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Abstract

Background: To estimate cardiovascular and cancer death rates by regions

and time periods.

Design: Novel statistical methods were used to analyze clinical surveil-

lance data.

Methods: A multicenter, population‐based medical survey was performed.

Annual recorded deaths from cardiovascular diseases were analyzed for all 195

countries of the world. It is challenging to model such data; few mathematical

models can be applied because cardiovascular disease and cancer data are

generally not normally distributed.

Results: A novel approach to assessing the biosystem reliability is introduced

and has been found to be particularly suitable for analyzing multiregion

environmental and healthcare systems. While traditional methods for

analyzing temporal observations of multiregion processes do not deal with

dimensionality efficiently, our methodology has been shown to be able to cope

with this challenge.

Conclusions: Our novel methodology can be applied to public health and

clinical survey data.
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1 | BACKGROUND

Cardiovascular disease (CVD) refers to a range of
diseases affecting the heart and blood vessels including
hypertension (high blood pressure), coronary heart
disease and heart attacks, cerebrovascular diseases (e.g.,
stroke and heart failure), and various other heart
diseases. Cancers are defined by the National Cancer
Institute as diseases in which abnormal cells can divide

and infiltrate nearby tissues. Cancers can arise in many
parts of the body; thus, there is a wide range of cancer
types, as shown below, some of which spread to other
parts of the body through the blood and lymph systems.
CVD and cancer are the leading causes of death
worldwide, therefore analyzing bivariate statistics is
important. This study is concerned with public health
systems rather than health at the level of the individual.
The research is not clinical in nature; the goal is to
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estimate the burden imposed by CVD and cancer on
public health systems in different countries at any given
time. We analyze mortality literature data for both CVDs
[1–8] and cancer [9–29].

Assessing the reliability of healthcare systems and
estimating excess mortality from CVDs using conven-
tional statistical methods are challenging [30–35]. To
achieve the latter goal over large areas, degrees of
freedom are typically calculated for random variables
governing dynamic biological systems. In principle, the
reliability of a complex biological system can be
accurately estimated if there are sufficient measure-
ments or by using Monte Carlo simulations. For CVDs
and cancers, however, data are scarce before 1990 [30].
Against this background, we introduce a novel method
for assessing the reliability of biological and healthcare
systems, to aid prediction and management of excess
mortality from CVD. This study focused on cross‐
correlations in CVD and cancer deaths among countries
within the same climatic zone. Worldwide health data
and related research are readily available online [30].

Lifetime data analysis with the application of extreme
value theory is widespread in the fields of medicine and
engineering, [30]. A recent paper presented the argu-
ments for and against using the upper distribution of life
expectancy data [1]. A bivariate lifetime distribution is
often assumed when analyzing statistical data [3]. A new
approach that uses Clayton, Gumbel, and inverse
Gaussian power variance functions, as well as condi-
tional sampling and numerical approximation, was
applied for survival analysis [2]. However, few studies
have aimed to predict excess CVD and cancer mortality;
this paper aimed to address this deficit.

In this paper, excess mortality from CVD is viewed
as an unexpected event that may occur in any country at
any time. The nondimensional factor λ is used to predict
CVD risk. Biological systems are influenced by environ-
mental parameters that can be modeled as ergodic
processes. The CVD and cancer incidence data for 195
countries during the period 1990–2019 were retrieved
[30]. The biological system under consideration herein
can be regarded as a multidegree of freedom (MDOF)
dynamic system with highly interrelated regional
components/dimensions. This study focused on predict-
ing excess mortality rather than symptoms.

2 | METHODS

Consider an MDOF biosystem subjected to random
ergodic environmental influences. The other alternative
is to view the process as being dependent on specific

environmental parameters whose variation in time may
be modeled as an ergodic process on its own. The MDOF
biomedical response vector process  RR t⃗ ( ) is measured
and/or simulated over a sufficiently long time interval

T(0, ). Unidimensional global maxima over the entire
time span T(0, ) are denoted as
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with respect to the dynamic system autocorrelation time.
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be consequent in the time local maxima
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being the probability of nonexceedance for response
components ηX , ηY , ηZ ,… critical values;  denotes logical
unity operation «or»; and pX Y Z, , , …T T T

max max max being joint

probability density of the global maxima over the entire
time span T(0, ).

In practice, however, it is not feasible to estimate the
latter joint probability distribution directly p …X Y Z, , ,T T T

max max max

due to its high dimensionality and available data set
limitations. In other words, the time instant when either X
exceeds, Y exceeds, Z exceeds, and so on, the system is
regarded as immediately failed. Fixed failure levels ηX , ηY ,
ηZ ,… are, of course, individual for each unidimensional
response component of R t( ). X X j N= max { ; = 1, …, }N j X

max
X

X= T
max, Y Y j= max { ; =N j

max
Y

N Y1, …, } =Y T
max, Z =N

max
z

Z j N Zmax { ; = 1, …, } =j Z T
max, and so on, see Naess and

Gaidai [32] and Naess and Moan [49].

Next, the local maxima temporal instants t[ <…X
1

t t t t t< ; <…< ; < …< ]N
X Y

N
Y Z

N
Z

1 1X Y Z
in monotonously non-

decreasing order being sorted into one single merged
synthetic time vector  t t… N1 . Note that t = maxN
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t t t{ , , , …}N
X

N
Y

N
Z

X Y Z
, N N N N= + + + …X Y Z . In this case, tj

represents the local maxima of one of the MDOF biosystem
response components either X t( ), Y t( ), or Z t( ), and so on.
That means that having R t( ) time record, one just needs to
continuously and simultaneously screen for unidimensional
response component local maxima and record its exceedance
of the MDOF limit vector η η η( , , , …)X Y Z in any of its

components X Y Z, , , …. The local unidimensional response
component maxima are merged into one temporal non-
decreasing vector R R R R⃗ = ( , , …, )N1 2 in accordance with

the merged time vector  t t… N1 . That is to say, each local
maxima Rj is the actual encountered local maxima
corresponding to either X t( ), Y t( ), or Z t( ), and so on.

Finally, the unified limit vector η η( , …, )N1 is introduced

with each component ηj is either ηX , ηY , or ηZ and so on,

depending on which of X t( ) or Y t( ) or Z t( ), and so forth,

corresponds to the current local maxima with the running
index j.

Next, a scaling parameter λ0 < 1 is introduced to
artificially simultaneously decreases limit values for
all biosystem response components, namely, the new
MDOF limit vector η η η( , , ,…)X

λ
Y
λ

z
λ with η λ η·X

λ
X ,

 λ η· Y , η λ η·z
λ

Z , … is introduced. The unified limit

vector η η( , …, )λ
N
λ

1 introduced with each component

ηj
λ is either ηX

λ, ηY
λ, or ηz

λ and so on. The latter

automatically defines probability P λ( ) as a function of
λ; note that P P (1) from Equation (1). Nonexcee-
dance probability P λ( ) can be now estimated as
follows:
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(3)

In practice, the dependency between neighboring Rj
values is not always negligible; thus, the following
one‐step (i.e., “conditioning level”; k = 1) memory
approximation is introduced
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for  j N2 (called here conditioning level k = 2).
Approximation being introduced by Equation (4) may
be further expressed as
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(5)

where  j N3 (will be called conditioning level
k = 3) and so on. The motivation is to monitor each
independent failure that happened locally first in
time, thus avoiding cascading local intercorrelated
exceedances [36–48].

Equation (5) presents subsequent refinements of the
statistical independence assumption. The latter type of
approximations enables capturing the statistical depen-
dence effect between neighboring maxima with increased
accuracy. Since the original MDOF bioprocess R t( ) was
assumed ergodic and therefore stationary, probability

≔  p λ R η R η R η( ) Prob{ > | , }k j j
λ

j j
λ

j k j k
λ

−1 −1 − +1 − +1 for j k

will be independent of j but only dependent on
conditioning level k. Thus, the nonexceedance probabil-
ity can be approximated as in the Naess–Gaidai method,
see [32, 49], where:

 P λ N p λ k( ) exp(− · ( )), 1.k k
(6)

Note that Equation (6) follows from Equation (1)
by neglecting  R ηProb( ) 1λ

1 1 , as the design failure

probability is usually very small. Further, it is
assumed that ≫N k. Note that Equation (5) is similar
to the well‐known mean up‐crossing rate equation for
the probability of exceedance [32, 49]. There is
observed convergence with respect to conditioning
parameter k

 
P P p λ p λ= lim (1); ( ) = lim ( ).

k
k

k
k (7)

Note that Equation (6) for k = 1 turns into the quite
well‐known nonexceedance probability relationship with
the mean up‐crossing rate function


P λ ν λ T λ ζp λ ζ dζ( ) exp(− ( ) ); ( ) = ( , ) ,RR

+

0
̇ (8)

where ν λ( )+ is the mean up‐crossing rate of the response
level λ for the above assembled nondimensional vector
R t( ) assembled from scaled MDOF biosystem response

( ), , , …
X

η

Y

η

Z

ηX Y Z

. The proposed methodology can also
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treat nonstationary cases. An illustration of how the
methodology can be used to treat nonstationary cases is
provided as follows. Consider a scattered diagram
of m M= 1, …, bioenvironmental states, with each
short‐term bioenvironmental state having probability
qm so that  q = 1m

M
m=1 . The corresponding long‐term

equation is then

 p λ p λ m q( ) ( , ) ,k
m

M

k m
=1

(9)

with p λ m( , )k being the same function as in Equation (7)
but corresponding to a specific short‐term environmental
state with the number m. Note that this statistical model
has already been validated [47, 50–52].

3 | RESULTS

Prediction of CVD and cancer has long been a target in
the fields of epidemiology and mathematical biology.
Public health systems are dynamic, highly nonlinear,
multidimensional, and spatially diverse systems that
are challenging to analyze. Previous studies have used
a variety of approaches to predict CVD and cancer
cases. In this section, the above‐described methodol-
ogy is applied to real‐world CVD data sets for all
countries of the world.

The statistical data in the present section are from the
“Our World in Data” website [30], which provides
annual CVD death rates for all countries for the
period 1990–2019. The death rates for the 195 countries
(components X Y Z, , …) constitute 195 dimensional
(195D) data for a dynamic biological system.

General failure limits (η η η, , ,…X Y Z ), that is, CVD
thresholds, are less intuitive than setting failure limits for
each individual country according to its population, such
that X Y Z, , , … are equal to the annual death rate of a
given country. The death rate for cancer is lower than
that for CVD, but it is typically more painful to die from
cancer. In this paper, the “failure limit” for cancer is
lowered fourfold to match that for CVD.

Next, the local maxima from all nondimensionalized
time series data are merged into a single time series using
Equation (5):

(

)

{
} {

}

{ } { }

{ } { }

{ } { }

R X X Y Y

Z Z X X

Y Y Z Z

⃗ = max , , max , ,

max , , … , …, max , ,

max , , max , ,… .

N N

N N N N

1
cardio

1
cancer

1
cardio

1
cancer

1
cardio

1
cancer cardio cancer

cardio cancer cardio cancer

(10)

Each maximum, such as X Xmax{ , }j j
cardio cancer , is

inserted into single time series according to its temporal
occurrence (denoted by subscript j).

Figure 1 presents the annual deaths from CVD and
cancer by country and year. Figure 2 presents the
number of new deaths as a 195D vector R⃗. Data for
Uzbekistan were excluded from the analysis because they
were regarded as outliers. R⃗ was assembled from
different regional components, that is, CVD data sets.
Index j is a running index of local maxima encountered
in the “non‐decreasing” time series.

Overall, there is a clear East–West divide in the
CVD death rates. Rates across North America and
Western/Northern Europe tended to be lower than
those across Eastern Europe, Asia, and Africa. For
most of Latin America, the rates were moderate. As an
example, in France, the age‐standardized CVD death
rate was around 86 per 100,000 in 2017, while across
Eastern Europe, it was around five times higher
(400–500 per 100,000). Uzbekistan had the highest
rate of 724 per 100,000.

Figure 3 presents the predicted annual CVD death
rates (percentage relative to the entire population of
a given country) over 100 years, extrapolated from
Equation (10). λ = 0.6% was used as a cut‐off value.
The 95% confidence intervals (CIs) were calculated.
According to Equation (5), p λ( ) is directly related to the
target failure probability ( P1 − ) derived from Equation
(1). Therefore, system failure probability can be esti-
mated as P P1 − 1 − (1)k . Note that, in Equation (6),
N corresponds to the total number of local maxima in
response vector R⃗. Conditioning parameter k = 3 was

FIGURE 1 Annual deaths from cardiovascular disease and
cancer as a percentage of the population for 195 countries.
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found to be sufficient because of the convergence of k
(see Equation 6). In Figure 3, the 95% CIs are relatively
narrow, which represents an advantage of the proposed
method. Table 1 compares 100‐year predictions based on

data for 15‐ and 30‐year periods. The 15‐year data set was
derived from the full 30‐year data set by omitting odd
years. The 95% CIs were wider for the truncated data set,
as expected.

FIGURE 2 Left: Cross‐correlations between cardiovascular disease (CVD) and cancer cases as a percentage of the population. Right:
Annual death rates as a 195‐dimensional vector R⃗ , as a percentage of the population of the corresponding country. The cancer rate was
increased fourfold to match that of CVD.

FIGURE 3 Death rate predictions over 100 years extrapolated from p λ( )k . The critical level is indicated by a star. The 95% confidence
intervals are indicated by dotted lines. The percentage of the population is represented by the horizontal axis. Left: Predictions based on
30 years of data; Right: predictions based on 15 years of data.

TABLE 1 Predicted cardiovascular disease death rates over 100 years based on 30‐ and 15‐year data sets.

Predicted death rate (%) 95% CI, lower bound 95% CI, upper bound

30‐year data set 0.942 0.909 0.966

15‐year data set 0.914 0.879 0.949

Abbreviation: CI, confidence interval.

144 | CANCER INNOVATION

 27709183, 2023, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cai2.47 by U

niversity O
f Stavanger, W

iley O
nline L

ibrary on [13/09/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



The predicted average annual CVDs over the next 100
years, among all years and countries, were found below
1%. Our methodology uses available data efficiently by
assuming that healthcare system data sets are multi-
dimensional and extrapolates death rates even when the
data set is relatively limited. The predicted nondimen-
sional factor λ, indicated by the star in Figure 3,
represents the probability of excess CVD mortality for
any given country. Our method could be applied to
predict cancer clusters, rather than merely death rates
over time, which would be of high practical importance.

4 | CONCLUSIONS

Traditional methods for assessing the reliability of
healthcare systems on the basis of time series data
do not efficiently deal with systems characterized by
high dimensionality and cross‐correlations. The main
advantage of our methodology is its ability to assess the
reliability of high‐dimensional nonlinear dynamic sys-
tems. Despite its simplicity, the novel multidimensional
modeling strategy introduced herein can be used for
accurate forecasting of CVD death rates in individual
countries.

We analyzed 195D data, that is, CVD and cancer
death rates for 195 countries worldwide, for the period
1990–2019. A novel method for analyzing the reliability
of a multidimensional biosystem was applied and the
mechanisms of the proposed method were described in
detail. Direct measurements and Monte Carlo simula-
tions are both suitable for assessing the reliability of
dynamic biological systems; however, the complexity and
high dimensionality of such systems necessitate the
further development of robust and accurate techniques
that can use limited data sets in an efficient manner.

This study predicted an average annual death rate for
CVD over a 100‐year period of about 1% across countries
and years. Under current national health management
approaches, CVDs will continue to represent a threat to
the health of the world population.

This study introduced a general‐purpose, robust, and
easy‐to‐apply method for analyzing the reliability of
multidimensional systems. The method has previously
been validated by application to a wide range of
simulation models but only in the context of one‐
dimensional systems; in general, highly accurate predic-
tions were obtained. Both measurement and numerically
simulated time series data can be analyzed. Applying the
method to the data set used in this study yielded
reasonable confidence intervals, indicating that it could
serve as a useful tool for reliability studies of
various nonlinear dynamic biological systems. Finally, the

suggested methodology has many potential public health
applications beyond the prediction of CVD death rates.
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