

↪exclude=["mrcnn_class_logits", "mrcnn_bbox_fc", "mrcnn_bbox", "mrcnn_mask"])

Update the log directory path

11

model.log_dir = "logs"
model.log_dir = "./"

Train the model
model.train(train_dataset=train_dataset, val_dataset=val_dataset,␣

↪learning_rate=0.001, epochs=1, layers="heads")

The model does not save in the target directory
However, it is saved mannually by copying the trained model with the path.

[]: # Save trained weights manually after training the MaskRCNN model
model_path = 'C:/Users/emmie/OneDrive/Skrivebord/MasterThesis/

↪ImageClassification/mask_rcnn_microfossil_0001.h5'
model.keras_model.save_weights(model_path)

1.0.1 Make Predictions with the trained Mask RCNN model

[]: config.display

[]: class MRCNNConfig(Config):
GPU_COUNT = 1
NAME = "microfossil"
IMAGES_PER_GPU = 1
NUM_CLASSES = 6
STEPS_PER_EPOCH = 50

Define the Mask R-CNN configuration
config = MRCNNConfig()

Load the trained model
model = modellib.MaskRCNN(mode="inference", config=config, model_dir="logs")
model_path = 'C:/Users/emmie/OneDrive/Skrivebord/MasterThesis/

↪ImageClassification/mask_rcnn_microfossil_0001.h5'
model.load_weights(model_path, by_name=True)

Load the image
image_path = "C:/Users/emmie/OneDrive/Skrivebord/MasterThesis/

↪ImageClassification/images/image40.jpg"
image = skimage.io.imread(image_path)

Run the image through the model to get predictions
results = model.detect([image])

Get the predicted class IDs, bounding boxes, scores, and class names
r = results[0]

12

class_ids = r['class_ids']
print(class_ids)
rois = r['rois']
scores = r['scores']
masks = r['masks']

class_names = ['Cribroperidinium "prominoseptatum"','Fibrocysta axialis',
'Palaeoperidinium pyrophorum','Senoniasphaera inornata',
'Spongodinium delitiense', 'Spongodinium delitiense␣

↪(operculum)']

Convert lists to numpy arrays
rois = np.array(rois)
masks = np.array(masks)
class_ids = np.array(class_ids+1)
print("Class_ids:", class_ids)

Visualize the image with the predicted bounding boxes, scores, and class␣
↪labels

fig, ax = plt.subplots(1)

visualize.display_instances(image, rois, masks, class_ids, class_names,␣
↪scores,min_score=0.2, ax=ax, title="Prediction")

visualize.display_instances(image, rois, masks, class_ids, class_names,␣
↪scores,ax=ax, title="Prediction")

plt.show()

13

process_palyslides

July 14, 2023

[]: import os
import cv2
import math
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image
import requests
import urllib.request

#Set the "path_to_dll" variable to a specific directory path containing DLL␣
↪files.

path_to_dll = "C:/Users/emmie/anacond3/Lib/site-packages/openslide/
↪openslide-win64-20230414/bin"

os.environ["PATH"] = path_to_dll + ";" + os.environ["PATH"]

import openslide
from openslide.deepzoom import DeepZoomGenerator

0.1 Read and Manipulate Slide Images
The procedure described in the following Youtube video was followed in reading and manipulating
slide images. Link: https://www.youtube.com/watch?v=QntLBvUZR5c

[]: #Load a slide image file (mrxs) into an object

mrxs_path = "C:/Users/emmie/Thesis2023/paleo_slides/extracted_data/1_6-6 ST2␣
↪4876 mDC.mrxs"

slide = openslide.OpenSlide(mrxs_path)

[]: # A preliminary view of slide properties

slide_props = slide.properties
print(f'The slide properties: {slide_props}')

[]: if 'openslide.mpp-x' in slide_props:
print("Pixel size of X in um is:", slide_props['openslide.mpp-x'])

1

else:
print("Key 'openslide.mpp-x' not found in slide_props dictionary.")

[]: print("The vendor is:", slide_props['openslide.vendor'])
print("Pixel size of X in um is:", slide_props['openslide.mpp-x'])
print("Pixel size of Y in um is:", slide_props['openslide.mpp-y'])

[]: # Get objective power used to capture the image
The objective power indicates the level of magnification achieved by the␣

↪objective lens.
lens_objective_power = float(slide.properties[openslide.

↪PROPERTY_NAME_OBJECTIVE_POWER])
print("The objective power is:", lens_objective_power)

[]: # Get a thumbnail of the slide with dimensions of 500 x 500 pixels.
slide_thumbnail_500 = slide.get_thumbnail(size=(500,500))
slide_thumbnail_500.show()

[]: # Convert the thumbnail slide image to numpy array
slide_thumbnail_500_np = np.array(slide_thumbnail_500)
plt.figure(figsize=(10,10))
plt.imshow(slide_thumbnail_500_np)

[]: # Dimensions and downsampling factors of different levels in the slide image␣
↪pyramid

Get dimensions of each level in the slide image
level_dims = slide.level_dimensions
print("The dimensions of different levels in the slide image are:", level_dims)

Get the number of levels in the slide image
num_levels = len(level_dims)
print("The number of levels in the slide image is:", num_levels)

The downsampling factors for each level.
Show how much the levels are downsampled compared with the original image␣

↪dimensions
downsample_factors = slide.level_downsamples
print("The various levels are downsampled by factors:", downsample_factors)

[]: # Return a level in the slide image given the downsample factor.
downsample_factor = 512
best_level = slide.get_best_level_for_downsample(downsample_factor)
print (f"The level number in the slide image given {downsample_factor} as the␣

↪downsample factor is {best_level}.")

2

0.1.1 Generating tiles for deep learning tasks

• A read_region function can be used to slide over a slide image to extract tiles.

• An easier approach would be to use DeepZoom based generator.

• A tile is a single image of dimensions(x,y) extracted from a slide at a specified deep zoom
level. A slide image can contain thousands of tiles.

[]: # Create a generator object "tiles" from the slide image based on the specified␣
↪tile size and overlap.

tiles = DeepZoomGenerator(slide, tile_size=256,overlap=0,limit_bounds=False) #␣
↪tile_size: 256,512

[]: ## Number of zoom levels in the object "tiles" representing the slide image
The index of the zoom levels start with zero to (maximum zoom level - 1)
deepzoom_levels_num = tiles.level_count # Return the number of deep zoom levels␣

↪in the generated "tiles" object
print(f"The number of zoom levels present in the generated object tiles (slide␣

↪image) is:{deepzoom_levels_num}")

Dimensions of tiles at each zoom level.
dims_zoomLevel = tiles.level_dimensions
print(f"Dimensions of tiled images at each zoom level: {dims_zoomLevel}.")

Total number of 256 x 256 tiles present in the tiled image pyramid
For each zoom level, compute nrows and ncolumns based on the specified tile␣

↪size 256,
multiply nrows with ncolumns, and sum the products for all the zoom levels.

total_tiles = tiles.tile_count # This method gives the total tiles across␣
↪all zoom levels

total_tiles = 0
for row, col in dims_zoomLevel:

num_tiles_row = math.ceil(row / 256)
num_tiles_col = math.ceil(col / 256)
level_tiles = num_tiles_row * num_tiles_col
total_tiles += level_tiles

print(f"The total number of tiles across all the zoom levels is: {total_tiles}.
↪")

Number of tiles of size 256 pixels at a specific zoom level
zoom_level = 11 # This level has 975 x␣

↪1027 tiled images arranged in rows and columns, respectively.
level_tiles_shape = tiles.level_tiles[zoom_level] # Get the dimensions␣

↪based on specified tile size: ceil(975/256), ceil(1027/256)

3

tiles_total = level_tiles_shape[0] * level_tiles_shape[1] # Mutiply Xdim with␣
↪Ydim

print(f"The shape of tiles at the zoom level {zoom_level} is:
↪{level_tiles_shape}")

print(f"This means there are {tiles_total} tiles of size 256 at the specified␣
↪zoom level.")

Number of tiles at the highest zoom level in tiled image pyramid
maxzoom_IDX = deepzoom_levels_num-1
tile_shape_maxzoom = tiles.level_tiles[maxzoom_IDX]
total_tiles_maxzoom = tile_shape_maxzoom[0]*tile_shape_maxzoom[1]
print(f"The shape of tiles at the highest level containing␣

↪{total_tiles_maxzoom} tiles is: {tile_shape_maxzoom}.")

Dimensions of specific tile at a specified zoom level and indices
The height and width of each tile are 256 pixels, respectively.
However, tiles of smaller dimensions/size can be generated and
should be removed from the dataset during preprocessing.

zoom_level = 11
tile_IDX = (1, 1) # The indices of the tile to be retrieved

M = level_tiles_shape[0] # Height/nrow of tiles at the specified zoom level
N = level_tiles_shape[1] # Width/ncolums of tiles at the specified zoom level
tile_dims = tiles.get_tile_dimensions(zoom_level, tile_IDX) # Get tile␣

↪dimensions at the specified zoom level and indices
tile_last_dims = tiles.get_tile_dimensions(11, ((M-1),(N-1))) # Retrieve the␣

↪last tile dimensions at the specified zoom level
print(f"The dimensions a tile at the zoom level {zoom_level} with indices␣

↪{tile_IDX} are: {tile_dims}.")
print(f"The dimensions of the last tile at the zoom level {zoom_level} are:␣

↪{tile_last_dims}.")

Visualize a single tile a specified zoom level

single_tile = tiles.get_tile(zoom_level, tile_IDX) # Retrieve a tile with the␣
↪specified indices

single_tile_RGB = single_tile.convert('RGB')
single_tile_RGB.show()

0.1.2 Tile Generation with YOLOv4

• Detect images on tiles with YOLOv4-tiny to generate only desirable tiles.

[]: # Download YOLOv4 on Jupyter by running the following command
!git clone https://github.com/AlexeyAB/darknet.git

4

[]: # %cd darknet

[]: # Download YOLOv4-tiny configuration weights files

URL for YOLOv4-tiny configuration file
url = 'https://github.com/AlexeyAB/darknet/blob/master/cfg/yolov4-tiny.cfg?

↪raw=true'
Save the weights file to the specified folder
config_path = "C:/Users/emmie/OneDrive/Skrivebord/MasterThesis/darknet/

↪yolov4-tiny.cfg"
urllib.request.urlretrieve(url, config_path)

URL for YOLOv4-tiny weights file
url = 'https://github.com/AlexeyAB/darknet/releases/download/

↪darknet_yolo_v4_pre/yolov4-tiny.weights'

Save the weights file to the specified folder
weights_path = "C:/Users/emmie/OneDrive/Skrivebord/MasterThesis/darknet/

↪yolov4-tiny.weights"
urllib.request.urlretrieve(url, weights_path)

[]: # Check if YOLOv4 network is properly installed
if hasattr(cv2.dnn, 'DNN_BACKEND_DEFAULT'):
print('YOLOv4 is installed!')
else:
print('YOLOv4 is not installed.')

0.1.3 Object Detection with YOLOv4-tiny Network

• This algorithm performs object detection using YOLOv4-tiny network.
• Unwanted tiles are removed from the dataset after preprocessing.

[]: import cv2
import numpy as np
import os

def generate_clean_tiles(tiles, output_dir):
'''
The function accepts tile object "tiles" and the output flolder
and performs object detection with YOLOv4 Tiny to remove undesireble
tiles and generate tiled images of good quality
'''
Load weights and configuration files of the YOLO4-tiny network
weights_path = "C:/Users/emmie/OneDrive/Skrivebord/MasterThesis/darknet/

↪yolov4-tiny.weights"

5

config_path = "C:/Users/emmie/OneDrive/Skrivebord/MasterThesis/darknet/
↪yolov4-tiny.cfg"

net = cv2.dnn.readNet(weights_path, config_path)

Define the output layers of the network
layer_names = net.getLayerNames()
output_layers = [layer_names[i - 1] for i in net.getUnconnectedOutLayers()]

Create the output directory if it does not exist
if not os.path.exists(output_dir):

os.makedirs(output_dir)

Process and save tiles
maxzoom_IDX = 16
slide_code = 487

for col in range(0, tiles.level_tiles[maxzoom_IDX][0]):
for row in range(0, tiles.level_tiles[maxzoom_IDX][1]):

try:
tile = tiles.get_tile(maxzoom_IDX, (col, row))
tile_array = np.array(tile)
gray = cv2.cvtColor(tile_array, cv2.COLOR_RGB2GRAY)
unique_values = np.unique(gray)

Verify if the tile contains colored microfossils
if len(unique_values) >= 2 and unique_values[0] != 255 and␣

↪unique_values[1] != 255:
Verify if the mean pixel intensity is above a specified␣

↪threshold
if gray.mean() > 100:

Verify if the proportion of white pixels is below a␣
↪specified threshold

white_percent = np.count_nonzero(gray == 255) / gray.
↪size

if white_percent < 0.9:
Check if the tile contains an object of interest
img = cv2.cvtColor(tile_array, cv2.COLOR_RGB2BGR)
blob = cv2.dnn.blobFromImage(img, 1 / 255, (416,␣

↪416), swapRB=True, crop=False)
net.setInput(blob)
detections = net.forward(output_layers)

Check if the detected object belongs to a␣
↪specific class and meets the confidence threshold

for detection in detections[0]:
scores = detection[5:]

6

class_id = np.argmax(scores)
confidence = scores[class_id]

if class_id == 0 and confidence > 0.2:
Check if the image is dark or black
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
if np.mean(gray) > 10:

Save the tile as an image
tile_path = os.path.join(output_dir,␣

↪f"tile_{slide_code}_{col}_{row}.jpg")
tile.save(tile_path)

except Exception as e:
print(f"Error processing tile at column {col} and row {row}:␣

↪{str(e)}")

Implementation

output_dir = "C:/Users/emmie/OneDrive/Skrivebord/MasterThesis/clean_tiles"
generate_clean_tiles(tiles, output_dir)

0.1.4 Watershed Segmentation

[]: # This algorithm performs watershed segmentation task based on the approach␣
↪oulined in the link:

#https://docs.opencv.org/4.x/d3/db4/tutorial_py_watershed.html

Set the path to the input folder containing the tiled images
input_folder_path = "C:/Users/emmie/OneDrive/Skrivebord/MasterThesis/

↪watershed_images"

Set the path to the output folder for saving the segmented images
output_folder_path = "C:/Users/emmie/OneDrive/Skrivebord/MasterThesis/

↪watershed_outputimages"

Create the output folder if it does not exist
if not os.path.exists(output_folder_path):

os.makedirs(output_folder_path)

Loop through all the images in the input folder
for filename in os.listdir(input_folder_path):

if filename.endswith('.jpg') or filename.endswith('.png'):
Load and convert the image to grayscale
input_img_path = os.path.join(input_folder_path, filename)
img = cv2.imread(input_img_path)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

7

Apply thresholding to separate the foreground (microfossils) from the␣
↪background

ret, thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV+cv2.
↪THRESH_OTSU)

Apply morphological opening to remove small objects and noise
kernel = np.ones((3,3), np.uint8)
opening = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel, iterations=2)

Apply distance transform to obtain the distance map
dist_transform = cv2.distanceTransform(opening, cv2.DIST_L2, 5)

Apply thresholding to the distance map to obtain the foreground␣
↪markers

ret, fg_markers = cv2.threshold(dist_transform, 0.5*dist_transform.
↪max(), 255, 0)

Apply watershed algorithm to segment the foreground markers and␣
↪obtain the labels

fg_markers = np.uint8(fg_markers)
unknown = cv2.subtract(opening, fg_markers)
ret, bg_markers = cv2.threshold(unknown, 0, 255, cv2.THRESH_BINARY_INV)
bg_markers = cv2.dilate(bg_markers, kernel, iterations=3)
markers = cv2.add(fg_markers, bg_markers)

Convert the grayscale image to a 3-channel format
img_color = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

Apply the watershed segmentation algorithm
markers = markers.astype(np.int32)
markers_copy = markers.copy()
cv2.watershed(img_color, markers_copy)

Visualize the segmented image and the markers
img_color[markers_copy == -1] = [255,0,0]

Save the segmented image to the output folder
output_img_path = os.path.join(output_folder_path, filename[:-4]+'_seg.

↪jpg')
cv2.imwrite(output_img_path, img_color)

8

classify_microfossils

July 14, 2023

[]: import os
import keras
import pandas as pd
import hashlib
import cv2
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image
import tensorflow as tf
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
from keras.preprocessing.image import ImageDataGenerator
from keras.models import Sequential
from keras.layers import Conv2D, MaxPooling2D, Flatten, Dense
from keras.models import save_model, load_model
import xml.etree.ElementTree as ET
import shutil
import pickle
from pathlib import Path

Set the "path_to_dll" variable to a specific directory path containing DLL␣
↪files.

path_to_dll = 'C:/Users/emmie/anacond3/Lib/site-packages/openslide/
↪openslide-win64-20230414/bin'

os.add_dll_directory(path_to_dll)
import openslide

0.0.1 Data Preprocessing for Classification Task

• 1) Extract labeled images with the slide image MRXS files and corresponding annotation
XML files.

• 2) Store the dictionary object in a pandas dataframe.

• 3) Clean the dataframe to remove classes that contain less than 2 records.

• 4) Split the filtered dataframe into training and validation datasets.

• 5) Save filtered images in the respective dataframes in output directories.

1

Labeled images are numbered according to their respective class counts, eg. 0,1, 2,…N-1, where N
= total class records. Alternatively, labeled images can be numbered according to their dataframe
indices that relate to their positions on the dataframe.

[]: # Extract labeled images from annotated palyslides using MRXS and XML files
Group the labeled data into 21 subfolders according to their class labels

MRXS and XML file paths:

mrxs_paths = [
'C:/Users/emmie/OneDrive/Skrivebord/MasterThesis/PalySlideImages/2_4-C-11␣

↪10052.7 ftC = 3064 mC.mrxs',
'C:/Users/emmie/OneDrive/Skrivebord/MasterThesis/PalySlideImages/2_4-C-11␣

↪10070 ftC = 3069.3 mC.mrxs',
'C:/Users/emmie/OneDrive/Skrivebord/MasterThesis/PalySlideImages/2_7-14␣

↪10658ft 8in C.mrxs',
'C:/Users/emmie/OneDrive/Skrivebord/MasterThesis/PalySlideImages/16_3-2␣

↪1998.80 mC.mrxs',
'C:/Users/emmie/OneDrive/Skrivebord/MasterThesis/PalySlideImages/

↪DigitalSlide_C1M_4S_1.mrxs',
'C:/Users/emmie/OneDrive/Skrivebord/MasterThesis/PalySlideImages/

↪DigitalSlide_C1M_5S_1.mrxs'

]

xml_paths = [
'C:/Users/emmie/OneDrive/Skrivebord/MasterThesis/PalySlideImages/2_4-C-11␣

↪10052.7 ftC = 3064 mC_Annotations.xml',
'C:/Users/emmie/OneDrive/Skrivebord/MasterThesis/PalySlideImages/2_4-C-11␣

↪10070 ftC = 3069.3 mC_Annotations.xml',
'C:/Users/emmie/OneDrive/Skrivebord/MasterThesis/PalySlideImages/2_7-14␣

↪10658ft 8in C_Annotations.xml',
'C:/Users/emmie/OneDrive/Skrivebord/MasterThesis/PalySlideImages/16_3-2␣

↪1998.80 mC_Annotations.xml',
'C:/Users/emmie/OneDrive/Skrivebord/MasterThesis/PalySlideImages/

↪DigitalSlide_C1M_4S_1_Annotations.xml',
'C:/Users/emmie/OneDrive/Skrivebord/MasterThesis/PalySlideImages/

↪DigitalSlide_C1M_5S_1_Annotations.xml'
]

Define a function to extract labeled images from MRXS and XML files

def extract_labeled_images(mrxs_path, xml_path):

slide = openslide.OpenSlide(mrxs_path)

tree = ET.parse(xml_path)

2

root = tree.getroot()

annotations = root.find('destination/annotations')

labeled_data = []
for annotation in annotations:

name = annotation.get('name')
type = annotation.get('type')

polygon_points = annotation.findall('p')
points = [(int(point.get('x')), int(point.get('y'))) for point in␣

↪polygon_points]

Extract region of interest from MRXS image based on polygon points␣
↪given in the XML file.

x_min = min([point[0] for point in points])
x_max = max([point[0] for point in points])
y_min = min([point[1] for point in points])
y_max = max([point[1] for point in points])

region = slide.read_region((x_min, y_min), 0, (x_max - x_min, y_max -␣
↪y_min))

labeled_data.append({'image': region, 'label': name})

slide.close()

return labeled_data

Iterate over the MRXS and XML file paths, extract labeled images,
and store the data in a Pandas dataframe
labeled_data_list = []
for mrxs_path, xml_path in zip(mrxs_paths, xml_paths):

labeled_data = extract_labeled_images(mrxs_path, xml_path)
labeled_data_list.extend(labeled_data)

data = pd.DataFrame(labeled_data_list)

data['image'] = data['image'].apply(lambda img: img.convert('RGB')) # Convert␣
↪to RGBA images to RGB

[]: # Display fist 5 image records in the dataframe.

data.head(10)

[]: classes = sorted(data['label'].unique().tolist())
classes

3

[]: # Count the unique classes
class_counts = data['label'].value_counts()

Print the unique classes and their counts
for class_name, count in class_counts.items():

print(f"Class: {class_name}, Count: {count}")

[]: data['image'][0]

[]: data['label'][0]

Print labeled images
[]: # Assuming the dataframe is named df with "label" and "image" columns

selected_indices = [51] # Specify the indices of the images you want to print

for idx in selected_indices:
row = data.iloc[idx] # Access the row at the specified index
label = row["label"]
image = row["image"]

Display the image with its label
plt.imshow(image)
plt.title(label)
plt.axis("off")
plt.show()

0.0.2 Split the dataframe into training and validation datasets

[]: # Count the number of records per class
class_counts = data['label'].value_counts()

Filter out classes with only one record
#filtered_data = data[data['label'].map(class_counts) > 1]
filtered_data = data[data['label'].isin(class_counts[class_counts > 2].index)]

Get the unique classes
classes = sorted(filtered_data['label'].unique().tolist())

Split the filtered data into training and validation sets with the same␣
↪classes

train_data = pd.DataFrame()
val_data = pd.DataFrame()
for label in classes:

class_data = filtered_data[filtered_data['label'] == label]

4

class_train_data, class_val_data = train_test_split(class_data, test_size=0.
↪2, random_state=42)

train_data = pd.concat([train_data, class_train_data])
val_data = pd.concat([val_data, class_val_data])

Get records using using len() function
print("Number of training image data:", len(train_data))

Get the number of records using the .shape attribute
print("Number of validation image data:", val_data.shape[0])

Get number of unique class labels
train_num_classes = len(train_data['label'].unique().tolist())
val_num_classes = len(val_data['label'].unique().tolist())
print(f'Number of training class labels: {train_num_classes}')
print(f'Number of validation class labels: {val_num_classes}')

classes = train_data['label'].unique().tolist()
classes

[]: # Get classes with sizes
class_counts = val_data['label'].value_counts()
class_counts

0.0.3 Save labeled images as files with unique paths

[]: def save_labeledimages(df, output_dir):

"""
Save pandas images as files with associated labels linked with the files.

Args:
data (dataFrame): Dataframe containing 'image' and 'label' columns.
output_dir (str): Output directory to save the images.

"""

Create the output directory if it does not exist
if not os.path.exists(output_dir):

os.makedirs(output_dir)

Create a dictionary to keep track of the numbering for each class label
label_count = {}

Iterate over the rows of the DataFrame

5

for i, row in df.iterrows():
image = row['image']
label = row['label']

Check if the label exists in the dictionary, if not initialize the␣
↪count to 0

if label not in label_count:
label_count[label] = 0

Generate a unique file path for each image based on the label and␣
↪count

file_path = os.path.join(output_dir, f"{label}", f"{label_count[label]}.
↪jpg")

Replace backslashes with forward slashes in the image path
file_path = file_path.replace("\\", "/")
file_path = file_path.replace('"', '')

Create the subfolder for the label if it does nt exist
label_dir = os.path.dirname(file_path)
if not os.path.exists(label_dir):

os.makedirs(label_dir)

Save the image using the file path
image.save(file_path) # The column values should be PIL Image objects

If the column values are numpy arrays representing images
cv2.imwrite(file_path, image)

Print the file path
#print(f"Image {i+1} saved with label {label}: {file_path}")

Increment the count for the current label
label_count[label] += 1

Implementation:

A dataFrame named 'df' contains 'image' and 'label' columns
train_dir = 'C:/Users/emmie/OneDrive/Skrivebord/MasterThesis/

↪ImageClassification/CNN_data/train_data'
val_dir = 'C:/Users/emmie/OneDrive/Skrivebord/MasterThesis/ImageClassification/

↪CNN_data/val_data'
labeled_data_dir = 'C:/Users/emmie/OneDrive/Skrivebord/MasterThesis/

↪ImageClassification/CNN_data/labeled_data'

Save the images with numbering

6

save_labeledimages(train_data, train_dir) # Save only training dataset
save_labeledimages(val_data, val_dir) # Save only validation dataset
#save_labeledimages(data, labeled_data_dir) # Save all the images in the␣

↪dataframe

0.0.4 Image Classification with CNN

Training the Deep Learning Model

• The classification algorithm CNN is trained with training and validation datasets to build a
classifier (trained model)

[]: def build_and_train_cnn(train_dir, val_dir, image_size, batch_size,␣
↪num_classes, num_epochs):

"""
Build and train a CNN model with the training and validation directories.

Args:
train_dir (str): Directory path for the training dataset.
val_dir (str): Directory path for the validation dataset.
image_size (tuple): Tuple specifying the target image size, e.g.,␣

↪(width, height).
batch_size (int): Batch size for training.
num_classes (int): Number of classes in the classification task.
num_epochs (int): Number of training epochs.

Raises:
ValueError: If the number of classes does not match the number of␣

↪unique labels in the datasets.
"""

Data augmentation and normalization for training set
train_datagen = ImageDataGenerator(

rescale=1./255,
rotation_range=20,
width_shift_range=0.2,
height_shift_range=0.2,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True

)

Only rescaling for validation set
val_datagen = ImageDataGenerator(rescale=1./255)

Load and augment the training dataset
train_generator = train_datagen.flow_from_directory(

7

train_dir,
target_size=image_size,
batch_size=batch_size,
class_mode='categorical'

)

Load and augment the validation dataset
val_generator = val_datagen.flow_from_directory(

val_dir,
target_size=image_size,
batch_size=batch_size,
class_mode='categorical'

)

Check if the number of classes matches the number of unique labels in the␣
↪datasets

if num_classes != len(train_generator.class_indices):
raise ValueError("Number of classes doesn't match the number of unique␣

↪labels in the datasets.")

Build the CNN model
model = tf.keras.models.Sequential([

tf.keras.layers.Conv2D(32, (3, 3), activation='relu',␣
↪input_shape=(image_size[0], image_size[1], 3)),

tf.keras.layers.MaxPooling2D((2, 2)),
tf.keras.layers.Conv2D(64, (3, 3), activation='relu'),
tf.keras.layers.MaxPooling2D((2, 2)),
tf.keras.layers.Conv2D(128, (3, 3), activation='relu'),
tf.keras.layers.MaxPooling2D((2, 2)),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.Dense(num_classes, activation='softmax')

])

Compile the model
model.compile(optimizer='adam',

loss='categorical_crossentropy',
metrics=['accuracy'])

Train the model
model.fit(train_generator,
steps_per_epoch=train_generator.samples // batch_size,
validation_data=val_generator,
validation_steps=val_generator.samples // batch_size,
epochs=num_epochs)

8

Train the model and obtain the history object
history = model.fit(train_generator,

steps_per_epoch=train_generator.samples // batch_size,
epochs=num_epochs,
validation_data=val_generator,
validation_steps=val_generator.samples // batch_size)

Convert the function model to a tf.keras model object
model = tf.keras.Model(inputs=model_input, outputs=model_output)

Save the training history
history_model_path = 'C:/Users/emmie/OneDrive/Skrivebord/MasterThesis/

↪ImageClassification/training_history.pkl'

with open(history_model_path, 'wb') as file:
pickle.dump(history.history, file)

Save the model
model_path = 'C:/Users/emmie/OneDrive/Skrivebord/MasterThesis/

↪ImageClassification/model.h5'
#save_model(model, model_path)
model.save(model_path)

Return the history object
return history

[]: # Set the paths to the train and validation directories

train_dir = "C:/Users/emmie/OneDrive/Skrivebord/MasterThesis/
↪ImageClassification/CNN_data2/train_data"

val_dir = "C:/Users/emmie/OneDrive/Skrivebord/MasterThesis/ImageClassification/
↪CNN_data2/val_data"

Set the image size and batch size
image_size = (224, 224)
batch_size = 32

Set the number of classes and epochs
num_classes = 6 #13
num_epochs = 17

Build and train the CNN model
model_history = build_and_train_cnn(train_dir, val_dir, image_size, batch_size,␣

↪num_classes, num_epochs)

9

0.1 Model Training Evaluation
• Plot training/validation accuracy and loss

[]: def plot_training_history(history):
"""
Plot the training and validation accuracy versus loss from the training␣

↪history.

Args:
history (History): Training history object returned by model.fit().

"""

Extract the epochs and metrics from the history object
epochs = range(1, len(history['loss']) + 1)

Access the training metrics and loss
training_loss = history['loss']
training_accuracy = history['accuracy']

Access the validation metrics and loss
val_loss = history['val_loss']
val_accuracy = history['val_accuracy']

Plot the accuracy
plt.figure(figsize=(12, 6))
plt.subplot(1, 2, 1)
plt.plot(training_accuracy, label='Training Accuracy')
plt.plot(val_accuracy, label='Validation Accuracy')
plt.title('Training and Validation Accuracy')
plt.ylim(0.3, 0.9)
plt.xticks(np.arange(0, len(epochs) + 1, 2.0))
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.legend(loc='upper left')

Plot the loss
plt.subplot(1, 2, 2)
plt.plot(training_loss, label='Training Loss')
plt.plot(val_loss, label='Validation Loss')
plt.title('Training and Validation Loss')
plt.ylim(0.4, 2)
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.xticks(np.arange(0, len(epochs)+1, 2.0))
plt.legend(loc='upper right')

Show the plot

10

plt.tight_layout()
plt.show()

[]: # Load the saved model
model_path = 'C:/Users/emmie/OneDrive/Skrivebord/MasterThesis/

↪ImageClassification/model.h5'
model = load_model(model_path)

Load the training history
history_model_path = 'C:/Users/emmie/OneDrive/Skrivebord/MasterThesis/

↪ImageClassification/training_history.pkl'
with open(history_model_path, 'rb') as file:

history = pickle.load(file)

Access the training metrics and loss
training_loss = history['loss']
training_accuracy = history['accuracy']

Access the validation metrics and loss
validation_loss = history['val_loss']
validation_accuracy = history['val_accuracy']

Print the training and validation metrics
print("Training Loss:", training_loss)
print("Training Accuracy:", training_accuracy)
print("Validation Loss:", val_loss)
print("Validation Accuracy:", val_accuracy)

From the trained model and history object
plot_training_history(history)

Make a prediction

• Predict the class label of an unknown image.

[]: def resize_image(image_path, desired_size):
try:

Check if the image file exists
if not os.path.exists(image_path):

print(f"Image file '{image_path}' not found.")
return None

Load the image using OpenCV
image = cv2.imread(image_path)

Check if the image is loaded successfully
if image is None:

11

print(f"Failed to load image '{image_path}'.")
return None

Resize the image
resized_image = cv2.resize(image, desired_size)

Convert the resized image to RGB format
resized_image = cv2.cvtColor(resized_image, cv2.COLOR_BGR2RGB)

return resized_image

except Exception as e:
print(f"Error occurred while resizing image '{image_path}': {e}")
return None

Specify the path to the image file and the desired size
image_path = 'C:/Users/emmie/OneDrive/Skrivebord/MasterThesis/

↪ImageClassification/images/image24.jpg'
desired_size = (224, 224) # Example size

Resize the image
resized_image = resize_image(image_path, desired_size)

Check if the image was resized successfully
if resized_image is not None:

Perform further processing with the resized image
print("Image resized successfully.")

Load the pre-trained model
model_path = 'C:/Users/emmie/OneDrive/Skrivebord/MasterThesis/

↪ImageClassification/model.h5'
#model_path = 'C:/Users/emmie/OneDrive/Skrivebord/MasterThesis/

↪ImageClassification/trained_cnn_models/model.h5'
model = load_model(model_path)

Get the model's class indices
model_class_indices = model.predict(np.zeros((1, 224, 224, 3))).argmax(axis=1)

Define the class labels
class_labels = [

#'Acanthaulax venusta',
'Cribroperidinium "prominoseptatum"',
#'Dingodinium tuberculosum',
#'Dingodinium tuberosum',
'Fibrocysta axialis',

12

#'Gonyaulacysta jurassica',
'Palaeoperidinium pyrophorum',
'Senoniasphaera inornata',
#'Sentusidinium pilosum',
'Spongodinium delitiense',
'Spongodinium delitiense (operculum)'
#'Systematophora areolata',
#'Tubotuberella apatela'

]

Create a dictionary mapping the model's class indices to the class labels
class_mapping = {index: label for index, label in enumerate(class_labels)}

print("Reordered Class Labels:")
for index, label in class_mapping.items():
print(f"Index {index}: {label}")

Preprocess the image
preprocessed_image = np.expand_dims(resized_image, axis=0)
preprocessed_image = preprocessed_image / 255.0 # Normalize pixel values to␣

↪the range [0, 1]

Perform the prediction
predictions = model.predict(preprocessed_image)

Get the predicted class label
predicted_class_index = np.argmax(predictions[0])

Print the predicted class index
print("Predicted Class Index:", predicted_class_index)

predicted_class_label = class_labels[predicted_class_index]
print(f'Predicted label: {predicted_class_label}')

Reshape the image array to remove the batch dimension
image_array = np.squeeze(preprocessed_image, axis=0)

Display the image with the predicted class label
plt.imshow(image_array)
plt.title(f'Predicted Label: {predicted_class_label}')
plt.axis('off')
plt.show()

13

0.1.1 Model Evaluation

The following algorith iterates through the folder of test images, preprocess the images, make
predictions, evaluate the model perfromance using confusion matrix metrics and display images
with predicted labels.

[]: # Import necessary libraries
import os
import re
from natsort import natsorted
import seaborn as sns
import numpy as np
from PIL import Image
import cv2
from sklearn.metrics import␣

↪f1_score,accuracy_score,classification_report,confusion_matrix
import matplotlib.pyplot as plt
from keras.models import load_model

[]: def resize_image(image_path, desired_size):
try:

Check if the image file exists
if not os.path.exists(image_path):

print(f"Image file '{image_path}' not found.")
return None

Load the image using OpenCV
image = cv2.imread(image_path)

Check if the image is loaded successfully
if image is None:

print(f"Failed to load image '{image_path}'.")
return None

Resize the image
resized_image = cv2.resize(image, desired_size)

Convert the resized image to RGB format
resized_image = cv2.cvtColor(resized_image, cv2.COLOR_BGR2RGB)

return resized_image

except Exception as e:
print(f"Error occurred while resizing image '{image_path}': {e}")
return None

Define the directory of test images and the desired size

14

image_dir = 'C:/Users/emmie/OneDrive/Skrivebord/MasterThesis/
↪ImageClassification/test_images'

desired_size = (224, 224)

Load trained model
model_path = 'C:/Users/emmie/OneDrive/Skrivebord/MasterThesis/

↪ImageClassification/model.h5'
model = load_model(model_path)

Define class labels
class_labels = [

#'Acanthaulax venusta',
'Cribroperidinium "prominoseptatum"',
'Dingodinium tuberculosum',
'Dingodinium tuberosum',
'Fibrocysta axialis',
'Gonyaulacysta jurassica',
'Palaeoperidinium pyrophorum',
'Senoniasphaera inornata',
'Sentusidinium pilosum',
'Spongodinium delitiense',
'Spongodinium delitiense (operculum)'

'Systematophora areolata',
'Tubotuberella apatela'
]

Create a dictionary to map image filenames to true labels
image_label_map = {

'3.jpg': 'Cribroperidinium "prominoseptatum"',
'4.jpg': 'Cribroperidinium "prominoseptatum"',
'5.jpg': 'Cribroperidinium "prominoseptatum"',
'6.jpg': 'Cribroperidinium "prominoseptatum"',
'7.jpg': 'Cribroperidinium "prominoseptatum"',
'12.jpg': 'Fibrocysta axialis',
'13.jpg': 'Fibrocysta axialis',
'14.jpg': 'Fibrocysta axialis',
'15.jpg': 'Fibrocysta axialis',
'16.jpg': 'Fibrocysta axialis',
'17.jpg': 'Fibrocysta axialis',
'18.jpg': 'Fibrocysta axialis',
'19.jpg': 'Fibrocysta axialis',
'20.jpg': 'Fibrocysta axialis',
'23.jpg': 'Palaeoperidinium pyrophorum',
'24.jpg': 'Palaeoperidinium pyrophorum',
'25.jpg': 'Palaeoperidinium pyrophorum',

15

'26.jpg': 'Palaeoperidinium pyrophorum',
'27.jpg': 'Palaeoperidinium pyrophorum',
'28.jpg': 'Palaeoperidinium pyrophorum',
'29.jpg': 'Palaeoperidinium pyrophorum',
'30.jpg': 'Palaeoperidinium pyrophorum',
'31.jpg': 'Palaeoperidinium pyrophorum',
'32.jpg': 'Senoniasphaera inornata',
'33.jpg': 'Senoniasphaera inornata',
'34.jpg': 'Senoniasphaera inornata',
'35.jpg': 'Senoniasphaera inornata',
'36.jpg': 'Senoniasphaera inornata',
'37.jpg': 'Senoniasphaera inornata',
'38.jpg': 'Senoniasphaera inornata',
'39.jpg': 'Senoniasphaera inornata',
'40.jpg': 'Senoniasphaera inornata',
'43.jpg': 'Spongodinium delitiense',
'44.jpg': 'Spongodinium delitiense',
'45.jpg': 'Spongodinium delitiense',
'46.jpg': 'Spongodinium delitiense',
'47.jpg': 'Spongodinium delitiense',
'48.jpg': 'Spongodinium delitiense',
'49.jpg': 'Spongodinium delitiense',
'50.jpg': 'Spongodinium delitiense',
'51.jpg': 'Spongodinium delitiense (operculum)',
'52.jpg': 'Spongodinium delitiense (operculum)',
'53.jpg': 'Spongodinium delitiense (operculum)',
'54.jpg': 'Spongodinium delitiense (operculum)',
'55.jpg': 'Spongodinium delitiense (operculum)',
'56.jpg': 'Spongodinium delitiense (operculum)',

Add more filename-label pairs as needed
}

Initialize empty lists for true and predicted labels
true_labels_list = []
predicted_labels = []
predicted_images = []

Get the file names in the directory and sort them naturally
image_filenames = natsorted(os.listdir(image_dir))

for filename in image_filenames:
if filename.endswith('.jpg') or filename.endswith('.png'):

Construct the full image path
image_path = os.path.join(image_dir, filename)

16

image_path = image_path.replace('\\','/') # Replace backslashes with␣
↪forward slash

Resize the image
resized_image = resize_image(image_path, desired_size)

Check if the image was resized successfully
if resized_image is not None:

Perform further processing with the resized image
print("Image resized successfully.")

Preprocess the image
preprocessed_image = np.expand_dims(resized_image, axis=0)
preprocessed_image = preprocessed_image / 255.0 # Normalize pixel␣

↪values to the range [0, 1]

Perform the prediction
predictions = model.predict(preprocessed_image, verbose=0)

Get the predicted class label
predicted_class_index = np.argmax(predictions[0])
predicted_class_label = class_labels[predicted_class_index]

Append the true and predicted labels
true_label = image_label_map.get(filename, 'Unknown') # Get the␣

↪true label from the mapping, or use 'Unknown' if not found
true_labels_list.append(true_label)
predicted_labels.append(predicted_class_label)
predicted_images.append(image_path)

Convert the lists of true labels and predicted labels to numpy arrays
true_labels = np.array(true_labels_list)
predicted_labels = np.array(predicted_labels)

print("True Lables:", true_labels)
print("Predicted Labels:", predicted_labels)

Calculate the confusion matrix
cm = confusion_matrix(true_labels, predicted_labels)

Calculate the accuracy
accuracy = accuracy_score(true_labels, predicted_labels)

Calculate the precision
precision = np.nan_to_num(cm.diagonal() / cm.sum(axis=0), nan=0.0)

Calculate the recall

17

recall = np.nan_to_num(cm.diagonal() / cm.sum(axis=1), nan=0.0)

Calculate the F1-score
f1 = np.nan_to_num(2 * (precision * recall) / (precision + recall), nan=0.0)

print("Confusion Matrix:")
print(cm)

Print the accuracy, precision, recall, and F1-Score
print("Accuracy: {:.2f}".format(accuracy))
print("Precision:", end=" ")
for p in precision:

print("{:.2f}".format(p), end=" ")
print()
print("Recall:", end=" ")
for r in recall:

print("{:.2f}".format(r), end=" ")
print()
print("F1-Score:", end=" ")
for f in f1:

print("{:.2f}".format(f), end=" ")
print()

Calculate the weighted F1 score
f1 = f1_score(true_labels, predicted_labels, average='weighted')
Print the F1 score
print("Weighted F1 Score:", round(f1, 2))

Calculate performance metrics for each class with sklearn method
report = classification_report(true_labels, predicted_labels, zero_division=0)
Print the classification report
print("Classification report:",report)

Create heatmap with the seaborn method
Create a list of class labels
labels = np.unique(true_labels)

Plot the heatmap
plt.figure(figsize=(8,6))
sns.heatmap(cm, annot=True, fmt="d", cmap="Blues", xticklabels=labels,␣

↪yticklabels=labels)
plt.title("Confusion Matrix")
plt.xlabel("Predicted Labels")
plt.ylabel("True Labels")
plt.show()

18

Visualize predicted images
for i in range(len(predicted_images)):

image_path = predicted_images[i]
image_label = predicted_labels[i]
image = plt.imread(image_path)

plt.imshow(image)
plt.title(f"Predicted Label: {image_label}")
plt.axis("off")
plt.show()

19

	Create a Pandas dataframe of labeled images with their annotation details.
	Data Preparation
	Saving Labeled Images and the Corresponding XML Annotation Files
	Training Mask RCNN.
	Make Predictions with the trained Mask RCNN model

	Read and Manipulate Slide Images
	Generating tiles for deep learning tasks
	Tile Generation with YOLOv4
	Object Detection with YOLOv4-tiny Network
	Watershed Segmentation

	Data Preprocessing for Classification Task
	Split the dataframe into training and validation datasets
	Save labeled images as files with unique paths
	Image Classification with CNN
	Model Training Evaluation
	Model Evaluation

