
Approved by the Dean 30 Sep 21
Faculty of Science and Technology

FACULTY OF SCIENCE AND TECHNOLOGY

MASTER’S THESIS

Study programme / specialisation:

Applied Data Science

The spring semester, 2023

Open

Authors:
Bruna Atamanczuk
Kurt Arve Skipenes Karadas

Supervisor at UiS: Antorweep Chakravorty

Co-supervisor:

External supervisor(s): Bikash Agrawal (Simplifai.ai)

Thesis title:
Evolving Deep Neural Networks for Continuous Learning: Addressing Challenges
and Adapting to Changing Data Conditions without Catastrophic Forgetting

Credits (ECTS):
30

Keywords:
Deep Learning; Artificial Intelligence;
Continuous Learning; Evolutionary
Algorithms; Evolutionary Strategy

Pages: 80
+ appendix: 26

Stavanger, June 15th, 2023

Bruna Atamanczuk
Kurt Arve Skipenes Karadas

Evolving Deep Neural Networks for Continuous
Learning: Addressing Challenges and Adapting
to Changing Data Conditions without
Catastrophic Forgetting

Master’s thesis in Applied Data Science
Supervisor: Antorweep Chakravorty
Co-supervisor: Bikash Agrawal
June 2023

University of Stavanger
Faculty of Science and Technology
Department of Electrical Engineering and Computer Science

ABSTRACT

Continuous learning plays a crucial role in advancing the field of machine
learning by addressing the challenges posed by evolving data and complex
learning tasks. This thesis presents a novel approach to address the chal-
lenges of continuous learning. Inspired by evolutionary strategies, the ap-
proach introduces perturbations to the weights and biases of a neural net-
work while leveraging backpropagation. The method demonstrates stable
or improved accuracy for the 16 scenarios investigated without catastrophic
forgetting. The experiments were conducted on three benchmark datasets,
MNIST, Fashion-MNIST and CIFAR-10. Furthermore, different deep learn-
ing models were used to evaluate the approach, such as MLP and CNN.
The data was split considering stratified and non-stratified sampling and
with and without missing classes. The approach adapts to new classes with-
out compromising performance and offers scalability in real-world scenarios.
Overall, it shows promise in maintaining accuracy and adapting to changing
data conditions while retaining knowledge from previous tasks.

Keywords: Deep Learning; Artificial Intelligence; Continuous Learning;
Evolutionary Algorithms; Evolutionary Strategy

i

ACKNOWLEDGEMENTS

We are immensely grateful to our supervisors, Antorweep Chakravorty and
Bikash Agrawal, for their exceptional guidance and support during our re-
search. Their expertise and unwavering belief in our abilities have been
invaluable. The biweekly meetings provided a platform for productive dis-
cussions, inspiring ideas, and constructive feedback, fostering a positive and
motivating atmosphere that fueled our progress and pushed us to excel.

Antorweep and Bikash’s insights in the field of data science have en-
riched our understanding and helped us navigate through challenges. Their
availability and responsiveness have been remarkable, always addressing our
queries and concerns with patience and support. We express our deepest
gratitude to Antorweep and Bikash for their unwavering support, guidance,
and motivation throughout our research journey. Your contributions have
been instrumental in shaping the direction and success of our thesis.

ii

CONTENTS

Abstract i

Acknowledgements ii

List of Figures iv

List of Tables vi

Abbreviations viii

1 Introduction 1
1.1 Motivation . 1
1.2 Problem definition . 2
1.3 Data . 2
1.4 Objectives . 3
1.5 Structure of the work . 3

2 Literature Review 5
2.1 Continuous learning . 5
2.2 Continuous learning process 6
2.3 Continuous learning scenarios 7
2.4 Challenges in continuous learning 7

2.4.1 Class imbalance . 7
2.4.2 Catastrophic forgetting 8

2.5 Continuous learning strategies 8
2.5.1 Architectural strategy 8
2.5.2 Regularization strategy 9
2.5.3 Rehearsal and pseudo-rehearsal strategy 10
2.5.4 A note on different strategies 11

iii

iv CONTENTS

3 Related Work 13
3.1 Optimization of neural networks using evolutionary algorithms 13

3.1.1 Evolutionary algorithms 13
3.1.2 Evolutionary strategy 15
3.1.3 Designing evolutionary neural networks 19

4 Methodology 21
4.1 Experimental setup . 21
4.2 Experimental procedure . 23
4.3 Evaluation metrics . 25

4.3.1 Confusion Matrix . 25
4.3.2 Accuracy . 27

5 Results 29
5.1 MNIST - MLP . 30
5.2 MNIST - CNN . 38
5.3 Fashion-MNIST - CNN . 46
5.4 CIFAR-10 - CNN . 54
5.5 Summary . 62

6 Conclusions 65

References 69

Appendices: 73

A - Github repository 74

B - Model Drift 75

C - Class distributions in datasets 79

D - Neural network architectures 81

E - Losses 84

F - Poster Presentation 97

LIST OF FIGURES

2.2.1 Continuous learning process 6

3.1.1 Classical Atari game: Space Invaders. 17
3.1.2 Classical Atari game: Pong 17
3.1.3 MuJoCo simulated environments 18

4.2.1 Evolutionary strategy process 24
4.3.1 Multi-class confusion matrix 26

5.1.1 Accuracy of MNIST - MLP considering all classes (stratified) 31
5.1.2 Confusion matrices for MNIST - MLP, all classes (stratified) . 32
5.1.3 Accuracy of MNIST - MLP considering all classes 33
5.1.4 Confusion matrices for MNIST - MLP, all classes 34
5.1.5 Accuracy of MNIST - MLP, missing class (stratified) 35
5.1.6 Confusion matrices for MNIST - MLP, missing class (stratified) 36
5.1.7 Accuracy of MNIST - MLP, missing class 37
5.1.8 Confusion matrices for MNIST - MLP, missing class 38
5.2.1 Accuracy of MNIST - CNN considering all classes (stratified) 39
5.2.2 Confusion matrices for MNIST - CNN, all classes (stratified) . 40
5.2.3 Accuracy of MNIST - CNN considering all classes 41
5.2.4 Confusion matrices for MNIST - CNN, all classes 42
5.2.5 Accuracy of MNIST - CNN, missing class (stratified) 43
5.2.6 Confusion matrices for MNIST - CNN, missing class (stratified) 44
5.2.7 Accuracy of MNIST - CNN, missing class 45
5.2.8 Confusion matrices for MNIST - CNN, missing class 46
5.3.1 Accuracy of Fashion-MNIST considering all classes (stratified) 47
5.3.2 Confusion matrices for Fashion-MNIST, all classes (stratified) 48
5.3.3 Accuracy of Fashion-MNIST considering all classes 49
5.3.4 Confusion matrices for Fashion-MNIST, all classes 50
5.3.5 Accuracy of Fashion-MNIST, missing class (stratified) 51

v

vi LIST OF FIGURES

5.3.6 Confusion matrices for Fashion-MNIST, missing class (strati-
fied) . 52

5.3.7 Accuracy of Fashion-MNIST, missing class 53
5.3.8 Confusion matrices for Fashion-MNIST, missing class 54
5.4.1 Accuracy of CIFAR-10 considering all classes (stratified) . . . 55
5.4.2 Confusion matrices for CIFAR-10, all classes (stratified) . . . 56
5.4.3 Accuracy of CIFAR-10 considering all classes 57
5.4.4 Confusion matrices for CIFAR-10, all classes 58
5.4.5 Accuracy of CIFAR-10, missing class (stratified) 59
5.4.6 Confusion matrices for CIFAR-10, missing class (stratified) . . 60
5.4.7 Accuracy of CIFAR-10, missing class 61
5.4.8 Confusion matrices for CIFAR-10, missing class 62
5.5.1 Summary of accuracy for the models 63

B.1 Data drift . 76
B.2 Gradual concept drift . 77
B.3 Drastic concept drift . 77
B.4 Effect of concept drift and model retraining on accuracy . . . 78
E.1 Loss for MNIST - MLP considering all classes (stratified) . . 85
E.2 Loss for MNIST - MLP considering all classes 85
E.3 Loss for MNIST - MLP missing class (stratified) 86
E.4 Loss for MNIST - MLP missing class 86
E.5 Loss for MNIST - CNN considering all classes (stratified) . . 88
E.6 Loss for MNIST - CNN considering all classes 88
E.7 Loss for MNIST - CNN missing class (stratified) 89
E.8 Loss for MNIST - CNN missing class 89
E.9 Loss for Fashion-MNIST considering all classes (stratified) . . 91
E.10 Loss for Fashion-MNIST considering all classes 91
E.11 Loss for Fashion-MNIST missing class (stratified) 92
E.12 Loss for Fashion-MNIST missing class 92
E.13 Loss for CIFAR-10 considering all classes (stratified) 94
E.14 Loss for CIFAR-10 considering all classes 94
E.15 Loss for CIFAR-10 missing class (stratified) 95
E.16 Loss for CIFAR-10 missing class 95
E.17 Summary of losses for the models 96

LIST OF TABLES

4.1.1 Splitting strategies for the training data 22
4.1.2 Dimensions of subsets after splitting 23

5.1.1 Accuracy of MNIST dataset (MLP) 30
5.2.1 Accuracy of MNIST dataset (CNN) 38
5.3.1 Accuracy of Fashion-MNIST dataset 46
5.4.1 Accuracy of CIFAR-10 dataset 54

C.1 Class distribution in the MNIST dataset 79
C.2 Class distribution in the Fashion-MNIST dataset 80
C.3 Class distribution in the CIFAR-10 dataset 80
D.1 MLP model architecture for MNIST 81
D.2 CNN model architecture for MNIST and Fashion-MNIST . . 82
D.3 CNN model architecture for CIFAR-10 83
E.1 Loss values for MNIST dataset (MLP) 84
E.2 Loss values for MNIST dataset (CNN) 87
E.3 Loss values for Fashion-MNIST dataset 90
E.4 Loss values for CIFAR-10 dataset 93

vii

ABBREVIATIONS

A list of all abbreviations in alphabetical order is presented below.

AI Artificial Intelligence

ANN Artificial Neural Network

BP Back Propagation

CL Continuous Learning

CNN Convolutional Neural Network

DNN Deep Neural Networks

EA Evolutionary Algorithm

EP Evolutionary Programming

ES Evolutionary Strategies

EWC Elastic Weight Consolidation

FN False Negative

FP False Positive

GA Genetic Algorithm

LwF Learning without Forgetting

ML Machine Learning

MLP Multilayer Perceptron

MuJoCo Multi-Joint dynamics with Contact

PNN Progressive Neural Networks

RL Reinforcement Learning

TN True Negative

TP True Positive

viii

CHAPTER

ONE

INTRODUCTION

Continuous learning is the practice of refining and improving machine learn-
ing models throughout their entire life cycle. In a traditional Machine Learn-
ing (ML) life cycle, a model is built with training data, deployed into pro-
duction, and periodically improved over time. However, continuous learning
takes this process a step further by acknowledging that models can continue
to learn and improve even after deployment. This is achieved through on-
going refinement, retraining, and adaptation of the model to new data and
changing environments. Continuous learning ensures that machine learning
models remain relevant, effective, and up-to-date, providing businesses with
a competitive edge in today’s fast-paced technological landscape.

1.1 Motivation

Continuous Learning (CL) is an important topic in machine learning be-
cause it addresses the challenge of continuously adapting a model to new
data without forgetting previously learned knowledge [1]. This is a crucial
requirement for many real-world applications, such as image classification,
semantic segmentation and object detection [2].

Traditionally, the approach used to update a model once more data is
available was to retrain it from scratch. This can result in models becoming
computationally expensive and time-consuming [2]. CL offers a more efficient
solution by allowing a model to learn new classes incrementally, without
the need to discard previous knowledge. Furthermore, CL also addresses
problems such as class imbalance and catastrophic forgetting. The former is
related to the difficulty of learning minority classes due to a lack of labelled
data [3], and the latter is related to the tendency of Deep Neural Networks
(DNN) to forget previously learnt tasks once new information is incorporated

1

2 CHAPTER 1. INTRODUCTION

[4]. CL allows the model to learn new classes over time, and to retain the
previous knowledge, which can help improve the overall performance of the
model.

Another motivation for working with CL is the increasing availability of
large datasets, and deep learning techniques, making it possible to develop
powerful models for a variety of tasks.

In summary, class continuous learning is a valuable area of research not
only because it addresses the real-world challenges of adapting models to
new data, but also aims at improving performance, and reducing the com-
putational costs associated with retraining models from scratch. In addition,
it is important to continue developing and enhancing these methods to make
them more efficient, practical, and useful for a wider range of applications.

1.2 Problem definition

The continuous influx of data into a given environment poses a significant
challenge to ML models that must remain up-to-date and effective. Specifi-
cally, as new and existing classes frequently emerge within the data stream,
the ML models can become outdated and require retraining to adapt to
changing conditions. While stakeholders may choose to retrain these models
from scratch, such an approach may prove both inefficient and infeasible as
data volume increases over time.

To address this challenge, there is a need to explore alternative technolo-
gies that enable continuous learning and can facilitate efficient and scalable
updates to ML models in the face of changing data conditions. By leveraging
such approaches, it may be possible to avoid complete retraining and enable
more effective management of the continuous flow of data in the environment.

1.3 Data

All data utilized in this work is sourced from TensorFlow’s Python library,
which is openly available.

CHAPTER 1. INTRODUCTION 3

1.4 Objectives

The objectives of this work are:

1. Discuss the challenges of continuous learning, such as catastrophic for-
getting and class imbalance.

2. Provide an overview of common approaches used for class continuous
learning.

3. Experiment with a new approach inspired by the evolutionary strategy
to solve the described problem.

4. Test a new approach on different datasets and evaluate results.

1.5 Structure of the work

This thesis is organized into six chapters.

1. Introduction: The introduction presents the topic and its importance
in real-world applications.

2. Literature review: In this chapter, the existing research on continuous
learning is summarized, and the challenges related to this approach are
presented.

3. Related work: This chapter presents an overview of optimization tech-
niques applied to neural networks known as evolutionary strategies
which will be further used to develop a new approach to continuous
learning tasks.

4. Methodology: A novel approach for solving continuous learning prob-
lems is presented as well as the experimental setup and the metrics used
to evaluate the performance of the algorithm used are described.

5. Results: The results and performance achieved by utilizing the new con-
tinuous learning approach across various datasets are presented. The
outcomes obtained from each dataset are carefully examined and eval-
uated to assess the effectiveness of the proposed evolutionary method.

6. Conclusion: The main findings of the thesis and its contributions to
the field of class continuous learning are summarized. Additionally,
suggestions for future research are given.

4 CHAPTER 1. INTRODUCTION

CHAPTER

TWO

LITERATURE REVIEW

Continuous learning plays a crucial role in advancing the field of machine
learning by addressing the challenges posed by evolving data and complex
learning tasks. Traditional approaches often suffer from limitations when
faced with large-scale datasets or scenarios where data distribution changes
over time. In contrast, continuous learning enables Machine Learning (ML)
models to learn constantly from new data instances, adapt to changing envi-
ronments, and expand their knowledge progressively. This chapter presents
an overview of concepts used to build continuous learning models.

2.1 Continuous learning

Over the last decades, data has become widely available. This increasing
availability of data has promoted the development of powerful ML models.
Traditionally these models are trained with static, identically distributed and
well-labelled data [1]. However, for most real-world applications new data
is constantly changing, resulting in the models becoming obsolete over time.
In order to respond to the changes in data, the models must be retrained.
Defining how and when to do this is far from trivial.

Continuous learning (CL) is the sub-field of ML that tackles such ques-
tions. This field is usually referred to as continuous learning, lifelong learn-
ing, or incremental learning. For the purpose of this report, we will be using
the term continuous learning. We acknowledge that these terms are synony-
mous within the context of this thesis. CL refers to building models to learn
continually from a stream of data. In this setting, data is frequently changing
which might cause its distribution to diverge from the original training data,
resulting in a reduction of the model’s accuracy over time. To avoid this,
the model must be retrained to learn new knowledge whilst remembering

5

6 CHAPTER 2. LITERATURE REVIEW

the previous one. The continuous training line of research is concerned with
automating the training process once new data becomes available [5]. In
order to develop a successful continuous training pipeline, [5, 6] recommend
answering the following questions:

• When should a model be retrained?
Here one should decide on the retraining schedule based on the triggers
defined to spot performance changes, data changes or even define a
periodic retraining schedule.

• How much data is needed to retrain the model?
The data is chosen based on a fixed window, dynamic window or selected
based on re-sampling strategies.

• What should be retrained?
Batch (offline) vs. incremental (online) learning.

• When to deploy the model after retraining?
A/B testing.

2.2 Continuous learning process

Continuous learning aims to design models that continuously learn new
knowledge without forgetting the previous one. The main idea behind CL is
to train ML models sequentially, where new data is added over time allowing
the model to learn new tasks. This idea is illustrated below:

Figure 2.2.1: Continuous learning process

CHAPTER 2. LITERATURE REVIEW 7

In Figure 2.2.1 the data is divided into tasks represented by {T1, T2, . . . , TN},
and Ti can be denoted as Ti = {(xi1, yi1), . . . , (xii, yii)}. At each time interval,
a new model Mi is trained using the new data Ti and the previous model
Mi−1 [1]. As more data is added, it is expected that the model will be able
to incrementally learn and consolidate knowledge without losing accuracy.

2.3 Continuous learning scenarios

In addition to the conceptual model, it is important to distinguish between
different scenarios that can occur when developing continuous learning mod-
els. These scenarios serve as means to contextualize the topic and provide
insight into the challenges encountered in continuous learning. For classifi-
cation tasks, the following can happen once new data is added to the models
[1, 7]:

• Instance incremental scenario: in this scenario, the number of
classes is fixed and new instances become available in each learning
stage. This leads to changes in the relationship between features and
outcomes, resulting in the appearance of a new predictive pattern [8].

• Class incremental scenario: in this case, new classes become avail-
able causing the statistical properties of the features to change [8]. This
leads to the introduction of new training patterns as data is added.

• Instance and class incremental scenario: this is the scenario that
better reflects the real world. In instance and class incremental scenar-
ios, new instances and classes become available resulting in the addition
of new training patterns for both known and unknown classes.

2.4 Challenges in continuous learning

2.4.1 Class imbalance

Class imbalance is one of the challenges investigated in the field of ML [9].
It occurs when the instances of one class outnumber the instances of the
remaining classes. This causes the majority class to introduce bias to the
learning algorithm affecting its performance. According to [10], class imbal-
ance is one of the most crucial causes of catastrophic forgetting.

8 CHAPTER 2. LITERATURE REVIEW

2.4.2 Catastrophic forgetting

A continuous learning system aims to imitate human learning, where knowl-
edge is acquired gradually throughout one’s life and utilized as necessary.
Although the Artificial Intelligence (AI) community has investigated this
concept, applying it to neural networks leads to the issue of catastrophic for-
getting. This phenomenon refers to the model’s inability to retain previously
learned information as it adjusts to new data, which arises when neural net-
works struggle to retain old knowledge while simultaneously acquiring new
information. This problem was described by [11, 12], in the late 1980s.

The occurrence of this problem is actually a special case of the stability-
plasticity dilemma described in [13]. In order for an organism to adapt to
new changes, its adaptive mechanisms have to be stable and plastic at the
same time. A too-stable system cannot learn new information, while a too-
plastic system forgets everything old and learns everything new. As a result
of this, if the model is too plastic, catastrophic forgetting occurs. Despite the
cause of catastrophic forgetting not being studied analytically, it is known
that training neural networks on new samples alters the already established
representations of internal features leading to this issue [14]. For this reason,
various studies focus on reducing catastrophic forgetting in order to enable
continuous learning [15].

2.5 Continuous learning strategies

The main challenge of continuous learning is to avoid the problem of catas-
trophic forgetting. There are different methods or strategies used to solve the
problem of catastrophic forgetting in classification tasks. These are explored
below, along with their advantages and drawbacks. It is worth emphasizing
that some of the methods presented do not fall into a particular strategy.

2.5.1 Architectural strategy

The architectural strategy operates under the assumption that distinct learn-
ing tasks require different sets of parameters. The general idea behind this
approach is that the architecture of the model is modified to allow for new
tasks to be learned without forgetting the information learned from previous
tasks. One approach is to train various models for each incremental task
and then use a selector to determine which model to use [1]. Amongst the
most known methods used in this scenario are Learn++[16] and Progressive
Neural Networks (PNN) [17].

CHAPTER 2. LITERATURE REVIEW 9

The Learn++ algorithm is a type of ensemble ML algorithm that aims to
enhance prediction accuracy by combining the results of several classifiers.
Its primary focus is on learning from sequential data streams. The Learn++
algorithm works by training various classifiers on distinct subsets of the input
data. Subsequently, each classifier generates a prediction, which is then
integrated with the predictions of the other classifiers using a weighted voting
scheme. These weights are continually adjusted based on the classifier’s
performance on the present input data and the preceding data streams. The
advantages of Learn++ include the ability to learn new classes, a small
number of parameters and a short training time. The main pitfall is that it
can suffer from data imbalance when learning new classes.

The PNN deals with catastrophic forgetting by gradually adding new
tasks to the network without disrupting the acquired knowledge from previ-
ous tasks. This is done by fixing the parameters of the previous network once
a new task is added. In practice, a new network is trained on the data of the
new task and on the output from the previous network(s). This approach
seems very effective against catastrophic forgetting. However, as the amount
of tasks increases, so does the number of parameters, which may require a
large amount of memory to train the model, particularly when dealing with
complex tasks or large datasets.

2.5.2 Regularization strategy

The regularization strategies focus on finding the best set of parameter
weights for the tasks without modifying the architecture of the models [15].
The main idea behind regularization involves increasing the error during the
training phase of ML models in order to decrease the generalization error.
This is usually achieved by adding a penalty to the weights of a network,
which encourages them to remain small as to avoid the risk of overfitting.

In this setting, a special regularization term is added to the loss function,
thus preventing catastrophic forgetting. The most representative methods
in this category are Elastic Weight Consolidation (EWC) [4] and Learning
without Forgetting (LwF) [18].

EWC uses a regularization technique to prevent the network from forget-
ting important information from previous tasks while still allowing it to learn
new tasks. The algorithm works by assigning a penalty term to the weights
of the network that have a large impact on the performance of the previous
tasks. This penalty acts as a regularization term during training, effectively
limiting the amount by which these weights can change during subsequent

10 CHAPTER 2. LITERATURE REVIEW

training on new tasks. This regularization technique avoids catastrophic for-
getting without the need to store old data or expand the network, resulting
in reduced storage requirements compared to other methods [1].

LwF uses a different approach, known as distillation, to prevent the net-
work from forgetting important information from previous tasks while still
allowing it to learn new tasks. The distillation involves training one net-
work on a large dataset and then using the output to generate soft targets,
which are probability distributions over the classes of the dataset. These
soft targets are then used to train a new network, which learns to match
the soft targets of the previous network. This concept is applied in LwF,
where the algorithm works by training a new network on a new task while
simultaneously distilling the knowledge from the previously learned network.
This process helps to prevent catastrophic forgetting by ensuring that the
new network does not overwrite the knowledge from the previous network
[1].

In general, the approaches that use regularization strategies are limited as
a continuous learning method as they cannot increase the model’s capacity.
As a result, after adding a certain number of tasks, a saturation point is
reached causing the average generalization performance to suffer.

2.5.3 Rehearsal and pseudo-rehearsal strategy

Another strategy that exists to eliminate or at least minimise the catas-
trophic forgetting problem is the rehearsal method. There exist several
forms of rehearsal mechanisms, namely recency, random and sweep rehearsal.
Based on a paper by Robins ([19]), sweep rehearsal is the most successful ap-
proach. This method allows the model to review the old knowledge whenever
it learns new knowledge by retaining a subset of the previous data.

However, rehearsal in general may have a limitation in that previously
learned information may not be available for retraining. A solution to this
problem is the pseudo-rehearsal method. In this technique, rehearsal is pro-
vided without having to access the original training data. As a solution to
the plasticity-stability dilemma, a generator is constructed to learn how in-
put data is distributed. The generator will create batches of pseudo data
that are very similar to the old data in distribution when the model learns
new knowledge [19].

The rehearsal method involves retaining a subset of previous data, which
the model reviews whenever it learns new knowledge. On the other hand, the
pseudo-rehearsal method constructs a generator that learns the distribution

CHAPTER 2. LITERATURE REVIEW 11

of the input data [1]. This generator produces a batch of pseudo data that is
similar to the old data in distribution when the model learns new knowledge,
thereby allowing the model to address the plasticity-stability dilemma. In
the retraining stage, the model is supervised by both new data and pseudo
data to update its knowledge.

2.5.4 A note on different strategies

It is important to emphasize that the aforementioned approaches have both
advantages and disadvantages with regard to memory usage, execution time,
and knowledge retention. For example, techniques that allow the model ar-
chitecture to grow in order to retain knowledge can become increasingly
expensive due to memory usage. On the other hand, fixed architecture tech-
niques can be faster to run, although they can only accommodate a fixed
number of tasks due to the limited amount of parameters used. Furthermore,
rehearsal and pseudo-rehearsal strategies generally assume that the data dis-
tribution remains stationary over time. However, in real-world scenarios, the
underlying data distribution might change or drift over time. These strate-
gies may struggle to adapt to new data distributions, potentially leading to
a decrease in the overall performance of the algorithms.

12 CHAPTER 2. LITERATURE REVIEW

CHAPTER

THREE

RELATED WORK

3.1 Optimization of neural networks using evolution-
ary algorithms

This work focuses on Evolutionary Strategies (ES) and their usage to
improve the quality of solutions through adaptive modifications of Artificial
Neural Network (ANN) weights within a continuous learning setup. ES
is an approach within the field of evolutionary algorithms that introduces
random perturbations to the current solutions, in order to explore the search
space and potentially discover better solutions. To provide a comprehensive
understanding of the process undertaken in this thesis, this chapter presents
an overview of key concepts associated with ES.

3.1.1 Evolutionary algorithms

Evolutionary algorithms (EAs) have been developed as a family of optimiza-
tion algorithms that take inspiration from the biological evolution process.
The core idea of EAs is to create a population of individuals exposed to envi-
ronmental pressures, leading to evolution [20]. This is commonly referred to
as survival of the fittest [21]. Through this mechanism, surviving individuals
adapt to the environment by acquiring favourable traits, that are measured
in terms of fitness. The fitness of an individual measures the extent of its
adaptation to the environment [21].

Over successive generations, the recombination of genes and mutation
promote the diversification of the population. This results in a population
with different characteristics that are better suited to survive in a partic-
ular environment. The evolution process occurs constantly in nature and
increases the diversity in the population of every living species [21].

13

14 CHAPTER 3. RELATED WORK

The basic procedure followed to implement EAs is to create a population
of candidate solutions to a problem and use the main principles of evolution-
ary methods, such as mutation, reproduction and natural selection to evolve
this population over a number of generations [20, 21, 22]. The evolution
of the population is obtained by successively applying these operators. In
general, the primary focus of EAs lies in adapting these concepts to suit the
specific characteristics of the problem addressed.

Mathematically, the problem is modelled as the population and then a
cost function is applied to act as the environment. The main goal is to
find the solutions with the highest fitness, which is determined by the cost
function. The basic execution steps of a generic evolutionary algorithm are
explained below [21]:

• Initialization: In this step, the initial population is created, which can
be of any size varying from a couple of individuals to thousands.

• Evaluation: Following the initialization of the population, each indi-
vidual is evaluated according to the cost function. The evaluation aims
to determine how much an individual fulfils the problem requirements.
In other words, how well an individual can solve the target problem.

• Selection: This is the process of choosing which individuals in a popu-
lation will be used to create the next generation. The selection is based
on increasing overall fitness, which is achieved by selecting the individ-
uals that are best suited to solve the target problem and discarding the
ones that are not well adapted.

• Reproduction: During the reproduction or crossover phase, the ge-
netic material of two individuals is combined to create the offspring.
The main intention of reproduction is to combine the traits of fit indi-
viduals, thus increasing the fitness of the offspring.

• Mutation: Mutation is one of the most important drivers of change in
the genetic pool. The mutation causes small changes in the individual’s
traits, which might increase (or reduce) its fitness. If the mutation bene-
fits the individual it will be kept by the selection mechanism, otherwise,
it will be removed within the next generations. In general, without mu-
tation, the population would not present any improvement over time,
as all the combinations that would ever be possible would be already
available in the first iterations.

CHAPTER 3. RELATED WORK 15

Together, these operators allow EA to explore the search space and con-
verge on optimal solutions. The specific implementation of these operators
can vary depending on the problem being solved and the particular algorithm
used.

In general, EAs encompass various approaches such as Evolutionary Strat-
egy (ES), Evolutionary Programming (EP), and Genetic Algorithm (GA).
These algorithms share a common objective of leveraging biological evo-
lution mechanisms to enhance computational problem-solving capabilities
[22]. Nonetheless, they differ in terms of their specific methodologies. ES
primarily focuses on individual-level behavioural modifications, EP centers
on population-level behavioural adjustments, and GA places emphasis on
chromosome operations. Furthermore, the field of evolutionary algorithms
also encompasses other methodologies, including Genetic Programming and
Memetic Algorithm, among others [22].

3.1.2 Evolutionary strategy

Evolutionary strategy is a member of the evolutionary algorithm family. The
general idea behind this algorithm is to discover better solutions to a problem
by introducing random perturbations to the current solution. The process of
adding random perturbation to solutions is referred to as mutation, and it is
one of the strongest characteristics of ES [23]. The mutation generates the
offspring solutions which are evaluated based on their fitness, as described
previously. The fittest individuals are selected to form the basis for the next
generation, while less fit individuals are either discarded or have a lower
chance of contributing to the next generation.

The first algorithms for ES were presented in the early 1960s by the
researchers Rechenberg and Schwefel [23, 24], using a Gaussian distribution
with zero mean and σ standard deviation, N (0, σ2) to create the mutation
of the offspring solutions. Furthermore, Eiben and Smith [23], describe the
following steps to implement the ES:

16 CHAPTER 3. RELATED WORK

Algorithm 1 Generic ES algorithm
set t=0;
Create initial point ⟨xt

1, . . . , x
t
n⟩ ∈ Rn;

while TERMINATION CONDITION not satisfied do
Draw zi from the Gaussian distribution for all i ∈ {1, . . . , n} independently;
yti = xt

i + zti for all i ∈ {1, . . . , n};
if (f(xt

i) ≤ f(yti)) then
xt+1 = xt;

else
xt+1 = yt;

end if
Set t = t+ 1

end while

In Algorithm 1, xti represents the initial solutions (or initial population),
zti is the random noise responsible to cause the mutation of the offspring,
yti denotes the offspring and t represents the generation of the population.
In addition, f(xti) and f(yti) are the cost functions used to evaluate each
generation of offspring.

In the recent versions of this approach, however, ES is portrayed as a
black-box stochastic optimization technique [25], with less emphasis on its
connection to biological evolution [26]. Intuitively, the optimization process
can be described as an operation of “guess and check ”, where the general
idea is that random parameters are initially chosen and then subsequently
adjusted through two steps: 1) random tweaks are made to the guess, and
2) slight adjustments are then made towards more successful tweaks [26].

The optimization process, in this case, can be seen as a form of Reinforce-
ment Learning (RL) and it is described by the following steps [26]:

1. A parameter vector w is selected

2. Then, a group of modified parameter vectors (w1, w2, . . . , wn) is created
by adding random noise to w

3. Each modified parameter vector (w1, w2, . . . , wn) is evaluated and a re-
ward system is created to assign weights to the best-performing vectors.

4. The updated parameter vector is obtained by taking a weighted aver-
age of the n vectors, with higher weights assigned to more successful
candidates.

CHAPTER 3. RELATED WORK 17

The steps described above have, in fact, been successfully applied to two
RL benchmark tasks: the Atari game-playing and the Multi-Joint dynamics
with Contact (MuJoCo1) control tasks. On a higher level, the first task
consists of designing a model to successfully achieve superhuman results in
classic Atari games, such as Space Invaders or Pong, which are shown in
Figure 3.1.1 and Figure 3.1.2.

Source: https://en.wikipedia.org/wiki/Space_Invaders

Figure 3.1.1: Classical Atari game: Space Invaders.

Source: https://www.gameblast.com.br/2014/05/pong-atari-blast-from-the-past.html

Figure 3.1.2: Classical Atari game: Pong

1https://mujoco.org/

18 CHAPTER 3. RELATED WORK

The second task refers to a physics engine that is widely used for develop-
ing continuous control agents. The MuJoCo, offers a comprehensive platform
for training simulation agents or robots. Within this environment, various
simulations are available to test the capabilities of robotic control agents in
tasks like walking, crawling, and other physics-based control challenges. The
different MuJoCo environments are presented in Figure 3.1.3.

Figure 3.1.3: MuJoCo simulated environments: Hopper-v2, Walker2D-v2, Half-
Cheetah-v2, and Ant-v2 [27]

For both cases, the main idea is the same: to train a function to describe
the behaviour of an agent that interacts with some given environment [26].
This function is usually a neural network, that rewards the agent if it takes
any of the allowed actions, for example, wins a game.

CHAPTER 3. RELATED WORK 19

3.1.3 Designing evolutionary neural networks

The training process of a neural network involves finding optimal values for
its parameters, which can be seen as an optimization problem. The conven-
tional approach relies on the use of the Back Propagation (BP) algorithm,
which employs gradient descent to find the closest optimal solution starting
from a random point. However, due to the use of gradient, the BP algorithm
presents some drawbacks such as the potential for getting stagnated in local
minima and slow convergence [28]. In general, evolutionary algorithms have
been employed to find optimal values for neural networks as an alternative
to the BP algorithm. Evolutionary strategies have shown promising results
in various reinforcement learning tasks [29], but their application in contin-
uous learning optimization remains unexplored, to the best of the authors’
knowledge.

20 CHAPTER 3. RELATED WORK

CHAPTER

FOUR

METHODOLOGY

This chapter presents a comprehensive description of the proposed approach,
as well as a methodology for evaluating its performance. It begins by outlin-
ing the experimental setup, which includes the specific software, and datasets
used for the experiments. Thereafter, the evaluation metrics used to measure
the performance of the approach are presented. Finally, the experimental
procedure used to develop the method is described.

4.1 Experimental setup

In the experiments included in this thesis, Python 3.10 was used for conduct-
ing the experiments. Libraries employed were standard data science libraries
such as Keras1, Matplotlib2, NumPy3, scikit-learn4 and TensorFlow5. The
code was run in a NVIDIA Tesla T4 GPU from Google Colab. Three differ-
ent datasets were used for training and evaluating the evolutionary strategy:

• MNIST [30] dataset consists of handwritten digits having 10 classes,
from 0 to 9. It contains 60,000 training images and 10,000 test images.
Each image is a grayscale image in 28 x 28 pixels.

• Fashion-MNIST [31] dataset is originating from Zalando. It consists
of 60,000 images in the training set and 10,000 images in the test set.
Each image is a grayscale image in 28 x 28 pixels. There are 10 different
classes.

1https://keras.io/
2https://matplotlib.org/
3https://numpy.org/
4https://scikit-learn.org/
5https://www.tensorflow.org/

21

22 CHAPTER 4. METHODOLOGY

• CIFAR-10 [32] dataset consists of images of various transportation
means and animals. It comprises 60,000 color images with shape 32 x
32 pixels in 10 classes. There are 50,000 images for training and 10,000
images for the test set.

The datasets required little preprocessing as they have no issues related
to missing values, outliers etc. All input images were normalized by dividing
them by 255. During the training of the neural networks, no data augmen-
tation was used. In addition, the categorical labels were converted to binary
vectors by applying one-hot encoding.

Given that each dataset consists of both training and test data, the pre-
processing steps employed were standardized across them. In order to sim-
ulate practical applications where data becomes available at different time
intervals, the training data was further divided by using an 80-20 split. The
splits were done with and without stratification. Furthermore, in the context
of the larger subset of training data, one class was intentionally excluded and
allocated to the smaller subset. The scenario where no class was omitted was
also taken into account, as shown in Table 4.1.1.

Table 4.1.1: Splitting strategies for the training data

Model Missing class Stratified

All classes (stratified) False True
All classes False False

Missing class (stratified) True True
Missing class True False

Table 4.1.2 summarizes the new dimensions of the training data after
splitting. The noticeable reader might see that the dimensions are different
for the two last datasets depending on whether the data is stratified or not.
Both the training data for Fashion-MNIST and CIFAR-10 dataset contains
exactly 6000 and 5000 images of each class, respectively. For the MNIST
digit dataset, this varies. For more details regarding the class distributions,
please refer to Appendix C.

CHAPTER 4. METHODOLOGY 23

Table 4.1.2: Dimensions of subsets after splitting

Dataset Model Large subset Small subset

MNIST All classes, incl. stratified 48,000 12,000
Missing Class, incl. stratified 43,266 16,734

Fashion-MNIST
All classes, incl. stratified 48,000 12,000
Missing Class, stratified 43,200 16,800
Missing Class 43,145 16,855

CIFAR-10
All classes, incl. stratified 40,000 10,000
Missing Class, stratified 36,000 14,000
Missing Class 35,996 14,004

4.2 Experimental procedure

The primary concept underlying this approach involves the introduction of
perturbations to the weights and biases within a neural network. Initially, a
model was trained using the larger subset of the training data. Subsequently,
the model was duplicated, and random noise was introduced to the weights
and biases to simulate the mutation process. Each newly created model was
then trained using the smaller subset (i.e. fresh data in a practical setup),
and its accuracy was evaluated. This iterative process was repeated for a
specified number of iterations, and the accuracy of each mutated model was
employed to calculate a weighted average for the weights and biases. This
information was utilized to generate a new model that was subsequently
applied to predict the classes of unseen data. The experimental procedure
is illustrated in Figure 4.2.1.

For each of the neural network architectures described in Appendix D, a
model was initialized with random weights and biases. Thereafter, a clone
of this model, hereby defined as M0, was created by applying TensorFlow’s
clone_model function. The model M0 was then trained using the larger
subset of training data. Then, the trained model was used to create mutated
copies, {M01, . . . ,M0N} where N is the number of desired mutations. This
was achieved by introducing random noise, drawn from the Uniform[0, 1]
distribution, to the model’s weights and biases. Afterwards, these mutations
were trained using the smaller subset of training data. Here, a validation split
of 10% was used. The validation accuracy was monitored during the training
process and further used to calculate the weighted average of the weights and
biases for the mutated models. Also, an EarlyStopping callback was defined
with patience of 3.

24 CHAPTER 4. METHODOLOGY

Figure 4.2.1: Evolutionary strategy process

The Equation 4.1 was applied to obtain the weighted averages of the
weights and biases.

w̄ =

∑N
i=1wi · acci∑N

i=1 acci
(4.1)

Where w̄ represents the average weights and biases matrices. Addition-
ally, wi and acci denote the weights and biases, as well as the accuracy of
the mutated models {M01, . . . ,M0N}.

Finally, a new model was created from the weighted averages and evalu-
ated on the test data. The final model is later denoted as ES model (MES)
or offspring model. To assess the performance and effectiveness of the con-
tinuous training approach using evolutionary strategy, clones of M0 were
mutated 3, 5, 10, 15 and 50 times, respectively.

The experimental procedure is outlined in Algorithm 2.

CHAPTER 4. METHODOLOGY 25

Algorithm 2 Proposed approach
for each mutation M0N do

Clone model M0

Draw zi from the Uniform[0, 1] distribution
Wi = Wi ∗ zi ▷ Mutating weights
bi = bi ∗ zi ▷ Mutating biases
Train model using the smaller subset of training data and validation split of 10%
Evaluate the model
Save accuracy

end for
Calculate the weighted average of weights and biases using Equation 4.1
Compile and evaluate the offspring model, MES, utilizing test dataset

Prior to conducting the experiments detailed above, baseline models with
identical architectures to the ES models were trained on the entire training
data for the purpose of comparison. A replica of the model initialized with
random weights and biases, referred to as Mbaseline, was trained using the
complete training set.

4.3 Evaluation metrics

In order to assess the performance and effectiveness of the models discussed
in this report, the metrics described in this section were employed. It is
important for the reader to understand that the objective of this thesis is not
solely focused on achieving the highest performance for the datasets under
consideration. Instead, the primary aim is to investigate the application of
evolutionary strategy in the context of continuous learning.

4.3.1 Confusion Matrix

The confusion matrix is a convenient tool used to evaluate the performance
of a classifier. Essentially, it provides a clear and concise overview of how well
a classifier’s predictions match the actual outcomes. Typically, the predicted
classes are organized horizontally, while the actual labels are arranged verti-
cally, although this order can be reversed [33]. The elements on the diagonal
of the matrix offer insight into the classifier’s performance by showcasing
accurate predictions, while the off-diagonal elements indicate the instances
where the classifier made incorrect predictions.

26 CHAPTER 4. METHODOLOGY

Figure 4.3.1 visually represents the fundamental concept of the confusion
matrix. By examining individual classes, valuable insights can be gained
regarding potential outcomes and the model’s performance evaluation. Each
class presents four possible outcomes: True Positive (TP), False Positive
(FP), False Negative (FN), and True Negative (TN) [34].

Figure 4.3.1: Multi-class confusion matrix [34]

In Figure 4.3.1, TP signifies that the model accurately predicted the corre-
sponding class. In this case, class 1 was correctly predicted as 1. Conversely,
FP indicates that the model assigned an incorrect label, such as class 0 being
misclassified as 1. FN indicates that the model misclassified a different class
as 1. Lastly, TN indicates that the model correctly identified the sample as
not belonging to class 1 when the true label of the sample was indeed not 1.

The confusion matrix is often denoted by A(i, j), which can be used to
calculate several evaluation metrics. However, in this report, accuracy has
been chosen as the metric of choice due to its simplicity. The authors suggest
that readers take into account additional evaluation metrics based on their
specific use case. While the confusion matrix provides valuable insights into
a classifier’s performance, it may not capture all aspects of interest.

CHAPTER 4. METHODOLOGY 27

4.3.2 Accuracy

Accuracy serves as a metric to assess a classifier’s ability to accurately classify
samples. It is determined by calculating the ratio of correctly classified
samples to the total number of samples [33]. Mathematically, accuracy can
be calculated as:

Accuracy =

∑M
i=1A(i, i)∑M

i=1

∑M
j=1A(i, j)

where A(i, i) represent the diagonal elements and the A(i, j) refer to the
off-diagonal elements of the matrix.

28 CHAPTER 4. METHODOLOGY

CHAPTER

FIVE

RESULTS

This chapter offers an overview of the results obtained from the previously
described experiments. The results are presented in a list and visually repre-
sented to enable an overall performance comparison. The confusion matrix
for each model is provided for both the baseline and best-performing ES
models. The former is shown on the left-hand side, while the latter is dis-
played on the right. For simplicity, the losses can be found in Appendix
E. Furthermore, class number 6 was excluded from the larger subsets of
the training data, and added back to the smaller portion of training data,
when applicable. This process aims to imitate a real-world situation in a
production setting where new classes are introduced. This allows the model
to be trained on additional data in an incremental manner. In addition, in
cases where it is relevant, the data was divided using either stratified or non-
stratified sampling methods. The former ensures that the model receives an
adequate number of examples from each category, resulting in improved gen-
eralization and performance. On the other hand, the latter approach may
result in an imbalanced distribution of classes, with some categories having
considerably fewer samples compared to others. The authors have observed
that this mirrors real-world applications more accurately. Lastly, the models
were evaluated using the test data.

29

30 CHAPTER 5. RESULTS

5.1 MNIST - MLP

The MNIST dataset was used to train a Multilayer Perceptron (MLP) model
as summarized in Table D.1 in the Appendix. The same model architecture
was employed to develop the Mbaseline, M0 and five MES models. The accu-
racy obtained is presented in Table 5.1.1.

Table 5.1.1: Accuracy of MNIST dataset (MLP)

Model Mbaseline M0

ES models
MES3 MES5 MES10 MES15 MES50

All classes
(stratified) 0.9817 0.9792 0.9754 0.9754 0.9760 0.9761 0.9756

All classes 0.9797 0.9803 0.9744 0.9741 0.9749 0.9753 0.9751

Missing class
(stratified) 0.9809 0.8846 0.9754 0.9764 0.9767 0.9763 0.9766

Missing class 0.9810 0.8872 0.9742 0.9743 0.9742 0.9744 0.9748

It is possible to notice that the resulting accuracy values obtained for all
the cases evaluated demonstrate consistent stability regardless of the number
of mutations applied. No signs of catastrophic forgetting were evident. The
results for each case are explained in detail below.

All classes, stratified split

Figure 5.1.1 provides a detailed presentation of the performance of the MLP
on the MNIST dataset for all classes, using stratified split. It showcases the
results for the initial model M0, the subsequent MESN

models, and the accu-
racy of the baseline model (represented by a dashed line). When examining
the performance across all classes with training data split in a stratified man-
ner, it becomes apparent that the ES models achieve nearly identical results
(accuracy ranging from 0.9754 to 0.9761), regardless of the number of muta-
tions used to generate the offspring models. It is also worth noting that both
the baseline model and the M0 model exhibit slightly better performance,
0.9817 and 0.9792 respectively.

CHAPTER 5. RESULTS 31

Figure 5.1.1: Accuracy of MNIST - MLP considering all classes (stratified)

Additionally, Figure 5.1.2 illustrates the confusion matrices obtained from
the first experiment. It showcases the performance of the baseline model and
the best-performing ES model, in this case, MES15

. In most classes, the base-
line outperforms the offspring model. However, it is possible to notice that
the ES model performs slightly better in classes 3 and 7. Misclassifications
in the offspring model were most noticeable where class 5 was predicted as
class 3.

32 CHAPTER 5. RESULTS

Figure 5.1.2: Confusion matrices for MNIST - MLP, all classes (stratified)

All classes, non-stratified split

Figure 5.1.3 illustrates the evaluation of all classes in the MNIST dataset uti-
lizing a random split of the training data, without stratification. Regardless
of the number of mutations used, the ES models consistently demonstrate
almost identical performance, with the lowest accuracy being 0.9741 and the
highest being 0.9753. Similar to the previous case, both the baseline model
and the model M0 exhibit relatively better performance. However, in this
instance, the model M0 achieves slightly higher accuracy compared to the
baseline model, 0.9803 and 0.9797 respectively.

CHAPTER 5. RESULTS 33

Figure 5.1.3: Accuracy of MNIST - MLP considering all classes

The confusion matrices depicted in Figure 5.1.4 provide insights into the
accuracy of both the baseline model and the best-performing ES model, en-
compassing all classes without stratification. Notably, there are significant
performance differences in classes 2, 4, and 8. In general, the baseline model
outperforms the ES model, with the exception of class 8. It is observed
that the offspring model demonstrates fewer misclassifications of class 9 as
4 compared to the baseline model but exhibits misclassifications as class
8. Furthermore, it is worth noting that class 3 is misclassified as 7 by the
offspring model, whereas the baseline model did not exhibit any misclassifi-
cations in this particular case.

34 CHAPTER 5. RESULTS

Figure 5.1.4: Confusion matrices for MNIST - MLP, all classes

Missing class, stratified split

Figure 5.1.5 showcases the performance when considering a missing class
and a stratified split of data. A notable difference can be observed in the
performance of the M0 model compared to the ES models, 0.8846 for the
M0 model and 0.9767 for the best-performing ES model. This difference was
expected since a single class was excluded from the training data for the M0

model. As a result, the missing class was misclassified, leading to a decrease
in overall accuracy. However, it is worth noting that the ES models perform
remarkably well, nearly matching the performance of the baseline model.
This suggests that the models were capable of adapting to new data, even
when its distribution changed and a new class was introduced.

CHAPTER 5. RESULTS 35

Figure 5.1.5: Accuracy of MNIST - MLP, missing class (stratified)

Figure 5.1.6 displays the confusion matrices for both the baseline model
and the best-performing ES model, offering an assessment of their resilience
when a new class is introduced to the training data. Notably, there are
significant differences in the performance for correctly predicted classes in
classes 2, 8, and 9. In general, the baseline model outperforms the ES model,
with the exception of class 8. Additionally, there are no noticeable differ-
ences in the misclassification patterns between the two matrices. However,
it is evident from the obtained confusion matrix that the ES model swiftly
learns the new pattern, indicating its ability to adapt and incorporate new
information effectively.

36 CHAPTER 5. RESULTS

Figure 5.1.6: Confusion matrices for MNIST - MLP, missing class (stratified)

Missing class, non-stratified split

Figure 5.1.7 displays the performance of the models, while Figure 5.1.8 com-
pares the performance of the baseline model and the best-performing ES
model when considering the training data with a single class removed and
a non-stratified split. In this scenario, the ES models outperformed the
M0 model, achieving respective results of 0.9748 and 0.9810 for the best-
performing ES model. Furthermore, all ES models attained similar results,
indicating consistent performance.

CHAPTER 5. RESULTS 37

Figure 5.1.7: Accuracy of MNIST - MLP, missing class

When examining the confusion matrices in Figure 5.1.8, it is evident that
the ES model performs admirably well, despite some notable disparities,
especially in classes 8 and 9, where the baseline model exhibits superior
performance. The ES model, on the other hand, demonstrates a reduced
number of misclassifications for class 4, particularly in cases where it predicts
class 9. Additionally, a noticeable distinction between the models is their
handling of class 9, which is occasionally mispredicted by the ES model as
class 4.

38 CHAPTER 5. RESULTS

Figure 5.1.8: Confusion matrices for MNIST - MLP, missing class

5.2 MNIST - CNN

Table 5.2.1 presents the accuracy of the ES models, as well as the baseline
model and the M0 model, utilizing a Convolutional Neural Network (CNN).
The same architecture was employed to develop the models described, see
Table D.2 in the Appendix for more details. Remarkably, the accuracy of
the ES models remains consistent regardless of the number of mutations
applied. When a random class is removed, it is notable that the ES model
quickly adapts to the new patterns, resulting in an increase in accuracy. This
suggests that catastrophic forgetting has not occurred, as the model retains
its previously learned knowledge while incorporating new information.

Table 5.2.1: Accuracy of MNIST dataset (CNN)

Model Mbaseline M0

ES models
MES3 MES5 MES10 MES15 MES50

All classes
(stratified) 0.9903 0.9885 0.9886 0.9888 0.9895 0.9896 0.9899

All classes 0.9907 0.9890 0.9899 0.9893 0.9893 0.9896 0.9892

Missing class
(stratified) 0.9895 0.8959 0.9869 0.9881 0.9886 0.9881 0.9878

Missing class 0.9895 0.8960 0.9877 0.9877 0.9878 0.9877 0.9878

CHAPTER 5. RESULTS 39

The performance of the MNIST dataset using CNN is also presented in
more detail below.

All classes, stratified split

The results of training a CNN model on the MNIST dataset, utilizing all
classes and a stratified split, are showcased in Figure 5.2.1. The accuracy
of the ES models were marginally higher, with the best-performing model
achieving an accuracy of 0.9899 and the worst performer achieving an accu-
racy of 0.9886, surpassing the accuracy of the model M0 at 0.9885. However,
the ES models’ accuracy remained just below that of the baseline model,
which achieved 0.9903 accuracy. Additionally, it is possible to observe that
the accuracy tended to increase as the number of mutations used in the ES
models was augmented.

Figure 5.2.1: Accuracy of MNIST - CNN considering all classes (stratified)

40 CHAPTER 5. RESULTS

The confusion matrices depicted in Figure 5.2.2 show that the classifica-
tion accuracy is close to each other. However, it is worth noticing that the
ES model predicted class number 5 better than the baseline model. There
are no other noticeable differences in misclassification patterns between the
two matrices.

Figure 5.2.2: Confusion matrices for MNIST - CNN, all classes (stratified)

All classes, non-stratified split

Figure 5.2.3 presents the outcomes of training a CNN on the MNIST dataset,
considering all classes, and using a training data split without stratifica-
tion. Notably, the ES models achieved comparable results, with the best-
performing model attaining an accuracy of 0.9899 and the worst-performing
model achieving an accuracy of 0.9892. Similarly, the M0 model achieved an
accuracy of 0.9890. It is apparent that all models exhibited accuracy close
to that of the baseline model, which achieved an accuracy of 0.9907.

CHAPTER 5. RESULTS 41

Figure 5.2.3: Accuracy of MNIST - CNN considering all classes

In addition, Figure 5.2.4 shows the confusion matrices for the baseline
model and the best-performing ES model. The most significant difference
observed in this comparison appears in class number 9. Notably, the ES
model demonstrates superior classification accuracy for classes 0, 1, 5, 6,
and 8, which collectively account for half of all classes in the dataset.

42 CHAPTER 5. RESULTS

Figure 5.2.4: Confusion matrices for MNIST - CNN, all classes

Missing class, stratified split

In this scenario, a stratified split of the training data was performed, along
with the removal of a specific class. A significant difference in accuracy
can be observed between the M0 model and the ES models. The accuracy
for the M0 model was 0.8959, while the best-performing ES model achieved
an accuracy of 0.9886, as depicted in Figure 5.2.5. The disparity arises
from the absence of class 6 during the training of the M0 model, leading to
misclassification of these samples in the test set.

CHAPTER 5. RESULTS 43

Additionally, it is worth noting that the accuracy of all ES models closely
resembled that of the baseline model, which was 0.9895. This indicates that
the ES models successfully learned the new class and effectively adapted to
the changes in data distribution during the mutation process.

Figure 5.2.5: Accuracy of MNIST - CNN, missing class (stratified)

Figure 5.2.6 shows the overall classification performance for the baseline
model and the best-performing ES model. It is possible to notice that the
models’ performance was quite similar.

44 CHAPTER 5. RESULTS

Figure 5.2.6: Confusion matrices for MNIST - CNN, missing class (stratified)

Missing class, non-stratified split

The performance of the models, in the case where the training data was split
without stratification and one class was removed, is presented in Figure 5.2.7.
Similar to the previous case, the ES models demonstrated a performance
close to that of the baseline model, which was 0.9895. In this case, the
best-performing ES model achieved an accuracy of 0.9878 and the “worst-
performing” ES model exhibited an accuracy of 0.9877. These results showed
increased performance when compared to the model M0, which yielded an
accuracy of 0.8960.

CHAPTER 5. RESULTS 45

Figure 5.2.7: Accuracy of MNIST - CNN, missing class

The comparison between the confusion matrices for the baseline model
and the best-performing ES model is presented in Figure 5.2.8. Notably,
the baseline model exhibited superior performance in classes 2, 7, and 9.
Conversely, the ES model surpassed the baseline model in classes 5 and 7,
demonstrating an enhanced capability in predicting these specific categories.
Additionally, no discernible differences in the misclassification patterns are
observed between the two matrices.

46 CHAPTER 5. RESULTS

Figure 5.2.8: Confusion matrices for MNIST - CNN, missing class

5.3 Fashion-MNIST - CNN

In this section, a CNN model was developed for the Fashion-MNIST dataset.
All cases were evaluated using an identical architecture, which is presented
in Table D.2 in the Appendix. The accuracy for the Mbaseline model, as well
as the M0 model and the ES models is presented in Table 5.3.1.

Table 5.3.1: Accuracy of Fashion-MNIST dataset

Model Mbaseline M0

ES models
MES3 MES5 MES10 MES15 MES50

All classes
(stratified) 0.9081 0.9121 0.9061 0.9073 0.9064 0.9051 0.9072

All classes 0.9066 0.9000 0.9022 0.8945 0.9046 0.9026 0.9044

Missing class
(stratified) 0.9022 0.8579 0.8812 0.8847 0.8900 0.8923 0.8903

Missing class 0.9043 0.8546 0.8921 0.8952 0.8951 0.8914 0.8940

The results for the Fashion-MNIST dataset are presented in detail below.

CHAPTER 5. RESULTS 47

All classes, stratified split

Figure 5.3.1: Accuracy of Fashion-MNIST considering all classes (stratified)

The results of models trained on all classes with a stratified data split are
illustrated in Figure 5.3.1. It is evident that in this particular scenario,
the model M0 exhibits slightly higher accuracy compared to both the base-
line model and the ES models. The best-performing ES model achieved an
accuracy of 0.8952, while the worst-performing model achieved 0.8914. In
addition, the accuracy for the baseline model was 0.9043 and the accuracy
for the model M0 was 0.8546. It is important to notice that the ES models
demonstrate commendable performance, with some closely resembling the
accuracy of the baseline model.

48 CHAPTER 5. RESULTS

Figure 5.3.2: Confusion matrices for Fashion-MNIST, all classes (stratified)

The confusion matrices presented in Figure 5.3.2 provide a visual rep-
resentation of the baseline model as well as the best-performing ES model.
The overall misclassifications observed in this dataset were more pronounced
compared to the previous dataset, given its increased complexity. Notably,
the ES model demonstrates improved performance specifically in classes 3
and 4, where the observed increase in the correct classified samples (true
positives) was 5.0% and 6.6%, respectively. In addition, the number of false
positives increased for classes 3 and 4, compared to the baseline model. How-
ever, the number of false negatives decreased for the same classes. A similar
pattern can be observed in the other scenarios analysed in this work. In every
case, there were at least two instances where the ES models outperformed
the baseline model in predicting specific classes.

CHAPTER 5. RESULTS 49

All classes, non-stratified split

Figure 5.3.3 displays the models’ accuracy when all classes are taken into
account and the training data is split without stratification, which may re-
sult in class imbalance. The accuracy of the ES models changed slightly
more than what has been seen previously. The best-performing ES model
achieved an accuracy of 0.9046, while the worst-performing model attained
an accuracy of 0.8945. Interestingly, some ES models surpassed the accu-
racy of M0, which was 0.9000. However, it is important to note that all
models displayed lower accuracy than the baseline model, which obtained
an accuracy of 0.9066.

Figure 5.3.3: Accuracy of Fashion-MNIST considering all classes

Figure 5.3.4 further reinforces the observed trend. The confusion matrices
indicate that class 6 poses a greater challenge for the ES model when the
data is not stratified. Conversely, the ES model demonstrates improved
predictions for class 4. This discrepancy is attributed to the absence of a
stratified split, which introduces variations in the distribution of data types
across classes.

50 CHAPTER 5. RESULTS

Figure 5.3.4: Confusion matrices for Fashion-MNIST, all classes

Missing class, stratified split

In this case, it was considered a missing class and stratified split. The results
are illustrated in Figure 5.3.5. The model M0 achieved the lowest accuracy
(0.8579) due to the missing class. Interestingly, the accuracy of the ES
models seemed to increase with the number of mutations up until MES50

.
Here, the best-performing model attained an accuracy of 0.8923, while the
worst-performing achieved an accuracy of 0.8903. Furthermore, the baseline
model exhibited the highest overall accuracy, which was 0.9022.

CHAPTER 5. RESULTS 51

Figure 5.3.5: Accuracy of Fashion-MNIST, missing class (stratified)

Figure 5.3.6 presents similar trends to the previous confusion matrices for
the given dataset. However, there is a notable difference as class 6 is not
present in model M0. Moreover, this particular class proves to be challenging
to predict, even for the baseline model trained with all available data. The
ES model demonstrates enhanced performance specifically in classes 3 and
4, with an observed increase of 8.8% and 8.0%, respectively in the correctly
classified samples (true positives). Additionally, there is an increase in false
positives for classes 3 and 4, compared to the baseline model. However,
the number of false negatives decreased for the same classes. Nevertheless,
the ES models are capable of achieving reasonable accuracy, even when en-
countering a new class and facing a slight class imbalance resulting from the
inclusion of new data in the training dataset.

52 CHAPTER 5. RESULTS

Figure 5.3.6: Confusion matrices for Fashion-MNIST, missing class (stratified)

Missing class, non-stratified split

Figure 5.3.7 presents the performance of the models when considering a miss-
ing class and a non-stratified split. It is clear that the ES models, with the
best accuracy at 0.8952 and the worst-performing at 0.8914, outperformed
the M0 model, which achieved an accuracy of 0.8546. This indicates the
successful adaptation of the ES models to the new class. As anticipated, the
baseline model exhibited even higher accuracy, reaching 0.9043.

CHAPTER 5. RESULTS 53

Figure 5.3.7: Accuracy of Fashion-MNIST, missing class

The confusion matrices depicted in 5.3.8 provide similar insights to the
previous ones. It is noteworthy that this model (MES5

) exhibited the highest
accuracy in predicting class 6 among all the cases presented in this section,
for the Fashion-MNIST dataset. As expected, the baseline model consis-
tently outperformed all other models. On the other hand, it is crucial to
acknowledge that developing a model trained on the complete dataset may
pose feasibility and scalability challenges in real-world contexts. Given these
considerations, a more relevant comparison can be drawn between the ES
models and the model M0, which, in this context, was outperformed by the
outlined evolutionary approach.

54 CHAPTER 5. RESULTS

Figure 5.3.8: Confusion matrices for Fashion-MNIST, missing class

5.4 CIFAR-10 - CNN

The results obtained from the CNN model on the CIFAR-10 dataset are
summarized in Table 5.4.1. All experiments utilized the identical model
architecture, as outlined in Table D.3 in the Appendix. For the CIFAR-
10 dataset, the accuracy levels displayed greater variability compared to
the previously discussed cases. It is worth noting that this dataset is the
smallest among those analyzed in this study. Therefore, the fluctuations
and relatively lower accuracy values could also be influenced by the limited
amount of available data.

Table 5.4.1: Accuracy of CIFAR-10 dataset

Model Mbaseline M0

ES models
MES3 MES5 MES10 MES15 MES50

All classes
(stratified) 0.7846 0.7669 0.7618 0.7613 0.7691 0.7611 0.7649

All classes 0.7886 0.7718 0.7612 0.7666 0.7692 0.7662 0.7733

Missing class
(stratified) 0.7843 0.6902 0.7098 0.7247 0.7271 0.7381 0.7227

Missing class 0.7902 0.6896 0.7317 0.7401 0.7341 0.7503 0.7337

CHAPTER 5. RESULTS 55

The performance of the CIFAR-10 dataset using CNN is presented in
more detail below.

All classes, stratified split

Figure 5.4.1: Accuracy of CIFAR-10 considering all classes (stratified)

Figure 5.4.1 shows the models’ accuracy when all classes are taken into
account and the data is split in a stratified manner. The results demonstrate
that the M0 model was surpassed by just one of the ES models. Specifically,
the M0 model achieved an accuracy of 0.7669, whereas the top-performing
ES model achieved an accuracy of 0.7691. Furthermore, the baseline model
exhibited an accuracy of 0.7846.

56 CHAPTER 5. RESULTS

Figure 5.4.2: Confusion matrices for CIFAR-10, all classes (stratified)

The confusion matrices for the CIFAR-10 dataset are displayed in Figure
5.4.2, where it is possible to analyse the results for the baseline model and
the best-performing ES model. Similar to the observations made for the
Fashion-MNIST dataset, it is evident that predicting the classes for this
dataset accurately was more challenging. This aligns with the information
provided in Table 5.4.1, which indicates lower accuracy values. Notably,
class 6 appears to be slightly more challenging to predict correctly.

CHAPTER 5. RESULTS 57

All classes, non-stratified split

Figure 5.4.3: Accuracy of CIFAR-10 considering all classes

The outcomes of training a CNN on the CIFAR-10 dataset, considering all
classes and employing a training data split without stratification, are pre-
sented in Figure 5.4.3. The baseline model achieved an accuracy of 0.7886,
while the M0 model attained an accuracy of 0.7718. Moreover, the accuracy
of the ES models appeared to improve as the number of mutations applied
increased, except for the model MES15

which attained an accuracy of 0.7662,
and was inferior to the accuracy of the model MES10

that achieved 0.7692.
Nonetheless, the model MES50

emerged as the best-performing ES model,
with an accuracy of 0.7733. In this context, it is worth emphasizing that
the accuracy values for the ES models remained relatively stable throughout
the training process of the CNN models. This observation suggests that the
employed strategy could be a viable alternative to conventional continuous
learning approaches.

58 CHAPTER 5. RESULTS

Figure 5.4.4: Confusion matrices for CIFAR-10, all classes

Figure 5.4.4 offers a comparison between the confusion matrices of the
baseline model and the best-performing ES model. Despite the baseline
model achieving the highest accuracy, it is evident that the ES model demon-
strates a higher frequency of correct predictions for classes 1, 2, and 7 com-
pared to the baseline model.

Missing class, stratified split

Figure 5.4.5 presents the performance of the models when the training data
is stratified and a class is removed. The accuracy consistently improves with
the increasing number of mutations until reaching 15 mutations (MES15

).
The M0 model achieved an accuracy of 0.6902, while the best-performing
ES model surpassed it with an accuracy of 0.7381. Notably, this case ex-
hibited the most significant discrepancy between the ES models and the
baseline model, which achieved an accuracy of 0.7843. Nonetheless, the ES
models demonstrate noticeable improvement compared to the M0 model,
highlighting the adaptability of the approach to new and unseen data.

CHAPTER 5. RESULTS 59

Figure 5.4.5: Accuracy of CIFAR-10, missing class (stratified)

When analyzing the confusion matrices in Figure 5.4.6, it is evident that
the ES model exhibited a noticeable decrease in accuracy specifically for class
6 when compared to the baseline model. The most significant variations in
misclassification patterns between the two matrices were observed for classes
1 and 6, while classes 8 and 9 displayed minimal differences.

60 CHAPTER 5. RESULTS

Figure 5.4.6: Confusion matrices for CIFAR-10, missing class (stratified)

Missing class, non-stratified split

Figure 5.4.7 showcases the accuracy values for the models in the scenario
of a missing class and a non-stratified split. The ES models demonstrated
superior performance compared to the M0 model. The best-performing ES
model achieved an accuracy of 0.7503, while the least-performing ES model
attained an accuracy of 0.7317. In contrast, the accuracy of the M0 model
was 0.6896. Despite the baseline model exhibiting a higher accuracy at
0.7902, the ES models showed promising results considering the evolving
nature of the data due to the addition of a new class.

CHAPTER 5. RESULTS 61

Figure 5.4.7: Accuracy of CIFAR-10, missing class

Additionally, Figure 5.4.8 presents the confusion matrices for the baseline
model and the top-performing ES model. It is notable that the ES model’s
performance experienced a slight decline in comparison to the baseline model,
particularly in predicting results for class 6. This outcome is a result of
the strategy employed to simulate the scenario where unseen data becomes
available over time. However, it is crucial to acknowledge that all ES models
maintained a significantly stable accuracy, as mentioned earlier.

62 CHAPTER 5. RESULTS

Figure 5.4.8: Confusion matrices for CIFAR-10, missing class

5.5 Summary

The results aggregated by each of the split scenarios analyzed in the thesis
are presented in Figure 5.5.1.

The results reveal several important findings. Firstly, the accuracy of the
models remains consistent when utilizing evolutionary strategies for contin-
uous learning, demonstrating their ability to maintain accuracy throughout
the learning process. Secondly, the evolutionary strategy models exhibit en-
hanced performance when dealing with datasets containing missing classes
compared to the initial model, showcasing the algorithm’s capacity to learn
and adapt to new knowledge. Additionally, the baseline model achieves
higher accuracy, as expected, especially when there is a missing class, due to
its utilization of all available data and consistent class distributions. How-
ever, it is worth noting that such models may encounter feasibility and scal-
ability challenges in practical scenarios.

CHAPTER 5. RESULTS 63

Figure 5.5.1: Summary of accuracy for the models considering the different splits and
datasets

The thesis aims to illustrate that evolutionary strategies can be effec-
tively applied in situations where training models on the entire dataset is
unfeasible due to evolving data distributions or the availability of additional
data. Moreover, the evolutionary strategy models outperform the baseline
model in predicting specific classes, as indicated by the confusion matrices,
highlighting their potential for achieving superior performance for certain
classes. Overall, these results emphasize the effectiveness and practicality of
evolutionary strategies for continuous learning, as they maintain accuracy,
adapt to changing data, and improve predictions for specific classes.

64 CHAPTER 5. RESULTS

CHAPTER

SIX

CONCLUSIONS

This thesis has presented a novel approach to address the challenges of con-
tinuous learning, a rapidly evolving field within machine learning. While
traditional methods often require retraining the entire model (or making ar-
chitectural changes) to prevent it from becoming obsolete over time, in this
work, a new method inspired by evolutionary strategy is proposed.

The main idea behind this approach is to introduce perturbations to the
weights and biases of a neural network. Rather than replacing backpropaga-
tion as usually suggested, evolutionary strategies are used as a complemen-
tary step. The initial model is trained using backpropagation on a portion
of the dataset to find the optimal parameters for the task. Then, the model
is replicated, and random noise is applied to its weights and biases to simu-
late the mutation process. Each new model is fitted with new data and its
accuracy is computed.

The process is repeated for a number of iterations, and the accuracy of
each mutated model is used to compute a weighted average for the new
weights and biases. This information is then used to create a new model
that contains the average weights and biases of all the mutated models. The
proposed approach was tested on three different datasets, and the results
demonstrated that the accuracy remained stable or even increased over time,
without exhibiting signs of catastrophic forgetting. The continuous training
models, while falling slightly behind the baseline model in terms of overall
performance, demonstrate promising results, suggesting their capability and
potential in handling evolving data scenarios.

Furthermore, the experiments considered different scenarios, specifically
instance incremental, when M0 and M0N were both trained on data consisting
of all classes, and instance and class incremental, when M0 was trained
with a missing class and M0N was trained on all classes. Overall, the best

65

66 CHAPTER 6. CONCLUSIONS

performance was obtained for the instance incremental scenario. Given that
no class is added over time, the task complexity was relatively lower in this
case. In the instance and class incremental scenario, the adopted strategy
attempted to simulate the real world where new data and classes become
available over time. This was done by splitting the training data into two
subsets and further removing one of the classes from the larger subset and
adding it to the smaller one. Consequently, this introduced class imbalance
in the smaller subset.

The introduction of a new class during the training of the mutated mod-
els (M0N), showcased the ability of the proposed approach to adapt to new
classes without compromising performance. In all cases, no catastrophic for-
getting was observed, and in some instances, the accuracy improved as the
number of mutations increased. It is important to notice that the accuracy
levels achieved for the MNIST and Fashion-MNIST datasets were similar to
the baseline model. In the case of the CIFAR-10 dataset, the evolutionary
strategy yielded an average accuracy level approximately 5.6% lower than
that achieved by the baseline model. However, it is essential to acknowl-
edge that constructing a model trained on the entire available dataset may
not be feasible or scalable in real-world scenarios. When compared to the
M0 model, which serves as a more relevant comparison in this context, the
continuous training approach resulted in an average increase in accuracy of
5.4%. Additionally, it is worth noting that the optimal number of models re-
quired for achieving high accuracy may vary depending on the specific task,
and hyperparameter tuning is recommended.

In conclusion, the presented approach based on evolutionary strategy
holds promise for real-world applications that demand adaptability to chang-
ing data conditions. By incorporating perturbations and leveraging the av-
erage weights and biases of mutated models, the proposed method demon-
strates the potential to maintain accuracy and adapt to new data while
retaining knowledge from previous tasks.

CHAPTER 6. CONCLUSIONS 67

Future work

In order to advance the current research, further investigations should be
conducted regarding the cloning and mutation process of the pre-trained
model, M0, along with the calculation of weighted averages based on ac-
curacy. It is recommended that alternative methods be explored for deter-
mining the offspring models derived from the trained mutated models. One
potential approach involves establishing a threshold for accuracy, whereby
underperforming models are discarded during the weighted average calcula-
tion. Moreover, it is worth considering the utilization of a different metric,
other than accuracy, for evaluating the ES model, particularly when address-
ing problems involving class imbalance [35]. Numerous metrics, such as the
ones proposed by [36] could be considered in this regard.

Subsequent research efforts should focus on the application of the pro-
posed approach to real-life datasets, as they typically offer a larger and more
diverse range of data. This will allow the creation of multiple ES models
at different time steps. Furthermore, it is suggested to test the approach
using alternative data splits, rather than adhering to the conventional 80-20
rule employed in this study. For instance, a split ratio of 70-20-10 could be
adopted to allow for the examination of multiple time steps. Additionally,
the potential impact of training data size on the effectiveness of continuous
training should be taken into account.

It is also worth exploring hyperparameter optimization techniques, as
they are crucial to enhance the performance of the models. The models can
be fine-tuned by systematically optimizing the hyperparameters to achieve
better results.

Finally, it is recommended to explore the application of the proposed
approach in regression problems. While the current study focuses on clas-
sification tasks, investigating its effectiveness in regression scenarios would
provide valuable insights into its potential applicability across various do-
mains.

68 CHAPTER 6. CONCLUSIONS

REFERENCES

[1] Yong Luo et al. “An appraisal of incremental learning methods”. In: Entropy 22.11
(2020), p. 1190. issn: 1099-4300.

[2] Yu Liu et al. “Model Behavior Preserving for Class-Incremental Learning”. In: IEEE
Transactions on Neural Networks and Learning Systems (2022), pp. 1–12. issn:
2162-237X. doi: 10.1109/tnnls.2022.3144183. url: https://dx.doi.org/10.
1109/tnnls.2022.3144183.

[3] Eden Belouadah and Adrian Popescu. “IL2M: Class incremental learning with dual
memory”. In: Proceedings of the IEEE/CVF International Conference on Computer
Vision. 2019, pp. 583–592.

[4] James Kirkpatrick et al. “Overcoming catastrophic forgetting in neural networks”.
In: Proceedings of the National Academy of Sciences 114.13 (2017), pp. 3521–3526.
issn: 0027-8424. doi: 10.1073/pnas.1611835114. url: https://dx.doi.org/
10.1073/pnas.1611835114.

[5] Matteo Testi et al. “MLOps: A Taxonomy and a Methodology”. In: IEEE Access 10
(2022), pp. 63606–63618. issn: 2169-3536. doi: 10.1109/access.2022.3181730.
url: https://dx.doi.org/10.1109/access.2022.3181730.

[6] A. Komolafe. Retraining Model During Deployment: Continuous Training and Con-
tinuous Testing. 2023. url: https://neptune.ai/blog/retraining- model-
during- deployment- continuous-training- continuous- testing (visited on
02/11/2023).

[7] Vincenzo Lomonaco and Davide Maltoni. “Core50: a new dataset and benchmark for
continuous object recognition”. In: Conference on Robot Learning. PMLR, pp. 17–
26. doi: 10.48550/arxiv.1705.03550. url: https://dx.doi.org/10.48550/
arxiv.1705.03550.

[8] A. P. McMahon. Machine Learning Engineering with Python. Packt, Nov. 2021.

[9] Shaza M Abd Elrahman and Ajith Abraham. “A review of class imbalance problem”.
In: Journal of Network and Innovative Computing 1.2013 (2013), pp. 332–340.

[10] Suresh Kumar Amalapuram et al. “On Handling Class Imbalance in Continual
Learning based Network Intrusion Detection Systems”. In: ACM. doi: 10.1145/
3486001.3486231. url: https://dx.doi.org/10.1145/3486001.3486231.

[11] M. McCloskey and N. J. Cohen. “Catastrophic Interference in connectionist net-
works: The sequential learning problem”. In: The psychology of learning and moti-
vation 24 (1989), pp. 109–165.

69

70 REFERENCES

[12] R. Ratcliff. “Connectionist models of recognition memory: Constraints imposed by
learning and forgetting functions”. In: Psychological Review 97 (1990), pp. 285–308.

[13] S. Grossberg. “How does a brain build a cognitive code?” In: Psychological Review
81 (1980), pp. 1–51.

[14] Hanul Shin et al. “Continual learning with deep generative replay”. In: Advances in
neural information processing systems 30 (2017).

[15] Anuvabh Dutt. “Continual learning for image classification”. PhD thesis. Université
Grenoble Alpes (ComUE), 2019.

[16] Robi Polikar et al. “Learn++: An incremental learning algorithm for supervised
neural networks”. In: Systems, Man, and Cybernetics, Part C: Applications and
Reviews, IEEE Transactions on 31 (Dec. 2001), pp. 497–508. doi: 10.1109/5326.
983933.

[17] Andrei A. Rusu et al. Progressive Neural Networks. 2022. arXiv: 1606 . 04671
[cs.LG].

[18] Zhizhong Li and Derek Hoiem. Learning without Forgetting. 2017. arXiv: 1606.
09282 [cs.CV].

[19] Anothony Robins. “Catastrophic Forgetting, Rehearsal, and Pseudorehearsal”. In:
Connection Science 7.2 (1995), pp. 123–146.

[20] David B Fogel. “An introduction to simulated evolutionary optimization”. In: IEEE
transactions on neural networks 5.1 (1994), pp. 3–14.

[21] Daniel Câmara. “1 - Evolution and Evolutionary Algorithms”. In: Bio-inspired Net-
working. Ed. by Daniel Câmara. Elsevier, 2015, pp. 1–30. isbn: 978-1-78548-021-8.
doi: https://doi.org/10.1016/B978-1-78548-021-8.50001-6. url: https:
//www.sciencedirect.com/science/article/pii/B9781785480218500016.

[22] Shifei Ding et al. “Evolutionary artificial neural networks: a review.” In: Artificial
Intelligence Review 39.3 (2013).

[23] A. E. Eiben and J. E. Smith. “Evolution Strategies”. In: Introduction to Evolutionary
Computing. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003, pp. 71–87. isbn:
978-3-662-05094-1. doi: 10.1007/978-3-662-05094-1_4. url: https://doi.
org/10.1007/978-3-662-05094-1_4.

[24] Hans-Georg Beyer and Hans-Paul Schwefel. “Evolution strategies–a comprehensive
introduction”. In: Natural computing 1 (2002), pp. 3–52.

[25] Daan Wierstra et al. “Natural evolution strategies”. In: The Journal of Machine
Learning Research 15.1 (2014), pp. 949–980.

[26] Tim Salimans et al. Evolution strategies as a scalable alternative to reinforcement
learning. 2017. url: https://openai.com/research/evolution-strategies
(visited on 05/23/2023).

[27] Eiji Uchibe. “Cooperative and Competitive Reinforcement and Imitation Learning
for a Mixture of Heterogeneous Learning Modules”. In: Frontiers in Neurorobotics
12 (Sept. 2018), p. 61. doi: 10.3389/fnbot.2018.00061.

[28] Seyedali Mirjalili. “Evolutionary Feedforward Neural Networks”. In: Evolutionary
Algorithms and Neural Networks: Theory and Applications. Cham: Springer Inter-
national Publishing, 2019, pp. 75–86. isbn: 978-3-319-93025-1. doi: 10.1007/978-
3-319-93025-1_6. url: https://doi.org/10.1007/978-3-319-93025-1_6.

REFERENCES 71

[29] Tim Salimans et al. “Evolution Strategies as a Scalable Alternative to Reinforce-
ment Learning”. In: arXiv pre-print server (2017). doi: Nonearxiv:1703.03864.
url: https://arxiv.org/abs/1703.03864.

[30] Yann LeCun, Corinna Cortes, and CJ Burges. “MNIST handwritten digit database”.
In: ATT Labs [Online]. Available: http://yann.lecun.com/exdb/mnist 2 (2010).

[31] Han Xiao, Kashif Rasul, and Roland Vollgraf. “Fashion-MNIST: a Novel Image
Dataset for Benchmarking Machine Learning Algorithms”. In: CoRR abs/1708.07747
(2017). arXiv: 1708.07747. url: http://arxiv.org/abs/1708.07747.

[32] Alex Krizhevsky. “Learning multiple layers of features from tiny images”. In: (2009).

[33] Vijay Kotu and Bala Deshpande. “Chapter 8 - Model Evaluation”. In: Data Science
(Second Edition). Ed. by Vijay Kotu and Bala Deshpande. Second Edition. Morgan
Kaufmann, 2019, pp. 263–279. isbn: 978-0-12-814761-0. doi: https://doi.org/
10.1016/B978-0-12-814761-0.00008-3. url: https://www.sciencedirect.
com/science/article/pii/B9780128147610000083.

[34] Margherita Grandini, Enrico Bagli, and Giorgio Visani. Metrics for Multi-Class
Classification: an Overview. 2020. arXiv: 2008.05756 [stat.ML].

[35] David MW Powers. “Evaluation: from precision, recall and F-measure to ROC,
informedness, markedness and correlation”. In: arXiv preprint arXiv:2010.16061
(2020).

[36] Natalia Dıaz-Rodrıguez et al. “Don’t forget, there is more than forgetting: new
metrics for Continual Learning”. In: arXiv preprint arXiv:1810.13166 (2018).

[37] E. Dral and E. Samuylova. Machine Learning Monitoring, Part 5: Why You Should
Care About Data and Concept Drift. 2023. url: https://www.evidentlyai.com/
blog/machine- learning- monitoring- data- and- concept- drift (visited on
02/11/2023).

72 REFERENCES

APPENDICES

73

A - GITHUB REPOSITORY

All code and used in this document is included in the Github repository
linked below. Further explanations are given in the readme-file.

Github repository link

• https://github.com/ata-bruna/thesis_es_continuous_learning

74

B - MODEL DRIFT CONCEPTS

This section presents some concepts related to model drift. The performance
of the model starts to decay in response to changes in data. This is called
model decay, drift or staleness, and can be caused by a variety of reasons.
The causes of model drift can be split into two main types, data drift and
concept drift [8, 37]. Understanding these concepts is crucial as they form
the basis for the development of continuous learning methods.

Data drift

Data drift occurs when there is a change in the statistical properties of
the features used to develop a model. In other words, this means that the
distribution of the features has been altered [8]. For example, considering
that a model was trained using age as a feature. Initially, there is only data
covering a wide part of the population, from young to older ages. However,
as time passes, the distribution of the data shifts, becoming more skewed
towards the right. This will impact the ability of the model to generalize
well for the new data, as its distribution has changed. This is illustrated in
Figure B.1.

75

Source: https://www.evidentlyai.com/blog/machine-learning-monitoring-data-and-concept-drift

Figure B.1: Data drift occurs when the distribution of the features changes over time.
This can be seen as a change in the statistical properties, such as mean and variance

Concept drift

Concept drift happens when there is a change in the relationship between
the features and outcomes [8]. In other words, concept drift occurs when
the patterns the model learned previously are no longer useful to perform
predictions. For example, consider a model where the relationship between
input and output is linear. As time passes, more data is gathered and this
relationship might change. Then it is said a concept drift has occurred.
Furthermore, concept drift can be gradual or drastic [37].

• Gradual concept drift: The gradual or incremental concept drift oc-
curs when the performance of the model declines gradually as a response
to subtle changes in data. These changes are not dramatic, rather they
only affect a tiny segment of the data. Eventually, the changes add
up impacting the overall performance of the model. The Figure B.2
illustrates this effect, for a binary classification task. Initially, the dis-
tribution of the features is stable. However, over time the share of one
of the classes grows, resulting in the appearance of a new predictive
pattern.

76

Source: https://www.evidentlyai.com/blog/machine-learning-monitoring-data-and-concept-drift

Figure B.2: Gradual concept drift

• Drastic concept drift: The drastic or sudden concept drift occurs
when a disruptive event happens. For example, when the stock market
crashes or a pandemic happens. Unlike the gradual concept drift, a
drastic concept drift is hard to miss, as the past data becomes irrelevant
to describe the relationship between the model input and output and
the models break. The Figure B.3 illustrates this phenomenon, using
the forecast for sales of loungewear. During the COVID-19 pandemic,
online sales of loungewear grew significantly, which was not expected
given the observed past behaviour.

Source: https://www.evidentlyai.com/blog/machine-learning-monitoring-data-and-concept-drift

Figure B.3: Drastic concept drift

The typical approach to mitigate concept drift is to retrain the model
with more representative data. The strategy used can vary substantially
depending on the problem. For instance, one can choose to retrain the model
from scratch using all available data, before and after the change. Another
approach is to assign weights to the most recent data so that the model

77

prioritizes the newest patterns. Additionally, incremental learning can be
used to learn the model continuously. The latter will be explored later in
this work. The effects of model decay and model retraining are presented in
Figure B.4.

Source: https://www.evidentlyai.com/blog/machine-learning-monitoring-data-and-concept-drift

Figure B.4: Effect of concept drift and model retraining on accuracy

78

C - CLASS DISTRIBUTIONS IN DATASETS

A summary of class distributions in each dataset is provided in this section.

Table C.1: Class distribution in the MNIST dataset

Split Subset
Class number

0 1 2 3 4 5 6 7 8 9

All classes
(stratified) Large subset 4738 5394 4766 4905 4674 4337 4734 5012 4681 4759

All classes
(stratified) Small subset 1185 1348 1192 1226 1168 1084 1184 1253 1170 1190

All classes Large subset 4738 5394 4766 4905 4674 4337 4734 5012 4681 4759
All classes Small subset 1185 1348 1192 1226 1168 1084 1184 1253 1170 1190

Missing class
(stratified) Large subset 4738 5394 4766 4905 4674 4337 NaN 5012 4681 4759

Missing class
(stratified) Small subset 1185 1348 1192 1226 1168 1084 5918 1253 1170 1190

Missing class Large subset 4769 5457 4766 4887 4640 4347 NaN 5003 4617 4780
Missing class Small subset 1154 1285 1192 1244 1202 1074 5918 1262 1234 1169

79

Table C.2: Class distribution in the Fashion-MNIST dataset

Split Subset
Class number

0 1 2 3 4 5 6 7 8 9

All classes
(stratified) Large subset 4800 4800 4800 4800 4800 4800 4800 4800 4800 4800

All classes
(stratified) Small subset 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200

All classes Large subset 4784 4753 4761 4856 4781 4818 4855 4812 4747 4833
All classes Small subset 1216 1247 1239 1144 1219 1182 1145 1188 1253 1167

Missing class
(stratified) Large subset 4800 4800 4800 4800 4800 4800 NaN 4800 4800 4800

Missing class
(stratified) Small subset 1200 1200 1200 1200 1200 1200 6000 1200 1200 1200

Missing class Large subset 4784 4753 4761 4856 4781 4818 NaN 4812 4747 4833
Missing class Small subset 1216 1247 1239 1144 1219 1182 6000 1188 1253 1167

Table C.3: Class distribution in the CIFAR-10 dataset

Split Subset
Class number

0 1 2 3 4 5 6 7 8 9

All classes
(stratified) Large subset 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000

All classes
(stratified) Small subset 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000

All classes Large subset 3972 3973 4034 3936 3947 4059 4004 4006 4040 4029
All classes Small subset 1028 1027 966 1064 1053 941 996 994 960 971

Missing class
(stratified) Large subset 4000 4000 4000 4000 4000 4000 NaN 4000 4000 4000

Missing class
(stratified) Small subset 1000 1000 1000 1000 1000 1000 5000 1000 1000 1000

Missing class Large subset 3972 3973 4034 3936 3947 4059 NaN 4006 4040 4029
Missing class Small subset 1028 1027 966 1064 1053 941 5000 994 960 971

80

D - NEURAL NETWORK ARCHITECTURES

A summary of each network is described in the following sections.

MLP for MNIST model

The MLP based model initially demonstrated on the MNIST dataset is sum-
marized in Table D.1.

Table D.1: MLP model architecture for MNIST

Layer (type) Output Shape Param #

flatten (Flatten) (None, 784) 0
dense (Dense) (None, 512) 401920
activation (Activation) (None, 512) 0
dense_1 (Dense) (None, 10) 5130
activation_1 (Activation) (None, 10) 0

Total params: 407,050
Trainable params: 407,050
Non-trainable params: 0

81

CNN for MNIST and Fashion-MNIST models

The CNN based model demonstrated on the MNIST and Fashion-MNIST
data set is summarized in Table D.2.

Table D.2: CNN model architecture for MNIST and Fashion-MNIST

Layer (type) Output Shape Param #

conv2d (Conv2D) (None, 28, 28, 32) 320
max_pooling2d (MaxPooling2D) (None, 14, 14, 32) 0
conv2d_1 (Conv2D) (None, 14, 14, 64) 18496
max_pooling2d_1 (MaxPooling2D) (None, 7, 7, 64) 0
flatten (Flatten) (None, 3136) 0
dense (Dense) (None, 128) 401536
dense_1 (Dense) (None, 10) 1290

Total params: 421,642
Trainable params: 421,642
Non-trainable params: 0

82

CNN for CIFAR-10 model

The CNN based model demonstrated on the CIFAR-10 data set is summa-
rized in Table D.3.

Table D.3: CNN model architecture for CIFAR-10

Layer (type) Output Shape Param #

conv2d (Conv2D) (None, 32, 32, 32) 896
conv2d_1 (Conv2D) (None, 30, 30, 32) 9248
max_pooling2d (MaxPooling2D) (None, 15, 15, 32) 0
dropout (Dropout) (None, 15, 15, 32) 0
conv2d_2 (Conv2D) (None, 15, 15, 64) 18496
conv2d_3 (Conv2D) (None, 13, 13, 64) 36928
max_pooling2d_1 (MaxPooling2D) (None, 6, 6, 64) 0
dropout_1 (Dropout) (None, 6, 6, 64) 0
flatten (Flatten) (None, 2304) 0
dense (Dense) (None, 512) 1180160
dropout_2 (Dropout) (None, 512) 0
dense_1 (Dense) (None, 10) 5130

Total params: 1,250,858
Trainable params: 1,250,858
Non-trainable params: 0

83

E - LOSS VALUES

When training a machine learning model, an increase in loss values typically
indicates that the model’s predictions are becoming less accurate or less
aligned with the true values of the target variable. There could be several
reasons for an increase in loss values during training, such as underfitting,
overfitting or poor hyperparameter settings. It is important to monitor the
loss values during training to identify potential issues. If loss values consis-
tently increase or fail to decrease over time, it may be necessary to adjust
the model architecture, hyperparameters, or data preprocessing steps to im-
prove the model’s performance. In the following sections, losses from the
experiments are presented. The lowest loss is highlighted in bold.

E1 - MNIST - MLP

Table E.1: Loss values for MNIST dataset (MLP)

Model Mbaseline M0

ES models
MES3 MES5 MES10 MES15 MES50

All classes
(stratified) 0.0629 0.0746 0.0829 0.0822 0.0820 0.0822 0.0822

All classes 0.0650 0.0663 0.0821 0.0824 0.0812 0.0817 0.0816

Missing class
(stratified) 0.0659 1.8690 0.0793 0.0813 0.0792 0.0791 0.0788

Missing class 0.0693 1.5200 0.0863 0.0852 0.0845 0.0842 0.0840

84

All classes, stratified split

Figure E.1: Loss for MNIST - MLP considering all classes (stratified)

All classes, non-stratified split

Figure E.2: Loss for MNIST - MLP considering all classes

85

Missing class, stratified split

Figure E.3: Loss for MNIST - MLP missing class (stratified)

Missing class, non-stratified split

Figure E.4: Loss for MNIST - MLP missing class

86

E2 - MNIST - CNN

Table E.2: Loss values for MNIST dataset (CNN)

Model Mbaseline M0

ES models
MES3 MES5 MES10 MES15 MES50

All classes
(stratified) 0.0395 0.0369 0.0339 0.0350 0.0314 0.0328 0.0318

All classes 0.0299 0.0323 0.0331 0.0338 0.0323 0.0327 0.0322

Missing class
(stratified) 0.0331 1.9315 0.0411 0.0382 0.0376 0.0373 0.0367

Missing class 0.0356 2.0838 0.0353 0.0361 0.0349 0.0343 0.0354

87

All classes, stratified split

Figure E.5: Loss for MNIST - CNN considering all classes (stratified)

All classes, non-stratified split

Figure E.6: Loss for MNIST - CNN considering all classes

88

Missing class, stratified split

Figure E.7: Loss for MNIST - CNN missing class (stratified)

Missing class, non-stratified split

Figure E.8: Loss for MNIST - CNN missing class

89

E3 - Fashion-MNIST - CNN

Table E.3: Loss values for Fashion-MNIST dataset

Model Mbaseline M0

ES models
MES3 MES5 MES10 MES15 MES50

All classes
(stratified) 0.2653 0.2798 0.2622 0.2652 0.2661 0.2690 0.2628

All classes 0.2660 0.2805 0.2991 0.3241 0.2852 0.2969 0.2911

Missing class
(stratified) 0.2911 1.8818 0.3200 0.3112 0.2979 0.2941 0.2962

Missing class 0.2774 1.9074 0.3020 0.2876 0.2925 0.2966 0.2890

90

All classes, stratified split

Figure E.9: Loss for Fashion-MNIST considering all classes (stratified)

All classes, non-stratified split

Figure E.10: Loss for Fashion-MNIST considering all classes

91

Missing class, stratified split

Figure E.11: Loss for Fashion-MNIST missing class (stratified)

Missing class, non-stratified split

Figure E.12: Loss for Fashion-MNIST missing class

92

E4 - CIFAR-10 - CNN

Table E.4: Loss values for CIFAR-10 dataset

Model Mbaseline M0

ES models
MES3 MES5 MES10 MES15 MES50

All classes
(stratified) 0.6423 0.7122 0.7241 0.7066 0.6795 0.7079 0.6939

All classes 0.6330 0.6974 0.6898 0.6816 0.6706 0.6804 0.6559

Missing class
(stratified) 0.6585 1.9993 0.8638 0.8055 0.8138 0.7702 0.8219

Missing class 0.6253 2.4061 0.8079 0.7578 0.7721 0.7370 0.7761

93

All classes, stratified split

Figure E.13: Loss for CIFAR-10 considering all classes (stratified)

All classes, non-stratified split

Figure E.14: Loss for CIFAR-10 considering all classes

94

Missing class, stratified split

Figure E.15: Loss for CIFAR-10 missing class (stratified)

Missing class, non-stratified split

Figure E.16: Loss for CIFAR-10 missing class

95

Summary

Figure E.17: Summary of losses for the models considering the different splits and
datasets

The thesis findings reveal significant decreases in the model loss for sce-
narios where a class was missing, as depicted in Figure E.17. Throughout
the continuous learning process, the models consistently experience a decline
in loss when evolutionary strategies are employed in these situations. Com-
paratively, the M0 model exhibits higher loss values due to the absence of a
class during training. However, upon analyzing the training context, it be-
comes evident that the loss decreases with each epoch. For scenarios where
all classes are considered, the loss remains relatively stable without signifi-
cant variation. Notably, the loss for these cases starts at a lower level from
the beginning of training. Importantly, the absence of any loss explosion
indicates that there are no signs of overfitting in the models analyzed.

96

F - POSTER PRESENTATION

The poster is presented in the next page.

97

The approach consists of introducing perturbations to the
weights and biases of a neural network. Rather than
replacing backpropagation as usually suggested,
evolutionary strategies are used as a complementary step.
The initial model is trained using backpropagation on a
portion of the dataset to find the optimal parameters for the
task. Then, the model is replicated, and random noise is
applied to its weights and biases to simulate the mutation
process. Each new model is fitted with new data and its
accuracy is computed.

The process is repeated for several iterations, and the
accuracy of each mutated model is used to compute a
weighted average for the new weights and biases. This
information is then used to create a new model that
contains the average weights and biases of all the mutated
models.

The training data for each dataset was split into two subsets
using four different strategies. The training data was split
with and without stratification. Also, for half of the
experiments, one randomly chosen single class was
removed. When the class was removed, it was removed
from the larger subset of training data and appended to the
smaller one. The different strategies are shown in Table 1.

The idea behind removing one class, was to evaluate the
evolutionary strategy when a new class becomes available,
simulating a real-world application.

Bruna Atamanczuk, Kurt Arve Skipenes Karadas

University of Stavanger, Faculty of Science and Technology, Department of Electrical Engineering and Computer Science

Continuous Learning (CL) is the practice of refining and
improving machine learning models throughout their
entire life cycle. In a traditional machine learning life cycle,
a model is built with training data, deployed into
production, and periodically improved over time. However,
continuous learning takes this process a step further by
acknowledging that models can continue to learn and
improve even after deployment. This is achieved through
ongoing refinement, retraining, and adaptation of the model
to new data and changing environments. Continuous
learning ensures that machine learning models remain
relevant, effective, and up-to-date, providing businesses
with a competitive edge in today’s fast-paced technological
landscape.

Traditionally, the approach used to update a model once
more data is available was to retrain it from scratch. This
can result in models becoming computationally expensive
and time-consuming [1]. CL offers a more efficient solution
by allowing a model to learn new classes incrementally,
without the need to discard previous knowledge.
Furthermore, CL also addresses problems such as class
imbalance and catastrophic forgetting. The former is related
to the difficulty of learning minority classes due to a lack of
labelled data [2], and the latter is related to the tendency of
deep neural networks to forget previously learnt tasks once
new information is incorporated [3]. CL allows the model to
learn new classes over time, and to retain the previous
knowledge, which can help improve the overall
performance of the model.

This work focuses on Evolutionary Strategies (ES) and their
usage to improve the quality of solutions through adaptive
modifications of artificial neural network weights within a
continuous learning setup. ES is an approach within the
field of evolutionary algorithms that introduces random
perturbations to the current solutions, in order to explore
the search space and potentially discover better solutions.

All classes (stratified) False True

All classes False False

Missing class (stratified) True True

Missing class True False

Large subset

Small subset

80 %

20 %

Training
data

Mbaseline

ഥ𝑤 =
σ𝑖=1
𝑛 𝑤𝑖 ∙ 𝑎𝑐𝑐𝑖
σ𝑖=1
𝑛 𝑎𝑐𝑐𝑖

M0

M01 M02 M0N

…

MES

𝑤𝑖

∙ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚[0, 1]

Figure 1: Continuous training procedure

Table 1: Adopted training strategies

We would like to express our heartfelt gratitude to our
supervisors, Antorweep Chakravorty at UiS and co-
supervisor Bikash Agrawal at Simplifai.ai, for their
invaluable guidance, support, and mentorship throughout
the course of this research. Their expertise, dedication, and
commitment to excellence have been instrumental in
shaping the direction and success of this thesis.

[1] Yu Liu et al. “Model Behavior Preserving for Class-Incremental
Learning”. In: IEEE Transactions on Neural Networks and
Learning Systems (2022), pp. 1–12. ISSN: 2162-237X. DOI:
10.1109/tnnls.2022.3144183. url: https://dx.doi.org/10.1109/tnnls.
2022.3144183.

[2] Eden Belouadah and Adrian Popescu. “IL2M: Class incremental
learning with dual memory”. In: Proceedings of the IEEE/CVF
International Conference on Computer Vision. 2019, pp. 583–592.

[3] James Kirkpatrick et al. “Overcoming catastrophic forgetting in
neural networks”. In: Proceedings of the National Academy of
Sciences 114.13 (2017), pp. 3521–3526. issn: 0027-8424. DOI:
10.1073/pnas.1611835114. URL: https://dx.doi.org/10.1073/pnas.
1611835114.

This thesis has presented a novel approach to address the
challenges of continuous learning. While traditional
methods often require retraining the entire model (or
making architectural changes) to prevent it from becoming
obsolete over time, in this work, a new method inspired by
evolutionary strategy is proposed. The main idea behind
this approach is to introduce perturbations to the weights
and biases of a neural network. The proposed approach
was tested on three different datasets, and the results
demonstrated that the accuracy remained stable or even
increased over time, without exhibiting signs of
catastrophic forgetting. The continuous training models,
while falling slightly behind the baseline model in terms of
overall performance, demonstrate promising results,
suggesting their capability and potential in handling
evolving data scenarios.

This thesis presents a novel approach to address the
challenges of continuous learning. Inspired by evolutionary
strategies, the approach introduces perturbations to the
weights and biases of a neural network while leveraging
backpropagation. The method demonstrates stable or
improved accuracy for the 16 scenarios investigated
without catastrophic forgetting. The experiments were
conducted on three benchmark datasets, MNIST, Fashion-
MNIST and CIFAR-10. The data was split considering
stratified and non-stratified sampling and with and without
missing classes. The approach adapts to new classes
without compromising performance and offers scalability
in real-world scenarios. Overall, it shows promise in
maintaining accuracy and adapting to changing data
conditions while retaining knowledge from previous tasks.

Totally, 16 experiments were conducted in our work for the
three datasets mentioned. Below, results for a Missing class
(stratified) model trained on Fashion-MNIST dataset is
presented. In our experiments, class number 6 was
removed from the larger subset. Separate test data was
used to evaluate the accuracy levels of the models.

The dashed red line shows the accuracy of the baseline
model trained on the full training data. To make the
findings easier to read, note that the y-axis has been
trimmed. One can see that the accuracy increases with the
number of mutations up until the final offspring model and
outperform M0 showcasing that the model learns new data
while retaining old knowledge.

Confusion matrices were also produces to compare the
performance of the baseline model and the best-performing
ES model. As one can see below, the model obtained from
evolutionary strategy performs well. At first glance, it may
seem like the model struggles adopting to the new class,
which it somewhat does compared to the baseline model.
However, the reader should be aware that even the baseline
model have some issues with correctly classifying this
class.

In a real-world scenario, it may be not scalable to build a
model that is trained on all available data such as the
baseline model. For the purpose of this work, the achieved
performance of the new approach provides valuable
insights of how well the proposed methodology works.

Figure 2: Accuracy of Fashion-MNIST. Missing class (stratified)

Figure 3: Confusion Matrix for Fashion-MNIST. Missing class (stratified)

