
FACULTY OF SCIENCE AND TECHNOLOGY

MASTER’S THESIS

Study programme/specialisation: Spring semester 2023

Robot technology and Signal Processing Open

Author: Lasse Ånestad

Programme coordinator:

Morten Tengesdal

Supervisor(s):

Morten Mossige

Title of master’s thesis:

Automatic Test-system for Resolver Measurement used in Robots

Credits: 30

Keywords: Number of pages: 74

Regression testing, resolver, stepper motor, + Attachments/others:

automatic test system, open-loop system Stavanger, 15 July 2023



Abstract

The Serial Measuring Unit (SMU) is a component used to measure motor angles in robot joints
at ABB. Currently, the SMU is under development, and ABB has to manually test the SMU
to ensure that changes to the software or hardware do not unintentionally introduce bugs or
break previously working features. This testing process is time-consuming and unreliable.

This thesis presents the development and implementation of an automatic test system for
the SMU in ABB’s existing testing environment. The developed automatic test system is an
attempt to utilize open-loop control to test functionalities and the quality of angle measure-
ments. A Resolver Test Unit, primarily consisting of a stepper motor and seven resolvers,
was designed for this open-loop test system. Test scripts were developed to control the step-
per motor and read data from the SMU. Upon analyzing the results, it became evident that
the automatic test system lacks the required accuracy and precision to execute high-precision
angle measurement tests reliably. Additional testing revealed a non-linear stepping pattern
in the stepper motor and a wrongly tuned stepper motor controller. Furthermore, a slight
deviation in the mechanical parts of the Resolver Test Unit is suspected, further affecting the
resolver measurements.

The test system performed consistently well for tests that did not involve high-precision angle
measurements. However, the test system does not qualify for angle and quality measurement
tests with the current hardware for open-loop control. Thus, the test system must either be
upgraded to higher-quality hardware or changed to a closed-loop system. In addition to one
of these requirements, the system needs to be calibrated.

i



Acknowledgement

I am sincerely grateful to my supervisor, Morten Mossige, who went above and beyond to
assist me with my work. I am deeply thankful to Nina Svensen, Bjarne Sandvik, Donjing
Liu, and Gultekin Gul for their assistance and support related to the SMU and test system.
Additionally, I would like to express my appreciation to Alan Pask for designing the Resolver
Test Unit. Lastly, I extend my utmost gratitude to ABB for granting me the opportunity to
conclude my five-year-long academic journey in an incredible work environment.

ii



Contents

Abstract i

Acknowledgement ii

Contents ii

1 Introduction 2

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Background 4

2.1 Resolver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Serial Measuring Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Excitation signal and resolver measurements for EPS . . . . . . . . . . . 7

2.2.2 Revolution counters and battery modus . . . . . . . . . . . . . . . . . . 9

2.2.3 Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.4 Ramp test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Intergrated Process System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Process Interface Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

iii



CONTENTS

2.5 Stepper motor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.6 Stepper motor controller SMSD-4.2Modbus . . . . . . . . . . . . . . . . . . . . 13

2.7 Automated Regression Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.8 Quality Angle Measurement Testing . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Existing Work 16

3.1 ABB Software Development Environment . . . . . . . . . . . . . . . . . . . . . 17

3.2 Release Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3 Test Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.4 IPS Commandline Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4 Test System Implementation 21

4.1 Test System Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.1.1 Resolver Test Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.1.2 Test system physical design . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.1.3 Test system overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2 Test System Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.2.1 SMSD software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.2.2 SMU test commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5 Regression Test Cases 31

5.1 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.2 Excitation and Ramp Test Case . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.3 Resolver Angle Test Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

iv



CONTENTS

5.4 Resolver Quadrant Test Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.5 Resolver Revolution Test Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.6 Resolver Battery Modus Test Case . . . . . . . . . . . . . . . . . . . . . . . . . 43

6 Quality measurement test Case 45

6.1 Choosing Optimal Step Length . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.2 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

7 Results 50

7.1 Regression Test Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

7.2 Quality Measurement Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

7.2.1 Resolver 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

7.2.2 Resolver 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

7.2.3 Resolver 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

7.2.4 Resolver 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

8 Discussion 62

8.1 Test Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

8.1.1 Identifying the sources of non-linear measurements . . . . . . . . . . . . 63

8.1.2 Regression test result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

8.2 Test System Improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

8.2.1 Upgrading the stepper controller/driver and stepper motor . . . . . . . . 69

8.2.2 Error compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

8.2.3 Alternative resolver control configuration . . . . . . . . . . . . . . . . . 69

v



CONTENTS

8.2.4 Reworking the Resolver Test Unit . . . . . . . . . . . . . . . . . . . . . 70

8.2.5 Optimising test cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

8.2.6 Missing test cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

8.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

9 Conclusion 74

Bibliography 76

A Appendix 77

vi



List of Tables

4.1 Stepper motor commands table. . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2 SMU test command table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

7.1 Failing sections for the decreasing angle measurement test. . . . . . . . . . . . . 52

7.2 Failing sections for the random angle measurement test. . . . . . . . . . . . . . 53

vii



List of Figures

2.1 Resolver windings and signal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 The Serial Measuring Unit reprinted from [3] with permission from ABB . . . . 6

2.3 Resolver Excitation overview reprinted from [2] with permission from ABB. . . 7

2.4 Sequence of resolver measurements in EPS modus. Altered reprint from [2] with
permission from ABB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.5 The structure of a resolver measurement memory slot. . . . . . . . . . . . . . . 9

2.6 This figure shows the PIB. reprinted from [3] with permission from ABB. . . . 11

2.7 This figure shows the Tamagawa 2-Phase stepper motor. . . . . . . . . . . . . . 12

2.8 SMSD-4.2Modbus stepper motor controller. . . . . . . . . . . . . . . . . . . . . 13

2.9 This figure shows the current waveform for both phases of fullstepping and
microstepping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1 "DevSecOps" by Rezadlt. Retrieved from [13]. Licensed under a Creative Com-
mons Attribution-Share Alike 4.0 International license, the Image is cropped
and color adjusted. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Release pipeline overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3 Module dependency diagram for the test framework in Python. . . . . . . . . . 19

3.4 Single SMU command user case sequence diagram. . . . . . . . . . . . . . . . . 20

4.1 This figure shows the outer and inner design of the RTU. . . . . . . . . . . . . 22

viii



LIST OF FIGURES

4.2 Physical test system layout on the metal plate for the BVT cabinet. . . . . . . 23

4.3 This figure shows the real physical layout of the implemented test system. . . . 24

4.4 Test system overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.5 Module dependency diagram. The green modules represent the new modules
integrated into the existing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.6 Sequence diagram of a single user case for command anglego. . . . . . . . . . . 28

4.7 This figure shows the complete module dependency diagram overview. The
section within the dotted line is the addition of SMU test commands to the
test framework. Blue modules represent existing work, and green/red represent
addons for the SMU test system. . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.1 Sequence diagram for the start-up sequence. . . . . . . . . . . . . . . . . . . . . 32

5.2 Sequence diagram for the ramp test. . . . . . . . . . . . . . . . . . . . . . . . . 33

5.3 Excitation EIP test measurement sequence, excitation signal 1 and 2 are in
phase. Both excitation signal 1 and 2 are labeled as blue. All the resolvers in
group 1 are measuring zero crossings instead of tops. Altered reprint from [2]
with permission from ABB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.4 Sequence diagram for excitation test. . . . . . . . . . . . . . . . . . . . . . . . . 35

5.5 Sequence diagram angle measurement in increasing increments test. . . . . . . . 37

5.6 Sequence diagram random angles measurements test. . . . . . . . . . . . . . . . 38

5.7 This figure shows how measurements are done to test quadrant transition stabil-
ity. The red dots are the measurements done, and the blue bell curves represent
noise for each stepping position. . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.8 This figure shows the sequence diagram of the quadrant test program flow. The
frame labeled "ref" is a method to rotate the resolver to a desired position
precisely. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.9 This figure displays the program flow for the incremental revolution counter
test. This test is performed on all resolvers as shown with the first for-loop. . . 41

5.10 Sequence diagram for revolution counter in battery modus. . . . . . . . . . . . . 43

ix



LIST OF FIGURES

6.1 This figure shows an angle displacement test with four different micro-stepping
configurations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.2 This figure shows the effect of increasing the step interval to 3.6-degrees. . . . . 47

6.3 Stopping Accuracy test for all microstepping configurations with a step length
of 3.6-degrees. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.4 Sequence diagram for data collection. . . . . . . . . . . . . . . . . . . . . . . . . 49

7.1 Test results for a full test run generated on Azure. . . . . . . . . . . . . . . . . 51

7.2 Test results for a full test run generated on Azure . . . . . . . . . . . . . . . . . 51

7.3 This figure shows the angle quality measurement results for resolver 2. The
upper plot shows the difference between the measured and expected angles, and
the lower plot shows the variance around the average measured angle. Lower
Quartile Range(LQR) represents 50% of the measurements, and Upper Quartile
Range(UQR) represents approximately 99.1% of the measurements. Outliers
are the measurements that fall outside of LQR and UQR. . . . . . . . . . . . . 54

7.4 This figure shows the results for resolver 2 concerning the square summation of X
and Y in the left plot and the deviation around the average value for X and Y in
the two plots to the right. LQR represents 50% of the measurements, and UQR
represents about 99.1% of the measurements. Outliers are the measurements
that fall outside of UQR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

7.5 This figure shows the angle quality measurement results for resolver 3. The
upper plot shows the difference between the measured and expected angles,
and the lower plot shows the variance around the average measured angle. LQR
represents 50% of the measurements, and UQR represents approximately 99.1%
of the measurements. Outliers are the measurements that fall outside of LQR
and UQR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

7.6 This figure shows the results for resolver 3 concerning the square summation of X
and Y in the left plot and the deviation around the average value for X and Y in
the two plots to the right. LQR represents 50% of the measurements, and UQR
represents about 99.1% of the measurements. Outliers are the measurements
that fall outside of UQR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

x



LIST OF FIGURES

7.7 This figure shows the angle quality measurements results for resolver 4. The
upper plot shows the difference between the measured and expected angles,
and the lower plot shows the variance around the average measured angle. LQR
represents 50% of the measurements, and UQR represents approximately 99.1%
of the measurements. Outliers are the measurements that fall outside of LQR
and UQR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

7.8 This figure shows the results for resolver 4 concerning the square summation of X
and Y in the left plot and the deviation around the average value for X and Y in
the two plots to the right. LQR represents 50% of the measurements, and UQR
represents about 99.1% of the measurements. Outliers are the measurements
that fall outside of UQR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

7.9 This figure shows the angle quality measurements results for resolver 6. The
upper plot shows the difference between the measured and expected angles,
and the lower plot shows the variance around the average measured angle. LQR
represents 50% of the measurements, and UQR represents approximately 99.1%
of the measurements. Outliers are the measurements that fall outside of LQR
and UQR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

7.10 This figure shows the results for resolver 6 concerning the square summation of X
and Y in the left plot and the deviation around the average value for X and Y in
the two plots to the right. LQR represents 50% of the measurements, and UQR
represents about 99.1% of the measurements. Outliers are the measurements
that fall outside of UQR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

8.1 Full revolution angle measurement test with all resolvers phase shifted to start
at the same stepper motor position as resolver 6. SA stands for Stopping Accuracy. 65

8.2 This figure shows a complete revolution square summation test for resolver 6
on all nodes. SQS stands for Square Summation. . . . . . . . . . . . . . . . . . 66

8.3 Parallel shaft configuration for the Resolver Test Unit. . . . . . . . . . . . . . . 70

xi



Abbreviations

ABB ASEA Brown Boveri

BVT Build Verification Tester

CCW Counter Clock Wise

CI/CD Continuous Integration/Continuous Delivery

CLI Command Line Interface

CW Clock Wise

EIP Excitation In Phase

EPS Excitation Phase Shift

FPGA Field-Programmable Gate Array

IPS Integrated Process System

LQR Lower Quartile Range

LRC Longitudinal Redundancy Check

PIB Process Interface Board

RTU Resolver Test Unit

SMU Serial Measurement Unit

SPI Serial Peripheral Interface

SUT Software Under Test

TAR Test Accuracy Ratio

UQR Upper Quartile Range

1



Chapter 1

Introduction

The robot industry constantly evolves and develops new robot technology to streamline and
adapt to complex automated tasks. One of the critical aspects in the process of development is
to be able to test and validate the functionality of the respective systems accurately. Any small
software or hardware change can potentially break previously working features. Extensive
software regression testing [9] can be a tedious and time-consuming process if carried out
manually. Manual regression testing can also introduce human errors, which makes the testing
process unreliable. However, regression testing will only test if a specific system is within
respective tolerances, not the absolute quality of the product. It’s also valuable to gather
extra data in parallel with regression testing to see if new iterations on the system have
increased or decreased its overall quality.

1.1 Motivation

ABB Robotics Bryne is a high-tech R&D center responsible for the development of ABB’s
paint robots. They are currently in the phase of developing a brand new robot control system.
This new controller is based on innovative, cutting-edge technology. One of the modules
included in this control system is the Serial Measuring Unit (SMU). The purpose of the SMU
is to measure the motor angles and revolutions in the robot joints, which allows for complete
control over the position of a mechanical robot arm. Currently, ABB has to manually validate
the correctness of the SMU after small software and hardware changes, which is a tedious and
time-consuming task. This master thesis will present the development and installation of an
automatic test system for the SMU in a DevOps (CI/CD) setup. Additionally, this master
thesis introduces a method to verify if the new iterations on the SMU change the overall
quality of individual cards in parallel with the automatic tests.

2



1.2 Outline

1.2 Outline

This thesis is divided into the following chapters:

1. Introduction

2. Background

– Introducing hardware, software, and testing methods for the test system

3. Existing work

– Provides an overview of the relevant parts of ABB’s existing testing environment

4. Test System Implementation

– Test system design

– Introducing Resolver Test Unit

– Development of stepper motor controller software

– Development of Serial Measurement Unit commands

5. Regression Test Cases

– Development of regression test cases

6. Quality Angle Measurement Test Cases

– Development of quality measurement test cases

7. Results

– Regression test results

– Quality angle measurement test results

8. Discussion

– Discussing the results for the test cases, presenting potential upgrades for the test
system and test cases

9. Conclusion

3



Chapter 2

Background

This chapter presents a detailed explanation of all the components and testing methods used
in the test system, excluding the Resolver Test Unit, which will be introduced in Chapter 4.
The test system consists of the following components:

• Resolver

• SMU

• PIB

• IPS

• Stepper Motor

• Stepper Motor Controller

• Regression Testing

• Quality Angle Measurements Testing

4



2.1 Resolver

2.1 Resolver

A resolver is a type of electromagnetic sensor that can be used to measure angles and speed for
rotating machines. This is the type of sensor ABBs robots use to measure motor positions in
their robot arms. Every joint in the robot arms needs a resolver installed on the motor to make
it possible to calculate the mechanical position of the robot arm with kinematic equations.
The resolver consists of two main components, a stator, and a rotor. The stator has three
windings, one primary winding for the transformer, which induces the excitation voltage to
the rotor, and two secondary windings as presented in Figure 2.1.

R1

R2

Ve

               
               

               
               

S4

S2
Vc = VeCOS(θ)

Vs = VeSIN(θ)
θ

Stator

COS
Winding

SIN
Winding

Rotor

S3

S1

Rotary 
Transformer

Figure 2.1: Resolver windings and signal.

The secondary windings are placed at a 90-degree angle from each other, which results in a
sine and cosine feedback signal. The angle of the rotor determines the amplitude of the sine
and cosine feedback signal, and the ratio between these two signals is the tangent of the rotor
angle, as shown in equation 2.1

5



2.2 Serial Measuring Unit

θ = arctan
sinθ

cosθ
= arctan

V s

V c
(2.1)

Where Vs is the amplitude of the sine signal, and Vc is the amplitude cosine signal. From
hereafter, the sine and cosine feedback signals will be referred to as Y and X, respectively.

2.2 Serial Measuring Unit

The serial measuring unit (SMU) is an embedded system with a central processing unit (CPU),
field-programmable gate array (FPGA), and a highly accurate analog-to-digital converter
(ADC). This board serves the dual purpose of measuring motor angles and counting mo-
tor revolutions in robot joints. The SMU supports the connection of seven resolvers at once,
which is to support robot arms with as many as 7-axes. While measuring and counting the
resolvers in operation, the SMU continuously reports the data to an axis computer that will
calculate the mechanical position of the connected robot. Figure 2.2 presents an image of the
SMU.

Figure 2.2: The Serial Measuring Unit reprinted from [3] with permission from ABB

6



2.2 Serial Measuring Unit

2.2.1 Excitation signal and resolver measurements for EPS

Excitation signal
The seven resolvers nodes on the SMU are divided into two groups, one for excitation signal
1 and another for excitation signal 2. Group 1 consists of resolvers 1-3, and group 2 resolvers
4-7. The excitation signals for both groups of resolvers can be configured to two different
modes, excitation phase shifted (EPS) and excitation in phase (EIP). Figure 2.3 displays an
example of EPS modus for the excitation signal.

Figure 2.3: Resolver Excitation overview reprinted from [2] with permission from ABB.

7



2.2 Serial Measuring Unit

Resolver measurement sequence
The FPGA measures one resolver every 63µs, thus making it possible to measure all seven
resolvers within a time period of 500µs in EPS mode. Every resolver node has two input
channels dedicated for reading X and Y values. The readings are done at the top and the
bottom of the resolver feedback signals. Two different sequences of measuring the resolvers
are required to get valid results for EPS and EIP, respectively. Figure 2.4 displays a possible
sequence of resolver measurements used in EPS modus.

Resolver 4

Resolver 2 Resolver 5

Resolver 3 Resolver 6Resolver 1

Resolver 7Filler command

EXC 2

EXC 1

Sample

Figure 2.4: Sequence of resolver measurements in EPS modus. Altered reprint from [2] with permis-
sion from ABB

This sequence of resolver measurements ensures that the SMU does not samples zero crossings
of the feedback signal. Measuring zero crossings will result in useless measurements. The filler
command, as shown in Figure 2.4, is to create an offset to compensate for the fact that there
is one more resolver in excitation signal group 2 than in group 1. The only requirement for
the filler command is not to be a resolver measurement command.

8



2.2 Serial Measuring Unit

Resolver measurements
As mentioned in the previous section about the resolver measurement sequence, each resolver
node has two input channels for reading X and Y values. These two values are stored in
specific 16-bit memory slots. The two left-most bits represent status, and the next 14 bits
represent the resolver values, as shown in Figure 2.5.

Figure 2.5: The structure of a resolver measurement memory slot.

The resolver values are stored in this memory in a two’s complement [6] format to properly
represent the positive and negative values of the resolver signal. Thus, the maximum and
minimum values are 8191 and -8192, respectively. However, internal scaling on the excitation
signal ensures that the resolver values will not use the full range of these limits to avoid
saturation. The scaling is different on all resolvers. Consequently, the resolvers will have
different working ranges.

2.2.2 Revolution counters and battery modus

The SMU has a revolution counter for every resolver node. It’s crucial to store information
about how many revolutions each and every motor have done to be able to calculate the
position of the mechanical arm. If the SMU loses power for just a split second, the internal
SMU revolution counter is lost. Additionally, If the mechanical arm is moved while the SMU
has lost its power, the revolution counter does not update. To counter this problem, a battery
will keep the SMU powered if the main power source is disconnected. The SMU loses some
functionality when the main power is lost. However, the SMU can still detect the resolver’s
current quadrant position and count motor revolutions in battery modus.

2.2.3 Communication

Usually, in production, the SMU communicates with an Axis computer over an RS-422 link.
However, the SMU will communicate with a PIB over SPI for the test system. Both of these
interfaces utilize ring controller protocol, an ABB exclusive communication protocol [1].

9



2.3 Intergrated Process System

2.2.4 Ramp test

The ramp test is part of a startup sequence in ABB’s older generation of robots. If this test
failed, the robot would not start. The ramp test determines if the ADC accurately converts
an analog signal into a corresponding digital value that consistently increases or decreases at a
linear rate. Notably, this test is only performed on node 7. ABB’s newer generation of robots
does not have the ramp test as a startup condition. However, for the new versions of the SMU
to be compatible with the older generation of robots, the SMU must be able to perform this
test. In the newest SMU iteration, the firmware simulates the ramp test process virtually.
Therefore, it is necessary to include the verification of the virtual ramp test in the regression
test cases.

2.3 Intergrated Process System

Integrated Process System (IPS) is an embedded and distributed software suite for process
control used in ABB. This application controls the process by reading sensors, control motors,
paint flow, airflow, the timing of paint flow, etc. Notably, this software suite offers distributed
computing frameworks to efficiently implement new drivers and commands for parallel dis-
tributed systems.

10



2.4 Process Interface Board

2.4 Process Interface Board

The Process Interface Board (PIB) is the central interface between the control system and
paint application equipment. The general purpose of this board is to link the control system
and process equipment. Additionally, the PIB is running IPS applications. Figure 2.6 displays
an image of the PIB.

Figure 2.6: This figure shows the PIB. reprinted from [3] with permission from ABB.

This board will be the interface between the test computer and the SMU.

11



2.5 Stepper motor

2.5 Stepper motor

To test the accuracy of resolver measurements on the SMU, a stepper motor is used to control
the resolvers in an open loop configuration. This stepper motor is a 2-Phase stepper motor
from Tamagawa A with a fundamental step angle of 1.8◦. Figure 2.7 displays the Tamagawa
stepper motor.

Figure 2.7: This figure shows the Tamagawa 2-Phase stepper motor.

This stepper motor is salvaged from another component at ABB, which means it’s not bought
exclusively for the test system. The positional accuracy for this stepper motor is 1.8◦ ± 5%,
which translates to ±0.09◦.

12



2.6 Stepper motor controller SMSD-4.2Modbus

2.6 Stepper motor controller SMSD-4.2Modbus

SMSD-4.2Modbus [16] is an advanced stepper motor controller that offers direct control of a
stepper motor using the Modbus communication protocol [14]. This controller supports USB
and RS-485 communication interfaces to both PLC and PC. This controller allows for real-
time stepper motor control with commands from a computer through Modbus. Additionally,
the controller supports seven microstepping configurations, ranging from 1/1 up to 1/256,
allowing for high-resolution motor movements. Furthermore, it features discrete outputs that
can be controlled through an internal user program. For visual reference, Figure 2.8 displays
the SMSD-4.2Modbus stepper motor controller.

Figure 2.8: SMSD-4.2Modbus stepper motor controller.

The SMSD-4.2Modbus controller will hereafter be referred to as SMSD.

13



2.6 Stepper motor controller SMSD-4.2Modbus

Output current control for microstepping
Stepper motors require specific current levels to function optimally; in the case of the Tam-
agawa stepper motor, 1.3 amperes per phase. This stepper motor has windings, hereafter
referred to as winding A and B. Initially, for fullstepping, one winding is fully energized at the
time. However, for microstepping, the controller subdivides a fullstep into microsteps. Thus,
the current in the coils should change in increments based on the factor of microstepping.
To achieve perfect microsteps, the current in winding A and B should change in increments
approximating a sine and cosine wave, respectively, as shown in Figure 2.9.

0

++

- -

0

++

- -

0°                 90°                180°                270°               360 °              450°

P
ha

se
 2

 - 
C

ur
re

nt
P

ha
se

 1
 - 

C
ur

re
nt

Rotor position

Fullstep and Microstep

Figure 2.9: This figure shows the current waveform for both phases of fullstepping and microstepping.

Another factor regarding the smooth and precise motion control is the current decay in the
windings. In short, there are three current decay modes: fast, slow, and mixed. These modes
essentially determine the smoothness and precision of the transition between microsteps. A
more comprehensive explanation of the current decay mode can be found in [7]. The SMSD-
4.2Modbus controller utilizes mixed decay mode, a combination of fast and slow decay.

14



2.7 Automated Regression Testing

2.7 Automated Regression Testing

It’s essential to have a method of verifying if changes in hardware or software affect previous
working features in the SMU. This is where automated regression testing comes into the
picture. Automated regression testing is a software testing technique that is used to ensure
that changes done on the respective system do not unintentionally introduce bugs or break
previously working features. This is achieved by running automated test scripts that can be
executed repeatedly, accurately, and quickly.

2.8 Quality Angle Measurement Testing

Automatic regression testing is a quick and robust method of verifying if quick changes done
to the software do not break previously working functions. However, when upgrading or
changing the hardware on the SMU, it’s also interesting to see if the overall quality of the
measurements has changed. In this context, quality is defined as the accuracy and precision of
the angle measurements. By collecting angle measurement data over more extended periods,
the data will eventually converge to a very precise estimation of the true quality of the SMU.
Additionally, to ensure getting a reliable quality estimation for one specific iteration of the
SMU, both of the following requirements must be fulfilled:

1. A test system that is significantly more accurate than the SMU

2. Data collection of multiple SMUs of the same iteration

The data cannot be trusted if the test system is less accurate than the SMU. Furthermore, by
only collecting quality measurement data for one prototype of a specific iteration of the SMU,
it’s possible getting unrealistic quality estimation due to hardware tolerances in production.
Therefore it’s essential to test as many units as possible to cover the full range of hardware
tolerances.

15



Chapter 3

Existing Work

This chapter provides an overview of the relevant parts of ABB’s existing testing environment.
The testing environment consists of the following parts:

• Devops:

– Automate and improve software development

• Release Pipeline:

– Automatic testing stage for software on target

• Python Test Framework:

– Framework for developing test cases for the Release Pipeline

In addition to the test environment, this chapter also presents ABB’s Command Line Interface
framework, which will be the platform for developing SMU commands.

• IPS Command Line Interface Framework:

– Framework for developing commands and drivers for ABB’s platforms

16



3.1 ABB Software Development Environment

3.1 ABB Software Development Environment

DevOps is a method or use of tools to automate the work of software development (Dev)
and IT Operations (Ops). This method improves and speeds up the system development life
cycle, which essentially means planning, creating, testing, and deploying software. ABB uses
the Azure DevOps services from Microsoft to speed up and improve ABBs existing workflow.
This service provides cloud-hosted repos, pipelines, test plans, and much more. ABB uses the
Continuous Integration/ Continuous Delivery (CI/CD) environment for their software devel-
opment as shown in Figure 3.1

Figure 3.1: "DevSecOps" by Rezadlt. Retrieved from [13]. Licensed under a Creative Commons
Attribution-Share Alike 4.0 International license, the Image is cropped and color adjusted.

From Figure 3.1, the two subsequent stages, build and test pipeline, are two different auto-
mated test pipelines dedicated to testing the respective software. The build pipelines checks if
the changes pushed to the repository are able to build to the relevant platforms. The release
pipeline is the external testing environment at ABB dedicated to test software under test
(SUT) on target. The test system for the SMU will be integrated into the release pipeline.

17



3.2 Release Pipeline

3.2 Release Pipeline

ABB has dedicated computers to run tests for the release pipeline called Build Verification
Testers(BVT). These computers are connected to cabinets with the necessary components and
systems needed to test specific software. An illustration of how the release pipeline works is
presented in Figure 3.2

Agent executes
test casesDeployment

request

Test Agent Software Under
Test

Test cases

Test Suite

BVT Cabinet1

Tasks

Deployment
jobs

Logs and files

Azure server

Pre deployment approval

Build release

Artifacts

5

Deploying jobs at
available agent

2

 Agent polls test
cases from test

suite

4 Agent download
artifacts from azure

3

Pushing logs and
files to Azure

6

BVT2

Figure 3.2: Release pipeline overview.

The first step is the deployment request, which can be triggered manually or automatically
by being time scheduled. The deployment jobs contain specific tasks that the test agent must
do to ensure the test cases are executed in the required environment. Once the necessary test
environment is established, the agent proceeds to execute the test cases. Upon completion of
executing the test cases, the agent uploads files and logs the results to Azure.

18



3.3 Test Framework

3.3 Test Framework

The test framework at ABB is a Python environment dedicated to making test cases for the
release pipeline. The module dependency diagram illustrated in Figure 3.3 shows a high-level
structure of the relevant parts of the test framework.

IpsRootTestScriptClass

Test Case Base

Test Case

NastAssert

TestLogger UserCommand

Figure 3.3: Module dependency diagram for the test framework in Python.

The Test Case module is the executable test case file placed in the respective test suites.
This module calls methods from the test case base for performing the actual tests.

Test Case Base is uniquely designed for the system or software under testing and contains
methods for automating specific tests, and defines the boundaries or expected outcomes for
the individual test cases using NastAssert.

NastAssert is a customized assert test [11] module designed for the test framework at ABB.
This module contains methods for checking boundaries and expected outcomes for the respec-
tive tests.

IpsRootTestScriptbClass initializes the whole test instance, defining the IPS platform,
software drop location, logging directory, and so on.

UserCommands is the interface between the Python test environment to the IPS platform.
This module contains methods for targeting the IPS console and reading responses.

TestLogger module for logging test results.

19



3.4 IPS Commandline Interface

3.4 IPS Commandline Interface

The IPS application used on ABBs platforms supports two types of command-line interfaces
(CLI), one for IPS itself and one for the platform the application is running on. On startup, the
IPS application detects which card it’s running on and will initialize based on that. Commands
and drivers related to the detected card will then be available. ABB has an established CLI
framework in C++ as a foundation for implementing new commands and drivers. The sequence
diagram in Figure 3.4 attempts to illustrate a simplified and generalized user case of the CLI
framework.

UserCmdTask UserCmd XCmdstdio.h Library

Stream

fgets(Stream)

CmdLine

alt

[CmdLine[0] !=
'\n' or '\r']

Do(CmdLine)

Find(CmdLine)

alt
[Find(CmdLine[0]) == True]

Execute(CmdLine)

alt

Cmd()[Find(CmdLine[1,,n])==True]

Cmd_status

Cmd_status

fprint(Cmd_status)

Stream 

Checks if
cmdLine is
not empty

Checks if
first
argument exists

Checks if
remaining
argument exists

Loop

Actual
execution of
command

[While
CmdLine ==
NULL]

Figure 3.4: Single SMU command user case sequence diagram.

The class xCmd is a generalized command class representing all the IPS platforms at ABB.
The SMU is usually connected to an Axis computer under operation, which means IPS initially
does not have the drivers to control an SMU card when initialized on a PIB. Therefore, an
SMU test driver and commands will be implemented in the section of xCmd in relation to the
SMU test system.

20



Chapter 4

Test System Implementation

This chapter introduces the design and implementation of the automatic test system for the
SMU. The test system can be split into two main parts, hardware and software. Firstly, for
the hardware part, this chapter introduces the following subsections:

• Resolver Test Unit:

– The core component for the test system

• Test system physical design:

– Hardware layout for the BVT cabinet

• Test System Overview:

– Complete overview of the test system

Secondly, for the software part of the test system, this chapter introduces the following sub-
sections:

• SMSD software implementation:

– Software implementation for controlling the stepper motor

• SMU test commands:

– Commands developed for controlling the SMU

21



4.1 Test System Hardware

4.1 Test System Hardware

This section presents the core component Resolver Test Unit (RTU), test system hardware
architecture, and full test system overview.

4.1.1 Resolver Test Unit

The core component of the test system is the RTU. This component is specifically designed to
control seven resolvers in an open-loop. Figure 4.1 displays the design overview of the RTU.

(a) This subfigure shows the RTU Design
overview.

(b) This subfigure shows a labeled inside overview
of the Resolver Test Unit with the top part of the
metal housing removed.

Figure 4.1: This figure shows the outer and inner design of the RTU.

The upcoming explanation of the RTU design exclusively refers to Subfigure 4.1b with labeled
circles.

The RTU primarily consists of a stepper motor 11 and seven resolvers 3 . The stepper
motor’s primary axle connects to a secondary axle 8 using an axle adapter 10 . The seven
resolvers are mounted on the secondary axle and connected to the female d’sub connector plugs
located on top of the metal housing. The shaft connector points 2 and 5 are produced
with strict tolerances to ensure consistent stator-to-rotor positioning.

22



4.1 Test System Hardware

4.1.2 Test system physical design

The test system is installed on a metal plate dimensioned to fit into one of ABB’s BVT
cabinets. The SMU test system will be installed into the long-term testing cabinet. This BVT
cabinet is designed for testing and collecting data on equipment and systems subjected to
prolonged usage. Figure 4.2 shows an overview of the test system on the metal plate.

60x700
mm

340x60mm

PIB Battery

60x700
mm

SMU

Resolver Test Unit

SMSD

Relay

Figure 4.2: Physical test system layout on the metal plate for the BVT cabinet.

The PIB is placed at the top left section of the plate to make it easier to reach for the ethernet
and serial D-Sub cable, which are coming from the backside of the cabinet. The SMU and

23



4.1 Test System Hardware

RTU are placed beside each other to make it easier to connect the seven resolvers from the
RTU to the SMU. The same goes for the SMSD as well, which is connected to the stepper
motor on the RTU. The rectangular shapes labeled with dimensions are cable canals for cable
management. Additionally, this particular physical layout aims to maximize space utilization
for potential future expansions or the installation of another test system in the available area.
Figure 4.3 displays the real implementation of the hardware.

Figure 4.3: This figure shows the real physical layout of the implemented test system.

24



4.1 Test System Hardware

4.1.3 Test system overview

Figure 4.4 displays the test system overview.

X19

X6

X5

X4

X3

X2

X1

Batt 1

SMU
X9

X7

BVT2 computer

SMSD

PIB
X9X2

X12

    NPORT 6600
SPI

RS 485

24 VDC

24 VDC

D+

Ethernet

RS 232

Ethernet

24 VDC

        Relay M

Resolver 6

Resolver 5

Resolver 3

Resolver 4

Resolver 2

Resolver 7

Resolver 1

M

Battery

24 VDC

A1  A2

Y11  Y11

13 
1424 VDC

BVT

Figure 4.4: Test system overview.

The NPORT 6600 device is a terminal server that is the central hub for connecting and
controlling serial-connected devices from every test system in the BVT cabinet. This terminal
connects the BVT2 computer with the test systems in the BVT cabinet. Initially, one of the
physical outputs of the SMSD was planned to control the main power of the SMU to force it
into battery modus. However, the internal output transistors in the SMSD caused a voltage
drop, leading to an insufficient power supply to the SMU. This problem was solved by using
a relay to control the power source to the SMU. The relay is then controlled by the SMSD, as
shown in figure 4.4.

25



4.2 Test System Software

4.2 Test System Software

This section illustrates the integration of the SMSD and SMU test commands software into
the existing test framework presented in section 3.3.

4.2.1 SMSD software

This section introduces the implementation of the software used to control the stepper motor
for the SMU test system. The implemented software consists of two modules, one for stepper
motor commands and one for communication. The commands and communication modules
are implemented in Python to make it easier to integrate into the test framework at ABB. The
two green modules in the updated module dependency diagram in Figure 4.5 are the addon
of the two new SMSD modules for the stepper motor.

IpsRootTestScriptClass

Test Case Base

Test Case

NastAssert

TestLogger

StepperCommands

StepperCom UserCommand

Figure 4.5: Module dependency diagram. The green modules represent the new modules integrated
into the existing.

The stepperCommands module mainly consists of methods for SMSD commands constructed
on a Modbus ASCII frame format. On the other hand, the stepperCom module serves as the
interface between the stepper motor commands and the SMSD controller. The Test Case Base
utilizes the methods from the StepperCommands module when designing test methods.

26



4.2 Test System Software

Stepper command table
A full list of the relevant implemented stepper motor commands is shown in Table 4.1.

Stepper motor commands Argument Operation
stop Stepper motor enters holding mode
acc <value> Set stepper motor acceleration in <value> pps
speed <value> Set stepper motor speed in <value> pps
cw Set stepper motor rotation to clockwise direction

ccw Set stepper motor rotation to counter clockwise
direction

status status type Returns current state of the motor
microstep <factor> Set microstepping <factor>, possible factors

[1, 2, 4, 8, 16, 32, 64, 256, 512]
anglego <angle> Displace by <angle> degrees
stepsgo <steps> Displace by <steps>
SMU <state> Change SMU state ["on", "off"]

Table 4.1: Stepper motor commands table.

The stepperCommand module contains more commands than presented in Table 4.1. A com-
prehensive list of all implemented commands can be given on request.

27



4.2 Test System Software

Figure 4.6 shows a sequence diagram of the program flow when calling the positional displace-
ment command "anglego".

StepperCommands

SendCmdList()

StepperCom

anglego(angle)

cmdList = [
direction,
angle,
run ]

Loop

[for each cmd
 in cmdList]

SendCmd(cmd)

LRC(cmd)

write(cmd)

Figure 4.6: Sequence diagram of a single user case for command anglego.

The anglego method consists of two rotational parameters and a run command: direction,
positional displacement, and run. Figure 4.6 refers to these as "cmd" in the "cmdList." Every
"cmd" has to go through a Longitudinal Redundancy Check (LRC) [8], which is a form of
error checking used to ensure data integrity during transmission. First, the method writes the
two parameters to their respective registers before executing the run command. When the
run command is initiated, the stepper motor will run based on the defined parameters in the
registers.

28



4.2 Test System Software

4.2.2 SMU test commands

The SMU commands are implemented in the existing CLI framework, As mentioned in section
3.4. These commands are developed to communicate and control the SMU for the test system.
The red module introduced in Figure 4.7 is where the new SMU test commands will be
implemented concerning the test framework.

IpsRootTestScriptClass

Test Case Base

Test Case

NastAssert

TestLogger

StepperCommands

StepperCom

Usercmtsk

SmuTestCmd

UserCmd

UserCommand

C++

Figure 4.7: This figure shows the complete module dependency diagram overview. The section within
the dotted line is the addition of SMU test commands to the test framework. Blue modules represent
existing work, and green/red represent addons for the SMU test system.

29



4.2 Test System Software

SMU test commands table
A full overview of the implemented commands is shown in table 4.2

SMU test commands Argument Operation
7axis Enables resolver number 7
run Starts ring communication
stop Stops ring communication
revcnt <node> Reads revolution counter at <node>
readnullvolt Reads null voltage
test ramp Reads resolver X and Y value at node 7
test ext Returns resolver 1 and 4 squaresum value
clear revcnt <node> Clear revolution counter at <node>
readres <node> Read resolver angle at <node>
set eps Set excitation phase shift mode
set eip Set excitation in phase mode
writereg Write to PIB register
readreg Read PIB register
comchk Checks communication status to SMU

drift <samplesize>

Returns table of drift calculations for
<samplesize> measurements. This table
includes [Angle, MinAngle, MaxAngle, X,
MinX, MaxX, Y, MinY, MaxY, DeltaX,
DelatY, CurrentSqrXY, MinSqrXY,
MaxSqrXY, DelataSqrXY]

reslog angle <node> <expangle>
Returns log of angle measurements at
<node> with <expangle>. <expangle> is
needed for a spesific dataformat

reslog xy <node> <expangle>
Returns log of X and Y values at <node>
with <expangle>. <expangle> is needed
for a spesific dataformat

reslog xysquare <node> <expangle>
Returns log of square sum of X and Y at
<node> with <expangle>. <expangle> is
needed for a specific data format

Table 4.2: SMU test command table.

It’s worth noting that the prefix for executing SMU test commands is "sms," which originates
from the old name for the SMU, SMS. Thus, an example of a fully constructed SMU test
command looks like this: "sms readres 2".

30



Chapter 5

Regression Test Cases

This chapter presents the implementation of the regression test cases for the test system.
Initialization is done before every test case to ensure stability and consistency. The SMU test
suite consists of the following regression test cases:

• Excitation and ramp test case

• Resolver angle test case

• Resolver quadrant test case

• Resolver revolution test case

• Resolver battery test case

31



5.1 Initialization

5.1 Initialization

It’s essential to start up the test system in the proper state. This section describes the start-
up sequence for the test cases. This sequence is referred to as initialize and is performed
before every test case to ensure stability and consistency. The sequence diagram in Figure 5.1
displays the start-up sequence for the test cases.

SmuTestBase

RWRegCheck()

SyncStepperRotation()

ipstestscriptbaseclass

StepperCommands

SmuTestCommandsSmuTestCase

Initialize()

UpgrageSoftware()

SoftwareUpgraded

speed(3000)

acc(1000)

microstep(32)

SMU('on')

UserCmd('sms run')

Result

UserCmd('sms set eps')

Result
Return

Checks
read/write to PIB
register for SMU
commands

Create

ref

ref

synchronize
stepper motor
rotation direction
to CW

Start Ring
communication

Sets excitation
phase shift

Figure 5.1: Sequence diagram for the start-up sequence.

The first step in the sequence presented in Figure 5.1 is to create an object of the Stepper-
Command class from the StepperCommand module. Two constructor parameters are needed
when creating this object, slave address and comport name. Initially, the test agent down-
loads and extracts the SUT’s latest successful build in a specific directory. UpgradeSoftware()
compares the version of this build with the current software version on target and decides
if action is needed based on that. The two methods within the "ref" frames contain a test
sequence described by the linked comment notes. Including the actual sequence of these small
tests would clutter the main sequence, which is why it’s compressed. Excitation Phase Shift
is the preferred default modus, which is why it’s included in the start-up sequence.

32



5.2 Excitation and Ramp Test Case

5.2 Excitation and Ramp Test Case

This test case consists of the following tests:

• Ramp test

• Excitation test

Ramp test
Two checks have to be made to test if the ramp function works. The first check is to see if
"sms ramp pos" brings the X and Y value for resolver 7 to the maximum value of 8191. The
second test is to see if "sms ramp neg" brings the value down to the minimum value of -8192.
Figure 5.2 illustrates the sequence for the ramp test.

SmuTestBaseExcitation and Ramp
Test SmuTestCmd NastAssert

AssertEqual(YValue, 8191)

Result

CheckRampTest()

UserCmd('sms ramp pos')

X and Y value for node 7

AssertEqual(XValue, 8191)

Result

AssertEqual(YValue, -8192)

Result

UserCmd('sms ramp neg')

X and Y value for node 7

AssertEqual(XValue, -8192)

Result

return

AssertEqual()
checks if
arg1==arg2

Figure 5.2: Sequence diagram for the ramp test.

33



5.2 Excitation and Ramp Test Case

Excitation test
After the ramp test is done, the excitation test starts. Initially, the SMU should be in EPS
modus from the initialization sequence presented in section 5.1. Thus, the resolver measure-
ment sequence is structured as illustrated in Figure 2.4 in section 2.2. The square summation
of the raw measurement values X and Y should ideally always be the same for all angles.
Moreover, in this case, that would be between 6500 to 7800, depending on which resolver is
measured. When switching to EIP without restructuring the resolver measurement sequence,
the resolvers in excitation group 1 will measure zero crossings as illustrated in Figure 5.3.

Figure 5.3: Excitation EIP test measurement sequence, excitation signal 1 and 2 are in phase. Both
excitation signal 1 and 2 are labeled as blue. All the resolvers in group 1 are measuring zero crossings
instead of tops. Altered reprint from [2] with permission from ABB

As shown in Figure 5.3, resolver group 2 should have a high-value square summation of X and
Y values, and all the resolvers in group 1 should have a relatively low value due to measuring
zero crossings.

34



5.2 Excitation and Ramp Test Case

The sequence diagram in Figure 5.4 presents the program flow of the excitation test.

SmuTestBaseExcitation and Ramp
Test SmuTestCmd

UserCmd('sms set eip)

UserCmd('sms set eps')

Cmd status

NastAssert

CheckExcitation()

UserCmd('sms test ext')

SQR1 and SQR4

Returns
sqr(X+Y) for
resolver 1 and 4

AssertOver(SQR4, 5800)

AssertOver(SQR1, 5800)

Result

Result

Cmd status

UserCmd('sms test ext')

SQR1 and SQR4

Checks if arg1 >
arg2

AssertOver(SQR4, 5800)

AssertBelow(SQR1, 3000)

Result

Result

Checks if arg1 <
arg2

Return

Figure 5.4: Sequence diagram for excitation test.

At the start of this test, resolver 4 in excitation group 2 and resolver 1 in excitation group
1 should have a high square summation value due to initially being in the EPS modus. The
first check is to ensure that EPS works before testing EIP. When checking if the EIP modus
works, all the resolvers in excitation group 1 should have a square summation value close to
zero, in theory. However, in practice, resolver group 1 has square summation values ranging
from 1500 to 2500 in the EIP modus. This could indicate the synchronization between the
excitation signal and sampling may be slightly off. Consequently, the boundary for an approved
measurement of any resover in group 1 should be below 3000, as shown in Figure 5.4.

35



5.3 Resolver Angle Test Case

5.3 Resolver Angle Test Case

This test case revolves around testing if resolver measurements are within the expected bound-
aries. ABB did not specify tolerances for an approved measurement. Thus, the boundaries
have been set to be ±1◦ of the expected angle. There are three types of suitable angle mea-
surement tests:

1. Angle measurements in increasing increments:
This test checks if angle measurements for small increasing angle increments are within
expected boundaries.

2. Angle measurements in decreasing increments:
This test checks if angle measurements for small decreasing angle increments are within
expected boundaries.

3. Random angle measurements:
This test aims to simulate the practical usage of the robots. It’s practically unknown
which angles the SMU has to measure from a developer’s perspective. Thus, it’s crucial
to test whether the SMU consistently measures random angles correctly.

36



5.3 Resolver Angle Test Case

Angle measurements in increasing increments
The program flow of this test is illustrated in Figure 5.5.

SmuTestBase StepperCommands SmuTestCmd NastAssertSmuTestCase

CheckResAngle(res, 'cw')

ReferenceAngle(res, 0)ref

anglego(0.9)

Motor stopped

UserCmd('sms readres res')

angle

AssertBetween(angle, Limit1, Limit2)

Checks if  
arg2 <= arg1 <= arg3

Result

loop [While ExpectedAngle <= 360]

loop [For res in range(1, 8)]
Res=Resolver.
Loops from resolver 1 to 7
'cw' = clockwise direction

Rotates resolver
to reference
angle=0

Repeats this
process until
expected angle is
360 degrees

return

Figure 5.5: Sequence diagram angle measurement in increasing increments test.

This test loops through all seven resolvers, where each resolver goes from 0 to 360 degrees in
0.9 degrees step increments. The reason for using 0.9 degrees step intervals is to avoid rounding
errors when converting degrees to discrete steps. The "limit2" and "limit1" in "AssertBetween"
function from Figure 5.5 are based on the expected angle ±1 degrees, respectively.

Angle measurements in decreasing increments
The test follows a similar program flow to the previous test depicted in Figure 5.5, but in the
CCW direction. It also starts at a reference angle of 0 degrees, which essentially corresponds
to 360 degrees.

37



5.3 Resolver Angle Test Case

Random angle measurements
For the last test, Random angle measurements, the program flow slightly changes relatively
from the first two tests as shown in Figure 5.6

SmuTestBase StepperCommands SmuTestCmd NastAssertSmuTestCase

CheckResAngle(res, 'cw', 'rand')

loop [For res in range(1, 8)]
Res=Resolver.
Loops from resolver 1 to 7
'cw' = clockwise direction
'rand' = random angles

return

GetRandStep()

stepsgo(randStep)

Motor stopped

UserCmd('sms readres res')

angle

AssertBetween(angle, Limit1, Limit2)

Result

loop [for i in range(0,100)]

Checks if  
arg2 <= arg1 <= arg3

Repeats this
process 100 times

ReferenceAngle(res, 0)ref

Figure 5.6: Sequence diagram random angles measurements test.

The limits for the AssertBetween methods in Figure 5.6 are based on the ideal accumulated
angle from "randStep" ±1 degree, in other words, expected angle ±1 degree.

38



5.4 Resolver Quadrant Test Case

5.4 Resolver Quadrant Test Case

This test aims to check if the transition between quadrants is stable. When new software
changes related to the resolver measurements are introduced in the FPGA, it’s crucial to
verify that the values are stored in the proper format, as explained in section 2.2.

The strategy for testing the stability of quadrant transitions revolves around doing tiny steps
over the transition points. At every step, multiple measurements are done. The noise on
the measurements will cause overlaps on each step. Thus, greater coverage is achieved, which
increases the probability of uncovering instability in quadrant transitions. Figure 5.7 illustrates
the strategy of measurements for this test.

Figure 5.7: This figure shows how measurements are done to test quadrant transition stability. The
red dots are the measurements done, and the blue bell curves represent noise for each stepping position.

From Figure 5.7, the noise on each step is assumed to be normally distributed, and in practice,
the noise is more extensive than displayed in Figure 5.7. The program flow of this test is
illustrated in Figure 5.8.

39



5.4 Resolver Quadrant Test Case

SmuTestBase StepperCommands

anglego(89)

Motor stopped

SmuTestCmd NastAssertSmuTestCase

QuadrantTest(res)

ReferenceAngle(res, 359)ref

loop [For res in range(1, 8)]
Res=Resolver.
Loops from resolver 1 to 7

Rotates resolver
to reference
angle=359

UserCmd('sms drift 20')

MinAngle & MaxAngle for res

AssertBetween(MinAngle, limit1, limit2)

Result

AssertBetween(MaxAngle, limit1, limit2)

Result

anglego(0.1)

Motor stopped

loop [For i in range(0, 20)]

loop [For quadrant in range(0, 4)]

Repeats for all 4
quadrants

Doing 20 measurements
at current angle and
returns Min and Max
angle

Figure 5.8: This figure shows the sequence diagram of the quadrant test program flow. The frame
labeled "ref" is a method to rotate the resolver to a desired position precisely.

As shown in Figure 5.8, the starting position is 359 degrees. This means the first quadrant
transition happens from quadrant 4 to quadrant 1. The stepper motor does 20 0.1 degrees
steps with 20 measurements on each step. In this case, all of the measurements done from
359 to 1 degree have to be within [357,360] and [0, 2] to be classified as a successful test,
respectively.

40



5.5 Resolver Revolution Test Case

5.5 Resolver Revolution Test Case

This test case checks if the SMU is able to properly count revolutions. This test case consists
of the following tests:

1. Increasing revolution counter:
This test checks if the SMU is able to count revolutions in an increasing manner correctly.

2. Decreasing revolution counter:
This test checks if the SMU is able to count revolutions in a decreasing manner correctly.

3. Random revolution counter:
This test checks if the SMU is able to correctly count random revolutions.

4. Revolution reset function:
This test checks if the SMU is able to reset the revolution counters.

Increasing revolution counter
This test simply just performs revolutions in CW direction and checks if the SMU is able to
properly update the revolution counter. The program flow for this test is illustrated in Figure
5.9.

SmuTestBase StepperCommands SmuTestCmd

UserCmd('sms revcnt res')

revolutions2

NastAssertSmuTestCase

CheckRevCount(res, rev)

loop [For res in range(1, 8)] Res=Resolver.
Rev=Number of Revolutions
to do.
Loops from resolver 1 to 7

UserCmd('sms revcnt res')

revolutions1

anglego(360*rev)

Motor stopped

AssertEqual(revolutions2-revolutions1, rev)

Result

return

Referance revolutions
counter

Current revolutions
counter

Checks if revolutions
gained is equal to
expected value "rev"

Figure 5.9: This figure displays the program flow for the incremental revolution counter test. This
test is performed on all resolvers as shown with the first for-loop.

41



5.5 Resolver Revolution Test Case

As shown in Figure 5.9, the method of checking if the SMU can update the revolution counter
correctly involves comparing the delta revolution count with the expected revolution count.

Decreasing revolution counter
This test simply just performs revolutions in CCW direction and checks if the SMU is able
to properly update the revolution counter. The program flow for this test is the same as the
increasing revolution test.

Random revolution counter
This test aims to simulate a practical scenario of the revolution counter by randomizing the
amount of revolution the stepper motor rotates. The sequence of change in the revolution
counter is random in practice, which is why it’s essential to perform this test. The only
difference in program flow relative to the incremental revolution counter test presented in
Figure 5.9 is that the input variable "rev" is randomized between [−20, 20]. This test is
performed 10 times for each resolver.

42



5.6 Resolver Battery Modus Test Case

5.6 Resolver Battery Modus Test Case

The purpose of this test case is to verify if the SMU is able to update the revolution counter
in battery modus. This test case consists of the following test:

1. Increasing revolution counter in battery modus

2. Decreasing revolution counter in battery modus

3. Random revolution counter in battery modus

Increasing revolution counter in battery modus
This test performs 100 revolutions in a CW direction. The program flow for this test is
illustrated in Figure 5.10.

SmuTestBase StepperCommands

SMU('on')

return

SmuTestCmd NastAssertSmuTestCase

BatterRevTest(res, rev)

loop [For res in range(1, 8)] Res=Resolver.
Rev=Number of Revolutions
to do.
Loops from resolver 1 to 7

UserCmd('sms revcnt res')

revolutions1

return

Referance revolutions
counter

UserCmd('sms revcnt res')

revolutions2

anglego(360*rev)

Motor stopped

AssertEqual(revolutions2-revolutions1, rev)

Result

Current revolutions
counter

Checks if revolutions
gained is equal to
expected value "rev"

SMU('off')

return

Figure 5.10: Sequence diagram for revolution counter in battery modus.

The only difference between this test and the increasing revolution counter test is that the main
power of the SMU is switched off before the stepper motor does "rev" amount of revolutions,

43



5.6 Resolver Battery Modus Test Case

as displayed in Figure 5.10. In addition to this, after the SMU("off") command is executed,
two checks are made to verify that the SMU has properly entered battery modus.

Decreasing revolution counter in battery modus
This test does 100 revolutions in CCW direction. The program flow for this test is the same
as 5.10, just in the opposite direction.

Random revolution counter in battery modus
This test does the same as the random revolution counter test, just in battery modus.

44



Chapter 6

Quality measurement test Case

This chapter introduces a method of choosing the optimal microstep configuration and stepping
interval. Additionally, this chapter presents the implementation of the quality measurement
test case.

45



6.1 Choosing Optimal Step Length

6.1 Choosing Optimal Step Length

As mentioned in section 2.6, the SMSD stepper motor controller has seven different microstep-
ping configurations, ranging from fullstep to a microstepping factor of 256. Figure 6.1 displays
a small stopping accuracy test of 0.9-degree step intervals between four microstep configura-
tions, where stopping accuracy is defined as the deviation between the expected and actual
stopping positions.

Figure 6.1: This figure shows an angle displacement test with four different micro-stepping configu-
rations.

As shown in Figure 6.1, all the microstep configurations have relatively similar patterns, where
the main differences are the trend and magnitude of oscillation. The pattern oscillates with
3.6-degree period throughout a complete revolution for all microstepping configurations.

The pattern observed in Figure 6.1 is most likely a combination of mechanical and electrical
factors, as suggested in [17]. An option to achieve better stopping accuracy is to tune the
stepper motor to have slow decay on the output current, as suggested in [17]. However, the
SMSD stepper motor controller does not have the option to tune the current decay modus.

46



6.1 Choosing Optimal Step Length

Another way of eliminating the pattern is to increase the step intervals to match the period
of the pattern, in this case, 3.6-degrees. Figure 6.2 illustrates the result of increasing the step
size to 3.6 degrees for the microstep 8 test run.

Figure 6.2: This figure shows the effect of increasing the step interval to 3.6-degrees.

To further analyze the effect of increasing the step size to 3.6-degrees, a test for a complete
revolution was conducted for all microstep configurations. Figure 6.3 shows the results of this
test.

Figure 6.3: Stopping Accuracy test for all microstepping configurations with a step length of 3.6-
degrees.

47



6.2 Data Collection

As shown in Figure 6.3, there is a clear difference in the trend for each microstep configuration.
By calculating the absolute error with equation 6.1, microstepping with a factor of 4 is the
optimal configuration and will be used as the default setting.

ea = |X −X
′ | = |Error| (6.1)

X - Measured value

X
′
- Expected value

6.2 Data Collection

The FPGA on the SMU has a dedicated buffer for logging. If one of the logging commands in
the SmuTestCmd module is executed, the FPGA starts to store the raw values of X and Y in
this buffer whenever it measures a resolver. The command will then start to read the values
from this buffer. In short, the logging command is designed to gather 1300 measurements
on each step interval and then calculate the angle and square summation of X and Y before
printing relevant values in a specific data format for the test case.

The three data values of interest are:

1. Angle

2. Square summation of X and Y

3. Raw values X and Y

Angle:
This data will show how accurate and precise the angle measurements for the SMU are. The
method of analyzing this measurement is subtracting the expected value from the measured
values at every step interval, hereafter referred to as deviation. The plots generated regarding
these measurements will display the average deviation and deviation spread.

Square summation of X and Y:
This data will uncover the trend and magnitude of inconsistency between X and Y values.
Ideally, the resolver values X and Y should follow the mathematical relationship defined by
the trigonometric identity. This implies that the square summation should remain consistent
throughout an entire resolver revolution. Creating a polar plot of the gathered data allows
one to visualize the average, minimum, and maximum square summation of X and Y values.

Raw values X and Y
The last measurement for analysis is the noise on the raw X and Y values. Noise is defined as
the variation around the average value in this case.

48



6.2 Data Collection

The program flow of data collection is illustrated in the sequence diagram in Figure 6.4.

SmuTestBase

Create_Plots(Dataframes)

StepperCommands SmuTestCmdSmuTestCase

SmuDataLogging(res)

loop [For res in range(1, 8)]

ReferenceAngle(res, 0)refRotates resolver
to reference
angle=0

UserCmd('sms reslog all res exp_angle')

Loop

Data

[for angle in np.arange(0, 360, 3.6)]

anglego(3.6)

Motor stopped

Processing Data

Repeating this
process 100 times
for a full
revolution

Distributing data into
associated dictionaries
and subtracting expected
angle from measured
angle

Create_Dataframes(data_dictionaries) 

ref

Creating plots for angle,
square summation XY
and raw values

return

Figure 6.4: Sequence diagram for data collection.

49



Chapter 7

Results

This chapter introduces the results of the regression and quality measurement test cases. It’s
observed that the angle measurement test case is the only failing regression test, while the
quality measurement test results exhibit a non-linear trend for all resolver measurements. This
chapter consists of the following sections:

• Regression Test Tesults:

– Azure test suite results

– Table of failing measurements for the resolver angle measurement test case

• Quality Angle Measurement Results:

– Quality angle measurement plots for resolver 2, 3, 4 and 6

– Polar plots of the square summation of X and Y for resolver 2, 3, 4 and 6

50



7.1 Regression Test Results

7.1 Regression Test Results

The test results for the regression test case are presented in two different ways, a graphical
summary generated on Azure and relevant sections to the respective log files generated by the
test framework. A full overview of a single test run is presented in Figure 7.1.

Figure 7.1: Test results for a full test run generated on Azure.

The "SMU resolver angle logging test case" is the quality measurement test case and is not a
part of this section. As shown in Figure 7.1, the SMU only fails on one regression test case,
the resolver angle test case. The failing resolvers and tests within this test case are presented
in Figure 7.2.

Figure 7.2: Test results for a full test run generated on Azure

51



7.1 Regression Test Results

The logs generated regarding this test case are relatively big. Therefore, the failing test sections
are summarized with a table instead. Table 7.1 presents the failing sections of the decreasing
resolver angle measurement tests for resolvers 1 and 5.

Resolver 1
Measured Angle[°] Lower Limit[°] Upper Limit[°]
69.413 67.4 69.4
65.846 63.8 65.8
62.224 60.2 62.2
58.634 56.6 58.6
55.040 53.0 55.0
51.458 49.4 51.4
47.836 45.8 47.8
44.259 42.2 44.2
40.641 38.6 40.6
37.029 35.0 37.0
33.414 31.4 33.4
29.831 27.8 29.8
26.267 24.2 26.2
24.402 22.4 24.4
22.695 20.6 22.6
19.076 17.0 19.0
17.201 15.2 17.2
15.493 13.4 15.4
11.852 9.8 11.8
8.233 6.2 8.2

Resolver 5
Measured Angle[°] Lower Limit[°] Upper Limit[°]
254.825 252.8 254.8
253.912 251.9 253.9
252.101 250.1 252.1
251.238 249.2 251.2
250.319 250.319 250.3

Table 7.1: Failing sections for the decreasing angle measurement test.

As displayed in Table 7.1, there are 20 failing angle measurements for resolver 1 and 5 for
resolver 5. This translates to a failing rate of 5% and 1.25%, respectively.

52



7.1 Regression Test Results

Table 7.2 shows the failing sections for the random angle measurement test for resolvers 1 and
6.

Resolver 1
Measured Angle[°] Lower Limit[°] Upper Limit[°]
70.857 70.94375 72.94375

Resolver 6
Measured Angle[°] Lower Limit[°] Upper Limit[°]
16.885 17.1125 19.1125
345.973 346.11875 348.11875
337.257 337.56875 339.56875
16.334 16.4375 18.4375
271.255 269.16875 271.16875
244.329 242.28125 244.28125
228.219 226.08125 228.08125
15.242 15.425 17.425

Table 7.2: Failing sections for the random angle measurement test.

As displayed in Table 7.2, resolver 1 fails on 1 random angle measurement, and resolver 6 fails
on 8. This translates to a failing rate of 1% and 8%, respectively.

53



7.2 Quality Measurement Results

7.2 Quality Measurement Results

The results presented in this section are based on the average of 4 tests conducted on one
SMU for the quality measurement test case. As the results were relatively comparable across
all six resolvers, four of the results with the greatest dissimilarity are presented to avoid
repetitiveness.

7.2.1 Resolver 2

Figure 7.3 presents the results for the angle measurements for resolver 2.

Figure 7.3: This figure shows the angle quality measurement results for resolver 2. The upper plot
shows the difference between the measured and expected angles, and the lower plot shows the variance
around the average measured angle. Lower Quartile Range(LQR) represents 50% of the measurements,
and Upper Quartile Range(UQR) represents approximately 99.1% of the measurements. Outliers are
the measurements that fall outside of LQR and UQR.

As shown in Figure 7.3, in the lower plot, the noise is relatively consistent throughout a
complete revolution. However, the trend of the deviation changes quite a lot. Initially, the
average measured angle is relatively consistent with the expected value for approximately the

54



7.2 Quality Measurement Results

first 100 degrees. Then it transitions to undershooting and overshooting for the remainder of
the revolution.

Figure 7.4 presents the results concerning square summation of X and Y with the results of
the raw resolver values X and Y.

Figure 7.4: This figure shows the results for resolver 2 concerning the square summation of X and Y
in the left plot and the deviation around the average value for X and Y in the two plots to the right.
LQR represents 50% of the measurements, and UQR represents about 99.1% of the measurements.
Outliers are the measurements that fall outside of UQR.

As shown in Figure 7.4, the square summation between the raw values X and Y is incon-
sistent throughout a complete revolution. The disparity between the lowest and the highest
square summation is approximately 160. The noise on X and Y is relatively insignificant and
consistent throughout a complete revolution.

55



7.2 Quality Measurement Results

7.2.2 Resolver 3

Figure 7.5 presents the results for the angle measurements for resolver 3.

Figure 7.5: This figure shows the angle quality measurement results for resolver 3. The upper plot
shows the difference between the measured and expected angles, and the lower plot shows the variance
around the average measured angle. LQR represents 50% of the measurements, and UQR represents
approximately 99.1% of the measurements. Outliers are the measurements that fall outside of LQR
and UQR.

The trend of the average deviation in this plot is different in contrast to the results for resolver
2. Initially, the resolver measurements consistently undershoot for approximately 100 degrees.
Then it compensates for the accumulated undershooting by overshooting until it reaches 162
degrees. Then the measurements become stable with a relatively low deviation. The lower
plot shows the noise is relatively stable for the complete revolution.

56



7.2 Quality Measurement Results

Figure 7.6: This figure shows the results for resolver 3 concerning the square summation of X and Y
in the left plot and the deviation around the average value for X and Y in the two plots to the right.
LQR represents 50% of the measurements, and UQR represents about 99.1% of the measurements.
Outliers are the measurements that fall outside of UQR.

In contrast to the polar plot for resolver 2, this resolver is relatively consistent throughout
a complete revolution. The disparity between minimum and maximum square summation is
approximately 40. The noise on X and Y is relatively insignificant and consistent throughout
a complete revolution.

57



7.2 Quality Measurement Results

7.2.3 Resolver 4

Figure 7.7 presents the results for the angle measurements for resolver 4.

Figure 7.7: This figure shows the angle quality measurements results for resolver 4. The upper plot
shows the difference between the measured and expected angles, and the lower plot shows the variance
around the average measured angle. LQR represents 50% of the measurements, and UQR represents
approximately 99.1% of the measurements. Outliers are the measurements that fall outside of LQR
and UQR.

For this resolver, the measurements show that the resolver initially overshoots for the first 72
degrees, then undershoots until it reaches approximately 180 degrees. This pattern repeats,
compensating for the accumulated deviation at the end of the resolver revolution. Similarly
to previous resolver results, the noise on this resolver is consistent throughout the entire
revolution.

58



7.2 Quality Measurement Results

Figure 7.8: This figure shows the results for resolver 4 concerning the square summation of X and Y
in the left plot and the deviation around the average value for X and Y in the two plots to the right.
LQR represents 50% of the measurements, and UQR represents about 99.1% of the measurements.
Outliers are the measurements that fall outside of UQR.

The average square summation observed in 7.8 is relatively consistent. However, the minimum
and maximum square summation is approximately 120, which is quite significant. The average
square summation values are considerably distant from the minimum and maximum values,
indicating a high magnitude of noise on X and Y values. The noise plots for X and Y further
support this observation. Additionally, it is worth noting that the magnitude of noise peaks
in both noise plots when the raw values for X and Y are at their maximum, respectively.

59



7.2 Quality Measurement Results

7.2.4 Resolver 6

Figure 7.9 presents the results for the angle measurements for resolver 6.

Figure 7.9: This figure shows the angle quality measurements results for resolver 6. The upper plot
shows the difference between the measured and expected angles, and the lower plot shows the variance
around the average measured angle. LQR represents 50% of the measurements, and UQR represents
approximately 99.1% of the measurements. Outliers are the measurements that fall outside of LQR
and UQR.

Initially, the resolver measurements exhibit a gradual deviation accumulation due to over-
shooting. Subsequently, the deviation plateaus for 90 degrees, followed by a small section of
overshooting, followed by undershooting to compensate for the accumulated deviation. Simi-
lar to the results observed in previous resolvers, the noise on this resolver remains consistent
throughout the entire revolution.

60



7.2 Quality Measurement Results

Figure 7.10: This figure shows the results for resolver 6 concerning the square summation of X and
Y in the left plot and the deviation around the average value for X and Y in the two plots to the right.
LQR represents 50% of the measurements, and UQR represents about 99.1% of the measurements.
Outliers are the measurements that fall outside of UQR.

The average square summation observed in Figure 7.10 exhibits the highest level of inconsis-
tency among all the resolvers. The disparity between minimum and maximum square sum-
mation is approximately 260. The noise on the X and Y values resembles the noise observed
for resolver 4 but at a significantly lower magnitude.

61



Chapter 8

Discussion

This chapter presents a comprehensive examination of the test results for the test cases. The
quality measurement test cases revealed a non-linear trend in the resolver measurements.
Additional tests and speculations concerning this non-linearity are conducted. Moreover, sug-
gestions regarding improvements to the test system are presented. Furthermore, a detailed
list of recommended future work is outlined. This chapter consists of the following sections:

• Test Results

• Test System Improvements

• Future Work

62



8.1 Test Results

8.1 Test Results

By assuming the measurements from the SMU is correct, all of the plots display a clear
indication of inconsistency in step angles. Due to the fact that this system runs in an open
loop, inconsistency in the step angle accumulates. The expected angle is based on the fact
that the stepper motor is assumed to perfectly perform a step, in this case, 0.9 and 3.6-
degrees. Thus, the error accumulates if the stepper motor undershoots or overshoots for
multiple subsequent steps. However, the trajectory of the measured angle always returns the
expected value when the stepper motor has completed a full revolution.

8.1.1 Identifying the sources of non-linear measurements

Upon initial observation, the measurements displayed in the quality measurement section seem
unique for each resolver. However, upon more profound analysis of the results, it becomes
apparent that these observed non-linear trends in the measurements correlate to multiple
sources. To narrow down the sources, experiments and speculations regarding these potential
factors are made:

1. Stepper motor stepping pattern

2. SMU nodes

3. Stator and rotor eccentricities

63



8.1 Test Results

Stepper motor stepping pattern
The initial assembly instructions for the RTU specified aligning the stators of the resolvers
in a manner that would achieve as close to electrical zero angles as possible. However, the
installation of the rotors varied for each resolver, resulting in different electrical zero angles
for all resolvers. With different electrical zero angles for all resolvers, the stepper motor
starts from different positions for each resolver. Suppose the source of the non-linear trend
is associated with the stepper motor stepping pattern. In that case, phase shifting all the
resolvers to have the same stepper motor starting position, the non-linear trend should be
similar for all resolvers. From observation, with resolver 6 as a reference, the other resolvers
are phase shifted as follows:

• Resolver 6 = 0

• Resolver 1 = -57 degrees

• Resolver 2 = -32 degrees

• Resolver 3 = -90 degrees

• Resolver 4 = -169 degrees

• Resolver 5 = -292 degrees

Figure 8.1 displays the result of phase shifting all the resolvers to have the same starting
position for the stepper motor as resolver 6.

64



8.1 Test Results

Figure 8.1: Full revolution angle measurement test with all resolvers phase shifted to start at the
same stepper motor position as resolver 6. SA stands for Stopping Accuracy.

As shown in Figure 8.1, the trend for all the phase-shifted resolvers now resembles the trend
from resolver 6 to different degrees. This means the stepping pattern is one of the sources for
this non-linear trend, most likely the cause of the shape of the trend. The stepping pattern is
essentially determined by two factors, electrical and mechanical, as explained in section 6.1.
From [17], it’s mentioned that the mechanical factors exhibit non-linear movement between
microsteps, which correlates with the observed trend from the tests. It’s also worth noting that
the stepper motor used in the test system is relatively inaccurate, with a stopping accuracy
of ±5% of a fullstep. Thus, it’s assumed that this inaccuracy further enhances the magnitude
of the non-linear stepping pattern. The electrical factors may further influence this non-linear
stepping pattern if there is a non-matching channel-to-channel current. This is not measured
and is only speculation.

SMU nodes
based on the test results from Figure 8.1, it’s apparent that the stepping pattern is causing
a non-linear trend in the measurements. Due to the fact that the shape of the trend is
slightly different from every resolver measurement, there must be other sources affecting the
measurements. A brief experiment was conducted to determine if the slight difference in the
trend between the resolvers is related to the individual SMU nodes.

65



8.1 Test Results

This test involved executing the normal quality measurement test for resolver 6 on all nodes.
Any inconsistencies in the raw values X and Y will be tied to the resolver nodes for this test.
Figure 8.2 shows the behavior of square summation of X and Y for a complete revolution.

Figure 8.2: This figure shows a complete revolution square summation test for resolver 6 on all nodes.
SQS stands for Square Summation.

As shown in Figure 8.2, it’s evident that the resolver nodes apply some additional effect
to the measurements. Notably, all nodes have the same pattern in Figure 8.2, including 2
and 5, which are phase-shifted approximately 180 degrees. This observation aligns with the
fact that the first set of four resolvers is sampled at the top of the feedback signal, whereas
resolver 2 and 5 is sampled at the bottom, as illustrated in section 2.2. Furthermore, all
nodes have different maximum and minimum average square summation values. This is tied
to some internal scaling in the FPGA on the SMU, most likely the scaling of the excitation
signal going out to the resolvers. However, the delta SQS between all the nodes is relatively
consistent. Due to the fact that the square summation is different for nodes, dependent on
which resolver is connected, it’s safe to assume something related to the resolver is causing
some extra deviation in the measurements. There are mainly two possible factors related to
the resolver itself, resolver tolerances and eccentricities between the stator and the rotor of
the resolver

66



8.1 Test Results

Stator and rotor eccentricities
Stator and rotor eccentricities refer to the misalignments or displacements of the stator and
rotor from their ideal positions. Multiple sources can cause this, such as manufacturing tol-
erances, assembly errors, or operational wear and tear. There are mainly three types of
eccentricities that can affect the angular measurements for resolver [15]:

• Radial Eccentricity of the rotor: Rotor’s center is displaced from the resolver’s
geometric center. This displacement causes variations in the induced voltage across the
stator windings.

• Rotating Eccentricity of the rotor: The rotor’s axis of rotation is not concentric
with the stator. Concerning the RTU, this means the shaft is off-center and slightly
bent, leading to varying distances between the rotor and stator as the stepper motor
rotates.

• Axial Eccentricity of the rotor The rotational axis of the rotor is tilted compared to
the stator. Concerning the RTU, the shaft will pass through all the resolvers differently,
assuming all the stators are perfectly aligned with each other.

Due to the fact that the shaft is equipped with seven resolvers, it’s highly possible that one
of these eccentricities contributes to the overall deviation in the angular measurements.

Resolver 4 noise
The quality measurement results for resolver 4 in section 7.2 show a high magnitude of noise
on the raw feedback values X and Y. The average square summation for this resolver is very
consistent due to the noise on X and Y cancel each other out. Additionally, when connecting
other resolvers to node 4, the same magnitude of noise was observed. Thus, the observed noise
is related to the node itself. Furthermore, similar noise is observed on nodes 5 and 6, but at a
lower magnitude. By switching and replacing the SMU with another, the noise disappeared.
Therefore, the noise observed in the test results is related to the nodes on the initial SMU
under testing. Due to a lack of time, additional testing to identify the source of noise has not
been conducted. However, it’s suspected that the noise could be related to one or more of the
following factors:

• Clock jitter: Variation in the timing of sampling instants on the feedback signal.

• Excitation noise: Noise on the excitation signal going out to the resolvers. Any noise on
this signal will transmit over to the feedback signal.

• Hardware issues: Tolerance outliers and hardware defects.

Given that this magnitude of noise is observed on only one SMU, it’s most likely a hardware
issue on that specific card.

67



8.1 Test Results

8.1.2 Regression test result

All the test cases have successfully confirmed the respective functionalities are working, except
the angle measurement test case. As shown in the test results from the quality measurements,
there is a non-linear trend for the measurements originating from multiple sources. The
magnitude of this trend results in a significant deviation from the expected values, leading to
the failure of the resolver angle measurement test case. This case already has the conservative
boundaries of ±1 degree per step interval. However, with the current inaccurate test system,
the results cannot conclude whether the SMU actually passes or fails this test case.

68



8.2 Test System Improvements

8.2 Test System Improvements

This section presents methods for improving the test system’s accuracy and efficiency. Addi-
tionally, this section addresses the missing test cases.

8.2.1 Upgrading the stepper controller/driver and stepper motor

The current combination of the stepper motor and stepper motor controller for the test system
is not optimal for quality measurement tests. The stepper motor controller does not have the
possibility to tune the current decay modus, and the stepper motor needs to be more accurate.
When testing the SMU, it’s ideal for the test system to be significantly more accurate than the
component under testing when executing quality measurement tests. Calibration standards
usually apply the Test Accuracy Ratio (TAR) 4:1 or 10:1 ratio when calibrating tools [12],
which is not the case for the current test system. It’s highly recommended to get a high-
precision stepper motor and a new stepper motor driver/controller as future upgrades to the
test system if open loop operation is preferred.

8.2.2 Error compensation

After upgrading the stepper motor and stepper motor driver/controller, the stepper motor
will always exhibit some non-linearity [17]. Based on observations from the test results for the
current test system, the stepper motor pattern is relatively consistent. Thus, it’s recommended
to use high-precision tools to measure the stepper motor pattern of the upgraded test system.
By having reliable data regarding the stepping pattern, one can more precisely predict the
expected angle by compensating for the known deviation. Which means the calculations
regarding quality angle measurements will be more precise.

8.2.3 Alternative resolver control configuration

An alternative approach to improving the test system is to transition it from an open loop
to a closed loop system. This opens up the possibility of using a servo motor instead of a
stepper motor. In general, compared to a stepper motor, servo motors are more accurate in
a closed-loop system [4][10]. Additionally, it’s essential to choose the proper components and
calibrate the closed loop system to acquire a TAR of 4:1 concerning the SMU.

69



8.2 Test System Improvements

8.2.4 Reworking the Resolver Test Unit

From 8.1.1, it has been suggested that the alignment of the shaft in the RTU may be subject
to potential deviations, which can result in inaccuracies in angular measurements. A possible
solution to this problem is to rework the RTU to control all the resolvers in parallel rather
than in series, as illustrated in Figure 8.3.

Figure 8.3: Parallel shaft configuration for the Resolver Test Unit.

From Figure 8.3, the gear in the middle is the "main gear," which is directly attached to the
motor. Six more gears are arranged around the main gear. All the gears have a shaft going
through them with a resolver installed. With this configuration, it may be easier to achieve
manufacturing tolerances and fewer assembly errors. Additionally, it will be easier to adjust
individual resolvers if errors occur. However, different types of problems may arise with a
configuration like this, one being backlash [5].

70



8.2 Test System Improvements

8.2.5 Optimising test cases

Sleep functions and resolver speed
The current version of the test cases lacks optimization for time efficiency. Multiple sleep
functions sleep longer than necessary, and the speed and acceleration can be further increased
for many test cases. By optimizing the stepper motor speed and sleep functions, the regression
tests can be notably faster. This would provide additional time for gathering data during the
quality measurement test case.

Resolver readings
Currently, the tests are executed on a single resolver at a time. As a result, each test case
needs to be repeated six times in order to cover all the resolvers. This considerably delays
the test cases’ speed, particularly the regression tests. However, there is an opportunity to
incorporate the fact that the resolvers are phase-shifted relative to one another and adjust for
it within the base module in the test framework. By doing so, it is possible to read all the
resolvers at each step, significantly improving the efficiency of the tests.

71



8.2 Test System Improvements

8.2.6 Missing test cases

Due to some firmware problems in the SMU and lack of time, the following test cases did not
get implemented in the test suite:

• SMU register access

• Enable 7 axis

• Motor revolution counter high-speed test, normal and battery modus

• Quadrant check test in battery modus

SMU register access and 7 axis
The new FPGA firmware for the SMU had some problems with the read-and-write register
functionality. Therefore it was not possible to activate resolver node 7. The developer for this
FPGA firmware did not have time to debug this problem, resulting in the testing of only six
resolvers instead.

Motor revolution counter high speed
The idea behind this test case is to check if the revolution counter were able to update the rev-
olution counter for high stepper motor speeds properly. This test case did not get prioritized,
thus, not implemented.

Quadrant check test in battery modus
The objective of this test case is to verify if the SMU could detect the quadrant in which the
resolvers are positioned while in battery modus. This test case was not given priority and
consequently did not get implemented.

72



8.3 Future Work

8.3 Future Work

This section presents a concise plan for recommended future work for the test system and test
cases:

1. Upgrade to a closed loop system

– Change the stepper motor with a high-precision servo motor.

– Install a high-precision encoder on the servo motor or RTU.

– Change the stepper motor controller SMSD with a servo motor driver/controller.

– Develop software for controlling the servo motor in the same fashion as the current
test system.

– Integrate the new software into the existing test framework

2. Calibrate the test system.

– Use an appropriate tool, such as an oscilloscope, with a test accuracy ratio of 4 or
higher to calibrate and verify the test system.

3. Develop the missing test cases

– SMU register read/write test case

– Enable 7 axis

– Motor revolution counter high-speed test, normal and battery modus

– Quadrant check test in battery modus

4. Optimize test cases

– Optimize the time for sleep functions

– Rework relevant test cases to test all resolvers in parallel rather than individually

73



Chapter 9

Conclusion

In this thesis, an open-loop automatic test system was developed and integrated into ABB’s
test environment to perform regression and quality tests on the SMU. The automatic test
system performed consistently well for test cases that did not require high-precision angle
measurements. Based on quality measurement test results and additional testing, it became
apparent that an open-loop configuration with the current hardware is unsuitable for high-
precision angle measurement testing. The stepper motor had a non-linear stepping pattern
throughout a complete revolution, and eccentricities in the RTU shaft are suspected. These
two problems are most likely the most influential factors regarding inaccuracies in the test
system. Thus, the test system must change to a closed-loop configuration or upgrade to high-
quality hardware to qualify for high-precision angle measurement test cases. In addition to
one of these requirements, the test system needs to be calibrated with a TAR of 4:1 or higher.

74



Bibliography

[1] ABB AS, Robotics. Funktionsspecifikation; Drivdon S4C. Availabel on request.

[2] ABB AS, Robotics. SMS Functional Interface Specification, 3HNE 07564-1 rev 02 inter-
face spec. Availabel on request.

[3] ABB AS, Robotics. Unit desciption IRC5P. Availabel on request.

[4] B. Lackey. Stepper and Servo Motor Tradeoffs. https://www.machinedesign.com/
automation-iiot/article/21836868/stepper-and-servo-motor-tradeoffs, accessed
Jul. 13, 2023, 2023.

[5] Carlos H. Wink. “Gear Backlash Analysis of Unloaded Gear Pairs in Transmission.
https://www.geartechnology.com/ext/resources/issues/0616x/backlash.pdf, ac-
cessed Jul. 07, 2023.

[6] Cornell.edu. Two’s Complement, 2023. https://www.cs.cornell.edu/~tomf/notes/
cps104/twoscomp.html,Accessed 25.06.2023.

[7] D. Collins. What is current decay (recirculating current) in
a stepper drive?, 2023. https://www.motioncontroltips.com/
what-is-current-decay-in-a-stepper-drive/,Accessed 28.06.2023.

[8] GeeksforGeeks. Longitudinal Redundancy Check LRC 2 D Parity Check. https://www.
geeksforgeeks.org/longitudinal-redundancy-check-lrc-2-d-parity-check/, ac-
cessed Jul. 08, 2023, 2023.

[9] GeeksforGeeks. Regression testing, 2023. https://www.geeksforgeeks.org/
software-engineering-regression-testing/, Accessed 01.03.2023.

[10] ISL Products Internationa. Stepper Motors vs. Servo Motors. https://islproducts.
com/design-note/stepper-motors-vs-servo-motors/, accessed Jul. 13, 2023, 2023.

[11] Leodanis Pozo Ramos. Python’s assert: Debug and Test Your Code Like a Pro, 2022.
www.realpython.com/python-assert-statement/,Accessed 2.06.2023.

[12] Mitutoyo Institute of Metrology. Decision Rules, TAR, and TUR. https://www.
mitutoyo.com/webfoo/wp-content/uploads/15005A.pdf, accessed Jul. 07, 2023.

75

https://www.machinedesign.com/automation-iiot/article/21836868/stepper-and-servo-motor-tradeoffs
https://www.machinedesign.com/automation-iiot/article/21836868/stepper-and-servo-motor-tradeoffs
https://www.geartechnology.com/ext/resources/issues/0616x/backlash.pdf
https://www.cs.cornell.edu/~tomf/notes/cps104/twoscomp.html
https://www.cs.cornell.edu/~tomf/notes/cps104/twoscomp.html
https://www.motioncontroltips.com/what-is-current-decay-in-a-stepper-drive/
https://www.motioncontroltips.com/what-is-current-decay-in-a-stepper-drive/
https://www.geeksforgeeks.org/longitudinal-redundancy-check-lrc-2-d-parity-check/
https://www.geeksforgeeks.org/longitudinal-redundancy-check-lrc-2-d-parity-check/
https://www.geeksforgeeks.org/software-engineering-regression-testing/
https://www.geeksforgeeks.org/software-engineering-regression-testing/
https://islproducts.com/design-note/stepper-motors-vs-servo-motors/
https://islproducts.com/design-note/stepper-motors-vs-servo-motors/
www.realpython.com/python-assert-statement/
https://www.mitutoyo.com/webfoo/wp-content/uploads/15005A.pdf
https://www.mitutoyo.com/webfoo/wp-content/uploads/15005A.pdf


BIBLIOGRAPHY

[13] Rezadlt. DevSecOps. https://commons.wikimedia.org/wiki/File:DevSecOps.jpg, ac-
cessed Jul. 13, 2023, 2023.

[14] Schneider Electric USA. What is Modbus and How does it work? https://www.se.com/
us/en/faqs/FA168406/, accessed Jul. 08, 2023, 2023.

[15] Jing Shang, Hao Wang, Mimi Chen, Ning Cong, Yong Li, and Chengjun Liu. The effects
of stator and rotor eccentricities on measurement accuracy of axial flux variable-reluctance
resolver with sinusoidal rotor. pages 2004–2007, 01 2015.

[16] Smd.ee. SMSD-4.2Modbus Smart Motor Devices OÜ, 2023. https://smd.ee/smsd-4.
2modbus.htm,Accessed 01.03.2023.

[17] Texas Instruments. How to Improve Motion Smoothness and Accuracy of
Stepper Motors., 2023. https://www.ti.com/lit/an/sloa293a/sloa293a.pdf?ts=
1687701986945,Accessed 26.06.2023.

76

https://commons.wikimedia.org/wiki/File:DevSecOps.jpg
https://www.se.com/us/en/faqs/FA168406/
https://www.se.com/us/en/faqs/FA168406/
https://smd.ee/smsd-4.2modbus.htm
https://smd.ee/smsd-4.2modbus.htm
https://www.ti.com/lit/an/sloa293a/sloa293a.pdf?ts=1687701986945
https://www.ti.com/lit/an/sloa293a/sloa293a.pdf?ts=1687701986945


Appendix A

Appendix

77



参考図
 沼田　恭男　2017/06/22 08:18:07

Powered by TCPDF (www.tcpdf.org)



参考図
 沼田　恭男　2017/06/22 08:17:44

Powered by TCPDF (www.tcpdf.org)


	Abstract
	Acknowledgement
	Contents
	Introduction
	Motivation
	Outline

	Background
	Resolver
	Serial Measuring Unit
	Excitation signal and resolver measurements for EPS
	Revolution counters and battery modus
	Communication
	Ramp test

	Intergrated Process System
	Process Interface Board
	Stepper motor
	Stepper motor controller SMSD-4.2Modbus
	Automated Regression Testing
	Quality Angle Measurement Testing

	Existing Work
	ABB Software Development Environment
	Release Pipeline
	Test Framework
	IPS Commandline Interface

	Test System Implementation
	Test System Hardware
	Resolver Test Unit
	Test system physical design
	Test system overview

	Test System Software
	SMSD software
	SMU test commands


	Regression Test Cases
	Initialization
	Excitation and Ramp Test Case
	Resolver Angle Test Case
	Resolver Quadrant Test Case
	Resolver Revolution Test Case
	Resolver Battery Modus Test Case

	Quality measurement test Case
	Choosing Optimal Step Length
	Data Collection

	Results
	Regression Test Results
	Quality Measurement Results
	Resolver 2
	Resolver 3
	Resolver 4
	Resolver 6


	Discussion
	Test Results
	Identifying the sources of non-linear measurements
	Regression test result

	Test System Improvements
	Upgrading the stepper controller/driver and stepper motor
	Error compensation
	Alternative resolver control configuration
	Reworking the Resolver Test Unit
	Optimising test cases
	Missing test cases

	Future Work

	Conclusion
	Bibliography
	Appendix

