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"If we knew what it was we were doing, it would not be called research, would it?"

— Albert Einstein
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Abstract

In this thesis, we present a solution for the challenge of optimizing the retrieval of data
in Spark. Our column recommendation system is based on Spark’s event logs and finds
influential columns for Z-ordering and partitioning. The column recommendation system
consists of four methods, each looking for different query patterns and query characteristics.
From the recommendation system experiment, we managed to improve the run time by 17%
compared to the baseline. This improvement demonstrates our column recommendation
system’s potential for optimizing data retrieval in Spark. Our system was developed on an
ETL platform and is a flexible solution for ETL platforms utilizing Spark.
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Chapter 1

Introduction

1.1 Motivation

The explosion of big data has led to new opportunities inside business intelligence and data
analysis, but it has also caused new challenges for companies to solve. A common approach
is migrating to the cloud and storing data in a data lake, allowing for easy access, analysis,
and conduction of extract transform and load (ETL) processes. By not storing the data in
an optimized way, these processes can be more time-consuming and costly than necessary.

1.2 Problem Definition

When doing ETL and data analysis, companies utilize a myriad of tables. As a result,
numerous queries are performed daily against these tables. A common problem is that
companies lack information on users’ query patterns, making it hard to select important
columns to structure the stored data in an optimized way. Even if the company extracts
the query pattern information on users for a period, it still tends to change over time,
which makes the information obsolete.

A company presented us with the challenge of creating a logging system to optimize the
ETL process on their data. Earlier, the data of the company were scattered into different
sources on-premise. The company decided to create a new solution, where data from
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1.3 Use Case

various sources goes through ETL and is then stored in a common repository in the cloud,
namely the Azure Data Lake. The technology utilized by the company to process data
into the cloud uses Spark. Most of the data processing and analysis takes place in Azure
Databricks and Azure Synapse Analytics. Lastly, the company uses Power BI for the
visualization of analyzed data.

1.3 Use Case

The solution proposed in this thesis aims to:

• Lay the foundations for a more structured way of storing information from Spark’s
event logs.

• Use information from the event logs to give recommendations on which columns to
use for partitioning and Z-ordering based on columns; frequently filtered on, recently
used for filtering, filter run times.

1.4 Research Questions

1. Can Spark’s physical plans be used to optimize partitioning and Z-ordering on tables?

2. Can rule-based column recommendation methods be used to improve the partitioning
and Z-ordering of tables?

3. Can the use of continuous updates of partitioning and Z-order be used to optimize
queries in an ETL platform?

1.5 Challenges

The main platform utilized in this thesis was Azure Databricks. Azure Databricks offers
many different ways to monitor and extract detailed information about the activities on the
platform. In the start phase of the research, we wanted to extract the original query string
together with the run time. Thus a deep exploration was exercised into the wide number of
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1.5 Challenges

logging types found in Databricks and Spark, which included tools like the Query History
API, Databricks audit logs, Spark event logs, and Spark Driver logs.

We first investigated the Query History API, which seemed to contain the needed in-
formation in an already structured format. However, further research revealed that the
monitoring tool was specially designed to track queries performed in DatabricksSQL (a
data warehouse). This made us move away from the Query History API as our research
was contained in Databricks notebooks, which did not utilize a data warehouse.

Next, we explored Databricks’ audit logs. Activating the verbose audit logs made it possible
to gain a lot of interesting information from the execution of a cell in a Databricks notebook,
such as the command text and duration of the execution. Although this contained much
of what was required, it did not satisfy our needs. The reason for this was that multiple
Spark queries could be executed in one cell, and even though one has the execution time
for the whole cell, there was still no way to extract the run times of the individual queries.

Lastly, we started to look at the event and driver logs. After inspecting the two logs,
we discovered that most of the information in the driver logs was based on the event logs.
Thus, we directed our focus more toward the event logs. Here, we uncovered events directly
connected to the execution of queries. These events gave information about the duration
of the queries, but we found no way to obtain the original query string.

After further investigation, there was finally a satisfactory solution. We came across Spark’s
physical plan, which could be obtained from the query-related events. From the physical
plan, we managed to extract the needed query filter information, and as the duration of
queries was contained in the events, we finally got the information we needed.

At the start of our work, we planned to study the interaction between Spark and Azure
Synapse Analytics. However, because of our research into obtaining the query information
described above, this became impossible due to time constraints. We also planned to create
visualizations for our recommendations in Power BI, but for the same reasons as described
for Azure Synapse Analytics, this did not happen. Another factor was that we had to wait
several weeks before getting access to the Microsoft Azure platform and its services, such
as Azure Databricks. Having to wait for this seriously slowed down our progress.

Another challenge was the tight security practiced in Bouvet and Equinor in terms of
permissions. When performing the research for the query information, we frequently had
to request new permissions to find out if services, such as the activation of audit logs and
access to log analytics, had the relevant information for our project. The process of waiting
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1.6 Outline

for access when wanting to explore new research directions was tiresome and hindered the
efficiency of our exploration. Although the tight security is understandable in today’s
situation, with a more effective working environment, we would have managed to complete
several of our ideas, which have been added to the future work section.

1.6 Outline

Chapter 2 - Background:
The background chapter is divided into two parts. First, the needed technical and theo-
retical background is presented. In the second part, we look at optimization techniques in
Spark and introduce our approaches used for column recommendation.

Chapter 3 - Proposed Solution:
This chapter presents the reader with an overview of our proposed solution for the opti-
mization of Spark in an ETL platform.

Chapter 4 - Implementation:
The implementation chapter describes how the different steps were developed in code, from
the parsing of data to the calculation of statistics and column recommendations.

Chapter 5 - Experiments and Results:
This chapter introduces the experiments and showcases their results. The first experiment
tests the method’s abilities, while the second simulates a more realistic use case for the
recommendation system.

Chapter 6 - Discussion:
In the Discussion chapter, we examine results from chapter 5 and some of the limitations
of the methodology presented in the thesis.

Chapter 7 - Future Work:
This chapter explores some alternative approaches that were not pursued in this thesis.
Additionally, we discuss potential technical improvements that could be made in future
work to further increase the performance of the implemented methods.

Chapter 8 - Conclusion:
The last chapter concludes the thesis and answers the research questions presented in
section 1.4.
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Chapter 2

Background

The thesis focuses on Spark optimization. However, it is beneficial to study components
interacting with Spark as these are part of the use case we wanted to optimize. This chap-
ter introduces these relevant components and attempts to describe several optimization
techniques for Spark. Lastly, we present the theory behind our recommendation methods
used in the proposed solution.

2.1 ETL

The ETL process is a vital part of data integration used in the field of data science and big
data. It is a three-phase process consisting of extracting, transforming, and loading data.
ETL processes gather data from different sources, process it, and store it in a common
container. The company’s platform uses Azure Databricks to perform ETL processes and
uses Azure Data Lake for storage, which is the component we want to optimize. In the
first phase, the extraction phase, data sources are identified, and the optimal approach for
retrieving the required data is determined. Next, data is transformed to correct errors,
handle missing values, and converted into a format fitting the final destination. After
transforming the data, it is loaded into the final destination enabling end-users to use it
for various purposes such as reporting or analysis. [21, Ch. 1]
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2.2 MapReduce

2.2 MapReduce

The MapReduce (MR) pattern is a model for processing large-scale datasets in a distributed
manner. Google introduced it in 2004 as a way to process data in a scalable and distributed
fashion. The MR model used the map and reduce functions from functional programming
as inspiration. During its map phase, the data is transformed into key-value pairs and
processed in parallel on different workers. In the reduce phase, the results of the map
phase are combined into a final output. [9] [15]

Figure 2.2.1: Illustration of how the MapReduce model works. Each machine in the computation
cluster is called an executor. The illustration is based on figure 2. in [27].

A simple run-through of how MR works is shown in figure 2.2.1. Chunks of data (or
partitions; explained in 2.6) are run on a cluster of machines with multiple cores. In the
Map phase, each core in the cluster is assigned partitions to process. The cores read its
assigned partitions and map each value it encounters to a key-value pair. In the Shuffle
phase, the intermediate key-value pairs are transferred between nodes in the cluster to
group all pairs with the same key together (see figure 2.2.1). For the Reduce phase, each
node processes one or more partitions of intermediate data and produces a final result for
each unique key. [9] [15]
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2.3 Apache Spark

Apache Spark was then released in 2010 as an improvement to the MapReduce model and
uses a directed acyclic graph (DAG) to orchestrate computations instead of being limited
to the Map, Shuffle, Reduce steps used in the MR pattern [6] [36] [5, p. 4].

2.3 Apache Spark

Apache Spark is a framework for distributed data processing, and it stores data in-memory
to increase processing speed. Another aspect is that Spark has APIs in multiple program-
ming languages, such as Python, Java, Scala, and R. As mentioned, Spark takes care of
processing, but the task of permanent storage of data is given to storage systems such as
Azure’s data lake, Amazon S3 or Hadoop.

Two common approaches for processing data are batch and streaming, and Apache Spark
has functionality for both. After the data is processed, one can use Spark SQL to query
the data for further analysis or even machine learning (ML). MLlib is Sparks ML library,
which contains algorithms commonly used for ML. Lastly, the Graphx library can be used
for visualizing the results from analysis or ML. [30]

2.3.1 Architecture

Spark is a framework where workloads are distributed to different worker nodes for compu-
tation. A worker node is responsible for starting executors. An executor is a Java virtual
machine (JVM) that is used for computation and storage. A collection of worker nodes
containing executors are referred to as a cluster. To orchestrate the worker nodes and
executors in the cluster, there is a need for components to manage communication. In the
next part, we will talk about five important components at the higher level in Spark as
described in "Learning Spark" [5, pp. 10-12]. The components are visible in an illustration
which can be seen in figure 2.3.1. [5, pp. 10-13]

7



2.3 Apache Spark

Figure 2.3.1: Sparks architecture containing the five components: Spark Application, Spark
Driver, Spark Session, Cluster Manager, and the Spark Executor (Illustration is based on figure
1-4 from [5, p. 10]
).

• The Spark Application is simply the outer shell encompassing the Spark Driver
component and the Spark Session.

• The Spark Driver has a few different applications. It is responsible for starting the
Spark session and requests resources from the Cluster Manager to execute operations.
After the resources have been distributed, there is no need for communication with
the cluster manager and the Spark driver will talk directly to the executors. This
communication consists of distributing the tasks between the executors so that one
can achieve parallel processing. In addition, it also manages the transformation from
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2.3 Apache Spark

Spark operations to directed acyclic graphs, which are then handed out as tasks.

• Spark Session is a new conduit that has merged multiple entry points such as
SparkContect, SQLContext, HiveContext, and more. The creation of the session
makes it possible to utilize all the functions of Spark. Unifying all the entry points
allows one to perform multiple different operations, such as creating DataFrames,
datasets, reading data, and creating JVM parameters, along with others.

• As mentioned earlier, the Cluster Manager allocates resources for the Spark Driver.
It communicates with the cluster and requests the needed computation power from
the nodes to carry out the jobs. A few different cluster managers are available, like
Apache Hadoop YARN, the built-in standalone cluster manager, Kubernetes, and
Apache Mesos.

• The last component is the Spark Executor. Each of the worker nodes in a cluster
has one or multiple Spark executors. The Spark executor executes tasks assigned to
it and communicates with the Spark driver.

2.3.2 APIs in Spark

Running workloads on the Spark cluster requires the usage of Spark SQL or either of
its APIs. To understand why some APIs in Spark are preferred when it comes to the
optimization of Spark, we will take a look at Spark’s three main APIs, namely the RDD,
Dataframe, and the Dataset. [5, pp. 43-69, 84]

2.3.2.1 Resilient Distributed Dataset

The RDD, or Resilient Distributed Dataset, is an essential concept in Spark and is used as
a building block for the structured higher-level APIs, namely DataFrames and Datasets.
The RDD has three main properties; dependencies, partitions, and a compute function.
RDDs use a list of dependencies instructing Spark which inputs and preceding RDDs are
needed to recreate the RDD, which is why they are called "Resilient". Partitions divide
the data into smaller chunks that can be processed in parallel by the Spark cluster. While
performing computations on a set of partitions, Spark tries to assign the partitions to
nodes as close as possible to the partition’s physical location. Doing so reduces the need
for data movement between nodes. The compute function is part of the RDD responsible
for performing computation on the data. Having processed the data, it returns an iterator
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2.3 Apache Spark

over the function’s output. This iterator is not a typed variable, meaning it can return
any data type, depending on the data being processed. The function’s generic return type
limits Spark’s ability to "understand" the data, thus hindering how much optimization can
be done by solely using the RDD programming API. [5, p. 44] [10]

Even though using the RDD programming API directly makes it hard for Spark to opti-
mize the executions, RDDs still serve as the backbone for the higher-level APIs discussed
in the following paragraphs. When using the higher-level APIs, data transformations are
ultimately transformed into RDDs, but now in a way that lets Spark optimize the compu-
tations. The computations are translated into a DAG where each node represents an RDD,
and the edges represent transformations performed to the RDD. The optimization process
and how higher-level APIs are turned into RDDs are explained in section 2.3.4. [5, pp. 4,
6, 44-47] [20, Ch. 3]

2.3.2.2 DataFrame

A Spark Dataframe is a distributed collection of data partitions presented as an abstract
data object with named columns. The DataFrame is conceptually the same as a relational
database table but optimized for distributed processing. DataFrames can be created from
multiple data sources such as structured data files, tables in Hive, external databases,
or existing RDDs [32]. When the DataFrame is initialized with some data, it can be
transformed and manipulated using a set of built-in functions or by using the df.sql()
syntax to execute a SQL query. [5, pp. 47-68]

We mentioned earlier how the opaque iterator returned from the RDD’s compute func-
tion limited the amount of optimization Spark was able to do. This is where RDDs and
DataFrames differ; DataFrames use a schema to define the data types for each column,
whereas RDDs do not. Using this schema helps Spark to understand the data better,
qualifying Spark to create an optimized execution plan for the transformations. Spark
DataFrames also use a more expressive programming syntax than RDDs letting the users
specify the transformations in a more expressive and abstract way. To showcase the dif-
ference in expressiveness, we have borrowed two code examples from "Learning Spark" [5,
p. 45-46] show in listings 2.1 and 2.2. [5, pp. 45-68]
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2.3 Apache Spark

1 dataRDD = sc.parallelize([("Brooke", 20), ("Denny", 31), ("Jules", 30),
2 ("TD", 35), ("Brooke", 25)])
3 # Use map and reduceByKey transformations with their lambda
4 # expressions to aggregate and then compute average
5 agesRDD = (dataRDD
6 .map(lambda x: (x[0], (x[1], 1)))
7 .reduceByKey(lambda x, y: (x[0] + y[0], x[1] + y[1]))
8 .map(lambda x: (x[0], x[1][0]/x[1][1])))

Listing 2.1: Code example of how one would find the average number of values belonging to each
key by the use of RDD.

1 from pyspark.sql import SparkSession
2 from pyspark.sql.functions import avg
3 # Create a DataFrame using SparkSession
4 spark = (SparkSession
5 .builder
6 .appName("AuthorsAges")
7 .getOrCreate())
8 # Create a DataFrame
9 data_df = spark.createDataFrame([("Brooke", 20), ("Denny", 31), ...

("Jules", 30),
10 ("TD", 35), ("Brooke", 25)], ["name", "age"])
11 # Group the same names together, aggregate their ages, and compute an ...

average
12 avg_df = data_df.groupBy("name").agg(avg("age"))

Listing 2.2: This code is producing the same output as the listing above, but is now using the
DataFrame API instead of RDD.

2.3.2.3 Dataset

As seen in figure 2.3.2, both the DataFrame and Dataset are unified as structured APIs
with the main difference being type checking [5, p. 69]. Compared to the DataFrames, the
Dataset API gives better type checking and will notify type errors at compile-time, often
better than the counterpart, where errors are raised at runtime [5, p. 75].

Datasets are not available for PySpark as Python is a dynamically typed language, unlike
Java and Scala, which are statically typed. In statically typed languages, variables are
known at compile-time, whereas in dynamically typed languages, the type of variables
is determined at runtime. Having variables determined at runtime makes enforcing type
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2.3 Apache Spark

Figure 2.3.2: Structured APIs in Spark. Figure 3-1 from [5, p. 69].

safety in Python difficult, which is a fundamental aspect of the Dataset API. Datasets allow
developers to use a Java class as a type for the data inside a DataFrame to manipulate it
as a collection of typed objects [8]. Typing aside, both structured APIs allow for better
optimization for the transformations happening under the hood, which we will look closer
at in section 2.3.4. [5, pp 69-75]

2.3.2.4 Transformations and Actions

It is important to note that Spark’s APIs are immutable, meaning they cannot be modified.
There are instead created a new object between each transformation. When managing the
data in the Spark data abstractions, two main operations are used to interact with the
data: transformations and actions. Transformations are the operators that transform
the data, which due to the immutability, forces the creation of a new data object [11].
Some of the more common transformations are: orderBy(), groupBy(), filter(), select(),
join(). Actions on the other hand, are the operator that "calls for action" meaning that
Spark has to start executing the scheduled transformation(s). Spark does not perform
any computation until an action operator is run. This is what we call Lazy-evaluation;
no transformation is executed before it is absolutely necessary (i.e., an action operator is
called upon). Up until the point of execution, the logical plan of execution is created and
optimized, which we will read more about in section 2.3.4. [5, pp. 28-30]
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2.3 Apache Spark

2.3.3 Physical Plan

A crucial part of our solution is parsing information from Spark’s physical plan. The data
gained from the operations used on tables and columns lays the foundation for how our
system recommends columns. That is why we will look closely at Spark’s physical plan in
the next part.

The Spark physical plan is a low-level plan which describes the plan of execution in detail.
It is the last step in the optimization procedure before the query is translated into RDDs,
as seen in figure 2.3.4. One can find a tree-like structure in the upper part of the physical
plan. The tree contains operation names and a reference number to connect the operation
to the more detailed part of the physical plan below. One can obtain column and table
names, partition information, and more information in the detailed part, as seen in figure
2.3.3, which shows an example of a Spark physical plan. In the following paragraphs, we
will present some of the operations from Spark’s physical plans used in our solution, with
a basis in the information found in the article [34] by Vrba.

Figure 2.3.3: Spark physical plan example.

The first operation we will talk about is called ’scan parquet’. The ’scan parquet’ operation
represents the reading of data from parquet files. Here one can attain information such as
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which database has been used, the table name, and the name of columns from the table.
’scan parquet’ uses two different filters, namely ’PartitionFilters’, and ’PusehdFilters’.
’PartitionFilters’ are utilized on a column when the table is partitioned on it. Secondly,
we have ’PushedFilters’, this filter is used when filtering on columns and pushes filter
operations down to the parquet level. What is significant about both these filters is that
they are used to skip unwanted data so that one can do less computation and use fewer
resources.

The ’Filter’ operation contains conditions for columns to be filtered and uses Spark’s
internal column id to reference the columns. What is important to note, and will be
reviewed more thoroughly in chapter 2.3.4 is that Spark performs optimization, which can
lead to modified and relocated filters, so they may be slightly changed from their original
form before converting them to their physical counterparts.

2.3.4 The Catalyst Optimizer

As mentioned in the section about APIs, using the Spark SQL or either of Spark’s struc-
tured APIs is needed when we want Spark to "understand" the objective of the code and
help optimize the logical steps. What is meant by Spark "understanding" the code’s objec-
tive is that it will use the Catalyst to optimize the execution plan that is to be run; this
process is called query optimization. In this subsection, we will look at how the Catalyst
performs query optimization and the steps Spark will go through, from the first step of
reading the code to the last step, where the optimized code is executed. The information
in this section and its subsections are based on chapter three from the book "Mastering
Apache Spark" [20, Ch. 3] and from the book "Learning Spark" [5, pp. 77-81].

While performing transformations on any of Spark’s data types, one creates and changes
the logical plan describing how Spark will handle the data to create the desired output.
Once an action operator is called on a structured API, the logical plan will be sent to
the Catalyst for optimization. Next, we want to introduce the first of four stages in the
Catalyst, Analysis.

2.3.4.1 Analysis

When an action parameter is called, and the logical plan is sent to the Catalyst, the
plan is transformed into an abstract syntax tree (AST). An AST is a tree-like structure
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representing the transformations included in the logical plan. The tree’s leaf nodes are
literal values (either constants or values read from data), while the other nodes represent
transformations that are to be done on its child nodes. The AST is referred to as the
Unresolved Logical Plan. Because the AST is created directly from the user’s code, Spark
does not yet know if the tables, columns, and attributes contained in the logical plan exist.

To resolve these properties, the Catalyst uses an internal Spark data structure called a
Catalog. The Catalog is an object that contains information about different columns,
data types, functions, tables, databases, and more [5, p. 81]. After resolving the plan, a
(resolved) logical plan is outputted to Catalyst’s next phase, Logical Optimization.

Figure 2.3.4: Catalyst Optimizer. Based on Figure 3-4 from [5, p. 78].

2.3.4.2 Logical Optimization

The Logical Optimization is the second phase of the Catalyst. The main goal of this
phase is to create a more efficient version of the logical plan that the Spark engine can
later run. During this phase, an array of rule-based optimizations are performed to the
logical plan. When using these rule-based optimizations, multiple potential "best" plans
are created and later evaluated by a cost-based optimizer to assign a cost to each of the
plans. The plan with the lowest cost is chosen and sent to the next phase.
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2.3.4.3 Physical Planning

In this phase, the goal is to generate an optimized physical plan based on the optimal
logical plan from the logical optimization. Physical planning is the last phase before the
code generation and execution of the plan. It translates the logical plan into a physical
plan specifying where to read data and, in detail, how to execute the different operations
planned in the logical plan.

As seen in figure 2.3.4, multiple physical plans are created in the physical planning phase.
If run, each of these would have returned the same data result, but we are only interested
in the most optimized plan. Multiple physical plans are generated, each optimized with
different combinations of operators. There are used strategies such as basic operator selec-
tion and join strategy selection to decide which physical operators to use. For example, the
operator selection chooses the physical operators that will be used to replace the operators
from the logical plan, such as filters, sorts, and maps. The join selection helps select the
optimal joins resulting in fewer data transfers between the nodes. The code responsible
for the physical planning contains different strategies accountable for their own part of the
conversion from a logical to a physical plan. [31]

After generating multiple options, heuristics are applied to select the most suitable plan to
minimize execution time. This physical plan includes details about which methods to use
when accessing data, the join algorithms to use if there are any joins, which operators to
use when filtering data, and in which order the operations should be executed (An example
physical plan is seen in figure 2.3.3). This plan is then passed to the final phase: code
generation.

2.3.4.4 Code Generation

In this last phase of query optimization, Code Generation, executable code is generated
for each of the operations based on the optimized physical plan. The code generated is
in JVM bytecode format and is optimized for the specific query and data processing task.
Motivation for the code generation phase is based on Spark transformations often being
executed on data located in memory, making the transformations a CPU-bound process.
Bytecode optimized for in-memory computations is generated to lessen the CPU-bound
bottleneck and optimize the computations. [5, pp. 4, 81]

Code creation uses a property of the Scala programming language, Quasiquotes. Abstract
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syntax trees created using Quasiquotes can be further processed by the Scala compiler
at runtime to produce bytecode. Project Tungsten is an initiative in Apache Spark that
aims to increase the performance and efficiency of the execution engine. Using Project
Tungsten, Spark can also perform whole-stage code generation. [12]

Whole-stage code generation is a technique used to combine different stages of the physical
plan when generating code for it. Some of the advantages of combining stages before
code generation are that there will be created fewer virtual functions calls (no need for a
function per stage), and there will be less data passed through the network when moving
between stages as the variables to be used for the next stage is already in the CPU-
registers/memory [13] [12].

2.3.5 Spark UI

The Spark user interface (UI) is a tool used for monitoring Spark. In the Spark UI, one
can observe how Spark processes data by dividing it into jobs, stages, and tasks. One can
also see metrics on the amount of memory the RDD uses and the RDD’s size. Detailed
information about the Spark environment and the executors is also available in the Spark
UI. The most relevant part of the Spark UI for the thesis is the SQL/DataFrame tab,
which contains information about user queries that can also be found in the Spark event
logs. A snippet from the SQL/DataFrame tab in the UI can be seen in figure 2.3.5 the
rows represent Spark queries. [5, p. 31]
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Figure 2.3.5: Spark UI SQL/DataFrame tab.

2.3.6 Spark Event Logs

Spark event logs are Spark’s way of storing information about the computation performed.
In the execution process, Spark emits Spark events, which are dictionary-like objects con-
taining keys and values that are saved to the Spark event logs. In the execution of a stack
of code, a vast amount of Spark events are produced. Most Spark events have unique types
of keys specific to the event, but there also exist keys that can be the same for multiple
events. One such key is the ’Event’ key, which exists in all Spark events and is used to
identify the type of event. The following section will mention the events encountered in
our proposed solution.

The first Spark event we will discuss has the identification string "org.apache.spark.sql.ex
ecution.ui.SparkListenerSQLExecutionStart". This event is emitted each time Spark exe-
cutes a SQL query and indicates the start of a query. It has the ’Event’ key to indicate
the type of event with an identification string, the ’executionId’; a query execution id, the
’rootExecutionId’; the root execution id of a query, ’description’; a string snippet from
the executed code, ’details’; a key with strings containing execution details, the ’physi-
calPlanDescription’ containing a detailed plan of which operations Spark will utilize when
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executing on the physical level, the ’sparkPlanInfo’ that has a tree-like structure built on
information from the physical plans operations, ’time’; holding a Unix time integer with
information about the start time of the query, and lastly, the ’modifiedConfigs’ key; includ-
ing details about the changed configuration are located. Figure 2.3.6 shows an example of
the Spark event emitted at the start of query execution.

Figure 2.3.6: Shows a snippet example of a Spark event log.

The second Spark event we will look at has the identification string "org.apache.spark.sql.ex
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ecution.ui.SparkListenerSQLExecutionEnd". This event occurs at the end of a the exe-
cution of a query, containing many of the same keys as the Spark event emitted at the
execution start. Three of its four keys are the same as in the query start event namely,
’Event’, ’executionId’, and ’time’. The last key is called ’errorMessage’ and stores execution
errors.

2.4 Apache Parquet

Apache Parquet is a file format where data is stored in a hybrid (combination of column-
based and row-based) way [4], compared to the traditional row form. Apache Parquet uses
data skipping to reduce the number of I/O operations. In the following paragraphs, we
will explain why a hybrid approach is taken and how Parquet performs data skipping.

With the information presented in the lecture [4] by Braams, we will look at the workings
of the Apache Parquet format. The first step is introducing the terms Online Transaction
Processing (OLTP) and Online Analytical Processing (OLAP). OLTP is a type of workload
where several small operations are performed on entire rows. On the other hand, OLAP
is associated with analytical operations, such as performing aggregates on columns. There
are typically three ways to store data in files: row-based, column-based, and hybrid-based.
Parquet uses the hybrid type. We introduced OLTP and OLAP because row-based is
effective on OLTP workloads but not so much for OLAP workloads and vice versa for
column-based. Thus, we got the hybrid which takes advantage of both the row-based and
the column-based storing types. For a better understanding of the methods used for storing
data, an illustration was created, which is seen in figure 2.4.1.
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Figure 2.4.1: Illustration of the most common ways to store data in files (Illustration was based
on figure 2 from [2]).

Another aspect of the Parquet format is that it stores metadata for each column chunk. If
we again look at the illustration 2.4.1 and the hybrid one, we can see that there are chunks
of three values from each column and that this pattern repeats until we have all the values
from the table. Parquet stores metadata for each column chunk making it possible to do
data skipping. [23]

Lastly, Parquet is the standard format used in delta tables, which is needed to perform
Z-ordering. Thus, having a general understanding of the Parquet file format is essential
for the rest of the thesis.

2.5 Azure Data Lake

The Azure Data Lake is a storage service in the Microsoft Azure cloud. The Data Lake
allows storing of structured, semi-structured, and unstructured data. As a result, ingested
data can be stored in its raw format. The Data Lake is scalable so that its data storage
can be changed as the size of the data changes. Azure Databricks, which will be discussed
later, is closely integrated with the Azure Data Lake, making for easy access to data. [1]
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The Azure Data Lake can also be extended by the Delta Lake, which brings atomicity,
consistency, isolation, and durability (ACID). The Delta Lake supports the creation of
Delta tables and has the Z-ordering (2.7) functionality for optimization. [17, Ch.1]

2.6 Partitioning

In figure 2.2.1, we gave an example of how partitions in a distributed storage are used
together with transformations in a MapReduce framework. The Apache Parquet file format
was introduced in section 2.4, where we presented how metadata is stored for each file
partition. The next paragraphs will give an analogy of how partitioning works on a file
level so that one can better understand how data structuring can lead to more effective
data processing.

Let us start with a simple analogy; picture a library with thousands of books grouped by
the author’s surname. Each bookshelf in the library represents a partition, and the label
on the bookshelf corresponds to the metadata for that partition. The first bookshelf might
contain books written by authors starting with a specific surname, say ’name A’, while the
second bookshelf might have books written by authors with the surname ’name B’. If we
translate this analogy to the digital world, we could say that our data (in this case book
data) is stored in Parquet files which are partitioned on the column "Author’s surname".

Imagine querying book data with a SQL WHERE clause, including the author’s surname.
The first step would be to find the bookshelf containing the author’s surname and only
look inside that single bookshelf. If the data were un-partitioned, one would have to go
through the whole library, book by book. To summarize, data partitioning is merely a way
of structuring the stored data to optimize the retrieval of data. Doing so on a commonly
used column can help reduce the number of files that need to be read from disk, thus
optimizing the time and computation power needed to perform tasks on an ETL platform.

2.7 Z-Ordering

Partitioning works best on columns with low cardinality. It would not make sense to run
partitioning on an id-column with all distinct values; this would create a "bookshelf" for
each data point, only creating more overhead when reading the data. Luckily, according
to Databricks documentation for Z-ordering, optimization on a high cardinality column is
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where the Z-ordering works best [7].

A Z-order curve is a mathematical way of mapping multi-dimensional data to a single
dimension. By using the "ZORDER" command the Delta lake will utilize a Z-order curve to
keep related data points in the same file [7]. Z-ordering can be performed on a combination
of columns in a delta table, but it can also be applied to a single column [7]. In the Partition
section, we introduced an analogy of how each bookshelf was a partition including books
from authors with the same surnames. Let us visualize a similar scenario where people
visiting the library, were more interested in the book’s title and see how this can be applied
with the use of Z-ordering.

The books could be partitioned by their titles. However, this would lead to a vast number
of partitions, one for each unique title, most likely a single partition per book, and one
would quickly lose the benefit of having partitions in the first place. A book title column is
likely a property with high cardinality, which implies that Z-order could be beneficial [7].
If "Book Title" was chosen as the property to structure data on, using Z-ordering would
result in a sorting of all the books by looking at their titles (dimensionality reduction)
and inserting the sorted books into the bookshelves. By recording the metadata from the
bookshelves (translates to metadata in parquet files), one can label each bookshelf with its
first and last book title following alphabetical order, e.g., shelf1: ("Alice in Wonderland",
"Cat’s Cradle") implying books with titles in this range are stored in this bookshelf 1.

Looking at the change of interest in book properties from the author’s surname to the
book’s title is similar to how users’ query patterns change on tables. It demonstrates the
advantage of having a system to read which columns are used for data filtering and to be
able to recommend important columns that should be used to optimize the data storage.

2.8 Databricks

Databricks is a Lakehouse platform where it is possible to perform Data Warehousing,
Data Engineering, Data Streaming, and Data Science plus Machine Learning. The original
creators of Spark created Databricks to have a platform integrated with the cloud where
one could utilize Spark [5, p. 34]. Databricks can be used with different cloud providers,
but in this thesis, we will focus on Azure Databricks since this will be used.

1Note the difference between the bookshelves in the partition analogy compared to the Z-order analogy.
When Z-ordering; each bookshelf is a file containing a range of values, using partitions, each bookshelf was
a folder, e.g., "surname=Jacobsen".
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Databricks are supporters of open source, and as a result, technologies such as Delta
Lake, MLflow, Apache Spark, and more have been further developed and integrated into
the Azure Databricks platform. One of these technologies is the Workflows, which is
Databricks’ own tool to build pipelines where one can extract, load, and transform data.
It makes it possible to utilize a combination of notebooks, SQL queries, Spark, and so on
for the ETL process [14]. The Workflows also provide a monitoring system where one can
spot faults.

2.9 Spark Optimization

There is a myriad of ways to improve the efficiency of Spark. Most of them, in one form
or another, include tuning Spark parameters, but other options exist. The optimization
techniques will be presented in a way where we explain them in their simplest formats
and then look at how people have expanded on these techniques or even developed new
ones. Chapter seven from "Learning Spark" [5, Ch. 7] presents some of these optimization
techniques and will be used as a base when explaining the techniques in their simpler
formats in the following subsections.

2.9.1 Resource Allocation Management

The first optimization technique we will look into is resource allocation. Resource allocation
is related to how Spark distributes its resources, such as the number of executors utilized
or the amount of resources given to a single executor. Allocating too many resources for
a single query execution can lead to reduced performance on other executions running
in parallel. The paper by Sen et al. [29] tackles this problem by creating a predictive
system called the AutoExecutor, which predicts run times based on the number of allocated
executors. The idea is that by having predictive data on query run times, users can, in
advance, choose a more optimal configuration for the number of executors.

2.9.2 Executor Memory Management

Another aspect is how the memory of the executors is distributed in Spark. The executor
memory is divided into three main parts, that is the execution memory, storage memory,
and the reserve memory. The shuffling of data is one of the heaviest operations performed
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in Spark, which includes reading and writing from the disk. Spark performs shuffles using
the execution memory, which means that by changing the size of the three executor memory
parts, one can allocate the right amount of memory needed for the different types of queries
to reduce I/O operations. The ratio can be set by the Spark.memory.fraction property
which controls how much memory is used for execution and storage. To further manipulate
the fraction between execution and storage, the Spark.memory.storageFraction can be
used.

2.9.3 Optimization of Spark Shuffling

As mentioned earlier, optimizing Spark’s shuffling is a great way to increase efficiency.
That is why Spark allows the user to affect how the operation is carried out. By tak-
ing advantage of properties such as spark.shuffle.file.buffer one can help minimize the
number of times I/O operations occur before the shuffle partitions are finally written to
the disk. It is also possible to tweak the shuffle service. A drawback of the shuffle ser-
vice is that its index files are opened multiple times. Facebook proposed a solution to
this problem [19], instead of reopening the file each time, the data is instead stored in
a least recently used (LRU) cache. The size of the LRU cache can be set by using the
Spark.shuffle.service.index.cache.size property.

2.9.4 Maximising Parallelism

When doing data computation in parallel, the goal is to evenly distribute the data into
partitions for the different executors, such that one gets maximum parallelism. To do this,
Spark, already at the file level, read data as partitions [5, p. 181]. Data skew, which refers
to uneven partition sizes, is a common problem related to the parallelization process [3].
Paul et al. [24] proposed a new system called Optimizing Data Partitioning for In-Memory
Data Analytics Frameworks (CHOPPER) to handle Spark’s in-memory data skew problem.
CHOPPER can automatically choose the best number of partitions for workloads and
change how data is divided and distributed during the execution of a workload. As a
result, better workload handling was achieved, improved parallelism, and reduced shuffle
traffic. The paper by Huang et al. [18] also tries to solve or at least reduce the impact of
data skew. Using linear regression, they try to predict the size of partitions before moving
to the reduce stage. They use the predicted partition sizes to distribute the data evenly
between the executors in the reduce stage.
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2.9.5 Data Caching

In the next part, we will look at caching as an optimization technique. In Spark, we have
both cache() and persist() which have many similarities, but there is a key difference;
when using persist, one can specify where to store the data, while using cache one cannot.
Applying a cache can considerably enhance performance when DataFrames or tables are
used multiple times, such as in ETL processes. This is because when the cache operator
is invoked, it will store as many of the object’s partitions as possible in-memory, reducing
the number of I/O operations needed.

2.9.6 Query Optimization

A common way to optimize Spark is through query optimization. One approach to query
optimization is to influence Spark’s choice of join, as these utilize heavy operations. There
are five join types in Spark, and picking the right one based on the data size is essential to
reduce the number of shuffling operations performed by Spark. Li et al. [22] introduce a
query optimizer called Runtime Integrated Optimizer for Spark (RIOS), which influences
Spark’s join process in the following way; it dynamically picks the join order, modifies
the execution plan, and can base its choice of join in the physical plan on data gathered
from runtime statistics. An aspect that sets their work aside from others is that they have
created an optimizer, which also works on User Defined Functions (UDFs).

Another costly part related to queries is stateful operators. Stateful operators maintain
some state of the data, meaning the operator’s output depends not only on the current
data point but also on the maintained state from previously processed data [28, Ch. 18].
This is costly as information is exchanged over the network. The paper by Modi et al.
challenges the problem of stateful operators and tries to reduce the cost by using multiple
query optimization techniques. The optimization techniques include a new state-of-the-
art algorithm for the exchange of data, which resulted in a reduction of transferred data,
three partial push-downs that obtain supporting operators from the main operators, and
then push the supporting operators further down the execution tree. Lastly, they use a
technique called ’peephole optimizations’ to improve the implementation of the stateful
operators.
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2.9.7 Spark Parameter Tuning

Configuring Spark with the proper parameters in regard to how data will be processed on
the Spark system is a crucial task. Picking the wrong parameters for Spark can be costly
and give inefficient run times. As a result, different teams have proposed solutions for auto-
tuning parameters on Spark SQL applications. Xin et al. [35] made a system called Low-
Overhead Online Configuration Auto-Tuning of Spark SQL Applications (LOCAT) for this
purpose. LOCAT uses Bayesian optimization, giving the system low overhead compared
to other Machine Learning techniques. In the paper "You Only Run Once: Spark Auto-
Tuning from a Single Run" [25], Prats et al. introduce an auto-tuner that tunes the Spark
parameters by using metrics extracted from a single run of a Spark application. They
build a feature descriptor that parses the Spark event log files generated when performing
the initial run. This process makes a feature vector that contains a summary of the
Spark tasks and stages performed by the workload. They start with a standard Bayesian
Optimization process and build upon it using transfer learning from the execution logs.
The transfer learning from the execution logs allows the model to better generalize unseen
workloads without retraining, which is a big advantage as they claim the state-of-the-art
work based on performance model search techniques has the drawback that retraining
is required to generalize unseen workloads. Prats et al. prove that using a "Simulated
Bayesian Optimization" (SBO) approach drastically (12x) decreases the "time to solution"
compared to the standard Bayesian Optimization approach. The solution also achieved up
to an 80% increase in performance compared to the standard Spark configuration [25].

2.9.8 Data Partitioning

The last optimization technique we will go into, which is also the category of our solution,
is how structuring data into partitions can help optimize Spark. Searching for the data
matching a query can be costly if one has to go through the whole data set. The research
by Guo et al. [16] proposes a solution with a system called Adaptive Partitioning Scheme
for Exploratory Queries (APEQ), which uses self-created plugins on top of Spark to gather
data-driven and user-driven metrics used in a partition learning engine to learn the best
partitions. They also use a partition index tree containing metadata about partitions
and a Query Optimization Engine that utilizes the index tree to search for partitions.
Their system generates multiple partitions, which are directed at common queries. Instead
of focusing on the importance of columns for partitioning as we do in our approach, they
instead create individual partitions for common filters from queries, which for example, can
be a specific filter spanning ten years on a column for years. When queries are executed,
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their approach checks the index tree for matching partitions. If a viable partition is found,
then they will change where the query accesses the data from the non-partitioned table to
the single partition, which fits the requirements of the query.

Guo et al., before Spark execution, send the user queries directly to a metric plugin library
to collect user-driven metrics on the queries, which are later used to learn optimal data
partitions. As opposed to their approach, we collect data from Spark’s event logs after
execution. By using Spark’s event logs after execution, we are able to use parameters such
as query run time as a parameter for our recommendation system, which based on our
interpretation of their system, they do not.

2.10 Theoretical Approaches for Column Recommendation

In our practical work we decided to focus on partitioning and Z-ordering of tables by the
use of Spark event logs. To make the following sections easier to understand, we will explain
some background of the approaches we chose to pursue. We define approaches as the idea
and mathematics behind each of our implemented recommendation methods. In contrast,
by methods, we refer to the concrete implementations of the recommendation methods. It
is important to note that the metrics in the following subchapters are calculated on a "per
database-table-column" basis and are afterward ordered in a descending order where the
result at the top is chosen as the recommended column to partition the data on.

2.10.0.1 Simple Count

The first approach is a count of the times each column is used as a filter on a table. The
rationale behind this approach is that columns commonly used for filtering are the ones
that the tables should be partitioned on.

Let O be a record of all the operations/filters performed (found in the logs). OCi is a
subset of O containing all the operations filtering on the column Ci. F is the filter used for
the filter operation, F also includes metadata about the filtering, i.e., information about
when the filtering took place; Ft. We can define the simple count metric (SCCi) as the sum
of the number of times each column is used as a filter on a table, subject to the condition
X(F ).
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SCCi =
∑

F∈OCi

X(F ) (2.1)

where X(F ) is a window function (with input parameters tstart and tend in the format of
Unix timestamp):

X(F ) =

{
1 if tstart ≤ Ft ≤ tend

0 otherwise
(2.2)

The function X(F ) is defined such that it evaluates to 1 if the time Ft falls within the
specified time window and 0 otherwise. This function filters out operations that do not
fall within the desired time range and only considers those that do.

2.10.0.2 Timestamp Weights

The previous approach was founded on the idea that frequently filtered columns are more
likely to be filtered on again. The rationale for this approach is similar but emphasizes
the recency of the queries; recent queries are more similar to future queries and, therefore,
should be given an appropriate weight before performing the aggregation of operations to
calculate a reflecting score.

We bring the window function (equation 2.2) from the previous method but add a function,
T (F ) to calculate the appropriate weights based on the recency of the queries:

T (F ) =


wmax if Ft ≥ tend
(Ft−tstart)
(tend−tstart)

× (wmax − wmin) + wmin if tstart < Ft < tend

wmin if Ft ≤ tstart

(2.3)

It uses the same input parameters as the window function X(F ): tstart and tend, but it
also has weights associated with the start and end of the period marked by the window
parameters. The function T (F ) uses linear interpolation to calculate the appropriate weight
on filters taking place inside the interval. Approaching the end of the interval (tend) will
give you a weight closer to wmax, which will increase the impact for the current filter. Vice
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versa for towards the start (tstart) of the interval. Applying this function to the summation
we had earlier1, we get:

TWCi =
∑

F∈OCi

X(F ) · T (F ) (2.4)

2.10.0.3 Run Time Weights

This last approach uses the run time of the physical plan from where the filter originates.
The idea is that more complex operations with longer run times should have a larger impact
on the method’s recommended column compared to the less complex queries with shorter
run times.

An important thing to note here is that not all filters that appear in complex physical
plans with a long run time may be the reason for the long run time. However, the idea
is that aggregation over multiple physical plans will capture the columns reappearing in
complex physical plans with extended durations. These columns are likely being used in
heavy operations and should be used for Z-ordering and partitioning of tables.

The function denoted by R(F ) calculates the appropriate weight based on the filter’s
physical plan’s run time (Fr). The first Input parameter to the function, R(F ), is rmax.
This parameter is the run time needed to reach the maximum weight, wmax, being the
second input parameter. The last parameter, wmin, dictates the weight when the run time
is 0s. Alike the previous approach (2.10.0.2), operations having durations in between the
interval between 0 and rmax seconds will get an appropriate weight between the interval
of the weights wmin and wmax.

R(F ) =


wmax if Fr ≥ rmax

Fr
rmax

× (wmax − wmin) + wmin if 0 < Fr < rmax

wmin if Fr ≤ 0

(2.5)

1It is redundant to have both the window function 2.2 as well as the timestamp weight function 2.3
as the latter also handles data points being outside of the interval. It is nevertheless kept, as the original
window function is part of the prepossessing happening before the calculation of weights
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Applying the above function to the Simple Count equation 2.1, we get an approach that
takes run time into consideration:

RTWCi =
∑

F∈OCi

X(F ) ·R(F ) (2.6)
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Chapter 3

Proposed Solution

We propose an optimization technique for Spark, where one takes advantage of the informa-
tion available in Spark’s event logs. We read events containing information about queries
to extract their time of execution, run times, and the filter operations used from Spark’s
physical plans. The information gathered is used to create a recommendation system for
what columns to use for partitioning and Z-ordering of tables. The recommendation system
is based on four rule-based methods, each looking for different query characteristics.

3.1 Loading Data From Event Logs

The event logs produced by Spark contain much information, but this information is scat-
tered into multiple files. To make the information more accessible for data processing, we
store the data in a table.

3.2 Parsing Relevant Data

After storing the data in a more structured format, the next step is parsing the relevant
information. To do this, we first have to manipulate the data to transform it into a proper
JSON format. Next, the JSON objects are exploded and expanded into a table where the
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keys are represented as columns and events as rows. The events representing queries are
extracted from the newly created event table, and yet another table for queries is built.

From the query event table, parsing is performed on the column ’physicalPlanDescription’,
which is a column that contains the physical plan for a specific query. Information about
databases, tables, columns, and different types of filters are extracted by the use of regex,
and this is stored in a final table (A.3.2) later used as input for the recommendation system
and statistical calculations.

3.3 Recommendation System and Statistics

Using information from Spark’s physical plan and event logs, we recommend the optimal
columns to partition and Z-order on. We propose four different recommendation methods
based on the three approaches2 discussed in section 2.10.

The first method uses the ’Simple Count’ approach to count over the filters used on each
column inside a specific time interval. The second and third methods use the ’Timestamp
Weights’ approach. The second method calculates weights based on how recent the filter
operations are. The third method divides the time interval into n equally sized partitions
containing filter operations. These partitions are then manually given a weight based on
their importance. The fourth and last method uses the ’Run Time Weights’ approach,
which uses the run time of the physical plan to calculate a weight to give higher weights
to filter operations with high run times.

We divide data into intervals of n-weeks for statistical calculations. The timestamp of
queries is then used to calculate different statistics for individual columns and tables, such
as aggregates.

2Note method 2 and 3 uses the same approach, namely ’Timestamp Weights’, this is how we end up
with three approaches and four methods.
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3.4 Method Illustration

3.4 Method Illustration

In the figure 3.4.1 one can see an illustration of the proposed solution.

Figure 3.4.1: Illustration of the proposed solution.
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Chapter 4

Implementation

This chapter presents a detailed description of the steps taken in the implementation of
our column recommendation system; extracting information from event logs, implementing
recommendation methods, and calculating statistics. The work has been performed using
Python, PySpark, and Databricks. Figure A.3.1 shows the relation between the tables
used in this chapter.

4.1 Parsing of Logs

This section describes how we extracted relevant information from Spark’s event logs.
More specifically, the SQLExecutionStart and SQLExecutionEnd events and the ’Filter’,
’PushedFilters’, and ’PartitionFilters’ operations which are all explained in the section
about Spark’s physical plans (2.3.6).

4.1.1 Storing of Event Logs

Azure Databricks uses Spark clusters for computations. However, the event logs are not
stored as default. Without further configuration, the event logs are only available when
the cluster is active and are deleted when the cluster is terminated. To counter this, we
maneuvered into the advanced cluster options and chose a destination for the storage of
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4.1 Parsing of Logs

event logs.

Figure 4.1.1: Image of what the configuration of storing the Spark event logs look like in
Databricks.

4.1.2 Event Logs to Tables

The next step is to read the files, capture the relevant metadata and store them in a table.
The notebook responsible for these tasks is divided into two main parts. The first part
reads the event logs and gathers available file metadata. The final part reads this data
into a Spark DataFrame (DF) and appends the data to the eventlog_raw table.

In the first part, we start by traversing through all the files in the log directory, gathering
the file metadata. The contents of the metadata can be seen in the variables in line three
in listing 4.1. The event log file’s timestamp is found by either using the modification
timestamp from Python’s Pathlib [26] library or by extracting the timestamp from the
filename. The other properties are found from the file’s path, which is chosen by Spark on
storage. The metadata and the file contents for each file are linked inside a common tuple
and stored in a list.Next, we use the notebook’s input parameters start_time and end_time
to find files in the relevant time interval. The updated list (variable relevant_files in listing
4.1) is used to read the file data of each relevant file.

3Finished event logs are zipped by Spark, and given a timestamp to the filename, while unfinished are
not.
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4.1 Parsing of Logs

Listing 4.1: Loading data from files. Code from eventLogToDelta.ipynb.
1 data = []
2 for file_meta in relevant_files:
3 path_object, cluster_id, cluster_instance_id, spark_context_id, ...

last_modification_timestamp, is_zipped = file_meta
4

5 file_data = ''
6 if is_zipped:
7 with gzip.open(str(path_object), 'rb') as g:
8 file_data = g.read().decode('UTF-8')
9 else:

10 with open(str(path_object), 'r') as f:
11 file_data = f.read()
12

13 row = (str(path_object), cluster_id, cluster_instance_id, ...
spark_context_id, last_modification_timestamp, file_data)

14 data.append(row)

In the final part of the notebook, we use the list of tuples and a Spark schema to create a DF.
We construct a unique event log key from three of the values in the DF: ’clusterInstanceID’,
’sparkContextID’, and ’lastModified’. By using this unique key, we can be sure that we do
not have any duplicate event logs in our tables. The event_logs DF is finally written to
the eventlog_raw table, ready for transformations.

Listing 4.2: Constructing a data frame from the tuples in the data list. Code from eventLog-
ToDelta.ipynb.

schema = StructType(
[

StructField("filePath", StringType(), True),
StructField("clusterID", StringType(), True),
StructField("clusterInstanceID", StringType(), True),
StructField("sparkContextID", StringType(), True),
StructField("lastModified", TimestampType(), True),
StructField("fileData", StringType(), True),

]
)
event_logs = spark.createDataFrame(data=data, schema=schema)
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4.1 Parsing of Logs

4.1.3 Data Transformation

This section will describe the transformations used to extract query and filter information
from the event logs.

We started by transforming the event log data to a proper JSON string. The event
logs stored events inside curly braces separated by newline characters. (i.e., {event1}\n
{event2}\n{...), we needed to transfer them to a JSON-formatted list of objects.

We accessed event log data from the column ’fileData’ in the eventlog_raw table. Pyspark’s
regex function was then used to remove the newline characters and afterward replaced the
occurrences of "}{" with "},{" to separate each event with a comma. We then added square
brackets to the start and end of the string, transforming it into a JSON list. The next
step was reading the JSON list with Pyspark’s from_json function; we needed a schema
containing all of the relevant keys to be found in the JSON string. The schema (seen in
appendix, A.1) was used to transform the JSON string to a list of JSON objects. The
transformations described in this paragraph are shown in listing 4.3.

Listing 4.3: Transforming the event log data to MapType. The schema variable is shown in the
appendix A.1. Code from RawDataToOrganized.ipynb.

import pyspark.sql.functions as F

df = spark.sql("SELECT * FROM eventlow_raw")
df = df.withColumn("fileData", F.regexp_replace("fileData", "\n", ""))
df = df.withColumn("fileData", F.regexp_replace("fileData", "\}\{", "},{"))
df = df.withColumn("fileData", F.concat(F.lit("["), df.fileData, ...

F.lit("]")))
df = df.withColumn("fileData", F.from_json("fileData", schema))

After the previous step, we have a DF where each row represents an event log in the form
of a list of event objects. By executing an explosion on the list of objects, we give each of
the events its own row in the DF, seen as df2 in listing 4.4. Further, to make each of the
distinct event keys into columns, we do an expansion using the "columnName.*" syntax
seen in the last line of the same listing. The result is a DF, where columns are event keys
and rows are events.
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4.1 Parsing of Logs

Listing 4.4: Exploding and expanding the data into separate columns. Code from RawData-
ToOrganized.ipynb.

columns = [
"filePath",
"clusterID",
"clusterInstanceID",
"sparkContextID",
"lastModified",
"eventlogKey",

]
df2 = df.select(*columns, F.explode(df.fileData).alias("eventData"))
df3 = df2.select(*columns, F.col("eventData.*"))

Using the expanded DF, we can now move on to the next step. Filtering for the ’SQLEx-
ecutionStart’ and ’SQLExecutionEnd’ events which represent the start and the end of a
query executed in Spark. To gather all relevant information about a query, we want to join
the information found in both the SQL start and end events. We use df3 as a base, create
a DF for each of the SQL events, and join the DFs on the query’s unique ID columns. Code
snippets4 for this step can be seen in listing 4.5 and 4.6. With the new DF, the queries’
run times are calculated based on the timestamps of the start and end events.

Listing 4.5: Filtering to create DataFrame for the SQLExecutionStart events. Code from Raw-
DataToOrganized.ipynb.

sql_start_df = df3.select(
df3.Event.alias("event_start"),
"sparkContextID",
"clusterInstanceID",
"executionId",
"rootExecutionId",
"Description",
"Details",
"physicalPlanDescription",
"sparkPlanInfo",
df3.time.alias("time_start"),
"modifiedConfigs",
"eventlogKey",

).filter(
df3.Event == "org.apache.spark.sql.execution.ui.SparkListener
SQLExecutionStart"

)

4To prevent presenting the same code multiple times, we only show how we create the sql_start_df,
not the sql_end_df as it uses the same logic.
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Listing 4.6: Join and calculation of duration. Code from RawDataToOrganized.ipynb.
sql_df = sql_start_df.join(

sql_end_df,
(sql_start_df.executionId == sql_end_df.executionId)
& (sql_start_df.clusterInstanceID == sql_end_df.clusterInstanceID)
& (sql_start_df.sparkContextID == sql_end_df.sparkContextID),

).drop(sql_end_df.executionId, sql_end_df.clusterInstanceID, ...
sql_end_df.sparkContextID)

sql_df = sql_df.withColumn(
"duration_ms", sql_df.time_end.cast("double") - ...

sql_df.time_start.cast("double")
)

Each row in the DF now represents a single SQL execution, including its physical plan.
As discussed in background section 2.3.3 about physical plans, we want to specifically look
at the occurrences of the filter operations: ’Filter’, ’PushedFilters’, ’PartitionFilters’, and
the ’scan parquet’ operation. By looking directly at the filter operations from the physical
plan, one can only see the column names with an internal id, e.g., "columnName#42".
Columns in different tables can have the same names, and because of this, we had to find
a way of differentiating the columns and linking them to their appropriate table. We solve
this problem by looking at the ’scan parquet’ operation, which tells us which database
and table the column belongs to. We made the function create_column_lookup parsing
the physical plan and returning a column lookup dictionary. This function can be seen in
listing 4.7.

Listing 4.7: Shows the create_column_lookup function as well as its integration into a UDF.
Code from RawDataToOrganized.ipynb.

def create_column_lookup(physicalPlan):
COLUMN_LOOKUP = {}

regex = r"\(\d+\)\s+Scan parquet\s+(\S+)\nOutput \[\d+\]: \[(.*?)\]"
matches = re.findall(regex, physicalPlan)

for m in matches:
db_table = m[0]
database, table = db_table.split(".")[-2:]

columns = m[1]
for c in columns.split(", "):

COLUMN_LOOKUP[c] = {"database": database, "table": table}
return COLUMN_LOOKUP
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We built three functions to parse the physical plans, which are all closely connected. The
first is ’build_rows’ seen in listing 4.8. The function takes in results from the parsing
of a single physical plan with a single filter operation e.g., ’PartitionFilters’. Its input
parameters are: ’columns’; all the columns used for this filter, ’column_lookup’; the output
from the function explained above, and some parameters containing shared metadata of
the physical plan. The function’s primary purpose is to create a list of rows for each column
used in a specific filter type and is used inside the plan_parser, explained next in listing
4.9.

Listing 4.8: Shows the ’build_rows’ function. Code from RawDataToOrganized.ipynb.
def build_rows(

columns,
column_lookup,
operation_name,
execution_id,
timestamp,
physical_plan_key,
eventlog_key,
table=None,
database=None,

):
unique_columns = set(columns)
rows = []
for c in unique_columns:

if database is None:
database = column_lookup.get(c, {}).get("database", "")

if table is None:
table = column_lookup.get(c, {}).get("table", "")

rows.append(
{

"operationName": operation_name,
"executionId": execution_id,
"databaseName": database,
"tableName": table,
"columnName": c.split("#")[0],
"timeGenerated": timestamp,
"physicalPlanKey": physical_plan_key,
"eventlogKey": eventlog_key,

}
)

return rows
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The second function is responsible for parsing physical plans and focuses on one operation
at a time. It is named plan_parser and takes in the following parameters:

• row the row in the DF.

• name the name of the filter operation.

• regex regex searching for the filter operation.

• col_regex regex for extracting the column names from the operation regex’s output.

• group_index integer for specifying which capture group in the regex that contains
the column names.

For each of the operations found, we use the column regex to extract the names of all
columns related to the operation filter. The build_rows function is called and returns
a data row for each column inputted. Finally, after the loop has finished, the row_lst
variable is returned.

Listing 4.9: Shows the ’plan_parser’ function. Code from RawDataToOrganized.ipynb.
def plan_parser(row, name, regex, col_regex, group_index):

execution_id = row["executionId"]
timestamp = row["timestamp"]
physical_plan = row["physicalPlanDescription"]
column_lookup = row["columnLookup"]
physical_plan_key = row["physicalPlanKey"]
eventlog_key = row["eventlogKey"]

row_lst = []
matches = re.findall(regex, physical_plan)
for m in matches:

cond_group = m[group_index]
columns = re.findall(col_regex, cond_group)

if name == "PushedFilters": # Missing internal id so needs a ...
small tweak
db_table = m[0]
database, table = db_table.split(".")[-2:]

rows = build_rows(
columns,
column_lookup,
name,
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execution_id,
timestamp,
physical_plan_key,
eventlog_key,
table=table,
database=database,

)
else:

rows = build_rows(
columns,
column_lookup,
name,
execution_id,
timestamp,
physical_plan_key,
eventlog_key,

)
row_lst.extend(rows)

return row_lst

Last, we have the multi_plan_parser function, as seen in listing 4.10. To avoid looping
through the whole DF multiple times, the ’multi_plan_parser’ was created. The function
evaluates a single physical plan at a time while looping through the filter operations speci-
fied in the settings variable seen in listing 4.11. The two input parameters are the settings
variable specifying which filter operations to look for together with corresponding regex
expressions, and a row from a DF needed for the plan_parser function call.

Listing 4.10: Shows the ’multi_plan_parser’ function. Code from RawDataToOrganized.ipynb.
def multi_plan_parser(row, settings):

row_instances = []
for operation in settings:

operation_rows = plan_parser(
row,
operation["operation_name"],
operation["regex"],
operation["col_regex"],
operation["group_index"],

)
row_instances.extend(operation_rows)

return row_instances
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Listing 4.11: Shows how the ’multi_plan_parser’ was called together with settings for the "Fil-
ter" operation. Code from RawDataToOrganized.ipynb.

settings = [
{

"operation_name": "Filter",
"regex": "\(\d+\)\s+Filter(.*?\n)Input(.*?\n)Condition : ...

(.*?)\n\n",
"col_regex": "\w+#\d+",
"group_index": -1,

},
...

]

operation_rdd = physical_plan_lookup_df.rdd.map(
lambda row: multi_plan_parser(row, settings)

)
operation_df = operation_rdd.flatMap(lambda l: l).toDF()

In the last step of this notebook, the operations and queries tables are created. Each
row in the operations table is a filter operation extracted from a physical plan, and each
row in the queries table is a combined SQLExecutionStart and SQLExecutionEnd event
aggregation. The tables and columns used for storage can be seen in the entity diagram
A.3.1.

4.2 Rule-Based Recommendation

Now that we have the operations and queries tables, we have the needed prerequisites to
create a recommendation system for partitioning and Z-ordering on columns. We used four
different methods utilizing the three approaches explained in section 3.3 and 2.10. Each of
these four methods has its own notebook with some overlap for the data preparation as a
natural first step.

4.2.1 Recommendation System’s Tables

The tables: method_runs, method_results (A.3.3), and method_recommendations (A.3.4)
are used to store the recommendation methods’ metadata, results, and column recommen-
dations, respectively. The method_runs table contains metadata for each time a recom-
mendation system is run and a ’runId’ that is used as a foreign key in the two other tables.
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Resulting evaluations of each column are found in the method_results table. These eval-
uations are used to build the method_recommendations table, which is the final table
outputting the columns recommended by each method. For more details on column names
and table relations, look at the entity diagram in figure A.3.1.

4.2.2 Preprocessing and Data Preparation

The notebooks’ inputs are validated and set to the correct format, and we perform three
steps of shared preprocessing:

1. Remove data points outside the window of interest marked by the notebook’s input
parameters to_time and from_time. These parameters translate to the window
function presented in equation 2.2.

2. Remove operations with the filter type: ’Filter’ 5.

3. Remove any missing values, either in the form of an empty string or a NULL value.

Listing 4.12: Preprocessing performed in all notebooks as a initial step before performing any
calculations on the operations table. Code from RuleBased_count.ipynb.

operations = (
spark.sql("SELECT * FROM operations")
.filter(F.col("timeGenerated").between(from_time_timestamp, ...

to_time_timestamp))
.filter(F.col("operationName") != "Filter")

)

operations = operations.select(
[

F.when(operations[col] == "", ...
None).otherwise(operations[col]).alias(col)

for col in operations.columns
]

).dropna(how="any")

5We decided to do this since we noticed that the ’PushedFilters’ and ’Filter’ were always present in
pairs. And for our implemented methods, this would have led to a doubling in importance for these filters
compared to the ’PartitionFilters’.
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Listing 4.13: Schema used to read a metadata dictionary object into method_runs table. Code
from RuleBased_count.ipynb.

method_runs_schema = StructType(
[

StructField("runId", IntegerType(), nullable=True),
StructField("methodName", StringType(), nullable=True),
StructField("params", StringType(), nullable=True),
StructField("fromTime", TimestampType(), nullable=True),
StructField("toTime", TimestampType(), nullable=True),
StructField("whenRun", TimestampType(), nullable=True),

]
)

Before doing recommendation calculations, we want to see which columns the tables are
partitioned on. Using the operations table, we find the newest filter occurrence of every
column and check if the operation is of type ’PartitionFilters’. We use this information to
fill the is_partitioned column in the method_result and recommendation tables. Having
gone through these common steps of the recommendation methods, we can start by looking
at the implementation details of the different methods.

4.2.3 Simple Count

The names associated with the Simple Count’s metadata parameters give a concise ex-
planation of what they do, so we deem it unnecessary to provide further explanation.
Note that the interval parameter used as part of the params dictionary (listing 4.14) is a
parameter that tells the window size in terms of weeks and is represented as a float.

Listing 4.14: Parameters and metadata to be written to the method_runs table (4.13). Code
from RuleBased_count.ipynb.

params = {
"windowStart": int(from_time.timestamp() * 1000),
"windowEnd": int(to_time.timestamp() * 1000),
"windowSize": interval,

}
method_run_info = {

"runId": runId,
"methodName": "simpleCount",
"params": json.dumps(params),
"fromTime": from_time,
"toTime": to_time,
"whenRun": datetime.now(),
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}
method_run = spark.createDataFrame([method_run_info], ...

schema=method_runs_schema)

We use a similar logic to the approach explained in section 2.10.0.1 by executing a groupBy
operation that counts the number of occurrences of each column present inside the relevant
window in the operations table (A.3.2). In listing 4.15, you can see how the method is
executed using the groupBy operator. The output of this step gives us the method_results
table (A.3.3). The method_results table has a column ’mehtodValue’ representing the
number occurrences for each column.

Listing 4.15: Simple Count: calculating the number of times each table is present in the opera-
tions table. Code from RuleBased_count.ipynb.

method_results = (
operations.groupBy("databaseName", "tableName", "columnName")
.agg(F.count("executionId").alias("occurrences"))

)
# Include information on column partitioning
method_results = method_results.join(

is_partitioned, on=["databaseName", "tableName", "columnName"]
)

To find the method’s recommended columns, we have to perform a groupBy operation on
each database and table combination and perform an aggregation to find the column name
of the highest-scoring column.

In order to keep the values of the columns ’methodValue, ’columnName’, and ’isParti-
tioned’, we need to map these three values into a struct data type before applying Sparks’
max() function in the aggregation. This struct is then split into three columns matching
the schema of the method_recommendations table being the final destination.

Code for the latter part is shown in listing 4.16 and will produce an output equal to the
one shown in the method_recommendations table shown in the appendix (A.3.4).
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Listing 4.16: Calculating the number of times each table is present in the operations table. Code
from RuleBased_count.ipynb.

method_recommendations = (
method_results.groupBy("databaseName", "tableName")
.agg(

F.max(F.struct("methodValue", "columnName", ...
"isPartitioned")).alias(
"max_methodValue_colName_isPartitioned"

)
)
.select(

"databaseName",
"tableName",
"max_methodValue_colName_isPartitioned.columnName",
"max_methodValue_colName_isPartitioned.methodValue",
"max_methodValue_colName_isPartitioned.isPartitioned",

)
.withColumn("runId", F.lit(runId))
.withColumnRenamed("max_methodValue_colName_isPartitioned.columnName", ...

"columnName")
.withColumnRenamed(

"max_methodValue_colName_isPartitioned.methodValue", "methodValue"
)
.withColumnRenamed(

"max_methodValue_colName_isPartitioned.isPartitioned", ...
"isPartitioned"

)
)

The sections for the following methods will be shorter as there is no need to explain similar
parts of the code. Instead, We will focus on the implementation of the calculation of weights
and the difference in parameters.

4.2.4 Timestamp Weights

The Timestamp Weights method is built upon the previously mentioned principles in
the background section 2.10.0.2. Compared to the Simple Count method, this has some
additional input parameters. The parameters: min and max_weights are used to calculate
the appropriate weights for each row of the operations table before further computations.

Listing 4.17: Parameters belonging to the timestamp weights method. Code from Rule-
Based_weightedCount.ipynb.
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params = {
"max_weight": max_weight,
"min_weight": min_weight,
"windowStart": from_time_timestamp,
"windowEnd": to_time_timestamp,
"windowSize": interval,

}

Listing 4.18 shows how the weights are calculated based on the ’timeGenerated’ column in
the operations table. The interval_weight variable in this listing uses a logical expression
to check if the timeGenerated value is before or after the window of interest marked by the
to and from timestamp variables. If the timestamp is located before or after the window of
interest, this current row will receive the min or max weights, respectively. It is important
to note that the operations DF is already constructed with the start and end time, so no
data should be outside the window of interest. Thus the expression in the interval_weight
variable serves as an additional check to ensure that the weights are correctly assigned to
the data points within the window. However, should the timeGenerated value be located
inside the window, we use linear interpolation to calculate the appropriate weight.

Listing 4.18: Code showing how the weight is calculated based on the timeGenerated column.
Code from RuleBased_weightedCount.ipynb.

interval_weight = F.when(
F.col("timeGenerated") ≥ to_time_timestamp, max_weight)
.otherwise(

F.when(F.col("timeGenerated") ≤ from_time_timestamp, min_weight)
.otherwise(

(
(F.col("timeGenerated").cast("long") - from_time_timestamp)
/ (to_time_timestamp - from_time_timestamp)

)

* (max_weight - min_weight)
+ min_weight

)
)

weighted_operations = operations.withColumn("weight", ...
interval_weight.cast("float"))
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4.2.5 Discrete Timestamp Weights

This is another implementation using the ’timeGenerated’ column. As the name suggests,
this implementation is a discrete version of the previous method. As seen in listing 4.19,
one also has the num_steps and weights parameters in addition to the common window
parameters.

Listing 4.19: Parameters belonging to the Discrete Timestamp Weights method. Code from
RuleBased_stepWeights.ipynb.

params = {
'num_steps': num_steps,
'weights': weights,
"windowStart": from_time_timestamp,
"windowEnd": to_time_timestamp,
"windowSize": interval,

}

The num_steps parameter is an integer that decides how many buckets the window will be
divided into. For example, if the window spans February month and num_steps is equal to
four, then February will be divided into four buckets, each representing a week. The next
parameter, weights, is a list representing the weighting for each of these buckets. Since we
use four buckets in this example, an input of weights = [1, 2, 3, 4] could be used. This
will ensure that operations happening in the last week of February will have a weight of 4
compared to operations at the beginning which will have a weight of 1.

Listing 4.20 shows how the timestamps for the different intervals are calculated based on
the input parameters. It also shows how the weights are assigned to the operations table.

Listing 4.20: Code to calculate the timestamps for the different intervals inside the window as
well. It also shows how the weights are assigned in the Discrete Timestamp Weights method. Code
from RuleBased_stepWeights.ipynb.

interval_duration = round((to_time_timestamp - ...
from_time_timestamp)/num_steps)

start = round(from_time_timestamp)

intervals = []
for i in range(num_steps):

intervals.append((start, start + interval_duration))
start = start + interval_duration
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4.2 Rule-Based Recommendation

def assign_weight(timestamp):
for i in range(len(intervals)):

if timestamp ≥ intervals[i][0] and timestamp < intervals[i][1]:
return weights[i]

return None

assign_weight_udf = F.udf(assign_weight, FloatType())
weighted_operations = operations.withColumn("weight", ...

assign_weight_udf("timeGenerated"))

These weights are then grouped in the same way as the other methods, and results are
written to the method tables.

4.2.6 Run Time Weights

The parameters of the Run Time Weights method include the max and min weight and
the max_time parameter. The max_time parameter is how long (seconds) the operation’s
physical plan’s run time has to be in order for the operation to get assigned the max_weight.

Listing 4.21: Parameters belonging to the Run Time Weights method. Code from Rule-
Based_runTimeWeightedCounts.ipynb.

params = {
"max_weight": max_weight,
"min_weight": min_weight,
"max_time": max_time,
"windowStart": from_time_timestamp,
"windowEnd": to_time_timestamp,
"windowSize": interval,

}

In the previous method, Timestamp Weights, the min_weight and max_weight parameters
were used at the beginning and end of the window of interest to assign weights based on
when the operation took place inside that interval. The weights are now used to weigh the
operations based on their physical plan’s run time. More specifically: where in the interval
from 0 to max_time seconds it lands.

In order to get the run time of the operation’s physical plans, we need to join the operations
table with the queries table, this can be done using the key ’physicalPlanKey’.
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Listing 4.22: Joining the operations and queries table to get the run time information into the
operations table. Code from RuleBased_runTimeWeightedCounts.ipynb.

run_times = spark.sql("select physicalPlanKey, duration_ms from queries")
operations = operations.join(run_times, on='physicalPlanKey')

After joining the tables, the weights are calculated similarly to the timestamp weights:
being outside of the interval [0, max_time] will result in the min and max weights. Data
points inside the interval will use linear interpolation to calculate the respective weights.
Calculations can be seen in listing 4.23.

Listing 4.23: Showing how the run time weights are calculated. Code from Rule-
Based_runTimeWeightedCounts.ipynb.

run_time_weight = F.when(
F.col("duration_ms") ≥ max_time_ms, max_weight

).otherwise(
F.when(F.col("duration_ms") ≤ 0, min_weight).otherwise(

(
F.col("duration_ms") / max_time_ms

)

* (max_weight - min_weight)
+ min_weight

)
)
weighted_operations = operations.withColumn("weight", ...

run_time_weight.cast("float"))

The resulting weighted_operations DF is then grouped on each distinct column in ’column-
Name’ where the operation weights are summed. This result is sent to the method_results
table, and the highest scoring column for each table is sent to the method_recommendation
table.

4.3 Statistical Calculations

In the previous sections, we saw how data was extracted from logs and used to perform
column recommendations. To evaluate the effectiveness of these methods, we wanted to
calculate some simple statistics.
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4.3 Statistical Calculations

The notebook responsible for the statistics has three different input parameters: start_time,
end_time, and interval. The interval variable is used to specify how many weeks each sta-
tistical period inside the window should be. We join the operations and queries tables so
that we can use the run time of the physical plans. Code for handling the interval logic
can be seen in 4.24.

Listing 4.24: Shows code used for creating intervals and assigning them to the data. Code from
statisticsCalc.ipynb.

intervals = []
for time in range(int(start_time_unix), int(end_time_unix), ...

int(interval_unix)):
intervals.append((time, (time + int(interval_unix))))

def assign_group(timestamp):
for i in range(len(intervals)):

if timestamp ≥ intervals[i][0] and timestamp < intervals[i][1]:
return float(intervals[i][0])

return None

assign_group_udf = F.udf(assign_group, DoubleType())
combined_df = combined_df.withColumn("interval_group", ...

assign_group_udf("time_start"))

After the intervals were decided, we performed the statistical calculations. Statistics were
created based on run time on both column and table levels. The calculations were carried
out using a groupBy operator, first on the columns or tables (depending on the statics
type) and then on each of the intervals. Next, we performed an aggregation followed by
the different statistical functions seen in listing 4.25.

Listing 4.25: Shows code used for aggregate calculations on columns. Code from statistic-
sCalc.ipynb.

column_stats = combined_df.
groupBy(combined_df.columnName.alias("colName"),
combined_df.interval_group.alias("int_group")).agg(

F.mean("duration_ms").alias("avg_duration_ms"),
F.max("duration_ms").alias("max_duration_ms"),
F.min("duration_ms").alias("min_duration_ms"),
F.sum("duration_ms").alias("sum_duration_ms"),
F.variance("duration_ms").alias("variance_duration_ms"),
F.stddev("duration_ms").alias("stddev_duration_ms"),
F.kurtosis("duration_ms").alias("kurtosis_duration_ms")
)
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4.4 Pipeline

Finally, two new tables called "query_column_stats" and "query_table_stats" were made,
storing the statistics for each respective kind.

4.4 Pipeline

The notebooks explained in this section are integrated into Databricks’ version of pipelines
called Workflows. A visualization of how the notebooks have been connected can be seen
in figure 4.4.1.

Figure 4.4.1: Figure shows how the pipeline is presented in Databricks Workflows.
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Chapter 5

Experiments and Results

This section presents the results gathered from our two experiments. In the first exper-
iment, our focus was to test the capabilities of our recommendation methods on various
query patterns and examine the impact of partitioning and Z-ordering on relevant columns.
In the second experiment, we simulated a real use case of our recommendation system and
compared its run times to an unoptimized simulation without the use of partitions or Z-
order. For both experiments, we follow the theory explained in the background section
about partitions and Z-ordering, specifically about partitioning on categorical columns
while using Z-order for high-cardinality columns.

The experiments were carried out in Databricks with a Spark cluster using Databricks
version 12.2 with Apache Spark 3.3.2 and Scala 2.12. The cluster utilized 2-6 workers with
28 GB memory and 8 cores (Standard_DS4_v2). The driver type was Standard_DS4_v2
which translates to 28 GB and 8 cores. The experiments were conducted using the TPC-
H Benchmark [33] data6. Listing 5.1 shows the method parameters used in both of the
experiments7.

6Size (MB) of the tables were: lineitem≈1097, orders≈286, customer≈61, part≈31, supplier≈4,
nation≈0. The choice of data size is discussed in the "Discussion" section.

7The start and end-time parameters are set to the timestamps when the first and last query in the
group were run.
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5.1 Method Experiment

Listing 5.1: Shows the methods’ input parameters used for the experiments. An detailed expla-
nation of what the parameters does is given in section 2.10.

TimestampMinWeight = "0"
TimestampMaxWeight = "2"

DiscreteTimestampNumSteps = "4"
DiscreteTimestampWeights = "0.25, 0.5, 0.75, 1"

RunTimeMinWeight = "0"
RunTimeMaxWeight = "2"
RunTimeMaxTime = "4"

5.1 Method Experiment

For this experiment, we utilized two TPC-H tables: lineitem and orders. The primary
objective of this experiment was to evaluate the capabilities of our methods in detecting
different query patterns. We also investigated the impact of Z-ordering versus partitioning
on the performance of these query patterns. Although the data used in this experiment
is of small size, we conducted each query group five times and calculated the average run
time to ensure consistency. It is important to note that this pilot experiment serves as a
preliminary investigation before a more realistic simulation in the subsequent experiment.
For those interested in reproducing our experiments, the queries used in this experiment
can be found in the Supplementary Information in Section A.4.

5.1.1 Query Group 1

Query group 1 evaluates the performance of the recommendation methods under sudden
shifts in query patterns. The queries in this group operate on the lineitem table, with
10 queries filtering on the ’l_orderkey’ column followed by 12 queries filtering on the
’l_shipmode’ column. Table 5.1 displays the top column recommendations from each
method.

56



5.1 Method Experiment

Method Name Table Recommended
Column

Simple Count lineitem l_shipmode
Timestamp Weights lineitem l_shipmode

Discrete Timestamp Weights lineitem l_shipmode
Run Time Weights lineitem l_shipmode

Table 5.1: Column recommendations for group 1.

Average Group Run Time (s) lineitem_table

6.287 Partition: ’l_shipmode’

8.650 Z-order: ’l_orderkey’

13.712 No optimization

Table 5.2: Average group 1 run times for different optimizations.

Table 5.2 shows the run times of all queries in group 1 with three different optimiza-
tions. The unoptimized run had an average run time of 13.712 seconds. Partitioning on
’l_shipmode’ achieved an average run time of 6.287 seconds, resulting in a significant im-
provement of 7.425 seconds (54%) compared to the unoptimized run. Z-ordering on the
’l_orderkey’ column led to an average run time of 8.650 seconds, an improvement of 5.062
seconds (37%) compared to the unoptimized run.

5.1.2 Query Group 2

Query group 2 was designed to evaluate the effectiveness of the Timestamp Weights and
Discrete Timestamp Weights methods in considering the recency of queries when recom-
mending columns for optimization. This group only uses the lineitem table and consists of
12 queries that filter on the ’l_shipmode’ column, followed by 10 queries that utilize the
’l_orderkey’ column. Table 5.3 presents the top recommendations from each method.
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5.1 Method Experiment

Method Name Table Recommended
Column

Simple Count lineitem l_shipmode
Timestamp Weights lineitem l_orderkey

Discrete Timestamp Weights lineitem l_orderkey
Run Time Weights lineitem l_shipmode

Table 5.3: Column recommendations for group 2.

Average Group Run Time (s) lineitem_table

6.646 Partition: ’l_shipmode’

9.200 Z-Order: ’l_orderkey’

12.541 No optimization

Table 5.4: Average group 2 run times for different optimizations.

The run time results for query group 2 are displayed in Table 5.4. Running the group
without any optimization techniques resulted in an average run time of 12.541 seconds.
Applying Z-ordering on the ’l_orderkey’ column reduced the average run time to 9.200
seconds, resulting in a decrease of 3.341 seconds (27%) compared to the unoptimized run.
Similarly, partitioning on the ’l_shipmode’ column led to an average run time of 6.646
seconds, representing a reduction of 5.895 seconds (47%) compared to the unoptimized
approach.

5.1.3 Query Group 3

Query group 3 was designed to evaluate the effectiveness of the Run Time Weights method
in prioritizing queries with longer run times. In this group, both the lineitem and the orders
table are used. This group consists of 10 straightforward queries that filter on lineitem’s
’l_shipmode’ column, followed by 3 more complex queries that perform a join between the
lineitem and orders table using the ’l_orderkey’ and ’o_orderkey’ columns. The column
recommendations from each method are presented in Table 5.5.
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5.2 Recommendation System Experiment

Method Name Table Recommended
Column

Simple Count lineitem l_shipmode
Timestamp Weights lineitem l_shipmode

Discrete Timestamp Weights lineitem l_shipmode
Run Time Weights lineitem l_orderkey

Simple Count orders o_orderkey
Timestamp Weights orders o_orderkey

Discrete Timestamp Weights orders o_orderkey
Run Time Weights orders o_orderkey

Table 5.5: Column recommendations for group 3.

Average Group Run Time (s) lineitem_table order_table

9.605 Partition: ’l_shipmode’ Z-order: ’o_orderkey’

10.766 Z-order: ’l_orderkey’ Z-order: ’o_orderkey’

13.137 No optimizaiton No optimizaiton

Table 5.6: Average group 3 run times for different optimizations.

Since ’o_orderkey’ is the only column used from the orders table, we will exclusively apply
Z-ordering to the order table, except for the unoptimized run where no optimization is
applied. Table 5.6 displays the average run times for group 3. The run without optimiza-
tions, results in an average run time of 13.137 seconds. By optimizing with Z-ordering on
lineitem’s ’l_orderkey’ column, we achieve an average run time of 10.766 seconds, repre-
senting a 2.317 seconds (18%) improvement. Additionally, partitioning on the ’l_shipmode’
column yields an average run time of 9.605 seconds, resulting in a reduction of 3.532 seconds
(27%).

5.2 Recommendation System Experiment

In this experiment, we want to simulate a more realistic use case of the recommendation
system. To simulate realistic queries and to compare results, we took inspiration from
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5.2 Recommendation System Experiment

Gou et al. mentioned in section 2.9.8, and chose 8 of the base template queries from the
TPC-H: q1, q4, q6, q10, q14, q15, q18 and q19 as a base. We used the base queries to build
26 exploratory queries, which are quite similar to the base, and 16 intermediate queries
representing more straightforward queries meant to simulate an initial data exploration
phase. The intermediate, exploratory, and base queries (in this order) are the collection
of 50 queries that are used in this experiment. We define every 10 queries as a batch of
queries that are run before updating the partitioning and Z-ordering of the tables.

As our recommendation system is not built to read logs in real-time but instead uses
a batch-wise approach for log reading, we needed to do an initial run of the queries to
see which columns were recommended after each batch of queries. In this experiment,
we employed our four methods, each recommending a column after each batch. In cases
where the recommendations differed among the methods, we selected the column that was
recommended the most frequently out of the four. Which columns were recommended the
most frequently after each batch can be seen in table 5.7.

We chose to perform Z-ordering on all of the recommended columns with the exception of
’n_nationkey’, this decision is addressed in the discussion chapter 6.2.2.

Columns Recomennded Recomennded Recomennded Recomennded
Column Column Column Column

After Batch 1 After Batch 2 After Batch 3 After Batch 4
orders o_orderdate o_custkey o_orderkey o_orderkey

customer c_custkey c_custkey c_custkey c_custkey
lineitem l_shipdate l_shipdate l_orderkey l_orderkey
supplier s_suppkey
nation n_nationkey n_nationkey
part p_size p_size p_size

Table 5.7: Table shows the most frequently recommended column for each table after each batch
of 10 queries.

We ran through all of the queries five times and took the median run time for each query.
We did this once using the original tables, and once using the tables optimized by the
learned columns from the initial run of the queries. Results for the baseline and the
optimized tables can be found in figures 5.2.1, 5.2.2 and 5.2.3. The total run times were
103.23 seconds and 85.59 seconds for the baseline and optimized approach respectively.
This is a difference of 17.64s showing a 17.09% reduction in run time.

Because of the short run times and few runs in the experiment, we also calculated a
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5.2 Recommendation System Experiment

confidence interval for the differences between the five baseline and optimized runs. We
ended up with a 95% confidence interval between [16.75s, 24.67s] seconds reduction and
[17.0%, 19.3%] decrease in run time which seems to solidify the 17.64 seconds reduction
found when taking the median of the individual queries.

Figure 5.2.1: Comparing the average run times of the baseline and the optimized performance.
The baseline is the run with no table optimizations. Optimized is the run after having performed
Z-ordering on the recommended columns.
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5.2 Recommendation System Experiment

Figure 5.2.2: Median of each query from the baseline runs.

Figure 5.2.3: Median of each query from the optimized runs.
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Chapter 6

Discussion

In this section, we will discuss the experiment results, some of the decisions taken during
the experiments, and the limitations of our implementations.

6.1 Experiment Validation

Acknowledging that our recommendation system’s primary design is to be run and used
for column recommendations in a routine fashion, we had to make some adjustments to
prepare it for experiments needing frequent reading of the event logs. we had to adjust it
for experiments. Due to time constraints and practical reasons, we opted for smaller data
sets. This decision was also influenced by the additional time required for Spark to store
event logs in the designated location.

As mentioned in the method experiment; this is a preliminary experiment with the main
purpose being to see if the methods are able to detect the query patterns in groups 1, 2,
and 3. We also wanted to see if there were any clear differences between the performance
of optimization techniques; partitioning and Z-ordering. To look for the difference in
performance between the two optimization techniques, we ran each of the query groups
five times and used the runs’ mean value as our recorded run times.

In the final experiment, we maintained consistency by running the complete set of 50
queries five times for both the baseline and optimized approaches. For each query, we
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6.2 Discussion of Results

calculated the median duration from the five runs and summed them up. To verify the
calculated difference of 17.64 seconds, we computed a confidence interval using a student-t
distribution. This approach was chosen due to the relatively small number of data points
available for analysis. The resulting 95% confidence interval provides a realistic range
([16.75 seconds, 24.67 seconds]) of values, matching our calculated difference between the
baseline and optimized approach.

6.2 Discussion of Results

In this section, we analyze the results of our experiments and discuss the findings. The rec-
ommendation methods employed in our experiments look for different query characteristics
and weigh the operations according to the input parameters shown in listing 5.1.

In the following subsection, we discuss the methods’ strengths and weaknesses highlighted
by the different query groups from the method experiment, after that, we analyze how the
run times for different query groups are effected by the different optimization techniques:
partitioning and Z-ordering. Whereas in the last subsection, we look at the results from
the last experiment, discussing the performance of the recommendation system as a whole.

6.2.1 Method Experiment

6.2.1.1 Recommendations

Group 1 contains 10 queries filtering on lineitem’s ’l_orderkey’ column followed by 12
queries using the ’l_shipmode’ column. We see that all methods recommend shipmode as
the most important column. This is expected, as the most used column is also the most
recent one, giving it a larger weight for both the Simple Count method and the methods
taking time-of-execution into account. As long as the queries utilizing the orderkey column
do not have a longer run time, it makes sense that none of the methods chose this as the
most important column.

Group 2 uses the same queries as in the first group but in the opposite order. 12 queries
using the shipmode column followed by 10 queries filtering on the ’l_orderkey’ column.
This experiment was made to see if the methods evaluating queries using time-of-execution
could prioritize the orderkey column even though it was outnumbered 10 to 12. As seen
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6.2 Discussion of Results

in table 5.3, both the Timestamp Weight and its discrete implementation, Discrete Times-
tamp Weights recommended the ’l_orderkey’ column. In ETL platforms where query
trends often evolve over time, these methods’ predictive nature can be used effectively
by appropriately tuning the interval length and min/max weights (explained in section
2.10.0.2) to match the query trend volatility of the platform.

Group 3 has 10 queries filtering on lineitem’s ’l_shipmode’ column and three queries that
utilize join operations on the ’orderkey’ column between the lineitem and the orders table.
The ’o_orderkey’ column is the only column used from the orders table and is therefore
recommended by all four methods for this table.

Even though there are three queries filtering on the ’l_orderkey’ column and 10 queries fil-
tering on the ’l_shipmode’ column in Group 3, the Run Time Weights method recommends
the ’l_orderkey’ column. This preference is due to the method assigning a larger weight
to queries with longer run times, which includes the 3 queries utilizing the ’l_orderkey’
column. This is because the Run Time Weights method favors queries with longer run
times.

When using the Run Time Weights method to perform recommendations on an ETL
platform, using a low value8 for the max_time parameter will give larger weights to queries
with a shorter run time. However, it is not possible to differentiate weights for queries with
run times above the max_time threshold. When determining an appropriate value for the
max_time parameter, we suggest analyzing the query run times of the specific platform.

6.2.1.2 Query Group Run Times

Run times in both query group 1 and 2 show that partitioning on the shipmode column
reduces the run time more than Z-order does when used on the orderkey column. The
partitioning gives a speed increase of 54% and 47% compared to the 37% and 27% when
using the Z-order for group 1 and 2 respectively. Run times for group 3, displayed in table
5.6, show that the run time for partitioning on ’l_shipmode’ and Z-order on ’l_orderkey’
are very similar (9.6s and 10.8s) compared to the other groups. This could indicate that
Z-ordering increases the efficiency of the three joins almost as much as the partitions on
shipmode optimize the 10 queries using the shipmode column. Based on the tests, it looks
like both partitioning and Z-ordering are good options for optimizing queries. Which one

8This is highly subjective as different platforms have different interpretations of what is a short or long
run time
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is superior seems to depend on the characteristics of the table and column.

6.2.2 Recommendation System Experiment

After the initial run of the 50 queries, we see that all of the recommended columns after
each batch are ’key’ or ’date’ columns except for the ’p_size’ column from the part table.
We ended up performing Z-ordering on every9 recommended column because no categorical
low cardinality columns were chosen. Low cardinality date columns can be a good option
used for partitioning, either on yyyy-mm-dd format or split into a three-level-partition
with columns: year, month, and date. If the tables had been larger, partitioning on dates
would have been a potential optimization to explore. However, based on our experience
with the small tables used in the experiment, we chose Z-ordering as the better alternative
for the date columns. Also, when discussing results from query group 3 in the previous
experiment, we found that using Z-ordering on query group 3 gave a more similar opti-
mization percentage compared to the partition counterpart, which may imply Z-ordering
is preferred when working with joins on id columns.

When performing the experiment, we used five runs and based the query run times on
these runs. We planned to take the mean of the values. However, we noticed some outliers
with longer run times for the first run for both the baseline and the optimized run, which
is why we decided to take the median instead of the mean as we did in the first experiment.
Studying the output from tables 5.2.2 and 5.2.3 shows a similar run time for the first 10
queries where none of the runs had any optimization, followed by a reduction in run time
for the optimized run in the subsequent queries.

Comparing the experiment’s results with the work of Guo et al., who performed experi-
ments on a larger scale with a different partition system but on the same tables, reveals
some interesting insights. Even though the data scale differs significantly, we observe a
similar trend between the baseline and optimized runs. In our experiment, we managed
to get an improvement of 17% compared to runs without partitions, whereas Guo et al.
achieved a 19% and 20% improvement for their experiments. While our study’s results
may not directly align due to variations in data, by incorporating their work, we can bet-
ter understand the effectiveness and performance gains achievable by systems optimizing
data retrieval in Spark.

In contrast to Guo et al., our system has been tested on an ETL platform, namely
9We decided not to do any optimization on the nation table since it only contained 25 rows of data.
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6.3 Limitations in Methodology

Databricks, and has easy integration with ETL platforms using Spark as it only requires
access to the Spark event logs.

6.3 Limitations in Methodology

The solution proposed in this thesis extracts insightful information from Spark event logs
to determine important columns for partitioning and Z-ordering on tables. Still, it has
its limitations. When parsing a Spark physical plan, we needed to bind columns used in
operations such as ’Filter’ to their corresponding table. The solution was to use the ’scan
parquet’ part of the physical plan. The ’scan parquet’ operation represents Spark’s plan
of how to read from parquet files and contains table names and corresponding internal
Spark ids for columns. Using Spark’s internal ids enabled us to create a dictionary, which
could later be used to bind columns to their respective tables. Although this worked for
connecting columns to tables, it limited our solution only to work on tables stored in
parquet format.
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Chapter 7

Future Work

In this chapter, we present future work that can be used to build upon and expand on our
findings.

7.1 Enhanced Parsing of the Physical Plan

Presented in the implementation section and seen in code snippet 4.11, expanding the
parsing of Spark’s physical plans is quite feasible. Adding new regex settings can improve
the current solution and make it compatible with tables stored in file formats other than
the parquet format. Additionally one could parse information on what columns are used
to join tables and develop a method able to utilize this information.

7.2 Method with Multiple Weights

The current recommendation methods use count, time, and run time as metrics, but sep-
arately. A new approach could combine these metrics into a new method to improve the
accuracy of finding the best recommendations. It could also use new features extracted
from the physical plan, such as information about joins, mentioned in the previous section.
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7.3 Automation

7.3 Automation

The current implementation presents the user with a recommended column from each of
the four methods. Should the methods not be unanimous, the user would have to make an
educated guess on which column is the preferred choice. Implementing a process to make
a final decision based on the output from the four methods will eliminate the need for an
educated guess. This process can be implemented into a notebook with some additional
benefits.

To decide if partitioning or Z-ordering of a column should occur, we would calculate a
fraction for the number of distinct values in the column and decide on Z-ordering or
partitioning based on this value. Another improvement could be to check the size of the
tables to see if it is necessary to have partitioning or Z-ordering at all.

Further, it is possible to have partitioning and Z-ordering on a single table or have parti-
tions on multiple columns simultaneously. Instead of recommending only one column, our
solution could be changed to recommend multiple columns and automatically partition or
Z-order these columns depending on the criterion discussed in the previous paragraph.

7.4 Multiple Platforms

As mentioned in the Challenges section (1.5), the plan was to extend our practical work
of log analyzing and our parsing solution into Azure Synapse Analytics, but we ran out of
time. Instead, we propose the extension into Azure Synapse Analytics as future work to
be explored.

7.5 Dashboard

As mentioned in the challenges section; our initial plan was to build a dashboard giving an
overview of column recommendations for each table, as well as the run time statistics cal-
culated. This could be made to give a better overview of which columns are recommended
and see if one is able to pick up any trends in run time.
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Chapter 8

Conclusion

In this thesis, we proposed a column recommendation system based on Spark SQL which
highlights important columns to use for partitioning and Z-ordering. Our system employs
four methods to recommend columns to use for optimizing data retrieval in Spark. Having
Spark event logs as the only data input makes our recommendation system easy to integrate
and a viable option for multiple ETL platforms. The results from the experiments show
that using the system’s output will optimize queries run on the platform. We will end by
taking a look at the research questions introduced at the beginning of the thesis.

1. Can Spark’s physical plans be used to optimize partitioning and Z-ordering
on tables?
Yes, the physical plans are Spark’s way of describing how queries are executed on
a low level in detail. The information in the physical plan gives a deeper look into
what type of operations Spark uses, which results in an advantage in the optimization
process.

2. Can rule-based column recommendation methods be used to improve the
partitioning and Z-ordering of tables?
Yes, from the results of the first experiment, we can see that the methods are able to
detect the query patterns and query characteristics presented. In the first experiment,
we see that the usage of partitioning and Z-ordering gives a significant reduction in
run times.

3. Can the use of continuous updates of partitioning and Z-order be used to
optimize queries in an ETL platform?
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Conclusion

Yes, in our last experiment, using the column recommendation system provided a 17%
optimization in run time compared to the simulation without Z-order or partitions.
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Appendix A

Supplementary Information

A.1 Github repository and Dataset

Our code is available at our GitHub repository:
https://github.com/Olaaflo/SparkOptimization

A.2 Code

Listing A.1: Schema used to read the raw event logs. Types are imported from pyspark.sql.types.
Code from rawDataToOrginaized.ipynb.

schema = ArrayType(
StructType(

[
StructField("Event", StringType(), True),
StructField("SparkContext Id", StringType(), True),
StructField("Stage Info", StringType(), True),
StructField("Task Info", StringType(), True),
StructField("Stage ID", StringType(), True),
StructField("Task End Reason", StringType(), True),
StructField("Stage IDs", StringType(), True),
StructField("Stage Attempt ID", StringType(), True),
StructField("Completion Time", StringType(), True),
StructField("time", StringType(), True),

https://github.com/Olaaflo/SparkOptimization
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StructField("errorMessage", StringType(), True),
StructField("Task Executor Metrics", StringType(), True),
StructField("Timestamp", StringType(), True),
StructField("executionId", StringType(), True),
StructField("Job Result", StringType(), True),
StructField("Stage Infos", StringType(), True),
StructField("details", StringType(), True),
StructField("Task Metrics", StringType(), True),
StructField("physicalPlanDescription", StringType(), True),
StructField("modifiedConfigs", StringType(), True),
StructField("Submission Time", StringType(), True),
StructField("rootExecutionId", StringType(), True),
StructField("Spark Version", StringType(), True),
StructField("Rollover Number", StringType(), True),
StructField("sparkPlanInfo", StringType(), True),
StructField("Job ID", StringType(), True),
StructField("Task Type", StringType(), True),
StructField("description", StringType(), True),
StructField("Properties", StringType(), True),
StructField("accumUpdates", StringType(), True),

]
)

)

A.3 Figures and Illustrations

Figure A.3.1 illustrates an entity relationship diagram for the tables used in this thesis.



A.3 Figures and Illustrations

Figure A.3.1: Entity relationship model of tables.
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Figure A.3.2: Preview of the operations table.

Figure A.3.3 is a preview of the method_results table, in this case, generated from the
Simple Count method.
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Figure A.3.3: Preview of the method_results table built from the Simple Count method.

Figure A.3.4: Preview of the method_recommendations table created from the method_results
table (figure A.3.3).
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A.4 Tables

Avg Run Time (s) Group ID Lineitem Table Info Orders Table Info

13.712 1 Partitions: null, Partitions: null,
Z-Order: null Z-Order: null

13.137 3 Partitions: null, Partitions: null,
Z-Order: null Z-Order: null

12.541 2 Partitions: null, Partitions: null,
Z-Order: null Z-Order: null

10.766 3 Partitions: null, Partitions: null,
Z-Order: l_orderkey Z-Order: o_orderkey

9.605 3 Partitions: l_shipmode, Partitions: null,
Z-Order: null Z-Order: o_orderkey

9.200 2 Partitions: null, Partitions: null,
Z-Order: l_orderkey Z-Order: o_orderkey

8.650 1 Partitions: null, Partitions: null,
Z-Order: l_orderkey Z-Order: o_orderkey

6.646 2 Partitions: l_shipmode, Partitions: null,
Z-Order: null Z-Order: o_orderkey

6.287 1 Partitions: l_shipmode, Partitions: null,
Z-Order: null Z-Order: o_orderkey

Table A.1: Run times to complete the queries for each group after having performed optimizations
on the lineitem and orders tables.
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ID Name Table Col Rec Internal Method Val Group ID
3 Discrete Timestamp Weights lineitem l_shipmode 9.5 1
4 Run Time Weights lineitem l_shipmode 3.3375 1
2 Timestamp Weights lineitem l_shipmode 16.179607 1
1 Simple Count lineitem l_shipmode 11 1
7 Discrete Timestamp Weights lineitem l_orderkey 8 2
8 Run Time Weights lineitem l_shipmode 3.3975 2
6 Timestamp Weights lineitem l_orderkey 13.733679 2
5 Simple Count lineitem l_shipmode 12 2
11 Discrete Timestamp Weights orders o_orderkey 2.25 3
11 Discrete Timestamp Weights lineitem l_shipmode 3.5 3
12 Run Time Weights orders o_orderkey 4.1675 3
12 Run Time Weights lineitem l_orderkey 4.1675 3
10 Timestamp Weights orders o_orderkey 3.7059548 3
10 Timestamp Weights lineitem l_shipmode 4.468995 3
9 Simple Count orders o_orderkey 3 3
9 Simple Count lineitem l_shipmode 10 3

Table A.2: This table shows the recommended columns given from each of the methods for each
of the query groups.
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Group ID Query ID Query Text

1 1 SELECT * FROM lineitem
WHERE l_orderkey = 1000;

1 2 SELECT * FROM lineitem
WHERE l_orderkey > 5000;

1 3 SELECT * FROM lineitem
WHERE l_orderkey BETWEEN 200 AND 400;

1 4 SELECT * FROM lineitem
WHERE l_orderkey <> 50;

1 5 SELECT * FROM lineitem
WHERE l_orderkey IN (10, 20, 30);

1 6 SELECT * FROM lineitem
WHERE RIGHT(l_orderkey, 1) = ’5’;

1 7 SELECT * FROM lineitem
WHERE l_orderkey LIKE ’%3%’;

1 8 SELECT * FROM lineitem
WHERE l_orderkey > 10000 AND l_orderkey < 2000;

1 9 SELECT * FROM lineitem
WHERE l_orderkey LIKE ’1%’;

1 10 SELECT * FROM lineitem
WHERE l_orderkey IS NULL;

1 11 SELECT * FROM lineitem
WHERE l_shipmode = ’AIR’;

1 12 SELECT * FROM lineitem
WHERE l_shipmode = ’FOB’;

1 13 SELECT * FROM lineitem
WHERE l_shipmode = ’MAIL’;

1 14 SELECT * FROM lineitem
WHERE l_shipmode = ’RAIL’;

1 15 SELECT * FROM lineitem
WHERE l_shipmode = ’SHIP’;

1 16 SELECT * FROM lineitem
WHERE l_shipmode = ’TRUCK’;

1 17 SELECT * FROM lineitem
WHERE l_shipmode = ’AIR’ OR l_shipmode = ’FOB’;

1 18 SELECT * FROM lineitem
WHERE l_shipmode = ’FOB’ OR l_shipmode = ’MAIL’;

1 19 SELECT * FROM lineitem
WHERE l_shipmode = ’MAIL’ OR l_shipmode = ’RAIL’;

1 20 SELECT * FROM lineitem
WHERE l_shipmode = ’RAIL’ OR l_shipmode = ’SHIP’;

1 21 SELECT * FROM lineitem
WHERE l_shipmode = ’SHIP’ OR l_shipmode = ’TRUCK’;

1 22 SELECT * FROM lineitem
WHERE l_shipmode = ’TRUCK’ OR l_shipmode = ’AIR’;

Table A.3: Queries in group 1.
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Group ID Query ID Query Text

2 1 SELECT * FROM lineitem
WHERE l_shipmode = ’AIR’;

2 2 SELECT * FROM lineitem
WHERE l_shipmode = ’FOB’;

2 3 SELECT * FROM lineitem
WHERE l_shipmode = ’MAIL’;

2 4 SELECT * FROM lineitem
WHERE l_shipmode = ’RAIL’;

2 5 SELECT * FROM lineitem
WHERE l_shipmode = ’SHIP’;

2 6 SELECT * FROM lineitem
WHERE l_shipmode = ’TRUCK’;

2 7 SELECT * FROM lineitem
WHERE l_shipmode = ’AIR’ OR l_shipmode = ’FOB’;

2 8 SELECT * FROM lineitem
WHERE l_shipmode = ’FOB’ OR l_shipmode = ’MAIL’;

2 9 SELECT * FROM lineitem
WHERE l_shipmode = ’MAIL’ OR l_shipmode = ’RAIL’;

2 10 SELECT * FROM lineitem
WHERE l_shipmode = ’RAIL’ OR l_shipmode = ’SHIP’;

2 11 SELECT * FROM lineitem
WHERE l_shipmode = ’SHIP’ OR l_shipmode = ’TRUCK’;

2 12 SELECT * FROM lineitem
WHERE l_shipmode = ’TRUCK’ OR l_shipmode = ’AIR’;

2 13 SELECT * FROM lineitem
WHERE l_orderkey = 1000;

2 14 SELECT * FROM lineitem
WHERE l_orderkey > 5000;

2 15 SELECT * FROM lineitem
WHERE l_orderkey BETWEEN 200 AND 400;

2 16 SELECT * FROM lineitem
WHERE l_orderkey <> 50;

2 17 SELECT * FROM lineitem
WHERE l_orderkey IN (10, 20, 30);

2 18 SELECT * FROM lineitem
WHERE RIGHT(l_orderkey, 1) = ’5’;

2 19 SELECT * FROM lineitem
WHERE l_orderkey LIKE ’%3%’;

2 20 SELECT * FROM lineitem
WHERE l_orderkey > 10000 AND l_orderkey < 20000;

2 21 SELECT * FROM lineitem
WHERE l_orderkey LIKE ’1%’;

2 22 SELECT * FROM lineitem
WHERE l_orderkey IS NULL;

Table A.4: Queries in group 2.
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Group ID Query ID Query Text

3 1 SELECT * FROM lineitem
WHERE l_shipmode = ’AIR’;

3 2 SELECT * FROM lineitem
WHERE l_shipmode = ’FOB’;

3 3 SELECT * FROM lineitem
WHERE l_shipmode = ’MAIL’;

3 4 SELECT * FROM lineitem
WHERE l_shipmode = ’RAIL’;

3 5 SELECT * FROM lineitem
WHERE l_shipmode = ’SHIP’;

3 6 SELECT * FROM lineitem
WHERE l_shipmode = ’TRUCK’;

3 7 SELECT * FROM lineitem
WHERE l_shipmode = ’AIR’ OR l_shipmode = ’FOB’;

3 8 SELECT * FROM lineitem
WHERE l_shipmode = ’FOB’ OR l_shipmode = ’MAIL’;

3 9 SELECT * FROM lineitem
WHERE l_shipmode = ’MAIL’ OR l_shipmode = ’RAIL’;

3 10 SELECT * FROM lineitem
WHERE l_shipmode = ’RAIL’ OR l_shipmode = ’SHIP’;

3 11

SELECT o_orderkey, SUM(l_quantity * l_extendedprice) AS revenue
FROM orders o
JOIN lineitem l ON o.o_orderkey = l.l_orderkey
WHERE l_shipdate BETWEEN ’1994-01-01’ AND ’1994-03-31’
GROUP BY o_orderkey
ORDER BY revenue DESC;

3 12

SELECT o_orderkey, COUNT(o_orderkey) AS order_count
FROM orders o
JOIN lineitem l ON o.o_orderkey = l.l_orderkey
GROUP BY o_orderkey;

3 13 SELECT * FROM orders o
JOIN lineitem l ON o.o_orderkey = l.l_orderkey;

Table A.5: Queries in group 3.
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