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Abstract

Swarm is a decentralized storage platform consisting of several independently

operated nodes. The nodes store data units called chunks. Storing chunks allows

them to partake in Swarm’s storage incentive. The storage incentive is amonetary

incentive for people to operate nodes. This thesis investigates how the incentive is

distributed based on simulation results. Analyzing the equality of the distribution

and comparing the outcome of node operators with a single node and those with

multiple.

A simulator of the storage incentives was designed and created. Then, simu-

lating several configurations for 100s of thousands of rounds for the rewarddistri-

bution to get an insight into how it’s distributed among nodes. Then some Swarm

nodeswere run in a virtualmachine to test the resource usage and viability of run-

ning multiple nodes.

In a network where node operators can only have one node each, the simu-

lation shows that a network with ideal conditions has an almost equal outcome.

The outcome is significantly less equal if the network allows nodes to partake in

more than one neighborhood. The reward distribution in the storage depth im-

plementation is found to be influenced by the number of nodes and storage depth.

Increasing storage depth without a proportional increase in nodes leads to frag-

mented neighborhoods with varying levels of participation.

When one operator can runmultiple nodes, my finding is that toomany nodes

have a diminishing return. This happens because the nodes of the operator start

to compete among themselves instead of competing against others.

Since the simulator was made modular, it was, for example, easy to change

stake distribution while having the same network and vice versa. This allowed

for quickly testing different configurations. The results are saved to an SQLite

database that allows data analysis without rerunning the simulator.
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Chapter 1

Introduction

1.1 Background and Motivation

1.1.1 Background

Swarm, in summary, is decentralized storage that allows you to store files by split-

ting them into chunks anduploading them to anetwork of nodes [Swarm-team(2021)].

Swarm aims to achieve a node network that stores chunks resiliently and re-

dundantly [Trón(2020)]. Resilience and redundancy come from having several

nodes spread worldwide storing the same chunks [Trón(2020)]. If a single node

fails or is under some DOS attack, then there will be another node/path in the

network [Swarm-team(2021)]. This means that Swarm does not have a single

point of failure [Trón(2020)].

Since Swarm is decentralized, it does not, compared to cloud storage, have

a single point of failure [Trón(2020)]. Applications that use Swarm have bet-

ter service continuity; if a service provider goes bankrupt, the service usually

ends, but on Swarm, the application is functioning as long Swarm is operational

[Trón(2020)]. Cloud storage providers have complete control over what is al-

lowed on their platform, which the Swarm creators argue is something that can

and eventually lead to censorship [Trón(2020)]. They also say that centralized

control can lead to the manipulation of opinions by controlling how and what

data is displayed [Trón(2020)].

Nodes that store the chunks are doing so at a cost, coming from hardware,

electricity, internet access, etc. Standard costs for running computers. To not

rely on altruism alone, Swarm implements two systems to reward node operators
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monetarily [Swarm-team(2021)]. One system tracks bandwidth usage between

nodes, and the other from storing chunks uploaded to the network [Trón(2020)].

More on Swarms’ inner workings in chapter 3.

Swarmhas around 5000 active nodes in the past 30 days of writing, and about

2600 nodes in total have staked 1, more on node staking in chapter 3.3.1.

1.1.2 Motivation

My thesis focuses on rewards from storing chunks, how it is distributed, and the

distribution’s fairness. Swarm is new and still under active development; there-

fore, I want to investigate how rewards are split between nodes in the network.

Because Swarm offers an alternative to traditional cloud storage, it needs com-

petitive pricing to bring in users. It also needs to balance this with the payout

to node operators. If the earnings from running a node do not, at the very least,

cover the operational cost, I speculate that many will not want to start operating

nodes. Therefore Swarm needs to have a properly functioning rewards system

that allows new operators to get started.

The storage incentive in Swarm is created to encourage node operators to

want to host and to limit the amount of data uploaded to Swarm by adding a

cost [foundation(2022)]. As explained later in chapter 3, a game of chance is

responsible for distributing rewards from chunks. A node’s chance to win is di-

rectly affected by how much it has staked [Trón(2020)]. Since nodes can affect

their chances, it is worth looking into how significant that effect is. If a node can

entirely dominate by having a significant stake, I speculate that new operators

looking to join the network will be heavily discouraged.

A node operator will presumably want to maximize their earnings and, as

such, run multiple nodes. It is possible to run multiple nodes on a single com-

puter [Maizels(2023a)]. The operational cost is presumably internet access and

electricity. Since increasing the number of nodes will mainly affect hardware uti-

lization, it can be seen as an increase in electricity cost. Multiple nodes can po-

tentially bring in diminishing returns if they start competing with themselves. If

that happens, running as many nodes as possible is not optimal.

1Numbers from: swarmscan.io

swarmscan.io


1.2 Objectives

Investigating how the storage reward is distributed among node operators. Mul-

tiple variables can affect the distribution outcome, and since Swarm is still un-

der active development, historical data is unreliable. For example, the blog post

[foundation(2022)] mentions an update to the fixed price. The price is fixed and

was just updated to a new one. The post also mentions it was the last time aman-

ual price adjustment was set and that the following update will implement a rent

oracle to decide the price. Therefore I need to simulate data.

As will be explained later in chapter 3, the storage incentive has rounds. In

each round, awinner is selected. One round is about 15minutes [foundation(2022)].

Creating a simulator that can simulate it faster than real-timewill givemuchmore

data to analyze.

A flexible simulator that can be configured to test different Swarm configura-

tions. Stake is something a node can use to increase its chances of winning, more

in chapter 3. A simulator that can test different stake distributions while the node

network stays the same between simulations.

Simulator goals:

• Faster than real-time.

• Modular to allow for testing of different configurations.

• Generate data for analysis.

Data analysis goals:

• Investigate the rewards distribution.

• Investigate the effect of stake.

• Test different implementations of the network structure.

• Test if there are diminishing returns from running multiple nodes.

• Gather some data about nodes’ resource usage.

Lastly, I want to gather resource usage by running multiple nodes in a virtual

machine.



1.3 Approach and Contributions

I created a modular simulator in Golang. It allows for testing different config-

urations of Swarm and its parts. It can simulate 360 000 rounds in less than a

second. Since 1 round is about 15 minutes, 360 000 rounds is a little over ten

years. Saving those rounds to disk is the limiting factor. It can take an hour to

save all rounds to disk. Saving every 100 rounds instead is much quicker, taking

me only about 40 seconds to complete.

Created modules for the Simulator:

• Four network structures.

• Three stake distributions.

• One rent oracle implementation.

• One Postage contract implementation.

• Two configurable methods of saving node states.

Findings from the data:

• Stake has a significant impact.

• Storage depth is a better model than closest nodes.

• Increasing depth pushes reward distribution toward equality.

• Increasing the number of nodes in storage depth implementations, pushes

the reward distribution to be more like the stake distribution.

• Data points to an optimal number of nodes to operate.

• Optimal number of nodes to maximize the reward for an operator is tied to

storage depth, operated nodes, and total nodes in the network.

• It is viable to run multiple nodes.

1.4 Outline

Chapter 2 shows related work.



Chapter 3 explains the inner workings of Swarm used to develop a simulator of

the storage incentive.

Chapter 4 starts by outlining the requirements for the simulator. Then the design

of the simulator is presented. Then an explanation of how it is implemented.

Then the approach for how the simulations were done.

Chapter 5 shows the results from running the simulations using the created sim-

ulator.

Chapter 6 explains how resource usage of a virtual machine running a Swarm

node was captured. The approach for running nodes in a virtual machine. It also

contains the results from the measurements.

Chapter 7 is the discussion of findings in the simulated data.

Chapter 8 contains the conclusions that are drawn from the findings.



Chapter 2

RelatedWork

Characteristics

The study presented in [Xu(2023)] focuses on the analysis of two decentralized

storage networks, IPFS and Swarm, with the aim of gaining a deeper understand-

ing of their characteristics andbehavior. The key challenge addressed is the devel-

opment of effective incentive protocols to reward network participants for their

contributions.

Bandwidth incentives

In the study conducted by the authors of

[Heidaripour Lakhani et al.(2022)Heidaripour Lakhani, Jehl, Hendriksen, and Estrada-Galiñanes],

the focus was on simulating the bandwidth incentive in the Swarm network. To

assess the fairness of the reward distribution, the authors utilized the Gini coef-

ficient. By analyzing the Gini coefficient, they were able to identify and evaluate

the fairness characteristics associated with the sharing of rewards among nodes.
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Chapter 3

How Swarm works

3.1 Overview

Swarm is a system that is supposed to function as a distributed storage, with

many independent nodes working together [Trón(2020)]. Its networking topol-

ogy is set up using Kademlia [Trón(2020)], creating neighborhoods of nodes that

store the same data [Trón(2020)]. The size of the neighborhood can be said to be

the redundancy of the network; nodes in the same neighborhood synchronize the

chunks they are storing with each other [Trón(2020)].

A chunk is a data unit uploaded to thenetworkwith amax size of 4KB [Trón(2020)].

If a user wants to upload amore than 4KB file, it must be split into several chunks

[Trón(2020)].

To not rely on people’s altruism for storing chunks, there is a payment to up-

load chunks to the Swarm [Trón(2020)]. Like postage stamps, a stamp-like sys-

tem exists where a user buys a batch of stamps that gets ”attached” to the up-

loaded chunks, allowing the Swarm network to take rent from the batch to which

the stamps belong [Trón(2020)]. A batch of stamps has a tracked balance, and it’s

from the batch balance that the rent is taken from [Trón(2020)]. When the batch

balance reaches 0, nodes can move the chunks whose balance is emptied into

their cache storage, where it will eventually get garbage collected [Trón(2020)].

Swarm uses smart contracts on a blockchain to enforce its storage incentive

[Maizels(2023b)]. At the timeofwriting, Swarmuses theGnosis chain [Maizels(2023b)],

which is a sidechain to Ethereum [Gnosis(2023)].

Swarm itself does not produce any applications [Trón(2020)]. Instead, it aims
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to be the drive and sets itself up so that other developers can create applications

that presumably use Swarm for storage [Trón(2020)].

3.2 Networking

Swarm has an overlay and underlay network [Trón(2020)]. The overlay deter-

mineswho is connected towho; it is the topology of node connections [Trón(2020)].

The underlay network is how the nodes communicate with each other, and it uses

TCP/IP for node communication [Trón(2020)]. This means a node will have two

addresses, an overlay address and an underlay address [Trón(2020)].

3.2.1 Overlay - Kademlia

The overlay network uses Kademlia [Trón(2020)].

Kademlia is a distributed hash table (DHT) protocol designed for decentral-

ized peer-to-peer networks [Wikipedia contributors(2023)].

Anodeuses its blockchainwallet address as itsKademlia address [Trón(2020)].

Each node maintains a routing table that keeps track of other nodes in the net-

work [Trón(2020)]. The routing table is divided into multiple buckets, with each

bucket responsible for a specific range of node IDs [Trón(2020)].

3.3 Smart contracts & a token

Swarmhas some smart contracts that are used for its storage incentives [foundation(2022)]:

• Staking contract.

• Rent oracle.

• Postage contract.

• Redistribution contract.

To enablemonetary exchange, a token called BZZ is used [foundation(2022)].

The token is paid to the contracts and received as a reward in the storage incentive

system [foundation(2022)].



3.3.1 Stake & the staking contract

Staking is when a node sends some BZZ to the staking contract to be eligible to

participate in the storage incentive [foundation(2022)]. It is a way for the node

to put some monetary value on staying honest; if they misbehave, they lose their

stake [Trón(2020)]. The current implementation does not allow the stake to be

withdrawn [Raja(2023)].

3.3.2 Rent oracle

It is the rent oracles’ job to decide the rent, which is set by looking at the net-

work’s redundancy, where redundancy is the number of nodes in a neighborhood

[Trón(2020)]. Since the goal is a redundancy variable of 4, one can adjust the

price to encourage nodes to join or leave the network [foundation(2022)].

3.3.3 Postage contract

In the postage contract, one can purchase a batch of stamps [Trón(2020)]. A

batch id is received from the purchase that is then used when signing a chunk

[Trón(2020)]. Parts of a stamp [Trón(2020)]:

• Chunk address

• Batch id

• signature

Other users besides the original buyer can deposit more funds to a batch after its

creation [Trón(2020)].

3.3.4 Redistribution contract

For every Nth block on the blockchain, the redistribution contract randomly gen-

erates an anchor (Kademlia address) to find aneighborhoodof nodes [Raja(2023)].

Nodes in that neighborhood must calculate a reserve hash from the chunks it

stores [Raja(2023)]. Nodes only use chunks that are part of the neighborhood’s

responsibility [Raja(2023)]. They will not have the same reserve hash as other

nodes in theneighborhood if they include their cache, as itmaydiffer [Raja(2023)].

Nodes then hash the reserve hash with a random reveal nonce, overlay address,



and storage depth to create a commit hash to submit to the redistribution contract

[Raja(2023)]. This is called the commit phase of the contract [Raja(2023)].

After the commit phase, there is the reveal phase [Raja(2023)]. Nodes must

submit their reveal nonce and storage depth to the smart contract [Raja(2023)].

They are included in the next phase only if the commit hash is correctly re-hashed

[Raja(2023)]. If not, they are blocked fromparticipating for some time [Raja(2023)].

The claim phase is the last; it starts by selecting a node to be a truth-teller

[Raja(2023)]. It randomly selects from the nodes with a weight based on stake,

meaning thehigher the stake, the higher the chance of being selected [Raja(2023)].

From the nodes that agree with the truth-teller, a node is again selected randomly

proportional to their stake to be the final winner [Raja(2023)]. The winner can

then claim their winnings from the postage contract [Raja(2023)].

One iteration of these phases is called a round [foundation(2022)]. Thus every

Nth block, the contract starts a new redistribution round.

This game of chance is set up as a coordination game [Raja(2023)], meaning

the optimum strategy is to perform the same actions as the rest of the players

[Wikipedia contributors(2022)]. To discourage nodes from misbehaving, their

stakewill be reduced or even entirely removed if found to breakprotocol [foundation(2022)].

An overview of the process created by the creators of Swarm is in figure 3.1.

3.4 Incentives

Swarm has two primary incentives, one with a focus on interactions between

nodes (bandwidth), and the other is incentives for actually storing chunks [Trón(2020)].

3.4.1 bandwidth incentive

Nodes have a ledger that tracks bandwidth usage between themselves and other

nodes they communicate with [Swarm-team(2021)]. Since nodes request things

from each other, one can say that node A owes B if A has sent a request to B

[Swarm-team(2021)]. A can then pay off its debt to B by paying them some BZZ

tokens or waiting a period [Swarm-team(2021)]. The debt also gets reduced if B

were to request something fromA since it equals out the debt [Swarm-team(2021)].

The debt has a threshold value that, if reached, the node that is owed will stop re-

spondinguntil the debt is paid off or sufficient timehas passed [Swarm-team(2021)].



Figure 3.1: Overview taken from [foundation(2022)]

3.4.2 Storage incentive

Storage incentive is the combination of the mentioned smart contracts in Section

3.3 to create a system that is self-regulating [Trón(2020)]:

• The postage contract controls what content (chunks) is paid for.

• A new round starts every Nth block on the blockchain.

• Rent Oracle figures out the rent for the round.

• Staking contract controls which nodes are allowed to partake in redistribu-

tion rounds.

• The redistribution contract distributes the collected rent for the round.



Chapter 4

Creating a simulator

4.1 Requirements

To gain insight into how the storage incentive is distributed among nodes, a simu-

lator needs to model the parameters that affect how a node wins. I have gathered

that three different parameters can affect a node’s chance of winning. First is the

stake, a value the node has complete control over. Secondly, how a neighborhood

is selected; a node can not control it. And third, running multiple nodes allows a

node operator to increase their overall chance of winning.

4.1.1 Stake distribution

The influence of stake on a node’s chances of winning in Swarm’s storage incen-

tive presents an opportunity to explore various stake distributions. Examining

different distributions of stake among nodes gives insight into the effects on re-

ward distribution.

Equal stake

A baseline scenario that involves nodes with equal stakes, where all nodes have

an equal chance of winning the reward distribution. In such a case, it can be

anticipated that earnings will tend to equalize among the nodes over a sufficient

number of rounds.
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Power law

Power law distributions show up in economics [Gabaix(2009)]. These distribu-

tions are characterized by small entities holding a disproportionately large share

of resources while the majority possess a relatively minor share. Investigating

how such a stake distribution affects the reward distribution, can reveal informa-

tion about the fairness in the distribution process.

4.1.2 Neighborhood selection

A neighborhood is first selected, then a winner is chosen from the nodes in the

neighborhood. As such, the selection process for a neighborhood will impact a

node’s chance of winning.

Swarm selects a neighborhood by generating a random anchor. If the address

is set to a length of four, there are 24 = 16 addresses possible. The selected neigh-

borhood is the one that the anchor resides in. The following presents one baseline

approach and two methods to divide the network into neighborhoods.

Ideal/Saturated Kademlia

The ideal network is meant to be a baseline for comparison with other results. It

has precisely four nodes in every neighborhood, and the chance of a neighbor-

hood being picked is the same. The number four stems from the swarm creators

wanting a redundancy variable of four [Trón(2020)]. For example, if the address

length is four, and the neighborhood size (redundancy variable) is four, the net-

work is split into four neighborhoods since 24/4 = 4. Assuming all addresses have

an equal probability of being the anchor for a round, it can be seen as the neigh-

borhoods having four ”tickets” to win. Since all neighborhoods have the same

amount of tickets, they all have the same probability of winning, which in the

example becomes 1/4. In general, 1/h where h is the number of neighborhoods

in the network. Or 2l/r where l is the address length, and r is the redundancy

variable.

The ideal network is a saturated Kademlia network. Saturatedmeaning nodes

fill all address slots. So a network with address length 11 has 211 = 2048 nodes

divided into 2048/4 = 512 neighborhoods.



Kademlia closest nodes

The closest nodes network structure allows a node to be part of more than one

neighborhood. This happens when a network is not fully saturated due to how

proximity order works in Kademlia. This method stems from section 2.2.5 from

[Trón(2020)]. It constructs neighborhoods by considering who is responsible

for an address (chunk/anchor). The responsible ones are, at minimum, the four

(redundancy variable) closest nodes to the address. It is those responsible that

form a neighborhood.

This way of constructing neighborhoods makes it so a node can be part of

more than one neighborhood. For example, set the address length to 3 with a

redundancy of 4. If an anchor address were to be 110, then the first proximity

order to check is 110. Are there four or more nodes with the address 110? If

there are, a neighborhood is formed, else the proximity order decrease. The next

proximity order is 11; since it is no longer a full address, it is a prefix. All nodes

that have that prefix are part of the neighborhood. Again ask if that prefix has

four or more nodes to form a neighborhood; if not, continue. The subsequent

prefixes to examine are 1 and then 0. If it reaches the prefix of 0, it can add nodes

in the address space of 0xx, which can contain up to 22 = 4 nodes. If all those

addresses under prefix 0 are taken, and there are not enough nodes to form a

neighborhood under prefix 1, then any anchor that lands under prefix 1 includes

all nodes under 0. If the anchor lands under the prefix 0, it would not include

any nodes from prefix 1 since prefix 0 forms a whole neighborhood of four nodes.

This gives nodes under prefix 0 a higher overall chance of winning, since they are

part of two neighborhoods. Figure 4.1 visually represents the example.

This is neighborhoods, as described in the book of Swarm; however, it appears

to have been swapped out for storage depth in current versions. On the official

Discord channel for Swarm, user ldeffenb#4199 states:

... Neighborhoods as it relates to Kademlia Depth seems to have gone

by the wayside with the introduction of the storage depth and incen-

tives.

Thismethod is thus investigated to see if it performs similarly to storage depth.
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Figure 4.1: Binary tree where the nodes are leaves, no node on address 110. The
four yellow nodes under the prefix 0 form a neighborhood independently. The
nodes under the prefix 1 do not formaneighborhood of four. Therefore it includes
the four yellow nodes creating a neighborhood of size 7.

Kademlia Storage depth

Storage depth is how Swarm, at writing, decides which neighborhood is picked

for the round.

On the official Discord channel for Swarm,Discord user ldeffenb#4199writes:

... First is having the node’s neighborhood selected. At the current

storage radius of the swarm of 8 there are 256 (28) neighborhoods. ...

In a subsequentmessage, they explain their knowledge and experience come from

reading the source code and running nodes.

So the network gets divided into neighborhoods froma storage depth variable.

From the knowledge gathered from Discord, the storage depth variable increases

or decreases depending on the number of chunks. Let’s call the variable s. If the

number of chunks in the network can not be stored with the current amount of

neighborhoods, s increases, which causes the neighborhoods to split into more.

Thereby needing to store less per neighborhood. It works this way since every

node in a neighborhood needs to store the same chunks. Thus, when s increases,

nodes will be split into new neighborhoods and be responsible for fewer chunks.

The chunks they are responsible for are the ones that have the same address pre-



fix. If the address length is three and storage depth is 2, the neighborhoods are

11, 10, 01, 00. Any chunk that has an address 11x will belong to neighborhood 11.

Chunks with 01x belong to neighborhood 01 etc. Had the storage depth been 1,

the neighborhoods are only 1 and 0. A visual representation in Figure 4.2.
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Figure 4.2: Binary tree, address length of 3. The green stapled line shows how the
network is split into neighborhoods when the storage depth is 1. The solid orange
line shows the network neighborhoods when storage depth is 2. At storage depth
0, all the nodes are in the same neighborhood.

4.1.3 Multiple nodes

Node operators can increase their chances of winning in each round by running

multiple nodes within the network, as long as these nodes are not located in the

sameneighborhood. Transitioning froma single node tomultiple nodes increases

an operator’s probability of winning.

Swarm aims to establish andmaintain a decentralized network [Trón(2020)].

However, if a single node operator controls an excessive number of nodes, the

network risks becoming somewhat centralized, undermining the decentralized vi-

sion. The storage incentive appears to inherently discourage node operators from

accumulating an overwhelming number of nodes. When an operator controls too

many nodes, the competition among their own nodes intensifies, diminishing the

rewards earned by each node. If so, the outcome is a deterrent for excessive cen-

tralization tendencies, as it becomes economically inefficient for a node operator

to operate many nodes.



To investigate this diminishing return, the simulator must implement a way

to assign operators to nodes.

With the possibility of assigning operators to nodes, spread stake can be in-

vestigated.

Spread stake

A node operator can run one node and put their entire stake on that node, or they

can spread it over multiple nodes. This distribution sets a value x that will get

divided by the number of nodes an operator has. In effect, node operator one has

x/1 stake on their only node. Operator two has two nodes, so the stake per node

will be x/2. Operator three has three nodes, each with x/3 as their stake, etc.

This stake distribution ensures all operators have the same total stake in the

network. It is just how it is distributed among their nodes that are different. Thus

giving insight into how the chance of winning increaseswith the number of nodes.

Operator 3Op. 1 Operator 2

2000 1000 1000 666 666

666

500

500

500

500

Operator 4

Figure 4.3: Operator 1 has one node with 2000 stake. Operator 2 has two nodes
with 1000 stake each. Operator 3 has three nodes with 666 stake each, rounded
down to not exceed 2000 in total. Operator 4 has four nodes with 500 stake each.

4.1.4 Analysis requirements

Storing node state

To conduct a thorough analysis and evaluation of the simulated storage reward in-

centive in Swarm, the simulator must incorporate a method for storing the states

of individual nodes. The node state consists of the fields id, earnings, and stake.

By storing node states in an external storage system, the simulator allows for post-

simulation analysis of the simulation results after completion.



Gini coefficient

The Gini coefficient is a measurement tool to assess the level of equality within

a distribution [world bank(2023)]. It quantifies the degree of inequality. A Gini

value of zero represents perfect equality, and a Gini value of one indicates abso-

lute inequality [world bank(2023)]. Incorporating a method for calculating the

Gini coefficient provides valuable insights into the equality of reward and stake

distributions.

4.2 Design

This section explains the key elements and considerations involved in creating a

simulator for the storage reward incentive in Swarm.

4.2.1 Assumptions

During the design process of the simulator, some assumptions were made.

No threat actors

The simulator does not model the presence or actions of threat actors within the

Swarm network. The simulator aims to simulate and analyze the storage reward

incentive among nodes. This simplifying assumption allows the focus to be on

the distribution among nodes.

No threat actors allow for a significant simplification of nodes. When a node

wants to partake in a round, it has to calculate a commit hash from its stored

chunks. With no bad actors, it can be assumed that all nodes submit proper com-

mit hashes. Thus there is no need to run any in-depth simulation on every node.

Nomid-round network change

The simulator does not incorporate any mid-round network changes during the

simulation. Once a round begins, the network structure and the participating

nodes remain constant until the completion of the round. This is noteworthy

since a round can be up to 15 minutes or longer.



4.2.2 The main loop

A clear roadmap for the simulator is established by structuring the main loop

of the simulator. This approach helps to ensure the simulator’s functionality is

aligned with the intended objectives.

Drawing from the details provided in Section 3.4.2, a storage incentive round

can be summarized with three steps:

• Rent Oracle calculates rent.

• Redistribution contract: select a neighborhood, then pick awinner from the

neighborhood.

• Winner collects the reward from the postage contract.

These steps are part of the main loop of the simulation because they make up the

round of the storage incentive.

Wanting to study how the storage incentive rewards distribution evolves, the

change must be stored every round. Or the state of all the nodes in the network

has to be saved, depending on the wanted data. The saving of change/state has

to be part of the main loop. It needs to be placed after the winner collects their

reward since that is the change in the reward distribution. The saving must be

done before the start of a new round.

Nodes within the network are not guaranteed to maintain 100% uptime and

continuous reliability. As mentioned in the assumptions section, no simulated

change occurs during a round. That is, a node won’t disconnect during the re-

ward distribution round. This means a node will always collect its reward if it

wins. In actual Swarm implementation, if a node does not collect its winnings, it

will be given to the next winner when they claim the reward [foundation(2022)].

Changes in the network can be simulated in-between rounds. Effectively in the

main loop, this is right after saving but before the start of a new round.

In summary, the main loop of the simulator encompasses the core steps of

the storage incentive round, along with two additional steps. Within the loop, the

simulator will calculate rent, select the winner, reward the winner, save distribu-

tion changes, and update the network. Figure 4.4 visually represents the main

loop, depicting the sequential flow of these steps.



New round Calculate rent Find winner Winner collects pot

Main loop

Save node statesUpdate network

Figure 4.4: Main loop of the simulator.

4.2.3 Structure

The main loop serves as a roadmap for structuring the simulator. The starting

point is a structure with a method calledMainLoop. The main loop start by cal-

culating rent, something done in a smart contract. Drawing fromhowSwarmuses

smart contracts, a sort of parallel can be achieved in the code. Having the smart

contracts as an interface in the code allows several interface implementations of

one contract. A valuable trait that allows for testing different configurations by

simply swapping to another implementation. For example, the rent oracle can

have two implementations. One has a static rent every round, and the other can

implement some distribution from historical data.

A structure named simulator has the method for the main loop of the simu-

lator. The structure includes interfaces for the smart contracts, rent oracle, and

postage as fields, allowing the main loop to call on them.

The redistribution contract is not included. Instead, selecting a winner has

been shifted to the network structure. This is because selecting a winner depends

heavily on the underlying network structure. First, a neighborhood has to be se-

lected, then the winner is picked. How a neighborhood is formed is dictated by

the network, as explored in Section 4.1.2. To allow for testing of different ways to

select neighborhoods, a network interface is also used. Thus the main loop calls

on the network interface implementation to select a winner.

Amethod called setup is also added to the structure. This is where the simula-

tor sets the seeds for the pseudo-randomnumber generator in Go and calls on the

network to either load or create the network structure. Setting a seed is helpful if

trying to replicate a result. There are two seeds, one is set before the network is



created to allow for the same network structure to be made with the same seed.

The other is before the main loop starts, affecting the address that wins.

Figure 4.5 visually represents the simulator structure.

simulator

+ totalNodeCount: int
+ maxRounds: int
...
+ swarmnetwork: SwarmNetwork
+ rentoracle: RentOracle
+ postage: PostageContract
...

+ Setup()
+ MainLoop()
...

Figure 4.5: Abbriviated simulator structure.

The following explains the interfacesSwarmNetwork,RentOracle, andPostage-

Contract. As well as the interfaces StakeCreator and storer.

SwarmNetwork

The SwarmNetwork interface encompasses several methods that manage the

network and its nodes. The interface includes theCreateSwarmNetwork()method,

which creates the network structure and generates nodes to place in the network.

The UpdateNetwork() method handles changes in the network if required during

the simulation. The SelectNeighbourhood() method selects a neighborhood from

the network, returning a pointer to the chosen neighborhood. Similarly, the Se-

lectWinner() method selects a winner node from the neighborhood and returns a

pointer to the selected node.

The main loop never calls the SelectNeighborhood() method. Instead, it is

used internally by the SelectWinner() method, which is called by the main loop.

The network implementation is responsible for creating and placing nodes

in the network. Since the storage incentive is entirely independent of the band-

width incentive, there is no need to simulate node interactions. A node can then

be simplified to a data structure without any methods to handle any simulation

processes. Also, with the assumption of no threat actors, there is no need to simu-

late nodes submitting faulty commit hashes. The simulator does not make nodes



Interface SwarmNetwork

+ CreateSwarmNetwork()
+ UpdateNetwork()
+ SelectNeighbourhood(): *neighbourhood
+ SelectWinner(): *node
...

Figure 4.6: Abbreviated UML of the network interface.

submit any hashes, it assumes all nodes are operating honestly and fault free in

their submissions. This allows for a simplified node structure of four fields:

• ID

• Earnings

• Stake

• Address

It is worth noting that although nodes are created in the network interface, a

separate staking interface handles the stake assignment for the nodes, explained

later. The staking interface is part of the structures that implement the Swarm-

Network interface.

RentOracle

The rent oracle is responsible for calculating rent for the round. The interface

only has one method required, GetRentPrice(). It is up to the different interface

implementations on how the rent is calculated.

Interface RentOracle

+ GetRentPrice(): int

Figure 4.7: UML of the RentOracle interface.



PostageContract

The postage contract handles paying out the reward to the winner. As such, the

interface requires the method CollectWinnings(roundPrice, *node) and GetTo-

talPayout() to be implemented by structures. The total payout method exists for

data logging since the rent may change from round to round.

The CollectWinnings method requires the rent for the round and a pointer to

the winning node. It is up to implementations of the PostageContract interface

to choose how the reward is calculated.

Interface PostageContract

+ CollectWinnings(roundPrice, *node)
+ GetTotalPayout(): int

Figure 4.8: UML of the PostageContract interface.

StakeCreator

The interface only requires the method GetStake(nodeID int). Implementations

ofStakeCreator interface decide how the stake distribution of nodes is distributed.

Whether it uses the nodeID or not is up to the implementation.

To simplify the creation and update process of the network, I have placed the

StakeCreator in implementations of SwarmNetwork. This simplifies the over-

all management of the network, as the stake distribution is handled within the

context of the SwarmNetwork implementation.

Interface StakeCreator

+ GetStake(nodeID int) int

Figure 4.9: UML of the StakeCreator interface.

storer

The storer interface requires the method save to be implemented. Implemen-

tations of this interface are responsible for storing the data of the distributions,



whether it stores all rounds, every Nth round, or just the change like a blockchain.

Interface storer

+ save(*simulator)

Figure 4.10: UML of the storer interface.

4.3 Implementation

In this section, we will delve into the implementations of the interfaces using the

Go programming language (Golang).

4.3.1 Simulator

The simulator implementation has a Setup method that only does two things.

First, it sets the seed for the pseudo-randomnumber generator, then calls theCre-

ateSwarmNetwork method that belongs to the implementation of the Swarm-

Network interface. The number generator is used during the network creation,

so setting the seed here will always produce the same network if the same seed is

given and the SwarmNetwork implementation is the same.

func (s *simulator) Setup() {
rand.Seed(s.SetupSeed)
s.swarmnetwork.CreateSwarmNetwork()

}

In the MainLoop method, the seed for the pseudo-random number genera-

tor is again set. This time it is responsible for which nodes win. So if the seed is

the same, the same address will be picked if the network implementation is the

same. It is important to note that even if the seed is identical, it does not guaran-

tee the selection of the same winner, as the node placement within the network

may vary. The generation of anchor addresses remains predictable with the same

seed. Therefore, while the same address may win, the specific node selected as

the winner may differ.



After the seed has been set, the main loop starts. The main loop is looping

through rounds of the storage incentive. The simulator structure has a config-

uration variable called maxRounds. As the name suggests, it is the number of

rounds to simulate. In code, it is simply a for loop.

The for loop follows the main loop as discussed in Section 4.2.2. The main

loop starts with a new round handled by the for loop. Then the rent for the round

has to be calculated and stored in a variable s.roundPrice by calling the GetRent-

Pricemethod of the implemented RentOracle interface. After rent is calculated,

a winner needs to be selected. The winner is selected by calling the SelectWin-

ner method of the implemented SwarmNetwork interface. The winning node’s

pointer is stored in a variable s.roundWinner such that it can be passed as an

argument in the next step. The winner claims their reward from the method

CollectWinnings of the PostageContract interface implementation. After the re-

ward is claimed, the implementation of storer interface has their method save

called. Then the SwarmNetwork implementations method UpdateNetwork is

called. The changes simulated in the network depend on the implementation.

The explanation put into code:

func (s *simulator) MainLoop() {
rand.Seed(s.simulationSeed)
// The main loop of the simulator
for s.round = 0; s.round < s.maxRounds; s.round++ {

s.roundPrice = s.rentoracle.GetRentPrice()
//select the winner
s.roundWinner = s.swarmnetwork.SelectWinner()
// collection
s.postage.CollectWinnings(s.roundPrice, s.roundWinner)
// Log changes
s.saver.save(s)
// Simulate change
s.swarmnetwork.UpdateNetwork()

}
}



4.3.2 SwarmNetwork

The network interface has three different implementations. These implementa-

tions are static, meaning the network does not simulate any changes. No nodes

suddenly stop participating, change their stake, etc.

The difference in the implementations is how the neighborhoods are selected.

But all the implementations share code for selecting a winner from a neighbor-

hood. A winner is selected from the neighborhood by first summing the stake of

the nodes in the neighborhood. Then use the rand library in Golang to generate a

random integer in the interval [0, S)whereS is the summed stake of the neighbor-

hood. Then looping through the nodes in the neighborhood and subtracting their

stake from the random number. If a node brings the number to zero or below,

they are selected as the winner.

func (sn *FixedIdealSwarmNetwork) SelectWinner() *node {
nbhood := sn.SelectNeighbourhood()
weigthSum := 0
for i := 0; i < nbhood.nodeCount; i++ {

weigthSum += nbhood.nodes[i].stake
}
num := rand.Intn(weigthSum)

for i := 0; i < nbhood.nodeCount; i++ {
num -= nbhood.nodes[i].stake
if num <= 0 {

return nbhood.nodes[i]
}

}
// If it gets here, something is wrong
panic("Found no winning node")

}

Figure 4.11: Code snippet is taken from the ideal implementation but is identical
to the other network implementations.

All current network implementations do not simulate any change in the net-

work. The UpdateNetworkmethod is empty.

Wewill nowexplain how thenetwork implementations are implementedbased

on the descriptions from Section 4.1.2. The implementations: ideal, Kademlia



closest nodes, and Kademlia Storage depth.

Ideal

The ideal networkmeans that the nodes are perfectly divided into neighborhoods

of size four. Thenumber four comes from the redundancy variable that the Swarm

creators want to be four [foundation(2022)].

CreateSwarmNetworkmethod creates a slice that containsN/4 empty neigh-

borhoods,N being the total number of nodes. Then it starts a loop that createsN

new nodes. When a node is created, it gets assigned stake from the implemented

StakeCreator interface by calling the GetStakemethod. After the node is config-

ured, it gets placed in a randomneighborhood. A neighborhoodwill never exceed

four nodes.

The SelectNeighbourhood method selects a neighborhood at random. Since

the chance for a neighborhood to be picked is the same for all, the implementation

uses the pseudo-randomgenerator to generate a number in the range [0, L)where

L is the length of the neighborhood slice.

func (sn *FixedIdealSwarmNetwork) SelectNeighbourhood() *neighbourhood {
ind := rand.Intn(len(sn.neighbourhoods))
return &sn.neighbourhoods[ind]

}

Figure 4.12: Neighborhood selection in the ideal network implementation.

Kademlia closest nodes

The Kademlia implementation uses a binary tree data structure for the nodes. A

node’s Kademlia address determines its placement within the binary tree. In this

binary tree, a binary digit of zero corresponds to a right child in the tree, while a

binary digit of one corresponds to a left child.

In the CreateSwarmNetwork method, a node is created, assigned a stake,

assigned a randomly generatedKademlia address, and then placed into the binary

tree. The Kademlia address is a randomly generated binary string. The binary

string generator starts with an empty string and iteratively appends a one or a

zero depending on a coin flip until it reaches the desired address length.



func (kdst *KademSwarmTree) CreateSwarmNetwork() {
for i := 0; i < kdst.nodeCount; i++ {

// Create node
n := &node{Id: uint64(i), stake: kdst.stakeDistribution.GetStake(i)}
...
//Create Kademlia address.
...

nAdd = randomBitString(kdst.addressLength)
...
n.address = nAdd
...
kdst.kademTree.InsertNode(n, n.address)

}
}

Figure 4.13: Abbriviated code listing displaying the main work of the Cre-
ateSwarmNetworkmethod for Kademlia closest nodes.

Theneighborhood selection process is in themethod SelectNeighbourhood. It

starts by generating an anchor (Kademlia address) using the same binary string

generator that creates addresses for nodes. From this anchor, it navigates the

binary tree until it reaches the address. If it arrives at the address, then add that

node. It may stop early if there is no node at the given address. After it has added

the leaf node or stopped due to there not being a node at the given address, it

starts navigating up the tree. It checks if nodes are under the other child when it

navigates upward. That is, it navigated to parent A fromchild B, then all the nodes

under child C are appended to the neighborhood. If the neighborhood reaches a

size greater than or equal to four, it returns the neighborhood. The binary tree

method FindClosestNodes handles finding the closest four or more nodes to the

anchor address.

This is because instead of finding a neighborhood, the implementation finds,

at minimum, four nodes closest to the anchor and makes it the neighborhood, as

explained in Section 4.1.2.

Selecting a winner from the neighborhood is done the sameway as in the ideal

network.



func (kdst KademSwarmTree) SelectNeighbourhood() *neighbourhood {
anch := randomBitString(kdst.addressLength)
nodes := kdst.kademTree.FindClosestNodes(anch)
nei := neighbourhood{nodes: nodes, nodeCount: len(nodes)}
return &nei

}

Figure 4.14: Code for selecting a neighborhood in closest node implementation.
Finding the closest four ormore nodes is handled by the binary treemethod Find-
ClosestNodes.

Kademlia Storage depth

The only difference between storage depth and the closest nodes implementation

is how a neighborhood is selected.

The storage depth implementation generates a round anchor and then navi-

gates down the tree with the anchor until it reaches the storage depth. Any node

that is below that tree node is allowed to partake. The navigating and returning of

all Swarm nodes below the given storage depth is done by the binary tree method

navigateWithStop.

Storage depth in this implementation is static. The value is set before the

simulation starts.

func (kdst *KademSwarmTreeStorageDepth) SelectNeighbourhood() *neighbourhood {
anch := randomBitString(kdst.addressLength)
nodes := kdst.kademTree.navigateWithStop(anch,

kdst.storageDepth).allNodeBelowArr
nei := neighbourhood{nodes: nodes, nodeCount: len(nodes)}
return &nei

}

Figure 4.15: Code for selecting a neighborhood in storage depth implementation.
Finding nodes below the storage depth is handled by the binary treemethod nav-
igateWithStop.



4.3.3 Stake creator

The stake creator is responsible for setting the stake in the network. This section

explains the code implementation of equal stake, Power law distributed stake,

and spread stake.

Equal stake

The easiest implementation. It has a variable called amount set before the simu-

lation. ThemethodGetStake returns the variable amount. This leads to all nodes

having the same stake.

Power law distribution

In [Clauset et al.(2009)Clauset, Shalizi, and Newman] appendix D, formula D.4:

x = xmin(1− r)−1/(α−1)

The formula can be used to generate a power law distribution. Information from

[Clauset et al.(2009)Clauset, Shalizi, and Newman]:

• xmin is the smallest value the formula can produce.

• α is a scaling variable with the typical range 2 < α < 3.

• r is usually a random number from a uniform distribution.

This is easily translated to code:

func (st PowerDistStake) GetStake(nodeID int) int {
r := rand.Float64()
x := float64(st.minStake) * math.Pow(1-r, -1/(st.alpha-1))
return int(x)

}

Since Swarm has a minimum stake required to partake in the storage incentive,

it fits in perfectly. Further logic is implemented to optionally cap a node’s max

stake.



Spread stake

Due to how it is implemented, the nodes must be assigned their stake in order.

Meaning the code assumes that the first node belongs to the first operator. The

following two nodes belong to the second operator, and the subsequent three

nodes after that belong to the third operator, etc.

It achieves the spread stake by keeping track of two variables, operator and nc

(node count). It divides the stake assigned to the variable stake by the operator

variable. This causes operator one to have the value of stake as their nodes stake.

Then there is some logic to control when the next operator is active. The logic

counts all the nodes that get their stake. When the nc variable equals the operator

variable. The operator variable increases by one, and nc is reset to zero.

func (sps spreadStake) GetStake(nodeID int) int {
st := sps.stake / *sps.operator
*sps.nc++
if *sps.nc == *sps.operator {

*sps.operator++
*sps.nc = 0

}
return st

}

Figure 4.16: Code for the spread stake distribution.

4.3.4 Rent oracle

Only one implementation has been made. It is a fixed rent oracle that returns a

fixed value as rent.

func (ro FixedRentOracle) GetRentPrice() int {
return ro.fixedPrice

}

4.3.5 Postage contract

It is from the postage contract that a node collects its winnings. The implementa-

tion is a simple one that does not simulate chunks. It sets the winnings to be the



rent of the round. Meaning a node wins what the rent oracle sets to be the rent.

A variable named totalWithdrawn tracks the total amount paid out.

func (sfp *simpleFixedPostage) CollectWinnings(roundPrice int, no *node) {
sfp.totalWithdrawn += roundPrice
no.Earnings += roundPrice

}

Figure 4.17: Code for the Postage contract CollectWinningsmethod.

4.3.6 Saving results

The node state gets stored in an SQLite database to enable data analysis after the

simulation. Storing the state for every node every round is slow, so there is an

option to keep every X round instead. For example, storing every 100 will require

only 3600 entries instead of 360 000 when simulating 360 000 rounds. Since

one entry contains all the nodes, this can grow rather large if storing all rounds.

Data saving wasmoved to another thread with Go’s concurrency feature. This

was initially done to avoid blocking the simulation thread. However, this does not

achieve much since one has to wait for it to finish writing the data anyways.

Figure 4.18 shows the schema design.

Storing the state of the nodes in this way enables the calculation of the Gini

coefficient in SQL. Modifying the SQL in [Medvedev(2019)] gives:

SELECT 1-2 * sum((earnings * (rownum-1) +
cast(earnings as float)/2 )) / count(*) / sum(earnings)
AS gini
FROM
(

SELECT nodeID, earnings, row_number() OVER (
ORDER BY earnings DESC

) rownum
FROM nround WHERE roundID=?

)

The Gini coefficient of a round can be calculated from a SQL query by giving

a round id. If the calculation is slow, the database might have a missing index.



Figure 4.18: SQLite schema.

The index is intended to be added after the simulation to speed up the data entry

process during the simulation.

CREATE INDEX idx_roundID_nround ON nround(roundID)
CREATE INDEX idx_round_runID_roundID on rounds(round,runID,roundID)

4.4 Approach

A file namedmain.go is used to run a simulation. At the top portion of the file, one

can configure the number of nodes, Kademlia address length, rounds to simulate,

database name, description of the run, set up seed, and simulation seed. These

values are used to initialize structures and are collected in one place for a quick

and easy overview. Example of a configuration in Figure 4.19.

Themain function is defined following the configuration setup, where the nec-

essary structures are initialized. Within themain function, structures have to be



package main
import(
...
)
const NODECOUNT = 2048
const ADDRESSLENGTH = 128

//With 15 minutes per round, 350666 rounds is around 10 years
const ROUNDS = 350000
const DBNAME = "results.db"
const DESCRIPTION = "Simulation of 2048 nodes," +

"static Kademlia network Storage depth, 128 bit address - Equal stake."

var SETUPSEED int64 = 123123
var SIMSEED int64 = time.Now().Unix()
...

Figure 4.19: Top portion of main.go where some configurations are set. SE-
TUPSEED is set, generating a set network structure. SIMSEED is set to be ran-
dom, so winners are random in every simulation.

initialized. That is, one must choose the interface implementations for the sim-

ulation. After the structures are set, the simulator structures Setup method is

called, and subsequently, theMainLoopmethod. A continued example of Figure

4.19 is themain function shown in Figure 4.20.



...
func main() {

saver := saveFullStateSql{
everyXRound: new(int),

}
*saver.everyXRound = 100
saver.init()

stake := EqualStake{
amount: 199,

}
swnet := &KademSwarmTreeStorageDepth{

addressLength: ADDRESSLENGTH,
nodeCount: NODECOUNT,
stakeDistribution: stake,
kademTree: bintree{root: &binNode{prefix: ""}},
fullySaturate: false,
storageDepth: 8,
addressBook: make(map[uint64]*node),
kademAddress: make(map[string]*node),
nodes: make([]*node, 0, NODECOUNT),

}

s := &simulator{
totalNodeCount: NODECOUNT,
swarmnetwork: swnet,
rentoracle: &FixedRentOracle{fixedPrice: 1},
postage: &simpleFixedPostage{},
saver: saver,
round: 0,
maxRounds: ROUNDS,
SetupSeed: SETUPSEED,
simulationSeed: SIMSEED,

}
s.Setup()
s.MainLoop()
saver.close()

}

Figure 4.20: main function in main.go. Configured to use Kademlia storage
depth, save every 100th round to SQLite, with an equal stake. Rent oracle is 1,
such that a node’s earnings are the number of times they have won.



Chapter 5

Simulation results

5.1 Distribution of rewards

5.1.1 Equal stake

Y-axis is the Gini coefficient. It visualizes the equality of the reward distribution.

X-axis is the round number.

The equal stake distribution has a Gini coefficient of zero because all nodes

have the same stake.

Figure 5.1 showcases two plots obtained from the simulation of 10 runs of the

ideal network implementation. Each run encompasses 350,000 storage incentive

rounds, involving a total of 2048 nodes. The placement of nodes within the net-

work and the seed for the winner selection are varied across the runs to ensure

diverse outcomes. The Gini coefficient, calculated based on the mean of times

won, measures the reward distribution. The top plot represents the first 10,000

rounds, while the bottom plot captures the entirety of the 350,000 rounds. It

should be noted that the top plot includes barely visible error bars, which are con-

sistently present but omitted in subsequent similar figures for the sake of clarity

and readability.

The simulated ideal network with equal stake distribution confirmed the ini-

tial speculation that the rewards would become more evenly distributed among

the nodes when the number of rounds increased.
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Figure 5.1: Ideal network - Equal stake.



Figure 5.2 presents the plot depicting the mean Gini results of 10 runs con-

ducted using the saturated Kademlia implementation for 350,000 storage incen-

tive rounds. The placement of nodes and the seed for winner selection varies

between runs. The simulation confirms that the performance of the saturated

Kademlia network aligns closely with the ideal network, as anticipated.
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Figure 5.2: Staurated Kademlia - 11 address length. Equal stake.

A table will be provided instead of an extensive display of graphs to present

the distribution outcomes concisely.

Table 5.1 contains the results of Figure 5.1 and 5.2. As well as the results from

other network structures. The only difference is the network structure used. The

rest of the settings are the same for all results. All runs differ in node placement

and random seed for winner selection.

Table 5.1 presents the results obtained from various network structures, in-



cluding those depicted inFigure 5.1 andFigure 5.2. Theprimary difference among

these results lies in the network structure, while the remaining settings are con-

sistent across all simulations. Notably, each run has different node placements

and a random seed for winner selection, contributing to the variability in the out-

comes.

Table 5.1 reveals that the closest nodes implementation falls short of achieving

the same level of equality as a saturated network. A saturated network is the

closest node implementation with a smaller address space, and every address is

taken by a node in the network.

The findings also present in the table demonstrate that as storage depth in-

creases, there is a corresponding increase in the inequality of the reward distri-

bution.

Network
Structure

Mean Gini SD SEM

Ideal 0.059 0.0009 0.0003
Saturated 0.046 0.0006 0.0002
Closest
nodes

0.2669 0.0010 0.0003

Storage
depth 8

0.195 0.0010 0.0003

Storage
depth 16

0.347 0.0008 0.0003

Storage
depth 32

0.360 0.009 0.004

Table 5.1: Round 350k. 2048 nodes. Equal stake distribution.

5.1.2 Power stake

Simulations with 2048 nodes

The results presented in Figure 5.3 illustrate the distribution of rewards in an

ideal network with a Power distributed stake. The stake is distributed over 2048

nodes. Simulation has run for 350 thousand rounds. The stake distribution has

a Gini coefficient of 0.48. The stake distribution remains static throughout the

simulation, as no changes in stake distribution over time were simulated.
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Figure 5.3: Ideal network - Power stake distribution.

Table 5.2 contains the results for the different network structures. Each struc-

ture was simulated for 10 runs, each run ended at round 350 thousand. Stake

distribution remains static throughout the simulation.

The ideal network reveals that stake significantly impacts the reward distribu-

tion. Going from a value of about 6% to about 33% is a significant increase. No-

tably, the rewards distribution is distributed with higher equality than the stake

distribution.

The closest node implementation has rewards distributed more closely to the

stake distribution. Only about a 3-4% difference in how rewards are distributed

compared to the stake distribution.

Storage depth shows a similar trend to the others at a depth of 8. Increasing

the depth contradicts the finding in the equal stake distribution. An increase in

depth gives a slightly better equality, but only to a certain depth.



Network
Strucutre

Mean Gini
at round 350k

SD SEM
Stake
Gini

Ideal
network

0.334 0.001 0.0011 0.484

Closest
nodes

0.448 0.001 0.0008 0.484

Storage
depth 8

0.439 0.001 0.0008 0.484

Storage
depth 16

0.366 0.001 0.0006 0.484

Storage
depth 32

0.366 0.001 0.0010 0.484

Table 5.2: Power distributed stake. 2048 nodes, 10 runs.

Increasing the number of nodes

The results in Table 5.3 correspond to the closest nodes implementation with a

power law distributed stake, simulated for 350 thousand rounds. The mean val-

ues are derived from 10 runs. The rewards distribution is not far from how the

stake is distributed. Increasing the number of nodes in the network has minimal

to no impact on the reward distribution.

Network
Strucutre

Number
of nodes

Mean Gini
at round 350k

SD SEM
Stake
Gini

Closest
nodes

4096 0.454 0.0058 0.0018 0.518

Closest
nodes

8192 0.457 0.0042 0.0013 0.506

Closest
nodes

16384 0.466 0.0029 0.0009 0.521

Table 5.3: Closest nodes implementation, power distributed stake, 350 thousand
rounds.

The findings presented in Table 5.4 pertain to the storage depth implementa-

tion with a power law distributed stake, where the storage depth is set to 8. The

mean values are derived from 10 runs with 350 thousand rounds each run. The

results reveal that increasing the number of nodes in the network but keeping

the same depth slightly pushes the reward distribution closer to how the stake is

distributed.



Number
of nodes

Mean Gini
at round 350k

SD SEM
Stake
Gini

4096 0.472 0.005 0.0015 0.518
8192 0.490 0.004 0.0014 0.506
16384 0.518 0.001 0.0004 0.521

Table 5.4: Storage depth 8, power distributed stake, 350 thousand rounds.

The results obtained from Table 5.5 indicate that increasing the storage depth

in the closest nodes implementation leads to a shift towards a more equal reward

distribution than the results from Table 5.4. It again shows a very small trend of

reward distribution moving towards the stake distribution when increasing the

number of nodes.

Number
of nodes

Mean Gini
at round 350k

SD SEM
Stake
Gini

4096 0.379 0.005 0.001 0.518
8192 0.382 0.002 0.001 0.506
16384 0.395 0.003 0.001 0.521
32768 0.415 0.001 0.0003 0.518
65536 0.454 0.001 0.0003 0.520

Table 5.5: Storage depth 16, power distributed stake, 350 thousand rounds.

The results from Table 5.6 are from a storage depth of 16. It displays the same

trends as Table 5.5. The reward distribution continues to move towards a more

equitable state as the storage depth increases.

Number
of nodes

Mean Gini
at round 350k

SD SEM
Stake
Gini

4096 0.374 0.004 0.0011 0.518
8192 0.383 0.002 0.0008 0.506
16384 0.392 0.002 0.0007 0.521
32768 0.408 0.002 0.0006 0.518
65536 0.439 0.001 0.0003 0.520

Table 5.6: Storage depth 32, power distributed stake, 350 thousand rounds.



5.1.3 Spread stake

Results are from spread stake distribution. The stake is set to 50k. In the results

with 2080 nodes, the last operator has 64 nodes. 64(64+1)
2 = 2080

The findings presented in Figure 5.4 demonstrate a diminishing return when

running multiple nodes within the network. This observation aligns with the ini-

tial speculation that nodes belonging to the same operator begin competing for

the same reward.
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Figure 5.4: Closest nodes - Spread stake distribution.



The results from Figure 5.5 are from the storage depth implementation with a

depth of 8. It shows the same diminishing return as for closest nodes implemen-

tation.
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Figure 5.5: Storage depth 8 - Spread stake distribution.

Figure 5.6 is a storage depth implementation with a depth of 16. The line

has becomemore linear, meaning there is a significant increase in winnings from

running more nodes. A higher depth increases the number of neighborhoods a

node can be part of, thus decreasing the chance of an operator having nodes that

compete in the same neighborhood.

The results depicted in Figure 5.6 represent a storage depth implementation

with a depth of 16. The plotted line is linear, indicating a notable increase in win-

nings associated with running more nodes. This outcome is expected as a higher

storage depth spreads nodes to more neighborhoods, reducing the likelihood of

an operator’s nodes competing within the same neighborhood. Storage depth 32

showed the exact same.
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Chapter 6

Resource usage approach

6.1 Virtual machine & node

A virtual machine is used to run some Swarm nodes.

Host machine specs:

• OS: Garuda Linux x86_64

• Kernel: 6.3.5-zen1-1-zen

• CPU: AMD Ryzen 9 3950X

• Drive: 1TB m.2 ssd

The VM was set up using VirtManager1.

VM specs:

• OS: Debian 11

• 4 VCPUs. Not manually pinned.

• RAM: 16GB, reports 15.6GB

• Disk space: 320 GB.

A node in Swarm is called a bee [Maizels(2023a)].

1https://virt-manager.org/
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6.2 Measure

I created a Python script based on the functions from VirtManager 2. It is pro-

grammed in Python and released under GPL-2.0 license. It has the advantage of

pulling the data from the KVM rather than running on the actual VM, avoiding

the polling process being part of the data. The script pulled data from the running

VM every second. Data the script collected is:

• CPU usage

• RAM usage*

• Network usage

• Drive usage.

*Ram usage was not captured properly due to not having memory ballooning

configured.

6.3 Approach

One full node was set up using the guide Swarms official guide3. The node was

run for 24 hours, and the Virtual machine’s resources were monitored.

The process for setting up a node:

1. Install Bee service.

2. Configure the Bee.

3. Start the Bee.

4. Fund node with XDAI token.

Before setting up the second nodes, an update was released to the bee nodes.

It had some changes in the pull-sync protocol. As such, I performed the update

and redid the 24-hour measurement.

After one node was measured for 24 hours, the subsequent measurement was

of two nodes, then three, etc. Max number of nodes measured was 6.

2https://github.com/virt-manager/virt-manager
3https://docs.ethswarm.org/docs/bee/installation/quick-start/

https://github.com/virt-manager/virt-manager
https://docs.ethswarm.org/docs/bee/installation/quick-start/


Setting up the second, third, etc. nodes was done following the instructions.

When starting a bee node, one can enter a different path for a configuration file

that the node use. In the configuration file, one configures the network port it

uses, places on the drive it stores its chunks, and keeps its blockchain secret key.

6.4 Results

Figure 6.1 shows the CPU usage of 1 node running version 1.15 and one running

1.16 over the span of 24 hours.

Figure 6.2 and 6.3 are the VMs network activity and drive usage with one Bee

node.

To avoid flooding the rest of the thesis with graphs, I only include full stats for

1 node and 6 nodes with version 1.16.

Figure 6.4 has the CPU usage of the VMwith 6 nodes. Figure 6.5 has network

usage of the VM with 6 nodes. And Figure 6.6 is the drive usage of the VM with 6

nodes.

The RAM usage was not properly captured. I only have some notes, and I

can say that running 6 nodes uses about 3-4 GB of RAM. Staring a node requires

more memory, it slowly depletes until it settles for a value. Swarm officially rec-

ommends 8 GB4.

4From: https://docs.ethswarm.org/docs/bee/installation/install
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Figure 6.1: CPU utilization of 1 node. The top plot is Bee version 1.15, and the
bottom plot is Bee version 1.16
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Figure 6.2: Network usage. The top plot is KB/s received. The bottom plot is
KB/s sent.
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Figure 6.3: Drive usage. The top plot is KB/s read. The bottom plot is KB/s write.
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Figure 6.5: Network usage 6 nodes. The top plot is KB/s received. The bottom
plot is KB/s sent.
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Figure 6.6: Drive usage 6 nodes. The top plot is KB/s read. The bottom plot is
KB/s write.



Chapter 7

Discussion

In cases where the stake is distributed equally among the nodes, the ideal and

saturated Kademlia networks produce similar outcomes. This observation aligns

with the initial expectations and suggests that the network structure plays a sig-

nificant role in determining the distribution of rewards.

The closest nodes implementation with equal stake does not achieve the same

level of equality as the ideal network. It becomes apparent that the closest nodes

approach, even with equal stake allocation, falls short of attaining the same de-

gree of equality observed in the ideal network. Suggesting that nodes partici-

pating in multiple neighborhoods have a distinct advantage over those not. The

presence of nodes in multiple neighborhoods grants them a higher probability of

winning rewards, leading to an inherent imbalance in the distribution. Conse-

quently, this finding underscores the significance of node participation in multi-

ple neighborhoods as a factor influencing reward distribution.

The reward distribution in storage depth appears tied to the number of nodes

in the network. When the storage depth is increased without a corresponding in-

crease in the number of nodes, the network tends to be fragmented into neighbor-

hoods with varying levels of participation. These neighborhoods exhibit signifi-

cant disparities, with some encompassing 4 to 7 or more, while others consist of

only one or two nodes. All neighborhoods have an equal chance of being selected.

However, the number of nodes within a node’s neighborhood also influences the

probability of a node winning a reward.

Examining the power distributed stake highlights the impact of stake on the

reward distribution within the network.
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The power-distributed stake reveals that the stake has a significant influence

on the reward distribution. As intended by the Swarm developers, the reward

distribution seems to lean towards how stake is distributed. It did show that the

ideal network and a very high storage depth compared to the number of nodes

yield similar results.

The depth and the number of nodes influence the reward distribution of the

storage depth implementation. If the number of nodes increases, the reward dis-

tribution moves towards the stake distribution. And if the depth increases, the

reward distribution moves slightly toward equality.

Spread stake appears to clearly indicate a diminishing return when running

multiple nodes. As storage depth increased, it becamemore advantageous to run

more nodes. This makes sense because there are more neighborhoods that one

node can be part of. Decreasing the chance of two or more of an operator’s nodes

being in the same neighborhood.

Thedistribution of rewards in Swarmwith storage depth is a function of depth,

stake distribution, and the number of nodes. From an operator’s perspective,

their reward is a function of depth, stake distribution, operated nodes, and total

nodes in the network.

Storage depth is increased when they need more storage space, this causes

the same number of nodes to have a better equality. This is an incentive to start

more nodes because when the distribution is more equal, more individual nodes

are winning. As the number of nodes increases but the depth remains the same,

there is a lower chance of winning, which is an incentive for discouraging new

nodes. This may play a part in keeping Swarm decentralized, as running a vast

number of nodes does not seem to be a financial benefit.

In the closest nodes implementation, the equalizing force is only the number

of nodes in the network. The main driving force for operators to start new nodes

with this implementationwas an increase in themonetary reward. This thesis has

not made any connection to monetary value, as Swarm is still actively changing.

Instead, the distribution comes from how many times a node wins.

One of the mentioned goals of Swarm is they want the storage incentive to

influence the number of operated nodes in the network. Which, from this thesis,

appears to be fulfilled with storage depth.

The simulator can be extended to simulate operator behavior. Apply some re-

source usage and cost to running a node. Then have some threshold values for



when an operator starts new nodes, stops running nodes, etc. This does need to

have a more robust storage depth and chunk simulation. The current implemen-

tation only has a static variable set before the simulator is run. The smart con-

tracts were also simplified to test how the distribution evolves over time rather

than actual financial gain. This is presumably closer to how Swarm is operated in

reality.

Running multiple nodes in the Swarm network is a feasible option, as ev-

idenced by results from the measurement of successfully operating six nodes.

There was the miss-configuration of memory ballooning that causes script to not

give accurate utilization of RAM usage



Chapter 8

Conclusions

The analysis of different implementations and stake distributions in the Swarm

network provides valuable insights into the dynamics of reward distribution. The

observations demonstrate that the network structure significantly influences the

distribution of rewards.

Increasing the storage depthwithout an increase in nodes leads to fragmented

neighborhoods with varying levels of participation, impacting the probability of

winning rewards. The power-distributed stake highlights the strong influence of

stake on the reward distribution, with the reward distribution leaning towards

how stake is distributed.

The reward distribution in the storage depth implementation relies on the

depth and the total number of nodes in the network. Increasing nodes push the

rewards distribution closer to the stake distribution, and increasing depth leads

to a slight movement towards equality.

Runningmultiple nodes exhibits diminishing returns, as higher storage depth

decreases the likelihood of multiple nodes from the same operator being in the

same neighborhood.

From the measurement of running nodes in a VM, it is possible to run several

nodes on one machine.
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Appendix A

Instructions to Compile and

Run System

The source code for the simulator is hosted on GitHub. https://github.com/
KHTjessem/SwarmSI-Sim

Before running it, it may be wise to check the settings in main.go. If it is

configured to save all rounds, and the number of rounds is high, it will take up

significant space on the drive.

This assumes you have Git and Golang installed.

To run it:

• git clone https://github.com/KHTjessem/SwarmSI-Sim

• cd src

• go run .

Virtual machine monitor script

The script developed formonitoring is available at https://github.com/KHTjessem/
VMReMon

61

https://github.com/KHTjessem/SwarmSI-Sim
https://github.com/KHTjessem/SwarmSI-Sim
https://github.com/KHTjessem/VMReMon
https://github.com/KHTjessem/VMReMon




Bibliography

[Swarm-team(2021)] Swarm-team. Swarm. storage and communication in-

frastructure for a self-sovereign digital society, 2021. URL https://www.
ethswarm.org/swarm-whitepaper.pdf.

[Trón(2020)] Viktor Trón. the book of swarm, 2020. URL https://www.
ethswarm.org/The-Book-of-Swarm.pdf.

[foundation(2022)] Swarm foundation. Themechanics of swarmnetwork’s stor-

age incentives, Nov 2022. URL https://blog.ethswarm.org/foundation/
2022/the-mechanics-of-swarm-networks-storage-incentives/.

[Maizels(2023a)] Noah Maizels. Hive, 2023a. URL https://github.com/
ethersphere/bee-docs/blob/master/docs/bee/installation/hive.md.

[Xu(2023)] Sixiao Xu. Dissecting ipfs and swarm to demystify distributed de-

centralized storage networks. 2023.

[Heidaripour Lakhani et al.(2022)Heidaripour Lakhani, Jehl, Hendriksen, and Estrada-Galiñanes]

Vahid Heidaripour Lakhani, Leander Jehl, Rinke Hendriksen, and Vero

Estrada-Galiñanes. Fair incentivization of bandwidth sharing in decentral-

ized storage networks. arXiv e-prints, pages arXiv–2208, 2022.

[Maizels(2023b)] Noah Maizels. introduction.md, 2023b. URL https:
//github.com/ethersphere/bee-docs/blob/master/docs/learn/
introduction.md.

[Gnosis(2023)] Gnosis. The community-run chain, 2023. URL https://www.
gnosis.io/.

[Wikipedia contributors(2023)] Wikipedia contributors. Kademlia —

Wikipedia, the free encyclopedia, 2023. URL https://en.wikipedia.

63

https://www.ethswarm.org/swarm-whitepaper.pdf
https://www.ethswarm.org/swarm-whitepaper.pdf
https://www.ethswarm.org/The-Book-of-Swarm.pdf
https://www.ethswarm.org/The-Book-of-Swarm.pdf
https://blog.ethswarm.org/foundation/2022/the-mechanics-of-swarm-networks-storage-incentives/
https://blog.ethswarm.org/foundation/2022/the-mechanics-of-swarm-networks-storage-incentives/
https://github.com/ethersphere/bee-docs/blob/master/docs/bee/installation/hive.md
https://github.com/ethersphere/bee-docs/blob/master/docs/bee/installation/hive.md
https://github.com/ethersphere/bee-docs/blob/master/docs/learn/introduction.md
https://github.com/ethersphere/bee-docs/blob/master/docs/learn/introduction.md
https://github.com/ethersphere/bee-docs/blob/master/docs/learn/introduction.md
https://www.gnosis.io/
https://www.gnosis.io/
https://en.wikipedia.org/w/index.php?title=Kademlia&oldid=1150906957
https://en.wikipedia.org/w/index.php?title=Kademlia&oldid=1150906957


org/w/index.php?title=Kademlia&oldid=1150906957. [Online; accessed
4-June-2023].

[Raja(2023)] Haseeb Raja. Reamde.md, 2023. URL https://github.com/
ethersphere/storage-incentives.

[Wikipedia contributors(2022)] Wikipedia contributors. Coordination game —

Wikipedia, the free encyclopedia, 2022. URL https://en.wikipedia.org/
w/index.php?title=Coordination_game&oldid=1103132746. [Online; ac-
cessed 30-May-2023].

[Gabaix(2009)] Xavier Gabaix. Power laws in economics and finance. An-

nual Review of Economics, 1(1):255–294, 2009. doi: 10.1146/annurev.

economics.050708.142940. URL https://doi.org/10.1146/annurev.
economics.050708.142940.

[world bank(2023)] The world bank. Metadata glossary, 2023. URL https:
//databank.worldbank.org/metadataglossary/gender-statistics/
series/SI.POV.GINI.

[Clauset et al.(2009)Clauset, Shalizi, and Newman] Aaron Clauset, Cosma Ro-

hilla Shalizi, and M. E. J. Newman. Power-law distributions in empirical

data. SIAM Review, 51(4):661–703, 2009. doi: 10.1137/070710111. URL

https://doi.org/10.1137/070710111.

[Medvedev(2019)] Evgeny Medvedev. Calculating gini coefficient in big-

query with sql, 2019. URL https://medium.com/google-cloud/
calculating-gini-coefficient-in-bigquery-3bc162c82168.

https://en.wikipedia.org/w/index.php?title=Kademlia&oldid=1150906957
https://github.com/ethersphere/storage-incentives
https://github.com/ethersphere/storage-incentives
https://en.wikipedia.org/w/index.php?title=Coordination_game&oldid=1103132746
https://en.wikipedia.org/w/index.php?title=Coordination_game&oldid=1103132746
https://doi.org/10.1146/annurev.economics.050708.142940
https://doi.org/10.1146/annurev.economics.050708.142940
https://databank.worldbank.org/metadataglossary/gender-statistics/series/SI.POV.GINI
https://databank.worldbank.org/metadataglossary/gender-statistics/series/SI.POV.GINI
https://databank.worldbank.org/metadataglossary/gender-statistics/series/SI.POV.GINI
https://doi.org/10.1137/070710111
https://medium.com/google-cloud/calculating-gini-coefficient-in-bigquery-3bc162c82168
https://medium.com/google-cloud/calculating-gini-coefficient-in-bigquery-3bc162c82168




4036 Stavanger

Tel: +47 51 83 10 00

E-mail: post@uis.no

www.uis.no

Cover Photo: Hein Meling

© 2023 Kristian Horve Tjessem


	Abstract
	Acknowledgements
	Introduction
	Background and Motivation
	Background
	Motivation

	Objectives
	Approach and Contributions
	Outline

	Related Work
	How Swarm works
	Overview
	Networking
	Overlay - Kademlia

	Smart contracts & a token
	Stake & the staking contract
	Rent oracle
	Postage contract
	Redistribution contract

	Incentives
	bandwidth incentive
	Storage incentive


	Creating a simulator
	Requirements
	Stake distribution
	Neighborhood selection
	Multiple nodes
	Analysis requirements

	Design
	Assumptions
	The main loop
	Structure

	Implementation
	Simulator
	SwarmNetwork
	Stake creator
	Rent oracle
	Postage contract
	Saving results

	Approach

	Simulation results
	Distribution of rewards
	Equal stake
	Power stake
	Spread stake


	Resource usage approach
	Virtual machine & node
	Measure
	Approach
	Results

	Discussion
	Conclusions
	Instructions to Compile and Run System

