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Abstract 

This thesis investigates the application of Bayesian Optimization (BO) in the optimization of the 

Expected Net Present Value (ENPV) for oil field development. The objective is to maximize the 

ENPV while reducing the computation time required for the optimization process. The challenges 

associated with this optimization problem, such as the absence of an analytical form of the 

objective function, the presence of multiple local optima, and the computational demands of 

evaluating the ENPV, are addressed using BO. 

I begin by providing a comprehensive overview of BO and its suitability for addressing these 

challenges. I demonstrate its effectiveness through a 1D toy problem, where the objective function 

is treated as a black box and iteratively approximated using a Gaussian Process. This serves as a 

foundation for applying BO to a realistic 3D reservoir simulation model, where I optimize water 

injection rates to maximize the ENPV. 

To further improve the optimization process, I investigate the impact of initial value selection 

methods on computation time and ENPV convergence. I compare two approaches: random 

selection using a uniform distribution and Latin Hypercube Sampling (LHS) to ensure scattered 

initial injection rates for wells. The results highlight the significance of initial value selection, with 

LHS demonstrating reduced computation time while maintaining comparable ENPV outcomes. 

Moreover, I propose a modified method to decrease the optimization time by employing an 

eliminating criterion. I evaluate the feasibility of using the first realization NPV as a decision point 

to determine whether further NPV calculations are required for other realizations. I demonstrate 

the effectiveness of this approach in reducing computation time, particularly in cases with low 

uncertainty. 

Overall, this thesis contributes to the understanding of how initial value selection and modified 

BO methods can improve the efficiency and effectiveness of ENPV optimization in oil field 

development. The results provide insights for decision-making processes and can guide 

practitioners in maximizing the value of oil field investments while reducing computation time. 
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1. Introduction 
 

Optimization refers to the process of maximizing the utilization or effectiveness of a given 

situation or resource. Essentially, it involves modifying an existing procedure with the aim of 

increasing the frequency of favorable results and reducing the occurrence of unfavorable 

outcomes. This inclination towards optimization is inherent in human nature, as individuals 

consistently endeavor to enhance their personal well-being and the environment in which they 

reside. On a collective level, societies struggle to allocate limited resources seeking to improve the 

welfare of their members. Optimization has played a pivotal role in driving societal advancements, 

dating back to the domestication of crops through the practice of selective breeding over 12,000 

years ago. This ongoing endeavor towards optimization remains a significant undertaking in 

contemporary society (Garnett, Roman 2023). The process of optimization is often lengthy and 

demanding, requiring considerable investment of time and resources for the evaluation of various 

alternatives. Therefore, it becomes essential to explore methodologies that efficiently allocate time 

and resources in order to streamline the optimization process. 

Decision making can be defined as “choosing the best alternative that best fits a set of goals” 

(Bratvold and Begg 2010). Decision making and optimization are intricately interconnected. The 

process of decision making involves assessing available options and choosing the most favorable 

course of action based on certain criteria or objectives. Optimization, on the other hand, entails 

finding the best possible solution or maximizing the desired outcome within a given set of 

constraints. In this way, decision making relies on optimization techniques to identify the optimal 

choice among available alternatives, while optimization relies on effective decision making to 

determine the most advantageous approach. 

Bayesian Optimization is an approach that uses Bayes Theorem to direct the search in order to find 

the minimum or maximum of an objective function. Bayesian optimization has found a niche in 

optimizing objectives that: 

• are costly to compute, precluding exhaustive evaluation, 

• lack a useful expression, causing them to function as “black boxes,” 

• cannot be evaluated exactly, but only through some indirect or noisy mechanism, and/or 
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• offer no efficient mechanism for estimating their gradient (Garnett, Roman 2023). 

Bayesian Optimization is best suited for optimization over continuous domains of less than 20 

dimensions and tolerates stochastic noise in function evaluations. It builds a surrogate for the 

objective and quantifies the uncertainty in that surrogate using a Bayesian machine learning 

technique, Gaussian process regression, and then uses an acquisition function defined from this 

surrogate to decide where to sample (Frazier 2018). Bayesian Optimization can be instrumental in 

various domains where the efficient search for an optimal solution is crucial. Consider a data 

scientist crafting a complex machine learning model – say a deep neural network – from training 

data. To ensure success, the scientist must carefully tune the model’s hyperparameters, including 

the network architecture and details of the training procedure, which have massive influence on 

performance. Unfortunately, effective settings can only be identified via trial-and-error: by training 

several networks with different settings and evaluating their performance on a validation dataset 

(Garnett, Roman 2023) which is expensive in terms of time and resource. The search for the best 

hyperparameters is of course an exercise in optimization (Garnett, Roman 2023). As another 

example, hydrocarbon production optimization is a decision-making process in which a set of 

control (or decision) variables is tuned to maximize a predefined objective function (i.e., net 

present value (NPV)) (Kor, Hong, and Bratvold, n.d.). The exploration and production industry is 

about exploring, appraising and producing oil and gas. Each phase involves numerous decision 

points that require significant commitments of time and resources from companies. These 

commitments can vary in scale, ranging from minor engagements, such as a few days of work or 

the expenditure of a modest budget, to substantial endeavors involving thousands of personnel 

working on billion-dollar investments spanning several years (Bratvold and Begg 2010). Since the 

flow models are typically time dependent and nonlinear, the solution of the resulting nonconvex 

optimization problem may be computationally demanding (de Brito and Durlofsky 2020). 

Bayesian optimization has proven successful in settings spanning science, engineering, and 

beyond, including of course hyperparameter tuning (Turner et al. 2021). 
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1.1. Bayesian Optimization 
 

Bayesian optimization (BO) refers to a sequential design approach utilized for globally optimizing 

black-box functions (Boender and Mockus 1991) that does not assume any functional forms. It is 

a class of machine-learning-based optimization methods focused on solving the problem: 

max 𝑓(𝑥)   𝑥 ∈ 𝐴                          Equation 1 

 

where the feasible set and objective function typically have the following properties: 

• The input 𝑥 is in ℝ𝑑 for a value of 𝑑 that is not too large. Typically,  𝑑 ≤  20 in most 

successful applications of BO. 

• The objective function 𝑓 is continuous. This will typically be required to model 𝑓 using 

Gaussian process regression. 

• 𝑓 is “expensive to evaluate” in the sense that the number of evaluations that may be 

performed is limited, typically to a few hundred. This limitation typically arises because 

each evaluation takes a substantial amount of time (typically hours) but may also occur 

because each evaluation bears a monetary cost (i.e.., from purchasing cloud computing 

power, or buying laboratory materials), or an opportunity cost (i.e.., if evaluating 𝑓 requires 

asking a human subject question who will tolerate only a limited number).  

• 𝑓 lacks known special structure like concavity or linearity that would make it easy to 

optimize using techniques that leverage such structure to improve efficiency. We 

summarize this by saying 𝑓 is a “Black box.”  

• When we evaluate 𝑓, we observe only 𝑓(𝑥) and no first- or second-order derivatives. This 

prevents the application of first- and second-order methods like gradient descent, Newton’s 

method, or QuasiNewton methods. We refer to problems with this property as “derivative-

free”.  

• Through most of this thesis, I will assume 𝑓(𝑥) is observed without noise. 

• The focus is on finding a global rather than local optimum. 

The ability to optimize expensive black-box derivative-free functions makes BO extremely 

versatile (Frazier 2018). It is important to note that the emphasis on maximizing rather than 
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minimizing a function is purely arbitrary. The two problems can be easily transformed into each 

other by simply negating the objective function (Garnett, Roman 2023). 

 

Figure 1- Sequential optimization algorithm (Garnett, Roman 2023) 

 

1.2. How Bayesian Optimization Works? 
 

Bayesian Optimization (BO) employs a surrogate model, known as a probability model or 

surrogate of the objective function, to approximate the true shape of the function. In an ideal 

scenario with unlimited resources, every point of the objective function would be computed to gain 

knowledge of its exact shape. However, BO utilizes a finite number of initial objective function 

evaluations to infer and construct the probabilistic model. This surrogate model serves as an 

approximation for the objective function.  

The subsequent step involves selecting another sample from the objective function. To accomplish 

this, various acquisition functions are utilized within BO. These acquisition functions aid in 

determining the most promising location to sample the objective function for the next iteration. 

The aforementioned steps, including surrogate model construction, sample selection using 

acquisition functions, and subsequent objective function evaluations, are iteratively repeated until 

the maximum number of iterations is reached. 

To make long story short, BO consists of below two main steps: 

1. Choose some initial values. 
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2. Using acquisition function, choose one new control vector 𝑥𝑛𝑒𝑤 and evaluate 𝑓(𝑥𝑛𝑒𝑤), 

update the probabilistic model and iterate until stopping rule. 

 

 

Figure 2- Bayesian optimization pseudo-code 

 

 

1.2.1. Acquisition Function 
 

Acquisition functions play a crucial role in proposing sampling points within the search space. 

These functions aim to strike a balance between exploitation and exploration. Exploitation 

involves selecting sampling points where the surrogate model predicts a high objective value, 

while exploration involves sampling at locations where there is high uncertainty in the predictions. 

Both exploitation and exploration correspond to high values of the acquisition function. The 

objective is to maximize the acquisition function in order to identify the next sampling point 

(Krasser 2018). 

As previously mentioned, there exists a wide range of available acquisition functions to choose 

from. In this thesis, the Expected Improvement (EI) acquisition function, which is widely 

recognized as one of the most commonly used acquisition functions, was employed. This choice 

was made due to its ability to be evaluated analytically under the Gaussian Process (GP) model. 
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1.2.2. Gaussian Processes 
 

The majority of the research papers use the Gaussian Process model as the surrogate model for its 

simplicity and ease of optimization (Wei 2020). 

A Gaussian Process (GP) can be considered as an extension of the Gaussian distributions into 

functional spaces. The key assumption in GP is that the function values at a collection of 𝑀 >

0 inputs, 𝑓𝑋 = [ 𝑓(𝑥1), … , 𝑓(𝑥𝑀)], jointly follow a Multivariate Normal distribution (MVN), with 

a mean 𝔼[𝑓(𝑥𝑖)] = 𝑚(𝑥𝑖) and covariance 𝐶𝑜𝑣 [𝑓(𝑥𝑖), 𝑓(𝑥𝑗)] = 𝑘(𝑥𝑖 , 𝑥𝑗). 

The function 𝑚(𝑥𝑖) represents the mean which encodes our prior knowledge of the value if 𝑓(𝑥𝑖). 

Although we use the term “mean function” 𝑚(. ), we eventually end up with a vector µ =

[𝑚(𝑥1), … , 𝑚(𝑥𝑀)]. The Covariance matrix is an 𝑁 x 𝑀 matrix where each element 𝑖, 𝑗 is defined 

by the covariance function 𝑘(𝑥𝑖 , 𝑥𝑗). Covariance offers valuable insight into the relationship 

between two variables. It helps to understand how these variables are related and provides 

information about the direction and strength of their association. More precisely, covariance is a 

statistical measure that quantifies the degree to which two random variables in a dataset vary 

together. It provides information about the extent to which changes in one variable correspond to 

changes in another variable. A positive covariance indicates that the variables tend to move in the 

same direction, while a negative covariance suggests they move in opposite directions. The 

magnitude of the covariance value indicates the strength of the relationship between the variables. 

𝑘(𝑥𝑖  , 𝑥𝑗) =  (
𝑘(𝑥1 , 𝑥2) ⋯ 𝑘(𝑥1 , 𝑥𝑀)

⋮ ⋱ ⋮
𝑘(𝑥𝑁 , 𝑥1) ⋯ 𝑘(𝑥𝑁 , 𝑥𝑀)

)                   Equation 2 

The Gaussian Process (GP) is defined as a probability distribution over a finite number of M points, 

which is completely specified by its mean vector and covariance matrix. There are many choices 

for the covariance function. In this thesis, the RBF (Radial Basis Function) covariance function 

was utilized. The RBF covariance function, also known as the squared exponential or Gaussian 

covariance function, is a commonly used kernel in Gaussian Process models. It is characterized by 

its smoothness and flexibility. The RBF covariance function calculates the similarity or correlation 

between two points in the input space based on their Euclidean distance. It assigns higher values 

for points that are closer together and lower values for points that are farther apart.  
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1.3. What is Net Present Value? 
 

Net Present Value (NPV) is a financial metric that measures the difference between the present 

value of expected cash inflows and the present value of expected cash outflows over a specific 

time period. NPV is commonly employed in capital budgeting and investment analysis to assess 

the profitability and viability of a projected investment or project. By discounting future cash flows 

to their present value, NPV takes into account the time value of money and provides a quantitative 

measure of the net financial impact of an investment after considering its initial cost and expected 

returns. 

NPV is derived through computations that determine the present value of future cash flows by 

applying an appropriate discount rate. In essence, it quantifies the current value of an anticipated 

series of payments. As a general principle, projects with a positive NPV are considered financially 

viable and worthwhile, whereas those with a negative NPV are not.  

For an oil company, the objective is to enhance shareholder or stakeholder value by maximizing 

the net present value (NPV) of its activities. This entails identifying and pursuing projects or 

investments that yield positive NPV, as these are expected to contribute positively to the company's 

financial performance and overall value. By evaluating potential projects based on their NPV, oil 

companies can make informed decisions regarding resource allocation and prioritize initiatives 

that offer the greatest financial returns. 

 

1.4. What is Expected Net Present Value? 
 

Expected Net Present Value (ENPV) is a technique that addresses uncertainty by incorporating 

multiple scenarios and assigning probabilities to calculate the most probable NPV. This approach 

involves determining the net present value under different potential scenarios and weighting them 

based on their likelihood. By considering the inherent uncertainty associated with projecting future 

scenarios, Expected NPV provides a more reliable estimate compared to traditional NPV. 
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ENPV takes into account the range of possible outcomes and their associated probabilities, offering 

a more comprehensive assessment of the potential value of an investment or project. This 

technique allows decision-makers to incorporate risk considerations into their evaluation process 

and make informed decisions based on a more realistic and probabilistic estimation of NPV. By 

factoring in uncertainty, ENPV provides a more robust framework for analyzing investments and 

mitigating potential risks. 

 

1.5. Thesis Goals 
 

1. Investigating the impact of initial values on the convergence of Bayesian Optimization 

(BO). 

2. Optimizing the maximization of Expected Net Present Value (ENPV) for an oil field using 

BO techniques. 

3. Exploring how the selection of initial values affects computation time and ENPV 

outcomes. 

These goals serve as the driving force behind the research and provide a clear framework for the 

subsequent sections and analysis conducted in the thesis. 

 

1.6. Thesis Structure 
 

Section 2 of this thesis provides a concise background to contextualize the study. It offers relevant 

information and prior research related to the topic at hand, establishing the foundation for the 

subsequent sections. 

In Section 3, the problem statement and the main purpose of the thesis are clearly stated. The 

implementation of Bayesian Optimization (BO) is introduced, initially demonstrated on a 1D toy 

problem to illustrate its functionality. Subsequently, BO is applied to a field-scale problem 

consisting of 10 realizations. The methods employed are explained in detail, and various scenarios 

are tested and analyzed. The achieved results are compared and discussed, highlighting the 

strengths and limitations of the implemented BO approach. 
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Section 4, the conclusion, addresses the goals outlined in Section 1.5. It summarizes the key 

findings, discusses the implications of the results, and provides insights into the effectiveness and 

applicability of BO in solving the considered problem. The conclusion serves to reinforce the 

significance of the study and offers suggestions for future research directions. 

All Python codes utilized in the thesis are included in the Appendices as well as my Github 

repository1, allowing readers to refer to the implemented algorithms and reproduce the experiments 

conducted throughout the research. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
1 https://github.com/MinaHosseini66/Bayesian-Optimization 
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2. Literature Review 

 

The literature on well-control optimization can be divided into two categories: gradient-based and 

gradient-free. 

Van Essen et al. (2009) used an adjoint-based method to estimate gradients of an objective function 

of control variables and optimize hydrocarbon production under geological uncertainty. The 

adjoint-based method requires access to the source code of the reservoir simulator, which is seldom 

available for commercial simulators, and deriving exact gradients from the simulator is 

computationally demanding (Kor, Hong, and Bratvold, n.d.). 

Chen et al. (2009) introduced the ensemble-based optimization method (EnOpt), in which the 

covariance between objective values and the values of a control variable approximates a gradient. 

Fonseca et al. (2015) proposed a modified EnOpt formulation, and Fonseca et al. (2017) 

demonstrated that the modified EnOpt formulation gives more accurate gradient approximations 

than the original EnOpt formulation proposed by Chen et al. (2009). 

Harding et al. (1998) compared different gradient-free methods and showed that the genetic 

algorithm (GA) outperforms the simulated annealing algorithm (SA), the sequential quadratic 

programming (SQP), and a hybrid of SA and SQP.  

Oliviera et al. (2019) proposed an upper confidence bound (UCB) algorithm for BO problems 

where both the outcome of a query and the true query location are uncertain. The algorithm 

employs a Gaussian process model that takes probability distributions as inputs.  

Peyman et al. (2023) introduced and discussed a new optimization workflow by providing 

computational efficiency, i.e., achieving a near-global optimum of the predefined objective 

function with minimal forward model (flow-simulation) evaluations. He finally compared the 

workflow with two other gradient-free algorithms, Particle Swarm Optimization (PSO) and 

Genetic Algorithm (GA). 
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3. Problem Statement 

 

As mentioned in the portion dedicated to Bayesian Optimization within the Introduction section, 

production optimization is defined as a search for an optimum value (maximum or minimum) of a 

well-behaved objective function 𝑓 by tuning control variable 𝑥. The mathematical expression of 

the optimization is 𝑓: 𝑋 →  ℝ where 𝑋 denotes the feasible domain of 𝑥 and has a dimension of 

𝐷(𝑋 ⊆  ℝ𝐷): 

max 𝑓(𝑥)   𝑥 ∈ 𝐴 

In the context of oil and gas decision making, assuming our knowledge of the world to be 

“deterministic” is generally a modeling choice- not a feature of reality. In rare circumstances, it 

may be a reasonable approximation (Bratvold and Begg 2010). 

The objective of this thesis is to optimize the Expected Net Present Value (ENPV) while 

minimizing the computational effort required. The focus is on developing efficient approaches that 

reduce the number of calculations needed to obtain the ENPV, thereby saving time and 

computational resources. By streamlining the optimization process, the thesis aims to provide 

practical methods that enable decision-makers to make informed choices in a timely manner, 

without compromising the accuracy and reliability of the ENPV estimation. In this thesis, only the 

geological uncertainties are considered. Initially, the analysis begins with a deterministic case 

where the geological uncertainties are not taken into account. First, The optimization process is 

performed based on a single geological model, assuming a known and fixed subsurface condition, 

then geological uncertainties and their impact on the optimization results are included. By 

considering these uncertainties, the research aims to enhance the accuracy and robustness of the 

optimization process and provide a more realistic assessment of the expected net present value 

(ENPV) of the oil field or reservoir. 

In deterministic case, the objective function (NPV) looks like below: 

𝑓(𝑥, 𝐺) =  ∑ ([∑ 𝑝𝑜𝑞𝑜,𝑗,𝑘(𝑥, 𝐺) − ∑ 𝑝𝑤𝑞𝑞𝑤𝑝,𝑗,𝑘(𝑥, 𝐺) −  ∑ 𝑝𝑤𝑖𝑞𝑤𝑖,𝑖,𝑘(𝑥, 𝐺)] 
𝛥𝑡𝑘

(1 + 𝑏)
𝑡𝑘
𝜏

𝑁𝑤𝑖

𝑖=1

𝑁𝑝

𝑗=1

𝑁𝑝

𝑗=1

)

𝐾

𝑘=1

                    

                                                                                  Equation 3 
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Where 𝐺 denotes a specific geological model, 𝐾 is the number of timesteps, 𝑁𝑝 is the number of 

production wells subject to optimization, 𝑁𝑤𝑖 is the number of water injection wells subject to 

optimization, 𝑘 is the timestep index, 𝑗 is the production well index, 𝑖 is the water injection well 

index, 𝑝𝑜 is the selling price of the produced oil in 𝑈𝑆𝐷 𝑚3⁄  , 𝑝𝑤𝑝 is the cost of produced water in 

𝑈𝑆𝐷 𝑚3⁄  , 𝑝𝑤𝑖 is the cost of injected water in 𝑈𝑆𝐷 𝑚3⁄  , 𝑞𝑜 is oil production rate in 𝑚3 𝑑𝑎𝑦⁄  , 

𝑞𝑤𝑝 is the water production rate in 𝑚3 𝑑𝑎𝑦⁄  , 𝑞𝑤𝑖 is the water-injection rate in 𝑚3 𝑑𝑎𝑦⁄ , Δ𝑡𝑘 is the 

time interval in years of time step 𝑘, 𝑏 is the discount rate which is dimensionless, 𝑡𝑘 is the 

cumulative time in years for discounting at timestep 𝑘, and 𝜏 is the reference time for discounting 

(𝜏 = 1 year if 𝑏 is expressed as a fraction per year and cash flows are discounted yearly), and 𝑥 is 

the control value defined as 𝑥 =  [𝑥1 +  𝑥2 + ⋯ +  𝑥𝐷]𝑇 where 𝑥𝑑 is the 𝑑th control variable and 

D is the number of control variables which is the dimension of optimization.  

 

Definition  Symbol Value Unit 

Oil price 𝑝𝑜 300 𝑈𝑆𝐷 𝑚3⁄  

Water production cost 𝑝𝑤𝑝 47.5 𝑈𝑆𝐷 𝑚3⁄  

Water injection cost 𝑝𝑤𝑖 12.5 𝑈𝑆𝐷 𝑚3⁄  

Discount rate 𝑏 8% (yearly) - 

Fraction per year 𝜏 1 year 

Study period 𝐾 10 years 

Number of realizations 𝑁𝑒 10 - 

Table 1- parameters for NPV calculations 

 

The objective function defined in (3) is used for a deterministic case since it does not capture 

geological uncertainties. Equation (4) is the expected form of equation (3), and it considers 

uncertainties in geological aspect: 

𝔼𝐺[𝑓(𝑥, 𝐺)] =  ∫ 𝑓(𝑥, 𝐺)𝑝(𝐺)𝑑(𝐺)                             
𝛺

Equation 4 
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Where 𝔼𝐺 denotes the expectation over 𝐺, 𝑝(𝐺) is the possibility density function (𝑃𝐷𝐹) of the 

uncertain geological variables in 𝐺, and Ω is the feasible domain of 𝐺. A common practice is that 

the geological uncertainties are represented by an ensemble of 𝑁𝑒 equiprobable geological 

realizations, 𝐺 for 𝑟 = 1,2, … , 𝑁𝑒 sampled from the 𝑃𝐷𝐹 𝑝(𝐺). There for, the approximation of 

𝔼𝐺[𝑓(𝑥, 𝐺)] is:  

𝔼𝐺[𝑓(𝑥, 𝐺)] ≈  𝑓 (𝑥) =  
∑ 𝑓(𝑥,𝐺𝑟)

𝑁𝑒
𝑟=1

𝑁𝑒
                          Equation 5 

The main objective of this thesis is to optimize the function 𝑓 (𝑥) while concurrently minimizing 

the time required for the optimization process. To achieve this, the research introduces and 

implements an eliminating criterion, which serves as a filtering mechanism to expedite the 

optimization procedure. 

The optimization of the aforementioned function poses several challenges for several reasons: 

• Absence of an analytic form due to the use of a black box simulator. Without an explicit 

mathematical expression for the objective function, traditional gradient-based optimization 

methods cannot be directly applied. Gradient-based methods rely on calculating derivatives 

of the objective function, which is not feasible in this case. 

• Finding the global maximum of the function poses a challenge due to the presence of 

numerous local optima. Local optima are points in the search space where the objective 

function reaches a relatively high value but may not be the global maximum. The presence 

of multiple local optima makes it difficult to guarantee that the global maximum will be 

discovered, especially when using optimization algorithms that can get trapped in local 

optima. 

• The evaluation of the objective function requires significant computational resources and 

time. This can pose challenges in terms of the efficiency and speed of the optimization 

process. 

The challenges associated with the function optimization, such as the absence of an analytic form, 

the presence of multiple local optima, and the computational demand, provide strong motivation 

for exploring alternative methods that can effectively overcome these obstacles. Bayesian 
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Optimization has emerged as a promising approach that has demonstrated its effectiveness in 

addressing such challenges, making it a suitable candidate for consideration in this thesis. 

 

3.1. Implementation of BO on 1D Toy Problem 
 

In this section, the focus is on providing a clear and detailed demonstration of how Bayesian 

Optimization (BO) functions in practice. To facilitate this, a simple 1D problem is selected as an 

illustrative example. While the problem is limited to one dimension, it should be noted that the 

workflow can be expanded and applied to higher-dimensional problems2. The true function subject 

to optimize looks like below: 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒𝑥     𝑓(𝑥) = 1 − 
1

2
 ( 

𝑠𝑖𝑛(12𝑥)

1+𝑥
+ 2 𝑐𝑜𝑠(7𝑥) 𝑥5 + 0.7)            𝑏𝑜𝑢𝑛𝑑: 0 < 𝑥 < 1              Equation 6 

 

The global maxima of above function can be calculated. The 𝑓(𝑥) is maximized when 𝑥 =  0.39. 

It is also shown in figure 3 below. This function has a local maximum around 𝑥 =  0.82. The 

intention of using this function is to show that BO can avoid local maximum and reach the global 

maximum.  

 

Figure 3-The true visualization of the equation (6) 

 
2 The codes related to this part can be found in Appendix 1 
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Although there exists an analytical expression for the optimization objective function 𝑓, it is treated 

as a black box. This means that the internal workings of the function are unknown, and we rely 

solely on its input-output behavior. The goal is to iteratively approximate the objective function 

using a Gaussian Process within the framework of Bayesian Optimization. 

During the optimization process, the objective function 𝑓 will be evaluated at different points 

within a specified bound. The bound defines the range of values over which the optimization will 

be performed. By exploring this bounded space and observing the function values at various points, 

the Gaussian Process surrogate model is constructed and updated iteratively. 

We have a set of initial values available. A set of [𝑥, 𝑓(𝑥)] which is shown by 𝐷: 

𝐷 =  [𝑥 , 𝑓(𝑥)] =  ([0.05,0.5,0.95], [0.38,0.77,0.16])                    Equation 7 

Bayesian Optimization is run for 10 iterations. In each iteration, a row with two plots is generated. 

A plot of the objective function and the surrogate function which is the GP posterior predictive 

mean with 95% confidence interval from the mean. The other plot is acquisition function which 

helps with the selection of the next proposed sampling 𝑥. Next sampling point is where the 

acquisition function is maximized, and it is shown with dashed vertical line. 
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Figure 4- Bayesian Optimization flow for equation (6) 
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Finally, BO has suggested the best point which maximizes the objective function to be 𝑥 =  0.39. 

We showed that function 𝑓 will be maximized at point 𝑥 =  0.39. The accuracy of BO in 

determining this optimal solution is 100%. 

It is worth noting that exploration helps BO not to be trapped in the local optimum point. Where 

the uncertainty is high, BO tried to reduce the uncertainty by exploring new points, where 

uncertainty is low and optimum result has produced, BO tries to exploit and search for more 

optimum results.  

In the convergence plot below, we can see how many iterations are needed to achieve the optimum 

value. We can see that we are able to catch the global maximum with fewer iterations which is 

shown in Figure 5. 

 

Figure 5- Convergence of BO for 1D toy problem 

 

In this example, only 3 initial values were considered, it can be shown that if we increase the 

number of scattered initial values, the BO will converge faster. This will be further illustrated in 

the field scale analysis, where we will explore the impact of a larger set of initial values on the 

convergence of BO. 

 

3.2. Implementation of BO on Field Scale Problem 
 

In this section, Bayesian Optimization (BO) is applied to a 3D reservoir simulation model with the 

objective of maximizing the Expected Net Present Value (ENPV) of a synthetic, water flooded oil 
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field. The focus is on controlling the water injection rates in order to optimize the field's 

performance while minimizing the simulation time. In (Kor, Hong, and Bratvold, n.d.) Peyman 

has calculated ENPV in his paper (Base case) and in this thesis (Modified method) I tried to reduce 

the amount of time spent in finding the global maximum (reducing calculation time). Base case 

serves as the benchmark or reference point for evaluating the performance of the modified method 

proposed in this thesis. The objective of this thesis is to optimize the calculation time required to 

find the global maximum of the ENPV.  

The synthetic field, known as the “Egg Model” has a geology of channelized depositional system. 

Ten realizations are used, we assume that all 10 realizations are equal-probable geological 

realizations. The only uncertainty considered in this model is the cell permeabilities. The model 

has 8 water injectors and four producers which is depicted in figure 6.  

 

Figure 6- model of the reservoir 

 

The objective is to maximize the ENPV by controlling the water injection rates for each injector 

over a production period of 10 years. There are 8 control variables for 8 wells in the control vector. 

In the calculation of ENPV, Peyman took into account the NPV of all realizations corresponding 

to the injection rates selected by BO. This means that for each set of injection rates suggested by 

the optimization process, the NPV was computed for each individual realization. By calculating 

the NPV of the first realization, it is possible to gain initial insights into the potential value of the 

selected injection rates. If the NPV of the first realization is relatively low, it may indicate that the 

chosen injection rates are not optimal and may not yield desirable financial outcomes. This early 
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assessment can be used to make informed decisions and potentially explore alternative injection 

rate configurations. 

In this thesis, I propose a modified method to expedite the calculation of NPVs for the injection 

rates by incorporating a criterion based on the NPV of the first realization. This criterion allows 

for the identification of injection rate configurations that are unlikely to yield high NPVs, thereby 

reducing the need to compute NPVs for the remaining nine realizations. 

Two criteria that can be presented for this purpose are:  

1. Maximum ENPV criterion: The NPV calculated from the first realization should not be lower 

than the maximum ENPV obtained from the initial values. If the NPV of the first realization falls 

below this threshold, it indicates that the corresponding injection rates are unlikely to result in a 

favorable financial outcome, and further computation of NPVs for the remaining realizations can 

be skipped. 

2. Average ENPV criterion: The NPV calculated from the first realization should not be lower than 

the average ENPV obtained from the initial values. If the NPV of the first realization is below this 

average value, it suggests that the selected injection rates may not yield competitive financial 

results compared to the overall set of initial values. In this case, the computation of NPVs for the 

remaining realizations can be bypassed. 

By implementing these criteria, I aim to significantly reduce the computational time required to 

assess the NPVs of the injection rate configurations. This approach takes advantage of the 

observation that the NPV of the first realization provides valuable information about the likelihood 

of obtaining a high NPV outcome for the entire set of realizations. By skipping the computation 

of NPVs for unpromising injection rate configurations, the overall time spent on the analysis is 

substantially reduced. 

The results of my testing indicate that this modified method effectively reduces the computational 

time while still capturing injection rate configurations that yield competitive ENPV. This not only 

enhances the efficiency of the optimization process but also allows for quicker decision-making 

and resource allocation in oil and gas projects. 
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I implemented Bayesian Optimization (BO) with two different scenarios for the injection rates in 

an oil field: 

Same injection rate for all 8 wells: In this scenario, I considered a uniform injection rate for all 

wells in the oil field. This approach simplifies the optimization process as it involves finding the 

optimal single injection rate that maximizes the ENPV across all wells. Uniform distribution is 

used to select initial value injection rate(s) samples. 

Different injection rates for each well: In this scenario, I allowed for variation in the injection rates 

across the 8 wells. This introduces additional complexity to the optimization process, as it requires 

finding the optimal combination of injection rates for each individual well that collectively 

maximizes the ENPV. Two different approaches were utilized for selecting the initial injection 

rates and results compared. 

3.2.1. Scenario 1 - Same injection rate for all wells3 

 

This particular scenario represents a simplified iteration of the overarching scenario, wherein 

distinct injection rates are assigned to individual wells. Through this simplified version, the 

objective is to illustrate the extent of process time reduction achieved by employing the 

modified method, as well as to investigate the influence of the number of initial values on the 

early convergence of Bayesian Optimization (BO). 

3.2.1.1. Same initial values for both methods (Base case and Modified method) 

Assumptions: Two initial values, 10 BO iterations with seed4 

Figure 7 presents the outcome of the analysis. It demonstrates a significant 20% 

reduction in computation time achieved through the modified method. Furthermore, 

the optimal injection rate is observed to be approximately 56 m3. 

The concept of convergence cannot be addressed in this context as the use of a seed 

ensured that both methods achieved equal convergence. Figure 8 illustrates the 

convergence of both methods, indicating that they both reached convergence after the 

6th iteration.                                                             

 
3 Codes for this part can be found in Appendix 2 
4 With seed, the selected injection rate in each iteration is same for both methods. I used seed in order to be able to compare the 

calculation time for both methods. 
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Figure 7- Comparison of the result of two methods with 2 initial values and 10 BO iteration with seed 

 

 

 

Figure 8- 2 initial values and 10 iterations, with seed - convergence plot 

 

 

3.2.1.2. Modified methods: compare to max and compare to average. 

 

Assumptions:  

o Number of initial injection rates: 2 and 10 

o Number of BO iterations: 10 without seed 

0 20 40 60 80 100 120 140

Time

Opt_ENPV m$/bbl

Opt_inject rate

Modified method (skip lower than average) Base-case method
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Figure 9- Compare the effect of increasing the number of initial values on time and convergence for 10 BO iterations. 

 

Figure 9 provides evidence that increasing the number of initial values yields a positive 

effect, as it leads to earlier convergence of the Bayesian Optimization (BO) method. This 

observation is further supported by figures 10 and 11, which illustrate similar outcomes. 

Alternatively, employing the maximum ENPV of the initial values as a decision criterion 

to determine whether further NPV calculations are necessary after evaluating the NPV of 

the first realization can result in even greater reduction in computation time. This approach 

leverages the knowledge gained from the initial values to make informed decisions and 

optimize the calculation process. 

 

Figure 10- 2 initial values and 10 iterations, modified method convergence plot. 
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modified method-compare to average with 2 initial
values
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Figure 11- 10 initial values and 10 iterations, modified method convergence plot. 

 

As mentioned earlier, the optimal injection rate when assuming the same injection rate for all wells 

is around 56 which corresponds to maximum ENPV. The figure 12 is shown below: 

 

Figure 12- ENPV vs injection rate for 10 initial values and 10 iterations 

 

Figure 13 depicts a comparison between the ENPV calculated from the initial values and the ENPV 

calculated using BO. It is evident that with the utilization of 10 initial values, BO achieved 
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convergence in the very first iteration, aligning with the findings presented in the convergence plot 

illustrated in figure 11. 

 

Figure 13- ENPV calculations for initial values and BO with modified method (compare to average) 

 

 

3.2.2. Scenario 2 - Different injection rates for each well5 

 

In this case, the input is an array with 8 elements. In the initial scenario, the application of the 

modified method demonstrated a notable reduction in calculation time compared to traditional 

approaches. Furthermore, it was observed that increasing the number of initial values led to 

earlier convergence in the optimization process. In this specific scenario, the objective is to 

investigate the impact of selecting different sets of initial value samples on various aspects 

such as computation time, ENPV, and convergence. The analysis solely focuses on the 

implementation of the modified method, which has proven to be effective in reducing 

 
5 The codes related to this part can be found in Appendix 3 
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computation time. To conduct this investigation, a total of 30 sets of initial injection rates are 

carefully selected as samples. These samples serve as the starting points for the optimization 

process. By utilizing the modified method, the optimization algorithm iteratively refines and 

adjusts the injection rates over a set number of iterations, which in this case is set to 20. The 

primary goal of this analysis is to evaluate how the selection of different initial value samples 

influences the computational efficiency, measured in terms of computation time, as well as the 

resulting ENPV and the convergence behavior of the optimization process. By comparing and 

contrasting the outcomes obtained from the various sets of initial values, researchers can gain 

insights into the impact of initial value selection on the overall optimization performance.  

Two different initial values selection methods are utilized: 

1) The selection of initial value samples is carried out using a uniform distribution. A total of 

30 random samples are generated, and this process is repeated 8 times to account for the 

presence of 8 wells in the oil field.  

2) The Latin Hypercube Sampling (LHS) method is employed for the selection of initial value 

samples. The LHS method ensures a stratified and well-distributed sampling approach 

within the parameter space6. To apply the LHS method, a total of 8 random samples are 

selected, and this process is repeated 30 times. Each repetition generates a set of initial 

value samples, resulting in a diverse collection of 30 sets of initial values. 

By employing the LHS method, each time the initial injection rates for the different wells are 

scattered in a stratified manner across the parameter space. This ensures that the samples obtained 

are more evenly distributed and representative of the possible range of injection rates for each well. 

In contrast, using a uniform distribution does not guarantee the same level of scattering for the 

initial injection rates. While using a uniform distribution one can still generate random samples, 

they may not exhibit the same level of stratification and scattering as with LHS. This can lead to 

potential biases in the distribution of initial injection rates for the wells, potentially missing out on 

certain regions of the parameter space. 

 
6 The codes for this part can be found in Appendix 4 
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Figure 14- Comparison of ENPV and computation time for different initial value selection approaches 

 

The observation from Figure 14 indicates that when the initial injection rate samples are selected 

using the Latin Hypercube Sampling (LHS) method, a notable reduction in computation time is 

achieved compared to the alternative initial value selection method. Additionally, both initial value 

selection methods lead to similar Expected Net Present Value (ENPV) outcomes. Overall, the 

results from Figure 14 demonstrate the advantage of using the LHS method in terms of 

computational efficiency, while highlighting the robustness of the optimization process in 

delivering similar ENPV outcomes regardless of the initial value selection method 
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Figure 150- ENPVs calculated for initial injection rates and BO. 

 

Figure 15 provides a graphical representation of the ENPVs calculated for the initial injection rates 

selected by two different selection methods well as the ENPVs calculated at each iteration of the 

Bayesian Optimization (BO) process. 

When the initial injection rates are selected using a uniform distribution, the Bayesian 

Optimization (BO) process was able to achieve a higher Expected Net Present Value (ENPV) in 

the 37th iteration compared to the initial injection rates. This suggests that the exploration of the 

parameter space led to the discovery of more favorable injection rate combinations, resulting in 

increased profitability. On the other hand, when the initial injection rates are selected using the 

Latin Hypercube Sampling (LHS) method, the BO process did not surpass the ENPV calculated 

from the initial injection rates. Despite this, it is worth noting that the ENPV values obtained using 

both sampling methods were very close to each other. Additionally, they were also close to the 

ENPV calculated when the same injection rate was considered for all wells. This indicates that the 
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optimization process was able to identify injection rate combinations that yielded comparable 

profitability outcomes, regardless of the initial value selection method. 

 

Figure 16- Optimal injection rate for each well obtained from two different methods. 

 

Figure 16 displays the optimal injection rates for each well obtained when two different methods 

were employed for the initial injection rate selection. It provides a visual representation of the 

injection rate combinations that yielded the highest Expected Net Present Value (ENPV) for each 

well under each method. 

The results obtained from this study indicate that the initial injection rate selection method has a 

notable impact on the workflow of Bayesian Optimization (BO). Specifically, it has been observed 

that the choice of initial value selection method can lead to a reduction in calculation time. 

Comparing the modified method with the base case, it has been demonstrated that the modified 

method is more time-efficient. This time efficiency becomes particularly significant in scenarios 

that require a larger number of BO iterations. By implementing the modified method, the overall 

computational burden can be reduced, resulting in improved efficiency in the optimization process. 

The findings suggest that careful consideration of the initial injection rate selection method can 

lead to notable improvements in the performance of BO. The modified method, in particular, offers 

advantages in terms of time efficiency and computational resource utilization. 

Selecting the first realization as the basis for deciding whether to calculate the NPV for the 

remaining realizations may not be an optimal approach, particularly when dealing with significant 
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uncertainties. In situations where the uncertainty is high, the first realization may be an outlier and 

not representative of the overall NPV distribution. 

Based on the specific characteristics of my thesis case, where the uncertainty is not high and the 

realizations follow an almost uniform distribution, choosing the first realization as a decision point 

for NPV calculations can be considered reasonable. In situations where the uncertainty is low and 

the realizations exhibit a uniform distribution, the first realization can serve as a reasonable 

representation of the overall NPV trend. Since the distribution is relatively consistent across the 

realizations, the first realization can provide a reliable indication of whether subsequent NPV 

calculations are likely to meet the specified criterion. 
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4. Conclusion and Future Work 

 

In conclusion, this thesis focused on the application of Bayesian Optimization (BO) for the 

optimization of Expected Net Present Value (ENPV) in a real field-scale problem with 10 

geological model realizations. The main goals outlined in the first section of the thesis were 

addressed and several key findings were obtained. 

Firstly, it was demonstrated that increasing the number of initial values can lead to earlier 

convergence of the BO algorithm. This allows for a reduction in the number of iterations required 

to find the maximum ENPV. Notably, this observation holds true for problems with one-

dimensional inputs, while higher-dimensional problems may necessitate a larger number of 

iterations for convergence. 

Additionally, the thesis highlighted the importance of implementing an eliminating criterion to 

determine whether to calculate NPV for all realizations or not. The criterion, such as the average 

of NPVs calculated from the initial injection rates, proved to be valuable in reducing calculation 

time. However, it was noted that the selection of the decision point for the criterion may vary 

depending on the geological realizations and the level of uncertainty.  

Furthermore, it was observed that the method used for initial value selection had an impact on the 

results and computation time of BO. Specifically, Latin Hypercube Sampling (LHS) offers the 

advantage of generating well-spread points within the control spaces. This characteristic enables 

the initial model, typically a Gaussian Process, to gather more informative insights about the 

explored space. Consequently, LHS enhances the effectiveness of the initial model in capturing 

the characteristics and patterns present in the optimization problem. 

Overall, this thesis successfully applied BO to the ENPV optimization problem in a field-scale 

analysis. The findings emphasized the importance of careful consideration in selecting initial 

values, implementing an eliminating criterion, and understanding the influence of uncertainty on 

decision points. These insights contribute to the broader understanding and application of BO in 

the context of oil and gas decision making. 
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Future work in this area can focus on several aspects to further enhance the application of Bayesian 

Optimization in optimizing Expected Net Present Value (ENPV) for oil and gas decision making, 

here are some potential directions for future research: 

1. To calculate the NPV for each realization using the initial value and then employ fit 

distribution methods to identify the distribution that best represents the NPV variations. 

By analyzing the results, one can determine the distribution that closely matches the 

observed NPV distribution. Utilizing a maximum likelihood approach, candidate 

realizations can be selected based on this analysis, and NPV calculations can be 

performed exclusively for those chosen realizations. These NPV values can then be 

compared against a specified criterion to determine whether further NPV calculations are 

necessary or if BO should select a new injection rate. This proposed approach effectively 

accounts for the inherent uncertainty in the system by considering the full distribution of 

NPV values, thus offering a more comprehensive evaluation than solely relying on the 

results of the first realization. 

2. To Explore the integration of machine learning techniques, such as neural networks or deep 

learning, with Bayesian Optimization. This integration can improve the surrogate model's 

accuracy and enable more efficient exploration of the objective function landscape. 

3. Incorporating Value of Information analysis into the ENPV optimization process can 

provide a systematic framework for decision-makers to assess the value of acquiring 

additional data and guide their resource allocation strategies. Future work can focus on 

developing methodologies, algorithms, and case studies to effectively integrate VOI 

analysis with Bayesian Optimization for enhanced oil and gas decision-making. 
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