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Abstract: 

Wind turbines have been experiencing a rapid development over the years and there has been a 

shift from onshore to offshore. The lateral and vertical coherences at various locations on the 

floating wind turbine rotor were thought to have an impact on the floater motions due to their 

spatial connection. It has been hypothesized that the wind turbine components will suffer 

substantial fatigue damage unlike most offshore structures which are more affected by ultimate 

limits states because of the unstable air stability conditions that more frequently occur offshore.  

This work investigated the impact of turbulence on the on the performance of offshore wind farms, 

as well as the unique qualities of offshore wind turbines. While taking analysis of atmospheric 

stability and various turbulence spectral models, we were able to ascertain the one that is most 

suitable for offshore environment in a non-neutral condition. In this research it was observed that 

the peak value for the non-dimensional velocity spectra was larger for the neutral stability 

conditions (with the maximum value reaching unity), followed by the unstable and stable 

condition, respectively. In addition, the difference in the normalized spectra at high frequencies 

was negligible, regardless of the stability condition. The Welch and the FFT spectra matched in 

the higher frequency range of the spectra, from frequency f above 10−2 Hz, but in the lower 

frequency range the Welch spectra exceeded the FFT spectra. There was negative co-coherence 

for all the vertical separations, for the separations where large decay of the co-coherence was 

observed. For the separation between 37 and 40 m a.m.s.l, the negative co-coherence was small. 
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CHAPTER 1 
1 INTRODUCTION 

An exhaustive study of FOWTs' dynamic behaviour in reaction to aerodynamic and hydrodynamic 

loads under severe operating conditions across their design lifetime, as defined by the ULS, is 

necessary for their development. Dynamic reactions in FOWTs can be quite large in stormy sea 

conditions due to the presence of turbulent wind fields. Different turbulence models based on 

empirical data are recommended by different guidelines to deal with this issue. 

According to IEC 61400-3:2009, extreme sea and wind conditions are those with a 50-year return 

period. A constant overall wind flow and the random fluctuations in wind speed due to turbulence 

describe these conditions. IEC 61400-3 (2019) states that a stationary random vector field is used 

to calculate offshore wind turbine load spectra for fatigue design, with each component assumed 

to follow a Gaussian distribution with zero-mean statistics. Mechanical Fatigue of Metals: 

Experimental and Computational Perspectives, pp. 383–390. The publishing house Springer has a 

global reach. Two turbulence models that can be used to calculate design loads are presented in 

the 2005 Geneve (Switzerland) International Electrotechnical Commission (IEC) 61400-1 

standard. The spectrum and exponential coherence model, proposed by Kaimal (Kaimal et al., 

1972), is the first. The second is Mann's (1994) uniform shear turbulence model. The Mann model 

is based on von Kármán's (1948) energy spectrum. Until a uniform velocity shear rapidly deforms 

this function, it is isotropic. While there is some overlap in terms of spatial coherence between the 

two theories, the energy frequencies at which they operate are distinct. Both turbulence models 

were developed with substantial help from data collected on the ground. Few turbulence models 

have been developed specifically for use with oceanic wind data (Cheynet et al., 2017). 

Offshore structures are designed based on the (ISO, 19901-1, 2015) standard all over the world. 

This international standard has been used as a foundation for the development of national standards 

in the petroleum industries of the United States (API RP 2SK, 2005) and Norway (NORSOK N-

003, 2007). Standards for the energy, maritime, and oil and gas industries have been produced by 

DNV GL, a classification society (DNV, G. 2019; Veritas, N. 2000; Veritas, 2021). Position 

mooring design guidelines are presented for extreme met-ocean conditions, including 

hydrodynamic and aerodynamic loads. The API turbulence model is recommended for the MBL, 
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whereas a 50- or 100-year return time is recommended for wind and waves. The API turbulence 

model is based on observations taken in the Norwegian municipality of Frya (Andersen and 

Lvseth, 1992). This spectrum is a modification of the Harris and Kaimal spectra (Taylor et al., 

1971) that puts more weight on the low-frequency region while maintaining the correct high-

frequency asymptote, as described by Andersen and Lvseth (2006). The API spatial coherence is 

derived from an expansion of the original exponential formulation by (Cheng & Chiu, 1990) and 

is thus analogous to the Kaimal coherence. 

Research by Ochi et al., (1988) establishes that the low-frequency range (0.01 Hz) of offshore 

wind spectra collected since the late 1970s varies significantly, demonstrating the importance of 

tailoring the model to the individual site in question. Wind spectra have been found to differ 

between onshore and offshore locations, with the latter showing larger low-frequency components 

(Ochi and Shin, 1988; Shiotani, 1975; J.A.B. Wills et al., 1986). Thus, it may be necessary to 

choose an averaging time longer than the 10 minutes suggested by (IEC 61400-1, 2005). 

Normalized spectra comparisons at varying wind speeds for the Kaimal, ESDU (also known as the 

"improved von Kármán"), and API turbulence models are shown in Figure 1 of (RP-0286 2019). 

 

 

Results for the slower speed (10 m/s) are presented on the left, and results for the faster speed (50 

m/s) are given on the right. The accuracy of the Frandsen model for estimating TI in wind farms 

is investigated here. Particularly for vast offshore wind farms, assessing the accuracy of such 

models is essential in light of the exponential increase in turbine size and the number of turbines 

in wind farms. In this study, the Frandsen model and a simplified version of the model are 

Figure 1-1: The normalized spectra of the Kaimal, ESDU, and API turbulence models were 
compared at wind speeds of 10 m/s and 50 m/s. 
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compared to measured data from the Greater Gabbard offshore wind farm. The models that 

depended on individual turbine wake turbulence did better at predicting TI values than the 

Frandsen model, which relied on a model of ambient wind farms. That the model relied on variance 

in the turbulence of the freestream flow rather than predicting the variance in the turbulence 

generated by individual turbines explains why the observed mean and the 90th percentile values 

were different. This result needs to be backed up by more studies. For this reason, the authors 

conclude that accurate turbulence modelling in wind farms is essential for ensuring the health of 

turbines under conditions of stress and fatigue (Argyle et al., 2018). 

While much effort has been put into building wake models to assess turbulence severity in offshore 

wind farms and anticipate wind speed reduction and power generation in wind farm arrays, very 

little work has been done to evaluate these models. The Frandsen model has not been extensively 

field-tested for its capacity to reliably estimate turbulence intensity, despite its initial development 

for calculating machine loads. Although calibrated using measurements from large eddy 

simulation models, the model has only been tested for estimating turbulence strength behind a 

single turbine. Semi-empirical models, such as the Frandsen model, are used to predict turbulence 

intensity in wind farm arrays, however this calls for more research (Calif & Emilion, 2012; Stevens 

& Meneveau, 2017). 

Following in the footsteps of similar studies and delving deeper into the model, Frandsen and 

Madsen proposed the idea of Wake-Added Turbulence (WFT) in their investigation of the 

Nrrekaer Enge II wind farm, which proved a fair correlation between measurements above the 

rotor height and the WFT model. However, it was stressed that due to the location of the 

meteorological mast, the data should be evaluated with caution. The "Windfarm Assessment Tool" 

was created by applying Frandsen's WFT equation from the IEC 61400 standard to data from the 

Middelgrunden offshore wind farm to predict the severity of turbulence. The model did a good job 

of predicting the trend in the data, but it drastically under-estimated the values because it didn't 

take into consideration the effects of stability and proximity to land.  

                                   σ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
2  = σ0

2 + σ𝑟𝑟𝑡𝑡𝑡𝑡𝑡𝑡𝑟𝑟
2                                                       Eq 1.1 

 

The standard deviation of wind speed and the velocity deficit were compared between models and 

measurements at the Wieringermeer test site in the Netherlands (Brand & Wagenaar, 2012). The 

study suggests that to get the entire variance of wind speed observed downstream of a turbine, one 
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needs to add the variance of the freestream wind speed (represented by a rough nodal square) to 

the variance of the wind speed generated by the turbine (represented by a rough rotor square). This 

was assumed to calculate the standard deviation of the wind speed.  

The study found that the standard deviation of the induced wind speed was best estimated using a 

model that incorporated a power law function that dropped downstream of the rotor and two 

Gaussian peaks that emanated from the edges of the rotor in the span-wise direction. Eight rotor 

diameters downwind, these crests converged into a single peak. The early increase in standard 

deviation is suppressed by the rotor's thrust (Larsen, 2009). The results, however, demonstrated 

that the standard deviation was significantly underestimated due to several reasons. These included 

the omission of nacelle-generated turbulence, inaccurate model parameters for the decay of wake-

generated turbulence, and the influence of freestream ambient turbulence intensity on the decay of 

additional turbulence. 

In a wind tunnel, scale models of both straight and staggered turbines were put through their paces. 

Studies demonstrated that the turbulence strength plateaued after the sixth row of turbines in an 

aligned array, providing support for the use of a turbulence model that includes ambient wake. 

Maximum turbulence intensity was shown to not significantly increase beyond the first row in the 

staggered array (Chamorro et al., 2011), in part because of the prolonged recovery period of the 

wake from an upstream turbine. When comparing the two systems, it was found that the 

experimental values for turbulence intensity at hub height behind the eleventh row of turbines, 

representing wind farm-added turbulence intensity, agreed well with calculations using Equation 

below, after accounting for uncertainties in determining the experimental thrust coefficients.  

                                    σ𝑡𝑡𝑎𝑎𝑎𝑎,𝑤𝑤𝑤𝑤 =   0.36𝑈𝑈0
1+0.2�𝑠𝑠𝑓𝑓𝑠𝑠𝑟𝑟/𝐶𝐶𝑇𝑇

                                                Eq 1.2 

The first two rows of turbines at the Lillgrund offshore windfarm were found to have significantly 

higher turbulence intensity levels when analysing wind directions with a 3.3D effective spacing, 

according to a study that used rotor effective wind speed (Göçmen & Giebel, 2016). However, this 

was the only noticeable rise. This lends credence to the recommendations made by the Frandsen 

model, which state that one must reach a certain distance inside the wind farm before the wakes 

have diffused sufficiently to establish an overall wind farm background turbulence intensity level. 

The accuracy of the Frandsen model in relation to CFD simulations of wind farms has been studied. 

Large eddy simulations of a wind farm with 16 turbines in the streamwise direction were studied 
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by a group of researchers (Andersen et al., 2016) who used boundary conditions to offer an 

unlimited width in the lateral direction. Rarely were comparisons made between the Frandsen 

model and varying degrees of turbulence and wind speeds. According to the findings, the Frandsen 

model has good general performance but should be used with caution. The model accurately 

predicted the turbulence intensity in the far wake, but due to the blocking effects of the rotors, the 

turbulence intensity in front of each rotor was overestimated. 

Finally, results from previous studies have revealed that the wind fields generated by LES and 

TIMESR display distinct differences across various atmospheric stability conditions. In unstable 

conditions, the wind shear is lower, the turbulence intensity is higher, and the structures are larger 

compared to neutral and stable conditions. Moreover, the unstable conditions exhibit more 

prominent coherent structures, which is evident from the coherence distributions in space and time. 

The frequency-dependent co-coherence values are higher in unstable conditions, and the first POD 

modes are significantly dominant. The wind fields generated by TIMESR and LES models are not 

completely representative of actual offshore wind conditions. More accurate measurements are 

required to better understand coherence in both vertical and horizontal directions, over distances 

that are relevant to modern offshore turbines. This will allow for more effective comparisons 

between models and real-world measurements. As wind turbine components are more affected by 

fatigue loads (Chambel et al., 2022) and unlike other offshore structures that are mainly affected 

by ultimate limit states and stress, this has led us to carefully consider the different effects of 

turbulence and how it affects the offshore wind turbine in a non-neutral condition. 

1.1 OBJECTIVES of STUDY 
The aim of this study is to investigate and compare various non-dimensionalised spectrum 

models through the analysis of the Bockstigen wind data.  

The specific objectives are: 

(1) To study the characteristics of the Bockstigen wind data; 

(2) To investigate the features of offshore turbulence in the frequency domain using the 

Bockstigen wind speed data. 

(3) To quantify and compare the observations and similarities between the co-coherence 

characteristics of offshore turbulence obtained from Bockstigen wind data at various 

heights. 
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1.2 STUDY HYPOTHESIS 
It is possible to determine a turbulence model that would be suitable for use in an offshore 

environment under non-neutral conditions. 

1.3 RESEARCH SCOPE 
This study was carried out by analysing datasets from the Bockstigen wind farm. In entails the 

analysis of atmospheric stability and various turbulence spectral models for determining the most 

suitable model for the offshore environment under non-neutral conditions. To better design future 

offshore wind turbines in terms of fatigue reactions, we can compare our data (from Bockstigen) 

and build new offshore wind turbulence models. 

1.4 PROJECT OUTLINE 
This study is divided into 5 chapters: 

• Chapter 1: Introduction- presents an introduction of the study. It highlights the motivation 

and problem statement of the study.  

• Chapter 2: Literature review- reviews relevant literature on the turbulence models and 

their applications in offshore environment modelling. It presents background knowledge, 

basic theories, atmospheric stability, turbulence models of wind profiles, and discussions 

on past research works and relevant findings. 

• Chapter 3: Methodology—describes the procedures that will be used to conduct the 

research. Methods for evaluating measurement data quality and selecting stationary 

velocity data are discussed. 

• Chapter 4: Results and Discussion- presents and discusses the simulation results. 

• Chapter 5: Conclusion- summarizes the findings and key observations. 
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CHAPTER 2 
2 LITERATURE REVIEW 

2.1 Wind Turbines 
In recent times, wind energy has become a crucial renewable energy resource to increase electrical 

power capacity; this is one reason for the surge in the global expenditures on renewable energy 

(Elgendi et., al, 2023). Renewable energy systems, such as solar, wind, hydro, and biomass, 

support the supply of energy demand while also boosting community development and 

environmental protection on a global scale. As wind energy has ranked amongst the most 

promising sustainable renewable energy sources, the amount of electricity available varies 

depending on wind conditions (speed, direction, etc.): this is the reason for the rise in studies to 

improve the effectiveness of harnessing wind energy more effectively (Elgendi et., al, 2023). 

 

Figure 2-1: Global wind installations in GW (source: Elgendi, 2023) 

2.1.1 How a Wind Turbine Works 
Wind turbines are devices that convert wind energy into electricity. They consist of a rotor, a 

nacelle, a tower, and other components such as a generator. There are several parameters that affect 

the technical performance of wind turbines which can include but not limited to  wind speed, blade 

design, generator efficiency, tower height, air density, maintenance and repair, environmental 

conditions, etc. As proposed by Tasneem et al., (2020), to install a wind turbine, especially in 

urban areas, a careful environmental assessment is required to identify the best and most effective 

locations to install the turbines as depicted in Fig. 2 below. 
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Figure 2-2: Wind speed variation for surface roughness and turbulence in urban areas (Source: 
Tasneem et al., 2020) 

In Sweden, the growth of wind energy and the consequential wind farm development has been 

exponential. It was recorded by Enevoldsen and Permien (2018) that the yearly annual percentage 

increase was explosive than the 2006-2017 global development as shown in the figure below. 

 

Figure 2-3: Wind turbine installations and capacity in Sweden compared to the  world 

2.1.2 The Dynamics of a Wind Plant 
The wind plant combines an array of wind turbines in the same location to produce electricity. 

Factors that affect the location and placement of a wind farm includes, wind conditions, the 

surrounding terrain, access to the transmission of electricity, and other site related factors. 
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Normally each turbine generates electricity that is transmitted to a substation which in turn 

transfers it to the grid that powers the connected communities. 

 

Figure 2-4:  Description of a Wind Farm and its components (Source: North Falls Offshore Wind 
Farm) 

The modus operandi incorporates the transmission line, which transmits electricity at high voltages 

over long distances from the wind turbine to areas where such energies are dissipated or needed, 

the transformers receive steps up or steps down the alternating current received from the turbines 

to give out safe voltage for our buildings and homes.  A substation is needed to function in the 

capacity of a link between the transmission system and the distribution system. The transformers 

mention earlier are placed within the substations.  
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Table 1: Offshore wind turbine and its components 

Direct Drive Offshore Wind Turbine and its Components (Source:  US Department of Energy) 

 

 

 

Generator blades 

The blades of wind turbines typically 
consist of three fiberglass blades. One 
side of the blade experiences lower air 
pressure as the wind blows over it. Lift 
and drag are generated by the differential 
in air pressure between the blade's 
leading and trailing edges. The rotor 
spins because the lift force is more than 
the drag force. GE's Haliade X turbine 
has blades that are 107 meters (351 feet) 
in length, which is roughly the length of 
a football field. 

Yaw System 

This system orients the wind turbine rotor 
towards the wind direction 

Wind vane and anemometer 

The wind vane detects the direction of the 
wind and relays that information to the 
yaw drive so that the turbine may be 
positioned to maximize energy 
production. 

The anemometer is responsible for 
tracking wind speed and relaying that 
information to the controller. 
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Hub and Rotor 

   

 

The Generator 

 Direct-drive generators don't use 
gearboxes. A large ring of permanent 
magnets spins with the rotor to create 
electric current in stationary copper coils. 
The generator doesn't need a gearbox to 
speed up to thousands of rotations per 
minute since the ring's wide diameter 
allows it to generate a lot of power at the 
same speed as the blades (8–20 rpm). 

The Pitch System  

The pitch system controls rotor speed by 
changing the wind turbine's blade angle. 
The pitch system controls energy extraction 
by altering turbine blade angles. The pitch 
system can "feather" the blades to avoid 
spinning the rotor. Feathering the blades 
slows the turbine rotor to prevent damage at 
high wind speeds. 
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2.2 Non-Neutral Conditions 
The DWM model is a wake model for wind turbines that was created initially in 2003 at the Ris 

Technical University of Denmark (Madsen et al., 2003, 2010; Larsen et al., 2008). When 

Rotor Bearing  

The rotor bearing holds up the main 
shaft and lowers friction between 
moving parts so that the forces from 
the rotor don't damage the shaft. 

Brake System 

The brakes on a turbine are not like the brakes 
on a car. The pitch system stops the rotor from 
turning, and a turbine brake keeps it from 
spinning. Once the controller stops the turbine 
blades, the brake keeps them from moving. 
This is needed for repair. 

The Controller  

The sensor lets the machine start when the wind 
is blowing between 7 and 11 miles per hour 
(mph) and turns it off when the wind is blowing 
between 55 and 65 mph. At higher wind speeds, 
the controller turns off the turbine so that 
different parts of the turbine don't get damaged. 
The driver is like the turbine's nervous system. 
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simulating the wake deficit downstream from a wind turbine, the DWM model can be used as an 

efficient and computationally cheaper alternative to computational fluid dynamics. The purpose of 

this research is to improve our ability to predict wind turbine loads and power output by accounting 

for the large-scale wake meandering motion, a key driver of wind turbine fatigue stresses. Because 

large-scale movements of the wake deficit affect wind turbine loads differently than small-scale 

turbulence, it is not possible to accurately describe wake turbulence and its impact on wind turbines 

using a single turbulence intensity parameter, such as that used in the Frandsen model (Frandsen 

ST, 2007). 

The DWM model is able to describe the impact of large-scale wake deficiency movements on 

wind turbine loads because it decomposes turbulence scales into two components. The model 

assumes that the meandering of the wake, caused by large turbulent scales, may be examined 

independently from the growth of the wake deficit. Using the wake deficit model proposed by 

(Ainslie, 1986, 1988), the dynamic wake meandering (DWM) model estimates the typical wake 

flow trailing a wind turbine. The Navier-Stokes equations are approximated using a thin shear 

layer with a straightforward eddy viscosity formulation as the basis for this model. However, 

(Keck et al., 2011) presented an enhanced eddy viscosity model that combines a two-dimensional 

eddy viscosity model into the DWM, which more accurately depicts the radial distribution of the 

turbulent energy. By properly characterizing the turbulence scales, this change allows for more 

precise projections of the loads on and output from wind turbines. 

The DWM model incorporates a wake-added turbulence expression to account for the extra 

turbulence generated in the wake shear layer. Although Madsen et al.'s (2005) implementation of 

a wake-added turbulence formulation based on the local depth and the radial gradient of the wake 

deficit accurately accounts for additional mechanical loads caused by small-scale turbulence, this 

correction is not coupled to the wake deficit evolution and has no effect on the development of 

downstream rotor wakes. Keck et al. (2012) proposed a different method for detecting wake-added 

turbulence, in which turbulent stresses in the preceding wake are used to determine the wake 

turbulence intensity level at the subsequent downstream turbine. A bigger amount of turbulence is 

built up over a wind farm because this formulation connects the wake-added turbulence to the 

wake deficit evolution at the downstream rotor. 
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2.3 Impact of atmospheric stability on turbine wake evolution 
Considering this, the developers of the DWM model set out to develop a model that accounts for 

the influence of air stability on the evolution of the turbine wake. Previous research has proven 

that air stability influences wake evolution. In the 1980s, air stability was investigated as a potential 

cause of wandering wakes (Ainslie, 1986). However, as stated by (Barthelmie et al, 2009), few 

existing engineering wake models consider the impacts of air stability. 

A wind farm's wake effects were found to be considerably influenced by atmospheric stability, 

even when the intensity of the ambient turbulence was held constant. The primary goal of this 

research was to determine if, after including the recommended changes, the DWM model can 

effectively account for the impact of non-neutral atmospheric stability on power generation. These 

results suggest that it is misleading to describe wake dynamics in the ABL just in terms of 

turbulence strength, and that the effect of air stability on the turbulent length scale is essential to 

comprehending the behavior of wind farms. It also means that the flow component in the mean 

wind direction is not sufficient for determining turbulence intensity, and that all three components 

must be taken into account. In particular, the published data reveal that atmospheric stability 

influences the meandering of the wake and the evolution of the wake deficit via influencing the 

length scale of air turbulence. In addition, the study discovered that air stability has a substantial 

effect on the Annual Energy Production (AEP) of a wind turbine affected by a single wake. Even 

if the strength of the surrounding turbulence is held constant, the wake effects in a wind farm will 

still be affected by stability. This shows that the turbulent length scale, which is controlled by air 

stability, plays an important role in the dynamics of wind farms, and that turbulence intensity alone 

is not adequate to reflect wake dynamics in the ABL. For highly unstable to very stable conditions, 

the air stability can affect the AEP of a wind turbine by as much as 0.50%, which is about 

equivalent to 25% of the AEP loss due to the wake. This seemingly small percentage could end up 

saving a large wind farm millions of dollars. Therefore, it is crucial to incorporate stability effects 

into the DWM model in order to get accurate estimations of AEP. Field measurements and 

simulations of the North Hoyle and OWEZ wind farms show that the power output of a row of 

wind turbines facing the same direction as the wind is reduced by about 10% in highly steady 

conditions compared to very unstable ones (Keck et al., 2013). 
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2.4 Deficit module’s turbulence intensity 
The DWM model incorporates wake-added turbulence to account for the impact of the small-scale 

turbulence created by the shear layer in the wake of the downstream turbine. The downstream 

turbine's wake evolution, loads, and induction are all influenced by the turbulence. To quantify the 

turbulence contribution of the wake, turbulent stresses are explicitly estimated as part of the wake 

deficit calculation as proposed by Larsen (2009). 

𝑇𝑇𝑇𝑇𝐷𝐷𝐷𝐷𝐷𝐷 𝐷𝐷𝑀𝑀𝑡𝑡𝑀𝑀 = max(�
1

𝐶𝐶𝑢𝑢′𝑤𝑤1(𝑤𝑤′𝑟𝑟𝑟𝑟𝑟𝑟
𝑢𝑢′𝑟𝑟𝑟𝑟𝑟𝑟

)
× 𝜏𝜏𝑠𝑠𝑡𝑡𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠 𝐷𝐷𝐷𝐷𝐷𝐷,𝑇𝑇𝑇𝑇𝑡𝑡𝑎𝑎𝑎𝑎) Eq. (2.1) 

The coefficient Cu′w′ and the ratio w′rms/u′rms are utilized to characterize the relationship 

between the axial and radial turbulent fluctuations in the wake because of the shorter length scale 

and increased anisotropy of wake turbulence. We used a w′rms/u′rms ratio of 1, based on prior 

work by Larsen, and a correlation coefficient of 0.3. 

The wake deficit of a DWM may be computed using the momentum equation, which looks like 

this: 

𝑢𝑢 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 + 𝑣𝑣 𝜕𝜕𝜕𝜕
𝜕𝜕𝑟𝑟

=  1
𝑟𝑟

𝜕𝜕
𝜕𝜕𝑟𝑟

(𝑣𝑣𝑇𝑇𝑟𝑟 𝜕𝜕𝜕𝜕
𝜕𝜕𝑟𝑟

) Eq. (2.2) 

 

Its stability is defined by the equations shown above, which involve the radial component (r) of 

the velocity (u) and the mean flow direction (x) of the velocity (v). To take turbulent diffusion 

into consideration, we employ the eddy viscosity (vT). This is accomplished by employing an 

equation describing a mixing length model in a dimensionless form. 

                                                𝑟𝑟 𝜕𝜕
𝜕𝜕𝑟𝑟

(𝑟𝑟𝑣𝑣) + 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

=  0                  Eq. 2.3 

In the similar context of non-neutral conditions for offshore environment, despite the well-known 

fact that unstable atmospheric stability conditions can cause higher turbulence, proper turbulent 

wind models for unstable conditions are not commonly used in simulating the loads and motions 

of offshore wind turbines. The authors simulated a spar-buoy offshore wind turbine (OWT) using 

their own Hjstrup model, which was developed specifically for unstable conditions. This allowed 

them to examine the importance of unstable conditions in the design of floating offshore wind 

turbines. The results show that unstable conditions have a major impact on the fatigue damage of 

a spar-buoy OWT, with very unstable conditions leading to 65% higher fatigue damage than 
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neutral conditions when discussing top tower torsion, followed by 37% greater fatigue damage 

when discussing base tower side-side bending, and finally 24 percent greater fatigue damage 

relevant to blade root flap-wise configuration. According to the findings, the turbulence intensity 

can increase by as much as 40 percent when a proper wind model is used for unstable atmospheric 

circumstances. Floating offshore wind turbines (FOWTs) must account for such situations in their 

design because they are so widespread in the ocean. The development and validation of a turbulent 

wind model that can account for unstable conditions in the offshore marine boundary layer is 

crucial for reducing the inherent risk in the design of large FOWTs. Therefore, the study 

emphasizes the need to account for variable weather conditions in FOWT designs and the creation 

of suitable wind models (Putri et al., 2019). 

2.4.1 Previous research works discussions on turbulent atmospheric boundary layer 
(ABL) 

The typical offshore environment is characterized by stable wind conditions and low turbulence 

levels. However, things change drastically once you enter a wind farm, as the flow becomes quite 

turbulent. As the number of offshore wind farms increases, it is essential that their internal flow 

characteristics be well understood. This knowledge is essential not only for optimizing the farm's 

performance but also for increasing the lifespan of individual turbines. Improved understanding of 

the flow characteristics inside offshore wind farms can aid in the development of effective models 

to represent the flow in the downstream region. Studying the flow characteristics in a wind farm 

can be facilitated by such models in a timely and productive manner. Considering this, researchers 

at Bockstigen investigated the role that generated turbulence plays in the evolution of flow along 

a long line of wind turbines in pursuit of a wake deficit asymptote. The study makes use of 

EllipSys3D, a computational fluid dynamics tool that employs a finite volume technique to solving 

the incompressible form of the Navier-Stokes equations. Turbulence is modelled using the Large-

Eddy Simulation technique, and wind turbine rotors are modelled as actuator discs whose loading 

is determined by applying the blade-element method to tabulated air foil data.  

This study reports that imposed turbulence and wind turbine rotors influence the flow 

characteristics along a row of ten turbines spaced by seven rotor diameters, as is customary in 

offshore wind farms. The Mann model generates two predetermined turbulence intensities, at 4.5 

and 8.9 percent. The turbines are protected from the environment, and a non-sheared intake is 

utilized, to prevent interference from the air boundary layer. The forced turbulence and the rotors' 

presence will be considered, but the focus will be on the flow's inherent features. The flow 
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characteristics are studied by taking readings of several statistical measures, such as the standard 

deviation, the kinetic energy of turbulence, the mean velocity, the power spectrum of axial velocity 

fluctuations, and the mean power generation along the turbine row. This research provides 

important information that can be used to improve the efficiency and effectiveness of wind farm 

design by shedding light on flow behaviour and turbine performance in the presence of generated 

turbulence. 

The models now include a generator torque controller for low-flow circumstances and rated-power 

operation. The study plotted the standard deviation of velocity components, kinetic energy of 

turbulence, power, and mean velocity as a function of downstream distance to highlight the flow 

characteristics. Ten of the turbines in the row reached an asymptotic wake state under the 

experimental conditions. In addition, accelerating the transition in the domain by introducing 

disturbance. The power spectra of axial velocity fluctuations helped shed light on turbulence 

(Breton et al., 2014), but they were ineffectual when it came to identifying if an asymptotic wake 

state had been attained. 

The surface fluxes between the land and the atmosphere are significantly influenced by the 

turbulent atmospheric boundary layer (ABL). Interactions between the ABL flow and individual 

turbine wakes are also complex in wind farms (Goit & Meyers, 2015). Large-eddy simulations 

(LES) have been utilized to explore land-ABL interactions and wind farm-ABL interactions to 

better understand the underlying flow mechanics (Anderson et al., 2012). These simulations have 

been crucial in helping scientists make sense of the myriad ways in which wind farms and the ABL 

flow interact. 

The spatial and temporal resolution of significant turbulent-flow fluctuations in wind farm-

atmospheric boundary layer (ABL) interactions can be accurately modelled using the large-eddy 

simulation (LES) method. These variations have a significant impact on design and operation 

considerations for wind farms, including fatigue loading of turbines and variations in power output. 

Wind energy research has made considerable use of LES for standard wind farm instances, 

including those with periodic boundary conditions, constant flow forcing, and a constant mean 

wind direction (Porté-Agel et al., 2011). The asymptotic limit of such systems can be better 

understood with the help of simulations of huge wind farms. However, the impacts of wind 

turbines on the incoming flow, as well as the spatial evolution of the flow in finite-length wind 

farms, must be considered. The existence of wind turbines does not negate the need for actual 
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inflow conditions to be included when modelling such systems. The significance of these 

stipulations has been previously established (Stevens et al., 2014). 

2.4.1.1 Impact of ABL on wind turbine modelling, design, and output 

While turbulence in the atmospheric boundary layer (ABL) can affect the power production of 

wind turbines, the effect is reduced when many turbines are distributed across a large region due 

to the limited spatial correlation and small length scales of the turbulence. Extreme power 

fluctuations occur throughout the entire wind farm due to variations in wind speed and direction 

caused by mesoscale meteorological processes such as cellular convection and weather fronts, 

which have length scales of 10 to hundreds of kilometres and associated timescales of tens of 

minutes to several hours (Ray PS, 1986). According to LES research on wind farms (Porté-Agel 

et al., 2013), even a small shift in mean wind direction can have a large impact on the wake 

conditions of downstream turbines, leading to a noticeable shift in wind farms' aggregate power 

output. Therefore, it is vital to incorporate large-scale mean-flow transients in wind-farm LES to 

accurately anticipate power under actual meteorological conditions. 

Considering these studies, authors performed a study where the concurrent precursor method is 

applied to a practical example that highlights the importance of inflow direction variability in wind 

farm modelling, especially for those situated in atmospheric boundary layers (ABLs) with possible 

mesoscale variations. However, application of precursor techniques is limited in scenarios where 

the mean inflow direction is variable. Researchers have designed and implemented a novel 

variable-direction precursor approach in the SP-Wind LES solver (Meyers & Meneveau, 2010) to 

address this limitation and improve the solver's capability to handle flow scenarios with varying 

inflow directions. In situations when the mean-flow direction varies, the newly developed variable-

direction precursor method allows turbulence-resolving simulations to have fully formed turbulent 

inflow conditions. This can be accomplished without increasing the already low computing 

expenses of traditional precursor methods. If the rate of change in the flow direction is not 

excessively quick in comparison to the turbulence time scales in the major domain of interest, the 

method can be applied to both LES and DNS. Because of this, the method can be applied to a wide 

variety of scenarios involving varying inflow rates and directions.  

The growth of wind energy in recent years has inspired hope that it may soon make a substantial 

contribution to satisfying the global need for electricity. Increasing wind power penetration and 

making the switch to a sustainable energy system, however, requires the construction of large-
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scale onshore and offshore wind farms due to wind power's notoriously low power density. Recent 

study has focused on the interplay between wakes generated by huge wind turbines and highly 

variable air flow phenomena that occur on an even greater scale to better understand the flow and 

turbulence phenomena that occur in these extended wind farms. 

Each component must be considered independently if the complex multiscale system of wind 

energy is to be comprehended. Individual wind turbine design and optimization are well-studied 

and developed fields (Snel, 1998; Burton et al., 2001; Herbert et al., 2007), especially for big 

horizontal-axis turbines. The aerodynamics of horizontal-axis wind turbines were reviewed in 

detail by Srensen in 2011, and the structure of wakes caused by individual turbines has been the 

subject of numerous studies. Models that characterize the wake structure of a single wind turbine 

are typically used in conjunction with methods that consider the interaction and superposition of 

numerous wakes in the design and optimization of wind farms. The use of Reynolds-averaged 

Navier-Stokes (RANS) flow models, which have been extensively studied for wind turbines and 

wind farms by (Vermeer et al., 2003; Sanderse et al., 2011), is also common. 

Researchers have taken a broader view of the atmosphere to learn more about wind turbine arrays. 

By taking a roughness element model, like in Newman (1977) and Meneveau (2012), wind turbine 

arrays can be studied in a new light. These findings have been incorporated into models examining 

the regional and global impacts of massive wind farms on weather and climate (Zhou et al., 2012). 

Considering the aforementioned, the wind turbine array boundary layer (WTABL) has developed 

as a distinct type of boundary layer flow in wind farms, and a thorough understanding of individual 

wind turbine wakes and the atmospheric boundary layer is required for optimal design and 

operation. To further understand the underlying flow dynamics, the literature on wind tunnel 

experiments, field observations, and computational and theoretical developments is required. 

Large Eddy Simulation (LES) and Reynolds-Averaged Navier-Stokes (RANS) models are used to 

compute the mean three-dimensional velocity distributions and temporal fluctuations, with the 

latter coming at a high computational cost due to the lack of a general theory of the superposition 

of canonical turbulent shear flows. By summarizing these results, we gain a deeper understanding 

of the interplay between WTABL's components and their implications for optimizing wind farms. 

Quick prediction methods based on analytical or simplified numerical models are needed for 

effective wind farm design. Some such models are highlighted in the papers, and comparisons to 
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experimental and simulated data are made. Multiple wakes interacting with the atmospheric 

boundary layer (ABL) and a free wake in a turbulent environment are used in the analytical models. 

These models account for the separate flows' turbulent kinetic energy and modify flow parameters 

like the wake expansion coefficient to replicate the ABL's behaviour at a broader scale. Analytical 

models can be evaluated for use in real-world engineering design by comparing them to data from 

experiments and simulations (Stevens et al., 2017). 

To describe the wind characteristics of an offshore wind turbine, the current standards suggest 

using a very simple turbulence model (IEC 61400-1, 2005). These simulations are grounded in 

data gathered from studies of wind over land, small turbines, and stationary bases. As the rotor 

size of offshore wind turbines continues to grow (Golston et al., 2019), the importance of the wind's 

temporal and spatial change over the rotor diameter rises. The nominal rotor frequency of roughly 

10 revolutions per minute for big, bottom-fixed, offshore wind turbines is the lowest relevant 

frequency for load analysis. Taking into consideration natural modes associated to stiff body 

motions is essential while designing floating wind turbines. The six rigid body types of motion can 

have natural periods anywhere from a few seconds to more than a hundred seconds, depending on 

the design. The description of the wind field is complicated by these low-frequency natural 

periods. To obtain realistic loads, the turbulence's low-frequency turbulent energy and spatial 

organization must be accurate. 

2.4.1.2 Turbulence models and the modelling turbulence spectra 

The Kaimal spectral (Kaimal et al., 1972) and exponential coherence model (IEC 61400-1, 2005) 

or the Mann spectral tensor model (IEC 61400-1, 2005) are two turbulence models recommended 

by the International Electrotechnical Commission (IEC) wind turbine design standard. When it 

comes to low frequencies, however, which are crucial for floating wind turbines, studies have 

shown that the choice of turbulence model can have a considerable impact on the response of a 

wind turbine. Therefore, evaluating how well these two models depict offshore wind fields is 

crucial. 

The reaction of a wind turbine is greatly affected by the wind characteristics measured at the hub 

height, such as wind speed and turbulence intensity (TI) (Robertson et al., 2018). However, as 

rotor diameters increase, knowledge of the wind field's spatial and temporal dispersion becomes 

more crucial. Both wind shear (the difference in average wind speed at different heights in a rotor) 

and coherent structures have significant roles. Analysing the correlation in frequency space, or 



21 
 

coherence, allows us to see coherent patterns at work throughout a range of separation distances. 

The rotor plane can be analysed with proper orthogonal decomposition (POD) to find coherent 

structures. 

While all standardized turbulence models provide wind fields with the same point statistics and 

shear, the coherence and POD modes might vary from one model to the next (Bachynski & 

Eliassen, 2018; Doubrawa et al., 2019). Eliassen and Obhrai (2016) reviewed previous research 

that compared turbulence models to offshore data, with an emphasis on spectra and coherence. 

The North Sea offshore mast FINO1 (FuE-Zentrum FH Kiel GmbH) provided data for these 

analyses, which offers crucial insights into the offshore wind field. Measurements, however, 

should not be taken as the "truth" because they can only be taken at a small number of points in 

space and need to go through processing and quality assurance before being used. The TIMESR 

function in TurbSim (Kelley N. et al. 2023), for example, can be used to build wind field 

simulations from point observations, but doing so requires making a number of assumptions and 

simplifications. 

Large-eddy simulations (LES) are a more sophisticated alternative to the simple turbulence models 

specified by the standard for generating wind fields. Solving the equations of momentum and 

pressure is a computationally intensive step in this method. Wind fields produced by LES have 

been compared to those produced by the Kaimal and/or Mann models in a number of studies 

(Doubrawa et al., 2019; Simley & Pao, 2015; Berg et al., 2016). Comparing these models with 

LES allows for the evaluation of lateral coherence and proper orthogonal decomposition (POD) 

modes, which cannot be measured through point measurements. 

Although there is considerable leeway for changing turbulence strength to non-neutral 

circumstances, the turbulence models recommended by the IEC design standard are largely 

intended for neutral stratification. This, however, ignores the reality that other conventional 

parameters continue to be the same no matter the state of atmospheric stability. Several studies 

(Sathe et al., 2007; Holtslag et al., 2016) have shown that the wind profile and turbulent structure 

of the wind field are significantly affected by air stability, and hence the dynamic response of wind 

turbines. Therefore, it is essential to compare these reference models to observations or LES for 

different states of atmospheric stability. This is especially important for offshore wind turbines, as 

they operate in environments with less turbulence and wake recovery is very sensitive to stability. 
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As a result, research has been done to assess whether the Mann and Kaimal turbulence models, as 

suggested by the IEC design standard, are adequate for forecasting wind turbine response and 

weather conditions. The evaluation relies on a comparison of the reference wind fields to both 

offshore measurements and Large-Eddy Simulations (LES) run with the SOWFA simulation 

program (Churchfield et al.). Standard turbulence models and their industrial applications are 

thoroughly described and tested in this paper, with results broken down by atmospheric stability 

conditions and wind speed. The turbulence intensity and wind profile are modified to fit stable or 

unstable conditions, however the neutral flow assumed by the Kaimal and Mann spectral formulas 

is not considered in this investigation. Each technique is simulated nine times, once at each of three 

different wind speeds (below, at, and above the rated speed) and three different atmospheric 

circumstances (unstable, neutral, and stable). The study's objective was to examine the impact on 

the dynamic response of big offshore wind turbines of using different turbulence models to mimic 

wind fields under varying atmospheric stability conditions. Important for turbine response are 

spatial and temporal variations in coherence and POD modes, which are the focus of this analysis. 

It employs the generated wind fields for dynamic response analysis to better understand the 

capabilities of the baseline turbulence models. It took just over an hour of simulations to capture 

all the important frequencies produced by both land-based and offshore wind farms using massive 

turbines. For load balancing reasons, 200 extra seconds will be added. The DTU 10-MW reference 

turbine (Bak et al., 2013) was chosen to maintain uniformity; it has a diameter of 178.3 m, a hub 

height of 119 m, and a rated wind speed of 11.4 m/s. 

2.5 Theoretical Background 
2.5.1 Monin–Obukhov Similarity Theory (MOST) 
The Monin-Obukhov similarity theory (MOST) provides expressions for estimating the vertical 

profiles of wind speed, temperature, and humidity in the atmospheric surface layer, which is the 

layer of the atmosphere that is directly influenced by the Earth's surface. It considers the effects of 

buoyancy, which arise from the heating or cooling of the surface, and shear, which arises from 

wind speed variations with height (Putri et al., 2022). 

Monin-Obukhov theory has numerous applications in atmospheric science and meteorology, 

including weather prediction, climate modelling, air pollution studies, and agriculture. It is used to 

estimate fluxes of heat, moisture, and momentum at the Earth's surface, and to understand the 

dynamics of the atmospheric boundary layer, which is the lowest part of the atmosphere that 
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interacts directly with the surface. It is an important tool for understanding and predicting the 

behaviour of the atmospheric surface layer, which has significant impacts on weather, climate, and 

human activities. 

The average (𝑢𝑢,  𝑣𝑣,  𝑤𝑤,) and the fluctuating (𝑢𝑢′, 𝑣𝑣′, 𝑤𝑤′) parts of the along-wind, crosswind, and 

vertical velocity components are denoted by u, v, and w, respectively. The theory works on the 

assumption that 𝑣𝑣,  𝑎𝑎𝑎𝑎𝑎𝑎 𝑤𝑤,  are close to zero on smooth, uniform surfaces. This model requires the 

random processes making up the fluctuations to be stationary, Gaussian, and ergodic (Monin, 

1958). 

Power spectral density (PSD) and root coherence modelling of the 'v' component may be required 

for asymmetrical flow situations even though the 'u' component is what drives the rotor fatigue 

stresses (Sanchez Gomez and Lundquist, 2020). When the wind is blowing from different 

directions, it can cause a skew in the flow. Mouzakis et al. (1999) argued, however, that the vertical 

velocity component is more important for fatigue load estimate in wind turbines. 

2.5.1.1 Thermal Stratification of the Atmosphere using MOST 

The thermal classification is stratified by  

𝝃𝝃 =  𝒛𝒛
𝑳𝑳�  

Where z = height above the surface 

𝐿𝐿 =  𝜕𝜕∗
3𝜃𝜃𝑣𝑣

𝑔𝑔𝑘𝑘�𝑤𝑤′𝜃𝜃𝑣𝑣
′�

 = Obukhov Length (Monin and Obukhov, 1954) 

𝑢𝑢∗ = 𝑓𝑓𝑟𝑟𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎 𝑣𝑣𝑣𝑣𝑣𝑣𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑣𝑣 (𝑆𝑆𝑓𝑓𝑎𝑎𝑣𝑣𝑓𝑓𝑎𝑎𝑆𝑆 𝑣𝑣𝑣𝑣𝑣𝑣𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑣𝑣) 

𝜃𝜃𝑣𝑣 = 𝑚𝑚𝑣𝑣𝑎𝑎𝑎𝑎 𝑣𝑣𝑓𝑓𝑟𝑟𝑓𝑓𝑢𝑢𝑎𝑎𝑣𝑣 𝑝𝑝𝑓𝑓𝑓𝑓𝑣𝑣𝑎𝑎𝑓𝑓𝑓𝑓𝑎𝑎𝑣𝑣 𝑓𝑓𝑣𝑣𝑚𝑚𝑝𝑝𝑣𝑣𝑟𝑟𝑎𝑎𝑓𝑓𝑢𝑢𝑟𝑟𝑣𝑣 

G = 9.81m/s2  

k  ≈ 0.4 = von Karman constant 

𝑤𝑤′𝜃𝜃𝑣𝑣
′  = vertical flux of virtual potential temperature. 

Eq. (2.4) 

 

Eq. (2.5) 

Putri et al., 2022, suggested a method for obtaining 𝜃𝜃𝑣𝑣
′  which includes. 

(1) Approximating it by the fluctuating sonic temperature measurement 

(2) If it cannot be derived from sonic anemometers, then it could be obtained from the absolute 

temperature recordings. This temperature data was converted from pressure data. 

The friction velocity above can be computed as follows. Eq. (2.5) 
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𝑢𝑢∗ =  �𝑢𝑢′𝑤𝑤′2
+  𝑣𝑣′𝑤𝑤′24

  

 

2.5.1.2 Assessing the credibility of MOST 

(1) By studying the non-dimensional mean wind speed profile  

(2) The validity of MOST is affected by the presence of waves. 

(3) If there are internal boundary layers, and the fetch is several kilometres in length. 

u∗ = u 0w 0 +v w 0  Eq. (2.6) 
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Where 
 

Ø𝑎𝑎 ≈ {1+4.8(𝜁𝜁),                     0 ≤ 𝜁𝜁 < 1
1+15.2|𝜁𝜁|−1 4⁄ ,      −2 ≤ 𝜁𝜁 < 0  

 
                                                   [As empirically presented by Hogstrom (1988)] 

Eq. (2.7) 

2.5.1.3 One point turbulence spectrum 

Below is presented the normalised surface layer one-point velocity spectra and how it expresses a 

universal behaviour in the inertial subrange. 

𝑤𝑤𝑆𝑆𝑢𝑢(𝑤𝑤)
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−2 3⁄ at 𝑓𝑓𝑟𝑟 ≫ 1 Eq. (2.8) 
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Su, Sv, and Sw are the velocity spectra for the along-wind, crosswind, and vertical 

velocity components, where f is the frequency and Su, Sv, and Sw are the 

corresponding spectra. 

Eq. (2.9) 

 
Non-dimensional turbulent kinetic energy dissipation rate 

          
      Ø𝜖𝜖 = 𝑘𝑘𝑘𝑘𝜖𝜖

𝜕𝜕∗
3          by Wyngaard and Cote, 1971 

 

Eq. (2.10) 
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𝜖𝜖 is the rate of dissipation of kinetic energy in turbulent flows. 

Ø𝜖𝜖
2 3⁄ =� 1 + 0.5|𝜁𝜁|2 3⁄ ,         𝜁𝜁 ≤  0

(1 + 5𝜁𝜁)2 3⁄               𝜁𝜁 ≥ 0  
  by Kaimal and Finnigan, 1994; Putri et 

al., 2022 

Eq. (2.11) 

 

2.5.1.4 The Root- Coherence and Co-coherence of turbulence 

One of the primary characteristics for the structural design of wind turbines is the root coherence, 

which is defined as the normalized cross-spectral density of turbulence and has a complex valued 

entity; the real part is called the co-coherence.  

The co-coherence at vertical separations  𝛾𝛾𝑖𝑖 where i = {u, v, w} is described 
thus 
 

𝛾𝛾𝑖𝑖(𝑘𝑘1, 𝑘𝑘2, 𝑘𝑘3, 𝑓𝑓) = 𝑀𝑀𝑒𝑒[𝑆𝑆𝑖𝑖(𝑘𝑘1,𝑘𝑘2,𝑤𝑤)]
�𝑆𝑆𝑖𝑖(𝑘𝑘1,𝑤𝑤)𝑆𝑆𝑖𝑖(𝑘𝑘2,𝑤𝑤)

                   by IEC 61400-1, 2005 

 
𝑆𝑆𝑖𝑖(𝑘𝑘1, 𝑘𝑘2, 𝑓𝑓) = density of the cross-spectrum at two points, z1 and z2, at 

elevations z1 and z2. 

𝑆𝑆𝑖𝑖(𝑘𝑘1, 𝑓𝑓) = one-point spectra estimated at z1 

𝑆𝑆𝑖𝑖(𝑘𝑘2, 𝑓𝑓) = one-point spectra estimated at z2 

 

Eq. (2.12) 

The following presents an empirical model for characterizing the coherence for vertical 

separations: 

This empirical model was proposed by Davenport (1961) 
 

𝛾𝛾𝑖𝑖(𝑎𝑎) ≈ exp (−𝑓𝑓𝑖𝑖 𝑎𝑎) 
 

Where n (reduced frequency) = 2𝑤𝑤𝑎𝑎𝑧𝑧
𝜕𝜕�(𝑘𝑘1)+𝜕𝜕�(𝑘𝑘2)

 
 
𝑎𝑎𝑘𝑘 =  |𝑘𝑘1 −  𝑘𝑘2|. At three different heights z1 > z2 > z3, such that z1 – z2 = z2 – 
z3. ci was described as a decay parameter. 
 
The Davenport’s equation was later modified by Bowen et al. (1983) were he 
assumed a linear decay function. 
                                                   
 

 
 
Eq. (2.13) 
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𝑓𝑓𝑖𝑖 = 𝑓𝑓1
𝑖𝑖 + 2𝑐𝑐2

𝑖𝑖 𝑎𝑎𝑧𝑧
(𝑘𝑘1+𝑘𝑘2)

` Eq. (2.14) 
 
 

As seen in the preceding equation 2.14, the coherence can grow with increasing height of 

measurement if the signal is blocked by the ground or a surface. Particularly when the data are 

coupled with huge separations, the co-coherence may diminish at a faster rate than predicted by 

Davenport's model. Equations 2.15–2.17 are the result of a later change to Equation 2.14 by 

Bowen et al. (1983), which introduced a third decay parameter. 

𝛾𝛾𝑖𝑖𝑖𝑖(𝑘𝑘1, 𝑘𝑘2, 𝑓𝑓) = exp (−𝑓𝑓𝑡𝑡)exp(−𝑓𝑓𝑎𝑎) 
 

Eq. (2.15) 

 

𝑓𝑓𝑡𝑡 =
|𝑘𝑘2 − 𝑘𝑘1|
𝑢𝑢�(𝑘𝑘1, 𝑘𝑘2)

��𝑓𝑓1
𝑖𝑖 𝑓𝑓�

2
+ �𝑓𝑓3

𝑖𝑖 �
2

 

 

Eq. (2.16) 

 

𝑓𝑓𝑎𝑎 =
2𝑓𝑓2

𝑖𝑖 |𝑘𝑘2 − 𝑘𝑘1|2

(𝑘𝑘1 + 𝑘𝑘2)𝑢𝑢�(𝑘𝑘1, 𝑘𝑘2)
 Eq. (2.17) 

The co-coherence can be calculated using Equation 2.18, which was later suggested by IEC 61400-
1 (2005). 

𝛾𝛾𝜕𝜕(𝑓𝑓, 𝑎𝑎𝑘𝑘) = exp �−12 ��
𝑓𝑓𝑎𝑎𝑘𝑘

𝑢𝑢�ℎ𝜕𝜕𝑎𝑎
+ �0.12

𝑎𝑎𝑘𝑘

8.1𝐿𝐿𝑐𝑐
�

2

�� 
Eq. (2.18) 

 

�0.7𝑘𝑘,    𝑘𝑘 ≤ 60𝑚𝑚,     Lc = 42m, z ≥ 60m. 
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CHAPTER 3 
3 METHODOLOGY 

3.1 Site Description 
Five 500k wind turbines make up the Bockstigen offshore wind farm, which was built three 

kilometres off the SW coast of Gotland Island in the Baltic. The initiative was sparked by a desire 

to learn more about bottom-mounted offshore wind turbine installations, and more specifically, 

about driving monopiles into rock-core strata. 

 

Figure 3-1: The Bockstigen wind farm situated in Sweden (Source: Hansen, 2005)  

One meteorological mast and one instrumented turbine are used for the observations, but no data 

from the rotating system itself is considered. Multiple data loggers were used to sample the data 

(20 Hz data scan), and the resulting signals are transferred via optical fibre cable (4.5 km) to a 
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shoreside cottage. There are five wind turbines and a mast at this location. At a typical wind speed 

of 8m/s, annual energy production fluctuates between 1420 MWh and 1539 MWh (Goran, 2005). 

p 

Figure 3-2: Orientation of meteorological mast and wind turbines 

The individual turbines are located in a V-formation 350m apart in an area with a water depth 

varying between 5.5 and 6.5m. On each of the turbines the various instrumentation types carried 

out through the Bockstigen available channels includes, the tower bending moment in the x and y 

directions, tower torsion, tower shear force in the x and y directions, linear acceleration in the x, 

y, z directions, angular accelereation in the x, y, z directions, wind speed, temperature, relative 

humidity, and active power. 
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Table 2: Summary of wind speed measurements 

 

 

 
Figure 3-3: Position of Sensor on Wind Turbine 4 (Source: Goran Ronsten) 

3.2 Bockstigen observation data information 
The raw time series of wind speed and wind direction observations from a 50-meter offshore mast 

in Bockstigen, Gotland, Sweden, are included in this collection. Since the year 2000, the period 

comprises roughly 1,200 hours of offshore measurements. 
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Figure 3-4: Nominal Turbulence Distribution (Source: Goran Ronsten) 

3.3 Data Processing 
The procedure to carry on the data processing of the data is provided in Appendix A.  The main 

statistical quantities of interest are: (i) the mean wind speed data; (ii) the variance; and (iii) he 

standard deviation. 

3.3.1 Categorization of the time series. 
According to Patil et al., (2022), the time series is considered stationary when the absolute relative 

difference between the moving mean and the static mean does not exceed 20%, and 40%.  The 

cutoff values are calculated using the Lumley and Panof, 1964-proposed statistical uncertainty 

associated with the variance of a random process relative to its mean.  

Applying the MOST model to the data would allow us to estimate the distribution of the non-

dimensional stability parameter (𝜁𝜁) as a function of the mean wind speed (𝑢𝑢� ), and recognize 

stability conditions such as non-neutral (i.e., where |𝜁𝜁| > 0.1) and strongly unstable or stable 

stratifications (|𝜁𝜁| > 0.5). The co-coherence and quad-coherence (the imaginary part of the root 

coherence) between the vertical velocity component w and the velocity of the wave surface = d /dt 

will be used to investigate the interactions between wind turbulence and the sea surface. 

3.3.2 Mean  
The mean of each column was computed using the equation Eq. 3.1. The mean wind speed is the 

average of the given set of numbers and is calculated by dividing the sum of given numbers by the 

total number of numbers. 

𝐴𝐴 = 1
𝑛𝑛

∑ 𝑎𝑎𝑖𝑖
𝑛𝑛
𝑖𝑖=2  (Eq. 3.1) 
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Where A is the Arithmetic mean, n is the number of values or observations and 𝑎𝑎𝑓𝑓 is the wind speed 

data. 

3.3.3 Variance and Standard Deviation: 
The variance of each column, s, was computed using the equation given in Eq. 3.2. The variance 

is a measure of dispersion of the data, meaning it is a measure of how far a data set is spread out 

from their average value. 

𝑠𝑠2 = ∑(𝜕𝜕1−�̅�𝜕)2

n − 1
 (Eq. 3.2) 

In the above equation, 𝑥𝑥𝑓𝑓 is the value of one observation,  𝑥𝑥�  is the mean wind speed of all 

observation data and n is the sample size.  

The standard deviation of the wind speed data was computed using the Eq. 3.3. The standard 

deviation is a statistic that measures the dispersion of a dataset relative to its mean and is calculated 

as the square root of the variance. A low standard deviation indicates that the values tend to be 

close to the mean of the set, while a high standard deviation indicates that the values are spread 

out over a wider range.  

𝜎𝜎 = �∑(𝜕𝜕1−�̅�𝜕)2

n − 1
 (Eq. 3.3) 

where 𝜎𝜎 is the standard deviation.  

3.3.4 Max and Min Wind Speed 
The extreme values of the data are recorded. The wind speed blowing at different height was then 

extracted and grouped according to the direction which has the most prominent wind considering 

at different heights and direction. 

3.3.5 Stationarity test: 
In addition, a stationarity test was performed on the data. For each of the wind speed calculated 

and recorded, a stationarity test was performed using the RA function in MATLAB, while in the 

reality most of the stochastic process are non-stationary due to their randomness in nature, very 

often time-series measurements assume the data as stationary. The mean, variance, and auto-

correlation structure do not alter over time in a stationary process. Although stationarity can be 

precisely defined mathematically, for our purposes, we refer to a series that appears flat, has no 

trend, has constant variance over time, has a consistent autocorrelation structure across time, and 

does not exhibit periodic fluctuations. If the time series is not stationary, one of the following 

methods can usually make it stationary. 
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1. We can difference the data. That is, given the series Zt, we create the new series: 

𝑌𝑌𝑓𝑓=𝑘𝑘𝑓𝑓-𝑘𝑘𝑓𝑓-1 

There will be one extra data point in the original set than in the differenced set. The data 

can be changed multiple times, although usually only one time is sufficient. 

2. If there is a trend in the data, the residuals from the fit can be modeled. Straight-line fittings 

and other simple ones are widely used. The primary focus of the fit is to remove the long-

term trend. 

3.  If the variance is not constant, you can stabilize it by taking the logarithm of the series or 

the square root of the series. If any of the input values are negative, a suitable constant must 

be added before the transformation is applied. The fitted (or expected) values are then 

derived by subtracting this constant from the model to obtain the anticipated values and 

projections for future points. 

The stationarity test revealed that the wind speed is constant. This because, the measurement was 

made in the winter, when the wind is more likely to be unstable and turbulent than in the spring. 

The nonstationary series was subsequently subjected to a detrending function, which resulted in 

the series being stationary. 

As seen Figure 3-5 and 3-6 of the wind speed and wind direction are shown at different height 
i.e. 8m, 22m,37m, 40m. 

where the blue wind speed shows the non-stationary series and the red show it when stationary, 
after it has been detrended 
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Figure 3-5: (a:  wind speed at 8m elevation;(b) wind direction at 8m elevation;(c) wind speed at 
22m elevation; (d) wind direction at 22m elevation 
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Figure 3-6 (e: wind speed at 37m elevation; (f) wind direction at 37m elevation; (g) wind speed 

at 40m elevation; (h) wind direction at 40m elevation 

3.4 Power Spectra Density Using Welch vs FFT Method 
The power spectral density (PSD) is commonly used to evaluate the power levels of the frequency 

components that are present in a signal. The PSD spectra is an essential representation of power 

vs frequency relationship of a time series data. The PSD indicates the range of power at 

which the signal frequencies are functioning and details the power of 

various frequencies included in the signal.  

In this study we are comparing the spectra density of the data measured and we use two different 

method Welch and Fast Fourier Transform (FFT) to compare and show in a plot at different height.  

3.4.1.1 Welch Method 

The method relies on periodogram spectrum estimates, which are generated via a time-to-

frequency transformation of a signal. The Welch spectrum uses a Hanning function to divide the 



35 
 

signal into discrete bands. Welch's segment count is relative to the overlap size and segment length. 

The degree of freedom (DOF) is traditionally employed to assess the statistical stability of the 

welch spectra. For instance, in the study of ocean wave statistics, a degree of freedom (DOF) of at 

least 16 is adequate. By default, MATLAB's Welch technique for estimating power spectral 

density uses the longest feasible signal segments to get 8 segments with at most 50% overlap. A 

Hamming window is applied to each individual section. The PSD estimate is calculated by taking 

the mean of the adjusted periodograms.  

3.4.1.2 Fast Fourier Transform (FFT) 

In the fast fourier transform (FFT), the signal is converted from the time to the frequency domain. 

The built-in Matlab function fft() determines the signal's fft value. The PSD explains the 

frequency-dependent power (or variance) distribution of the time series. The PSD displays the 

energy variation as a function of frequency. In other words, the PSD reveals where there are 

significant frequency differences and where there are minor variations. The FFT approach is used 

to calculate the PSD directly, or the autocorrelation function can be computed first and then 

converted. 
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Chapter 4 
4 RESULTS and DISCUSSION 

4.1 Data description, Quality Assessment, and Numerical Simulations 
Here, statistical analysis are performed on the dataset to spot trends, outliers, and anomalies. In 

line with the approach taken by Patil et al., 2022, we would compute the moving mean and the 

moving standard deviation of the along-wind components across a 10-minute window to evaluate 

the first- and second-order stationarity of the velocity records. 

4.1.1 Turbulence spectra 
The Power Spectral Density (PSD) of the velocity variations is critical for describing the wind-

induced reaction of wind turbines. Separate estimations will be done for the along-wind, 

crosswind, and vertical-wind components to determine the PSD of the Bockstigen wind farm as a 

function of the lowered frequency fr for various stability classes. Patil et al. (2022) employed a 

technique to normalize PSDs based on the friction velocity (u*) and the non-dimensional turbulent 

kinetic energy dissipation rate (∅𝜖𝜖 ). Different heights above mean sea level (a.m.s.l.) might 

likewise be used to compare the estimated spectra. 

 In the figures, the power levels of the frequency components that are present in a signal are 

specified by the PSD. The PSD, which details the power of various frequencies included in the 

signal allows us to discover the range of power at which the signal frequencies are functioning.  

As observed in the figures, the PSD profile is essentially a representation of power vs frequency. 

The spectra density of the data measured is analysed using two different methods: the Welch and 

Fast Fourier Transform (FFT). A comparison between the power spectra at different heights 

obtained from each one of the two methods is carried on.   

When evaluating the power spectra density of time series data, the Welch method is a viable 

alternative. By averaging or smoothing out the periodogram estimations, the method was created 

to cut down on periodogram variance. The Welch method is a refined version of the Bartlett 

method (insert ref.). The Welch method allows the overlapping of the data, and each data segment 

is windowed prior to computation of the PSD. At the fundamental level, the Welch's method 

divides the original signal in several pieces, therefore increasing the size of the sample and 

averages the spectra of increased signal.  
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The figure below shows that the dominant wind speed is between wind directions are between 

223–350°at Bockstigen. The increasing wind speed to the left indicates that winds come primarily 

from the west, but also the north and the east. 

 

Figure 4-1: Windrose: distribution of stability of wind speed 

Figure 4-2 plots the frequency distribution of the wind speeds. According to the frequency 

distribution of the wind speed, a large occurrence frequency is observed for wind speeds between 

6 and 10 m/s.  The distribution of the mean wind speed as a function of the Richardson number is 

plotted in Figure 4-3 for the different anemometer heights. As observed, the mean wind speed was 

larger at the 9 m a.m.s.l., which is associated with a Richardson number between -0.2 to 0.4 and -

1.2 and 1.0. For the remaining anemometer height, the mean wind speed was significantly smaller 

than at 9 m  a.m.s.l. 
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Figure 4-2: Frequency distribution of wind speed 

               

Figure 4-3: Mean Wind speed distribution as a function of the Richardson number 
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Welch and FFT PSD estimations were calculated using the MATLAB code provided in Appendix 

A. The Welch and FFT PSDs are drastically different from one another, as shown in Figures 4.4 

and 4.13 which is due to the sensitivity of the FFT signal to non-stationarity. For signals that have 

non-stationary components, the FFT offers a more accurate estimate than the Welch. The Fast 

Fourier Transform (FFT) is used to obtain a global spectrum estimate of the signal, although it is 

very susceptible to noise and other non-stationary effects. Since you are averaging a succession of 

FFTs produced on each segment, the frequency resolution of the welch spectrum is lower than that 

of a single FFT. FFT spectral analysis of the time series signal showed no peak in the spectrum as 

a function of wind speed, as depicted in the images. According to (Shah and Ferziger 1997), these 

findings are characteristic of turbulent flows, which feature repetitive structures that differ in size, 

strength, and frequency.  

The Welch and the FFT spectra matched in the in the higher frequency range of the velocity 

spectra, from frequency f above 10−2 Hz, but in the lower frequency range the Welch spectra 

exceeded the FFT spectra.  
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Figure 4-4: Average PSD for wind speed 5-6 m/s 

 

Figure 4-5: Average PSD for wind speed 6-7 m/s 
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Figure 4-6: Average PSD for wind speed 7-8 m/s 

 

Figure 4-7: Average PSD for wind speed 8-9 m/s 
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Figure 4-8: Average PSD for wind speed 9-10 m/s 

 

Figure 4-9: Average PSD for wind speed 10-11 m/s 
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Figure 4-10: Average PSD for wind speed 11-12 m/s 

 

Figure 4-11: Average PSD for wind speed 12-13 m/s 
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Figure 4-12: Average PSD for wind speed 13-14 m/s 

 

Figure 4-13: Average PSD for wind speed 14-15 m/s 
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Figure.4-14 to Figure 4-17 plots the non-dimensional velocity spectra versus the reduced 

frequency at different anemometer heights: 𝑘𝑘 = 9 , 22.5, 37, and 40 m, for different stability 

conditions. As observed in the figures, the maximum value of the non-dimensional spectra 

estimated at 9 m a.m.s.l. is close to unity for the neutral stability conditions, as observed by Putri 

et al and described by Kaiman et al. (1972), but achieves a maximum of nearly 0.85, and 0.35 for 

the unstable and stable conditions, respectively. The maximum value of the non-dimensional 

spectra exceeded unity for the unstable condition estimated at 22.5, 37, and 40 m a.m.s.l., and for 

the neutral condition for the spectra estimated at 37, and 40 m a.m.s.l. For the stable condition, the 

non-dimensional spectra reached a maximum value of nearly 0,4, estimated at 37 m a.m.s.l. 

Except for 𝑘𝑘 = 40 a.m.s.l., the difference in the normalized spectra at high frequencies for the 

three different stability conditions is negligible. 

 

 
Figure.4-14: Average spectra at 9m @ 3 conditions 
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Figure 4-15: Average spectra at 22.5m @ 3 conditions 

 

Figure 4-16: Average spectra at 37 m @ 3 conditions 
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Figure 4-17: Average spectra at 40 m @ 3 conditions 

 

From Figure 4.18 through Figure 4.20, you can see the estimated spectra for the anemometers at 
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Similarly, for the unstable and neutral conditions, the maximum value of the non-dimensional 

spectra occurred at the height of 37 m a.m.s.l., growing close to 1.6 for the unstable condition and 

exceeding 1.5 for the neutral conditions. The minimum value of the non-dimensional spectra 

occurred at the height of 9 m a.m.s.l., reaching a value close to 0.9.  

10 -2 10 -1 10 0 10 1

reduced frequency

0

0.2

0.4

0.6

0.8

1

1.2

1.4

N
on

 d
im

en
si

on
al

 s
pe

ct
ra

Spectra at z=40m

stable

unstable

neutral



48 
 

 

Figure 4-18: Average spectra 1 conditions @ 4 heights 
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Figure 4-19: Average spectra unstable condition @ 4 heights 

 

Figure 4-20: Average spectra Neutral condition @ 4 heights 
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4.1.2 Coherence of turbulence 
At varying separation distances relative to measurement heights, we examine the along-wind co-

coherence estimations. Large, wind-sensitive structures have been modelled using the co-

coherence since the 1960s. The co-coherence estimates were computed using the Welsh’s method.  

Eight segments and 50% overlap was used to avoid statistical uncertainty.  

 

Figure 4-21: Co-coherences of the along-wind velocity components at four different vertical 
separation distances.  

 



51 
 

The computation of the coherence data was computed using the MATLAB code provided in 

Appendix B. The coherence data was computed from the mean wind speed data of all the wind 

speed time series. The function “getDistance” (Appendix B), was used to help to speed up the 

computation of the co-coherence of turbulence by avoiding redundant pairs of sensors. This 

process gets the distance d between two locations and the associated indices of the unique pairs of 

sensors. In the sequence, the average wind speeds an height were computed. To estimate the 

cohence, the function “cohence.m” (Appendix B) was employed.  The function uses the MATLAB 

predefined function “cpsd” which estimates the cross power spectral density (CPSD) of two 

discrete-time signals, x and y, using Welch’s averaged, modified periodogram method of spectral 

estimation. 

The co-coherence of the along-wind, denoted by γu, for longitudinal separation versus non-

dimensional frequency is shown in Figure 4-21. The co-coherence estimates are presented for four 

separation distances dz because four measurement heights (z1 = 9 m, z2 = 22 m, z3 = 37 m, and z4 

= 40 m) were used. As observed by Putri et al. (2022) for the Vindeby dataset, and predicted by 

the predictive equations, the co-coherence plots for the Bockstigen dataset show large decay at 

small frequency for all the different vertical separations. In fact, the co-coherence decreased 

rapidly for all the separations, except the separation between 37 and 40 m a.m.s.l, For the vertical 

separation between 37 and 40 m a.m.s.l, the co-coherence died out slower. Unlike the other 

separations, the negative co-coherence was relatively small.  
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Chapter 5 
5 CONCLUSIONS and RECOMMENDATIONS 

In this analysis, we analyse wind records from the Bockstigen offshore mast to determine the 

spectrum properties of turbulence. The objectives of this research were to (i) study the 

characteristics of turbulent wind spectra offshore, (ii) to investigate the features of offshore 

turbulence in the frequency domain using the Bockstigen wind speed data. (iii) to quantify and 

compare the observations and similarities between the co-coherence characteristics of offshore 

turbulence obtained from Bockstigen wind data at various heights. 

The main conclusions are listed as follows: 

i. Understanding the primary distinctions between the PSDs derived by the Welch and FFT 

methods was the first step in the research project. It is interesting to note that the spectrum 

of the time series signal did not exhibit a peak in the PSD. This was the case irrespective 

of the wind speed as well as the method that was employed to compute the PSD. Both the 

Welch and the FFT spectra were identical in the higher frequency range of the spectrum, 

beginning at a frequency of f that was greater than 10-2 Hz; however, the Welch spectra 

were superior to the FFT spectra in the lower frequency range.  

ii. The peak value for the non-dimensional velocity spectra was larger for the neutral stability 

conditions (with the maximum value reaching unity), followed by the unstable and stable 

condition, respectively. In addition, the difference in the normalized spectra at high 

frequencies was negligible, regardless of the stability condition.  

iii. The co-coherence decreased rapidly at small frequency for all the different vertical 

separations, except the separation between 37 and 40 m a.m.s.l, in which the co-coherence 

died out slower. There was negative co-coherence for all the vertical separations, for the 

separations where large decay of the co-coherence was observed. For the separation 

between 37 and 40 m a.m.s.l, the negative co-coherence was small.  

For wind turbine design, the study of the co-coherence at lateral separations is required. This is 

not covered in this study due to the availability of data and as such is categorised under future 

works and recommendations. The Bocktigen co-coherence of turbulence could be compared with 
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relevant standard models as showcased by Putri et al., (2022), however this has not been considered 

in this work and could be further researched on. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



54 
 

6 References  

1. IEC 61400-3, International Electrotechnical Commission. (2019). Wind energy generation 

systems-Part 1: Design requirements. International Electrotechnical Commission: Geneva, 

Switzerland 

2. IEC 61400-1, Wind Turbines — Part 1: Design Requirements (third ed.) (2005) Geneve 

(Switzerland): https://webstore.iec.ch/preview/info_iec61400-1%7Bed3.0%7Den.pdf 

3. Kaimal, J. C., Wyngaard, J. C., Izumi, Y., &amp; Coté, O. R. (1972). Spectral 

characteristics of surface-layer turbulence. Quarterly Journal of the Royal Meteorological 

Society, 98(417), 563–589. https://doi.org/10.1002/qj.49709841707 

4. Elgendi, M., AlMallahi, M., Abdelkhalig, A., & Selim, M. Y. (2023). A review of wind 

turbines in complex terrain. International Journal of Thermofluids, 100289. 

5. Tasneem, Z., Al Noman, A., Das, S. K., Saha, D. K., Islam, M. R., Ali, M. F., ... & Alam, 

F. (2020). An analytical review on the evaluation of wind resource and wind turbine for 

urban application: Prospect and challenges. Developments in the Built Environment, 4, 

100033. 

6. How The Wind Turbine Works . (n.d.). Retrieved July 22, 2023, from 

https://www.energy.gov/eere/wind/how-wind-turbine-works-text-version 

7. Mann, J. (1994). The spatial structure of neutral atmospheric surface-layer turbulence. 

Journal of Fluid Mechanics, 273, 141-168. doi:10.1017/S0022112094001886 

8. von Kármán, T. (1948). Progress in the statistical theory of turbulence. Proceedings of the 

National Academy of Sciences, 34(11), 530–539. https://doi.org/10.1073/pnas.34.11.530 

9. Hansen, Kurt Schaldemose; Vasiljevic, Nikola; Sørensen, Steen Arne (2021). Turbulence 

measurements from the Bockstigen mast and offshore wind farm. Technical University of 

Denmark. Dataset. https://doi.org/10.11583/DTU.15028272.v1 

10. Cheynet, E., Jakobsen, J. B., & Obhrai, C. (2017). Spectral characteristics of surface-layer 

turbulence in the North Sea. Energy Procedia, 137, 414-427 

11. ISO19901, J. E. (2015). Petroleum and Natural Gas Industries. Specific Requirements for 

Offshore Structures. Part 1: Metocean Design and Operating Considerations. 

12. API, R. (2). SK (2005):“Design and Analysis of Station keeping Systems for Floating 

Structures” 

13. N. O. R. S. O. K. (2007). Actions and action effects. Edition, 2, 36-57. 

https://doi.org/10.1002/qj.49709841707
https://doi.org/10.1073/pnas.34.11.530


55 
 

14. DNV, G. (2019). Coupled analysis of floating wind turbines. Recommend Practice 

DNVGL-RP-0286. 

15. Veritas, N. (2000). Environmental conditions and environmental loads. Oslo, Norway: Det 

Norske Veritas. 

16. Veritas, N. (2021). Floating wind turbine structures. Det Norske Veritas. 

17. Andersen, O. J., & Løvseth, J. (2006). The Frøya database and maritime boundary layer 

wind description. Marine Structures, 19(2-3), 173-192. 

18. Taylor, A., Anthony, K. C., Harris, R. I., Berrman, P. W., Wootton, L. R., Scruton, C., ... 

& Shears, M. (1971). The Modern Design of Wind-Sensitive Structures. 

19. Andersen, O. J., & Løvseth, J. (2006). The Frøya database and maritime boundary layer 

wind description. Marine Structures, 19(2-3), 173-192. 

20. Cheng, E. D. H., &amp; Chiu, A. N. L. (1990). An expert system for extreme wind 

simulation. Journal of Wind Engineering and Industrial Aerodynamics, 36, 1235–1243. 

https://doi.org/10.1016/0167-6105(90)90120-2 

21. Ochi, M. K., & Shin, V. S. (1988, May). Wind turbulent spectra for design consideration 

of offshore structures. In Offshore technology conference. OnePetro. 

22. Shiotani, M. (1975). Turbulence measurements at the sea coast during high winds. Journal 

of the Meteorological Society of Japan. Ser. II, 53(5), 340–354. 

https://doi.org/10.2151/jmsj1965.53.5_340 

23. J.A.B. Wills, A. Grant, C.F. Boyack. Offshore Mean Wind Profile (1986) London (UK): 

https://trid.trb.org/view/428217 

24. RP-0286 coupled analysis of floating wind turbines. DNV. (2019). Retrieved April 10, 

2023, from https://www.dnv.com/energy/standards-guidelines/dnv-rp-0286-coupled-

analysis-of-floating-wind-turbines.html 

25. Argyle, P., Watson, S., Montavon, C., Jones, I., &amp; Smith, M. (2018). Modelling 

turbulence intensity within a large offshore wind farm. Wind Energy, 21(12), 1329–1343. 

https://doi.org/10.1002/we.2257 

26. Calif, &amp; Emilion. (2012). Characterization and stochastic modeling of wind speed 

sequences. Springer Proceedings in Physics, 235–238. https://doi.org/10.1007/978-3-642-

28968-2_50 



56 
 

27. Stevens, R. J. A. M., &amp; Meneveau, C. (2017). Flow structure and turbulence in wind 

farms. Annual Review of Fluid Mechanics, 49(1), 311–339. 

https://doi.org/10.1146/annurev-fluid-010816-060206 

28. Brand, A. J., &amp; Wagenaar, J. W. (2012). Turbulent wind turbine wakes in a wind farm. 

Springer Proceedings in Physics, 231–234. https://doi.org/10.1007/978-3-642-28968-2_49 

29. Larsen, G. C. (2009). A simple stationary semi-analytical wake model. Retrieved April 9, 

2023, from 

https://backend.orbit.dtu.dk/ws/portalfiles/portal/122941920/Simple_analytical_wake_m

odel_final_10.pdf 

30. Chamorro, L. P., Arndt, R. E., &amp; Sotiropoulos, F. (2011). Turbulent flow properties 

around a staggered wind farm. Boundary-Layer Meteorology, 141(3), 349–367. 

https://doi.org/10.1007/s10546-011-9649-6 

31. Göçmen, T., &amp; Giebel, G. (2016). Estimation of turbulence intensity using rotor 

effective wind speed in Lillgrund and horns rev-I offshore wind farms. Renewable Energy, 

99, 524–532. https://doi.org/10.1016/j.renene.2016.07.038 

32. Andersen, S. J., Sørensen, J. N., Mikkelsen, R., &amp; Ivanell, S. (2016). Statistics of les 

simulations of large wind farms. Journal of Physics: Conference Series, 753, 032002. 

https://doi.org/10.1088/1742-6596/753/3/032002 

33. Madsen HAa, Thomsen K, Larsen GC. A new method for prediction of detailed wake 

loads. In Proceedings of IEA Joint Action of Wind Turbines 16th Symposium. Thor S-E 

(ed.). Boulder, USA, May 2003 at NREL, 2003; 171–188. 

34. Madsen HAa, Larsen GC, Larsen TJ, Troldborg N, Mikkelsen R. Calibration and validation 

of the dynamic wake meandering model implemented in the aeroelastic code HAWC2. 

Journal of Solar Energy Engineering 2010; 132: 041014 (14 pages). 

35. Larsen GC, Madsen HAa, Thomsen K, Larsen TJ. Wake meandering—a pragmatic 

approach. Wind Energy 2008; 11: 377–395. 

36. Frandsen ST. Turbulence and turbulence-generated structural loading in wind turbine 

clusters. Risø-R-1188(EN). Risø National Laboratory, Technical University of Denmark: 

Roskilde, Denmark, 2007. 

37. Ainslie JF. Calculating the flow field in the wake of wind turbines. Journal of Wind 

Engineering and Industrial Aerodynamics 1988; 27: 213–224. 



57 
 

38. Ainslie JF. Wake modelling and the prediction of turbulence properties. In Proceedings of 

the 8th British Wind energy Association Conference, Cambridge, 19-21 March 1986; 115–

120. 

39. Keck RE, Veldkamp D, Madsen HAa, Larsen GC. Implementation of a mixing length 

turbulence formulation into the dynamic wake meandering model. Journal of Solar Energy 

Engineering 2011; 134: 021012 (13 pages). 

40. Madsen HAa, Larsen GC, Thomsen K. Wake flow characteristics in low ambient 

turbulence conditions. In Proceedings of Copenhagen Offshore Wind 2005, 2005. 

41. Keck RE, de Mare M, Churchfield MJ, Lee S, Larsen G, Madsen HAa. Two improvements 

to the dynamic wake meandering model: including the effects of atmospheric shear on 

wake turbulence and incorporating turbulence build up in a row of wind turbines. 

Submitted to Journal of Wind Energy July 2012. 

42. Barthelmie RJ, Hansen K, Frandsen ST, Rathmann O, Schepers JG, Schlez W, Phillips J, 

Rados K, Zervos A, Politis ES, Chaviaropoulos PK. Modelling and measuring flow and 

wind turbine wakes in large wind farms offshore. Wind Energy 2009; 12: 431–444. DOI: 

10.1002/we.348 

43. Keck, R.-E., de Maré, M., Churchfield, M. J., Lee, S., Larsen, G., &amp; Aagaard Madsen, 

H. (2013). On atmospheric stability in the dynamic wake meandering model. Wind Energy, 

17(11), 1689–1710. https://doi.org/10.1002/we.1662 

44. Putri, R. M., Obhrai, C., &amp; Knight, J. M. (2019). Offshore wind turbine loads and 

motions in unstable atmospheric conditions. Journal of Physics: Conference Series, 

1356(1), 012016. https://doi.org/10.1088/1742-6596/1356/1/012016 

45. Breton, S.-P., Nilsson, K., Olivares-Espinosa, H., Masson, C., Dufresne, L., &amp; Ivanell, 

S. (2014). Study of the influence of imposed turbulence on the asymptotic wake deficit in 

a very long line of wind turbines. Renewable Energy, 70, 153–163. 

https://doi.org/10.1016/j.renene.2014.05.009 

46. Goit, J. P., &amp; Meyers, J. (2015). Optimal control of energy extraction in wind-farm 

boundary layers. Journal of Fluid Mechanics, 768, 5–50. 

https://doi.org/10.1017/jfm.2015.70 

47. Anderson, W., Passalacqua, P., Porté-Agel, F., &amp; Meneveau, C. (2012). Large-eddy 

simulation of atmospheric boundary-layer flow over fluvial-like landscapes using a 



58 
 

dynamic roughness model. Boundary-Layer Meteorology, 144(2), 263–286. 

https://doi.org/10.1007/s10546-012-9722-9 
48. APA Porté-Agel, F., Wu, Y.-T., Lu, H., &amp; Conzemius, R. J. (2011). Large-eddy 

simulation of atmospheric boundary layer flow through wind turbines and wind farms. 

Journal of Wind Engineering and Industrial Aerodynamics, 99(4), 154–168. 

https://doi.org/10.1016/j.jweia.2011.01.011 

49. Stevens, R. J. A. M., Graham, J., &amp; Meneveau, C. (2014). A concurrent precursor 

inflow method for large eddy simulations and applications to finite length wind farms. 

Renewable Energy, 68, 46–50. https://doi.org/10.1016/j.renene.2014.01.024 

50. Ray PS (1986). Mesoscale meteorology and forecasting. American Meteorological 

Society, Boston, 793 pp ; https://www.jstor.org/stable/26216020 

51. Porté-Agel, F., Wu, Y.-T., &amp; Chen, C.-H. (2013). A numerical study of the effects of 

wind direction on turbine wakes and power losses in a large wind farm. Energies, 6(10), 

5297–5313. https://doi.org/10.3390/en6105297 

52. Meyers, J., &amp; Meneveau, C. (2010). Large eddy simulations of large wind-turbine 

arrays in the atmospheric boundary layer. 48th AIAA Aerospace Sciences Meeting 

Including the New Horizons Forum and Aerospace Exposition. 

https://doi.org/10.2514/6.2010-827 

53. Snel, H. (1998). Review of the present status of rotor aerodynamics. Wind Energy: An 

International Journal for Progress and Applications in Wind Power Conversion 

Technology, 1(S1), 46-69. 

54. Burton, T., Jenkins, N., Sharpe, D., & Bossanyi, E. (2011). Wind energy handbook. John 

Wiley & Sons. 

55. Herbert, G. J., Iniyan, S., Sreevalsan, E., & Rajapandian, S. (2007). A review of wind 

energy technologies. Renewable and sustainable energy Reviews, 11(6), 1117-1145. 

56. Sørensen, J. N. (2011). Aerodynamic aspects of wind energy conversion. Annual Review 

of Fluid Mechanics, 43, 427-448. 

57. Vermeer, L. J., Sørensen, J. N., & Crespo, A. (2003). Wind turbine wake aerodynamics. 

Progress in aerospace sciences, 39(6-7), 467-510. 

58. Sanderse, B., Van der Pijl, S. P., & Koren, B. (2011). Review of computational fluid 

dynamics for wind turbine wake aerodynamics. Wind energy, 14(7), 799-819. 



59 
 

59. Newman, B. G. (1977). The spacing of wind turbines in large arrays. Energy conversion, 

16(4), 169-171.,  

60. Meneveau, C. (2012). The top-down model of wind farm boundary layers and its 

applications. Journal of Turbulence, (13), N7. 

61. Zhou, L., Tian, Y., Baidya Roy, S., Thorncroft, C., Bosart, L. F., & Hu, Y. (2012). Impacts 

of wind farms on land surface temperature. Nature Climate Change, 2(7), 539-543. 

62. Stevens, R. J. A. M., &amp; Meneveau, C. (2017). Flow structure and turbulence in wind 

farms. Annual Review of Fluid Mechanics, 49(1), 311–339. 

https://doi.org/10.1146/annurev-fluid-010816-060206 

63. International Electrotechnical Commision. IEC 61400-1 Wind energy generation systems 

- Part 1: Design requirements. https://webstore.iec.ch/publication/26423 

64. Golston, L., Davies, G., Edwards, R., &amp; Miller, M. (2019). Wind Power: An Energy 

Technology Distillate from the Andlinger Center for Energy and the Environment at 

Princeton University. andlinger center . Retrieved April 10, 2023, from 

https://www.researchgate.net/profile/Levi-

Golston/publication/332401345_Wind_Power_An_Energy_Technology_Distillate/links/

5cb1e4a892851c8d22e80b81/Wind-Power-An-Energy-Technology-Distillate.pdf 

65. Kaimal, J. C., Wyngaard, J. C., Izumi, Y., &amp; Coté, O. R. (1972). Spectral 

characteristics of surface-layer turbulence. Quarterly Journal of the Royal Meteorological 

Society, 98(417), 563–589. https://doi.org/10.1002/qj.49709841707 

66. Robertson, A., Sethuraman, L., &amp; Jonkman, J. M. (2018). Assessment of wind 

parameter sensitivity on extreme and fatigue wind turbine loads. 2018 Wind Energy 

Symposium. https://doi.org/10.2514/6.2018-1728 

67. Bachynski, E. E., &amp; Eliassen, L. (2018). The effects of coherent structures on the 

global response of floating offshore wind turbines. Wind Energy, 22(2), 219–238. 

https://doi.org/10.1002/we.2280 

68. Doubrawa, P., Churchfield, M. J., Godvik, M., &amp; Sirnivas, S. (2019). Load response 

of a floating wind turbine to turbulent atmospheric flow. Applied Energy, 242, 1588–1599. 

https://doi.org/10.1016/j.apenergy.2019.01.165 

69. Eliassen, L., &amp; Obhrai, C. (2016). Coherence of turbulent wind under neutral wind 

conditions at Fino1. Energy Procedia, 94, 388–398. 

https://doi.org/10.1016/j.egypro.2016.09.199 



60 
 

70. FuE-Zentrum FH Kiel GmbH. FINO1: Forschungsplattformen in Nord- und Ostsee Nr. 1. 

https://www.fino1.de/. 

71. Kelley N, Jonkman B. TurbSim - NWTC Information Portal. 

https://nwtc.nrel.gov/TurbSim 

72. Simley, E., &amp; Pao, L. Y. (2015). A longitudinal spatial coherence model for wind 

evolution based on large-eddy simulation. 2015 American Control Conference (ACC). 

https://doi.org/10.1109/acc.2015.7171906 

73. Berg, J., Natarajan, A., Mann, J., &amp; Patton, E. G. (2016). Gaussian vs non-Gaussian 

turbulence: Impact on wind turbine loads. Wind Energy, 19(11), 1975–1989. 

https://doi.org/10.1002/we.1963 

74. Sathe, A., &amp; Bierbooms, W. (2007). Influence of different wind profiles due to 

varying atmospheric stability on the fatigue life of wind turbines. Journal of Physics: 

Conference Series, 75, 012056. https://doi.org/10.1088/1742-6596/75/1/012056 

75. Holtslag, M. C., Bierbooms, W. A., &amp; van Bussel, G. J. (2016). Wind turbine fatigue 

loads as a function of atmospheric conditions offshore. Wind Energy, 19(10), 1917–1932. 

https://doi.org/10.1002/we.1959 

76. Churchfield M, Lee S. SOWFA | NWTC Information Portal. 

https://nwtc.nrel.gov/SOWFA 

77. Bak, C., Zahle, F., &amp; Bitsche, R. (2013). The DTU 10-MW Reference Wind Turbine. 

Retrieved April 10, 2023, from 

https://orbit.dtu.dk/files/55645274/The_DTU_10MW_Reference_Turbine_Christian_Bak

.pdf 

78. Hansen, K. S., Barthelmie, R. J., Jensen, L. E., & Sommer, A. (2012). The impact of 

turbulence intensity and atmospheric stability on power deficits due to wind turbine wakes 

at Horns Rev wind farm. Wind Energy, 15(1), 183-196. 

79. Kristoffersen, J. R. (2006). The Horns Rev wind farm and the operational experience with 

the wind farm main controller. Revue E-Société Royale Belge des électriciens, 122(2), 26.  

 

 



61 
 

Appendix A 
clear all; 
close all, 
clc 
%% 
 
index = 314:366; 
 
for i = 1 : length(index) 
    filename{i}= ['I:\Project Bockstigen\data\2000\2nd mean 
data\Mean_data',num2str(index(i)),'.mat']; 
    filename1{i}= ['I:\Project Bockstigen\data\2000\2nd spectra 
data\Spectra',num2str(index(i)),'.mat']; 
 
 
end 
 
data1=zeros(257,5088); 
data2=zeros(1800,5088); 
count=1; 
count1=0; 
 
%% Anemometers height  
 
z=[9;22;37;40]; 
 
 
%% 
 
for i=1:length(index) 
 
    if index(i)==333| index(i)==334| index(i)==356| index(i)==357| index(i)==338 
 
        data1(:,count:count+95)=NaN; 
        data2(:,count:count+95)=NaN; 
    else 
 
        %       filename(10:12)=num2str(index(i)); 
        %       filename1(33:35)=num2str(index(i)); 
        load(char(filename(i))); 
        load(char(filename1(i))); 
        data1(:,count:count+95)=Results_S1; 
        data2(:,count:count+95)=Results_PSD_fft(1:1800,:); 
        count2=1; 
 
        for j=1:24 
 
            %pull out the columns for the mean standard deviation maximum and 
            %minimum and put them in separate variables 
            mean_var(:,j+count1)=mean_data(:,count2); 
            std_var(:,j+count1)=mean_data(:,count2+1); 
            max_var(:,j+count1)=mean_data(:,count2+2); 
            min_var(:,j+count1)=mean_data(:,count2+3); 
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            % pick out the wind direction and wind speed that is undisturbed by the 
mast 
             
            if mean_data(9,count2)>285 | mean_data(9,count2)<105 
 
                wind_speed(1,j+count1)=mean_data(2,count2); 
                wind_speed(2,j+count1)=mean_data(4,count2); 
                wind_speed(3,j+count1)=mean_data(6,count2); 
                wind_speed(4,j+count1)=mean_data(7,count2); 
                wind_dir(1,j+count1)=mean_data(9,count2); 
 
            else 
                wind_speed(1,j+count1)=mean_data(1,count2); 
                wind_speed(2,j+count1)=mean_data(3,count2); 
                wind_speed(3,j+count1)=mean_data(5,count2); 
                wind_speed(4,j+count1)=mean_data(7,count2); 
                wind_dir(1,j+count1)=mean_data(8,count2); 
 
            end 
            count2=count2+4; 
        end 
        clear mean_data 
        clear Results_S1 
        clear Results_PSD_fft 
    end 
    count=count+96; 
    count1=count1+24; 
end 
 
% Find all zero values and make NaN 
f=find(mean_var==0); 
mean_var(f)=NaN; 
min_var(f)=NaN; 
max_var(f)=NaN; 
std_var(f)=NaN; 
clear f 
f=find(wind_speed==0); 
wind_speed(f)=NaN; 
clear f 
f=find(wind_dir==0); 
wind_dir(f)=NaN; 
 
 
%plot wind rose 
WindRose(wind_dir,wind_speed(3,:)) 
 
%plot PDF of wind speed 
figure(2) 
histogram(wind_speed(3,:),'Normalization','pdf'); 
xlabel('wind speeds'); 
ylabel('Frequency'); 
 
% calculate mean temperature 
temperature=mean_var(10:13,:); 
mean_temp=mean(temperature(2:4,:),1,'omitnan'); 
% calculate potential temperature gradient 
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temp_grad=(temperature(4,:)-temperature(2,:))/(25-6); 
%calculate velocity gradient squared 
vel_grad_sq=((wind_speed(3,:)-wind_speed(2,:))/(37-9)).^2; 
 
% calculate gradient richardson number 
Ri_grad=((9.81)./mean_temp).*((temp_grad./vel_grad_sq)); 
 
vel_ratio=data1(6,:)./data2(1,:); 
 
%plot PDF of wind speed 
f=find(Ri_grad<200); % find values with sensible magnitudes 
figure(3) 
histogram(Ri_grad(f),'Normalization','pdf'); 
xlabel('Ri'); 
ylabel('Frequency'); 
 
 
L=2*size(data2,1); 
fs=1; 
f = fs*(0:(L/2))/L; 
 
L2=size(data1,1); 
df1=0.5/L2; 
f1=[df1:df1:0.5]; 
 
%Bin average 5-6 M/S 
index=find(wind_speed(3,:)>5 & wind_speed(3,:)<6); 
day=(index/24); 
new_indexs=day*96-1; 
avg_5to6_pwelch=mean(data1(:,new_indexs),2,'omitnan'); 
avg_5to6_FFT=mean(data2(:,new_indexs),2,'omitnan'); 
 
 
figure 
loglog(f1,avg_5to6_pwelch,'linewidth',2); 
xlabel('frequency (Hz)') 
ylabel('Wind spectrum (m^2/Hz)'); 
grid on; 
grid minor 
axis tight 
hold on 
loglog(f(2:L/2),avg_5to6_FFT(2:L/2)) 
title(['Average PSD for wind speed 5-6 m/s']) 
xlabel('frequency (Hz)') 
ylabel('Wind spectrum (m^2/Hz)'); 
legend('Pwelch','FFT') 
hold off 
 
clear index 
clear new_indexs 
%Bin average 6-7 M/S 
index=find(wind_speed(3,:)>=6 & wind_speed(3,:)<7); 
day=(index/24); 
new_indexs=day*96-1; 
avg_6to7_pwelch=mean(data1(:,new_indexs),2,'omitnan'); 
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avg_6to7_FFT=mean(data2(:,new_indexs),2,'omitnan'); 
 
 
 
figure 
loglog(f1,avg_6to7_pwelch,'linewidth',2); 
xlabel('frequency (Hz)') 
ylabel('Wind spectrum (m^2/Hz)'); 
grid on; 
grid minor 
axis tight 
hold on 
loglog(f(2:L/2),avg_6to7_FFT(2:L/2)) 
title(['Average PSD for wind speed 6-7 m/s']) 
xlabel('frequency (Hz)') 
ylabel('Wind spectrum (m^2/Hz)'); 
legend('Pwelch','FFT') 
hold off 
 
 
clear index 
clear new_indexs 
 
%Bin average 7-8 M/S 
index=find(wind_speed(3,:)>7 & wind_speed(3,:)<8); 
day=(index/24); 
new_indexs=day*96-1; 
avg_7to8_pwelch=mean(data1(:,new_indexs),2,'omitnan'); 
avg_7to8_FFT=mean(data2(:,new_indexs),2,'omitnan'); 
 
 
figure 
loglog(f1,avg_7to8_pwelch,'linewidth',2); 
xlabel('frequency (Hz)') 
ylabel('Wind spectrum (m^2/Hz)'); 
grid on; 
grid minor 
axis tight 
hold on 
loglog(f(2:L/2),avg_7to8_FFT(2:L/2)) 
title(['Average PSD for wind speed 7-8 m/s']) 
xlabel('frequency (Hz)') 
ylabel('Wind spectrum (m^2/Hz)'); 
legend('Pwelch','FFT') 
hold off 
 
 
clear index 
clear new_indexs 
 
%Bin average 8-9 M/S 
index=find(wind_speed(3,:)>8 & wind_speed(3,:)<9); 
day=(index/24); 
new_indexs=day*96-1; 
avg_8to9_pwelch=mean(data1(:,new_indexs),2,'omitnan'); 
avg_8to9_FFT=mean(data2(:,new_indexs),2,'omitnan'); 
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figure 
loglog(f1,avg_8to9_pwelch,'linewidth',2); 
xlabel('frequency (Hz)') 
ylabel('Wind spectrum (m^2/Hz)'); 
grid on; 
grid minor 
axis tight 
hold on 
loglog(f(2:L/2),avg_8to9_FFT(2:L/2)) 
title(['Average PSD for wind speed 8-9 m/s']) 
xlabel('frequency (Hz)') 
ylabel('Wind spectrum (m^2/Hz)'); 
legend('Pwelch','FFT') 
hold off 
 
 
 
clear index 
clear new_indexs 
 
%Bin average 09-10 M/S 
index=find(wind_speed(3,:)>09 & wind_speed(3,:)<10); 
day=(index/24); 
new_indexs=day*96-1; 
avg_09to10_pwelch=mean(data1(:,new_indexs),2,'omitnan'); 
avg_09to10_FFT=mean(data2(:,new_indexs),2,'omitnan'); 
 
 
figure 
loglog(f1,avg_09to10_pwelch,'linewidth',2); 
xlabel('frequency (Hz)') 
ylabel('Wind spectrum (m^2/Hz)'); 
grid on; 
grid minor 
axis tight 
hold on 
loglog(f(2:L/2),avg_09to10_FFT(2:L/2)) 
title(['Average PSD for wind speed 09-10 m/s']) 
xlabel('frequency (Hz)') 
ylabel('Wind spectrum (m^2/Hz)'); 
legend('Pwelch','FFT') 
hold off 
 
 
clear index 
clear new_indexs 
 
%Bin average 10-11 M/S 
index=find(wind_speed(3,:)>10 & wind_speed(3,:)<11); 
day=(index/24); 
new_indexs=day*96-1; 
avg_10to11_pwelch=mean(data1(:,new_indexs),2,'omitnan'); 
avg_10to11_FFT=mean(data2(:,new_indexs),2,'omitnan'); 
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figure 
loglog(f1,avg_10to11_pwelch,'linewidth',2); 
xlabel('frequency (Hz)') 
ylabel('Wind spectrum (m^2/Hz)'); 
grid on; 
grid minor 
axis tight 
hold on 
loglog(f(2:L/2),avg_10to11_FFT(2:L/2)) 
title(['Average PSD for wind speed 10-11 m/s']) 
xlabel('frequency (Hz)') 
ylabel('Wind spectrum (m^2/Hz)'); 
legend('Pwelch','FFT') 
hold off 
 
 
clear index 
clear new_indexs 
 
%Bin average 11-12 M/S 
index=find(wind_speed(3,:)>11 & wind_speed(3,:)<12); 
day=(index/24); 
new_indexs=day*96-1; 
avg_11to12_pwelch=mean(data1(:,new_indexs),2,'omitnan'); 
avg_11to12_FFT=mean(data2(:,new_indexs),2,'omitnan'); 
 
 
figure 
loglog(f1,avg_11to12_pwelch,'linewidth',2); 
xlabel('frequency (Hz)') 
ylabel('Wind spectrum (m^2/Hz)'); 
grid on; 
grid minor 
axis tight 
hold on 
loglog(f(2:L/2),avg_11to12_FFT(2:L/2)) 
title(['Average PSD for wind speed 11-12 m/s']) 
xlabel('frequency (Hz)') 
ylabel('Wind spectrum (m^2/Hz)'); 
legend('Pwelch','FFT') 
hold off 
 
 
 
clear index 
clear new_indexs 
 
%Bin average 12-13 M/S 
index=find(wind_speed(3,:)>12 & wind_speed(3,:)<13); 
day=(index/24); 
new_indexs=day*96-1; 
avg_12to13_pwelch=mean(data1(:,new_indexs),2,'omitnan'); 
avg_12to13_FFT=mean(data2(:,new_indexs),2,'omitnan'); 
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figure 
loglog(f1,avg_12to13_pwelch,'linewidth',2); 
xlabel('frequency (Hz)') 
ylabel('Wind spectrum (m^2/Hz)'); 
grid on; 
grid minor 
axis tight 
hold on 
loglog(f(2:L/2),avg_12to13_FFT(2:L/2)) 
title(['Average PSD for wind speed 12-13 m/s']) 
xlabel('frequency (Hz)') 
ylabel('Wind spectrum (m^2/Hz)'); 
legend('Pwelch','FFT') 
hold off 
 
 
clear index 
clear new_indexs 
 
%Bin average 13-14 M/S 
index=find(wind_speed(3,:)>13 & wind_speed(3,:)<14); 
day=(index/24); 
new_indexs=day*96-1; 
avg_13to14_pwelch=mean(data1(:,new_indexs),2,'omitnan'); 
avg_13to14_FFT=mean(data2(:,new_indexs),2,'omitnan'); 
 
 
figure 
loglog(f1,avg_13to14_pwelch,'linewidth',2); 
xlabel('frequency (Hz)') 
ylabel('Wind spectrum (m^2/Hz)'); 
grid on; 
grid minor 
axis tight 
hold on 
loglog(f(2:L/2),avg_13to14_FFT(2:L/2)) 
title(['Average PSD for wind speed 13-14 m/s']) 
xlabel('frequency (Hz)') 
ylabel('Wind spectrum (m^2/Hz)'); 
legend('Pwelch','FFT') 
hold off 
 
 
clear index 
clear new_indexs 
 
%Bin average 14-15 M/S 
index=find(wind_speed(3,:)>14 & wind_speed(3,:)<15); 
day=(index/24); 
new_indexs=day*96-1; 
avg_14to15_pwelch=mean(data1(:,new_indexs),2,'omitnan'); 
avg_14to15_FFT=mean(data2(:,new_indexs),2,'omitnan'); 
 
figure 
loglog(f1,avg_14to15_pwelch,'linewidth',2); 
xlabel('frequency (Hz)') 
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ylabel('Wind spectrum (m^2/Hz)'); 
grid on; 
grid minor 
axis tight 
hold on 
loglog(f(2:L/2),avg_14to15_FFT(2:L/2)) 
title(['Average PSD for wind speed 14-15 m/s']) 
xlabel('frequency (Hz)') 
ylabel('Wind spectrum (m^2/Hz)'); 
legend('Pwelch','FFT') 
hold off 
 
 
clear index 
clear new_indexs 
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Appendix B 

Estimation of the Co-coherence: Main Code  

clearvars; 

close all;  

clc; 

 

load('MeanDataAll.mat'); 

 

u=MeanWindData_All; 

 

U = nanmean(MeanWindData_All); 

z = [9;22;37;40]; 

 

% Compute frequency: Here using the same procedure used in the plots 

L2=size(MeanWindData_All,1); 

df1=0.5/L2; 

fs=(df1:df1:0.5); 

t=1./fs;  

 

[d,indZ] = getDistance(z); 

% indZ is the indice of unique pairs (the upper triangular elements of the distance matrix) 

% Get average height and wind speed 

 

meanZ = zeros(size(indZ,1),1); 

meanU = zeros(size(indZ,1),1); 

 

for ii=1:size(indZ,1) 

    meanZ(ii) = 0.5.*(z(indZ(ii,1))+z(indZ(ii,2))'); 
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    meanU(ii) = 0.5.*(U(indZ(ii,1))+U(indZ(ii,2))'); 

end 

% Estimate the co-coherence 

M = round(numel(fs)/20); % 12 blocks 

% M = round(numel(t)/20); % 12 blocks 

 

Nm = size(indZ,1); 

if mod(M,2) 

    cohU = zeros(Nm,round(M/2)); 

    % = zeros(Nm,round(M/2)); 

    %cohW = zeros(Nm,round(M/2)); 

else 

    cohU = zeros(Nm,round(M/2)+1); 

    %cohV = zeros(Nm,round(M/2)+1); 

    %cohW = zeros(Nm,round(M/2)+1); 

end 

for ii = 1:Nm 

    u1 = detrend(u(:,indZ(ii,1))); 

    u2 = detrend(u(:,indZ(ii,2))); 

    [cohU(ii,:),~,f] = coherence(u1,u2,M,round(M/2),M,1.5); % test 

end 

maxFreq = 0.15; 

 

guess = [5]; % 1 parameter for the Davenport model 

maxFreq = 0.15; 

[CoeffFitU,modelFun] = 
cohFit(d,f,cohU,guess,meanU,'freqThres',maxFreq,'cohModel','Davenport','z',meanZ); 
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Plot Co-coherence data 

clf;close all; 

figure('position',[200          200         803         903]) 

t1 = tiledlayout('flow','tilespacing','compact'); 

for ii=1:Nm 

    nexttile 

    plot(f,cohU(ii,:),'ko','markerfacecolor',rand(1,3),'markersize',4);hold on; 

    %plot(f,modelFun(CoeffFitU,f,d(ii),meanZ(ii),meanU(ii),0),'k') 

    txt = ['$z_1 = ',num2str(z(indZ(ii,1))),'$ m, $z_2 = ',num2str(z(indZ(ii,2))),'$ m']; 

    label(txt,0.97,0.97,'alignement','right','verticalalignment','top','fontsize',16); 

    grid on 

    ylim([-0.5,1]); 

    %xlim([1/t(end), maxFreq*2]) 

    xlim([0, 0.5]) 

    ylim([-0.2, 1.2]) 

    xlabel('f (Hz)') 

    ylabel('\gamma_u') 

end 

 

GetDistance Function  

function [d,indZ] = getDistance(z) 

%  [d,indZ] = getDistance(z) get distance d between two locations and the 

%  associated indices indZ. This functions can help to speed up the computation 

%  of the co-coherence of turbulence by avoiding redundant pairs of 

%  sensors. 

%% Author info 

%  E. Cheynet - UiB - last modified: 25-05-2022 

% 

% See also coh4Para cpsd pwelch coherence cohere targetCoh getDistance 
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Nm = numel(z); 

indZ = zeros(Nm,Nm,2); 

for ii=1:Nm 

    for jj=1:Nm 

        indZ(ii,jj,:) = [ii,jj]; 

    end 

end 

indZ = reshape(indZ,[],2); 

d = triu(abs(z(:)-z(:)'));d = d(:); 

k = find(d~=0); 

d = d(k); 

indZ = indZ(k,:); 

 

 

end 

 

 

coherence Function  

function [cocoh, Quad, freq] = coherence(X,Y,WINDOW,NOVERLAP,NFFT,Fs) 

%  [cocoh, Quad, freq] = coherence(X,Y,WINDOW,NOVERLAP,NFFT,Fs) computes 

%  the coherence estimate between X and Y. 

% 

% Author: E Cheynet - University of Stavanger, Norway. 

% 

% See also cpsd cohere 

 

 

% get only the fluctuating part 

X = detrend(X); % remove mean 

Y = detrend(Y); % remove mean 
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% get cross spectrum 

[pxy, freq] = cpsd(X,Y,WINDOW, NOVERLAP,NFFT,Fs); 

 

% get single point spectrum 

pxx = cpsd(X,X,WINDOW, NOVERLAP,NFFT,Fs); 

pyy = cpsd(Y,Y,WINDOW, NOVERLAP,NFFT,Fs); 

 

% Normalize the cross spectrum 

cocoh = real(pxy./sqrt(pxx.*pyy));  % co-coherence 

Quad = imag(pxy./sqrt(pxx.*pyy)); % quad-coherence 

 

end 
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