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Abstract

In electrostatic painting, a high voltage is applied to the paint, attracting the paint par-
ticles toward a grounded work object, drastically increasing the efficiency of the painting
process. However, combining high voltage and highly flammable paint is a potential haz-
ard that is reduced by an automatic fire extinguishing system and strict controller limits
defined by safety standards. The thesis investigates alternative controller strategies at-
tempting to improve the performance of ABB’s high-voltage control system.

The dynamics of electrostatic gas discharge, or corona discharge, is studied to estimate
the relation between the applied voltage and the corona current passing through the elec-
trostatic field. However, given the data available for the real-time system, the estimation
problem is concluded to be structurally unidentifiable, resulting in the estimators not con-
verging to the actual state of the system. Despite that, a simple estimator is utilized in a
current limiting controller. This controller is activated when the system leaves its normal
working area. Simulation results indicate that this controller can decrease the amount
of unnecessary safety-related stops and reduce the reaction time for actual safety-hazard
incidents.

Furthermore, a data-driven approach is selected to model and create a controller for the
system generating the high-voltage output. The model of the dynamics of the high-voltage
system is created using neural networks and open-loop high-resolution data collected with
a self-developed data acquisition program. Then, the estimated model is used in a rein-
forcement learning environment to create a theoretically optimal controller valid for the
entire nonlinear workspace. Due to limited computational resources, and errors in the
data, the thesis presents a lower-resolution proof of concept for both the neural network
model and controller.

Additionally, the thesis presents a basis of knowledge on ABB’s electrostatic painting
system, featuring recommendations and suggestions for future work.
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Chapter 1

Introduction

In automotive painting applications, the paint is typically charged with 50-90 kV relative
to the object to be painted. Charging the paint increases the paint’s transfer efficiency
and reduces the emission from the painting process. An increase in the transfer efficiency,
i.e., a reduction in the paint used, impacts both the environment and the economy.

Using a high-voltage application in the potentially explosive atmosphere of a paint booth
is a safety hazard. In order to reduce the risk of a spark and corresponding hazard, a
controller closely supervises the system, shutting it down if needed.

The performance of ABB’s high-voltage controller has not been sufficient for all applica-
tions. Thus, this thesis investigates the problem, proposing new solutions and strategies
for improving the controller’s performance.

The main part of the thesis is split into the following chapters:

• Chapter 2 - Background:

– Analysis of the electrostatic painting process, ABB’s hardware and controller,
and a description of the new control structure.

• Chapter 3 - Current controller:

– Development and analysis of a current limiting controller.

• Chapter 4 - Voltage controller:

– Development and analysis of a voltage controller using a data-driven approach.

• Chapter 5 - Reflections and experiences:

– Collection of reflections, alternative solutions, and suggestions for further work.

• Chapter 6 - Summary:

– Summary of the central results presented in the thesis.
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Chapter 2

Background

This chapter provides some background information and analysis of the following topics
fundamental to this thesis:

• Electrostatic painting

• ABB’s hardware for electrostatic painting

• ABB’s controller solution

• The new control structure

2



2.1 Electrostatic painting

2.1 Electrostatic painting

In traditional spray painting, most paint does not reach its target but is lost to the
surrounding environment. Thus electrostatic painting has been developed to increase the
amount of paint transferred to the target. The motivation for this is partly economic to
save paint, but as the industry is subject to strict environmental regulations, electrostatic
paint contributes to satisfying those. Moreover, electrostatic painting is used to improve
the paint finish. [3][16]

Figure 2.1 illustrate how negatively charged paint particles are attracted to a workpiece
that is grounded.

Figure 2.1: This figure displays a sketch demonstrating how paint particles are charged with
high voltage so that they are attracted to the target/workpiece. The sketch is sourced from ABB’s
documentation[3].

High voltage fields, in combination with highly flammable paint, are a potential fire starter.
Thus it is essential to reduce the risk of sparks caused by the electrostatic painting equip-
ment. However, due to the characteristics of the high voltage field and painting environ-
ment, as of today, it is unfeasible to guarantee that no sparks may appear. The safety
norms address this by setting strict requirements for how the electrostatic painting equip-
ment should perform and additional requirements for how a fire extinguishing system
handles a potential fire. [6] [7]

3



2.1 Electrostatic painting

2.1.1 Applicators

In ABB’s inventory, there are several different paint applicators. They are all based on
two fundamental approaches for charging the paint; direct and indirect. For the direct
method illustrated in Figure 2.2, the high voltage is applied directly to the bell cup.

Figure 2.2: This figure displays a sketch of ABB’s electrostatic paint system using the direct
charge method. The sketch is sourced from ABB’s documentation[3].

The bell cup rotates very fast and atomizes the paint into small particles. As the high
voltage is applied to the bell cup, the paint is charged before leaving the applicator. This
method is suitable when the paint has sufficiently high resistance as a fluid. If the paint
is conductive, everything in connection with the paint will be charged to a high voltage.
In that case, the paint supply system is isolated from the ground potential. If this is an
unpractical solution, the paint is charged using another approach.

For the indirect method, the paint is charged after it is atomized. This is typically done
using a ring of electrodes that charge the passing paint particles. This method is generally
used when the paint is conductive. Figure 2.3 illustrate an indirect charge setup.

Figure 2.3: This figure displays a sketch of ABB’s electrostatic paint system using an indirect
charge electrode. The sketch is sourced from ABB’s documentation[3].
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2.1 Electrostatic painting

2.1.2 Paint program

This section introduces some steps and parameters for setting up a paint program. Firstly,
plan a robot path. Then define what ”paint brushes” to use for the robot path by setting
parameters defining the configurable forces influencing the paint as it leaves the applicator.
Those parameters describe the;

• Amount of fluid/paint.

• Bell atomizer rotating speed.

• Shaping air.

• High voltage setpoint, i.e., attraction force on the paint from the applicator to the
work object.

In his master’s thesis[16], Morten Mossige gives a more in-depth introduction to the men-
tioned parameters for the ”paint brushes”.

Finally, perform simulation, optimization, testing, and adjustment of safety parameters.

For details on how to set up a painting program, see ABB’s documentation[1][3].

2.1.3 Safety

Safety considerations for electrostatic painting are critical due to the potential hazards.
EN 50176 [7] outlines the safety requirements for automatic electrostatic application sys-
tems for ignitable liquid coating materials. However, ensuring a guaranteed safe state is
accomplished through compliance with EN 16985 [6], which specifies the safety require-
ments for spray booths used with organic coating materials. In short, the measures for
preventing hazardous discharges are insufficient to guarantee no such event. Consequently,
a safe state is maintained by an automatic fire extinguishing system.

ABB has integrated several safety functions to prevent hazardous discharges, including
"over current detection" and "current slope detection" [3]. In essence, limits are estab-
lished for the maximum value and slope of the field current (section 2.1.4). These limits are
fitted to each application according to ABB’s instructions. Typical values are permitted,
and any deviation triggers a shift to a safe state.

EN 50176 [7] define experiments and requirements for the safety performance of the high
voltage control system. The results from these experiments contribute to defining the
global maximum limits. Then per [7], local limits are implemented closer to the expected
reference values of each application.
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2.1 Electrostatic painting

2.1.4 Field current

The ”field current” is defined as the current of electrons that leave the paint applicator,
as illustrated in Figure 2.4. This current is indirectly measured with ABB’s hardware as
described in section 2.2.2. The field current is a product of several factors, most of which
are covered in this section.

Applicator
Ifield

Ufield

WorkpieceElectric field

Disturbances

Figure 2.4: Simple illustration of the current that flows through the applicator to the grounded
workpiece.

Without digging deeply into the physics of electrostatic gas discharge and corona discharge,
a quick overview of the factors influencing the field current is now given.

The field current varies with the following cases and parameters:

• Direct/indirect charging method

– For the indirect charging method, the paint is charged solely by corona dis-
charge, Whereas for the direct charging method, the paint is directly charged.
Thus, the corona discharge current does not encompass the entire measured
”field current” when using the direct charging method.

Ifield

Igas discharge

Idirect charge
Ifield

Igas discharge

Direct charging Indirect charging

Figure 2.5: Current flow for the charging methods.

• Applicator type

• Contamination on the applicator (This is typically connected to residual paint on
the applicator device.)

• Unipolar corona space charge flow[18][16].

– Geometry of workpiece and applicator influencing the magnetic field lines

6



2.1 Electrostatic painting

– The distance between the workpiece and the applicator
– Applied field voltage, Ufield

– Air and paint composition influencing the ion mobility of the gas

∗ Paint type
∗ Paint color
∗ Amount of paint

∗ Temperature
∗ Humidity
∗ Air pressure and composition

– Shaping air and draft/airflow in the paint booth

Given real-time knowledge of the variables above, a model could be used to estimate the
resulting field current. However, as of today, most of these values are unavailable for ABB’s
real-time system. Moreover, creating a model based on all these variables is an extensive
task. Furthermore, calculating the magnetic field lines, given the varying geometry of the
workpiece, is a task that would require a lot of new sensors, computational hardware, and
research.

In Morten Mossige’s master’s thesis[16], some experiments documenting the impact of a
few variables influencing the field current were performed. This, however, was done for
particular setups not valid for most applications and not replicable due to not documenting
the status of all significant variables.

The only related data available in ABB’s real-time system are the measured field current
and voltage. Deutsch deduced a method for estimating the corona current described by
Sigmond [18]. Equation 2.1 shows a simplified version of Deutsch’s formula where U(t)

is the field voltage, and U0(t) is the voltage at which a current starts to flow, i.e., the
gas/paint is charged. And K(t) is a scaling factor. U0(t) and K(t) encompass, i.e., depend
on all the previously mentioned variables.

IDch(t) = K(t) · U(t)(U(t) − U0(t)) (2.1)

Additionally, Sigmond derived the maximum corona current here simplified into equation
2.2.

ISig(t) = K(t) · U2
(t) (2.2)

Equation 2.3 illustrates how the Simonds maximum corona current equals Deutsch’s
corona current when U0(t) = 0.

limU0(t) → 0 ⇒ ISig(t) = IDch(t) (2.3)

To summarize, ISig(t) is only accurate for larger currents where U0(t) << U(t), whereas
IDch(t) is accurate for all cases[18]. Moreover, an increasing current is likely connected to
an increasing value for K(t) and decreasing value for U0(t). Furthermore, K(t) and U0(t)

are likely connected by being dependent on the same underlying variables.
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2.2 ABB’s hardware for electrostatic painting

2.2 ABB’s hardware for electrostatic painting

This section is divided into the following subsections:

• System overview

• HVC1

• Cascade

• Analytical models

In short, the primary functionality and components of ABB’s HVC and Cascade are
described. These two devices are the main components of ABB’s electrostatic painting
equipment. If details are provided, the specific versions described are the HVC-02 rev.5 and
the CU930B cascade. When detailed values are provided, they are broad approximations
and simplifications, as detailed hardware documentation is confidential ABB property.

2.2.1 System overview

The primary function of the HVC is to deliver a controlled low voltage AC2 to the Cascade.
The cascade then converts the low-voltage AC to a high-voltage DC3, using a transformer
and a Cockcroft-Walton voltage multiplier. A sketch of this relation, showing the most
important parts of ABB’s electrostatic paint system, is displayed in Figure 2.6.

CascadeHVC

Applicator

Square wave  

-24 -> 24V

Step down converter 0 -> 24V24V Square wave generator

Frequency [kHz] Duty-cycle [%] Frequency [kHz]

Negativ voltage 

-120 -> 0 kV

ADC FilterFilter
Internal measurements

Trafo CW

Measurement circuit
output voltage and

current

CPU - FPGA - DSP

Duty-cycle [%]

Eth

Figure 2.6: The figure display a simplified schematic describing the main parts of ABB’s elec-
trostatic painting equipment.

The output voltage and current from the cascade are measured and the analog signal is
routed back to the HVC. The controller is typically implemented on the DSP4. All signals
are routed via the FPGA5 and are shared with the DSP and CPU6. The CPU typically
handles communication with the larger system.

1High voltage controller
2Alternating current
3Direct current
4Digital signal processor
5Field-programmable gate array
6Central processing unit
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2.2 ABB’s hardware for electrostatic painting

2.2.2 Cascade

ABB’s inventory consists of a series of cascades that are based on the same structure. As
an input, it receives a square wave AC. The voltage is then increased using a transformer.
As a final step, the AC is applied to a Cockcroft-Walton voltage multiplier, drastically
increasing the output voltage and making it a DC. Additionally, there is a circuit for
measuring the output current and voltage. An illustration of this structure is displayed in
Figure 2.7.

AR

IfieldIfield UfieldIfield

Figure 2.7: The figure display a simplified schematic describing the components of the cascade.
The sketch is based on ABB’s documentation[3]

BR − Bleeder resistor CT − Center tap transformer

DA − HV C output 0− 24V DB − HV C output0− 24V

IMR − Measurement resistor VMR − Measurement resistor

SR − Current limiting resistor AR − Internal resistance applicator

UD − V oltage drop SR and AR U0 − Cascade voltage

I0 − Total current/Cascade current UIM − V oltage measured over IMR

Ifield − Current through applicator Ufield − V oltage at applicator end

IM − Measurement circuit current UVM − V oltage measured over VMR

9



2.2 ABB’s hardware for electrostatic painting

Measurements

The values of interest, which are Ifield and Ufield are not measured directly but can be
derived using Equation 2.4a and 2.4b.

Field current: Ifield = I0 − IM

⇓
Ifield = UIM/IMR− UVM/VMR (2.4a)

Field voltage: Ufield = UVM + UBR − UD

⇓
Ufield = UVM +BR · IM − (SR+AR) · Ifield (2.4b)

Filtering

The measured signals, UIM UVM , are routed to the HVC, filtered, and then read by
an ADC. The ADC sample frequency is in the range 50-200kHz. The original real-time
controller in the DSP (section 2.2.3) samples the signals at 10 kHz before applying a
discrete low pass filter with a cut-off frequency of approximately 750Hz. The analog filter
consists of higher-order-active filters and simpler 1. order low-pass filters. The resulting
cut-off frequency for the analog filters is approximately 1500Hz UIM , and 750Hz for UVM .

Comment on accuracy

The components in the measurement circuit, the analog filters, and the ADC introduce
considerable measurement errors. That is both a static and time-varying error. Specifi-
cally, the high voltage BR resistor with an ±5 % initial variation introduces a considerable
error to the measurements. Calibrating the giga-ohm-sized BR resistor requires specialized
instruments that measure giga-ohm values. ABB does currently not employ any online
or offline calibration or estimation algorithms. Introducing a calibration routine would
increase the similarity and comparability between the different instances.

10



2.2 ABB’s hardware for electrostatic painting

2.2.3 HVC

This section describes the HVC in more detail. Figure 2.8 points out the covered areas.
The DSP, CCPU, and HVC are important components for software implementation, while
the AC generation circuit describes some analog hardware in greater detail. Figure 2.9
display an HVC-02 unit.

HVC

Eth
CCPU/FCPU

AC generationDSP AC out

Meas. inn

Figure 2.8: Sketch describing parts of HVC-02
that are introduced.

Figure 2.9: Image of HVC-02 sourced from
ABB’s documentation[3]

AC generation

Figure 2.10 depicts a simplified circuit version generating the AC output. Further, in
Figure 2.11, the different stages of the AC generation are illustrated. The red numbering
points out the connection between the different stages in the figures.

Current meas. Step Down

TR3

L3

Current meas. DC

TR2
Current meas. DB

CT

DB
L2

TR1
Current meas. DA L1

DA

gate_DA

gate_DB

gate_Step Down
DC voltage

24V

D1 C3

C2

C1
4

1

32

Figure 2.10: Simplified schematic describing some of the internal measured values and the
generation of the AC output in the HVC.
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2.2 ABB’s hardware for electrostatic painting

Volt

Time
0

24

Volt

0

24

12

12

Time

-12

12

0

24V input

Smoothed  voltageSquare-wave output

Ttot

Duty Cycle = Ton/Ttot  [%] 
Frequency = 1/Ttot      [Hz]

Ton

Volt

0

24

12

Step down pulse

Time

Time

Volt

Ttot

Ton

Duty Cycle = Ton/Ttot  [%] 
Frequency = 1/Ttot      [Hz]

3

1 2

4

Figure 2.11: Step-by-step sketch of the generation of the HVC’s AC output

The three transistors, TR1-3, described in Figure 2.10, generate the HVC’s AC output.
TR3 is the controlled component in a step-down converter. By adjusting the duty cycle
on TR3, the 24V DC input is modified to a DC voltage in the range of 0-24V DC. The
frequency of the step-down converter is not adjusted as it matches capacitive and inductive,
stationary components. Further on, TR1 and TR2 generate the output AC. The frequency
and duty cycle of the output AC is controllable values. However, for the original controller
(section 2.3), the duty cycle of TR3 is the only controlled value. For the rest of this thesis,
the duty cycles of TR3 and TR1/TR2 will be referred to as duty cycle DC and duty cycle
AC.

DSP

The DSP is a simple processor ABB uses on
the HVC for the real-time controller. How-
ever, it is beginning to age and lacks conve-
nient features like a floating point processor
[10], increasing the effort of implementing
new features.

Figure 2.12: Illustrative photo of Texas In-
struments TMS32028512-Q1[10]
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2.2 ABB’s hardware for electrostatic painting

CCPU

The CCPU is a single-board computer designed explicitly after ABB’s requirements. It is
a versatile board used on several ABB paint devices.

In addition to memory, a network switch,
and several other components, it incorpo-
rates an Intel/Altera EP2C5F256 FPGA
and a Motorola MPC5200 processor. These
components were new about two decades
ago. The CCPU operation system is a spe-
cialized version of Linux. The HVC board
utilizes a CCPU board for higher-level tasks,
such as handling interaction with the more
extensive ABB system.

Figure 2.13: Image of a CCPU board.

FCPU

ABB is developing a new board, the FCPU, to replace the older CCPU. This board
integrates a Xilinx Zynq™ Ultrascale+™ SoC7[29]. That is one chip combining CPU and
FPGA. The new FCPU board signals a step up in capabilities and possibilities for the
programs implemented in ABB’s paint application. The FCPU development is in an early
prototype stage and ready for experimental testing with the HVC in May 2023.

Figure 2.14: Illustrative block diagram de-
scribing an Zynq™ UltraScale+™ MPSoC8[29]

Figure 2.15: Image of the prototype FCPU
board.

IPS
IPS9, or Integrated Processing System, is the program running the paint application part
on ABB’s paint robots. IPS typically runs on all FCPU and CCPU boards used in the
robot controller system. A detailed description is available in ABB’s documentation[2].

7System on chip
9Integrated processing system
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2.2 ABB’s hardware for electrostatic painting

2.2.4 Analytical models

This subsection presents:

• Simplified cascade and output model

• Buck converter model

• Higher fidelity models

Simplified cascade and output model

This section presents a simplified model of the system described in section 2.2.1. The
model illustrates key dynamics and properties of the system.

In his master’s thesis[16], Morten Mossige separately estimated the dynamics of the charge
and discharge of the cascade to 1. order models. However, the relationship between charge
and discharge was not inspected.

Figure 2.16 present the circuit diagram for a heavily simplified cascade and output model.

Figure 2.16: Circuit diagram for the simplified cascade and output model.

Vout - Cascade output voltage
Rload - Measurement circuit, field, applicator, and cable resistance.
Csystem - Capacitance of cascade, applicator, and cables.
Rloss - Resistance representing the internal loss and dynamics of the cascade
Vin - Transformed, rectified, and multiplied lossless voltage, i.e., ideal cascade output voltage.

Equation 2.5 presents the relations of the circuit in Figure 2.16 according to Kirchhoff’s
current and voltage laws.
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2.2 ABB’s hardware for electrostatic painting

KCL: Iin = Iload + IC , KVL: Vloss = Vin − Vout (2.5)

Furthermore, Equation 2.6 expands the current relations in the circuit.

IC = Csystem · dVout

dt
, Iload =

Vout

Rload
, Iin =

Vloss

Rloss
(2.6)

Equation 2.7 inserts the relations from Equation 2.6 into the KCL equation.

Vloss

Rloss
=

Vout

Rload
+ Csystem · dVout

dt
(2.7)

Equation 2.8 rearranges Equation 2.7 with respect to
dVout

dt
.

dVout

dt
=

Vloss

RlossCsystem
− Vout

RloadCsystem
(2.8)

Further, in Equation 2.9 the KVL relation from Equation 2.5 is inserted for Vloss.

dVout

dt
=

Vin − Vout

RlossCsystem
− Vout

RloadCsystem
(2.9)

Equation 2.10 takes the Laplace transform of Equation 2.9, assuming all R and C values
are constants.

s · Vout(s) =
Vin(s)

RlossCsystem
− Vout(s)

RlossCsystem
− Vout(s)

RloadCsystem
(2.10)

Equation 2.11 rearrange Equation 2.10 with respect to
Vout(s)

Vin(s)
.

H(s) =
Vout(s)

Vin(s)
=

Rload
Rloss+Rload

RlossRloadCsystem

Rloss+Rload
· s+ 1

=
K

τs+ 1
(2.11)

Where the system’s time-constant τ and gain k are given in Equation 2.12.

τ =
RlossRloadCsystem

Rloss +Rload
, K =

Rload

Rloss +Rload
(2.12)

The relations in Equation 2.12 indicate what impact changing the Csystem and Rload values
have for the dynamics of the system.
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2.2 ABB’s hardware for electrostatic painting

Higher fidelity models

[15] [14] describes a higher fidelity model of the Cocroft-Walton voltage multiplier. Fur-
thermore, an extensive tutorial and review of modeling and controlling buck converters
are given by [12].
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2.3 ABB’s controller solution

2.3 ABB’s controller solution

The ABB controller setup has been thoroughly described in ABB’s official documentation
[3]. Thus, a more high-level overview is presented here.

As shown in Figure 2.17, the controller comprises two PI10-controllers that manipulate
a shared input signal. These controllers regulate the duty cycle DC of the step-down
converter in the HVC, as described in section 2.2.3.

PI
Disturbances

Plant

PI

+

Safety logic:
 Shutdown and 
 controller transition

+

+

Measurement
circuit

Figure 2.17: Sketch illustrating ABB’s present controller. Signals marked with 1 are connected
to the voltage. Signals marked with 2 are connected to the current. m indicates a measured value,
u the input, e the reference deviation, and y the plant output.

Furthermore, a customized logic block is implemented to weigh and combine the controller
outputs into a unified signal. The voltage controller typically dominates, but the current
controller gradually takes over when the measured current surpasses a predetermined
limit. Additionally, this logic block manages an enable/disable signal to the HVC, which
immediately shuts down the system if the current or its derivative surpasses the established
safety threshold.

2.3.1 Improvement potential

• The controller parameters are static, optimizing the controller’s performance for
certain workspaces only. Thus the stability and performance of the controller are
reduced when the controlled system change from the optimized area.

• The framework for switching between the controllers is not optimized for all systems,
resulting in undesirable behavior like oscillation between the controllers.

• The current controller has a slow/weak activation phase reducing its ability to com-
pensate for fast disturbances in the field current. Which might lead to unnecessary

10Proportional integral
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2.4 The new control structure

safety shutdowns by triggering global maximum values for the current.

• The measurements used by the controller are uncalibrated values with static error
in the size of a minimum of ±5%.

• The manipulated variable, the duty cycle DC allegedly has a low resolution. The
controller has been observed oscillating between neighboring values of the discrete
output, indicating a low resolution but also a poorly optimized controller.

These statements are based on a qualitative controller analysis and input from ABB
employees familiar with the controller application. These assumptions are the basic mo-
tivation for the work presented in this thesis.

2.4 The new control structure

The controller challenge is split into two main tasks based on the observations from section
2.3.

• A new voltage controller.

• A new current controller strategy focused on reducing any unnecessary triggering of
the safety limits.

Figure 2.18 present the new control structure where the current controller is in series with
the voltage controller. The main goal is to increase the high-voltage controller’s robustness
and performance.

Voltage
controller

Disturbances

Plant

Safety logic:
 Shutdown and 
 controller transition

Measurement
circuit

Current
controller

Figure 2.18: The controller challenge with the current and voltage controller in series. m
indicates a measured value, 1 a value connected to the voltage, u the input, ref the reference, and
y the plant output values.
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Chapter 3

Current control

This chapter explores the relationship between the field voltage and field current (section
2.1.4), trying to utilize information about the system to create a controller for limiting
the disturbance on the field current.

The chapter is split into two main sections:

• Parameter estimation

• Current limiting controller

19



3.1 Parameter estimation

3.1 Parameter estimation

This section analyzes the relationship between the field current and voltage. Furthermore,
some attempts at estimating the parameters describing this relationship are made.

3.1.1 Overview and analysis

As described in section 2.1.4, the field current is defined by equations 3.1 and 3.2, but
best by Equation 3.2.

ISig(t) = K(t) · U2
(t) (3.1)

IDch(t) = K(t) · U(t) · [ U(t) − U0(t) ] (3.2)

I(t) − Field current U(t) − Applied field voltage

K(t) − Current scaling variable U0(t) − Current onset voltage threshold

Valid/typical range: Limiting relations
I(t) ∃ [0, 1000] µA U0(t) =< U(t)

U(t) ∃ [0, 100] kV

U0(t) ∃ [0, 100] kV

K(t) ∃ [0, 1]−

The variables I(t) and U(t), are measured while K(t) and U0(t) are unknown variables.
Additionally, U(t) is a manipulatable variable, making I(t) manipulatable as well.

In general, Equation 3.2 is a non-linear equation with two unknown variables, which ana-
lytically does not resolve to a unique solution. This is clarified by doing some substitutions:

Inserting: I/U = x1, K = x2, (U − U0) = x3

Thus: x1 = x2 · x3 Where x1 is known

Trying to solve for x2 and x3 has no unique answer but infinite solutions. An assumption
must be made about one of them before calculating the other. On the other hand, Equation
3.1 gives a unique answer but is a rough approximation when U0(t) > 0.

A system’s structural identifiability is defined in [13]. In short, the parameters of a sys-
tem are structurally unidentifiable if the set of parameters that solve the system are not
unique, countable, or finite. Thus, given the conclusion that Deutsch’s formula has infi-
nite solutions for the parameters. The conclusion must be that the system is structurally
unidentifiable.
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3.1 Parameter estimation

3.1.2 Estimation of Sigmond’s Formula

Estimating K(t) in from equation 3.1 is a trivial matter with a unique solution for all
values of I(t) and U(t). Thus the only consideration is to reduce the impact of any mea-
surement/process noise.

Low pass filter

A basic low-pass filter, as described in Equation 3.3, is an appropriate and computationally
inexpensive solution to the problem.

Kest(n) = A · kest(n1) + (1− a) ·
I(n)

U2
(n)

(3.3)

3.1.3 Estimation of Deutsch’s Formula

Estimating the unknown variables in Equation 3.2 is challenging and might not have any
satisfactory solutions, as indicated in section 3.1.1. Despite that, this subsection does a
study into alternative strategies attempting this.

Dual low-pass filter

A simple approach is the dual low-pass filter displayed in Equation 3.4. The relationship
between the convergence speed of the filters is of utmost importance. In addition to
the filter, a framework of limitations keeps the estimates in between the valid relations
described in Equation 3.5. The pseudocode for this filter is given in Algorithms 1.

U0est(n) = a · U0est(n−1) + (1− a) · (U(n) −
I(n)

Kest(n−1)
) (3.4)

Kest(n) = b · kest(n−1) + (1− b) ·
I(n)

U(n) · (U(n) − U0est(n−1))

U0est(t) → U(t) ⇒ I(t) ∼= Kest(t) · U(t) (3.5)

U0est(t) → 0 ⇒ I(t) ∼= Kest(t) · U2
(t)

The relation between the parameters a and b is essential to the filter’s performance. In-
creasing the convergence speed of one filter over the other gives better performance only
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3.1 Parameter estimation

if that reflects the actual state of the system. I.e., the variable with the most variance
should have the fastest converging filter.

Algorithm 1 Dual low pass filter with limitation framework
1: Initialize filter and define parameters:
2: a = −
3: b = −
4: expmax = − % Abs. max = 2, This value indirectly sets min(U0est).
5: while Estimating do
6: Read measurements I(n) and U(n)

7: if I(n) ≈ 0 then
8: U0 update = U(n)

9: Kupdate = I(n)/U(n)

10: else
11: U0 update = U(n) −

I(n)

Kest(n−1)

12: Kupdate =
I(n)

U(n) · (U(n) − U0est(n−1))
13: end if
14: if U0 update > U(n) then
15: U0 update = U(n)

16: else if U0 update < 0 then
17: U0 update = 0
18: end if
19: if Kupdate > I(n)/U(n) then
20: Kupdate = I(n)/U(n)

21: else if Kupdate < I(n)/U
expmax

(n) then
22: Kupdate = I(n)/U

expmax

(n)
23: end if
24: U0 est.(n) = a · U0 est.(n−1) + (1− a) · U0 update

25: Kest.(n) = b · U0 est.(n−1) + (1− b) ·Kupdate

26: end while
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3.1 Parameter estimation

Figure 3.1 and 3.2 depict the estimation results from two sets of filter parameters compared
to the true values and the K values given Sigmond’s formula. The figures highlight the
performance when the parameters are well-adjusted and what might happen when the
actual state does not match the filters.

1

2

Figure 3.1: Dual low pass filter used for estimation of the unknown variables U0(t) and K(t)

with two sets of filter parameters. The filter coefficients marked with number one for the filter
converging fast for K(t), whereas those marked with two represent the filter converging faster for
U0(t). The plots below the 1. marking illustrate how the filter converging faster for K(t) performs
best when K(t) is the variable that varies the most. For the plots below the 2. marking, the
Expmax parameter is reduced, giving the filter converging fast for U0(t), i.e., is poorly adjusted to
the system, better performance.

These results clarify that the filter will not automatically converge toward the true values.
However, given an assumption that U0 is varying less, the appropriate parameters might
give an estimate closer to the true state than simply using Sigmond’s formula. Making
the correct assumptions are crucial for the performance of the filter.
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3.1 Parameter estimation

Figure 3.2: Dual low pass filter used for estimation of the unknown variables U0(t) and K(t). The
red arrow highlights how the filter converges fast for K(t) believing that the change is happening
to K(t) and not U0(t) as is the actual case. The same can be seen the other way around for the
other filter.

Recursive least squares filter

The RLS1 filter[11] solves a least squares problem estimating the parameters αn that
minimizes the error e(n). Figure 3.3 illustrates such a scheme where u(n) is the input, ŷ(n)
the estimated output, and y(n) the actual output of the system.

Variable filter 
 

Update algorithm 

+

Figure 3.3: Illustration of the fundamental concept behind the RLS filter.

Equation 3.6 derives an expression for the output as a linear combination of an input
signal vector and a parameter vector, suitable for use with the RLS algorithm. Equation
3.7 presents a version of the RLS without any matrix inversions in the recursive algorithm.

1Recursive least squares
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3.1 Parameter estimation

Given: I(n) = K(n) · U(n) · [ U(n) − U0(n) ]

I(n)

U(n)
= K(n) · U(n) −K(n) · U0(n)

Redefine: y(n) = I(n)/U(n), u(n) =

[
U(n)

-1

]
, α(n) =

[
K(n)

K(n) · U0(n)

]
(3.6)

Thus: y(n) = αT
(n)u(n)

Recursive algorithm: Initialization:

L(n) =
P(n−1)u(n)

λ+ uT(n)P(n−1)u(n)
P(n0) =

(∑n0
i=1 u(i)u

T
(i)

)−1
(3.7)

P(n) =
1

λ

(
P(n)−1 − L(n)u

T
(n)P(n−1)

)
α(n0) = P(n0)

n0∑
i=1

u(i)y(i)

α̂(n) = α̂(n−1) + L(n)

(
y(n) − uT(n)α̂(n−1)

)
λ− Forgetting factor

Figure 3.4 presents the results from an experiment using the RLS filter on simulated data.
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Figure 3.4: RLS filter used for estimation of the unknown variables U0(t) and K(t). The plots
contain the results from filters using three different forgetting factor values. The red arrow high-
lights where one filter becomes numerically unstable due to a high forgetting factor. The plots
illustrate how the RLS filters do not converge to the true solution.
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3.1 Parameter estimation

The experiment confirms the expected results that the RLS filter does not converge to-
ward the true parameter values. Additionally, an numerical instability of the algorithm is
revealed. RLS filters based on adaptive Lattice-Ladder algorithms[11] have better prop-
erties with respect to numerical stability and would thus be a better algorithm to use.
However, as the results confirm that the system is unidentifiable, improving the filter is
deemed unnecessary.

3.1.4 Conclusion

The experiments with different filters confirm what was implied in section 3.1.1. That
the system, given the current knowledge, is structurally unidentifiable. Thus the most
predictable estimation strategy is Sigmond’s formula, which gives a unique answer. How-
ever, an estimation based on Deutsch’s formula, with manually fitted parameters, might
provide an estimate closer to the actual state of the system, as Sigmond’s formula is more
of a worst-case estimate.

Thus the two most viable options are:

1. Estimate using Sigmond’s formula and a single low pass filter.

2. Estimate using Deutsch’s formula and a dual low pass filter with constraints.

The performance of these two options can best be decided by measuring the performance
of a controller implementing them.
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3.2 Current limiting controller

3.2 Current limiting controller

This section describes a current-limiting controller based on the field voltage and field
current relationship. Furthermore, the controller is tested in simulations using different
estimates.

3.2.1 Motivation

The current limiting controller is an attempt at satisfying the following ABB requirements:

• Reduction unnecessary shutdowns due to the field current triggering global maxi-
mum limits.

• Faster reaction time to safety incidents.

• Simple implementation in ABB’s system.

• Minimized adjustment of the field voltage, as this might impact the overall paint
result.

The controller aims to improve the double PI-controller described in section 2.3. The PI
controllers’ main weakness, with respect to the above-stated requirements, is a weak entry
on the current controller part, making it less efficient at reducing fast current spikes.

An improvement is to be achieved by addressing any significant current deviation more
aggressively.

3.2.2 Controller description

The controller’s core is a voltage setpoint calculation based on the reference current and
the estimated disturbance parameters. This relation is illustrated in Figure 3.5.

Usetpoint (n)Iref(n)

K(n)    U0(n)  

Plant & voltage
controller 

Estimator

Kest(n)
&

 U0est(n) ym(n)

Setpoint
calculation

Figure 3.5: The current limiting controller setup illustration. The variables in the figure have
been introduced in section 3.1.

Another essential part of the controller is the framework describing when and how the
controller should be activated and deactivated. This framework is outlined in Algorithm
2, describing the controller algorithm, and Figure 3.6, illustrating how the controller is
supposed to work.
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3.2 Current limiting controller

Algorithm 2 Current limiting controller
1: Initialization of parameters, estimators, etc.
2:
3: while controller active do
4:
5: # Various variable, measurement and estimation updates
6: Iupper lim = Iref(n) ∗ factor
7: Ilower lim = Iref(n) ∗ factor
8: Uupper lim = Uref(n) ∗ factor
9: .............

10: .............
11:
12: # Standard safety shutdown
13: if I(n) > Imax OR I ′(n) > I ′max then
14: Disconnect power
15: end if
16:
17: # Activation/deactivation framework
18: if I(n) < Ilower lim OR U(n) > Uupper lim then
19: Controller_on = False
20: Usetpoint(n−1) = U(n)

21: end if
22: if I(n) > Iupper lim then
23: Controller_on = True
24: end if
25:
26: # Setpoint calculation
27: if Controller_on then

28: Usetpoint(n) =
U0est(n)

2 +

√
Kest(n)·(Kest(n)·U2

0est(n)
+4·Iref(n))

2·Kest(n)

29: if Usetpoint(n) > Uref(n) then
30: Usetpoint(n) = Uref(n) # Controller stability measure
31: end if
32: else
33: Usetpoint(n) = a · Usetpoint(n−1) + (1− a) ∗ Uref(n)

34: end if
35:
36: end while
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3.2 Current limiting controller

Time

Time

Figure 3.6: Sketch illustrating the main stages of the current limiting controller. At the time
T1, I(t) > Iupper limit, and the controller is activated, lowering the voltage forcing I(t) = Iref .
At the time T2, U(t) > Uupperlimit, activating a smooth transition decoupling the current limiting
controller, thus returning U(t) → Uref . At the time T3, this transition is completed. Furthermore,
at time T4, the controller is activated once again. Eventually, at time T5, a sudden drop in I(t),
where I(t) < Ilower limit, activate a smooth transition away from the current limiting controller.
Finally, at the time T6, the current limiting controller is decoupled.

3.2.3 Testing and evaluation

The tests document how important variables affect the controller’s performance. A stan-
dard test is used to evaluate the controllers’ performance across the range of possible plants
by doing a series of simulations iterating the plant’s U0 value (x-axis in the standard test
result plots). Thus presenting the controllers’ performance across the entire workspace.

The testing and test description is split into eight parts:
1. Test setup.

2. Impact of the model assumptions.

3. Impact of the estimator convergence
speed.

4. Impact of the system’s capacitance.

5. Impact of the disturbance step size.

6. Impact of the reference voltage.

7. Functionality illustration.

8. Comparison to I-controller.
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3.2 Current limiting controller

Test setup

To evaluate the controller’s performance, the focus is on how the controller output, i.e.,
the estimated Usetpoint, converges towards the optimal Usetpoint. The accuracy of the
estimates is essential for the performance of the controller. A step in the field current is
the worst-case incident that maximizes the estimator’s error. Thus a step in the current
is used to test the controller’s performance. The performance indicators are:

• Trise 63.2% = Time until ∆Uest.set = 0.632 ·∆Uoptimal.set

• Tsettle±5% = Time until ∆Uest.set is within ±5% of ∆Uoptimal.set

• Overshoot% =
∆Umax est.set −∆Uoptimal.set

∆Uoptimal.set
· 100%

The controller is tested with the following estimation methods:

• Deutsch’s formula using a dual low pass filter.

• Sigmond’s formula using a single low pass filter.

• The true values of Deutsch’s formula are assumed to be known, resulting in the
optimal version of the controller.

For simplicity, all the dynamics of the HVC and Cascade are assumed to be simplified by
another controller into a maximum change rate for the field voltage U(n). The system’s
capacitance and the current I(n) gives that maximum change rate.

The following setup and assumptions are used in the subsequent test if not stated other-
wise.

• Controller and estimator sample rate: Ts = 1ms.

• Uref = 80kV , Iref = 200µA, Iupper threshold = 1.1 ∗ Iref

• Disturbance: A step in I(n) of +20%.

• Maximum discharge rate:
dU(n)

dt
=

I(n)

C
, where C is the capacitance of the system

(section 2.2.4). C is assumed to be a constant typically in the range of 100-2000pF.
C is assumed to be 200 pF for this testing. For simplicity, the maximum charge rate
is set to a conservative three times the discharge rate. The charge rate is of less
importance for the current limiting controller.

• The controller deactivation thresholds are disconnected during the tests to uncover
the full extent of any undesirable properties.
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3.2 Current limiting controller

Impact of the model assumptions

Figure 3.7 presents the performance data for the controller using four different estimators.
The estimators make varying assumptions about the systems’ U0 value, influencing their
performance.

Figure 3.7: This figure highlights how changing the initial conditions of the estimators, i.e.,
changing the assumptions about the underlying model, affects the controller’s performance. Note
that the last instance uses Sigmond’s formula, and its estimators time constant is not directly
comparable to the other estimators.

The results in Figure 3.7 present how the choice of U0 affects the performance of the
controllers. Note that with an estimator assuming U0 ≈ U = 80kV , the range of U0

values where the performance is good shrinks considerably. On the other hand, using an
estimator assuming U0 ≈ 0 performs better for a wide range of U0 values.
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3.2 Current limiting controller

Impact of the estimator convergence speed

Figure 3.8 presents the performance data for the controller using estimators with increasing
convergence speeds.

Figure 3.8: This figure highlights how the filter time constant/convergence speed affects the
controller’s performance.

By comparing figures 3.7 and 3.8, it is evident that the estimators’ convergence speed
affects the controllers’ performance similarly to how the model assumptions do. A slower
estimator reflects U0 → U , while the fastest estimator gives the best performance where
the assumed U0 equals the actual U0.
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3.2 Current limiting controller

Impact of the system’s capacitance

The discharge rate for U , is given by
dU(n)

dt
=

I(n)

C
, where C is the system’s capasitance.

Thus a system’s capacitance influence how fast it is possible to lower the voltage. Figure
3.9 illustrates how a system’s capacitance influences the controller’s performance.

50pF

200pF

400pF

800pF

Figure 3.9: This figure highlights how the controller performs for systems with various capaci-
tances.

The results from Figure 3.9 indicate that the faster the voltage change rate, the better
the controller’s performance.
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3.2 Current limiting controller

Impact of the disturbance step size

Figure 3.10 presents the results from where larger steps in the current are applied to the
system.

20% step

400% step

100% step

Figure 3.10: This figure highlights how the controllers’ performance is affected by the size of the
disturbance, i.e., the current step.

A larger step in the current generally requires a large voltage reduction. The large current
also contributes to a faster discharge of the system. Thus when, as depicted in Figure
3.10, the step size is increased, the range of U0 with good performance is reduced, while
the performance in the remaining workspace is increased. An effect similar to what is
described in Figure 3.8, where the impact of the convergence speed of the estimators is
illustrated.
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3.2 Current limiting controller

Impact of the reference voltage

Figure 3.11 presents the controller’s performance for a series of Uref values and a corre-
sponding set of U0 assumptions for the estimator.

Uref = 10kV

Uref = 20kV

Uref = 40kV

Uref = 80kV

Figure 3.11: This figure display the controllers’ performance for a series of Uref values and
corresponding assumptions for the estimators U0 value.

Figure 3.11 illustrates that a lower reference voltage generally increases the controller’s
performance when the current is kept at a constant level, i.e., a lower voltage gives a
proportionally higher maximum rate of change for the voltage when the current remains
unchanged. Additionally, the figure illustrates how the performance characteristics of the
controller remain approximately constant when the U0 assumptions for the estimator are
set by the constant relation to Uref :

U0 = (Uref )
a, where a ∈ (0− 1)
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3.2 Current limiting controller

Functionality illustration

Figure 3.12 illustrates how the controller reacts to current disturbance. The figure high-
lights both the activation and deactivation of the controller and what a large estimation
error might do to the controller. This test differs from the other tests by having active
deactivation limits and not a clean current step.

2

3

1

Figure 3.12: Illustration comparing a controller with a slow estimator based on Sigmond’s
formula to a controller with a faster estimator based on Deutsch’s formula to a controller using
the true parameters of the system. Point 1 highlights how the calculated Usetpoint might go wrong
when the estimator’s error is significant. In this case, the error is attributed to the slowness of
the estimator. Points 2 and 3 highlight the decoupling of the current limiting controller when the
I and U deactivation thresholds are breached.

Under standard conditions, the reverse voltage highlighted by point 1 in Figure 3.12
will not appear. It is stopped by the conditional statement in the controller algorithm,
lines 29-31 in Algorithm 2. However, it is included to illustrate the possible effects of
estimation errors caused by the combination of a slow estimator and wrong assumptions.
Other artifacts connected to the estimation error are overshoot and oscillations around
the optimal Usetpoint.
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3.2 Current limiting controller

Comparison to I-controller

The results of the current limiting controller algorithm closely resemble those of a simple
integral (I)-controller. Figure 3.13 illustrates how an I-controller performs similarly to
the current limiting controller. However, the current limiting controller excels in that its
performance remains similar across a larger workspace. Thus the controller would compare
more to an I-controller with gain scheduling. This is illustrated in Figure 3.14, where the
current step size is changed from the standard experiment. The figure emphasizes that
the I-controller’s performance changes while the controller’s performance remains. This
comparison also reflects how the current limiting controller compares to the existing PI-
controller from section 2.3.

Figure 3.13: Comparison to the I-controller under the standard testing conditions.

40% step

40% step

Figure 3.14: Comparison to the I-controller with the reference- current at 200 µA, and a current
step of 50% up to 300 µA. The performance indicators suggest that the I-controller adapts poorly
to a larger disturbance. Note how the overshoot and settle time has drastically increased for the
entire range of U0.
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3.2 Current limiting controller

3.2.4 Configuration and implementation considerations

Conceptual configuration protocol:

1. Plan and configure the painting program.

2. Do tests throughout the programs’ path to determine the U0(t) values.

• Use these results to configure the controllers’, i.e., the estimators’ parameters.

3. Log the field current in a series of test runs.

• These test runs should include the most likely variations in the process. Dif-
ferent paint types, extrema positions of the workpiece, temperature, humidity,
etc.

4. Based on the resulting field current curves, a rough reference current and limit factors
are added to the paint program.

• If the paint program is uniform, the current reference is typically a constant
value for the entire program. Otherwise, the current reference would have
different constant values for the corresponding regions of the program.

Implementation considerations:

The current limiting controller has a computationally simple algorithm suitable for imple-
mentation on the fixed point processor, the DSP described in section 2.2.3.

Alternatively, the algorithm might be implemented directly on the FPGA on the CCPU
board (section 2.2.3).

As mentioned in section 2.2.2, the measurements from the HVC are filtered with a low
pass filter, limiting their usable resolution to a maximum of 0.75-1.5 kHz. Making this a
limiting factor for the current limiting controllers’ update frequency.

The paint jobs are sometimes stopped and restarted mid-program. This might be an
issue if the stop/restart leads to field currents deviating from the reference, activating the
current limiting controller. It could be solved by delaying the activation of the current
limiting controller after restarts. However, this is most likely not an issue but rather an
area where the current limiting controller could contribute to keeping the system running.
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3.2 Current limiting controller

3.2.5 Conclusion

The simulation test indicates that the current limiting controller is a robust solution supe-
rior to the existing controller. The controller effectively reduces current disturbances, lim-
its the corresponding voltage disturbance with an activation/deactivation framework, and
remains stable for a significant part of the workspace. The choice of model assumptions,
estimator convergence speed, and the system’s maximum voltage change rate significantly
influence the controller’s performance. A considerable improvement over the existing con-
troller design is likely accomplished by configuring the controller as instructed in section
3.2.4. However, this is unverified as implementation and testing on an actual system still
need to be performed.

Overall, the proposed controller demonstrates a potential for enhancing the electrostatic
painting system’s performance by decreasing unnecessary safety-related stops and reducing
the reaction time for actual safety-hazard incidents.
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Chapter 4

Voltage control

This chapter addresses the controller problem for the generation of a high-voltage output
using the HVC and Cascade. The chapter consists of the following sections:

1. Data acquisition

2. Model estimation

3. Reinforcement learning controller

If details are provided or data collected, the specific versions described/used are the HVC-
02 rev.5 and the CU930B cascade.

40



4.1 Data acquisition

4.1 Data acquisition

This section describes the data acquisition and processing performed to capture the dy-
namics of the HVC and Cascade. Furthermore, the resulting datasets’ coverage, validity,
and error are addressed. The section is split into the following parts:

• Test setup

• Data acquisition program overview

• IPS logging and HVC signals

• Python test executor

• Matlab data processing

• Results and conclusion

4.1.1 Test setup

The test setup consists of a test computer
communicating with two CCPU boards
mounted on an HVC and another I/O
board. The HVC is used for logging mea-
surement data and adjusting the input sig-
nals, the duty cycle values described in sec-
tion 2.2.3. The I/O board controls a series of
pneumatic actuators that connect/discon-
nect resistors to the cascade output, sim-
ulating a change in the field current.

HVC Load
I/O board

Test
computer

Ifield  
Ufield

Cascade

Ethernet

Figure 4.1: The test setup, where the cascade
output is connected to a variable load controlled
by an I/O board.

The test computer controls the setup by sending commands to the HVC and I/O board
while the measurement data is logged on the HVC CCPU board. After a test sequence, the
HVC saves the data locally in a CSV file, which the test computer retrieves using FTP1.
The data is then processed and stored for further exploitation. Figure 4.2 illustrates the
relations between the test computer and the internal HVC components.

HVC 
CCPU 

Test computer 
 
 

Python

FPGA 
DPM 

Input signals CPU Commands

DSP Store data

FTP - get data

set/get  
signals

Memory 
set  

signals

Figure 4.2: Illustration of the test signals, data transfer, and data storage for the test computer
and HVC. The DPM2 in the HVC is a resource shared by the CPU, FPGA, and DSP. The FPGA
logs the measurements to the DPM, from where the CPU collects the data storing it in another
location.

1File transfer protocol
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4.1 Data acquisition

4.1.2 Data acquisition program overview

The data acquisition program is split into two main levels. That is the main program
that runs on the test computer and the software running on the CCPU boards. Figure
4.3 presents a detailed sequence diagram describing these relations. The main program
and select features on the CCPU boards have been specifically developed for this data
acquisition task and are described in more detail.

ftp.retrbinary(f'RETR {filename}' )

test: HVCTestBenchExecutor

Define test  
parameters  

and run 
 python script

HVC/load IPS

HVCTestBenchExecutor
(ip, log_set, name)

test

test.run_test 
(iterations, name)

Operator test
computer

test_hvc.py

[ for i in  
range(length) ]

 do_startup()

log_now()

log signals until
t_log,  with timstep
dt. Then save as
csv file.

div ips commands

Linux CCPU

ftp.login() and ftp.cwd()

 connect()

set random input  to HVC

return actual value

Sleep some time

[ for n in range(iterations) ]

[ until t_log ]

get_data_from_ips()

process_data_from_ips()

do_disconnect() div ips commands

return

return

return

return

loop

sr  run t_log  dt

loop

loop

loop

par

return

Figure 4.3: A simplified sequence diagram illustrating how the data acquisition program works.
The format of the sequence diagram is based on articles from IBM[4], and diagrams.net [8]
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4.1 Data acquisition

4.1.3 IPS logging and HVC signals

Within IPS’s (section 2.2.3) existing framework for data logging, signals are only logged
at a minimum timestep of 16 ms. To capture the dynamics of the system, faster logging
is required. However, an unofficial IPS feature, SR log, is used for logging faster than
the 16 ms intervals. This function is limited to a minimum log interval of 1 ms and a
maximum of 10 seconds duration. However, a 1 ms log interval is unfeasible as the logging
thread is put at the lowest priority in an environment with several other high-priority
tasks. The original log-related functions are used in the IPS command line interface using
the following input:

1. sr toggle |signal name| - Select signals to be logged.

2. sr run |log duration [s]| |log interval [ms]| - Start logging and save to CSV3 file.

To enhance logging performance, the SR log features are upgraded in the following ways:

• Increasing possible sample rate by switching to timers counting nanoseconds.

• Increased priority for the thread running sr log.

• Add two timestamps to each sample: the actual and desired times.

• Increase the maximum log duration to 100 seconds.

The modified sr run function:

• sr run |log duration [ms]| |log interval [µs]| - Start logging and save to CSV file.

Additionally, to log the desired data, new IPS signals/devices are defined for logging
unfiltered raw data from the HVC. Furthermore, new functions and signals for directly
setting the HVC’s duty cycle inputs are also implemented. Furthermore, a manual testing
mode is created, decoupling the standard regulator and allowing manual control.

All these edits are compiled into an experimental IPS version running on the HVC’s CCPU
board for testing.

3Comma separated values
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4.1 Data acquisition

4.1.4 Python test executor

The ”HVCTestBenchExecutor” class introduced in Figure 4.3 is at the core of the data
acquisition program. This section gives a closer description of some essential features/-
functions of this class.

The ”HVCTestBenchExecutor” has access to a framework of dictionaries describing:

• All available signals and their scaling and bias for transforming the raw data to
correct physical units.

• All possible input test signals, their allowed range, step size, unit, etc.

• Calibrated values for the measurement circuit of the test bench cascade.

• Calibrated values for the load resistors.

Input signal limitation framework

The ”Input signal framework” algorithm sends the duty cycle input commands to the HVC
and load selection command to the I/O board. In short, the algorithm selects a random
input signal to excite with a piecewise random value before reiterating after a random
normal-distributed pause.

The input is limited by the CU930B cascade, whose maximum output values are 90 kV
and 1 mA. However, these limits are somewhat exceeded to improve the valid range for
the resulting model. The output is limited by a:

• Predefined range of allowed input values.

• Set of predefined maximum step for the input values when the output voltage is <
70 kV, 70 < 90 kV, and > 90 kV.

• No input increase when the output voltage is more than 110kV. Then the input is
cut by a large step.

• The variable load is not allowed to go below 100MΩ

Thus, the extrema values of the output voltage are limited to staying below 120 kV, which
should be within the range of what the cascade is designed to handle. No documentation
confirms that exceeding 90kV is safe, but the components are supposed to be robustly
designed. No deterioration or malfunctions of the equipment has been observed during
testing.
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4.1 Data acquisition

Process data from IPS

The class method process_data_from_ips() does some processing of the raw data loaded
from the HVC. Algorithm 4 presents the method’s pseudo-code. In short, the method
generates data for the variable load connected to the cascade output, transforms the raw
data into physical units, and calculates values of interest whose relations are described in
section 2.2.2.

Algorithm 3 process_ data_ from_ ips(self, dataframe, file_name):
1: # Create resistive load data
2: dataframe["load"] = initial load
3: for all load steps do
4: Define start and stop values encompassing the step.
5: step_index = find_step( dataframe["curent_measurment"][start:stop])
6: dataframe["load"][step_indx:-1] = new load value
7: end for
8:
9: # Do scaling and add bias values to the raw data

10: for all raw signals do
11: dataframe["signal"] = dataframe["signal"] * signal["scale"] + signal["bias]
12: end for
13:
14: # Calculate values of interest
15: dataframe["total_current"] = dataframe["UIM"]/self.CASCADE["IMR"]
16: dataframe["field_current"] = ...
17: dataframe["cascade_output_voltage"] = ...
18: dataframe["total_cascade_load"] = ...
19: etc...
20:
21: # Save dataframe as csv file
22: dataframe.to_csv(directory+file_name+time)

The find_step() function from line 5 in Al-
gorithm 4 utilizes the Ruptures[28] Python
library. The function finds the step in the
measured current and assumes this corre-
sponds to the load step. Unfortunately, the
accuracy of this algorithm is questionable,
as the dynamics of the load steps impact on
current vary somewhat. Thus, using data
generated by this algorithm for model esti-
mation risks introducing considerable error.
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Figure 4.4: Accurate identification of a de-
crease in the load.
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4.1 Data acquisition

The troubles connected to the step detection
algorithm are illustrated by figures 4.4, 4.5
and 4.6. Figure 4.4 and 4.5 illustrate reason-
ably good identification of the connection of
the load. However, as the load connection
per se happens before any change in the cur-
rent, finding precisely when the load step
happens for a corresponding current step is
tricky. Missing even by a little might intro-
duce a considerable error to the data.

Figure 4.6 present a case where the load
step’s impact on the current is not notice-
able for the step detection algorithm. Then
a standard value is used, adding even more
error to the data.
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Figure 4.5: Inaccurate identification of an in-
crease in load.
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Figure 4.6: The step detection algorithm
misses the current step, reverting to a standard
fallback value.

Other features worth mentioning

• Automatic calibration algorithm finding the optimal sample time value for the ”sr
run” function to achieve the desired mean sampling time.

• Optional plotting for debugging purposes.
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4.1 Data acquisition

4.1.5 Matlab data processing

A Matlab script is used to process the data, preparing it for further use. The data is
imported from CSV files created by the Python test executor program. Then, the data
is resampled, normalized, split into smaller pieces, and combined into data structures
suitable for model estimation. The pseudo-code in Algorithm 4 gives a more detailed
description of the data preprocessing.

Algorithm 4 Matlab -> Import and process data
1: Define the name and unit for the signals to import.
2: Define root filename, number of files, and the desired timestep.
3: Define the length of each file in seconds.
4: Define how many times to split each file.
5: Define normalization scaling factors.
6:
7: % Import and resample data:
8: while Files to import do
9: Import data from the file into a table.

10: Convert to timetable format using the original unsynchronized timestamps.
11: Resample and synchronize the data to the desired timestep.
12: Append the data into alternative data structures.
13: end while
14:
15: % Normalize and format data:
16: for all imported files do
17: Normalize the data of the current file.
18: for number of splits do
19: Select the appropriate data and format it into alternative data structures.
20: end for
21: end for
22: Save the data structures and normalization factors into a Matlab data file.
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4.1 Data acquisition

4.1.6 Results and conclusion

Results

This section presents the parameters used in the data gathering and processing resulting
in two final datasets. Further, the resulting workspace coverage and actual sample time
of the datasets are graphically presented.

• Key parameters:

– Timestep:

∗ Desired logging timestep: 250 [µs]
∗ Desired synchronized data timestep: Typically 1-10[ms] (selectable in Mat-

lab post-processing).

– Input limitation parameters

∗ Duty cycle AC:
· Allow values: 0-100 %
· Max stepsize when voltage: <70 kV=30%, 70<90 kV=3%, >90 kV=1.2%.
· Normalization divisor: 100, original unit [%]

∗ Duty cycle DC:
· Allow values: 0-50 %
· Max stepsize when voltage: <70 kV=10%, 70<90 kV=2%, >90 kV=0.8%.
· Normalization divisor: 100, original unit [%]

– Normalization

∗ Field voltage:
· Normalization divisor: 120 000, original unit [V].

∗ Cascade/Total current:
· Normalization divisor: 0.002, original unit [A]

∗ Total resistive load:
· Normalization divisor: 1000, original unit [MΩ]

∗ Optional, more signals are available but are not used in this thesis. Further
scaling parameters are available in the attached code.

• Resulting datasets:

– ”No load stepping dataset”

In this dataset, the load variable is not excited while logging. Thus the error from the
step detection algorithm mentioned in section 4.1.4 is omitted. Figures 4.7, 4.8, 4.9
and 4.10 present the datasets coverage of the workspace. Each point in the figures
represents a unique set of input variables. Figure 4.11 presents the distribution time
between each sample for the dataset.
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Figure 4.7: Distrubuiton of data for the ”no
load stepping” dataset.
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Figure 4.8: Distrubuiton of data for the ”no
load stepping” dataset.
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Figure 4.9: Distrubuiton of data for the ”no
load stepping” dataset.
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Figure 4.10: Distrubuiton of data for the
”no load stepping” dataset.
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Figure 4.11: Histogram presenting the distribution of time between each sampling instance.
Note that the Y-axis is logarithmic to emphasize the extreme values.
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4.1 Data acquisition

– ”Load stepping dataset”

In this data set, the load variable is extensively excited while logging. The step
detection algorithm from section 4.1 creates the load variable, adding error to the
dataset. Figures 4.12, 4.13, 4.14 and 4.15 present the datasets coverage of the
workspace. Each point in the figures represents a unique set of input variables. In
figures 4.14 and 4.15, points appear in between the static load levels of the variable
load; this is connected to the interpolation from downsampling the data (described
in section 4.1.5). Figure 4.16 presents the distribution time between each sample for
the dataset.
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Figure 4.12: Distrubuiton of data for the
load stepping dataset.
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Figure 4.13: Distrubuiton of data for the
load stepping dataset.
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Figure 4.14: Distrubuiton of data for the
load stepping dataset.
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Figure 4.15: Distrubuiton of data for the
load stepping dataset.
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Figure 4.16: Histogram presenting the distribution of time between each sampling instance.
Note that the Y-axis is logarithmic to emphasize the extreme values.

Conclusion

The results from Figure 4.11 and 4.16 illustrate the shortcomings of the SR logging function
(section 4.1.3) and the CCPU platforms’ real-time capabilities. These significant offsets
from the desired sampling time introduce a substantial amount of error to the data. This
error only is reduced by downsampling the data to exclude the information gaps.

Furthermore, the datasets without any load stepping are likely the best due to the limi-
tations of the step detection algorithm.

Considering the data’s validity, it should be noted that the data is collected from a test
bench where a variable resistive load simulates the field current as a disturbance. The
data does not encompass the dynamics for systems with another total capacitance value.
The simplified cascade model in section 2.2.4 illustrates how the capacitance influences
the system’s dynamics. Thus, depending on how the data is utilized, it might only be
valid for the test-bench conditions.

To summarize the conclusion, the data acquisition program generally works but has two
critical shortcomings: the step detection algorithm and SR-logging sample time jitter.
Furthermore, it should be noted that, in general, the data only represents the testbench
conditions.

For comments on the sampling time issue, go to section 5.2.9.
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4.2 Model estimation

4.2 Model estimation

This section describes the estimation of a model for simulating the HVC and Cascade
using two different neural networks. As described in Figure 4.17 the model shall utilize
the input vector u(n) and the process disturbance vector w(n) to estimate the output
vector yest(n). The variables are defined by Equation 4.1.

Model

Figure 4.17: Illustration of a simulation model.

u(n) − The two duty cycle inputs to the HVC (4.1)
yest(n) − The estimated output values: field voltage, output current, plus optional.
w(n) − The total resistive load connected to the cascade output.

This includes the internal load contributed by the measurement circuit.

4.2.1 LSTM-based model

The dynamics of the HVC and cascade can be expressed as a general nonlinear state space
model, as illustrated in Figure 4.18. The essence is that the output directly depends on
the current input and earlier output value. The LSTM4 network structure is suitable
because of its recurrent nature, internally using the last output, combined with the new
input data, for calculating the next output. The LSTM excels at capturing long-term
dependencies, which is suitable considering that some dynamics might be slow relative to
the simulation timestep. [9]

     
     

 - Input,  - State,  - Output
 - Process disturbance,  - Measurement disturbance

Figure 4.18: Illustration of a non-linear state space model.

4Long short-term memory
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4.2 Model estimation

For this project, the neural network model is
trained using Matlab’s deep learning frame-
work and proposed architecture for LSTM
networks.[24]. Figure 4.19 presents the deep
neural network structure used for the LTSM
model.

4.2.2 LSTM results

The datasets from section 4.1.6 are utilized
as the data for testing and training. As a
standard, the test data is a random selection
of 15% separated from the original datasets.
The output model from each training se-
quence is the model with the lowest RMSE5

on the test data. The training sequence typ-
ically overtrains, but the final output model
will be the model with the best results on
the testing data. The datasets are down-
sampled to 1000 samples per second, i.e., a
timestep of 1 ms.

The optimal network size

The optimal size of the neural network is the
one with the lowest number of neurons still
able to represent the data adequately.

Figure 4.20 presents the results of an ex-
periment where the same dataset is used to
train neural networks of increasing size. The
networks are trained until they are overfit-
ted on the training data, and then the out-
put network with the best performance on
the validation data is selected. The valida-
tion data is a 15% partition of the original
dataset, which for this experiment is the ”no
load stepping dataset”.

The results in Figure 4.20 indicate that six
neurons for each internal layer of the deep
neural network (Figure 4.19 ) is sufficient for
representing the data.
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Figure 4.19: Deep neural network structure
for the LSTM-based model consisting of fully
connected perceptron layers, LSTM layers, and
Relu activation function layers. N is the num-
ber of units/perceptron in each layer of the deep
neural network.
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5Root-mean-squared error

53



4.2 Model estimation

Dataset comparison

The performance of models resulting from the different datasets is compared. Each dataset
file is split into 24 smaller sequences of 2.5 seconds. The models are trained using the same
training configuration and network size. A total of five training sequences are completed
producing the following results:

• Mean results for the ”no load stepping dataset”:

– RMSE: 0.016

• Mean result for the ”load stepping dataset”:

– RMSE: 0.020

These results illustrate how the ”no load stepping” dataset best fits the data. The extra
error for the ”load stepping” dataset is likely connected to inaccurate step detection of the
load variable.

No initial condition

The LSTM layers of the model are internally dependent on their last output; when there
have not been any outputs, it thus poorly reflects the real systems behavior. This could
be a problem if the model is used for reinforcement learning. Figure 4.23 highlights how
this makes the LSTM model perform worse in the initial phase of a simulation.
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4.2 Model estimation

4.2.3 Nonlinear state-space neural network model

In late 2022 Matlab introduced a framework
for estimating nonlinear state-space models
using measured time-domain data[23]. The
underlying model is a deep neural network of
fully connected neuron layers as illustrated
in Figure 4.21. The model is trained to pre-
dict the output of the actual system, given
the input values and the current state. The
subsequent output is estimated using the es-
timated output of the last iteration and the
current input. This nonlinear state-space
model is suitable for use both for predic-
tion and simulation. The model is initial-
ized simply by selecting an initial state.

Algorithm 5 describes a procedure created
to train a model using Matlab’s nlssest()[23]
function. This algorithm was created to im-
prove the training speed by training on a
randomly selected small proportion of the
data.
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Figure 4.21: Structure of the neural network
used in Matlabs ”Non-linear state-space models”
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Algorithm 5 Matlab -> Train neural network for non-linear state-space model
1: Import normalized data formatted as a cell array of experiments.
2: Define names and units for the input and outputs.
3: Define the nonlinear state space neural network model with input, output, timestep,

and network size.
4: Define the training options for the neural network.
5: while Training do
6: Train/retrain the model with a randomly selected subset of the data using a

pre-defined experiment for validation.
7: if Validation error < goal OR training manually stopped OR timeout then
8: stop training
9: else

10: Decrease the initial learning rate and increase the number of epochs for the
next training sequence.

11: end if
12: end while
13: Save the best-trained model.

Training issues

Matlab’s nlssest()[23] training function is generally slow and does not utilize GPU re-
sources. The slow training is connected to manually inserting the last estimated output
back into the network input. For the LSTM case, this is done more efficiently internally.
This has been especially evident when attempting to train a model with a resolution down
toward 1 ms. Then for this case, with the available hardware resources, and datasets, the
training algorithm struggles to converge to an acceptable accuracy.
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4.2.4 Validation

This section presents the validation and consequent analysis of the two proposed model
structures. The validation data is a separate dataset composed of data not used in training.
The validation data cover the entire workspace similarly to the training datasets presented
in section 4.1.6. The models are trained using the ”no load stepping” dataset with a 10 ms
timestep.

The performance of the models is measured using the NRMSE6 value transformed into
a percentage where 100% is a perfect fit, 0 % is a model estimating the output to be a
straight line equal to the mean of the reference output, and a negative value worse than
the mean of the reference output. The calculation of the NRMSE value is presented in
Equation 4.2.

NRMSE = 100 ·
(
1− ||y − ŷ||

||y −mean(y)||

)
(4.2)

Where y is the true/reference output and ŷ is the estimated output.

Overall results

The overall results are presented in the table below. Additionally, the results from a
20-second sequence are presented in Figure 4.22.

Overall validation results
Model Field voltage Total current
lstm 92.91 % 83.94 %
nlss 93.11 % 65.14 %

These results indicate that both models are reasonably accurate for modeling the field
voltage output of the system. However, the models both struggle to model the total
current output accurately.

6Normalized root-mean-squared error
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Figure 4.22: Comparison of the LSTM- and nonlinear state-space neural network models to data
collected from the real world system.

Analysis of models

Figure 4.23 present the results from a 1-second sequence where behavior contributing to
the error of the models is highlighted.
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Figure 4.23: Comparison of the LSTM- and nonlinear state-space neural network models to data
collected from the real world system.

The behavior highlighted in Figure 4.23:

1. Error caused by the lack of an initial condition for the LSTM model.

2. Examples of uncharacteristic behavior likely to be connected to a long-term memory
effect in the LSTM model. The models seem to anticipate change before the input
is excited, suggesting that the timing of input excitation performed by the data
acquisition program is not as random as it should be. Even if the behavior is not
linked to any learned time dependency, the behavior signal is uncharacteristic of the
actual system and, thus, exceptionally bad.
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4.2 Model estimation

3. & 4. Point out how downsampling/interpolation and/or logging errors cause the
response of the input excitation to appear before the actual input excitation. The
fact that the LTSM model, unlike the nonlinear state-space model, is able to predict
this reiterates what is highlighted by point 2.

Another observation that can be made from Figure 4.23 is that the dynamics of the total
current variable are much faster than the relatively slow change of the field voltage variable.
Thus a 10 ms timestep is insufficient for representing a fast change in the total current
not directly connected to the slower field voltage. This is likely the main reason behind
the worse simulation results for the total current variable.

4.2.5 Conclusion

The trained LSTM model appears overtrained, utilizing long-term dependencies only found
in data collected from the test bench. This, in combination with the lack of a standard
initialization option, make the LSTM model unsuitable for use as a simulator.

On the other hand, the neural network model on a strictly nonlinear state-space model
format gives better results. The error observed for this model does not appear unchar-
acteristic and is likely connected to the data. Thus this model is suitable for further
use.

Due to the low model resolution, i.e., the 10 ms timestep, these results are only valid as
proof of concept. A timestep of 1 ms or less, as is the timestep of the existing controller, is
a more appropriate value for future implementations. The timestep of 10ms was selected
to speed up the training process.
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4.3 Reinforcment learning controller

4.3 Reinforcment learning controller

This section describes the training and performance of a neural network controller trained
on a model using reinforcement learning. The controller setup is illustrated by Figure
4.24.

Matlab’s Reinforcement Learning Toolbox[26], with its documentation and references to
scientific literature, is the basis for the reinforcement learning experiment performed in
this section. A fundamental introduction to reinforcement learning is given by [19].

Neural net
controller

u(k) [..x1]

r(k) [1x1]

y(k) [1x1]

Disturbances

Plant

d(k) [..x1]

y(k) [1x1]

o(k) [..x1]

y(k)  - Field voltage  [V],            o(k) - Processed observation data,     r(k) - Reference voltage [V]
d(k)  - Optional measurments,  u(k) - Duty Cycle AC and/or DC [%]

Signal
processing

Figure 4.24: Illustration of the neural network controller utilizing observation data to generate
input values for the plant.

4.3.1 Setup

Training environment

The controller training/test environment consists of a few basic components:
• Plant model

• Reset function:

– For each training run, the initial setpoint, initial load/disturbance, and initial
state are updated with random values within the valid range of the model.

• Training challenge:

– Addition of random steps and sinusoid signals in the reference and disturbance
for the controller to learn to follow the reference and reject the disturbance. The
setup of the reference and disturbance in the training environment will affect the
trained controllers’ disturbance rejection and reference following performance.

• Stop simulation signal:

– Stop the simulation if the model’s valid range is broken, the accumulated neg-
ative reward is too large, or the simulation time has been reached.
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4.3 Reinforcment learning controller

Reward function

The reward function is split into a cost- and a penalty part. The cost part is similar to
that of LQR7/MPC8 controllers, fine-tuning the neural network to reflect such controllers’
performance. Additionally, a cost dependent on the discrete integration of the error with
saturation limits is added to reduce static error. The cost of error change The penalty
function is more of a rough framework indicating exceptionally bad behavior, speeding up
convergence in training. Algorithm 6 present the general version of the reward function.

The recommendations given by Matlab[22] inspired the development of the reward func-
tion.

Algorithm 6 Reward function:
1: reward_function(yk, yk−1, yref_k, uk, uk−1,inte)
2: % The Q, P , elim1/2 and ymin/max cost/penalty constants/matrices are predefined

3: ek = yref k − yk
4: dyk = yk−1 − yk
5: duk = uk−1 − uk
6: Cost = ek ·Qe · ek + dyk ·Qdy · dyk + uTk ·Qdu · duk + inte ·Qint · inte
7: Penalty_e = (ek > elim1) · Pe1 · (ek > elim1)

2 + (ek > elim2) · Pe2 · (ek − elim2)
2

8: Penalty_y = (ymin > yk) · (ymin − yk)
2 · Py + (yk > ymax) · (yk − ymax)

2 · Py

9: Reward = −(Cost+ Penalty_e+ Penalty_y)
10: Return Reward

Observations for the controller

The controller should be valid and robust for different setups and hardware variations.
Thus, the reinforcement learning controller should not utilize signals inherently changing
between system instances.

For instance, the current measurements are connected to the system capacitance. How-
ever, it is also connected to internal loss, and the system capacitance might probably be
estimated using the derivative of the output field voltage and the current, arguing that
the current measurement should be included.

However, as the accuracy of the current estimates of the plant model was low (section
4.2.4), the standard observations sent to the controller are as follows:

1. The field voltage
7Linear quadratic regulator
8Model predictive controller
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4.3 Reinforcment learning controller

2. The derivative of the field voltage (optional LPF9)

3. The reference voltage

4. The derivative of the reference voltage (optional LPF)

5. The error between reference and field voltage

6. The integral of the error with saturation limits

7. Optional (not included) - The total current

Reinforcement learning algorithms and training configuration

The DDPG10[21] and twin-delayed DDPG (TD3)[27] algorithm is selected per Matlab’s
guidance document for the selection of reinforcement learning algorithms [25]. Specific
details on the training configurations used are available in the Matlab code in the ap-
pendix. The adjustment and configuration of the parameters are based upon Matlab’s
documentation, courses, and examples[26] and an informed trial and error process.

4.3.2 Results

Due to limited computational resources, and errors in the data, the reinforcement learning
environment utilizes a low-resolution (10 ms timestep) model of the painting system. The
specific training parameters and reward weights can be found in the appended Matlab
reinforcement learning files and trained controllers files.

Figures 4.25 and 4.26 present a performance illustration and the training progress using
the TD3 algorithm for a controller with two actuator variables. Similarly, Figure 4.27
presents the performance illustration of a controller with one actuator variable trained
using the DDPG algorithm.

The results from these figures are promising; however, there is room for improvement in
the training configuration and the reward function weights. From Figure 4.26, it is visible
that the training algorithm was converging very slowly and still improving when stopped.
The training lasted approximately 15 hours, making it a slow process. Figures 4.25 and
4.27 prove that the controller works to a degree, but exactly how well is unspecified.
To accurately determine the controllers’ performance, quantitative indicators are needed.
Thus the results only represent a proof of concept for the reinforcement learning solution.

9Low pass filter
10Deep deterministic policy gradient
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4.3 Reinforcment learning controller

Figure 4.25: Simple performance illustration of a two-input controller trained using the TD3
algorithm. The training progress of this controller is presented in Figure 4.26.
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Figure 4.26: Illustration of the training progress for the controller using a TD3 algorithm. The
performance of the controller when the training was stopped is displayed in Figure 4.25
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4.3 Reinforcment learning controller

Figure 4.27: Simple performance illustration of a one-input controller trained using the DDPG
algorithm.

4.3.3 Conclusion

The reinforced learning approach gives promising results; however, further optimization
of the reward function weights and the training parameters must be performed before the
controller is ready for deployment. Additionally, a controller trained on a higher-resolution
model as well as quantitative performance indicators is necessary for further development.

The result presents what is likely a non-optimal controller and highlights a primary chal-
lenge of the reinforcement learning approach, the time-consuming optimization and train-
ing process.

Implementation considerations

The trained reinforcement learning controller consists of a relatively small neural network
and signal processing part feeding the neural network with observation data. For this
observation data to be uniform across different instances of the electrostatic painting
system, the signal processing part should accept configuration options like applicator type
and measurement circuit resistor and calibration values.

The most suitable hardware for deploying the controller is the FPGA on the FCPU plat-
form. However, depending on the final complexity of the controller, it should also be
possible to implement the neural network on the older Intel FPGA on the CCPU.
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Chapter 5

Reflections and experiences

This chapter contains reflection and lessons learned through the work with the master
thesis. Furthermore, suggestions for further work and alternative solutions not included
in the main chapters are presented. The chapter is split into the following sections:

• The workflow and direction choices

• Alternative solutions, further work, and reflections

• Summary of further work

5.1 The workflow and direction choices

In the project’s initial phase, the focus was on the following three elements.

• Talk with ABB employees and gather info on challenges related to the high voltage
system.

• Study electrostatic gas discharge and corona currents and the painting process.

– It was concluded that detection and inhibition of sparks were impossible, given
the available hardware. The limiting factors are the filtered measurements
with a cut-off frequency of about 1 kHz, a system discharge time of hundreds
of milliseconds, and spark transition time in the range of microseconds[20].
It became clear that the most feasible strategy for safety was to reduce the
risk by following the safety standards, i.e., depending on an automatic fire
extinguishing system. It also became clear that the system could be improved
by not only using global absolute maximum safety limits. In addition, to the
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5.1 The workflow and direction choices

global maximum limits, a current reference could be introduced, enabling earlier
action and reduced reaction times. This suggestion has been implemented in
section 3.2.4.

– Estimation of the field currents to the field voltage was raised as a key point that
could solve some of the difficulties ABB experienced on the existing controller
(section 2.3).

• Study the existing ABB controller and hardware to map out the restrictions and
opportunities given by the hardware.

– To study and understand ABB’s hardware and software, the work resulting in
the data acquisition program was started (section 4.1). It was deemed an effort
worth the investment as a high-resolution data-gathering system did not exist.
Additionally, the work would give me experience working with ABB’s software
easing the potential implementation of a new controller algorithm at a later
stage.

– A conclusion was that the DSP would not be sufficient for more advanced
controllers but that the new FCPU platform offered better performance.

– The existence of FPGAs gave rise to a focus on developing a neural network
controller to be implemented directly in the FPGA.

The project’s second phase focused on developing the data acquisition program and train-
ing a system model. The progression on this front slowed considerably when experimen-
tation with model training and optimization began, initiating the third phase.

In the third phase, the focus was to estimate and utilize the relation between the corona
current and the applied field voltage. Even though the initial study indicated that a
converging estimation was impossible, the search for solutions continued. A series of
experiments trying out different algorithms and approaches were made, some of which are
presented in chapter 3. The final product of this work was the current limiting controller.

In the fourth phase, the focus return to the model estimation and a neural network con-
troller. Experimentation and research on training parameters were time-consuming and
did not provide results ready for direct implementation.

The project has been influenced by not having a clearly defined solution to implement and
test. Instead, the direction of the thesis has appeared through a research process. Espe-
cially reinforcement learning and model estimation has been time-consuming endeavors.
By having a clearly defined path from the start and focusing on a narrower field of study,
more applicable results and conclusions might have been achieved.
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5.2 Alternative solutions, further work, and reflections

This section contains a series of reflections, alternative solutions, and suggestions for
further work on existing solutions.

5.2.1 Measurements and calibration

As mentioned in section 2.2.2, a considerable error is introduced to the measurements.
This section elaborates on some possible approaches to improve this.

Initial calibration

Component variations introduce measurement uncertainty that might be reduced by an
initial calibration, removing the offset error. Initial calibration is crucial for high-voltage
components, like the BR resistor with ±5% initial variation. Calibrating the giga-ohm-
sized BR resistor requires specialized instruments that measure giga-ohm values. Never-
theless, noise and drift still leave measurement uncertainty after calibration.

Internal calibration

In addition to the initial calibration, online calibration/estimation can further improve
the measurement accuracy. For instance, the system’s actual output can be predicted by
utilizing a cascade model. The final estimate can be updated depending on the ratio of the
uncertainty associated with the model and the uncertainty inherent in the measurements.

An alternative, more straightforward approach would involve defining a test setup with
a predetermined input to the cascade, resulting in a known static output. Then, it is
possible to recalibrate by comparing the measured output value with the expected output
value. This simpler scheme may be suitable for specific applications where an extensive
model-based approach may not be feasible or appropriate.

5.2.2 Improved field current parameter estimation

As mentioned in section 2.1.4, there is most likely some connection between U0 and K.
Collecting large amounts of data while changing the underlying variables and then an-
alyzing that data for a connection between U0 and K, could be a future project. If a
relationship between these two parameters were to be determined, it might be possible
to estimate better the relationship between the field voltage and field current. However,
considering all the variables influencing the system, this is a very large task.
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5.2.3 Reportedly a too low resolution on the duty cycle DC

If this is the case, it could be improved by using a higher resolution timer for the PWM1

signal. The DSP creates the current PWM. An option is to implement a timer on the
FPGA, replacing the one on the DSP. This is probably the simplest approach if inspecting
the problem as an isolated task.

An alternative approach is to make the control system a two-input-one-output system,
which has been attempted using the reinforcement learning approach.

5.2.4 Relflections on the data-driven approach

The selection of the purely data-driven approach was primarily motivated by the ap-
proach’s potential to solve any controller problem, creating the optimal controller valid
for the entire workspace.

Another motivation for this approach was that it allowed for the easy development of a
multiple-input controller, utilizing both the AC and DC duty cycle inputs from section
2.2.3. Which again had the potential for solving the reportedly low resolution on the
input signals. Another contributing factor was the fact that the available hardware, the
DSP on the CCPU(section 2.2.3) would likely be insufficient for more advanced controller
concepts, whereas the FPGA on the CCPU could probably be used for implementing a
compact neural network controller.

The data-driven approach introduced new requirements and challenges, all extensive tasks.

• Collecting high-resolution valid data.

• Finding and evaluating suitable approaches for estimating a model.

• Finding a suitable approach for training a controller.

The main experiences drawn with respect to the data-driven approach are:

• The importance of reducing error in the data as any error is passed on.

• The need for lots of computational power when handling large datasets, performing
estimation, and training neural networks.

• The configuration and selection of the reinforcement learning setup and neural net-
work models tend to be a time-consuming pseudo-scientific trial-and-error process.

1Pulse-width modulation
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• The controller must be created robust to handle errors in the training environment
model and, when deployed, variations in the controlled systems.

Testing this approach has made it evident that the data-driven approach is not an easy
solution for all problems but a possible approach with its fair share of challenges. Given
this perspective, the more traditional analytical model-based approaches might appear as
the preferred way to go.

5.2.5 Note on AI in safety-related systems

[17] discuss using AI2 for safety-related closed-loop systems. They explore a variety of
possible uses for AI in control systems and what implications it may have for safety-
critical systems. For the AI solution presented for the voltage controller, it is suggested
to use a supervision framework to ensure the safety-related states. In our case, this is
reflected in the framework described for the current limiting controller. In other words,
the AI part would not be directly involved in ensuring a safe state. But the safety system
would manually discharge the high voltage.

5.2.6 Better data-driven modeling and control approach

The Sparse Identification of Nonlinear Dynamics algorithm, or SINDy[5], has advantages
over the neural network training algorithms used in this thesis. This method gives more
interpretable results by finding the governing terms and relations in the system, producing
equations that can be compared to an analytical model of the system. Additionally, it has
been shown that SINDy typically requires less data and is more computationally effective.
The data-driven approach utilized in this thesis appears inferior to the more state of
art SINDy approach. Thus for future work, it is recommended to check out this line of
research.

2Artificial intelligence
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5.2.7 The traditional model-based voltage controller

In this thesis, the voltage controller work focuses on the data-driven approach. However,
the more traditional approach would be analytical modeling and controller design. This
section suggests an alternative approach to the one chosen in this thesis. The process
could look like this:

1. Set up theoretical models for the buck converter, ac-generator with transformer, and
Cocrfot-Walton voltage multiplier (section 2.2.4).

• Find the expected numerical values of the components. (The exact data for
the cascade has been unavailable as it is not ABB property.)

2. Select controller structure. Here is a proposal:

• An internal PID3 controller with feedforward from reference and disturbance
for the buck converter. Then an outer PI/PID controller for the output field
voltage.

3. Analyse stability, robustness, and performance using traditional control theory meth-
ods.

• Evaluate the improvements if modifying ABB’s hardware is allowed. The main
limitations are heavy low-pass analog filters on the measurements and possibly
low resolution on the duty cycle output.

• Evaluate computational cost and impact of the controller sampling speed. Com-
pare with the available computational power.

Other options for a controller are:

• LQR/MPC with integral action.

• Indirect or direct model reference adaptive control.

However, due to a high system capacitance and a corresponding ”slow” response on the
field voltage, more advanced control strategies that a basic PID controller might not
increase performance. The traditional PI or PID controllers are a good choice, primarily
because they are well-known, have simple algorithms, and are relatively straightforward
to configure and reconfigure. Even though other controllers might perform better, these
arguments raise the threshold for selecting a more untraditional approach.

3Proportional integral derivative
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5.2.8 The cascade discharge problem

Motivation

The rate at which it is possible to discharge the cascade is essential for the painting sys-
tems’ performance. For instance, when cleaning the paint applicator in series production,
the production line halts for a few seconds waiting for the paint applicator to discharge.
Furthermore, being able to discharge the painting system rapidly would increase the per-
formance results of the controller concerning safety norms. Which again would allow for
a higher applicator voltage, i.e., increasing the systems transfer efficiency.

Thus with this motivation in mind, a simple proposal for a cascade discharge circuit is
proposed. This proposal should be the subject of further study to determine if the solution
is feasible.

Another aspect is that the components realizing the proposed circuit and its development
might be relatively expensive. Thus a closer analysis of the potential savings weighted
against the cost should be performed.
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Cascade discharge circuit

Figure 5.1 describe a proposal for a circuit discharging the cascade. Note that the type of
transistors should be the depletion mode type, ”normally on” transistors.

Floating triggger
curcuit

Floating triggger
curcuit

Transistor activation signal

Cascade output voltage

R1

RNTN

T1

RDischarge

Figure 5.1: Simplified schematic of the proposed cascade discharge circuit. Note that depletion
mode transistors are likely the best solution, even though the figure depicts the enhancement type.

The number of blocks, N, divides the maximum applied voltage from the cascade and sets
the circuit’s components requirements. The relations described in Equation 5.1 describe
the requirements and performance of the proposed circuit.

N - Number of blocks in the circuit, C - Cascade and system capasitace
τDischarge - Discharge time constant, VO max - Cascade output voltage
Vblock max - Maximum voltage expected to be applied to each block.
Ioff max - The maximum current flowing through the circuit in the off state.
Ion max - The maximum current flowing through the circuit in the on state

Ioff max =
VO max

Roff
=

VO max

ΣN
i=1Ri +RDischarge

, where RDischarge << ΣN
i=1Ri.

Ion max =
VO max

Ron
=

VO max

ΣN
i=1RDS on i +RDischarge

, where ΣN
i=1RDS on i << RDischarge.

τDischarge =
1

Roff · C
, Vblock max ≈ VO max

N
(5.1)
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5.2.9 The sampling time jitter problem

The sampling time jitter problem (section 4.1.6) of the SR logging function was only
discovered in the last days before the thesis deadline. Thus, no fix was applied.

However, early on, sampling time jitter was confirmed not to be a problem. An experiment
was performed by sending log commands through the IPS command console. In contrast,
the data acquisition program sends the commands through the ICI-server interface (API4

for IPS). The ICI server does not run on the same thread as the command console. Thus
the commands sent through the ICI server are not prioritized by the operating system,
resulting in the observed jitter on the sampling time. The fix for this is simply adjusting
the thread priority of the ICI server.

This was discovered and considered early on, but somehow due to human error, the prob-
lem was wrongly assumed fixed and not sufficiently confirmed to be working. This over-
sight was only discovered when placeholder plots were updated in the last leg of the thesis.

A real effort has been put into training a model with 1 ms a timestep using the nonlinear
state space neural network model. However, it might be that the error introduced by the
sampling time jitter (Figure 4.11) was a primary factor reducing the convergence rate of
the training.

5.2.10 Alternative IPS datalogger

As mentioned in section 4.1.3, the standard IPS is only able to log signals with a timestep
of 16ms. To circumvent this, a few options were studied and attempted. In addition to
the option used in the solution, another alternative solution was developed. Figure 5.2
illustrate how this solution utilizes a dual port memory on the FPGA for storing the data.

HVC 
CCPU 

Test computer 
 
 

Python
DSP 

FPGA 
DPM 

Input signals CPU 

Store data

Log cmd.Commands

Figure 5.2: Illustration of logging program setup when data is stored directly in some dual port
memory on the FPGA.

4Application programming interface
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The limiting factor for this solution is the memory size of the DPM, which is approximately
10kB or 5k data samples for the CCPU. This solution allowed for both synchronized
and fast sampling. When logging is initiated, the results are read via customized IPS
commands, slicing the entire data pack into smaller pieces, as IPS cannot transmit more
than 1460 bytes per transmission. However, when logging all the relevant signals, the
maximum duration of the logged sequence becomes so short that each test is limited to a
single step response.

As these limitations became apparent, the other option described in section 4.1.3 was
selected as the most appropriate solution as this allows for logging longer data sequences.

The two solutions have a partly supplementary set of pros and cons. The pros for this
alternative solution are a relatively small jitter and synchronized sampling intervals, and
the cons are the available memory size. Vise versa for the main solution, the pros are the
available memory, and its cons are the relatively large jitter and variations in the logging
interval.

5.2.11 Better actuator utilization

As mentioned in section 4.1.4, the range of input values it is safe to use is limited by
the maximum output voltage of the cascade. The solution presented utilized for data
collection is by no means optimal. Thus, a strategy to get more data coverage should
be implemented to improve the workspace of the model and the resulting reinforcement
learning controller.

5.2.12 Nonlinear controller performance test

In order to gain interpretable performance data of a reinforcement learning controller, a
validation framework using intuitive indicators should be created. This framework should
calculate performance parameters covering the entire workspace, producing a clear image
of the controllers’ capabilities. Suitable performance indicators for reference following and
disturbance rejection might be the resulting cut-off frequencies and corresponding phases
when exiting the controller with an increasing frequency reference and disturbance signal.
Additionally, a test measuring the robustness of the controller to a plant deviating from
the training environment should be implemented.

5.2.13 Note for the direct charge paint applicator

In section 2.1.1 it is stated that the high voltage is applied to the atomizer bell cup. This
is according to ABB’s documentation [3], but this is not the case. The high voltage is
applied to the paint prior to the atomizer.
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5.3 Summary of further work

This section contains a summary of suggestions for further work related to the solutions
presented in this thesis and other suggestions related to ABB’s electrostatic painting
system.

• Train and deploy the neural network controller:
– Fix the sampling time jitter issue of the SR logging function.
– Train a higher resolution model, i.e., smaller timesteps.
– Configure the reward function with appropriate weights.
– Train the controller.
– Create a standard test framework for evaluating/validating the controller’s per-

formance, robustness, and stability.
– Deploy the controller on an FPGA using Matlab/Xilinx/Intel tools for neural

network deployment.

• Real training environment:
– Connect the training environment directly to the SoC on the new FCPU board

for real-time control. This eliminates the in-between model error and drastically
enhances the quality of the training/testing environment.

• Deploy and test the current limiting controller:
– Integrate the current limiting controller in series with the existing PI voltage

controller using the structure presented in Figure 2.18.
– Do a series of tests comparing the performance to the old controller structure.

Performance criteria should include stability and robustness indicators like
avoiding unnecessary shutdowns, disturbance rejection properties, and over-
current shutdown response time.

– Based on these findings, consider further use of the algorithm.

• Remove the hardware limitations:
– Increase resolution of the duty cycle controlling the DC-DC buck converter.
– Increase the cutoff frequency of the analog filter for the measurements.
– Implement a calibration routine for the cascade measurement circuit.

• Develop and deploy a traditional model-based controller for the field voltage:

– Follow recommendations in section 5.2.7.

• Evaluate and develop a solution for rapidly discharging the high-voltage system. A
possible solution is described in section 5.2.8.

• Create an external monitoring program that classifies wear and tear, indicates the
need for cleansing the paint applicator, and raises alarms on unexpected behavior.

• Investigate the characteristics of the electrostatic gas discharge for relations improv-
ing the parameter estimation of the current limiting controller (section 5.2.2).

• Use the SINDy[5] approach for the data-driven control and modeling (section 5.2.6).
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5.3 Summary of further work

5.3.1 Recomendation for ABB

This is a recommendation for ABB’s direction regarding the electrostatic painting system.
Emphasis has been placed on low-risk solutions.

1. Deploying and testing the current limiting controller is a relatively small task that
might introduce rather significant improvements to the system with regard to ad-
herence to safety standards, the controllers’ robustness and stability, disturbance
rejection, and a more intuitive configuration procedure.

2. Consider the need for better performance for the voltage controller. Implement
the proposed hardware changes and deploy a simple model-based PID controller if
necessary.

3. If a priority for the company is to develop a painting application with very high
transfer efficiency, i.e., using a higher voltage and moving the paint applicator closer
to the work object, the cascade discharge unit solves this problem. By drastically
decreasing the system’s discharge time, the safety standards allow more liberal safety
and control parameters.

4. Apply ABB’s data logging program Parati as a standard solution for monitoring and
reporting on long-term behavior for the electrostatic paint application.
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Chapter 6

Summary

This chapter sums up the central results presented in the thesis.

The thesis presents a detailed overview of the theory behind electrostatic painting and
ABB’s painting system. ABB’s high voltage controller is analyzed, and a new control
structure is proposed. The new structure includes a current limiting controller related to
safety, in series, with a field voltage controller for generating the high voltage output.

For the development of the current limiting controller, an attempt is made to estimate
the relation between the electrostatic field voltage and the resulting field current (corona
current). However, the estimation problem is concluded to be structurally unidentifiable,
i.e., the estimate does not converge to the actual state. Despite this, the current limiting
controller utilizes a simple estimator for estimating the field voltage setpoint that reduces
the field current, forcing it to a reference value. The characteristics of the current limiting
controller are thoroughly reviewed, and a comparison to an I-controller highlights its
potential advantage over the existing solution. That is a more robust and aggressive
controller for limiting spikes and disturbance in the field current. However, these are only
indications, and deployment and testing remain before a final conclusion can be made.

For the voltage controller, a data-driven approach is selected. A data acquisition pro-
gram is specifically developed to gather high-resolution data from ABB’s system. This
program has some challenges introducing additional errors into the data. The data is used
to create a neural network-based nonlinear state space model of the controlled system.
This model is utilized for reinforcement learning to create an optimal controller with a
performance similar to MPC. Due to the error in the data, computationally heavy al-
gorithms, and a slow iterative parameter optimization process, optimal high-resolution
models and controllers are not presented. Instead, low-resolution (10 ms timestep) models
and non-optimal reinforcement learning controllers are presented as proof of concept.

Lastly, the steps necessary for finalizing the controllers, recommendations for ABB, alter-
native solutions, and other directions of inquiry are presented.
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Attachments

OneDrive folder

The attached files are located in a OneDrive folder available until September 2023 with
the following link:

• Click on this line to access the OneDrive folder.

After September 2023, it will only be available on request.

An outline of the file structure of the attached OneDriev folder is illustrated by Figure 1.

Matlab/

Misc/

Attachments/

Python/ TestExecutorTestBench.py
poster.pdf

readme.txt

Data/

Models/
Controllers/

DataProcessing.m

NonlinearStateSpaceModel.m
LstmModel.m

SimpleCurrentControllerTest.m
ModelCompareAndPlot.m

ReinforcementLearning.m

Figure 1: Structure of the attached OneDrive folder.
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