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Abstract 

 

Impact of risk attitude on optimal IOR initiation time: 

A case study solved in a sequential decision-making framework 

powered by machine learning-based non-linear regression  

BEng. Marianne Soledad Yanez Sanchez 

The University of Stavanger, 2023 

 

Supervisor: Aojie Hong 

 

The least-squares Monte Carlo algorithm (LSM) is an efficient approximate 

dynamic programming algorithm for solving sequential decision-making problems, 

leveraging regression. Previous studies have showcased the LSM workflow and linear 

regression in a sequential decision problem for optimizing the improved-oil-recovery 

(IOR) initiation and termination time, based on expected monetary value maximization 

as the decision criterion under risk neutrality.    

In this work, risk attitude is introduced in the IOR optimization problem to 

assess the impact on the decisions. Risk behaviours are modelled using utility functions, 

and the optimal decision strategy is found by maximizing the expected utility. Since the 

utility functions introduce non-linearity, machine learning non-linear regression 

techniques are used in the LSM workflow to approximate the expected utilities.  

Results suggest that risk-averse decision-makers prefer longer primary recovery 

lifetime compared to risk-neutral and risk-seeking decision-makers. This behaviour is 

attributed to the NPV uncertainty related to the CAPEX incurred by switching to 

secondary recovery. Risk-averse decision-makers prefer shorter secondary recovery 

lifetime. This behaviour is attributed to the OPEX and production late-stage marginal 
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cash inflow. The more risk-seeking the decision-maker is, the sooner they prefer to 

switch to secondary recovery, and the longer they would run the secondary recovery.  

The value of the information increases as the decision-maker is more risk-

seeking. The differences in the production lifetime decisions with the consideration of 

future information versus the decisions ignoring future information also increase as the 

decision-maker is more risk-seeking. 

A change in the problem setting to a more marginal and uncertain case shows 

that risk-averse decision-makers would not run the project. Risk neutral decision-

makers would only run the project if future information were incorporated. This 

reinforces the importance of sequential decision-making, where value is created from 

information. Risk-seeking decision-makers would run the project with or without 

information. 

The novelties and contributions from the present work include: 

• Modelling, demonstration, and discussion of the impact of different risk 

attitudes on decisions. 

• Selection and application of the best machine learning method for non-

linear regression in the LSM approach. 

• Demonstration of the value of considering future information in solving 

sequential decision-making problems. 
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Chapter 1: Introduction 

Good decision-making skills are not “born-with” abilities. Choosing wisely is a 

trained skill that improves with experience and observations. A “decision” is defined 

as a “conscious and irrevocable” allocation of resources to achieve desired objectives; 

it is conscious because it must be voluntary, and it is irrevocable because reconsidering 

a different decision later would imply loss of the resources already employed (Abbas 

and Howard, 2015). 

Howard (1966) defined decision analysis as a “systematic procedure for 

transforming opaque decision problems into transparent decision problems by a 

sequence of transparent steps”. Based on this, Abbas and Howard (2015) indicate that 

decision analysis lays out four key elements of rational decision-making: objectives, 

alternatives, information and preferences (including risk attitude). The complexity of 

the decision problem depends on these elements, and additionally, uncertainty – 

decisions are related to the future and the future is uncertain because of incomplete or 

unavailable information. A decision context where successive observations/information 

are recorded before successive decisions is termed as sequential decision-making 

(SDM) (Diederich, 2001). 

Hydrocarbon reservoir management is “a set of operations and decisions by 

which a reservoir is identified, measured, produced, developed, monitored and 

evaluated from its discovery through depletion and final abandonment” (Wiggins and 

Startzman, 1990). It commonly involves many complex decision problems under many 

uncertainties. Some examples of sequential decision-making problems in reservoir 

management are improved-oil-recovery (IOR) initiation timing (Hong et al. 2019), 

sequential drilling (Ahmadi and Bravtvold, 2023) and geosteering (Kullawan et al., 

2018). The essential of solving for the optimal decision strategy of a sequential 
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decision-making problem is the consideration of future information (i.e., learning over 

time).  

Dynamic programming approaches are designed for modelling and solving 

SDM problems. However, the wide use of dynamic programming approaches in the oil 

and gas industry is hindered by their computational intensiveness. The computational 

intensiveness can be partially mitigated by introducing some approximations in 

dynamic programming approaches, i.e., approximate dynamic programming. One of 

such approaches is the least-squares Monte Carlo approach (LSM) developed by 

Longstaff and Schwartz (2001). The key features of this approach are (1) Monte Carlo 

simulation for uncertainty modelling, (2) regression for the assessment of conditional 

expected value given information and (3) solving sequential decision problems 

backwards in time (i.e., starting from the last decision point). These features will be 

introduced in detail later. 

The LSM algorithm was originally developed for real options valuation in 

finance and then has been applied in many other fields, such as health, mining and 

environment (Andréasson and Shevchenko, 2017). The energy sector is not an 

exception; examples of LSM applications are pricing the abandonment-timing option 

in an oilfield project (Jafarizadeh and Bratvold, 2012), solving the sell-spot or sell-

forward problem for trading a specific volume of oil (Jafarizadeh and Bratvold, 2013) 

and valuation of carbon capture and storage investments under prices variation 

(Hongrui et al., 2016). 

Hong et al. (2019) and Wui (2019) used the LSM algorithm to determine the 

optimal IOR initiation and termination time, in a sequential decision-making 

framework, which incorporates future information of oil-rate measurements for 

uncertainty updating (or learning) over time. They compared the decision strategy and 

outcomes solved using LSM with that of the “state-of-the-art” reservoir management 

approach – closed-loop optimization (CLO) (Wang et al., 2009). Since CLO considers 
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only currently available information, but not future information, to support the current 

decision, it can lead to a suboptimal decision strategy, compared to LSM that guarantees 

the (near-) optimal decision strategy. 

Most LSM applications focus on risk-neutral cases, i.e., expected monetary 

value (EMV) maximization and use linear regression for conditional EMV assessment. 

The impact of risk-averse and seeking attitudes on sequential decisions have not been 

extensively investigated and discussed in the literature. When risk-averse and seeking 

attitudes are involved, utility functions and expected utility maximization should be 

applied (Von Neumann and Morgenstern, 1947). Risk-averse and seeking utility 

functions introduce non-linearity. Approximating a non-linear relationship using linear 

regression poses a number of challenges, including regression fit errors. Andréasson 

and Shevchenko (2017) reviewed many attempts to resolve this problem, but the 

solutions either add computational time or introduce bias. They suggested non-linear 

regression based on neural networks as an alternative to improve the fit to a non-linear 

relationship. In general, machine learning-based non-linear regression could be used. 

The primary goal of this thesis work is to investigate the impact of risk attitudes 

on sequential decisions, based on the synthetic case study introduced by Hong et al. 

(2019). The novelties and contributions include: 

• Modelling, demonstration and discussion of the impact of different risk 

attitudes on the IOR initiation and termination time decisions.  

• Selection and application of the most suitable machine learning method 

for non-linear regression in the LSM algorithm. 

• Demonstration of the value of considering future information in solving 

sequential decision-making problems. 

This thesis is organized in the following manner. First, decision analysis and 

risk attitude modelling will be briefly reviewed. Second, the steps of LSM application 

will be detailed with an example. Third, some commonly used machine leaning 
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methods for non-linear regression will be described. Forth, the results of the thesis work 

will be presented and discussed, starting with the regression performances of the 

machine learning methods and then the results of the IOR initiation and termination 

time decision problem solved with the selected non-linear regression method and LSM. 

Finally, the thesis work will be concluded, including a discussion and recommendations 

for future works. 
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Chapter 2: Decision analysis 

In this chapter basic concepts of decision analysis are introduced. Additionally, 

the concept of risk attitude and expected utility theory are reviewed. 

2.1. INTRODUCTION TO DECISION ANALYSIS 

The discipline of decision analysis was founded by Ronald A. Howard in 1960s. 

Decision Analysis is a systematic procedure for transforming opaque decision problems 

into transparent decision problems by a sequence of transparent steps (Howard, 1966). 

A simple definition of decision-making is “choosing the alternative that best fits 

a set of goals” (Bratvold and Begg, 2010). Three elements define the foundation of 

decision modelling: objectives, alternatives, and information. Objectives define the 

goals that a decision-maker desires to reach. Alternatives are acts that the decision-

maker can take for reaching the objectives. A decision problem must have at least two 

alternatives from which for the decision-maker to choose one; otherwise, the decision-

maker have no choice and no decision to make if there is only one alternative. 

Information is used to predict how well or poorly every alternative can reach the 

objectives (Bratvold and Begg, 2010).   

A ‘‘good outcome (or result)’’ is defined as “a future state of the world that we 

prize relative to other possibilities”, and a ‘‘good decision’’ is defined as “an action we 

take that is logically consistent with our objectives, the alternatives we perceive, the 

information we have, and the preferences we feel” (Abbas and Howard, 2015).  One 

type of preference, involved in many decision problems, is our feelings of uncertainty 

– our desirability of the variety of possible outcomes/consequences of our actions 

(Jordaan, 2004). The feeling of uncertainty is quantified and modelled in the expected 

utility theory (EUT) which will be reviewed in the next section. 

Probability is the measure or quantification of uncertainty. The elicitation of a 

probability aims at a quantitative statement of opinion about the uncertainty associated 
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with the event under consideration (Jordaan, 2004). Many uncertain events have 

outcomes described by quantitative variables. In the oil and gas industry, some 

examples are original oil in place (OOIP), hydrocarbon prices, and profit. These 

outcomes are continuous, meaning they can take on any value between defined bounds. 

An example of discrete variables is the number of wells. No matter a variable is 

continuous or discrete, if one doesn’t know and cannot control or decide on the value 

of the variable for sure, the variable is an uncertain variable. OOIP, future prices, and 

future profit are uncertain variables, whilst number of wells is usually a control/decision 

variable because one can decide how many wells one wants to drill. 

One very common approach to making decisions under uncertainty is to 

estimate one single value1 of each uncertain variable and use the estimated values to 

calculate the payoff of each objective, for example net present value (NPV) for 

monetary payoffs. This approach is called “deterministic” because it considers only a 

single “deterministic” assessment of the outcomes of uncertain variables and ignores 

other possible outcomes. Thus, the deterministic approach often leads to sub-optimal 

decisions and values. The statistically correct “probabilistic” approach is to consider all 

possible outcomes of each key uncertain variable by assessing probability distributions 

of possible outcomes for the key uncertain variables. In this case the decisions are based 

on the probability distributions of objective payoffs associated with the underlaying 

uncertain variables.  

Influence diagrams and decision trees are useful decision analysis tools for 

framing and solving decision problems. An influence diagram illustrates the decisions, 

uncertain variables, calculations, values, and connecting arrows that symbolize the 

influences between them. Uncertain variables and events are typically shown by 

ellipses; decision nodes are typically shown as rectangles; and value nodes are shown 

as rounded rectangles (Von Winterfeldt and Edwards, 2007). 

 
1 The single value may be a base value, a most-likely value, an expected value, etc. 
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Figure 1 shows an example of a simple influence diagram. Different uncertain 

events are represented by ellipses. The problem involves a single decision, represented 

by the rectangle, and the value is represented by the rounded rectangle. As an example, 

the decision of this problem could be the production strategy: continue with primary 

recovery or to switch to secondary recovery. Uncertainties are the oil production rate 

and oil price, and the value is the revenue. The arrow that connects the decision node 

to the revenue node indicate that the decision directly affects the revenue. The arrows 

that connect the uncertain events to the revenue node indicate that the uncertain events 

directly affect the revenue. The arrow from the decision to the oil production indicates 

that the outcomes of this uncertainty depend on the decision alternatives. If an arrow is 

drawn from an uncertain event to the decision node, this means that the outcome of the 

uncertain event is ‘known’ before the decision is made. 

 

 

Figure 1. Example of a simple influence diagram. Decision is switch or not to switch to 

secondary recovery. Uncertainties are oil rates and oil price. Value is the 

revenue. 

Decision trees can be easily used to visualize and communicate the sequence of 

decisions and uncertain events as well as decision alternatives and uncertain outcomes. 

A decision node is represented by a square node, with labelled branches to the side 

representing the alternatives. An uncertainty is represented by a circle node, with 

branches to the right indicating possible outcomes, also known as “prospects;” the 

group of possible outcomes or prospects represents a “deal”. 
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Figure 2 shows the respective decision tree for influence diagram in Figure 1. 

The alternatives are to continue with primary production or to switch to secondary 

recovery. The uncertain events are the oil production rate and oil price, from which 

independent possible outcomes are drawn as branches to the right; these represent the 

prospects. Numbers on each branch represent the probability of each possible outcome, 

and the numbers at the right end of each branch represent the payoffs, in this case 

revenue. The probabilities of the oil prices are independent of the oil production rates 

and decision alternatives. However, as indicated in the influence diagram in Figure 1, 

the probabilities of the oil rates are different depending on which alternative from the 

decision is taken. 

 

 

Figure 2: Example of a simple decision tree. Decision is switch or not to switch to 

secondary recovery. Uncertainties are oil rates and oil price. Value is the 

revenue. 
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Later in this thesis, a full decision tree and an influence diagram will be 

presented to illustrate the specific sequential decision problem studied. 

 

2.2. EXPECTED UTILITY THEORY AND RISK ATTITUDE 

The concept of utility can be traced back to Nicolaus Bernoulli in 1700s. In the 

decision theory, utility is defined as the personal value of a monetary value. The 

expected utility theory (EUT), developed by Von Neumann and Morgenstern (1947) 

based on 4 axioms, implies that all rational decision-makers must have utilities that can 

be numerically expressed, through a utility function that accounts for a decision-

maker’s attitude towards uncertainty, and leads to consistent and normative decisions. 

EUT has been practically implemented in various fields such as economy, game theory 

and decision theory, but few implementations in the oil and gas industry (Hong and 

Bartvold, 2023). 

Abbas and Howard (2015) reformulated the Von Neumann and Morgenstern 

(1947)’s axioms to the five rules of actional thought: 

1. The probability rule: A decision-maker must be able to assess a probability 

distribution of possible outcomes for an uncertain event. 

2. The order rule: the decision-maker must be able to order prospects according 

to their preferences. 

3. The equivalence rule: As illustrated in Figure 3, given prospect A is 

preferred to prospect B, and prospect B is preferred to prospect C (noted as 

A > B > C), the decision-maker must be able to assign a probability p so that 

the they are indifferent between getting B for sure (no uncertainty) and a 

deal with a chance p of getting A and 1-p of getting B. In such case, the 

probability p is called the decision-maker’s preference probability for 
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prospect B. The concept of preference probability and its relation to utility 

will be detailed below. 

4. The substitution rule: Provided the indifference between prospect B and the 

A-C deal as illustrated in Figure 3, the decision-maker must be willing to 

exchange prospect B with the A-C deal, or vice versa. 

5. The choice rule: By following the 4 rules above and with the assigned 

preference probabilities of all prospects, the decision-maker’s preference to 

a deal can be quantified by a (calculated) preference probability. For 

different deals, the decision-maker should take the deal that has the greatest 

preference probability. 

 

Figure 3. Illustration of the equivalence rule. From Abbas and Howard (2015). 

The equivalence rule introduces the concept of preference probability and 

certain equivalent. The probability p in Figure 3 describes the decision-maker’s 

preference of prospect B on the basis of prospect A (the most preferred) and C (the least 

preferred), and thus p is called the decision-maker’s preference probability for prospect 

B. Prospect B is called the certain equivalent (CE) of the A-C deal because to the 

decision-maker, B (a certain deal) is equivalent (or exchangeable) to the A-C deal (an 

uncertain deal) (Abbas and Howard, 2015). With the concept of certain equivalent, a 

deal can be represented by a corresponding certain equivalent and for different deals, 

the decision-maker should take the deal that is equivalent to a certain equivalent that is 

the most preferred among the certain equivalents of all deals (an alternative expression 

of the choice rule). The rankings of different deals by certain equivalents and by 
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preference probabilities should be the same because a more preferred certain equivalent 

(or prospect) should have been assigned a greater preference probability.  

The curve formed by plotting preference probabilities on the y-axis versus 

monetary amounts on the x-axis is called a utility function (Figure 4). A utility function 

summarizes all preference information necessary for a decision-maker to make a 

rational decision; in other words, the decision-maker spontaneously obey the five rules 

of actional thought if he/she uses a utility function.  

For monetary prospects, a utility function is defined for the whole range of 

wealth, and the only requirement is that a utility function must be non-decreasing as the 

wealth increases, which reflect more money is preferred to less money in general. A 

utility function describes a decision-maker’s feeling about changes of their wealth 

relative to the initial state of their wealth and their feelings about uncertainty (Howard, 

1966).   

For a risk-neutral decision-maker, expected monetary value (EMV) is the 

consistent decision criterion (i.e., the objective is to maximize EMV). However, when 

a decision-maker is risk-averse or risk-seeking, EMV is no longer a consistent decision 

criterion; the consistent decision criterion should be expected utility (EU).  

For a risk-neutral decision-maker, the utility function must be linear: 

 

𝑢(𝑥) = 𝑎 + 𝑏𝑥 (1) 

where 𝑢  denotes utility and 𝑥  denotes monetary gain (or loss if 𝑥  is a negative 

value) and 𝑎 and 𝑏 (𝑏 > 0) are coefficients that can be arbitrary values because 𝑎 

and 𝑏 have no impact on CE and ranking of decision alternatives.  

For risk-averse and risk-seeking attitudes, they are commonly modelled using 

an exponential utility function because of its simplicity – only one parameter, risk 

tolerance, needs to be specified: 

𝑢(𝑥) = 𝑎 − sgn(𝜌)  𝑏𝑒
−

𝑥

𝜌 (2) 
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where 𝜌 (𝜌 ≠ 0) denotes risk tolerance and sgn(𝜌) takes the sign sgn(𝜌) = 1 if 𝜌 

is positive and sgn(𝜌) = −1 if 𝜌 is negative. For risk aversion 𝜌 > 0, and for risk-

seeking 𝜌 < 0. 𝜌 approaching to +/-∞ represents risk-neutrality: 𝜌 approaching to 

0 from the positive direction represents extreme risk aversion, and 𝜌 approaching to 0 

from the negative direction represents extreme risk-seeking. 

Figure 4 shows an illustration of the shapes of the utility function for different risk 

attitudes. 

 
 

 

Figure 4. Examples of trends of utility functions for different risk attitudes. 

For a risk-averse decision-maker the CE for an uncertain prospect is smaller 

than the expected value (EV) of the prospect; the CE is equal to the EV under risk-

neutrality; for risk-seeking decision-makers the CE is greater than the EV (Howard, 

1966).  
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Chapter 3: Sequential decision-making 

In this chapter sequential decision analysis will be introduced, explaining how 

sequential decision problems can be formulated and solved. A review of dynamic 

programming and approximate dynamic programming will be provided. After 

explaining how the information can be used in the different SDM approaches, the 

general concept of value of information (VOI) will be explained.  

3.1. INTRODUCTION TO SEQUENTIAL DECISION-MAKING 

Warren Powell, author of the book “Approximate Dynamic Programming: 

Solving the curses of dimensionality” (Powell, 2011), wrote: “Sequential decision 

analytics is an umbrella for a vast range of problems that consist of the sequence: 

decision, information, decision, information, decision, information, …”. The outcome 

of each decision (as a part of information) can affect future decisions. The objective of 

solving an sequential decision-making problem is to find the optimal decision strategy 

– a plan of actions depending on what has happened earlier and what information has 

revealed – that optimizes an objective (e.g., maximizing profit, minimizing cost or 

maximizing NPV) (Bratvold and Begg, 2010). 

In a SDM scheme, multiple decisions are ordered chronologically, and the 

outcome of a previous decision is considered known before a next decision is made. 

Additional information gathered over time is driven by the decisions taken before the 

information can be used to update the probabilities of remaining uncertainties, and 

consequently update the expected objective values of all future decision alternatives. 

Therefore, the decisions with the consideration of the additional information might be 

different from that if the additional information is not considered, and the decision 

policy might also change (Ahmadi and Bravtvold, 2023). SDM relies on the integration 

of additional information gathered and continuous uncertainty updating given the 

additional information over time, to support current decision(s). 
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3.2. FORMULATION OF SEQUENTIAL DECISION PROBLEMS 

The SDM framework can be represented by a decision tree structure, which is 

reviewed in more detail in this section. This section also shows the differences between 

the full formulation of SDM problems from other decision-making approaches that do 

not fully consider the information gathered over time. 

3.2.1. Sequential Decision trees 

As introduced in the previous chapter, a decision tree is a diagram that expresses 

the relationship and time-sequence between the main elements of a decision problem: 

decisions, uncertainties and payoffs (Bratvold and Begg, 2010). In Chapter 4: LSM 

algorithm, Section 4.4: Example, a fully structured decision tree example is introduced 

to explain the least-squares Monte Carlo method. Yet, to understand the different SDM 

approaches and the relation between their components Figure 5 shows compact versions 

of decision trees2. The decision points are denoted Di, the prior uncertainty3is denoted 

as U|I0 and additional information gathered after decision Di-1 and before Di is denoted 

as Ii. Hong et al. (2019) and Ahmadi and Bravtvold (2023) well describe three different 

approaches for solving sequential decision-making problems. The first one is 

represented in Figure 5a, called the myopic approach. In this approach, a single decision 

point and an initial uncertainty U|I0 are considered; other future decisions and 

information are disregarded, thus, the current decision D0 depends only on the prior 

information I0. 

 
2 A compact decision tree omits details of alternatives and possible outcomes, and only decision and 

uncertainty nodes are shown. 
3 A prior probability refers to the initial estimate of the probability of an outcome. A posterior probability 

refers to the updated probability of the outcome, given some other outcome happens; this is usually 

known as conditional probability. 
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Figure 5: Schematic representations and decision trees for solving sequential decision-

making problems using different approaches; (a) myopic approach, (b) 

naïve approach, and (c) farsighted approach. From Hong et al. (2019), 

Ahmadi and Bravtvold (2023). 
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In the naïve approach, illustrated in Figure 5b, also only prior information is 

considered, but instead of one decision point, the sequence of decisions is considered; 

future information is ignored for the decision-making. The farsighted/dynamic 

programming approach, Figure 5c, is the one that considers the future information 

obtained over time; additional information will be gathered, and uncertainty 

probabilities will be updated for supporting a next decision in time. This approach 

models the full decision-information structure, guaranteeing the optimal decision policy 

(Hong et al., 2019). The optimal decision policy is solved using the rollback procedure 

of decision tree, from the last point in time towards time zero, which is described in the 

sub-section below. 

3.2.2. Bellman equation 

The mathematical formulation behind the decision tree of the farsighted 

approach is the Bellman equation (Bellman, 1957), formulated below.  

 

𝑉𝑖(𝜔𝑖) = 𝑚𝑎𝑥𝑎𝜖𝐴(𝑖)[∑ 𝑃(𝑥|𝜔𝑖)(𝑟𝑎
𝑥 + 𝛿𝑉𝑖+1(𝜔𝑖+1

𝑎,𝑥
𝑥𝜖𝑋(𝑎) ))]   (3) 

where i represents a decision point that includes available information 𝝎𝒊 , and A(i) 

represents a set of feasible alternatives. A single alternative in A(i) is noted as a, with 

corresponding uncertain outcomes X(a).  𝑃(𝑥|𝝎𝒊 ) represents the conditional 

probability of an uncertain outcome x given information 𝝎𝒊 . 𝒓𝒂
𝒙

 represents the 

immediate payoff from alternative a given outcome x, and 𝑉(𝝎𝒊
𝒂,𝒙

) represents the 

future expected value, estimated by selecting the best alternatives in the future, given 

alternative a, and outcome x. Hence, 𝑉(𝝎𝒊
𝒂,𝒙

) corresponds to the optimal expected 

value computed at the future decision nodes (Di for i > 0) in Figure 5c. 𝛿  is the 

discount factor. 
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3.3. SOLVING SEQUENTIAL DECISION PROBLEMS 

This addresses how complex SDM problems are solved, and what techniques 

have been developed to overcome high computational costs. 

3.3.1. Curses of dimensionality and dynamic programming 

It is acknowledged that the myopic and naïve models might lead to suboptimal 

results, but it is also understood that the farsighted approach can be computationally 

costly. The complexity of a full decision tree for sequential decision-making grows 

quickly with the number of decision points, the number of alternatives at each decision 

point, the number of uncertainties and the number of possible outcomes; this is known 

as the “curse of dimensionality” (Powell, 2011).  

A large range of SDM problems are solved using dynamic programming 

(Bellman, 1957). Dynamic programming enables the identification of optimal decision 

policies of SDM problems under uncertainty. It uses the principle of decomposition to 

break a general decision problem into a set of sub-problems, making it the most suitable 

approach for the optimization of sequential decisions and uncertainties (Ahmadi and 

Bravtvold, 2023). However, this approach also suffers from the curse of dimensionality 

and the computational cost increases exponentially when solving large, real-world 

decision schemes (Bellman, 1957).  

Approximate dynamic approaches have been developed to partially overcome 

the curses of dimensionality. The LSM algorithm used in the present work falls within 

this umbrella and is based in approximating the expected value by using regression. 

The details of the LSM algorithm are documented in the next chapter. 

 

3.4. VALUE OF INFORMATION (VOI) ANALYSIS 

Decisions can be supported by acquiring and using information. The value 

associated with collecting the information is called value of information (VOI). 
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Although the VOI is a concept that applies to general decision analysis (not necessarily 

sequential decision analysis), it is included in this section after the various approaches 

for solving SDM problems have been explained in relation to how the information is 

used.  

Abbas and Howard (2015) describe the VOI as the maximum amount that a 

decision-maker should pay for gathering additional information. The information 

gathered can be perfect or imperfect, where the first one is associated with the 

uncertainty being revealed in full (Ahmadi and Bravtvold, 2023). When the information 

is imperfect, the outcomes of the decision problem are uncertain, and this uncertainty 

is quantified assigning probabilities. In general, the use of information aims to make 

better decisions, i.e., increasing the chances of obtaining the desired outcomes. 

In the case of decision-makers with neutral or constant risk aversion preferences 

(see Chapter 2, section 2.2: Expected utility theory and risk attitude), VOI is calculated 

as the difference between the expected value obtained with free additional information 

and the expected value obtained with no additional information (Bratvold and Begg, 

2010): 

𝑉𝑂𝐼 = 𝑚𝑎𝑥{0, 𝛥}   (4) 

𝛥 =  𝐸𝑉𝑊𝐼 –  𝐸𝑉𝑊𝑂𝐼 

where EVWI is the expected value with additional information and EVWOI is the 

expected value without additional information. The minimum value of VOI is 0 because 

if EVWI < EVWOI, one can always choose to not gather the additional information 

(Abbas and Howard, 2015). In the case of risk profiles described with an exponential 

utility function, the same formulas apply, but replacing the EVs with certain equivalents 

(CEs). 

Since the uncertain variables normally have a high number of dimensions, it is 

difficult to represent their probability distribution through an analytical form. The 

probability distributions of these variables are usually approximated using Monte Carlo 
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sampling (MCS) (see Chapter 4, section 4.1: Monte Carlo simulation). The decision 

without information (DOWI) is the alternative that maximizes the EV over the prior 

value: 

 

𝐸𝑉𝑊𝑂𝐼 = 𝑚𝑎𝑥𝑎𝜖𝐴[∫ 𝑣(𝑥, 𝑎)𝑝(𝑥)𝑑𝑥
𝑥

] ≈ 𝑚𝑎𝑥𝑎𝜖𝐴 [
1

𝐵
∑ 𝑣(𝑥𝑏 , 𝑎)𝐵

𝑏=1 ]    (5) 

where x denotes the underlaying uncertain variables of value v. a is a decision 

alternative from the set A, x represents the distinctions of interests, v(x,a) is the value 

for an alternative a and a given realization x, and p(x) is the prior probability density of 

x. xb represents a sample of x from MCS. 

 Similarly, the decision with information is an alternative that maximizes the 

expected value over the posterior value given a realization of observations y: 

 

 

𝐸𝑉𝑊𝐼(𝑦) = 𝑚𝑎𝑥𝑎𝜖𝐴 [∫ 𝑣(𝑥|𝑦, 𝑎)𝑝(𝑥|𝑦)𝑑𝑥|𝑦
𝑥|𝑦

] ≈ 𝑚𝑎𝑥𝑎𝜖𝐴 [
1

𝐵
∑ 𝑣(𝑥𝑏|𝑦, 𝑎)𝐵

𝑏=1 ]   (6) 

where 𝑥|𝑦 denotes x given y and 𝑝(𝑥|𝑦) is the posterior4 probability density of x 

given y. The expected value with information is then: 

 

 

𝐸𝑉𝑊𝐼 = [∫ 𝐸𝑉𝑊𝐼(𝑦)𝑝(𝑦)𝑑𝑦
𝑦

] ≈ [
1

𝐶
∑ 𝐸𝑉𝑊𝐼(𝑦𝑐)]𝐶

𝑐=1 ]    (7) 

where p(y) is the marginal probability density of y, i.e., the preposterior5 probability 

density of y (Hong et al., 2018). 

 

 

 
4 A posterior probability refers to the updated probability of the outcome, given some other outcome 

happens; this is usually known as conditional probability. 

 
5 Preposterior probability refers to the probability of the evidence/observations. 
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Chapter 4: Least-squares Monte Carlo algorithm (LSM) 

The least-squares Monte Carlo (LSM) algorithm, proposed by Longstaff and 

Schwartz (2001), is a state-of-the-art approximate dynamic programming method 

developed for real options valuation. LSM has several advantages compared to other 

methods for real options valuation: Black-Scholes option pricing model (Black and 

Scholes, 1973), binomial model (Cox et al., 1979), risk-adjusted decision trees 

(Brandao et al., 2005), Monte Carlo simulation (MCS) (Boyle, 1977), and hybrid real 

options models (Neely III and de Neufville, 2001). LSM consists of two main steps: 

simulation of uncertainties and least-squares regression (Jafarizadeh and Bratvold, 

2013); this is followed by solving the sequential decision problem backwards in time 

The conditional expectation function is estimated by regressing the values, e.g., NPVs, 

utilities, as a function of the uncertain variables at each decision point. The uncertain 

variables are generated via Monte Carlo simulation (MCS) at all time periods. The 

optimal decision policy is identified by maximizing the expected value or expected 

utility at each decision point. The regression function to use constitutes an important 

element of the LSM algorithm (Ahmadi and Bravtvold, 2023).  

The LSM algorithm allows to efficiently handle multiple uncertainties, 

mitigating their curse of dimensionality. However, this technique still suffers from the 

curses of dimensionality of decision points and decision alternatives. Thus, most 

implementations of LSM are on decision problems with only two or three alternatives 

at each decision point, such as the “continue” and “exercise” alternatives in real options. 

The following two sub-sections explain the main two stages of the LSM 

algorithm, and a further sub-section explains the general LSM workflow for sequential 

decision-making.  
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4.1. MONTE CARLO SIMULATION (MCS) 

Monte Carlo simulation (MCS) is a popular tool used for uncertainty analysis. 

In the context of decision analysis, direct assessment of probability distributions of 

objective attributes (e.g., NPV and hydrocarbon recovery) is challenging. Instead, these 

attributes are often calculated based on models that relates the attributes (output 

variables) to underlaying uncertain variables (input variables) whose probability 

distributions are easier to assess (e.g., reservoir properties, costs and prices). Monte 

Carlo simulation in this context is used to propagate the uncertainty from the 

underlaying variables to the objective attributes (Bratvold and Begg, 2010). 

The MCS procedure is as follows: Given a model, the uncertainty of input 

variables is modelled with probability distributions. A set of the values of the input 

variables is sampled from the probability distributions and used in the model to 

calculate a value of an output variable. The value of the output variable is stored. The 

sampled values of the input variables and the corresponding value of the output variable 

is called a “realization”. The procedure of sampling the input variables, calculating and 

storing the output variable is repeated multiples times, and the statistics (e.g., mean, 

variance, percentiles) of the output variable can be approximated by the statistics of the 

calculated and stored values. Figure 6 illustrates the MCS procedure.  
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Figure 6. Schematic workflow of Monte Carlo simulation. From Bratvold and Begg 

(2010). 

4.2. REGRESSION 

Regression analysis is used to estimate relationships between independent 

variables, often called predictors, and dependant variables. The objectives of regression 

analysis are: (1) to identify the “best” model among several candidates in case the 

physics of the system does not provide an unique mechanistic relationship, and (2) to 

determine the “best” values of the model parameters (Agami Reddy, 2011). 

The linear regression model is widely used, where a linear function is used to 

approximate the relation between the predictors and dependant variables. The 

usefulness of linear models is very broad, even to fit non-linear functions when the 

range of predictors is limited to a specific range (Cook and Weisberg, 1982).  

The conceptual illustration of a linear regression process is shown in Figure 7. 

The main objective of the regression is to minimize the deviations of the points from 

the prospective regression line. The method of the least-squares is one of the most 

common methods used, where the ‘best fit’ criteria is defined by a minimization of the 

sum of the squares of the residuals (Agami Reddy, 2011). 
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Figure 7. Conceptual illustration on a linear regression process, which reduces the 

unexplained variation in the response variable. (a) Total variation before 

regression. (b) Explained variation due to regression. (c) Residual 

variation after regression. From Agami Reddy (2011). 

4.2.1. Ordinary least-squares (OLS) 

One of the most commonly used linear prediction methods is the ordinary least-

square (OLS) regression. This is illustrated in Figure 8 , where the squared sum of the 

vertical differences Di between the line and the observation points are minimized 

((∑ 𝐷𝑖
2𝑛

𝑖=1 )1/2). 

 

Figure 8. Conceptual illustration of the ordinary least-squares regression (OLS). From 

Agami Reddy (2011). 

A single-dimensional or univariate regression can be represented only with two 

parameters, a and b, where a represents the intercept and b represents the slope. The 
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objective of the regression is to determine the values of a and b so they can satisfy 

equation 8, with a minimum error 𝜖.  

𝑦 = 𝑎 + 𝑏𝑥 + 𝜖   (8) 

When more than one independent variable influences the dependant variable, a 

multivariate regression will explain more of the variation and provide a better 

prediction that a single regression. The mathematical form, known as the “additive 

multiple linear regression model” is defined as  

 

𝑦 =  𝛽0 + 𝛽1𝑥1+. . . . . +𝛽𝑝𝑥𝑝 + 𝜖   (9) 

where 𝑥𝑖 are the independent variables, 𝛽𝑖 are unknown constants (regression 

model parameters) and 𝜖 is the regression error (Agami Reddy, 2011). In this case the 

parameters 𝛽𝑖 are to be identified such as the sum of squares function L is minimized: 

𝐿 = ∑ ℰ𝑖
2𝑛

𝑖=1 = (𝑌 − 𝑋𝛽)′(𝑌 − 𝑋𝛽), where X and Y represents matrixes of the multiple 

variables x and y variables, and 𝛽 is a vector containing 𝛽0, 𝛽1, 𝛽2, … 

 

4.3. LEAST-SQUARES MONTE CARLO GENERAL WORKFLOW 

Ahmadi and Bravtvold (2023) recently documented a very structured 

explanation of the general LSM workflow based on real options, illustrated in Figure 

9, and divided it in four main steps. Below is a summary of these general LSM steps: 

1. Simulate sufficient realizations of the uncertain variables for all time periods 

via MCS. This will constitute the multiple “paths.” 

2. Calculate the cash flows for all the paths that are functions of the simulated 

uncertain variables and other deterministic variables. Often the payoffs are 

added along each path as cumulative cash flows and discounted back to the 

initial point in time by applying a discount rate, generating the net present 

value (NPV). 
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3. Execute the optimal decision policy employing the backward induction 

strategy (Bellman, 1957), starting from the last decision point back to time zero: 

3.1. In the last period, there are no further options in the project, hence the 

optimal policy is found by comparing the available alternatives’ payoffs 

and exercising the alternative with the highest expected value. 

3.2. For previous time periods, the immediate payoff of the exercising 

options should be compared to the expected value for continuing the 

project in the next time step. In the LSM algorithm, the conditional 

expected value is found by least square regression: 

a. Fit a regression function Y= f (X), where X represents the set of 

uncertain variables in the current period and Y are the discounted 

continuation values of the project in the next period 

b. The optimal decision policy is found by the highest payoff 

alternative, including the continuation alternative. 

c. Update the NPV matrix at each time step, by including the 

continuation values calculated in the previous steps. 

d. Repeat consecutively for each time step, backwards in time. 

4. At time zero (first decision point) calculate the average of the values, which 

represents the expected value for the project with the optimal decision 

strategy. 
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Figure 9. General flowchart for implementing real options values in the LSM 

algorithm. From Ahmadi and Bravtvold (2023). 
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4.4. EXAMPLE 

In this sub-section, a simplified version of the case study, that will be detailed 

in Chapter 8, is presented, showcasing a fully structured SDM problem, which can be 

solved using the LSM algorithm and aligned with the traditional decision tree roll-back 

procedure. 

4.4.1. Problem setting and fully structured decision tree 

This exercise was introduced by Hong et al. (2019) and exemplifies a fully 

structured representation for sequential decision-making, with only three decision 

points in time. It is an improved oil recovery (IOR) initiation time problem that defines 

an oil field with a 15-year production lifetime and decision alternatives of ‘switching’ 

or ‘not switching’ from primary to secondary recovery at years 0, 5 and 10. 

The oil production rates are modelled as a function of time with uncertain 

parameters of three equiprobable geological realizations, R1, R2 and R3. The oil 

production rates, over time and under primary recovery, of the three realizations are 

illustrated in Figure 10, where  𝑡𝑖  are the decision points in time. The likelihood 

functions of oil production rate measurements are summarized in Table 1. For example, 

if the truth is R1, the probability of the measurement at t1 indicating “high rate” (i.e., a 

measured data of 18.1 million bbl/yr) is 0.75, and the probability of the measurement 

at t2 indicating “high rate” (i.e., a measured data of 15.2 million bbl/yr) is 0.80. 
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Figure 10. Oil production rate under primary recovery as a function of time for three 

realizations. From Hong et al. (2019). 

 

 
Given the Truth is 

R1 R2 R3 

Measurement 

at t1 says 

High rate (𝑞𝑜𝐻
𝑡1) 0.75 0.25 0.75 

Low rate (𝑞𝑜𝐿
𝑡1) 0.25 0.75 0.25 

Measurement 

at t2 says 

High rate (𝑞𝑜𝐻
𝑡2) 0.80 0.20 0.20 

Low rate (𝑞𝑜𝐿
𝑡2) 0.20 0.80 0.80 

Table 1. Likelihood functions for the measured oil production rates under primary 

recovery. From Hong et al. (2019).  

Figure 11 shows the full decision tree for the problem setting, where the NPVs 

and utilities corresponding to the decision alternatives and geological realizations are 

listed at the right end of the tree. In this example, an exponential utility function with 

risk tolerance (Rho) of $800 million (risk-averse) is used to convert NPVs to utilities. 
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The decision problem is solved by rolling back the decision tree, resulting in an EU of 

0.6 and CE of $677.19 million. 

 

 

Figure 11. Fully structured decision tree for the simple IOR initiation time exercise for 

a risk-averse case, with Rho = $800 million. Modified from Hong et al. 

(2019).  

After manually solving the decision tree, the steps of using LSM to solve the 

same decision problem will be detailed, with a few paths for illustrative purposes. The 

first step is to generate six data paths or realizations of the observed oil rates, using 

MCS based on the prior probabilities (three equiprobable realizations – each 

realization’s probability is 1/3) and the likelihood probabilities (listed in Table 1). The 

data paths generated are shown in Table 2. 
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  Data at 

Path Geological 
realization 

t1 (qo
t1) t2 (qo

t2) 

1 1 18.1 15.2 

2 3 18.1 15.2 

3 3 18.1 15.2 

4 1 12.8 15.2 

5 3 12.8 8.8 

6 2 12.8 8.8 

Table 2. Paths of measured oil rates for simplified LSM example. 

As rolling back decision trees, LSM starts at the last decision point, t2 in this 

example, and then recursively solves the sequential decision problem backwards in 

time. Table 3 lists the utilities corresponding to the alternatives of “Continue” with 

primary recovery and “Switch” to secondary recovery, at time step t2, for each path. At 

decision point t2, additional information - oil rates at t1 and t2 - will have been measured 

and thus the conditional expected utilities (EU) at t2 given additional information are 

conditional on the oil rates measured at both t1 and t2 (Hong et al., 2019). Hence, utilities 

are regressed on oil rates at t1 and t2 using a non-linear regression algorithm, XGB in 

this example (see Chapter 5 for background on non-linear regression methods and 

Chapter 7 for the selection of regression method for the present case study), to assess 

the conditional EUs at t2 given additional information. The regression is done for both 

alternatives, “Continue” and “Switch,” respectively.  

Table 4 lists the conditional EU at t2, assessed from regression, for each path 

and each alternative. The optimal decision at t2 for each path is identified by choosing 

the highest EU for each path (underlined value in the table).  
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 Data at Utilities 

Path 
Geological 
realization 

t1 (qo
t1) t2 (qo

t2) Continue Switch 

1 1 18.1 15.2 0.918 0.567 

2 3 18.1 15.2 0.321 0.866 

3 3 18.1 15.2 0.321 0.866 

4 1 12.8 15.2 0.856 0.240 

5 3 12.8 8.8 -0.733 0.659 

6 2 12.8 8.8 -0.162 0.201 

Table 3. Utilities for alternatives at time t2 for simplified LSM example. 

 

 Data at Utilities 
Conditional 

Expected Utilities 

Path 
Geological 
realization 

t1 (qo
t1) t2 (qo

t2) Continue Switch Continue Switch 

1 1 18.1 15.2 0.918 0.567 0.520 0.767 

2 3 18.1 15.2 0.321 0.866 0.520 0.767 

3 3 18.1 15.2 0.321 0.866 0.520 0.767 

4 1 12.8 15.2 0.856 0.240 0.856 0.240 

5 3 12.8 8.8 -0.733 0.659 -0.448 0.430 

6 2 12.8 8.8 -0.162 0.201 -0.448 0.430 

Table 4. Expected utilities for alternatives at time t2 for simplified LSM example. 

After identifying the decision policy for t2, LSM progresses one time step 

backwards, to t1, and the utilities corresponding to the two alternatives “Continue” and 

“Switch” at t1 are listed in Table 5. Note that if the decision at t1 is “Switch,” there will 

be no more decision at t2; if the decision at t1 is “Continue,” the decision at t2 will be 

made based on the optimal decision policy that has been identified at the previous step 

– taking Path 1 as an example, its optimal decision at t2 is “Switch” (expected utility = 

0.767 in Table 4) and thus its “Continue” utility at t1 is its “Switch” utility at t2 (0.567). 

At decision point t1, only oil rates at t1 will have been measured as additional 

information; therefore, the utilities are regressed on t1 measurements for the assessment 

of conditional EU given additional information at t1. The assessed EUs at t1 for both 



 32 

alternatives and each path are listed in Table 6. Once again, the best decision at t1 is the 

alternative with the highest EU for each path. 

 
 Data at Utilities 

Path Geological 
realization 

t1 (qo
t1) Continue Switch 

1 1 18.1 0.567 0.268 

2 3 18.1 0.866 0.908 

3 3 18.1 0.866 0.908 

4 1 12.8 0.856 -0.284 

5 3 12.8 0.659 0.839 

6 2 12.8 0.201 0.181 

Table 5. Utilities for alternatives at time t1 for simplified LSM example. 

 

 Data at Utilities 
Conditional 

Expected Utilities 

Path Geological 
realization 

t1 (qo
t1) Continue Switch Continue Switch 

1 1 18.1 0.567 0.268 0.767 0.695 

2 3 18.1 0.866 0.908 0.767 0.695 

3 3 18.1 0.866 0.908 0.767 0.695 

4 1 12.8 0.856 -0.284 0.572 0.245 

5 3 12.8 0.659 0.839 0.572 0.245 

6 2 12.8 0.201 0.181 0.572 0.245 

Table 6. Expected utilities for alternatives at time t1 for simplified LSM example. 

Finally, LSM moves to t0. Since there is no additional information available at 

t0 (the information that is available at t0 is the prior information that has been embedded 

in the prior probability distribution), the EU for each alternative at t0 is calculated as 

the mean of the utilities of each path, listed in Table 7, which results in an EU for 

“Continue” of 0.669, which corresponds to a CE of $885.32 million, and an EU for 

“Switch” of 0.376, which corresponds to a CE of  $377.15 million. The optimal 

decision policy is summarized in Table 8 for each path. 
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  Utilities 

Path Geological 
realization 

Continue Switch 

1 1 0.567 0.084 

2 3 0.866 0.632 

3 3 0.866 0.632 

4 1 0.856 0.084 

5 3 0.659 0.632 

6 2 0.201 0.191 

Table 7. Utilities for alternatives at time t0 for simplified LSM example. 

 
  Data at Optimal decision at 

Path Geological 
realization 

t1 (qo
t1) t2 (qo

t2) t0 t1 t2 

1 1 18.1 15.2 Continue Continue Switch 

2 3 18.1 15.2 Continue Continue Switch 

3 3 18.1 15.2 Continue Continue Switch 

4 1 12.8 15.2 Continue Continue Continue 

5 3 12.8 8.8 Continue Continue Switch 

6 2 12.8 8.8 Continue Continue Switch 

Table 8. Table representation of optimal decision policy for simple IOR problem solved 

using LSM. 

 

4.4.2. Validation of VOI assessment using LSM 

In this section, the VOI assessed using LSM algorithm will be validated by 

comparing against the VOI obtained analytically using the decision tree. 

The first step was to manually resolve a risk-neutral decision tree using the roll-

back procedure, and compare the VOI results obtained by Hong et al. (2019). The VOI 

is calculated as the difference between the expected value with information (EVWI) 

and the expected value without information (EVWOI). The tree branch with 

information (Figure 11) is solved under neutrality, delivering the EVWI. For the 

EVWOI, a separate branch of the tree is built with the decisions at t0, t1 and t2 to the 
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left, because the decisions are taken before the information from the uncertainties are 

known. The probabilities assigned to the uncertainties for each geological realization 

are the prior probabilities. The tree is rolled-back to obtain the EVWOI. Then the VOI 

is calculated as the difference between EVWI and EVWOI, and documented in Table 

9. 

The VOI was also calculated through the LSM algorithm for validation. OLS 

and XGB regressions were tested for the same problem setting, using 100.000 

realizations that respected the prior and likelihood probabilities. Table 9 shows the 

VOIs obtained by Hong et al. (2019), the replicated decision tree roll-back procedure 

and the LSM algorithm. The replicated roll-back approach has delivered the same result 

from Hong et al. (2019), $214.7 million, validating the replication of the example. The 

LSM algorithm using OLS and XGB has delivered the same result, $214.35 million, 

being very similar to the estimation by the decision tree. The small difference between 

the decision tree (i.e., analytical) VOI and the LSM VOI (214.7 vs. 214.4) is attributed 

to the sampling error inherent in MCS. In this case, the VOI is not different/improved 

by XGB, compared to OLS, because this simplified problem is discretized into four 

possible measured values of oil rates (12.8 and 18.1 at t1 and 8.8 and 15.2 at t2) and the 

regression surface of expected NPV (ENPV) (t1 rate, t2 rate) is defined by 4 points; thus, 

the impact of using OLS (linear regression) and XGB (non-linear regression) is not very 

different. This comparison validates that XGB performs as well as OLS for linear 

regression, which is as expected. 

 

Estimated 

value 

Hong et al. 

(2019) 

Replicated 

decision tree 

LSM  

(OLS) 

LSM  

(XGB) 

VOI (MM$) 214.7 214.7 214.4 214.4 

Table 9. Comparison of VOI estimated by Hong et al. (2019), replicated roll-back 

decision tree and LSM workflows using OLS and XGB. 
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Once the working decision tree was validated, the utility function was 

introduced in both, the decision tree and LSM workflow, to model a risk-averse attitude. 

For the LSM workflow, the two types of regressions, OLS and XGB, were tested. Table 

10 summarizes the VOI results. It can be observed that the analytical and the LSM 

algorithms have delivered very similar results, $93.39 million estimated rolling back 

the tree, and $93.16 million using LSM with XGB and OLS regression. The reason why 

the OLS and XGB have delivered the same results is the discretization of the four 

possible measured values of oil rates in this simplified problem, as explained before. 

The similarity of the VOI obtained by rolling back the tree versus the LSM algorithm 

provides confidence in the use of LSM and non-linear regression for calculation of VOI, 

procedure that will be extensively used in the thesis case study going forward. 

 

Estimated value Decision tree LSM (OLS) LSM (XGB) 

VOI (MM$) 93.39 93.16 93.16 

Table 10. Comparison of VOI estimated by rolling back the decision tree and LSM 

workflows using XGB. 
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Chapter 5: Machine learning non-linear regression methods 

It has been mentioned that linear functions are very commonly used to 

approximate the relation between predictors and dependant variables. If the relation 

between the independent and dependant variables is not linear, linear regression might 

not be the optimal fitting approach, hence, different methods would be required. In the 

present case study, the introduction of risk attitude involves the assessment of expected 

utilities for maximisation during the LSM algorithm. Since risk-averse and risk-seeking 

utility curves are non-linear functions of monetary values, the resulting relation 

between the utilities and the observations (oil rates) results non-linear. Using a linear 

regression approach for these cases may result in sub-optimal decision policies.  

This chapter introduces several non-linear regression methods based in machine 

learning. The theory of the machine learning regression methods is outside the scope of 

the present thesis; therefore, the methods will be introduced very briefly. These 

methods are later tested for approximating the expected utilities in the present case 

study. 

 

5.1. K NEAREST NEIGHBOURS (KNN) 

KNN is a machine learning classifier based on identifying the nearest 

neighbours of a sample and using those neighbours to determine the class of the sample. 

k number of the nearest neighbours are used in determining the class. When multiple 

classes are present in the neighbour’s sample, simple majority voting or distance 

weighted voting is used for the resulting classification (Cunningham and Delany, 2021). 

KNN method is extremely sensitive to the user-defined parameter k. Small k 

can lead to overfitting the model. A large k might result in the regression model not 

capturing the actual behaviour of the dataset (Shahali, 2022). One way to determine the 
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optimal k is performing K-fold cross-validation. See Chapter 7: Selection of regression 

method, Section 7.1: K-fold cross-validation. 

 

5.2. RANDOM FOREST (RF) 

Random forest is a supervised learning algorithm based on a growing-tree 

approach. Yang et al. (2016) describes regression tree as a decision tree-based 

prediction model, where the decision tree is built using the samples of the dataset: 

Starting from the entire set of samples, a regression tree selects one independent input 

variable among all and performs binary split into two child sets, under the condition 

that the two child nodes give increased purity of the data compared with its single parent 

node. Purity is defined as the deviation of predicting with the mean value of the output 

variable. The split is performed iteratively until a terminating criterion is satisfied. The 

nodes that are not further partitioned are called leaves. After growing a large tree, a 

pruning process is employed to remove the leaves contributing insignificantly to the 

purity improvement (Breiman et al., 1984). 

Random forest grows an ensemble of trees governed by random vectors, and 

letting them vote for the most popular classification. Breiman (2001) explains that for 

a kth tree, a random vector Θk is generated, independent of the past random vectors Θ1 

… Θk-1 but with the same distribution. A tree is grown using the training set and k, 

resulting in a classifier h(x, k) where x is an input vector. After many trees are 

generated, each tree casts a unit vote for the most popular class. 

 

5.3. EXTREME GRADIENT BOOST (XGB) 

XGB is a machine learning method based on regression trees. The algorithm is 

based on the idea of ‘‘boosting’’, which combines all the predictions of a set of “weak” 

learners to develop a “strong” learner, through assistive training strategies. The overall 
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goal is to minimize over and underfitting, but also reducing computational time 

(Mokhtar et al., 2021). 

To avoid overfitting problems, XGB uses an analytic expression that assess the 

‘‘goodness’’ of the model from the original prediction (Mokhtar et al., 2021). This 

involves a loss function and the number of observations. A regularization parameter 

indicates the minimum loss needed to further partition a leaf node. 

 

5.4. SUPPORT VECTOR REGRESSION (SVR) 

The fundamental working guideline of SVR is to perform the data mapping in 

some other dot product spaces through non-linear mapping and perform the linear 

algorithm in the feature space (Shamshirband et al., 2015). SVR tries to find the optimal 

regression hyperplane so that most training samples lie within an deviation margin ε 

around this hyperplane. (Chen et al., 2018) 

The problem can be described as convex optimization. The aim of SVR is to 

find a function of the input vector that has, at most, ε deviation from the total training 

sample, and at the same time as flat as possible by minimizing the norm of a model 

parameter (Chen et al., 2018). SVR then minimises two terms in the objective function, 

the first one is the insensitive loss function, i.e., only sample training error greater than 

a user-specific threshold is considered in the loss function. The other term is model 

complexity, which is expressed as the sum of squared regression coefficients (Yang et 

al., 2016). 

 

5.5. PIECEWISE REGRESSION 

The piecewise regression method partitions one input variable into multiple 

mutually exclusive segments/slopes and fit one local regression function for each 

segment/slope. The regression function for each segment can be linear or non-linear. 
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The split into segments (and optimisation of the breakpoints) and the computation of 

the regression coefficients are performed simultaneously, with an objective of 

minimising the total training error (Yang et al., 2016).  

For any sample, its training error is equal to the absolute deviation between the 

real output and the predicted output for the segment. A recent approach starts with 

solving a linear regression (no segmentation) on the complete set of data with least 

absolute deviation. Then each input variable works as partition feature (a priori a single 

input variable) and the model is solved for 2 segments. The feature with minimum 

training error is kept and if its error represents a percentage reduction of more than a 

user-defined tolerance β from the global linear regression without data partition, the 

procedure continues with iteratively increasing number of segments until the β training 

reduction criterion is not satisfied. In this case it is decided that the current split provides 

no improved fit than previous iteration fit (Yang et al., 2016). 
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Chapter 6: General workflow of the present study 

The general methodology used in the present study is illustrated in the Figure 

12. The first step in this study was to replicate the problem setting in a risk-neutral case 

and LSM workflow with OLS regression used by Hong et al. (2019) and Wui (2019) – 

the IOR initiation and termination time problem. The replication was achieved by 

coding in Python. The replicated results were validated against Hong et al.’s and Wui’s 

results. This is documented in Chapter 8: Case study, Section 8.2: LSM 

implementation. The codes for the replication were the base for the further work that 

extended the decision problem to non-risk-neutral cases. 

The next phase was to start the non-linear regression (NLR) testing using 

different machine learning (ML) methods in a relevant dataset to the case study. The 

dataset for the testing was generated using the replicated code, from which a subset of 

oil rates and their respective NPVs for different years of production were extracted. A 

utility function with a preliminary risk tolerance was used to convert the monetary 

values to utilities; the preliminary risk tolerance was calculated as one third of the 

expected NPV achieved by the replicated code under risk-neutrality. The oil rates and 

respective utilities were used to test single-dimensional and multi-dimensional 

regressions, using different NLR algorithms.  

For each NLR regression algorithm, the optimal parameters were determined. 

To choose the most suitable method for the test data, several quality control 

measurements were performed, including assessment of the fitting scores, 2D and 3D 

visual inspections of the fit, residual scatter plots and QQ-plots (See Chapter 7: 

Selection of regression method).  

After choosing the optimal regression method for the test data, the LSM 

algorithm was implemented using NLR as a fitting method for the expected values 

and/or utilities. Having seen that the chosen NLR method provided a better fit even in 
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a linear relation (see Chapter 7: Selection of regression method), a first validation was 

performed using risk-neutral and using the chosen NLR for the fitting. These results 

were compared against the original OLS approach, to validate the accuracy of NLR in 

the LSM algorithm. Following this, risk attitudes were introduced into the case study 

problem and modelled using exponential utility functions. This is summarized in 

Chapter 8: Case study, Section 8.2: LSM implementation. 

The value of information (VOI) obtained through the LSM algorithm was also 

validated using a conventional decision tree approach that resembled a simplified 

version of the current case study. This validation was documented in Chapter 4: LSM 

algorithm, Section 4.4: Example, Sub-section 4.4.2: Validation of VOI. Once the VOI 

method was validated, sensitivity analysis of different risk tolerances was conducted. 

The impacts of the risk attitude and the information on the decision policy were 

assessed, and the outcomes of the case study were discussed. See Chapter 8, for detailed 

documentation on all the mentioned assessments, and Chapter 9 for the discussion. 
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Figure 12. General workflow of the present work. 
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 Chapter 7: Selection of the non-linear regression method 

In this chapter a review of the non-linear regression (NLR) testing is performed, 

including documentation of different quality control displays and measurements, and 

the final selection of a regression method to be used in the LSM algorithm for resolving 

the case study. 

The data used for testing was generated with the Python workflow created for 

the case study, where oil rates have been simulated over 50 years of production, using 

Monte Carlo simulation, and respective NPVs have been calculated, as described in 

Chapter 8. Therefore, this extraction of data is representative of the problem in question.  

The X axis for regressions consisted of sets of 10,0000 samples of oil rates for 

each year of production from year 1 to year 30, which would enable multi-dimensional 

regression tests. The Y for regressions consisted of 10,000 samples of the 

corresponding NPVs at year 30. To obtain the NPVs at year 30, the LSM workflow was 

solved starting at year 50, and ‘rolled-back’ down to year 30, when the NPVs were 

assessed for the different alternatives, and the optimal NPVs were exported for testing, 

along the oil rates from year 1 to year 30 (see details about the LSM workflow in 

Chapter 8: Case study, Section 8.2: LSM implementation). The NPVs were then 

converted to utilities, using the exponential utility function with a risk tolerance of $200 

million. Tests of single dimensional and multi-dimensional regression were performed. 

 

7.1. K-FOLD CROSS-VALIDATION 

Machine learning methods are controlled by ‘hyperparameters’ to avoid under- 

and overfitting. In underfitting, the model is unable to capture the relation between the 

independent variables and the target variable. In overfitting the model can fit the 

training data very well but cannot predict the validation/test data. In order to find the 

most suitable hyperparameters a k-fold cross-validation method was used. In k-fold 
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cross-validation, the dataset is randomly split into k groups (fold) and treat each group 

as a validation sample or test dataset. Since the partition is random, the variance of the 

accuracy estimates can be large for statistical inference (Wong and Yeh, 2020). Several 

studies have suggested to perform k-fold cross validation repeatedly to obtain reliable 

accuracy estimates for statistical comparison (Wang et al., 2017; Witten et al., 2011). 

The fitting scores from k-fold cross-validation quantify overfitting or 

underfitting. In non-linear regression algorithms the fitting scores are usually the 

squares of the coefficient of multiple correlation or coefficient of determination, 

denoted as R2. In this work, Python module scikit-learn is used for the regression 

algorithms and the determination of their respective R2 scores. In scikit-learn R2 

quantifies the proportion of variance of the real data that has been explained by the 

independent variables in the model. It provides an indication of goodness of fit and 

therefore a measure of how well unseen samples are likely to be predicted by the model, 

through the proportion of explained variance (scikit-learn.org). In scikit-learn R2 is 

defined as follows: 

 

𝑅2(𝑦, 𝑦̂) = 1 −
∑ (𝑦𝑖−𝑦𝑖̂)2𝑛

𝑖=1

∑ (𝑦𝑖−𝑦̅)2𝑛
𝑖=1

   (10) 

 

where 𝑦𝑖̂ is the predicted value of the i-th sample from regression, yi is the 

corresponding true value for total n samples and  

 

𝑦̅ =
1

𝑛
∑ 𝑦𝑖

𝑛

𝑖=1
 

Best possible score is 1.0 and it can be negative because cross-validation is 

normally performed on random permutations on of train and test data, therefore the 

model can be arbitrarily worse (scikit-learn.org). 
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For each NLR algorithm a selection of the most sensitive hyperparameters was 

made for the cross-validation. First, a 3-fold cross-validation was performed, using the 

scikit-learn module “GridSearchCV”. GridSearchCV implements a “fit” and a “score” 

method. The hyperparameters of the estimator are optimized by cross-validation over 

combinations within a dictionary of parameters (grid). This enables searching over any 

given sequence of parameter settings (scikit-learn.org). 

Table 11 shows a summary of the hyperparameters selected for each NLR 

method, and the results suggested by the 3-fold validation with GridSearchCV. 

 

Algorithm Hyperparameter 

Single-

dimensional 

regression 

Multi-

dimensional 

regression 

K nearest 

neighbour 

Lead size 1 1 

Number of neighbours 27 27 

p 1 2 

Random forest 

Number of estimators 70 100 

Maximum features 0.7 0.2 

Maximum leaf nodes 12 54 

Extreme gradient 

boost 

Maximum depth 3 3 

Eta 0.1325 0.1325 

Subsample 1 0.875 

Support vector 

regression 

Kernel poly rbf 

C 63 15.87 

Gamma 0.223 0.001 

Piecewise 

regression 

Number of bins 2 10 

Estimator RF XGB 

Table 11. Optimized hyperparameters suggested by 3-Fold K validation using 

GridSearchCV on multi-dimensional regressions of utilities, for a risk-

averse case. 

After the joint optimization of parameters, a confirmation was performed 

through visual inspection of the R2 plots, obtained by varying each parameter 

individually and performing 10-k fold validation. This assessment can be seen as 

sensitivity analysis on each parameter to assess the effect of the fit on train and test 
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data. For each parameter assessed, the other parameters were kept fixed. Graphs were 

generated for each parameter, plotting R2 against the tested parameter. Figures below 

show some examples of this sensitivity analysis, for the parameters that generated more 

variation in KNN and XGB R2 scores (see Appendix A for the rest of the NLR 

algorithms and parameters). 

Figure 13 shows the sensitivity of parameter ‘number of neighbours’ on the R2 

for train and test data, when using KNN regression. It is observed that he maximum R2 

for the test data is reached at about 30-60 neighbours, however on the train data the 

optimal number of neighbours would be around 30, where the curve becomes 

horizontally flat and shortly after starts to linearly decrease. This plot confirms the 

suggestions from GridSearchCV, where around 30 is the optimal number of neighbours. 

 

 

Figure 13. Sensitivity analysis of hyperparameter ‘number of neighbours’ from KNN 

algorithm on the fitting scores. 

Figure 14 shows the sensitivity of parameter ‘maximum depth’ from XGB 

algorithm on the R2 scores obtained when using XGB regression. It is noted that both 

the train and the test data reach R2 stability at around 2 maximum depth. However, the 

train curve suggests a higher value of the parameter. This result is also in agreement 
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with GridSearchCV’s suggestion of a maximum depth of 3, where both train and test 

data have high R2 scores. 

 

 

Figure 14. Sensitivity analysis of hyperparameter ‘maximum depth’ from XGB 

algorithm on the fitting scores. 

 

7.2. SCATTER AND Q-Q PLOTS OF REGRESSION RESIDUALS 

One of the quality control (QC) measurements in a regression procedure is to 

compute the residuals (or errors) 𝜀 , between the measured dependant value 𝑦𝑖 and 

the predicted value 𝑦𝑖̂,  𝜀 = 𝑦𝑖̂ − 𝑦𝑖 , and plot them against the independent variables. 

Inference for the general linear model makes several assumptions, including 

independence of errors, normality, and homogeneity of variance (homoscedasticity) 

(Schützenmeister et al., 2012), which would imply that the residuals are equally spread 

around 𝜀 = 0. A scatterplot of these errors provides a visual inspection to assess this 

condition. For a suitable non-linear regression fitting, minimum bias should still be 

aimed, and the error is expected to be randomly distributed. 

Figure 15 shows the single-dimensional OLS regression of NPVs for a risk-

neutral case, and typical 2D QC plots, (a) the regression fit scatter plot and (b) the 
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residuals scatterplot. Figure 15a shows that the relation between the independent 

variables (oil rates) and the dependent variables (NPVs) is mostly linear, hence, a 

straight regression line (blue line) is sensibly representative of the sample trend. There 

are some inaccuracies below 2 MM bbl, where the cloud formed by the red dots has a 

slightly different slope. To explain this behaviour, it is worth to make the following 

observation, reminding that the data used is an output from the LSM workflow 

execution down to year 30: A ‘linear case’ means the objective function is a linear 

function of observables for given decisions and ‘a non-linear case’ means the objective 

function is a non-linear function of observables for given decisions. Even for a linear 

case, the relation between objective values and observed values might not be linear 

when a decision strategy is involved because the relation between objective values and 

the decision strategy might not be linear. Such non-linearity is represented by the slight 

change of slope below 2 MM bbl. 

The residuals scatter plot show that the errors are generally unbiased, having an 

overall random distribution, and centred around the zero-error line. A local average of 

the residuals was calculated for facilitating the visual analysis: the residuals were first 

sorted by increasing oil rates; an average of the residuals was calculated for each 

consecutive group of 100 samples of oil rates and the resulting residual value was 

plotted at the respective ‘y’ of the graph, and at the ‘x’ corresponding to the median 

value of the 100 oil rates; this was repeated for each consecutive group, calculating 

average and standard deviation. The local average, also called windowed average, is 

displayed in green colour in Figure 15b, and the local standard deviation is shown pink; 

these lines show that between 2 and 3.5 MM bbl the error is closest to zero, indicating 

unbiasedness. As mentioned previously, there are slightly larger errors towards the 

lower end of the oil rates where the regression line does not effectively capture the tale 

of the oil samples. Wider scattering of the predicted values is observed at the highest 

oil rates in Figure 15a, and consequently larger errors as shown in Figure 15b. The local 



 49 

standard deviation is quite homogeneous over the oil rates. The R2 score for this fit 

resulted in 0.654. 

 

 

Figure 15. Scatterplots of a single-dimensional OLS regression of NPVs in a risk-

neutral case. (a) Scatterplots of NPVs vs oil rates (red) and predicted 

NPVs (blue). (b) Residuals scatterplot (blue), with windowed average 

(green) and standard deviation (pink). 

Figure 16 shows equivalent displays for a single-dimensional OLS regression 

of utilities for a risk-averse case. In this case the relation between the oil rates and the 

utilities is not linear, evidenced by the exponential shape of the samples (the red dots 

in Figure 16a). If a linear regression is used, the errors are not homogeneously 

distributed, as seen in Figure 16b. There are two indications of not appropriate fit: first, 

the local average, represented by the green line is not close to zero for most of the oil 
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rates range, with much larger residual values at the lower end; second, the local standard 

deviation, represented by the pink line, is not homogeneous over the oil rates range, 

showing bias. The R2 scores for this fit resulted in 0.509, which is significantly lower 

than the score obtained in the risk-neutral case. This supports that a linear fit would not 

be suitable for a risk-averse case, as expected. 

 

 

Figure 16. Scatterplots of a single-dimensional OLS regression of utilities in a risk-

averse case. (a) Scatterplots of utilities vs oil rates (red) and predicted 

utilities (blue). (b) Residuals scatterplot (blue), with windowed average 

(green) and standard deviation (pink). 

Another useful way to visually verify the goodness of the fit is by drawing the 

regression residuals Q-Q plots (Wilk and Gnanadesikan, 1968), under the expectation 

that regression errors should be normally distributed to respect homoscedasticity. Q-Q 



 51 

plots are very suitable to evaluate whether a sample is normally distributed. Consider a 

sample with size n, given by x1,… xn , and Fn is the empirical distribution function 

based on the sample, a Q-Q plot is built by plotting the theoretical quantiles, known as 

the standard normal variate (normal distribution with mean 0 and standard deviation 1), 

F-1(Fn(xi)), against the samples quantiles, x(i). If the empirical distribution is 

consistent with the theoretical distribution, F, the points in the Q-Q plot fall on the line 

of identity. This applies for distributions within a common location and scale family. 

Therefore, Q-Q plots can be used for verifying the distribution of a sample set for 

normality (Loy et al., 2016). 

The Q-Q plots presented in this work are generated via Python module 

statsmodels, with a ‘standardized’ line, where the resulting points in the Q-Q plot are 

scaled by the standard deviation of the given sample set and the mean is also added 

(statsmodels.org). Figure 17 shows the residuals Q-Q plots for OLS performed on the 

neutral and risk-averse cases presented previously in Figure 15 and Figure 16, 

respectively. For the neutral case in Figure 17a,c, it can be observed that the points of 

the Q-Q plot overall fall on the standardized line. However, when using OLS fitting in 

a risk-averse case Figure 17b,d, it is evident that the ends of the curve are falling outside 

the straight line, indicating that the fit is inadequate especially in the lower end oil rates, 

as concluded previously.  

Going forward with the non-linear regression testing in this work, residual 

scatter and Q-Q plots were both considered to support the determination of the best fit. 

This was also accompanied by evaluation of the R2 scores, and visual inspection of the 

data fit in 2D and 3D displays. 
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Figure 17. Scatter and Q-Q plots of a single-dimensional OLS. Regression residuals 

scatterplot for (a) risk-neutral and (b) risk-averse. Residuals Q-Q plot 

(blue) for (c) risk-neutral and (d) risk-averse; red line is a standardized 

line. 

Figure 18 and Figure 19 show the QC plots for RF and XGB non-linear 

regressions of utilities on a risk-averse case, before and after the parameters are 

optimized. Parameter optimization refers to the results of the 3-Fold GridSearchCV 

validation (Table 11), subsequently confirmed by 10-Fold R2 sensitivity analysis. In a 

single-dimensional regression, it is expected that the predicted values form a line rather 

than a cloud of points, where the latter would indicate overfitting. It is also expected 

that after the parameters are optimized the residuals have larger magnitudes and have 

an unbiased and larger standard deviation (in case of overfitting the residuals would be 

closer to the zero line). For both regressors, overfitting is noticed before the parameters 

are optimized. This is evidenced by the cloud of predicted points instead of a line (Fig. 

16a, c and e). After the parameters are optimized, the predicted utilities draw a line, as 

expected (b,d,f). This is true for the two regressors presented in this example. Another 



 53 

observation is that after parameters are optimized, the standard deviation of the errors 

increases, from 0.01 to 0.022 for RF, and from 0.018 to 0.021 for XGB, which indicates 

an improvement from the overfitted result. Q-Q plots show that the fitting is challenging 

at the edges of the oil rates, especially the lower end. RF has a slightly worse fit in this 

case. 

 

 

Figure 18. Single-dimensional Random Forest regression QC plots for risk-averse 

utilities: (a, c, e) before and (b, d, f) after parameter optimization. (a,b): 

Utilities (red) and predicted utilities (blue). (c,d): Residuals scatterplots. 

(e,f): Residuals Q-Q plots (blue) and standardized line (red). 
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Figure 19. Single-dimensional Extreme Gradient Boost regression QC plots for risk-

averse utilities: (a, c, e) before and (b, d, f) after parameter optimization. 

(a,b): Utilities (red) and predicted utilities (blue). (c,d): Residuals 

scatterplots. (e,f): Residuals Q-Q plots (blue) and standardized line (red). 

 

7.3. COMPARISON OF DIFFERENT REGRESSION METHODS 

In this section, two phases of testing are shown: single and multi-dimensional 

regressions. Single-dimensional regression was assessed first to facilitate the 

understating of the scatterplots and expectations of the different algorithms’ predictions 

with respect the exponential behaviour of the data. For each case, the respective 

optimized parameters shown in Table 11 were used. 
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7.3.1. Single-dimensional regression 

In the case of single-dimensional regression testing only production oil rates at 

year 1 were used. Figure 20 and Figure 21 show respectively the regression results and 

residuals using different linear and non-linear methods. As seen before, the red clouds 

clearly show the non-linearity of the utilities against the oil rates. Linear regression (a) 

is unable to grasp the trend of the data (Figure 20a); this is evidenced in the biased 

distribution of the errors and uneven spread (Figure 21a).  

The non-linear regressors deliver a much more suitable fit, with some variations. 

SVR (e) is unable to capture the details in the higher end of the oil rates, and the 

residuals show strong bias in this place; this is evident in the regression residuals 

presented in Figure 21e, showing strong bias. KNN (b) and RF (c) produce a good result 

overall but struggle to grasp the lowest oil rates, below 1 MM bbl, producing a flat tale 

in this area. A similar observation is noted for Piecewise regression with a 10-slope 

split using RF regressor (f), where the lowest end is a discontinuous tale; this is also 

confirmed by the regression residuals shown in Figure 21f, evidencing important bias. 

XGB (d) offers the most sensible regression, with an overall fit including the edges, 

and exhibiting the least dipping windowed standard deviation of the errors in the low 

oil rates (Figure 21d), as other methods exhibit. 
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Figure 20. Single-dimensional regression fits (blue) using different algorithms for risk-

averse utilities (red): (a) OLS, (b) (KNN), (c) Random Forest, (d) XGB, 

(e) SVR, (f) Piecewise using RF, 10 slopes. 
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Figure 21. Single-dimensional regression residuals (blue) using different algorithms for 

risk-averse utilities: (a) OLS, (b) (KNN), (c) Random Forest, (d) XGB, (e) 

SVR, (f) Piecewise using RF, 10 slopes. 

 Table 12 shows R2 scores corresponding to single-dimensional 

regressions of utilities versus observed oil rates, using the different algorithms. The 

numbers confirm the visual judgements made previously. OLS and SVR show very 

poor accuracy with R2 scores of 0.509 and 0.645 respectively. KNN and RF produce 

better R2 scores, both around 0.79, but the highest scores are achieved by XGB and 

Piecewise, with scores of 0.812 and 0.813 respectively. Despite Piecewise produced 

technically the highest score, XGB is still preferred, since its fit is more accurate at the 
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very low oil rates, as observed in the scatterplots from Figure 20d and Figure 21d. 

Piecewise had shown lack of accuracy at fitting the lower end, as shown in Figure 20f. 

 

Method OLS KNN RF XGB SVR Piecewise 

(10 slopes RF) 

R2 score 0.509 0.799 0.797 0.812 0.645 0.813 

Table 12. R2 scores for single-dimensional regressions of utilities versus observed oil 

rates, using different algorithms. 

From this phase of the testing, it is concluded that XGB is the most appropriate 

non-linear algorithm for single-dimensional regression of risk-averse utilities in the 

present case study. 

 

7.3.2. Multi-dimensional regression 

For the case of multi-dimensional regression testing, production oil rates from 

year 1 to year 30 were incorporated. Parameter optimization was performed multi-

dimensionally. Figure 22 and Figure 23 show the regression results and residuals with 

the different linear and non-linear methods. In a multi-dimensional regression, the 

output regression points conform a 3D ‘surface’; when this surface is plotted in a 2D 

graph of the dependant versus independent variables, equivalent to the graph in Figure 

22, the predicted values (blue dots) are seen as a cloud of points, instead of the line that 

would result from a single-dimensional regression. For this reason, to facilitate the 

visual understanding of the regression fits, oil rates scatterplots in Figure 22 show only 

the rates corresponding to year 1, even when the regression has been done multi-

dimensional. The residuals scatterplots in Figure 23 are shown for all the production 

years from 1 to 30. 
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Similarly seen in the single-dimensional case, Figure 22 shows that OLS (a) and 

SVR (e) are not suitable for the fit, evidenced by the residuals local standard deviation, 

(Figure 23a,e), being asymmetrically distributed. Piecewise (f) produces an apparent 

better fit  (Figure 22f), but the residuals evidence overfitting in the case of multi-

dimensional case (errors are all very close to zero, Figure 23f), therefore it is 

inadequate.  

KNN (b) and RF (c) are visually better fits, however they both have some 

failures: KNN suffers the same difficulty at the lower rates as in the single-dimensional 

case, producing a flat lower tale (Figure 22b). RF overcomes this issue in the multi-

dimensional case, but the predicted trend is slightly dislocated in the upper end, under-

estimating the utilities (Figure 22c); this creates a slight bias in the residuals distribution 

in this area (Figure 23c), making it not the most desirable solution. XGB once again 

offers the most sensible regression, with an overall fit from low to high ends of the oil 

rates (Figure 22d); the residual plot shows a very stable distribution, and the windowed 

standard deviation doesn’t exhibit bias at any of the edges (Figure 23d). 
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Figure 22. Multi- dimensional regression fits (blue) using different algorithms for risk-

averse utilities (red): (a) OLS, (b) (KNN), (c) Random Forest, (d) XGB, 

(e) SVR, (f) Piecewise using XGB, 4 slopes. For 2D display only oil rates 

at year 1 are selected. 
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Figure 23. Multi-dimensional regression residuals (blue) using different algorithms for 

risk-averse utilities: (a) OLS, (b) (KNN), (c) Random Forest, (d) XGB, (e) 

SVR, (f) Piecewise using XGB, 4 slopes. 

To visually assess the accuracy of the fit in a 3D view, a bi-dimensional 

regression has been performed using oil rates from years 1 and 30. Figure 24 shows the 

regression results for (a) OLS and (b) KNN. In a 3D perspective the inaccuracy of the 

OLS (Figure 24a) becomes very evident, especially at the lower rates. KNN (Figure 

24b) offers a better solution, but also in in the 3D the data point at the lowest rates can 

be seen left off the regression surface. Figure 25a shows the regression result for RF, 

which handles much better the lower rates; however one conclusion of this testing, is 

that the various QC plots need to be assessed in conjunction; the residuals from Figure 
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23 show that RF creates a slight bias at the highest oil rates, reason for which this 

method is not chosen for the case study. Figure 25b shows the 3D fit from XGB, where 

an overall suitable surface fit can be seen; moreover, the XGB residuals are the most 

homogeneous from all the algorithms tested, with the flattest local standard deviation 

shown in Figure 23d. For other algorithms 3D QCs, see Appendix B. 

 

 

Figure 24. Bi-dimensional regression 3D fit plot, using (a) OLS and (b) KNN. Blue 

dots: input data. Warmer colors: regression surface. 
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Figure 25. Bi-dimensional regression 3D fit plot, using (a) RF and (b) XGB. Blue dots: 

input data. Warmer colors: regression surface. 

To quantify the results, Table 13 documents the R2 scores corresponding to 

multi-dimensional regressions of utilities versus observed oil rates from year 1 to year 

30, using different algorithms. In the multi-dimensional case, the scores also support 

previous inferences made with the 2D and 3D plots. OLS and SVR show very poor 
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accuracy with R2 scores of 0.736 and 0.449 respectively. KNN and RF produce better 

R2 scores, both around 0.95. XGB achieves a score of 0.963 and Piecewise achieves 

0.997. Despite Piecewise produced again the highest R2 score, its residuals evidenced 

overfitting, as shown in Figure 23f. Therefore, XGB is considered a more suitable fit. 

 

Method OLS KNN RF XGB SVR Piecewise 

(10 slopes RF) 

R2 score 0.736 0.951 0.956 0.963 0.449 0.997 

Table 13. R2 scores for multi-dimensional regressions of utilities versus observed oil 

rates, using different algorithms. 

From the multi-dimensional regression testing, it is also concluded that XGB is 

the most suitable machine learning non-regression method for the specific case study. 

The selection of XGB is consistent with a recent work which chose the same algorithm 

as part of a simulation-regression approach to estimate VOI in a case study of CO2 

injection and storage at the Utsira formation. For details on this work please refer to  

Shahali (2022). 

Since the case study involves validation of the neutral case, which implies linear 

NPV-oil rates relationships, it is tempting to assess the performance of XGB on a linear 

case and compare with previous results obtained with OLS. Figure 26 shows the single-

dimensional regression of NPVs on a risk-neutral case using XGB algorithm. 

Comparing with the OLS regression results for the same case, shown previously in 

Figure 15, it can be inferred that the XGB provides a more accurate fit. The slightly 

different slope observed in lower end of the oil rates (below 2 MM bbl)  is better 

captured, as shown in Figure 26a, and the residuals are more symmetrical and less 

biased at the edges; this is evidenced by much flatter local average at the tales, as shown 

in Figure 26b.  
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Figure 26. Scatterplots of a single-dimensional XGB regression of NPVs in a risk-

neutral case. (a) Scatterplots of NPVs vs oil rates (red) and predicted 

NPVs (blue). (b) Residuals scatterplot (blue), with windowed average 

(green) and standard deviation (pink). 

The R2 score for the XGB fit resulted in 0.689. Recalling the OLS exercise, the 

R2 score obtained was 0.654. This quantitative improvement in the XGB score supports 

the conclusion from the visual assessment, that XGB is more suitable even for risk-

neutral assessments in the present case study, and therefore will provide more reliable 

predictions.   
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Chapter 8: Case study – Optimal time to initiate and terminate the 

IOR project 

The current case study uses hypothetical oil production and economic 

parameters, to build on a sequential decision-making problem focused on hydrocarbon 

production optimization. The problem, model and parameters are explained in this 

section. 

8.1. PROBLEM DEFINITION 

This case study builds on the work by Hong et al. (2019) and Wui (2019). They 

considered a hypothetical production field with a maximum lifetime of 50 years and 

assessed the optimal initiation and termination time of the improved oil recovery (IOR) 

phase. For this, they used a fully structured sequential reservoir-decision-making 

(SRDM) scheme, which considered the sequences of uncertainty, learning and 

decisions. The potential decision alternatives at each year of production were (1) to 

continue with primary production, (2) to switch to secondary production, or (3) stop 

production. The methodology featured the LSM workflow with linear regression (OLS) 

to estimate the conditional expectation at each alternative, at each time step, and the 

problem was solved recursively executing the decision policy driven by the highest 

expected value. The case was treated under risk-neutrality; hence, the objective function 

was to maximize the expected monetary value, namely expected net present value 

(ENPV). 

The novelties of the present work are (1) the introduction of risk attitude to 

assess the impact on the decisions, and (2) the use of machine learning non-linear 

regression, instead of OLS regression, to estimate the conditional utilities. The optimal 

decisions obtained in the new sequential decision-making problem were compared to 

those obtained while neutral in  Hong et al. (2019), and sensitivity analysis was 

performed on various aspects for the different risk profiles. 
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The introduction of risk attitudes brings two main differences: 

• Utility function: As discussed previously, a risk-averse or risk-seeking 

decision-maker, has a utility function that can be used to define their preference 

probabilities versus the monetary values. To comply with the risk attitude, the optimal 

decision policy is driven by maximizing the expected utilities (EU) (Hong and Bartvold, 

2023), differently than in Hong et al. (2019)’s work, where ENPV were used directly 

• Non-linearity: The utility function introduces non-linearity between the 

uncertain variables and the utilities. For a neutral case, the relation between the 

uncertainties and the monetary values is linear, therefore ordinary linear regression 

(OLS) was used in Hong et al. (2019) to approximate the expected values (expected 

NPV) at each decision point during the LSM algorithm. In the present case, to 

approximate the expected utility, machine learning methods for non-linear regression 

were evaluated and implemented to find the best fit of the utilities versus the uncertain 

variables. 

As described by Hong et al. (2019), there is uncertainty about the reservoir 

properties and the effects of recovery mechanisms. Following their work, these 

uncertainties were quantified by assigning probability distributions to the parameters of 

a production model. The production model is based on the exponential decline and was 

used to calculate the potential production oil rates that would be observed at each year 

of production during a 50-year lifetime. These oil rates, are then incorporated in the 

sequential decision-making scheme as “information” obtained sequentially, therefore 

used to support further decisions. The production model used is explained in the next 

sub-section. For the monetary values, namely cash flows and NPVs, a representative 

economic model was used, which is also explained later. These monetary amounts were 

then converted to utilities, using an exponential utility function. 
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8.1.1. Two-factor production model 

In this work, the two-factor production model proposed by Parra-Sanchez 

(2010) was used to model oil production. This model is useful and very tractable, 

meaning that enables an efficient analysis of the problem within the time and resources 

available (Hong et al., 2019). 

 The two-factor production model is based on an exponential decline and can 

include multiple phases of production recovery. The exponential decline is defined as 

follows: 

𝐸𝑅(𝑡) = 𝐸𝑅
0 + (𝐸𝑅

∞ − 𝐸𝑅
0) ∗ (1 − 𝑒

−𝑡

𝜏 )  (11) 

The model parameters are described below: 

𝐸𝑅(𝑡): Recovery factor until time t 

𝐸𝑅
0: Recovery factor at time 0  

𝐸𝑅
∞: Theoretical ultimate recovery factor 

t: Total lifetime of the recovery phases. 

τ: Time constant for production 

 

The recovery factor 𝐸𝑅  is the fraction of the recovered amount of 

hydrocarbons against the original oil in place (OOIP) and depends on the reservoir 

properties and production mechanisms. This production model is called the “two-

factor” model due to two parameters that strongly depend on the reservoir properties: 

(1) the theoretical ultimate recovery factor (𝐸𝑅
∞), and (2) a time constant (τ) that 

indicates how fast the increment of the recovery factor is for a recovery mechanism. 

Based on the case studies from Hong et al. (2019) and Wui (2019), the present 

work also focused in two recovery phases only - primary and secondary recovery. The 

time at which the primary recovery is stopped, and the secondary recovery is started, is 

called in this work the ‘switch time’, and this switch from the primary recovery to the 

secondary recovery is assumed to happen only once and to be irreversible. 
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For the primary recovery phase, the two-factor model can be expressed as 

follows: 

 

𝐸𝑅1(𝑡) = 𝐸𝑅1
0 + (𝐸𝑅1

∞ − 𝐸𝑅1
0) ∗ (1 − 𝑒

−𝑡

𝜏1)   (12) 

𝐸𝑅1
0: Primary recovery factor at time zero 

𝐸𝑅1
∞: Theoretical ultimate recovery factor for primary production 

 

For the secondary recovery phase, the two-factor model the exponential decline 

can defined as: 

 

𝐸𝑅2(𝑡) = 𝐸𝑅1(𝑡𝑅1) + (𝛥𝐸𝑅2
∞) ∗ (1 − 𝑒

−(𝑡−𝑡𝑅1)

𝜏2 )   (13) 

𝐸𝑅1(𝑡𝑅1): Primary recovery factor at the end of the primary production 

𝛥𝐸𝑅2
∞: Theoretical ultimate increment of secondary recovery factor when there 

is a switch from primary to secondary recovery phase. 

 

With the recovery factors the oil production rates are calculated at each time 

step as follows: 

 

𝑞𝑜,𝑗 = 
𝑁𝑜 ∗[𝐸𝑅(𝑡𝑗)− 𝐸𝑅(𝑡𝑗−1)

𝛥𝑡𝑗
   (14) 

𝑞𝑜,𝑗 : Oil production rate at time step j 

𝑁𝑜: Estimated OOIP 

𝛥𝑡𝑗: Period between time step j and time step j-1  
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8.1.1.1. Model parameters 

To model the oil production, as per Hong et al. (2019), bounded probability 

distributions were assigned over the model parameters using prior knowledge to 

quantify the uncertainties in the reservoir properties and the effects of the primary- and 

secondary-recovery mechanisms. The uncertain variables in the production model are:  

OOIP: Original oil in place 

𝐸𝑅1
∞: Theoretical ultimate recovery factor for primary production 

τ1: Time constant for primary production 

τ2: Time constant for primary production 

𝜟𝑬𝑹𝟐
∞: Theoretical ultimate increment of secondary recovery factor and time 

constant for secondary production 

 

Table 14 shows the truncated normal distribution parameters for these 

uncertainties. Table 15 shows the correlation coefficient between them.  

 

Parameter 𝑵𝒐(MM bbl) 𝑬𝑹𝟏
∞(fraction) τ1 (years) 𝜟𝑬𝑹𝟐

∞(fraction) τ2 (years) 

Mean 240 0.2 16 0.15 7 

Standard 

deviation 
35 0.05 2 0.05 1.5 

Minimum 10 0.05 1 0.01 1 

Maximum 1000 0.5 30 0.31 13 

Table 14: Means, standard deviations, and boundaries for the truncated normal 

distributions of the production model parameters. From Hong et al. 

(2019); Wui (2019). 
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 𝑵𝒐 𝑬𝑹𝟏
∞ τ1 𝜟𝑬𝑹𝟐

∞ τ2 

𝑵𝒐 1 -0.8 0.16 0.56 -0.08 

𝑬𝑹𝟏
∞ -0.8 1 0.2 -0.7 0.1 

τ1 0.16 0.2 1 -0.3 -0.2 

𝜟𝑬𝑹𝟐
∞ 0.56 -0.7 -0.3 1 -0.3 

τ2 -0.08 0.1 -0.2 -0.3 1 

Table 15: Correlation coefficients between the production-model parameters. From 

Hong et al. (2019); Wui (2019). 

Multi-variate Monte Carlo simulation were used to generate the samples of the 

model parameters. Wui (2019) demonstrated that a sample size of 10,000 is large 

enough for sensible estimation of the value of information (VOI), therefore, 10,000 

samples of each model parameter were generated for this study. The production oil rates 

were then calculated using equation 14, for each year of production lifetime. 

Imperfect information can be represented by adding a measurement error (i.e., 

noise) to an information value, before building the regression model (Shahali, 2022). 

In this study, the measured oil rate Qj was sampled from a normal distribution with a 

mean of 𝑞𝑜,𝑗 , and a standard deviation as a resulting of a percentage of 𝑞𝑜,𝑗 : 

 

𝑄𝑗~𝑁 (𝑞𝑜,𝑗 ,
% 𝑛𝑜𝑖𝑠𝑒

100
× 𝑞𝑜,𝑗 )   (15) 

The measurement error considered in this work was 10%. The samples Qj are 

the ‘measured/observed’ oil production rates and these are the ones used in regression. 

 

8.1.2. Economic model 

In the present study, the objective function is to maximize the expected utility, 

therefore, monetary values need to be estimated first. A representative economic model 

was used to calculate the cash flows from each time step, with fixed oil price, capital 
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expenditure (CAPEX) and operational expenditure (OPEX). The cash flow from time 

steps j-1 to j is calculated as follows: 

 

𝐶𝐹𝑗 = 𝑞𝑜,𝑗 × 𝑃𝑜 × ∆𝑡𝑗 − (𝐶𝐴𝑃𝐸𝑋𝑗 + 𝑂𝑃𝐸𝑋𝑗)   (16) 

CFj: Cash flow at time step j 

Po: Oil price  

𝛥𝑡𝑗: Time period between time step j and time step j-1  

CAPEXj: Capital expenditure at time step j 

OPEXj: Operational expenditure at time step j 

 

 

The NPV of the cash flows over the production lifetime is given by the 

following equation: 

 

𝑁𝑃𝑉 = ∑
𝐶𝐹𝑗

(1+𝑟)
𝑡𝑗

𝑛𝑡
𝑗=0    (17) 

𝑛𝑡: Number of time steps 

𝐶𝐹𝑗: Cash flow at time step j 

r: discount rate 

 

As 𝑞𝑜,𝑗 is a function of the primary and secondary recovery lifetimes, NPV is 

also a function of these two lifetimes. It should be noted that the oil rates 𝑞𝑜,𝑗 are not 

considered a Markovian process over time, so the conditional ENPV and EU given 

measured oil rates should be assessed by regressing NPVs and utilities on all oil rates 

that have been measured over time before a decision.  

In this work, the economic parameters are assumed to be invariant over time, so 

the problem setting does not model the learning of economic uncertainties but only the 
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learning of reservoir and production uncertainties over time. The economic parameters 

assumed for this case study, as per Hong et al. (2019), are listed in the Table 16. 

 

Economic parameters Values Units 

Oil Price 50 $/bbl 

CAPEX (Primary) 50 $M 

CAPEX_2After1 (Secondary) 40 $M 

CAPEX_2No1 (Secondary) 75 $M 

OPEX (Primary) 20 $MM/year 

OPEX (Secondary) 30 $MM/year 

Discount rate 12 %, per year 

Table 16: Economic parameters. From Hong et al. (2019); Wui (2019). 

CAPEX_2After1: Capital cost of initiating secondary recovery after having 

primary recovery. 

CAPEX_2No1: Capital cost of initiating secondary recovery without having 

primary recovery. 

The CAPEX will be deducted only at the year when the recovery phase is 

starting. The OPEX will be deducted every year according to the recovery type (i.e.: 

primary or secondary). 

 

8.1.3. Utility function 

The corresponding utilities to the NPV values were calculated using a utility 

function. An exponential utility function was implemented, which could be used to 

model risk-aversion and risk-seeking behaviours, according to the sign of the risk 

tolerance (Hong and Bartvold, 2023). The utility function used is expressed below: 

 

𝑢(𝑥) = 1 − sgn(𝜌) 𝑒
−

𝑥

𝜌   (18) 
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where x represents monetary amounts (NPV): positive values for gain and 

negative values for loss. 𝜌 denotes the risk tolerance; 𝜌 > 0 for risk aversion and 

𝜌 < 0  for risk-seeking. sgn(𝜌)  takes the sign sgn(𝜌) = 1  if 𝜌  is positive and 

sgn(𝜌) = −1 if 𝜌 is negative. 

 

8.1.4. Influence diagram 

After having described the problem setting, model and economic parameters, 

the influence diagram of this case study is shown in Figure 27. This diagram is designed 

for risk attitudes different than neutral, where the objective function is to maximise 

expected utility, rather than NPV which in this case is drawn as an uncertainty 

influencing the utility. Utility is represented with the blue rounded rectangle. The 

yellow rectangle represents the decision to assess at each time step, and the 

uncertainties (reservoir properties, oil rates, measured oil rates and NPV) are shown in 

green ellipses. 

 

 

Figure 27. Influence diagram of the IOR initiation and termination time case study for 

risk-averse or risk-seeking profiles. Arrows should be drawn from each 

decision node to the ‘oil rate’ and ‘measured oil rate’ uncertainty for all 

years, and to the ‘NPV’ uncertainty node. For simplicity of the diagram in 

this picture some of these arrows are omitted. 
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8.2. LEAST SQUARE MONTE CARLO IMPLEMENTATION FOR THE IOR PROBLEM 

The approach used to solve the IOR sequential decision problem in the present 

work is based on the LSM algorithm, incorporating the observation of oil rates with 

time in support of the decisions. The workflow was programmed in Python, replicating 

the MATLAB implementation created by Wui (2019) and Hong et al. (2019), both 

designed for a neutral risk attitude and using OLS in the regressions. The details of this 

workflow and its validation are explained in the next sub-sections. 

 

8.2.1. Workflow and modelling in Python 

The LSM algorithm implemented in Python for this work is illustrated in Figure 

28. This schematic view was put together based on the general LSM methodology well 

explained by Ahmadi and Bravtvold (2023) , which is now adapted to the specific case 

study.  

The methodology starts by defining the number of paths (individual 

realizations) of the uncertain variables, and the number of time steps. Following the 

recommendation from Wui (2019), 10,000 paths were defined, being a suitable sample 

size for an accurate assessment of the VOI. The number of time steps was kept the same 

as that in Wui (2019)’s work, with a maximum production lifetime of 50 years, where 

each year is an observation and decision point. After this definition the approach 

continues with the forward simulation of the uncertain variables over all the paths; this 

consisted in a multi-variate Monte Carlo simulation over five model parameters, as per 

truncated normal distributions defined in Table 14 and correlation coefficients defined 

in Table 15: 
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Figure 28. LSM workflow for the present case study. Modified from Ahmadi and 

Bravtvold (2023) to reflect the specific IOR initiation and termination 

problem, and incorporation of risk attitude. 
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These model parameters enabled the calculation of the oil rates at each time step 

of the production lifetime, using equation 14. Measurement error was accounted for by 

performing Monte Carlo simulation of a normal distribution where the means were the 

calculated oil rates, and then standard deviations were 10% of these calculated values, 

as per equation 15. This new sample set is considered the “observed” oil rates and the 

ones used for regression. 

The corresponding cash flows were also calculated for each time step and 

allowing for any possible combination of primary recovery and secondary recovery 

lifetimes, using equation 16, followed by the NPV calculation (equation 17). Then, 

using the exponential utility function (equation 18) the NPVs were converted to 

utilities. A preliminary risk tolerance of $200 million was used. Sensitivity analysis of 

risk tolerance will be performed later. 

The identification of the optimal decision policy was split into two phases: 

1. Determining the optimal stopping time of secondary recovery, given a 

switch from primary production at each year, for a given path. 

2. Determining the optimal switch time from primary to secondary recovery, 

with secondary recovery’s corresponding optimal stopping time determined 

in the previous step, for a given path. 

To incorporate the ‘learnings over time’, the decision-making process starts at 

year 50, and recursively progress backwards in time in a rollback procedure. Two 

timing indexes are created to represent the switch from primary to secondary recovery 

at each year, and the possible stopping times of the secondary recovery at each of those 

years. For each decision point, all the oil rates from year 1 to the assessment year are 

used, and the utilities corresponding to that assessment year. To exercise the optimal 

decision policy, the expected utilities (EU) from the available options (explained next) 

are compared at each decision point. As described in the LSM algorithm, the EU are 

estimated by using non-linear multi-dimensional regression (using the chosen XGB 
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algorithm) where the X axis is represented by the oil rates, and the Y axis is represented 

by the EU from each option.  

 

1. Determining the optimal stopping time of secondary recovery, given a switch 

from primary production at each year: 

The workflow starts by defining the optimal secondary recovery stopping time 

assuming “switch” from primary to secondary recovery happened at the start of year 

50. In such case, there are only two alternatives available: “stop secondary recovery at 

the start of year 50” or “continue secondary recovery and stop at the end of year 50” 

(maximum lifetime). Here the utilities corresponding to these two alternatives are 

regressed on the oil rates from year 1 to the start of year 50 (this is the information 

known until that decision point). The EUs from each option are compared, the largest 

EU is chosen, and its corresponding utility and decision (stopping time) are stored in a 

database that will be used later in the second part of the workflow. This stored utility 

and decision represents the optimal secondary recovery stopping time if the switch to 

secondary recovery happened at the start of year 50. This concludes the analysis for a 

potential switch occurring at the start of year 50. 

The process continues backwards in time, and now the analysis consists in 

finding optimal secondary recovery stopping time if the switch from primary recovery 

happened at the start of year 49. At the start of year 49, there are three alternatives now: 

“stop secondary recovery at the start of year 49”, “continue secondary recovery and 

stop at the start of year 50” or “continue secondary recovery and stop at the end of year 

50”. First, the alternatives of “continue and stop at the start of year 50” and “continue 

and stop at the end of year 50” are compared. The utilities corresponding to these two 

alternatives are regressed on the oil rates from year 1 to the start of year 50 (all 

information known until the decision point). The EUs from each option are compared, 

the largest EU is chosen, and its corresponding utility is “temporarily” stored. This 
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optimal utility is temporarily stored because now it will be compared with the 

alternative of “stop secondary recovery at the start of year 49”. The regression now 

considers the rates from year 1 to the start of year 49 (information known until the new 

decision point). The EUs from each option are compared, the largest EU is chosen, and 

its corresponding utility and decision (stopping time) are stored. This stored utility and 

decision represents the optimal secondary recovery stopping time if the switch to 

secondary recovery happened at the start of year 49. This concludes the analysis for a 

potential switch occurring at the start of year 49. 

This algorithm is repeated consecutively for each potential switch year until 

year 1 is reached. As the switch time moves backwards by a year the number of decision 

points increases by 1. For each switch year assessment, the stopping time analysis starts 

back at year 50. Within the same switch year assessment, as the stopping decision time 

moves backwards by a year, the number of points for regression decreases by 1. For all 

years except year 1 the regressions are multi-dimensional. At the end of this loop, a 

database containing the optimal stopping time for each potential switch year has been 

recorded for each realization and will be used in the second phase, to be explained next. 

 

2. Determining the optimal switch time, from primary to secondary recovery: 

Following the stopping time decision policy, the approach continues with the 

assessment of optimal IOR initiation time, namely the “switch” time from primary to 

secondary recovery. The first step is to compute the utilities for a full lifetime of primary 

production from year 1 until the end of year 50. The workflow now starts by comparing 

two alternatives at the start of year 50: “continue with primary production until the end 

of year 50” and a “switch to secondary production at the start of year 50” (the utilities 

for the “switch at the start of year 50” alternative, with its optimal stopping time, were 

already computed in the first part of the workflow). In this step the utilities 

corresponding to these two alternatives are regressed on the oil rates from year 1 to the 
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start of year 50 (this is the information known until that decision point). The EUs of the 

two alternatives for each path are compared, the alternative with a largest EU is chosen, 

and the utility associated with the chosen/optimal alternative is “temporarily” stored for 

each path. This optimal utility is temporarily stored because the corresponding optimal 

alternative will be now compared to the alternative of “switch to secondary recovery at 

the start of year 49” (also already calculated in the first part of the workflow, with its 

optimal stopping time). The regression now considers the oil rates from year 1 to the 

start of year 49 (information known until the decision point at the start of year 49). The 

EUs from each decision alternative are compared, the largest EU is chosen, and its 

corresponding utility is “temporarily” stored, to be used in the comparison with the 

alternative of “switch to secondary recovery at the start of year 48” (calculated in the 

first part of the workflow). The regression now considers the oil rates from year 1 to 

the start of year 48 are performed to calculate the EUs, and the process continues in the 

same logic backwards in time. 

This is repeated consecutively for each year until reaching year 1. As the time 

moves backwards by a year the number of decision points increases by 1 and the 

number of points for regression decreases by 1. At the end of this loop, the optimal 

utilities correspond to the optimal IOR initiation time decision policy. The optimal 

lengths of the primary and secondary recovery are stored for each path. Final EU is 

calculated by averaging the utilities over all the paths. This represents the expected 

utility with “imperfect information”. This is then converted to certain equivalent (CE) 

using the inverse utility function (solving for ‘x’ in equation 18). This is considered the 

“CE with information”. 

As mentioned in Chapter 3, section 3.4: Value of information analysis, when 

the utility function is exponential, the VOI can be calculated as the subtraction of the 

“CE with information” and the “CE without information.” To estimate the “CE without 

information,” the expected utility “without information” is first computed by averaging 
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the utilities of each possible alternative of the problem over their respective multiple 

realizations, and then choosing the alternative that delivers the largest EU. This EU is 

then converted to CE using the inverse utility function. After this the VOI is computed. 

 

8.2.1.1. Validation against predecessor LSM workflow, using risk-neutral and OLS 

Once the described LSM workflow was implemented in Python, the next 

immediate step was to validate it by comparing the results against those by Hong et al. 

(2019) and Wui (2019) for a risk-neutral case and using OLS. 

Table 17 shows the expected value without information (EVWOI), expected 

value with information (EVWI) and value of information (VOI), estimated with the 

Python implementation for this thesis work and by the predecessor’s implementation 

by Hong et al. (2019).  

 

Estimated value Hong et al. (2019) Python implementation 2023 

EVWOI (MM$) 756.20 755.98 

EVWI (MM$) 805.90 805.29 

VOI (MM$) 49.70 49.31 

Table 17. Comparison of EVWOI, EVWI and VOI estimated by Hong et al. (2019) and 

the replicated Python workflow in this work. 

Hong et al. (2019) estimated a VOI of $49.7 million, while the new 

implementation in Python delivered a VOI of $49.31 million. Although the results are 

very comparable, it is noted decimal precision differences in the VOI with both 

workflows. Mild differences are expected due to the following reasons: 

• Randomness implied by the Monte Carlo sampling of the model 

parameters. 
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• Randomness implied by the Monte Carlo sampling of the measurement 

error added to the observed rates, described in equation 15. 

 

To understand any potential difference not explained by the reasons above, an 

exercise was run using equal fixed 100 realizations in both implementations, MATLAB 

predecessor’s code and the replicated Python code. Using a relatively small number of 

realizations facilitated a 1-to-1 comparison of the results in the steps at which 

differences were found. Table 18 shows the results of this new test with additional 

decimal precision. MATLAB code estimated a VOI of $22.9941 million, while the new 

implementation in Python delivered a VOI of $22.9955 million. 

 

Estimated value MATLAB implementation Python implementation 

EVWOI (MM$) 2274.1557 2274.1557 

EVWI (MM$) 2297.1499 2297.1513 

VOI (MM$) 22.9941 22.9955 

Table 18. Comparison of EVWOI, EVWI and VOI estimated by the MATLAB and 

Python implementation when using common fixed 100 realizations. 

The decimal differences were assessed at specific steps. It was found that each 

software slightly differs in the decimal precision of the regression results when the input 

‘y’ variables (NPV) are very similar. An example of this case was found when assessing 

the optimal stopping time of secondary recovery if switching to secondary recovery at 

year 10: At year 16 a regression is performed for two options for stopping time, having 

respective NPVs of $732.21 million and $732.25 million. The regressed NPVs with 

MATLAB were respectively $732.2117 million and $732.1668 million; the regressed 

NPVs with new Python code were respectively $732.2117 million, $732.2141 million. 

The optimal stopping time is determined by choosing the maximum ENPV, hence, for 
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MATLAB the optimal option would be first option ($732.2117 million), and for Python 

would have been the second option ($732.2141 million). In this case the mild decimal 

differences in the regression results would cause a difference of 1 year in the 

determination of the stopping time. 

From this analysis, it can be concluded that another reason contributing to the 

mild differences in the results from Table 17 is the slightly different handling of decimal 

precisions by each software, when regressing very similar ‘y’ values. Despite this, it 

was considered that the final EVWI and VOI results are similar enough, so the Python 

code is valid for the rest of the assessments.  

For further analysis in this work, fixed 10,000 model parameters realizations 

were created, as well as fixed measurement errors added to the oil rates (using random 

normal functionality in Python-NumPy), to keep consistency among the different 

comparisons and sensitivity analysis presented in this work going forward.  

 

8.2.1.2. Validation of non-linear regression in a risk-neutral case 

After the new code was validated against the predecessor results, a further 

estimation was performed using non-linear regression and compared to OLS. In 

Chapter 7: Selection of the regression method, it has been presented that the XGB has 

delivered a more accurate fit for NPVs versus oil rates, compared to the fit provided by 

OLS. Therefore, it was considered that XGB results would be more reliable than the 

ones provided by OLS. Table 19 shows the LSM solution of the case study with both 

algorithms. 
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Estimated value OLS XGB 

EVWI (MM$) 805.29 807.79 

VOI (MM$) 49.31 49.81 

Table 19. Comparison of EVWI and VOI when using OLS versus XGB in a neutral risk 

case. 

The EVWOI is $755.98 million, and the EVWI using OLS and XGB is $805.29 

million and $807.79 million respectively. This represents a small difference in the VOI, 

$49.31 million when using OLS, and $49.81 million when using XGB. As explained in 

Chapter 7, the relation between the NPVs and the observables (oil rates) is linear, 

however, the ENPV may not be linear against the observables due to a combination of 

optimal alternatives (a mixture of “switch” and “continue” alternatives for future 

decision points) in regression. This is the reason why a non-linear regression method 

can lead to a more reliable solution, i.e., more accurate VOI assessment and more 

optimal decision policy even for a linear case. Having performed this analysis, the VOI 

using XGB will be the reference for further comparisons. In the same way, risk-neutral 

cases in this work are treated with XGB going forward. 

 

8.3. CASE STUDY RESULTS 

In this section, the results of the case study are presented, where a utility 

function has been introduced and the LSM algorithm is implemented using non-linear 

regression, specifically XGB, accounting for exponential relation between the NPVs 

and the utilities. The new objective function consists of maximizing expected utility 

(EU), differently to the neutral case where the objective function is to maximize the 

expected NPV (ENPV). Various risk tolerances are assessed through sensitivity 

analyses on different aspects. 
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8.3.1. Introduction of risk attitude and impact on the final monetary value (CE) 

The first step of the case study is to introduce risk attitude in the IOR initiation 

problem. As explained in the workflow, a utility function is used to convert the NPVs 

to utilities, and the LSM implementation is run using XGB to assess the conditional 

expected EUs given measured oil rates. The final EU (calculated by averaging the 

utilities over all the paths - refer to section 8.2: LSM implementation, sub-section 8.2.1: 

Workflow and modelling in Python) is converted back to a monetary value, certain 

equivalent (CE), and compared to the expected NPV obtained when the risk attitude is 

neutral.   

For this first assessment, a preliminary risk-averse utility function was used, 

with a risk tolerance (Rho) of $200 million. Table 20 shows the CE6 results for a risk-

neutral and risk-averse case. Suffix WOI in the Table 20 (and going forward in this 

document) represents “without information, and WI represents “with information”. The 

risk-averse case is additionally solved using OLS to demonstrate the difference in the 

results against using XGB regression.  

The CEs obtained by a risk-neutral decision-maker differ to the CEs obtained 

by a risk-averse decision-maker, which is expected due to the nature of the different 

risk attitudes. The risk-neutral case has a CEWI of MM 807.8, and the risk-averse case 

has a CEWI of $699.6 million. The difference of approx. $107 million can be regarded 

as the “cost” of being risk-averse, which is defined as “risk premium”. Moreover, the 

VOI for this risk-averse decision-maker is dramatically different than the one for a 

neutral person, being $11.61 million for the risk-averse case and $49.81 million for the 

risk-neutral case. A risk-averse person seems to value the use of the information less 

than a risk-neutral for this specific case study. In the next section, sensitivity analysis 

of the risk tolerance over the VOI is performed to further understand this behaviour. As 

for the CEs without information, a risk-neutral would obtain a CE of $755.98 million 

 
6 For risk-neutral cases, the expected NPV (ENPV) is the same as certain equivalent (CE) 
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and a risk-averse would obtain a CE of $687.99 million. The different CE results 

respond to different decisions between both decision-makers and the risk premium (a 

risk-averse person values an uncertain deal lower than the deal’s EV).  

On the other hand, opportunity was taken to compare the risk-averse solution 

solved by OLS and XGB. As per seen in Chapter 7, OLS does not provide an optimal 

prediction of the EUs over the oil rates when the profile is risk-averse. It can be 

observed that using a not adequate function for the regression fitting, leads to different 

results. In this specific test, the VOI is overestimated by the OLS solution, being $440 

thousand larger than the one obtained when solved by XGB. The difference in the VOI 

estimation by OLS and XGB regressions may lead to different decisions strategies. 

 

Estimated value 
Risk-neutral 

(XGB) 

Risk-averse (ρ = 200) 

(XGB) 

Risk-averse (ρ = 200) 

(OLS) 

CEWOI (MM$) 755.98 687.99 687.99 

CEWI (MM$) 807.79 699.60 700.04 

VOI (MM$) 49.81 11.61 12.05 

Table 20. Comparison of CEWOI, CEWI and VOI in a risk-neutral case versus a risk-

averse case. Risk tolerance = $200 million. 

In all the assessments going forward, XGB regressor is used in the LSM 

algorithm to solve the IOR problem, given any risk attitude. 

 

8.3.2. Sensitivity analysis of different risk attitudes 

In this section, sensitivity analysis of different risk attitudes on various decision 

aspects is documented. Risk-averse and risk-seeking profiles are considered in the 

assessments. Figure 29 and Figure 30 show the scatterplots of utilities versus oil rates 
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at production year 30, for different risk tolerances. Neutral risk attitude is also included 

as a reference, where the y axis is represented by NPVs. 

 

 

Figure 29. Scatterplots of utilities versus oil rates at year 30 for different risk-aversion 

tolerances. Risk-neutral NPVs versus oil rates included as reference.  
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Figure 30. Scatterplots of utilities versus oil rates at year 30 for different risk-seeking 

tolerances. Risk-neutral NPVs versus oil rates included as reference. 
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8.3.2.1. LSM utilities validation 

Before starting any sensitivity analysis, a validation of the final utilities obtained 

by the LSM algorithm using the different risk tolerances was performed. Figure 29 

shows that for small risk tolerances (more risk-averse) the curve is concave, and 

progressively becomes more linear as the risk tolerance increases (approaching neutral 

risk attitude). For the very small risk tolerances such as $50 million and $100 million 

most of the utilities are very close to ‘1’, generating a very narrow spread of the points. 

This is because for small positive risk tolerances the exponential term of the utility 

function tends to ‘0’ (refer to utility function in equation 18). These cases might suffer 

from numerical issues and therefore deliver misleading expected utilities during the 

LSM algorithm.  

Figure 30 shows that for negative risk tolerances closer to zero (more risk-

seeking) the curve is convex, and progressively becomes more linear as the risk 

tolerance decreases (approaching neutral risk attitude). For the negative risk tolerances 

closest to zero, -$50 million and -$100 million, a similar observation to the risk-averse 

case is noted. In these cases, the exponential argument of the utility function tends to 1, 

hence, the exponential term of the utility equation (equation 18) results in very large 

numbers. This might also cause numerical issues during the LSM algorithm. 

To validate the cases for which the LSM algorithm is stable and discard the 

cases of numerical issues, a utility validation was performed following the procedure 

below, for risk aversion and risk-seeking profiles: 

1. For each case of risk tolerance (Rho), convert LSM final utilities to 

NPVs with their respective Rho, for all realizations. 

2. For each case Rho, convert the NPVs back to utilities with an individual 

Rho. 

3. Calculate the expected utility (EU) for each Rho case. 

4. Plot the EUs for all Rho cases. 
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5. Assess the maximum EU from the graph: The maximum EU should be 

obtained when the Rho use for re-conversion is the same Rho from 

which the original utilities come from. If this condition is not fulfilled, 

the solved LSM decision strategy would be sub-optimal for two possible 

reasons: numerical issue because of small absolute value of Rho or 

regression error in EU assessment. 

6. Repeat steps 2-5 using different Rho for the re-conversion.  

 

Figure 31, Figure 32 and Figure 33 show examples of the results of reconverting 

the utilities using Rho of $50 million, $100 million, and $200 million respectively. 

Figure 31 shows that for the case of Rho=50 there is an apparent indication that there 

is no numerical issue, as the maximum re-converted EU is obtained when using 

Rho=50, as expected. The same situation is observed for the case of Rho=200 in Figure 

33, where the maximum re-converted EU is obtained when using Rho=200.  For the 

case of Rho=100, in Figure 32, the maximum re-converted EU is not obtained when 

using Rho=100, which indicates there is either a numerical issue or a regression error 

for this specific sampled realization/path set. This case should be discarded for further 

analysis, since the LSM solution for rho=100 is sub-optimal for this specific problem 

and sample setup. For all remaining cases no numerical issue was found (see Appendix 

C, where all cases are documented).  
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Figure 31: LSM utilities validation: Risk-averse EU re-converted using Rho= $50 

million.  

 

Figure 32: LSM utilities validation: Risk-averse EU re-converted using Rho= $100 

million. 
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Figure 33: LSM utilities validation: Risk-averse EU re-converted using Rho= $200 

million. 

 

Given that Rho=100 case was considered unstable, there was a suspicion that 

Rho=50 might be unstable as well, and validation result in Figure 31 might have been 

a matter of ‘luck’ with the specific set of Monte Carlo realizations used. To confirm 

this, the maximum LSM utility corresponding to each case where assessed. By 

definition, the exponential utility function used (equation 18) cannot return a value of 

‘1’, which would imply and infinitive NPV; hence, if any Rho case happens to have a 

realization that has a value of ‘1’, it could be considered an unstable case. Table 21 

shows the maximum utilities for each case. Risk tolerances of $50 million and $100 

million contain at least one realization with a final utility of ‘1’. This means these cases 

are suffering from numerical issue and should be discarded for further analysis. From 
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this point onwards, risk-averse sensitivity analysis is only done from risk tolerance of 

$200 million towards risk-neutrality (Rho=infinity). 

  

 

Table 21: Maximum LSM utility among all realizations. 

 An equivalent analysis was performed on the risk-seeking cases.  

Figure 33 to Figure 38 show some examples for re-conversion of utilities using Rhos 

of -$50 million, -$100 million, -$200 million, -$400 million and -$800 million 

respectively. For the cases of Rho=-200 and Rho=-400, Figure 36 and Figure 37, the 

maximum EU is not found when using these values for the re-conversion; hence these 

cases imply numerical issues and can be discarded. For the case of Rho=-800, Figure 

38, the maximum EU is obtained when using the original respective Rho for re-

conversion, as expected, and can be considered a reliable case. This is also the case of 

negative Rhos further from zero, where no numerical issue was found (see Appendix 

C, where all cases are documented). 

For the cases of Rho=-50 and Rho=-100 the graph looks exactly the same, and 

the results are not conclusive, showing the same EU for the first four Rhos, which could 

indicate a potential numerical issue. To understand this further, the final decisions for 
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primary recovery lifetime were plot as histograms for the potential unstable cases: Rhos 

of -$50 million, -$100 million, -$200 million and -$400 million respectively; this is 

shown in Figure 39. The histogram shows that all the decisions from all realizations are 

‘0’ years of primary recovery, and for all Rhos. This ‘constant’ behaviour is not 

expected when using MCS and represents another indication that Rhos closer to zero 

suffer from numerical issues, delivering unreliable LSM results. From this point 

onwards, risk-seeking sensitivity analysis is only done from risk-neutrality (Rho= 

infinity) up to Rho=-800 and discards Rhos closer to zero. 

 

 

 

Figure 34: LSM utilities validation: Risk-seeking EU re-converted using Rho= -$50 

million.  
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Figure 35: LSM utilities validation: Risk-seeking EU re-converted using Rho= -$100 

million.  

 

 

Figure 36: LSM utilities validation: Risk-seeking EU re-converted using Rho= -$200 

million.  



 96 

 

 

Figure 37: LSM utilities validation: Risk-seeking EU re-converted using Rho= -$400 

million. 

 

Figure 38: LSM utilities validation: Risk-seeking EU re-converted using Rho= -$800 

million.  



 97 

 

 

Figure 39: Number of years of primary recovery estimated by risk-seeking decision-

makers. 

 

8.3.2.2. Impact of risk attitude on VOI 

A sensitivity analysis on the VOI for different risk tolerances was performed 

and presented in Figure 40 and Figure 41, for risk-averse and risk-seeking profiles 

respectively. The risk-averse graph indicates that the larger the risk tolerance, the larger 

the VOI, increasing from $11.61 million for Rho 200, to $47.07 million for Rho 5000. 

Infinitive Rho represents a risk-neutral case with VOI of $47.15 million. 

This increasing trend might be interpreted as follows: the less risk-averse a 

decision-maker is, the more they will value the information, and their decisions might 

be highly influenced by the information available. This interpretation will be 

complemented later when sensitivity analysis on the decisions is performed. 
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Figure 40. Sensitivity analysis of different risk tolerances on the VOI, for risk-averse 

attitude and neutrality. 

 

For risk-seeking decision-makers, the value of information seems to increase 

from Rho -800 to Rho -1400, going from VOI of $22.97 million to VOI $53.11 million 

respectively. From that point to Rho -5000, the VOI reaches around $50 million with a 

steadier trend. The VOI settles at neutrality with $47.04 million. This means that the 

impact of the risk attitude on the VOI is larger for negative Rhos that are closer to zero, 

down to Rho around -1500. Between Rho around -3000 towards neutrality the risk 

attitude has less impact on VOI. 
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Figure 41. Sensitivity analysis of different risk tolerances on the VOI, for risk-seeking 

attitude and neutrality. 

Figure 42 and Figure 43 show the distribution of the final NPVs for the 10,000 

Monte Carlo realizations after resolving the LSM algorithm for different risk 

tolerances, and expressed through boxplots, to assess the spread. In the risk-averse case, 

the less risk-averse the decision-maker is, the larger the spread is and the larger 

expected NPV, which indicates that the use of the utility function accounting for risk-

averse behaviour performs as expected – a risk-averse decision-maker prefers less 

uncertainty and is willing to give up some value (i.e., risk premium) in ENPV for less 

uncertainty. This is also true for the risk-seeking case, where the more risk-seeking 

decision-maker, the slightly larger the spread of the NPVs is, although the difference 

between the different cases is not so large as seen as in the risk aversion cases. 
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Figure 42. Boxplot of the final NPVs for different risk tolerances, for risk-averse 

attitude. 

 

 

Figure 43. Boxplot of the final NPVs for different risk tolerances, for risk-seeking 

attitude. 

 

 



 101 

8.3.2.3. Impact of risk attitude on decisions 

After assessing the impact of different risk attitudes on the VOI and NPV 

distribution, the impact on the decision strategy for primary and secondary recovery 

lifetimes are also assessed and discussed in this section. The lifetime of the primary 

recovery represents the time at which the IOR (improved oil recovery) phase initiates, 

hence, this is the switch time between primary and secondary recovery. The addition of 

the primary and the secondary recovery lengths totalizes the overall lifetime of the field. 

Figure 44 shows the difference in years of primary lifetime between a risk-

neutral and a risk-averse decision-maker, for different Rhos. The difference is 

calculated as the primary lifetime of the risk-neutral case minus the primary lifetime of 

a risk-averse case. The overlapping histograms show a dominance towards the negative 

differences. Most of them peak between 0 and -2 years of difference against the risk-

neutral case, but the more risk-averse, the more asymmetrical the distribution is, with 

increasing skewness towards the negative differences. Rho = 8000 gives a relatively 

symmetrical histogram; Rhos between 3000 and 1100 cover some dominance towards 

-3 years difference against neutral, and Rhos 800 to 200 have dominance down to -8 

years of difference. Because the difference is calculated as the primary lifetime of the 

risk-neutral case minus the primary lifetime of a risk-averse case, a negative difference 

means that a risk-averse decision-maker prefers more years for primary production than 

a risk-neutral decision-maker. A risk-averse decision-maker prefers to collect more data 

(longer primary recovery) to reduce uncertainty before deciding to switch to secondary 

recovery. The interpretation of the observed behaviour also relies on the capital 

expenditure (CAPEX), which is incurred when switching from primary to secondary 

production, as explained in section 8.1.2: Economic model. If the extra recovery from 

secondary recovery cannot cover the extra CAPEX, there will be extra loss, which 

makes the NPV distribution extend to lower NPVs. On the other hand, if the extra 

recovery from secondary recovery can cover the extra CAPEX, there will be extra gain, 
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which makes the NPV distribution extend to higher NPVs. Accounting for the two 

scenarios, the spread of the NPV distribution for switching to secondary recovery is 

larger than the spread of the NPV distribution for continuing with primary recovery; 

that is, there will be larger uncertainty if switching to secondary recovery, which a risk-

averse decision-maker does not prefer unless the increase in expected NPV from 

primary recovery to secondary recovery can compensate the decision-maker’s risk 

premium. This then, results in a risk-averse decision-maker preferring to delay the 

switch to secondary recovery in comparison with neutral decision-makers. As shown 

in Figure 44, the more risk-averse (towards Rho=200), the larger negative difference 

against neutral (histograms displace to the left in the figure). 

 

 

 

Figure 44. Difference in years of primary recovery lifetime between a risk-neutral and 

risk-averse decision-maker. 

Figure 45 shows the difference in years of secondary lifetime between a risk-

neutral and risk-seeking decision-maker, for different Rhos. The difference is 

calculated as the secondary lifetime of the risk-neutral case minus the secondary 

lifetime of a risk-averse case. In this case the dominance of the histograms displaces to 

positive side of the plot. Again, the least risk-averse, Rho 8000 has the most 
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symmetrical decision distribution, but Rhos between 3000 and 1100, have dominances 

towards 5 years of difference; the histograms for the most risk-averse profiles, between 

Rho 800 and 200, have dominances towards 9 years of differences against neutral. 

Being the order of the subtraction ‘neutral minus risk-averse’, this means that the 

neutral prefers longer secondary recovery than the risk-averse decision-maker. A risk-

averse decision-maker prefers to stop the secondary recovery sooner. As shown in the 

section 8.1.2: Economic model, the operational expenditure (OPEX) is larger for 

secondary recovery than primary recovery. If the late-stage secondary recovery is low, 

the NPV is reduced by the difference between OPEX and cash inflow; however, if the 

late-stage secondary recovery is high, the NPV is increased by the difference between 

cash inflow and OPEX. Thus, a risk-averse decision-maker does not prefer the 

uncertainty associated with the late-stage production even though the EVs of the late-

stage cash inflows are still positive. In other words, because risk-averse’s CE < EMV 

(expected monetary value) of net cash flow, the risk-averse’s CE of net cash flow can 

be negative even though the EMV of the net cash flow is positive, which indicates that 

the risk-averse decision-maker prefers to terminate production whilst a risk-neutral 

decision-maker prefers to continue production. As observed in Figure 45, the more risk-

averse (towards Rho=200), the larger positive difference against neutral (histograms 

displace to the right in the figure). 
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Figure 45. Difference in years of secondary recovery lifetime between a risk-neutral 

and risk-averse decision-maker. 

The equivalent displays are produced now for a neutral decision-maker against 

a risk-seeking one. Figure 46 shows the difference in years of primary lifetime between 

a risk-neutral and risk-averse decision-maker. Now that the histogram dominances 

displaced to the right of the plot. The subtraction is in order ‘risk-neutral minus risk-

seeking’, and the dominant results are positive numbers. The interpretation of this is 

consistent to what observed in Figure 44: the less risk-seeking the decision-maker is, 

the longer the estimated primary recovery length. Risk-seeking decision-makers prefer 

to switch to secondary recovery earlier than risk-neutral decision-makers. Risk-seeking 

decision-makers with Rhos -8000 and -3000 have more dominance between 0 and 2 

years of difference against neutral, but Rho -1440 to -800 have dominances that extend 

up to 6-7 years of difference. The more risk-seeking (towards Rho= -800), the larger 

positive difference against neutral (histograms displace to the right in the figure).  

 

 



 105 

 

Figure 46. Difference in years of primary recovery lifetime between a risk-neutral and 

risk-seeking decision-maker. 

Histograms in Figure 47 show the differences between risk-neutral and risk-

seeking decision-makers for secondary recovery length. There is a slightly stronger 

dominance on the negative side of the histograms, representing a longer secondary 

recovery preferred by risk-seeking with respect to risk-neutral decision-makers. 

Consistent to the analysis of Figure 45, the less risk-seeking a decision-maker is, the 

earlier they prefer to stop secondary production, attributed to the NPV uncertainty 

associated with the late-stage secondary production, as explained before. Risk-seeking 

decision-makers with Rhos -8000 and -3000 have a relatively symmetrical histograms 

peaking at 0 years difference, although the spread extends +- 10 years. Risk-seeking 

decision-makers with Rho towards -1100 and -800 have histograms with some 

dominance down to -5 and -6 years. The more risk-seeking (towards Rho= -800), the 

larger negative difference against neutral (histograms displace to the left in the figure). 
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Figure 47. Difference in years of secondary recovery lifetime between a risk-neutral 

and risk-seeking decision-maker. 

 

8.3.2.4. Impact of information on decisions  

After assessing the impact of the risk attitude in the field lifetime decisions, 

sensitivity analysis was performed to understand the impact of the information on the 

decisions, for different risk profiles. 

Figure 48 and Figure 49 show respectively the histograms of the decisions with 

information for the primary and secondary production recovery lengths. Rhos of $200 

million and $800 million are assessed, as well as risk-neutral. The average decision 

with information is plot as a continuous vertical line, on the same colour as its 

corresponding histogram. The decision without information is plot as a dashed line.  

Figure 48 confirms previous interpretation that a risk-averse decision-maker 

prefers longer primary recovery compared to a neutral decision-maker. The figure 

shows that the more risk-averse, the longer the primary recovery is preferred, hence the 

histogram shifts to the right of the plot. It can be observed that risk-neutral peaks at 1 

year of primary recovery; Rho 800 has an irregular distribution with peaks at 6 and 7 

years; the most risk-averse decision-maker, Rho 200, peaks at 11 years of primary 

recovery.  
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Assessing the difference between the decisions with and without information 

(the gap between the solid line and dashed line for each Rho value), it seems that the 

less risk-averse the decision-maker is, the larger this difference is. This impression is 

later assessed in more detail in Figure 50. 

 

 

Figure 48. Decisions with and without information of primary recovery lifetime for 

risk-averse and neutral attitudes. Continues lines: average decision with 

information. Dotted lines: decision without information. 

 

Figure 49 also agrees with another previous interpretation, that a risk-averse 

decision-maker will estimate shorter secondary recovery lifetime compared to a risk-

neutral decision-maker. The histograms dominances displace to the left as the decision-

maker is more risk-averse. Risk-neutral peaks at 11 years of secondary recovery, with 

relatively symmetrical distribution; Rho 800 also peaks at 10 and 11 but it can be 

observed that has a tale towards the left compared to risk-neutral; the most risk-averse 

case, Rho 200, peaks at 9 years, with a longer tale to the left. Note that in this case Rho 

200 and Rho 800 have the same decision without information, at 14 years of secondary 

recovery lifetime (– Rho 800 is overlapping Rho 200 in the graph). 
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Similar to the primary recovery case, there is an apparent indication that the 

neutral case’s decisions would be more impacted by the information when compared to 

risk-averse’s decisions: the difference between the decision with and without 

information is larger than the ones for the risk-averse cases. This will be better 

illustrated in Figure 51. 

 

 

 

Figure 49. Decisions with and without information of secondary recovery lifetime for 

risk-averse and neutral attitudes. Continues lines: average decision with 

information. Dotted lines: decision without information. 

 

Figure 50 and Figure 51 show the difference in years of the average decision 

with information and the decision without information, respectively for primary and 

secondary recovery lifetimes, and including all the previously studied risk-averse 

profiles. Figure 50 shows an overall increasing difference as Rho increases. Starting 

from 0.6 years difference at Rho 200 to 2.5 years difference at Rh0 3000. This confirms 

preliminary conclusion drawn in Figure 48. When correlating this observation to the 

analysis done on Figure 40 - sensitivity analysis on VOI, and Figure 44 - different in 
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decisions neutral and risk-averse, the interpretation becomes more complete: it has been 

demonstrated that a very risk-averse decision-maker will delay the switch to secondary 

recovery, and will extend the primary recovery lifetime; the more risk-averse, the 

information (i.e., production rates measured during primary recovery) becomes less 

material (i.e., the information has smaller impact on the switch decisions). This explains 

why the sensitivity analysis on VOI shows that the more risk-seeking, the more valuable 

the information becomes. Information is more valuable when it is more material to the 

switch decisions. 

For the secondary recovery case, Figure 51, the trend in the difference in 

decisions is not monotonic, although the magnitudes are small. At Rho 200 the 

difference is -4.8 years; then this decreases to -4 years at Rho 800 and -3.9 years at Rho 

1100. After this the difference increases towards Rho 1400, with -4.8 years, and -4.5 

years difference towards risk-neutral. 

 

 

Figure 50. Difference in average decision with information and without information of 

primary recovery lifetime, for risk-averse and neutral attitudes. 
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Figure 51. Difference in average decision with information and without information of 

secondary recovery lifetime, for risk-averse and neutral attitudes. 

 

To understand further this behaviour, boxplots of the difference’s spreads were 

assessed. Figure 52 and Figure 53 show boxplots for the difference in lifetime decisions 

with information and without information of the respective recovery phases; for each 

Rho, the spread represents the variation of the lifetime decisions of the 10,000 Monte 

Carlo samples. The boxplots show that the median (P50) of the differences and the 

respective spreads do not show any specific trend along the different risk attitudes.  
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Figure 52. Boxplots of difference in decisions with information and without 

information of primary recovery lifetime, for risk-averse and neutral 

attitudes. 

 

 

Figure 53. Boxplots of difference in decisions with information and without 

information of secondary recovery lifetime, for risk-averse and neutral 

attitudes. 
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To complement this assessment, a combined bar chart showing the difference 

in average decision with information and without information for primary and 

secondary recovery lifetimes is illustrated in Figure 54. It can be observed that this 

combined chart does not exhibit any evident trend either, even if adding the primary 

and secondary lengths together (total length of the blue plus the orange bar for each 

Rho). It is thought that this might respond to the fact that the expected utilities are a 

combined result of primary and secondary recovery lifetimes. Although not changing 

monotonically, the differences in the decisions with and without information for the 

primary recovery are all positive, meaning that the average decision with information 

is for longer primary recovery phase; as for the secondary recovery the differences are 

all negative, indicating that the decisions with information are for shorter secondary 

recovery, for risk-averse cases. 

 

 

Figure 54. Difference in average decision with information and without information of 

primary and secondary recovery lifetimes, for risk-averse and neutral 

attitudes. 
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Same assessments are now presented for the risk-seeking cases below. Figure 

55 and Figure 56 show the histograms of the decisions with information for the primary 

and secondary production recovery lengths, showcasing two risk-seeking levels (Rhos 

of -$800 million and -$5000 million) and risk-neutral. Average decision with 

information is plot as a continuous vertical line, and decision without information as a 

dashed line. For the primary recovery phase, Figure 55, it can be noted that the more 

risk-seeking the decision-maker is, towards risk tolerance of -800, the histogram 

displaces to the left, confirming that more risk-seeking decision-makers will chose to 

have shorter primary recovery phases, consistent with that has been interpreted before. 

Risk tolerances of -800 and -5000 peak at one year recovery, while risk-neutral has 

more dominant tale towards the right, suggesting longer primary recovery and delaying 

the IOR initiation time. Consistent to what concluded in the risk-averse analysis, the 

primary recovery decisions with and without information appear to differ less as the 

decision-maker is less risk-seeking (towards risk-neutral). 

 

 

Figure 55. Decisions with and without information of primary recovery lifetime for 

risk-neutral and risk-seeking attitudes. Continues lines: average decision 

with information. Dotted lines: decision without information. 
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For the secondary recovery, shown in Figure 56, the distribution of decisions is 

slightly more uniform through the three risk profiles presented. Previous analysis have 

suggested that risk-seeking decision-makers will generally extend the secondary 

lifetime when compared to neutral and risk-averse cases; an evidence of this can be 

spotted in the overlapping histograms from Figure 56, where the green colour for Rho 

= -800, the most risk-seeking decision-maker, dominates slightly more towards the 

right side, at around 14-15 years, while Rho -5000 can be seen slightly overriding the 

green colour on the left side, at around 7 years.  

The risk-seeking case with a Rho of -5000 and the risk-neutral case have the 

same decision without information, at 15 years of secondary recovery lifetime (Rho -

5000 is overlapping risk-neutral in the graph). The average decision with information 

for the three risk profiles are very close together, around 10 years of secondary lifetime. 

Consistent to previous analysis, there is a suggestion that the more risk-seeking the 

decision-maker is, the greater impact the information has in their decisions., as the 

difference in decision with and without information becomes larger (the gap between 

the solid line and dashed line for each Rho value). 

 

 

Figure 56. Decisions with and without information of secondary recovery lifetime for 

risk-neutral and risk-seeking attitudes. Continues lines: average decision 

with information. Dotted lines: decision without information. 
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Figure 57 and Figure 58 show the differences in the average decision with 

information and decision with no information, respectively for primary and secondary 

recovery lifetimes, for all studied risk-seeking Rhos. For primary recovery, Figure 57, 

the difference in years increases from 2.25 years at risk-neutral to 6.3 years at Rho -

1100, and then a slight decrease to 6 years at Rho-800. This is consistent to what was 

observed in the risk-averse case: in general, the more risk-seeking, the larger the 

difference in decisions with and without information. This supports previous 

observation that the VOI tends to increase as the decision-maker is more risk-seeking. 

 

 

Figure 57. Difference in average decision with information and without information of 

primary recovery lifetime, for risk-neutral and risk-seeking attitudes. 

In the analysis for secondary recovery, Figure 58, there is not a very clear trend. Starting 

with -4.6 years differences at risk-neutral, then the difference increases slightly to -4.8 

at Rho -5000, and then decreasing again to -4.58 years at Rho -1400; then increases 

abruptly to 5.55 years at Rho -800. Due to this variation, it is considered complementary 

to assess the spread of the differences, shown in Figure 59 and Figure 60. Figure 59 and 

Figure 60 show boxplots for the difference in decisions with information and without 

information of the respective recovery phases lengths; this spread represents the 

variation of the differences for the 10,000 Monte Carlo samples. 
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Figure 58. Difference in average decision with information and without information of 

secondary recovery lifetime, for risk-neutral and risk-seeking attitudes. 

 

  

Figure 59. Boxplots of difference in decisions with information and without 

information of primary recovery lifetime, for risk-neutral and risk-seeking 

attitudes. 
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Figure 60. Boxplots of difference in decisions with information and without 

information of secondary recovery lifetime, for risk-neutral and risk-

seeking attitudes. 

Like in the risk aversion case, the boxplots from Figure 59 and Figure 60 do not 

show any monotonic trend for the median (P50) or spread of the differences across the 

different risk attitudes. A complimentary combined bar chart showing the difference in 

average decision with information and without information for primary and secondary 

recovery lifetimes is illustrated in Figure 61. It can be observed that this plot does not 

exhibit any specific trend either, even for the total lifetime, pointing to the same 

conclusion drawn before, attributing to the fact that the overall expected utilities result 

from a combined effect of primary and secondary recovery lifetimes.  

Interestingly enough, also for the risk-seeking case there is the same observation 

about the polarity of the differences for primary and secondary phases: the differences 

in the decisions with and without information for the primary recovery are all positive, 

meaning that the average decision with information is for longer primary recovery 

phase; as for the secondary recovery the differences are all negative, indicating that the 

decisions with information are for shorter secondary recovery, for risk-seeking cases. 
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Figure 61. Difference in average decision with information and without information of 

primary and secondary recovery lifetimes, for neutral and risk-seeking 

attitudes. 

Having assessed the risk-averse and risk-seeking decision-maker attitudes 

separately, combined graphs were created showing the differences in lifetime decisions 

with and without information for risk-averse and risk-seeking profiles together. This 

was performed with the objective of assessing potential overall trends. To combine the 

different Rhos in a single graph, Gamma, the inverse of Rho (Gamma= 1/Rho), also 

called ‘risk aversion coefficient’, is used, where Gamma = 0 models risk-neutral 

behaviours, positive Gamma further away from 0 models more risk-averse behaviours, 

and negative Gamma further away from 0 models more risk-seeking behaviours. Figure 

62 shows the difference in years of the average decision with information and the 

decision without information for primary recovery lifetime. The x axis has been 

inverted to show extreme risk-aversion towards the left of the graph and extreme risk-

seek towards the right. As concluded in the individual assessments of the risk attitudes, 
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there is a clear trend of increasing difference in the decisions with and without 

information as the decision-maker becomes more risk-seeking. 

Figure 63 shows the difference in years of the average decision with information 

and the decision without information for secondary recovery lifetime. The individual 

assessments on each risk attitude had not shown any clear trend. However, when 

combining the risk attitudes in a single plot, an overall increasing trend can be fitted for 

the absolute differences of the decisions with and without information as the decision-

maker becomes more risk-seeking. When comparing to the primary recovery trend, 

however, the secondary recovery overall trend is much less clear. 

 

 

 

Figure 62. Difference in average decision with information and without information of 

primary recovery lifetime, for risk-averse and risk-seeking attitudes. 

Large positive numbers represent extreme risk-averse, small negative 

numbers represent extreme risk-seeking, zero represent risk-neutral. 
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Figure 63. Difference in average decision with information and without information of 

secondary recovery lifetime, for risk-averse and risk-seeking attitudes. 

Large positive numbers represent extreme risk-averse, small negative 

numbers represent extreme risk-seeking, zero represent risk-neutral. 

 

8.4. CHANGE OF OOIP IN THE PROBLEM SETTING 

This section will investigate the impact of a change in the original oil in place 

(OOIP) distribution on the optimal decision strategy. The other parameters of the 

problem setting will be kept unchanged. The following sub-sections describe the 

change and discuss the consequent results. 

8.4.1. Distribution of model parameter original initial in place (OOIP) 

In the original problem, the prior OOIP is modelled using a bounded normal 

distribution with a mean of $240 million and standard deviation of $35 million. In this 

exercise, the mean is set to $20 million and standard deviation to $85 million, with the 

same distribution bounds. This change implies smaller production profits, as there are 

less reserves, and a larger uncertainty. 

Figure 64 shows the histograms for the OOIP distribution as per the original and 

the new problem setting. It is noted that in the original problem setting the OOIP 
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distribution is more symmetrical around the mean. In the new OOIP, the distribution 

peaks in the lower end, at a range of 10-45 million bbl (OOIP cannot have negative 

values, hence, peak shows in the lower end), and has a longer tail to the upper end, since 

the standard deviation is larger than previous one. 

  

Figure 64. Histograms of the OOIP prior distribution corresponding to the original 

problem setting, (N~(240, 35)) and new problem setting (N~(20, 85)). 

8.4.2. Sensitivity analysis of risk attitude 

Hong et al. (2019) had also run the IOR initiation and termination case study 

with this change of OOIP distribution to assess the behaviour on the decisions for a 

risk-neutral case. Their results demonstrates that a risk-neutral decision-maker, without 

considering the future information (measurement of oil rates), prefers to not run the 

project, but the decision-maker prefers to run the project when considering the future 

information. In the present study, the same conclusion is drawn by solving the problem 

using the LSM algorithm with XGB for regression. The results confirm that a risk-

neutral decision-maker would run the project only when the future information is 

considered. The risk-neutral behaviour leads to an average primary production lifetime 

of 1.17 years and an average secondary production lifetime of 3.06 years, when future 

information is accounted for. Hong et al. (2019) had estimated an EVWI (CEWI) and 
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VOI of $55.3 million for the neutral case, which is considered close enough to the 

present result when using XGB for the LSM workflow, which resulted in $52.06 

million. This result highlights the importance of the sequential decision-making 

schemes, which allow the incorporation of information over time, enabling the creation 

of value from future information.  

With the risk-neutral case results, it is intuitively presumed that a risk-averse 

decision-maker would not run the project, and a risk-seeking decision-maker might run 

the project even without the consideration of future information. This is confirmed by 

testing different Rho values: Rho = $200 million (risk-averse), Rho = -$3000 million 

(less risk-seeking) and Rho = -$800 million (more risk-seeking). Table 22 summarizes 

the results, listing CEs, VOI and primary and secondary production lifetimes for all 

cases, with (WI) and without (WOI) information. The figures following Table 22 

summarize the results in a graphical way. To include all risk profiles in single graphs, 

Gamma (risk aversion coefficient = Gamma= 1/Rho) is used. Gamma = 0 models risk-

neutral attitudes, positive Gamma further away from 0 models more risk-averse 

attitudes, and negative Gamma further away from 0 models more risk-seeking attitudes. 

 

 

Risk-
averse 
Rho = 

MM$ 200  

Risk-
neutral 

Less Risk-
seeking  
Rho =         

MM-$3,000  

More Risk-
seeking 
Rho =       

MM -$800  

CE WOI (MM$) 0 0 4.03 49.67 

CE WI (MM$) 0 52.06 60.07 101.04 

VOI (MM$) 0 52.06 56.04 51.37 

Primary lifetime WOI (years) 0 0 0 0 

Secondary lifetime WOI (years) 0 0 6 8 

Avg. Primary lifetime WI (years) 0 1.17 1.15 0 

Avg. Secondary lifetime WI (years) 0 3.06 2.85 3.51 

Table 22. CEs, VOI, and production lifetime decisions for the IOR problem with the 

change of OOIP settings, obtained with different risk profiles. 
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As originally presumed, a risk-averse decision-maker would not run the project, 

and a risk-seeking decision-maker would run the project even without considering 

future information, but in this case, they would proceed straight to secondary recovery. 

Table 22 and Figure 65 show that a risk-averse decision-maker would assess a CE of 0 

with or without information, hence, they would walk away the project. A risk-neutral 

would assess a CE of $52.06 million when the future information is considered, and 0 

if no information. The two risk-seeking decision-makers would both run the project. 

The less risk-seeking decision-maker (Rho= -$3000 million) would obtain a CE of 

$4.03 million with no information, and a CE of $60.07 million with future information. 

The more risk-seeking decision-maker (Rho= -$800 million) would assess a CE of 

$49.67 million with no information, and a CE of $101.04 million with future 

information. The differences between the CEs with and without information in both 

cases confirms once again the importance of incorporating future information in the 

decisions, as additional value can be generated. Another important observation is that 

there is an increasing trend of CE as the decision-maker becomes more risk-seeking, 

for both cases with and without information.  

   

 

Figure 65. Sensitivity analysis on CE over different risk profiles for the IOR initiation 

and termination time problem with a change on the OOIP distribution. 
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Figure 66 shows the sensitivity analysis on VOI for the different risk profiles. 

VOI would be 0 for the risk-averse case since the project will not be run. For the risk-

neutral case the VOI results in $52.24 million. For the risk-seeking cases, Rho = -$3000 

million and Rho -800, the VOI are $56.04 million and $51.37 million, respectively. For 

this problem setting, the differences in VOI between the different risk profiles are not 

considerable large as long as the project proceeds (for the risk-neutral and seeking 

cases).  

 

 

Figure 66. Sensitivity analysis on VOI over different risk profiles for the IOR initiation 

and termination time problem with a change on the OOIP distribution. 

Figure 67 and Figure 68 show the decisions for primary and secondary recovery 

lifetime respectively, with and without information for the different risk profiles. As 

noted before, the risk-neutral decision-maker runs the project only with information, 

with an average primary production lifetime of 1.17 years and an average secondary 

production lifetime of 3.06 years. If no future information is accounted for, the risk-

seeking decision-makers would skip the primary production and proceed straight to 

secondary production. The less risk-seeking decision-maker (Rho= -$3000 million) 
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would prefer 6 years of secondary production (also total lifetime) while the more risk-

seeking decision-maker (Rho= -$800 million) would prefer 8 years. 

When the future information is incorporated in the decision-making, the less 

risk-seeking decision-maker would run both, primary and secondary recovery phases, 

with an average lifetime of 1.15 and 2.85 years, respectively, totalizing 4 years of 

lifetime in average; this is similar to the result of the risk-neutral decision-maker. 

However, the more risk-seeking decision-maker would still go straight to secondary 

production, skipping primary recovery, with an average total lifetime of 3.51 years. 

This is consistent with the results that have been demonstrated and discussed for the 

original problem setting: a more risk-seeking decision-maker prefers shorter primary 

production and longer secondary production, in general.  

 

 

Figure 67. Sensitivity analysis primary recovery lifetime decision over different risk 

profiles for the IOR initiation and termination time problem with a change 

on the OOIP distribution. 
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Figure 68. Sensitivity analysis secondary recovery lifetime decision over different risk 

profiles for the IOR initiation and termination time problem with a change 

on the OOIP distribution. 
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Chapter 9: Discussion 

Hong et al. (2019) demonstrated the IOR initiation and termination time 

decision problem in a sequential decision-making framework, which considered 

information gathering and uncertainty updating (i.e., learning) over time for the 

optimization of decision strategy, with a numerical case study. Their case study was 

limited to risk-neutral behaviours with the objective to maximize expected monetary 

value – NPV. In the present study, exponential utility functions have been introduced 

to account for different risk attitudes and to investigate their impacts on the IOR 

initiation and termination time decision. With a utility function, the objective is to 

maximize expected utility. 

Hong et al. (2019) used the LSM algorithm as an approximate dynamic 

programming approach to solve the sequential decision-making problem. The LSM 

algorithm is based on Monte Carlo simulation for uncertainty modelling and sampling, 

and regression for calculating (approximately) conditional expected values given 

information. Hong et al. used OLS for regression as they argued that the relation 

between NPVs and the information (measured oil rates) is linear for a given decision 

alternative. However, a ‘linear case’ means the objective function is a linear function 

of observables for given decisions and ‘a non-linear case’ means the objective function 

is a non-linear function of observables for given decisions. Even for a linear case, the 

relation between objective values and observed values might not be linear when a 

decision strategy is involved because the relation between objective values and the 

decision strategy might not be linear. For this reason, and because the inclusion of non-

risk-neutral attitude by utility functions introduces non-linearity, machine-based non-

linear regression methods have been assessed against OLS in the present study, even 

for the risk-neutral case. 
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Several machine learning methods (k-nearest neighbour (KNN), random forest 

(RF), extreme gradient boost (XGB), support vector regression (SVR) and piecewise 

regression) have been evaluated for the non-linear regression between utilities and 

measured oil rates. For each method, the optimal hyperparameters have been 

determined with a 3-fold cross-validation. Sensible fits have been obtained with KNN, 

RF and XGB; however, KNN have suffered difficulties to predict at very low oil rates. 

RF has predicted better at lower oil rates but under-estimated utilities at higher rates. 

XGB has given the best regression fit with the greatest R2 score and without overfitting, 

among the evaluated methods. Therefore, XGB has been chosen and used as the non-

linear regression method in the LSM algorithm for solving the IOR initiation and 

termination time problem in the present work. 

XGB regression has been tested against OLS for the risk-neutral case, resulting 

in better fit and higher R2 scores. This has validated previous observation that even 

when the relation between the NPVs and the measured oil rates is linear, when a 

decision strategy is involved, non-linearity can be introduced. In other words, the 

relation between NPVs and measured oil rates can be non-linear for mixed decision 

alternatives (i.e., the optimal future decisions can be a mix of decision alternatives for 

different realizations, depending on their information paths). Therefore, a non-linear 

regression method has provided a more accurate prediction.  

Sensitivity analysis has been performed over various aspects of the IOR 

initiation and termination time decision problem for different risk tolerances. The 

impact of risk tolerance on the VOI has been investigated and discussed. For risk-averse 

attitudes, the VOI has been found to increase monotonically as the risk tolerance 

increases, which means that the less risk-averse a decision-maker is, the more they will 

value the future information. In the case of risk-seeking decision-makers, the VOI trend 

is slightly more variable; there is a slight VOI increase from risk-neutrality towards a 

risk tolerance of around $1500 million, but then the VOI decreases rapidly for risk 
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tolerances closer to zero. For both risk-averse and risk-seeking decision-makers, the 

median and the spread of the final NPVs tend to increase as a decision-maker is more 

risk-seeking. The results are consistent with risk-averse and risk-seeking behaviours 

and correctly reflect the impact of risk attitude on the decisions. 

To assess the impact of the risk attitude on the decisions, sensitivity analysis has 

been performed for different risk tolerances. One way of quantifying this impact, is to 

measure the difference between the production lifetime preferred by a risk-neutral 

decision-maker and the production lifetime preferred by a non-risk-neutral decision-

maker. The case study results have demonstrated that risk-averse decision-makers 

prefer longer primary recovery and risk-seeking decision-makers prefer shorter primary 

recovery, compared to risk-neutral decision-makers. This behaviour has been attributed 

to the fact that a risk-averse decision-maker prefers to collect more information to 

reduce uncertainty before switching to secondary recovery. It has also been attributed 

to the additional CAPEX incurred for starting the secondary recovery: the extra 

recovery might or might not cover the CAPEX, and accounting for these two scenarios 

makes the NPV distribution wider, i.e., uncertainty increases, which is unpreferred by 

a risk-averse decision-maker. 

Regarding the secondary recovery phase, it has been demonstrated that risk-

averse decision-makers prefer to stop the secondary recovery sooner than risk-neutral 

decision-makers, and risk-seeking decision-makers would stop the secondary recovery 

later than risk-neutral decision-makers. In other words, the more risk-averse a decision-

maker is, the shorter secondary recovery they prefer. This has been attributed to the 

OPEX, especially at the late-stage of secondary recovery, when the expected cash 

inflow is marginal and might not cover these costs. This is a situation that a risk-averse 

decision-maker does not prefer – the decision-maker’s CE of the net cash flow (= cash 

inflow – OPEX) distribution can be negative even though the expected net cash flow is 

positive. For a risk-neutral decision-maker, their CE of the net cash flow equals the 
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expected net cash flow, by definition; hence, the risk-neutral decision-maker would 

prefer to continue the secondary recovery as long as the expected net cash flow is 

positive, resulting in a longer secondary recovery compared to a risk-averse decision-

maker. For the same reason, the more risk-seeking a decision-maker is, the longer the 

secondary recovery they prefer – the risk-seeking decision-maker’s CE of the net cash 

flow distribution can be positive even though the expected net cash flow is negative. 

The impact of the future information on the decisions has been assessed via 

sensitivity analysis for difference risk tolerances. By analysing the difference between 

the decisions for primary recovery lifetime with and without future information, it has 

been noted that the more risk-seeking the decision-maker is, the larger this difference 

is, hence, the more valuable the information becomes. This observation complements 

previous VOI analysis. For the secondary recovery, a general trend has been observed 

indicating that the more risk-seeking, the larger difference between the secondary 

recovery lifetime with information and the secondary recovery lifetime without 

information. The trend for secondary recovery is not as clear as that for primary 

recovery – some up and down around a general trend for secondary recovery whilst a 

clear monotonic trend for primary recovery – because the determination of the 

secondary recovery lifetime is more complex and depends on both the switch time (the 

time when the primary recovery is switched to the secondary recovery) and the 

termination time (the time when the secondary recovery is terminated), compared to the 

primary recovery lifetime that depends only on the switch time.  

The differences in the decisions with and without information for the primary 

recovery lifetime have been found positive for all risk profiles, indicating that all 

decision-makers would prefer longer primary recovery when considering future 

information, in average. This is attributed to the fact that the information during the 

primary recovery is valuable reducing the uncertainty in secondary recovery and 

informing the decision-maker to avoid switching to secondary recovery too early. For 
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the secondary recovery, the differences with and without information have been all 

found negative, meaning that all decision-makers would prefer shorter secondary 

recovery when considering future information, in average. The information during the 

secondary recovery is valuable in reducing the uncertainty in secondary recovery at 

later stages and informing the decision-maker to avoid terminating the secondary 

recovery too late. 

An additional exercise has been performed by changing the problem setting to 

a more marginal and more uncertain case, where the OOIP has a lower mean (thus the 

expected NPV is closer to 0) and a larger standard deviation (thus the spread of NPV 

distribution is larger). Hong et al. (2019) had run the exercise in a risk-neutral case; 

they had found that a risk-neutral decision-maker would not run the project without the 

consideration of future information, but they would proceed to one year of primary 

recovery and three years of secondary recovery, in average, when accounting for the 

future information in their sequential decisions. In the present work, Hong et al. 

(2019)’s risk-neutral case results have been confirmed using XGB regression in the 

LSM algorithm, obtaining very similar decision strategy and expected NPV. These 

results reinforce the importance of the sequential decision-making schemes, which 

allow the incorporation of future information over time, creating value from 

information. 

Other risk attitudes have also been investigated in the changed problem setting. 

The results indicated that a risk-averse decision-maker would not run the project, with 

and without considering future information. Risk-seeking decision-makers would run 

the project even without considering future information. The CEs increase as a 

decision-maker becomes more risk-seeking, for both cases with and without the 

consideration of future information. The VOI is not considerably different among the 

risk-neutral and risk-seeking cases, as long as the project is started.  
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In the changed problem setting, if no future information is considered, risk-

seeking decision-makers would skip the primary production and proceed straight to 

secondary production. This is still the case for extreme risk-seeking decision-makers 

when future information is accounted for. However, with the consideration of future 

information, less risk-seeking decision-makers prefer to start with a short primary 

recovery and then decide if switch to secondary recovery based on the oil rates 

measured during the primary recovery, similar to the risk-neutral case. 

This work has demonstrated that machine learning-based non-linear regression 

can be effectively used in LSM. The most important advantage of machine learning is 

the more accurate utilities prediction compared to OLS and the flexibility to be used 

with all risk profiles, including risk-neutral. One of the disadvantages is the longer 

compute time these methods require compared to OLS or ordinary fitting approaches. 

Although this work was not focused on time efficiency, it could be appreciated that 

some of the algorithms required much more compute time than others, for example 

random forest and piecewise regressions compared to k nearest neighbour. For more 

complex problems, a compromise might need to be made to obtain sufficient prediction 

quality without incurring into unnecessary costs. The other disadvantage of the machine 

learning methods is the required efforts during the hyperparameters testing and cross-

validation. This testing phase can be exhaustive and might imply increase of both, 

human-resources, and computer-resources, when compared to ordinary fitting methods. 

Another contribution from this work is the validation of the LSM algorithm to 

solve sequential decision-making problems that involve risk attitudes different than 

neutral. The LSM has provided with an efficient way to estimate the conditional 

expected utilities replacing the need of Bayesian updates for conditional probabilities, 

as used in conventional decision tree approaches. One of the disadvantages is that the 

methodology delivers an “approximation” of the expected utilities, and not the accurate 

figures. However, this work has showed that the VOI obtained by LSM is very 
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comparable to the one obtained through the conventional analytical tree approach, 

indicating the approximation in this specific problem has been suitable. Nonetheless, 

this might be validated in other problem settings. 

The results from the present study indicate that the risk attitude change the 

decisions. It also shows that value of information is not the same for all risk profiles. 

Moreover, the overall results depend on problem setting. The contrasting results over 

the different risk tolerances also showed how sensitive a project strategy can be to the 

risk attitude. However, there is not “right or wrong” on a corporation to be risk-averse, 

risk-neutral, or risk-seeking. The benefit of being risk-averse is that potential losses are 

avoided when the scenarios are very uncertain and/or marginals. However, a risk-averse 

corporation might reject project opportunities that might result profitable. On the other 

hand, a risk-seeking corporation might decide to invest and eventually loose when the 

scenario is uncertain; but on the other hand, they embrace project opportunities. The 

important highlight of the present study is that, in all cases, the risk attitude can be 

modelled, and its impact can be assessed, which enables robust scenario-testing in 

sequential decision-making problems.  
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Chapter 10: Conclusions and Recommendations 

In this work, a sequential decision-making problem has been solved using the 

LSM algorithm - an approximate dynamic programming approach. A hypothetical field 

with maximum 50 years of production has been assumed, and the objective was to 

assess the optimal lifetime for primary and secondary recovery - IOR initiation and 

termination time problem. Geological and petrophysical uncertainties have been taken 

into consideration in a decline-curve-based production model, and certain economic 

parameters have been used. The novelty of the work has been the introduction of risk 

attitude and the assessment of the different risk profiles in the decisions.  

This thesis work has demonstrated that the risk attitude can be effectively 

modelled, and its impact on decisions can be assessed. In the IOR initiation and 

termination time problem, sensitivity analysis on the different risk profiles led to the 

following remarks: 

• Different risk attitude leads to different decisions. 

• Impact and value of information depends on risk attitude. 

• Results are specific to problem setting. 

The results have also demonstrated the importance of incorporating future 

information in decision modelling, which enables creation of value. This is relevant for 

all risk attitudes. 

Another contribution of the present work is the effective application of machine 

learning-based non-linear regression for sequential decision modelling problems. The 

non-linear regression has been used to approximate the expected utilities during the 

LSM algorithm, to exercise the optimal decision policy. Non-linear regression can be 

successfully used in any risk attitude case, including risk-neutral cases. 
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The approach presented in this work is effective, efficient and is not limited to 

oil and gas problems, but has applicability to many other fields, for example, 

pharmaceutics, medicine, agriculture, and new energy supply. 

 Recommendations for further work include: 

• Testing other machine learning-based non-linear regression methods 

such as neural networks. 

• Using other dynamic programming approaches instead of LSM, for 

example, reinforcement learning. 

• Assessing the impact on risk attitude in problems that involve more 

complex production models (including water and gas production) and/or uncertain 

economic parameters (e.g., oil and gas prices).  

• Application to other decision contexts related to the oil and gas industry, 

for example, finding the optimal time to drill an infill well. 
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Appendix A: Sensitivity analysis of the non-linear regression 

hyperparameters on the fitting scores. 

The following supplementary figures show additional sensitivity analysis on the 

fitting scores obtained with the different non-linear regression algorithms and their 

respective material hyperparameters, as part of the testing phase documented in Chapter 

7: Selection of regression method, Section 7.1: K-fold cross-validation. 

 

 

Figure 69. Sensitivity analysis of hyperparameter ‘maximum leaf nodes’ from 

Random Forest algorithm on the fitting scores. 

 

Figure 70. Sensitivity analysis of hyperparameter ‘C: Regularization from SVR 

algorithm on the fitting scores. 
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Figure 71. Sensitivity analysis of hyperparameter ‘gamma’ from SVR algorithm on 

the fitting scores. 

 

 

 

Figure 72. Sensitivity analysis of hyperparameter ‘number of bins’ from Piecewise 

algorithm (RF estimator) on the fitting scores. 
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Appendix B: Bi-dimensional regression 3D fit plots 

These supplementary images show additional 3D regression fits using different 

non-linear algorithms, as part of the testing phase documented in Chapter 7: Selection 

of regression method, Section 7.3: Comparison of different regression methods. 

 

 

Figure 73. Bi-dimensional regression 3D fit plot, using OLS for NPV versus oil rates 

(risk-neutral case). Blue dots: input data. Warmer colors: regression 

surface. 

 

 

Figure 74. Bi-dimensional regression 3D fit plot, using XGB for NPV versus oil rates 

(risk-neutral case). Blue dots: input data. Warmer colors: regression 

surface. 
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Figure 75. Bi-dimensional regression 3D fit plot, using SVR for utilities versus oil rates 

(risk-averse case). Blue dots: input data. Warmer colors: regression 

surface. 

 

 

 

Figure 76. Bi-dimensional regression 3D fit plot, using Piecewise 10 slopes (OLS 

regressor) for utilities versus oil rates (risk-averse case). Blue dots: input 

data. Warmer colors: regression surface. 
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Figure 77. Bi-dimensional regression 3D fit plot, using Piecewise 4 slopes (XGB 

regressor) for utilities versus oil rates (risk-averse case). Blue dots: input 

data. Warmer colors: regression surface. 
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Appendix C: LSM Utilities validation 

These supplementary images show the utilities validation for additional cases 

of risk tolerances, as documented in Chapter 8: Case study, Section 8.3: Case study 

results, Sub-section 8.3.2.1: LSM utilities validation. 

 

 

Figure 78: LSM utilities validation: Risk-averse EU re-converted using different risk 

tolerances. Maximum EU is found by re-converting with its respective 

Rho. 
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Figure 79: LSM utilities validation: Risk-seeking EU re-converted using different risk 

tolerances. Maximum EU is found by re-converting with its respective 

Rho. 
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Appendix D: LSM Python code for the IOR initiation and 

termination time case study with risk-neutral attitude, using OLS 

regression. 

This code solves the IOR initiation and termination time case study for a risk-

neutral decision-maker, using OLS regression in the LSM algorithm, as per results 

documented in Chapter 8. This code also exports 10,000 Monte Carlo realizations of 

the model parameters, to be used by the subsequent cases to make direct comparisons.   

 

https://github.com/marianneyanez/LSM-two-factor-model-

optimization/blob/main/LSM_risk_neutral_OLS_and_export_10000_MC_samples.ip

ynb 

 

Appendix E: LSM Python code for the IOR initiation and 

termination time case study with risk-neutral attitude, using XGB 

regression. 

This code solves the IOR initiation and termination time case study for a risk-

neutral decision-maker, using XGB regression in the LSM algorithm, as per results 

documented in Chapter 8. This code reads 10,000 Monte Carlo samples for the model 

parameters generated in code linked in Appendix D. 

 

https://github.com/marianneyanez/LSM-two-factor-model-

optimization/blob/main/LSM_risk_neutral_XGB_reading_fixed_10000_MC_samples

.ipynb 

https://github.com/marianneyanez/LSM-two-factor-model-optimization/blob/main/LSM_risk_neutral_OLS_and_export_10000_MC_samples.ipynb
https://github.com/marianneyanez/LSM-two-factor-model-optimization/blob/main/LSM_risk_neutral_OLS_and_export_10000_MC_samples.ipynb
https://github.com/marianneyanez/LSM-two-factor-model-optimization/blob/main/LSM_risk_neutral_OLS_and_export_10000_MC_samples.ipynb
https://github.com/marianneyanez/LSM-two-factor-model-optimization/blob/main/LSM_risk_neutral_XGB_reading_fixed_10000_MC_samples.ipynb
https://github.com/marianneyanez/LSM-two-factor-model-optimization/blob/main/LSM_risk_neutral_XGB_reading_fixed_10000_MC_samples.ipynb
https://github.com/marianneyanez/LSM-two-factor-model-optimization/blob/main/LSM_risk_neutral_XGB_reading_fixed_10000_MC_samples.ipynb


 147 

Appendix F: LSM Python code for the IOR initiation and 

termination time case study with risk-averse attitude, using XGB 

regression. 

This code solves the IOR initiation and termination time case study for a risk-

averse decision-maker, using XGB regression in the LSM algorithm, as per results 

documented in Chapter 8. This code reads 10,000 Monte Carlo samples for the model 

parameters generated in code linked in Appendix D. 

 

https://github.com/marianneyanez/LSM-two-factor-model-

optimization/blob/main/LSM_risk_averse_XGB_reading_fixed_10000_MC_samples.

ipynb 

 

 

Appendix G: LSM Python code for the IOR initiation and 

termination time case study with risk-seeking attitude, using XGB 

regression. 

This code solves the IOR initiation and termination time case study for a risk-

seeking decision-maker, using XGB regression in the LSM algorithm, as per results 

documented in Chapter 8. This code reads 10,000 Monte Carlo samples for the model 

parameters generated in code linked in Appendix D. 

 

https://github.com/marianneyanez/LSM-two-factor-model-

optimization/blob/main/LSM_risk_seeking_XGB_reading_fixed_10000_MC_sample

s.ipynb 

 

 

 

https://github.com/marianneyanez/LSM-two-factor-model-optimization/blob/main/LSM_risk_averse_XGB_reading_fixed_10000_MC_samples.ipynb
https://github.com/marianneyanez/LSM-two-factor-model-optimization/blob/main/LSM_risk_averse_XGB_reading_fixed_10000_MC_samples.ipynb
https://github.com/marianneyanez/LSM-two-factor-model-optimization/blob/main/LSM_risk_averse_XGB_reading_fixed_10000_MC_samples.ipynb
https://github.com/marianneyanez/LSM-two-factor-model-optimization/blob/main/LSM_risk_seeking_XGB_reading_fixed_10000_MC_samples.ipynb
https://github.com/marianneyanez/LSM-two-factor-model-optimization/blob/main/LSM_risk_seeking_XGB_reading_fixed_10000_MC_samples.ipynb
https://github.com/marianneyanez/LSM-two-factor-model-optimization/blob/main/LSM_risk_seeking_XGB_reading_fixed_10000_MC_samples.ipynb
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