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“The question of whether machines can think is about as relevant as the question of
whether submarines can swim.”

Edsger Dijkstra



Abstract

This study presents a novel approach to enhancing the performance of artificial agents in
complex environments like Minecraft, where traditional reward-based learning strategies
can be challenging to apply. To improve the efficacy and efficiency of fine-tuning a
foundation model for complex tasks, we propose the Human-Guided Phasic Policy
Gradient (HPPG) algorithm, which combines human preference learning with the Phasic
Policy Gradient technique. Our key contributions include validating the use of behavioral
cloning to improve agent performance and introducing the HPPG algorithm, which
employs a reward predictor network to estimate rewards based on human preferences.
We further explore the challenges associated with the HPPG algorithm and propose
strategies to mitigate its limitations. Through our experiments, we demonstrate significant
improvements in the agent’s performance when executing complex tasks in Minecraft,
laying the groundwork for future developments in reinforcement learning algorithms
for complex, real-world tasks without defined rewards. Our findings contribute to the
broader goal of bridging the gap between artificial agents and human-like intelligence.
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Chapter 1

Introduction

1.1 Background and Motivation

Artificial intelligence (AI) has made remarkable advancements in the field of deep
reinforcement learning (DRL), achieving superhuman performance in games like Go,
chess, and Dota 2 [1–3]. AI systems such as AlphaGo and AlphaZero have demonstrated
unprecedented achievements, surpassing human experts in strategic gameplay. These
milestones have highlighted DRL algorithms’ potential and ability to master complex
tasks.

However, these achievements have come at a cost. The success of these AI systems heavily
relies on extensive data sampling and significant computational resources, limiting their
accessibility and practical applicability. Furthermore, these AI systems have primarily
excelled in games with well-defined reward functions, making them less suitable for
scenarios where explicit rewards are not readily available or easily defined.

This limitation becomes particularly apparent in environments like Minecraft, where the
game’s objective is open-ended, and players define their own goals. Minecraft’s survival
mode, for instance, lacks a specific reward function except for the survival duration.
Players have the freedom to explore and interact with the game world, making each
session unique. Developing AI systems that can effectively learn and perform tasks in
Minecraft using a human interface presents a significant challenge, requiring approaches
that are sample-efficient and adaptable to environments without explicit rewards.

Recent advancements in the field have shown promise in addressing these challenges.
Baker et al. [4] demonstrated that Video Pretraining (VPT) and Inverse Dynamics Model
(IDM) have the ability to leverage large-scale unlabeled video data to train models for
complex tasks in Minecraft. By pretraining on videos and utilizing the IDM to label
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2 Chapter 1 Introduction

unlabeled videos, they expanded the training dataset and achieved impressive results,
enabling agents to perform on par with human players in some tasks with sparse rewards.
Their work serves as a testament to the effectiveness of this approach in overcoming the
limitations of explicit reward functions.

However, a goal remains to train AI systems that can perform tasks in Minecraft without
relying solely on explicit reward structures and achieve performance comparable to
that of human players. One promising approach is reinforcement learning from human
preferences, where humans provide evaluations and select optimal task executions. This
approach leverages human judgment to guide learning and improve task performance.

In this paper, we aim to investigate the utilization of human feedback and sample-efficient
algorithms, specifically the Phasic Policy Gradient (PPG), to train agents for lifelike
tasks in Minecraft. Our approach involves fine-tuning the VPT foundation model using
imitation learning and reinforcement learning with human preferences. By combining the
strengths of human-guided learning and sample-efficient algorithms, we aim to enhance an
agent’s performance in Minecraft and enable it to execute complex tasks with human-like
proficiency.

1.2 Objectives

This study is guided by the following research questions (RQs) to achieve our objectives:

• RQ1: How can we enhance sample efficiency in fine-tuning a foundation model for
executing complex tasks in Minecraft using imitation learning?

Objective: Given the challenges of expensive sampling in real-world domains
and complex games like Minecraft, our objective is to develop an imitation
learning algorithm that can effectively leverage limited data and computational
resources to improve the agent’s performance.

• RQ2: How can human feedback be incorporated to fine-tune a model in the absence
of explicit reward functions, thereby enhancing the agent’s task performance in
environments like Minecraft?

Objective: Our aim is to incorporate human guidance into the learning process,
using human preferences to refine the agent’s behavior for better task comple-
tion.
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• RQ3: What are the potential limitations of the proposed method that com-
bines imitation learning with human-guided learning and how can we evaluate its
effectiveness and efficiency in complex environments like Minecraft?

Objective: Our aim is to understand and mitigate the limitations of our proposed
method and establish a robust evaluation framework to quantify its impact
on the agent’s performance in complex tasks.

By addressing these research questions, we aim to advance the field of reinforcement
learning in complex and challenging environments. Our objectives include developing
effective algorithms for sample-efficient fine-tuning in Minecraft, utilizing human feedback
to enhance agent performance, and ultimately enabling the agent to exhibit lifelike
behavior in complex tasks. These objectives contribute to the broader goal of bridging
the gap between artificial agents and human-like intelligence in challenging real-world
domains.

1.3 Approach and Contributions

In this thesis, we propose a novel algorithm called Human-Guided Phasic Policy Gradient
(HPPG) which integrates human preference learning with Phasic Policy Gradient (PPG),
a technique known for its sample efficiency and stability. This hybrid algorithm aims to
enhance agent performance in environments where rewards are not easily defined or are
difficult to obtain, such as in Minecraft.

We made the following key contributions:

• Contribution to RQ1: We confirm the efficacy of behavioral cloning (BC)
in enhancing agent performance, even in complex tasks within Minecraft. By
leveraging human demonstrations, the agent can mimic desired behavior, improving
task execution, and making human feedback more efficient.

• Contribution to RQ2: We introduce HPPG, a novel algorithm that employs a
reward predictor network to estimate rewards based on human preferences. The
reward predictor network plays a vital role in guiding the agent’s learning process
by providing reward signals in the absence of explicit environmental rewards.

• Contribution to RQ3: We explore the challenges associated with implementing
the HPPG algorithm and propose strategies to mitigate its limitations. Our findings
emphasize the need for continual refinement of the reward predictor network to
enhance the agent’s learning capabilities.
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• Summary of Results: We demonstrate, through experimentation, that our
method of fine-tuning a foundation model with behavioral cloning effectively
increases task performance. We present a new HPPG algorithm that integrates
human preference learning with PPG. It highlights the crucial role of the reward
predictor network and the need for more research. Our results lay a foundation
for human-guided reinforcement learning algorithms in challenging environments
without rewards.

1.4 Outline

This thesis is organized as follows:

• Chapter 2 provides an overview of the MineRL project and its integration with
Minecraft and OpenAI Gym. It explores previous research in the areas of learning
from human preferences. In addition, it covers sample-efficient algorithms like
Proximal Policy Optimization and Phasic Policy Gradient, and the foundation
model used in this thesis.

• Chapter 3 outlines the approach used in this thesis, including the process of fine-
tuning with behavior cloning, the selection of optimal hyperparameters, and the
proposed Human-Guided Phasic Policy Gradient method, explaining its various
components in detail.

• Chapter 4 presents the experimental setup and the corresponding results. It offers
a comprehensive analysis of these results, highlighting the successes, failures, and
limitations of the approach.

• Chapter 5 concludes the thesis by summarizing the main findings and addressing
the research questions posed throughout the study. Finally, it proposes some future
directions of research.



Chapter 2

Related Work

This chapter introduces MineRL, a Python3 library that serves as a valuable resource
for bridging Minecraft and artificial intelligence research. The chapter also provides
an overview of existing research and studies in the areas of sample-efficient algorithms,
reinforcement learning in Minecraft, and learning from human preferences. It offers
insights into the potential of video games as experimental platforms for AI development,
with a particular focus on Minecraft’s open-ended sandbox world.

2.1 MineRL

The potential of video games as experimental platforms for reinforcement learning and
AI development cannot be overstated. One such gaming environment, Minecraft, is
especially noteworthy, as its open-ended, sandbox-style world lends itself perfectly to
sophisticated testing and learning scenarios [5]. Recognizing this, the team behind the
project MineRL developed an invaluable resource that bridges the gap between Minecraft
and artificial intelligence research [6].

While MineRL provides a specific interface and dataset for reinforcement learning
research using Minecraft, it’s not the only project to recognize the potential of this
gaming environment. Microsoft’s Project Malmo also uses Minecraft as a platform for
AI research. Project Malmo, in particular, was designed to support a wide range of
fundamental AI research, enabling previously infeasible or inconvenient experiments
within a game environment [7]. This diversity in research platforms illustrates the
versatility and utility of Minecraft in the field of AI development.

MineRL [6], a robust Python3 library, serves as the link between AI research and Minecraft
by providing an interface that integrates Minecraft with the OpenAI Gym [8], a toolkit
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6 Chapter 2 Related Work

for developing and comparing reinforcement learning algorithms. This integration allows
developers and researchers to interact with Minecraft as an experimental environment,
unlocking many opportunities for machine learning experiments and reinforcement
learning.

Notably, MineRL goes beyond providing just a mere interface. The project encompasses
a suite of environments within Minecraft that researchers can use for varied learning and
testing scenarios. In reinforcement learning, an "environment" refers to the domain or
the ’world’, which could be real or simulated, where an agent interacts, makes decisions,
and learns from the consequences of its actions. In this context, Minecraft serves as
the simulated environment, offering a suite of diverse yet uniform domains for varied
learning and testing scenarios. Though diverse, these environments maintain uniformity
in observation and action space, facilitating easy inter-experiment comparison and data
consistency.

The observation space offered by MineRL consists of RGB images with a resolution of
360x640x3. This image data serves as the primary input for the reinforcement learning
model, with the RGB components representing the pixel-wise color information captured
from the Minecraft environment.

Meanwhile, the action space (see Table 2.1) encapsulates a broad array of Minecraft-
specific actions. These actions can be understood as the output of the series of instructions
that the model can issue within Minecraft. It is essential to clarify that ’Discrete’ and
’Box’ are terms used to define specific types of action spaces in the context of OpenAI
Gym [8], offering options for discrete and continuous actions.

However, MineRL’s most significant offering is arguably its extensive imitation learning
dataset. It is one of the world’s largest, boasting over 60 million frames of recorded
human gameplay. This extensive corpus of data allows reinforcement learning models to
learn from and build upon human players’ strategies and techniques, fast-tracking their
learning process and potentially developing more sophisticated AI behaviors [9].
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Key Action Space
ESC Discrete(2)

attack Discrete(2)
back Discrete(2)

camera Box(low=-180.0, high=180.0, shape=(2,))
drop Discrete(2)

forward Discrete(2)
hotbar.1 Discrete(2)
hotbar.2 Discrete(2)
hotbar.3 Discrete(2)
hotbar.4 Discrete(2)
hotbar.5 Discrete(2)
hotbar.6 Discrete(2)
hotbar.7 Discrete(2)
hotbar.8 Discrete(2)
hotbar.9 Discrete(2)
inventory Discrete(2)

jump Discrete(2)
left Discrete(2)

pickItem Discrete(2)
right Discrete(2)
sneak Discrete(2)
sprint Discrete(2)

swapHands Discrete(2)
use Discrete(2)

Table 2.1: The MineRL action space. The left column shows the keys in the action
space dictionary, while the right shows the corresponding Gym [8] action spaces

2.2 BASTALT 2022 Dataset

The BASALT (Benchmark for Agents that Solve Almost-Lifelike Task) 2022 Dataset,
the primary data source used in this study, represents a significant contribution to the
field of reinforcement learning. OpenAI provided this dataset of demonstrations for the
MineRL BASALT 2022 competition, encompassing over 600 GB of labeled data. In this
thesis, labeled data refers to videos with ground truth labels of what actions were taken
in each frame unless stated otherwise. The dataset involves four different lifelike tasks,
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providing diverse scenarios that AI models can learn from [10]. See Table 2.2 for basic
dataset statistics like the size of each dataset, number of videos, and environment name.

Size #Videos Name
146G 1399 MineRLBasaltBuildVillageHouse-v0
165G 2833 MineRLBasaltCreateVillageAnimalPen-v0
165G 5466 MineRLBasaltFindCave-v0
175G 4230 MineRLBasaltMakeWaterfall-v0

Table 2.2: ]

Statistics for the BASTALT (Benchmark for Agents that Solve Almost-Lifelike Task)
2022 Dataset

Each task has a corresponding MineRL environment with different starting inventories
and goals. The common denominator is that all four environments provide no rewards and
end when the Player or Agent presses "ESC" or after a certain amount of steps. Where a
step corresponds to moving forward one frame, which is done at 20hz in MineRL. The
goal is to produce agents that real humans judge to solve the different tasks effectively.
This information is taken from the MineRL Basalt Environment documentation [11].

1. MineRLBasaltFindCave-v0

• Objective: After spawning in a plains biome, explore and find a cave. When
inside a cave, end the episode by setting the "ESC" action to 1. Do not dig
down from the surface to find a cave.

• Max Episode Steps: 3600

• Starting Inventory: Empty

2. MineRLBasaltCreateVillageAnimalPen-v0

• Objective: After spawning in a village, build an animal pen next to one of the
houses in a village. Use your fence posts to build one animal pen that contains
at least two of the same animal. (You are only allowed to pen chickens, cows,
pigs, or sheep.) There should be at least one gate that allows players to enter
and exit easily. The animal pen should not contain more than one type of
animal. (You may kill any extra types of animals that accidentally got into
the pen.) Do not harm villagers or existing village structures in the process.
Send 1 for "ESC" key to end the episode.

• Max Episode Steps: 6000

• Starting Inventory:
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Item Quantity
carrot 1
oak_fence 64
oak_fence_gate 64
wheat 1
wheat_seeds 1

3. MineRLBasaltMakeWaterfall-v0

• Objective: After spawning in an extreme hills biome, use your waterbucket to
make a beautiful waterfall. Then take an aesthetic "picture" of it by moving
to a good location, positioning player’s camera to have a nice view of the
waterfall, and ending the episode by setting "ESC" action to 1.

• Max Episode Steps: 6000

• Starting Inventory:

Item Quantity
cobblestone 20
stone_pickaxe 1
stone_shovel 1
water_bucket 1

4. MineRLBasaltBuildVillageHouse-v0

• Objective: Build a house in the style of the village without damaging the
village. It should be in an appropriate location (e.g. next to the path through
the village). Then, give a brief tour of the house (i.e. spin around slowly such
that all of the walls and the roof are visible). Finally, end the episode by
setting the "ESC" action to 1.

• Tip: Different materials are used in each biome-specific village (plains, savan-
nah, taiga, desert).

• Max Episode Steps: 14400

• Starting Inventory:
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Item Quantity
acacia_log 64
black_dye 64
blue_dye 64
brown_dye 64
cactus 64
cobblestone 64
cobweb 64
dirt 64
flower_pot 64
glass_pane 64
grass_block 64
green_dye 64
jungle_log 64
lily_pad 64
magenta_dye 64
oak_log 64
orange_dye 64
pink_dye 64
red_dye 64
sand 64
spruce_log 64
stone 64
stone_bricks 64
torch 64
vines 64
white_dye 64
yellow_dye 64

2.3 Video PreTraining (VPT)

Baker et al. [4] introduced the VPT foundation models used throughout this thesis,
including the Inverse Dynamics Model (IDM) and the Video Pre Trained (VPT) Founda-
tion Model [10]. These models come in various sizes: 71M, 248M, and 500M trainable
parameters. The IDM model can incorporate both past and future events, while the VPT
Foundation Model is strictly causal, predicting future events based solely on past data.

The foundation model was trained through a two-step process. Firstly, a small amount
of labeled data was collected from contractors to train the IDM. This model was tasked



Chapter 2 Related Work 11

to minimize the negative log-likelihood of an action at a given timestep, considering a
trajectory of T observations. Subsequently, this model was utilized to label online videos,
thereby amplifying the training data for the VPT foundation model from an initial 2k
video hours to a substantial 70k video hours after filtering for clean video segments.

The architecture of these models primarily mirrors each other, with the IDM integrating
an initial non-causal convolution and four non-causal residual transformer blocks to
predict actions at each frame. In contrast, the VPT Foundation Model omits the
non-causal convolution and enforces causal masking on the residual transformer layers,
introducing Transformer-XL-style training for causality [4].

The architecture of these models primarily mirrors each other, with the IDM integrating
an initial non-causal convolution and four non-causal residual transformer blocks to
predict actions at each frame. In contrast, the VPT Foundation Model omits the non-
causal convolution and enforces causal masking on the residual transformer layers. This
approach introduces Transformer-XL-style training for causality [4]. Transformer-XL, a
variant of the traditional transformer model, handles long-term dependencies in sequences
effectively by using a recurrence mechanism and a novel positional encoding scheme.
This allows for an extended context by reusing hidden states from previous segments,
enabling learning dependencies over a longer context than a fixed-length window [12].

Subsequent research demonstrated fine-tuning of the VPT foundation model for the
early game using behavioral cloning (BC) on datasets specific to early game development
[4]. This approach significantly boosted crafting capabilities compared to the zero-shot
VPT foundation model. Following this approach, this thesis also fine-tunes the VPT
model using BC on task-specific labeled data before any reinforcement learning, given its
demonstrated efficiency.

To illustrate the potency of RL fine-tuning, Baker et al. [4] opted for the goal of crafting
a diamond pickaxe within ten minutes in a fresh Minecraft survival world. Using
sparse environmental rewards and a Phasic Policy Gradient [13] algorithm (PPG), the
agents accomplished this task, which typically requires over twenty minutes for a human
player. However, this thesis diverges in focus, concentrating on RL fine-tuning without
explicit environmental rewards, instead leveraging human feedback to fine-tune the VPT
foundation model.

Despite their differences in size, all models displayed impressive zero-shot performance,
though larger models outperformed smaller ones during fine-tuning. Due to computational
constraints, this thesis opts to employ the smallest VPT model (71M parameters).
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2.4 Proximal Policy Optimization

Proximal Policy Optimization (PPO) was introduced by Schulman et al. [14] as a more
efficient and stable alternative to traditional policy gradient methods such as Trust
Region Policy Optimization (TRPO) [15]. Both PPO and TRPO build upon seminal
works in deep reinforcement learning such as Q-Learning, Double Q-Learning [16], and
Deep Q-Learning applied to the Atari games [5]. PPO addresses the challenges of sample
complexity and sensitivity to hyperparameters, which were prevalent in earlier policy
optimization algorithms.

In the context of continuous control tasks, methods like Deep Deterministic Policy
Gradient (DDPG) [17] helped pave the way for the development of actor-critic methods,
which subsequently influenced the development of PPO. At the heart of these actor-critic
methods lie two components: the actor, which decides the actions based on the current
policy, and the critic, which evaluates the quality of these actions. The actor improves
its policy based on the feedback from the critic, and the critic refines its value estimates
based on the reward signals from the environment.

The primary goal of PPO is to optimize the policy while maintaining a balance between
exploration and exploitation, which is achieved by constraining the policy updates to
be within a trust region. Introduced as a refined alternative to prior policy gradient
methods, PPO emerged as a solution for providing efficiency and stability in reinforcement
learning (RL) tasks [14]. Unlike the TRPO [15] algorithm, PPO successfully addresses
the intricacies of sample complexity and sensitivity to hyperparameters, constraints
frequently observed in traditional policy optimization algorithms.

Building on the principles of natural policy gradient [18] and TRPO [15], PPO stands
as an on-policy algorithm. The unique value proposition of PPO lies in introducing a
surrogate objective function. This function restricts the magnitude of policy updates,
penalizing unduly significant changes. This surrogate objective function is defined as
follows:

LCLIP (θ) = Êt
[
min

(
rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât

)]
. (2.1)

Here, rt(θ) = πθ(at|st)
πθold

(at|st) is the probability ratio of the new to the old policy, Ât is the
estimated advantage function, and ϵ represents the hyperparameter that determines
permissible policy changes.
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The utility of this surrogate function is to facilitate a balance in PPO, allowing large
policy updates while circumventing excessively substantial alterations, which may cause
instability in the learning process.

Algorithm 2.1 PPO, Actor-Critic Style
1: for iteration = 1, 2, . . . do
2: for actor = 1, 2, . . ., N do
3: Run policy πθold in environment for T timesteps
4: Compute advantage estimates Â1, . . . , ÂT
5: end for
6: Optimize surrogate L wrt θ, with K epochs and minibatch size M ≤ NT
7: θold ← θ
8: end for

2.5 Phasic Policy Gradient (PPG)

Reinforcement learning (RL) methods, particularly actor-critic algorithms, have shown
promising results in various domains [4, 5, 13, 14, 19–22]. A key challenge in these
methods is to balance the competing objectives of the policy and value functions. Cobbe
et al. [13] introduced Phasic Policy Gradient (PPG), a new method that addresses this
challenge by separating policy and value function training into distinct phases.

In the actor-critic framework, sharing parameters between the policy and value function
networks presents distinct advantages. Notably, the optimization of each objective can
benefit from the features learned by the other. However, this shared approach also
introduces challenges, such as balancing the competing objectives of the policy and
value function. PPG addresses this issue by decoupling the training of the policy and
value function objectives. This reduces interference between the two objectives and can
improve sample efficiency, as the optimization of the value function typically tolerates
higher levels of sample reuse than policy optimization.
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Figure 2.1: Phasic Policy Gradient (PPG) uses disjoint policy and value networks to
reduce interference between objectives. The policy network includes an auxiliary value

head. Figure taken from the Cobbe et al. [13]

The policy phase in PPG is similar to Proximal Policy Optimization (PPO) [14], a widely
adopted RL algorithm known for its stability and performance. During the policy phase
the policy network is optimized using the clipped surragate objective and the value
network is trained by optimizing

Lvalue = Êt

[1
2

(
V θ(st)− V̂ t

targ

)2
]

(2.2)

where V̂ targ represents the value function targets. Both Â and V̂ targ are computed
using Generalized Advantage Estimation (GAE) [23].

However, the key difference in PPG is the introduction of periodic auxiliary phases,
where features from the value function are distilled into the policy network, improving
future policy phases.
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In the auxiliary phase, the policy network is optimized with a joint objective that
incorporates an arbitrary auxiliary loss and a behavioral cloning loss:

Ljoint = Laux + βclone · Êt [KL[πθold(·|st), πθ(·|st)]] (2.3)

where πθold represents the policy right before the auxiliary phase begins. The term inside
the expectation, KL[πθold(·|st), πθ(·|st)], represents the Kullback-Leibler (KL) divergence
between the old policy (πθold) and the new policy (πθ), given the state st. The KL
divergence is used to quantify how much the policy has changed during the update. A
smaller KL divergence indicates that the updated policy is not drastically different from
the old policy, which is desirable to maintain stability during learning.

The hyperparameter βclone controls the trade-off between the auxiliary objective and
preserving the original policy. The auxiliary objective, denoted as Laux, can be any
desired auxiliary objective. It can be seen as the phase where features from the value
function are distilled into the policy network. Specifically, we define Laux as:

Laux = 1
2 · Êt

[(
V θπ(st)− V̂ t

targ

)2
]

(2.4)

where V π
θ represents an auxiliary value head of the policy network, as depicted in

Figure 2.1.
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Algorithm 2.2 Phasic Policy Gradient (PPG)
1: for phase = 1, 2, . . . do
2: Initialize empty buffer B

3: for iteration = 1, 2, . . . , Nπ do
4: Perform rollouts under current policy π

5: Compute value function target V̂ t
targ for each state st

6: for epoch = 1, 2, . . . , Eπ do
7: Optimize Lclip + SS[π] w.r.t. θπ

8: end for
9: for epoch = 1, 2, . . . , EV do

10: Optimize Lvalue w.r.t. θV

11: end for
12: Add all (st, V̂ t

targ) to B

13: end for
14: Compute and store current policy πθold(·|st) for all states st in B

15: for epoch = 1, 2, . . . , Eaux do
16: Optimize Ljoint w.r.t. θπ, on all data in B

17: Optimize Lvalue w.r.t. θV , on all data in B

18: end for
19: end for

PPG has demonstrated improved sample efficiency compared to a PPO baseline across
various tasks and environments [14]. The algorithm mitigates the interference between
the policy and value function objectives while still sharing representations, and optimizing
each with the appropriate level of sample reuse.

2.6 Reinforcement Learning from Human Preferences

Learning from human preferences can be inefficient in reinforcement learning (RL)
systems, as they require extensive experience, and human interactions are expensive.
To address this issue, researchers have explored ways to decrease the feedback required,
resulting in several orders of magnitude decrease. One such approach is proposed by
Christiano et al. [19], who fit a reward function from human feedback and then optimize
that function in deep RL. Their algorithms focus on fitting a reward function to human
preferences while training a policy to optimize the predicted reward function.

Christiano et al. [19] demonstrate the effectiveness of their approach in the Arcade
Learning Environment [24] using Atari games and the physics simulator MuJoCo [22] for
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robotics tasks. They show that a small amount of feedback is sufficient to learn RL tasks
without a reward from the environment, using only the predicted reward. They do this
by using a human’s preference between trajectory segments. A trajectory segment is a
sequence of observations and actions, σ = ((o0, a0), (o1, a1), . . . , (ok−1, ak−1)) ∈ (O×A)k.
For example, σ1 ≻ σ2 indicates the human preferred trajectory segment σ1 to trajectory
segment σ2.

To interpret a reward function estimate r̂ as a preference-predictor, Christiano et al. [19]
assume that the human’s probability of preferring a segment σi depends exponentially
on the value of the latent reward summed over the length of the clip:

P̂ (σ1 ≻ σ2) = exp
∑

t r̂(ot
1, at

1)
exp

∑
t r̂(ot

1, at
1) + exp

∑
t r̂(ot

2, at
2) . (2.5)

They choose r̂ to minimize the cross-entropy loss between these predictions and the
actual human labels:

loss(r̂) = −
∑

(σ1,σ2,µ)∈D

µ(1) log P̂ (σ1 ≻ σ2) + µ(2) log P̂ (σ2 ≻ σ1). (2.6)

This approach follows the Bradley-Terry model for estimating score functions from
pairwise preferences [25]. It can be understood as equating rewards with a preference
ranking scale analogous to the famous Elo [26] ranking system developed for chess.
Their algorithm incorporates several modifications to this basic approach, which early
experiments discovered helpful, such as fitting an ensemble of predictors, using a fraction
of the data as a validation set for each predictor, and assuming a 10% chance that the
human responds uniformly at random.

The overall process comprises three primary components. In the first component, the
policy π interacts with the environment to generate a set of trajectories, during which
it receives predicted rewards from the predictor network. These predicted rewards are
then utilized to update the policy using Advantage Actor-Critic (A2C) [20]. The second
component involves querying a human for preferences on pairs of segments derived
from the trajectories produced by the first component. In the third component, these
preferences are employed to train the predictor network for improved future reward
predictions. Though these components are distinct, it’s crucial to note that they operate
asynchronously. This setup allows the policy π to continually update itself as preferences
are gathered and used to train the predictor network.

However, while human feedback recently has been used to optimize deep learning models,
it has only been applied to simple environments [19, 27, 28]. By contrast, the challenging
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Minecraft environment [6] makes learning particularly difficult due to using a human
interface, much larger observation and action spaces, and increased complexity because
of the procedurally generated Minecraft world.

The incorporation of human preferences to fine-tune a language model for summarization
and style continuation tasks was examined by Ziegler et al. [21], which represents a step
towards the application of these techniques in more real-world contexts compared to
Christiano et al. [19]. We continue to argue that Minecraft is an even more difficult
domain, and like Ziegler et al. [21], we leverage a pre-trained model and fine-tune it using
human judgment and sample effective algorithms.



Chapter 3

Approach

This chapter provides an overview of the Human-Guided Phasic Policy Gradient algorithm
and its application in training an agent capable of performing complex tasks in Minecraft’s
interactive game environment. The chapter outlines the methodology used to combine
human preference learning and the Phasic Policy Gradient algorithm to achieve efficient
training. The primary objective is to train an agent proficient in the human-like task of
building a village house in Minecraft, utilizing a combination of behavioral cloning and
reinforcement learning techniques.

3.1 Overview

This work introduces the Human-Guided Phasic Policy Gradient (HPPG). This novel
algorithm synergizes human preference learning and Phasic Policy Gradient, aiming to
efficiently train an agent capable of performing complex tasks in rich environments. We
test our algorithm in Minecraft’s challenging and interactive game. We use the MineRL
project gym environment to fine-tune a Video Pre-Trained (VPT) foundation model
through behavioral cloning (BC) using labeled expert demonstrations. We then apply our
reinforcement learning (RL) algorithm for further refinement. Our primary objective is
to train an agent proficient in the human-like task of building a village house in Minecraft
using a combination of BC and RL.

Due to computational constraints, we focus on this single task out of the four available
tasks in the accompanying datasets, intending to complete the training using a mid-grade
consumer GPU. We employ imitation learning in the form of BC to initially fine-tune the
model for the task, using the BuildVillageHouse dataset and random search to identify
the most promising hyperparameters. Upon completing the behavioral cloning stage, we

19
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collect human preferences using the current model. Furthermore, the collected preferences
are used to pre-train the Reward Predictor for more accurate initial rewards when RL
fine-tuning. Finally, the model is further fine-tuned following the HPPG algorithm
leveraging the predicted rewards from the pre-trained reward predictor.

In contrast to traditional reinforcement learning, where the environment supplies a reward
signal, we assume the presence of a human overseer capable of expressing preferences
between trajectory segments. A trajectory segment is a sequence of observations and
predicted rewards, σ = ((o0, r̂0), (o1, r̂1), ..., (ok−1, r̂k−1)) ∈ (OxR̂)k. We write σ1 ≻ σ2 to
indicate that the human preferred trajectory segment σ1 to trajectory segment σ2. In
Figure 3.1, an overview of the architecture is illustrated. The HPPG algorithm operates
as follows:

• The agents explore the environment under the current policy, gathering memories
(trajectories).

• The reward predictor network predicts a surrogate reward r̂, supplanting the
environment’s rewards.

• Following the rollout, the policy and disjoint value network are trained using
Proximal Policy Optimization (PPO).

• The trajectories {τ1, . . . , τ i} are divided into fixed length segments {σ1, σ2, . . . , σk}
and added to segment list.

• We select random pairs of segments (σ1, σ2) and query a human for preference.

• The preference is stored as a triple (σ1, σ2, µ) in the preference queue.

• We update reward predictor on preferences to give better future rewards.

• We optimize both the Ljoint and Lvalue losses during auxiliary phase.
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Figure 3.1: Architecture of the Human-Guided Phasic Policy Gradient algorithm,
highlighting the interactions between the environment, agents, reward predictor network,

and the human overseer.

3.2 Fine-tuning with Behavioral Cloning

Fine-tuning with standard behavioral cloning provides a better starting point or initial-
ization for RL fine-tuning [4]. Furthermore, when fine-tuning for a specific task when
using human feedback, it could improve feedback efficiency [28]. One could look at it
as priming the network for the given task. Unfortunately, early experiments using the
hyperparameters provided in Baker et al. [4] did not provide excellent results for our task,
as seen in the smoothed training loss from the training run in Figure 3.2. The training
loss indicated that the model never learned to perform our tasks. This was confirmed by
evaluating the agent by observation, which seemed to have forgotten almost all primary
navigation. The agent displayed erratic behavior by moving the camera seemingly at
random, dropping items from the inventory, and placing blocks at every timestep.
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Figure 3.2: Training loss on the BuildVillageHouse dataset, using hyperparameters for
behavioral cloning from the OpenAI VPT paper [4]. The hyperparameters used were
epochs 2, batch size 16, learning rate 0.000181, and weight decay 0.039428 with Adam

optimizer Kingma and Ba [29]

We then split the datasets into training and validation sets and randomly searched for
the most promising hyperparameters. In addition to the standard behavioral cloning loss,
we introduce a Kullback-Leibler [30] (KL) divergence and gradient clipping to control
eventual exploding gradients and catastrophic forgetting. The foundation model was
trained on enormous amounts of data for general Minecraft gameplay, which includes
gathering logs, ore, and crafting necessary for the early game in a Minecraft survival world.
In contrast, in our tasks, the player spawns with the required items to complete the task in
the inventory. We aim to make minor updates to the policy and slowly converge towards
a policy where the agent places items from the inventory sequentially but still knows
how to navigate the environment. We fine-tune the foundation model by minimizing
the negative log-likelihood of actions predicted by the model based on the observations
using the datasets described in chapter 2 and their ground truth labels. For a particular
trajectory of length T , we minimize the objective function, which combines the negative
log-likelihood and the Kullback-Leibler divergence between the action distributions of
the fine-tuned model and the original model, weighted by the hyperparameter λ. The
objective function is given as:
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min
θ

T∑
t=1

(− log πθ(at|o1, . . . , ot) + λ ·KL(πθ(at|o1, . . . , ot)||πoriginal(at|o1, . . . , ot)))

.

By minimizing this objective function, we aim to improve the model’s performance on
the task while maintaining its generalization capability by constraining the divergence
from the original model. The model trained with the hyperparameters is provided in
Table 3.1

Hyperparameter Value
Learning Rate 1× 10−6

Weight Decay 0.01
Batch Size 32

KL Loss Weight(λ) 0.5
Max Grad Norm 5.0

Epochs 1

Table 3.1: Hyperparameters used for fine-tuning with behavioral cloning, found using
multiple runs of random search on the BuildVillageHouse dataset.

The random search was run twice with different hyperparameter spaces. First, a small
run of 2000 batches for each iteration was completed with a broad range of learning rates.
From this initial run, we could identify that learning rates of 1e-3 and 1e-4 were too large,
confirming the suspicion that the hyperparameters during the training run (Figure 3.2)
were not optimal for the BuildVillageHouse task. After removing the mentioned learning
rates from the hyperparameter space, a second random search with a length of 5000
batches and 15 iterations found that the hyperparameters in Table 3.1 had the best
validation loss.

In addition to the hyperparameters, we used the ReduceLROnPlateau1 learning rate
scheduler with a factor of 0.1 and patience of 50, along with the Adam optimizer [29].
The scheduler is stepped every 100 batches. This implies that if the training loss has
plateaued over 5000 batches (50 · 100), the learning rate will be reduced by a factor of
0.1. The ReduceLROnPlateau was also initialized with a minimum learning rate of 1e-7,
meaning the learning rate can never go below this level. As the training is only run for
one epoch (iteration over the training dataset once), validation is skipped.

The training losses for our runs with the optimal hyperparameters are shown below in
Figure 3.3. We performed three training runs, one run with an LR scheduler, then one
without a scheduler. Finally, we performed one training run with an LR scheduler where

1https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.ReduceLROnPlateau.html

https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.ReduceLROnPlateau.html
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all parameters were frozen except for the π head and the last layer. One of the runs was
stopped early by mistake. Interestingly, it was this model that showed the most promise.

Figure 3.3: Behaviour cloning fine-tuning loss for the 71M parameter foundation model
on the BuildVillageHouse dataset, using hyperparameters in Table 3.1 found using
random search. All three runs use the same hyperparameters and Dataset, which is the
train split of the BuildVillageHouse dataset Table 2.2, which consists of 80% of the data,
randomly selected. The runs with scheduler used the ReduceLROnPlateau scheduler

with factor 0.1 and patience 50, stepped every 100 batches.

3.3 Fine-tuning with Reinforcement Learning

This section explains how we extend the Phasic Policy Gradient algorithm with human
preferences, which we call Human-guided Phasic Policy Gradient. We start by giving
an overview of the algorithm and some general implementation details related to the
algorithm and the VPT foundation model for Minecraft. Finally, we provide details
on the preference interface in subsection 3.3.2 and the reward predictor network in
subsection 3.3.3, which are both crucial parts of the system.

3.3.1 Human-Guided Phasic Policy Gradient

The HPPG algorithm comprises three phases: the policy phase, the preference phase, and
the auxiliary phase. The policy phase, commonly called the Proximal Policy Optimization
(PPO) phase, is analogous to the PPO algorithm and focuses on optimizing the policy
and value networks. A human overseer evaluates trajectory segments in the preference
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phase, updating the reward predictor network accordingly. Lastly, the auxiliary phase
leverages all data in the auxiliary buffer to update the networks, typically for multiple
epochs. Algorithm 3.1 aims to incorporate a human-in-the-loop approach into the original
PPG algorithm by introducing an additional phase for human preferences.

Algorithm 3.1 Human-Guided Phasic Policy Gradient (HPPG)
1: Initialize preference queue QP

2: Initialize segment queue QS

3: Initialize Preference Interface with QP and QS

4: Initialize Reward Predictor with QP

5: for phase = 1, 2, . . . do
6: Initialize empty buffer Bmem
7: Initialize empty buffer Baux
8: for iteration = 1, 2, . . . , Nπ do
9: Perform rollouts under current policy π and add all memories to Bmem

10: Compute value function target V̂targ for each state st

11: Add all memories to Bmem
12: for epoch = 1, 2, . . . , Eπ do
13: Optimize Lclip + SS[π] w.r.t. θπ

14: end for
15: for epoch = 1, 2, . . . , EV do
16: Optimize Lvalue w.r.t. θV

17: end for
18: Add all (st, V̂targ) to B
19: end for
20: for memory in Bmem do
21: Create fixed-length segments from memory
22: Add segments to QS

23: end for
24: for segment pairs in QS do
25: Query human for preference on random segment pairs
26: end for
27: Train the reward predictor on QP

28: Compute and store current policy πθold(·|st) for all states st in B
29: for epoch = 1, 2, . . . , Eaux do
30: Optimize Ljoint w.r.t. θπ, on all data in B
31: Optimize Lvalue w.r.t. θV , on all data in B
32: end for
33: end for

To optimize memory efficiency, we employ named tuples for Memory and AuxiliaryMem-
ory. The Memory tuple represents a single timestep t in an episode, whereas the
AuxiliaryMemory tuple encompasses values for an entire episode. For the buffers Bmem

and Baux, we utilize a deque, a Python list optimized for data access at its endpoints.
The buffers can be thought of as lists of episodes. Moreover, the segment queue is
implemented as a standard list, enabling easy random segment sampling, while the
preference queue is also a deque.
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Like the PPG algorithm, the HPPG algorithm employs a disjoint value network that we
call the critic, in contrast to other actor-critic algorithms where the actor and critic are
part of the same network. The absence of shared parameters between networks allows for
enhanced sample efficiency by reusing data more frequently. In our implementation using
the VPT models, we initialize two instances of the model, one as the actor and the other
as the critic. Both instances have π and value heads; however, we freeze some parameters
in the critic instance since it is solely used for value predictions and optimized during the
PPO phase. Only the π head is optimized during the PPO phase for the actor instance.

We first resize the environment observation during rollouts to a 128x128 RGB image
as input to the VPT model. Subsequently, we act in the environment based on the
current observation, which is used to calculate log probabilities with the actor and
value predictions with the critic. The reward predictor then estimates a reward for the
observation, and all values are added to a memory appended to a buffer for each timestep,
t, in an episode. Upon completing an episode (either due to the agent dying or reaching
the maximum environment timesteps), we calculate all values for the last observation
and add the episode to a buffer.

Early experimentation with the algorithm showed signs of catastrophic forgetting after
just 1-2 iterations, which we assumed could be because the reward predictor gave bad
rewards in the beginning. We implement a pre-training method to prevent rewards
from not aligning with human preferences at the beginning of training. The pre-training
method collects memories, queries preferences, and trains the reward predictor before
RL fine-tuning using its predicted rewards. To introduce more variation to the segments
and control how many segment pairs are presented in each phase, we introduce a
hyperparameter npairs which controls how many pairs of segments are sampled from the
segment database. This allows us to control the time spent querying the human overseer
instead of using all the segments available, which increases for each episode collected
during rollout.

Policy/PPO Phase

During the policy phase, each episode’s Generalized Advantage Estimation (GAE) is
calculated, and observations, returns, and log probabilities are added to the auxiliary
buffer. Next, a data loader is initialized with these memories, maintaining the sequential
structure of the episode to reconstruct the hidden states during training. This sequential
data form mini-batches looped through to calculate new action log probabilities, entropy,
and value predictions.
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One of the significant challenges encountered in this phase is the reconstruction of hidden
states, which limits the full exploitation of matrix multiplication capabilities in the
PyTorch library. Each observation and action in the mini-batch must be iterated to
calculate log probabilities and new values while updating the hidden state for each
iteration. This constraint slows down the computation process. One solution to this
batch issue is saving the initial hidden states during rollout equal to the minibatch size,
then reconstructing the hidden state to work with the minibatch size during the policy
phase. However, it is uncertain how necessary this step is as Baker et al. [4] does not
provide implementation details, and it might be that reconstruction could be disregarded
completely.

To calculate the policy loss, we first define a few key variables. We start with the new
and old policy ratios, denoted as r[π]. This ratio is calculated by exponentiating the
difference between the new and old log probabilities:

r[π] = exp(log p(θπ)− log p(θπold)) (3.1)

Next, we define the advantage, denoted as Â, and value function targets, denoted as
V̂ targ. Both Â and V̂ targ are computed with GAE [23]. Using these variables, we define
two surrogate losses, Lpol

unclip and Lpol
clipped:

Lπθ
unclip = r[π] · Â (3.2)

Lπθ
clip = clip(r[π], 1− ϵ, 1 + ϵ) · Â (3.3)

Where ϵ is a hyperparameter determining the allowed policy change, the clipped surrogate
objective helps prevent overly large policy updates.

Finally, the policy loss is calculated as the negative expectation of the minimum of
the two surrogate losses, subtracted by the entropy bonus S of the policy scaled by a
hyperparameter βs, and the Kullback-Leibler divergence from the original policy scaled
by a hyperparameter λ:

Lπθ = −min(Lπθ
unclip, Lπθ

clip)− βs · S[π]− λ ·KL(p(θold)||p(θ)) (3.4)
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Note that while the original PPO loss LCLIP is similar to Lclipped, in the policy loss
calculation, we take the minimum of the two surrogate losses, which can be seen as a
more conservative update rule.

In the calculation of the value loss for the critic network, we first establish the notion of
clipped values. The clipped value, denoted by θVclipped , is computed by taking the old
value estimate θVold and adding a clipped difference between the current value estimate
θV and θVold . The clipping is performed within a specified range defined by the variable
’clip’. This operation ensures that the updated value estimate does not deviate too much
from the old estimate. This step is mathematically represented as follows:

θVclipped = θVold + clip · (θV − θVold) (3.5)

With the clipped values computed, we proceed to calculate two types of value losses,
denoted by Lclipped and Lunclipped respectively. The first type, Lclipped, is computed as
the squared difference between the clipped value estimate θVclipped and the GAE:

Lval
clipped = (θVclipped − V̂ targ)2 (3.6)

The second type of value loss, Lunclipped, is the squared difference between the current
value estimate θV and the GAE:

Lval
unclipped = (θV − V̂ targ)2 (3.7)

Finally, the total value loss Lvalue is computed as the maximum of Lclipped and Lunclipped.
This step ensures that the total value loss captures the worst-case scenario between the
two types of losses, promoting more robust learning:

Lvalue = max(Lval
clipped, Lval

unclipped) (3.8)

This method of calculating the value loss for the critic network facilitates more stable
updates, helping to mitigate the high variance often associated with policy gradient
methods.

Interestingly, challenges with the hidden states initially made it impossible to back-
propagate both the actor and critic networks during this phase. However, this issue
was resolved by detaching the reconstructed hidden states. In alignment with the PPG
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algorithm’s standard setting for the policy phase, the policy phase is executed for one
epoch.

Preference Phase

During the preference phase, the algorithm solicits preferences from a human overseer for
fixed-length segments and trains the reward predictor accordingly. This process aims to
better align the predictor rewards with human preferences before the subsequent rollout.
Detailed descriptions of the preference interface and reward predictor can be found in
subsection 3.3.2 and subsection 3.3.3, respectively.

Auxiliary Phase

In the auxiliary phase, we optimize both the Ljoint and Lvalue losses, utilizing all the data
stored in the auxiliary buffer. We generate new value predictions during this phase using
the current policy θπ and the disjoint value network θV.

The joint loss Ljoint is determined by applying the clipped value loss function (refer to
Equation 3.8) to the value predictions obtained under the current policy θπ. This loss
calculation also considers the Kullback-Leibler divergence from the policy saved before
the auxiliary phase.

On the other hand, the value loss Lvalue is updated further by employing the clipped
value loss function on the values predicted under the current disjoint value network θV.

The auxiliary phase is usually run for several epochs in contrast to the policy phase for a
standard PPG implementation [4, 13]. We decided to follow this and choose 5 epochs
based on this information. Conceptually, this phase can be considered the process of
distilling the value function into the policy network, improving the policy’s ability to
approximate the optimal strategy. Furthermore, the hyperparameters chosen were based
on a best-guess approach based on related works and experiences with the model during
behavior cloning. The learning rate was set to the standard learning rate of 2e-5 for
PPO/PPG algorithms when using a KL divergence loss [4].
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Hyperparameter Value
Epochs 1

Auxiliary Epochs 5
Minibatch Size 32

Max Gradient Norm 5
Learning Rate 2× 10−6

Betas (0.9, 0.999)
Gamma 0.99
Lambda 0.95

PPO Clip 0.2
Value Clip 0.2

Beta S 0.01
Iterations 100

Wake cycles pr. Preference 1
Wake cycles pr. Auxiliary 2

Segment Length 100
Rollouts 4

Table 3.2: Hyperparameters for the HG-PPG Algorithm.

3.3.2 Preference Interface

The preference interface allows the human overseer to evaluate and compare trajectory
segments efficiently. The interface displays two randomly selected trajectory segments as
short, looped videos side by side, offering a clear visualization of the agent’s actions in
different situations.
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Figure 3.4: The preference window displaying two segments (σ1, σ2) side by side. Each
game window is in the dimensions of the environment, 360x640. The task is described
in natural language in the title of the window. When the user presses a key, the window
will disappear, and the options for selecting a segment will appear in the command-line
interface. Finally, after a preference is given, the next segment pair in the segment
queue will appear until there are no more segments or max segment pairs are reached.

Upon pressing any key, the video playback window closes, and the human overseer is given
four choices to express their preference in the command line interface (CLI): left video,
right video, equal, or incomparable. These preferences are recorded in the preference
queue as triples (σ1, σ2, µ), where σ1 and σ2 denote the left and right segments, and µ

is the distribution over {1, 2} representing the preferred segment.

When the overseer selects one segment as preferable, µ allocates all its mass to that choice.
If both segments are considered equally preferable, µ is set to a uniform distribution.
In cases where the human deems the segments incomparable, the segment pair is not
included in the preference queue. Therefore, selecting a segment pair as incomparable is
discouraged.

The segment pairs are selected randomly from the segment queue, ensuring a diverse set
of samples for the human overseer to evaluate and allowing for the efficient incorporation
of human preferences into the learning process.

3.3.3 Reward Predictor Network

The Reward Predictor Network is responsible for estimating rewards for observations
from human preferences. The network architecture comprises four Convolutional layers,
with Batch Normalization and Dropout layers inserted between each convolutional layer
to improve stability and reduce overfitting.

The Reward Predictor Network is implemented as two separate classes, the
RewardPredictorCore class and the RewardPredictorNetwork class. The
RewardPredictorCore class is responsible for defining the architecture of the network,
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including the feature extraction and classification stages. The feature extractor consists of
convolutional layers, batch normalization, dropout layers, and ReLU activation functions.
The classifier is composed of linear layers and ReLU activation functions. The network
takes input in the shape of (3, 256, 256), representing the RGB channels and spatial
dimensions of the input image, which are twice the dimensions as the input to the VPT
model after resizing the observation from the environment.

The RewardPredictorNetwork class wraps the RewardPredictorCore and includes ad-
ditional functionality for training, saving, and loading the model. The network employs
the Adam optimizer as it requires little to no hyperparameter-tuning with a standard
learning rate of 0.001 [29]. The train_step method calculates the probability that
one segment is preferred over the other by comparing the sum of rewards (as shown in
Equation 3.10 and Equation 3.11), computes the loss using cross-entropy Equation 3.9,
and performs backpropagation to update the model parameters. Finally, the train

method iteratively applies the train_step method on the preference queue until it is
empty or the maximum number of iterations is reached.

As previously defined, the notation σ1 ≻ σ2 indicates that segment σ1 is preferred over
segment σ2. The loss function for the Reward Predictor Network is the cross-entropy
loss, defined as:

loss(r̂) = −
(
µ(1) log P̂ (σ1 ≻ σ2) + µ(2) log P̂ (σ2 ≻ σ1)

)
, (3.9)

where µ(1) and µ(2) represent the human preference distribution over the two segments,
and P̂ (σ1 ≻ σ2) and P̂ (σ2 ≻ σ1) are the predicted probabilities for the two segments,
calculated as:

P̂ (σ1 ≻ σ2) = exp
∑

r̂(σ1
t )

exp
∑

r̂(σ1
t ) + exp

∑
r̂(σ2

t )
, (3.10)

P̂ (σ2 ≻ σ1) = exp
∑

r̂(σ2
t )

exp
∑

r̂(σ1
t ) + exp

∑
r̂(σ2

t )
, (3.11)

After gathering the initial preferences, we pre-train the network for 200 epochs with
around 1000 preferences. Figure 3.5 shows the loss over epochs in the pre-training of the
network. Previous works had shown to get results on par with using true rewards after
just 5-900 preference queries during training [19], so we chose to pre-train with 1000
preferences in hopes of remedying the catastrophic forgetting experienced.
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Figure 3.5: The loss of the Reward Predictor network over 200 epochs using 1000
initially gathered preferences with a learning rate of 0.001 and the Adam Optimizer.





Chapter 4

Experimental Evaluation

This chapter will present the experimental setup, as well as the experimental results.
Finally, the results are discussed in the analysis section.

4.1 Experimental Setup

The experimental protocol followed in this study revolves around leveraging Behavior
Cloning (BC) and Reinforcement Learning (RL) methods with human preferences to
fine-tune a foundation model for performing house construction tasks in Minecraft.
We implemented our algorithms in PyTorch [31] and Python [32]. We interface with
the MineRL BASALT environment [11] through the OpenAI Gym [8]. Because of
computing constraints, we fine-tune the most miniature model with 71M parameters as
the foundation model, ruling out the 248M and 500M models [4].

We evaluate the models on the BuildvillageHouse-v0 BASALT environment outlined
in chapter 2 and the corresponding dataset described in Table 2.2. The dataset consists
of expert demonstrations by contractors completing the task of building a village house
through videos and ground truth labels. Each episode may span multiple videos, as the
maximum length for a video is 5 minutes, while the length of an episode is 12 minutes
(14400 timesteps). In order to establish the train and validation datasets, we organized
the videos and labels according to their episode ID and selected a random 20% of episodes
for the validation dataset, while the remaining episodes were assigned to the training
dataset.

The dataset provides valuable ground truth data that captures the expertise of human
contractors in building a village house. These expert demonstrations serve as a reference
for training and evaluating the models. In addition, the ground truth labels provide
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information on the correct sequences of actions and placements of blocks to complete the
task successfully.

This task is considered complex due to several challenges, including the sheer size of
the observation and action space. In addition, the agent must stay near the village to
complete the task, navigate potential hazards such as water bodies and aggressive golems,
choose suitable materials to match the village biome and avoid confusion from other
village houses. An example of a human build house can be seen below in Figure 4.1.

Figure 4.1: An example of a human-constructed house. The image is taken from a
video in the BuildVillageHouse Dataset

For the qualitative evaluation of the models after fine-tuning, we assess their capacity
to generate task performances that resemble those of human beings. This evaluation
involves visually inspecting the model’s behavior during house construction tasks and
comparing it to the behavior observed in expert demonstrations. However, for the Reward
Predictor, a qualitative evaluation is not possible.

Quantitative evaluation of the models is challenging when an observable environmental
reward is unavailable. Instead, we rely on alternative quantitative measures for building
a house, such as the number of blocks placed during an episode. By comparing the
number of blocks placed after fine-tuning with BC to the number before fine-tuning, we
can assess the impact of the fine-tuning process. Additionally, we evaluate the reward
predictor by predicting rewards on episodes of expert demonstrations and comparing
them to rewards predicted for agents exploring the environment.

The experimental setup included an annotation experiment to gather initial preferences
for training the reward predictor network. The human overseers were given instructions
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and guidelines to assess their preferences for different segments. These preferences were
collected after fine-tuning with BC and served as ground truth for training the reward
predictor network.

Further details of the instructions provided to the human overseers and the annotation
experiment can be found in Appendix A.

4.2 Experimental Results

Post BC fine-tuning, the model showed a proclivity for placing blocks sequentially
indicative of house construction. Unlike the foundation model, which primarily focused
on material collection and crafting, the fine-tuned model demonstrated a range of
behaviors necessary for house construction. Notably, the model showed competence in
clearing land plots, increased block-placing frequency, and remained near the village,
suggesting its understanding of the task location. Additionally, the model often employed
a human-like building technique involving jumping and placing a block underneath
itself. Compared to the foundation model, the fine-tuned model performs the task better
after assessing the agent in the environment for several episodes and during preference
collection.

We showed 10 videos of the foundation model and the post BC fine-tuned model to a
non-expert human to evaluate the performance. The experiment was performed by first
showing a video of a human performing the task of building a house, taken from the
dataset for the evaluator to get idea of the task. Then, the evaluator was shown a video
of the foundation model, followed by a video of the fine-tuned model and asked to write
down if the second video performed the task better or worse than the first video. This
was done for a total of 10 rounds and we found that the fine-tuned model won all ten
rounds using an unbiased non-expert evaluator.

However, there is still a long way to go to perform at a human level. For example,
the model lacks an understanding of different materials, often leading to the model
getting stuck by placing cobwebs that limit the agent’s movement when standing inside
them. Once the agent is stuck inside a cobweb, it often fails to recover. It also fails to
understand that water is a hazard, sometimes leading to its death by drowning while
building underwater. The model can also be seen moving to another part of the village
to start a new building project during an entire episode. Another seen "failure" is the
model constructing a wall around itself, effectively making it unable to move unless it
starts breaking the walls down again (which it sometimes does).
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After incorporating Behavior Cloning (BC) during the fine-tuning process, the reward
predictor network was trained using approximately 1000 preferences (σ1, σ2, µ) over
200 epochs. The evaluation of the network involved predicting rewards on expert
demonstrations. Our underlying assumption was that a well-performing reward predictor
network would assign higher rewards to expert demonstrations compared to an agent
operating at a sub-human level.

However, when we employed the reward predictor network to predict rewards based on
observations from the agent after BC fine-tuning and expert demonstrations, we observed
a strong bias toward assigning negative rewards, seen in Figure 4.2. This outcome further
reinforced our initial observation during early RL fine-tuning experiments, indicating
that the predicted rewards did not align with human preferences or correspond to the
"true" reward.

Figure 4.2: These figures show the predicted reward over an episode for observations
from an expert demonstration and the agent after fine-tuning with behavioral cloning.
(left) The predicted reward over an episode for an expert demonstration. (right) The
predicted reward over an episode of the agent after fine-tuning with behavioral cloning.
The Reward Predictor Network is seen to be heavily biased toward predicting negative

rewards after training on 1000 preferences for 200 epochs.

While gathering preferences for pre-training, the overseer encountered challenges in
selecting one segment over the other due to their comparable performance. This sentiment
is reflected in the statistical analysis of the preferences, as shown in Table 4.1, where
nearly 70% of the preferences were labeled as having no preference (equal).

Preference Type Count Percentage (%)
One Segment Preferred 263 26.3
No Preference 698 69.8
Incomparable 39 3.9

Total 1000 100

Table 4.1: Statistics showing the count and percentages of the preferences collected
during gathering initial preferences used to pre-train the Reward Predictor Network.
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Consequently, the results from Reinforcement Learning (RL) fine-tuning did not yield
the desired outcomes, as the model exhibited signs of catastrophic forgetting despite
implementing measures to mitigate this issue. Following a few policy updates, the model
completely lost the skills it had acquired during the BC fine-tuning phase. Instead of
performing the intended house construction task, the model displayed a peculiar behavior
characterized by continuously staring at the sky or ground, rotating the camera, and
jumping without any apparent purpose or direction.

4.3 Analysis

The presented results shed light on the achievements and shortcomings of our approach in
developing a Minecraft house-building model through a combination of Behavior Cloning
(BC) and Reinforcement Learning (RL). Furthermore, these findings have implications
for the objectives outlined in the introduction of this thesis, and they provide insights
into the success and failure cases observed during the evaluation.

Regarding BC fine-tuning, the results demonstrate promising progress in acquiring the
necessary skills for the house-building task. While the model did not reach human-level
proficiency, its performance surpassed the foundation model’s, indicating a positive
impact of BC fine-tuning despite the limitations imposed by the available data and
model size. This outcome aligns with our objective of improving the model’s performance
through BC.

In contrast, the outcomes of RL fine-tuning revealed significant challenges and limitations.
Catastrophic forgetting during RL fine-tuning can be a setback, suggesting that the
model lost previously acquired skills. However, it is crucial to note that the primary
reason for this result lies in the inability of the reward predictor network to assign
meaningful rewards. Minecraft’s inherent complexity and expansive state space make
it difficult for the reward predictor network to identify human-preferred observations
accurately. This limitation calls for further exploration of alternative methods, such as
inferring a reward function from expert demonstrations, to address the issue of reward
assignment.

The shortcomings of the reward predictor network may stem from the relatively simplistic
structure of its architecture. Despite past research demonstrating the effectiveness of
similar designs in less complex environments, the intricacy of capturing human preferences
within Minecraft might necessitate more advanced network configurations. Furthermore,
the scope of preferences utilized in this study was relatively narrow, a factor that may have
impacted the network’s performance. Therefore, future explorations should consider a
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more substantial dataset of preferences and experiment with diverse network architectures
to optimize the system’s performance.

Despite the challenges encountered during RL fine-tuning, this thesis provides valuable
insights into the limitations of this approach. The complex nature of the Minecraft task
and environment poses significant hurdles to effectively incorporating human preferences
into the reward function. Nevertheless, these findings pave the way for future research to
explore alternative techniques and address the shortcomings observed in this study.

It is crucial to acknowledge that the effectiveness of the proposed human-guided phasic
policy gradient algorithm is contingent upon its components, with the reward predictor
network identified as the weakest link. The biases observed in the reward predictor
network, leaning towards assigning negative rewards, limit the comprehensive evaluation
of the algorithm. This limitation underscores the importance of rectifying and improving
the reward prediction mechanism in future research endeavors.



Chapter 5

Conclusions

This study aimed to address two primary research questions involving enhancing sample
efficiency in a complex task environment using imitation learning and human feedback
to improve agent performance in an environment without observable rewards. Through
our experiments, we have gained valuable insights in these research directions.

Our approach utilizing behavioral cloning demonstrated several promising results. Our
agent displayed behaviors indicative of a rudimentary understanding of the task and
showed competence in activities necessary for house construction. Notably, a non-expert
human preferred its performance to the foundation model, suggesting that the imitation
learning process yielded substantial improvements.

Despite these achievements, our model is still far from reaching human-level performance.
Furthermore, we have identified several areas where the model’s understanding needs
improvement, such as material discrimination, recovery from certain predicaments, and
overall task efficiency. To answer research question 1, using a KL divergence loss function
when fine-tuning with behavior cloning gives decent results even with limited data and
compute.

We suggested extending the Phasic Policy Gradient algorithm with a stage for human
feedback. The proposed approach is constituent upon its components and is only as
effective as its weakest link. One of the main challenges encountered in this study was
the bias of the reward predictor network towards negative rewards. This outcome may
suggest that the complexity of the network architecture needed to be revised to handle
the expansive state space of Minecraft effectively. Despite these limitations, our work
contributes valuable insights to the existing body of knowledge and opens up several
avenues for future research. Furthermore, the approach and observations from this
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study offer a foundation to develop more sophisticated models capable of handling the
complexity of Minecraft or similar environments.

While the agent’s performance is not yet at the human level, our results signify that
enhancing an agent’s performance in complex tasks is possible using a modest dataset
and constrained computational resources. This study brings us closer to realizing more
efficient and competent AI agents in real-world domains and complex exploration games
and offers exciting opportunities for future research.

5.1 Future Directions

For future work in rewardless environments like Minecraft, we encourage exploring more
sophisticated network designs for the reward predictor and increasing the number of
preferences. In our work, we used a network architecture and amount of preferences
similar to what previous works used in simpler environments without success.

Despite the results of the proposed Human-guided Phasic Policy Gradient algorithm,
we suggest future researchers optimize the efficiency of the preference phase. For
example, we suggest creating an online framework for preference solicitation that could
be run asynchronously from the algorithm. The preference phase in the algorithm could
then train the reward predictor network and not slow down the training by collecting
preferences.

An alternative avenue for future exploration involves pre-training the reward predictor
using the available dataset of expert demonstrations. This approach could yield a reward
that aligns more closely with the "true" reward, significantly reducing the number of
preferences needed during the preference phase. In addition, this strategy could lead to
a more efficient overall system by diminishing the need for human interaction, making it
a promising solution to the challenges encountered in this study.

Future researchers with more computational resources are also encouraged to use the
larger Foundation Models for fine-tuning as these gave better results in previous works
when fine-tuning.



Appendix A

Instructions Provided to Human
Overseers

A.1 BuildVillageHouse

Giving Feedback

You will be repeatedly presented with two video clips of an AI controlling a Minecraft
character. Your task is to evaluate the clips and select the one where better things
happen. Base your decision solely on what you observe in the clips.

Task Description

The objective is to build a house in the style of the village without causing any damage
to the village structures. The house should be in an appropriate location, preferably
next to the path through the village. To assess the performance of the AI, pay attention
to the following aspects in the clips:

What constitutes good and bad behavior

1. House Construction: Evaluate the quality of the house being built. Consider
factors such as completeness, accuracy, and adherence to the village style. Keep in
mind that any house construction is better than no construction at all.

2. Block Placement: Assess the AI’s block placement strategy. Look for patterns
or techniques that indicate competence in house construction. Placing blocks in
a sequential and organized manner, such as in a row or on top of each other, is
preferable to placing blocks far away from each other.
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3. Village Impact: Determine if the AI’s actions have any negative impact on the
existing village structures. Look for any signs of damage or disruption caused
during the construction process. Avoiding accidental destruction or interference
with village structures is important.

4. Location Selection: Evaluate if the AI builds the house in an appropriate
location. Check if it is positioned next to the path through the village, following
the established village layout. The AI should avoid building the house too far away
from the village or in a location that disrupts the village structure.

5. Aesthetics: Consider the overall aesthetics of the house. If the performance in
other aspects is similar, the visually pleasing design may serve as a tiebreaker.
While not the primary focus, aesthetics can provide an additional criterion for
evaluation.

Instructions for giving feedback:

1. Carefully watch both video clips.

2. Compare the content and actions in the clips based on the aspects mentioned
above.

3. Select the number that corresponds to your preference:

• Press 1 if the clip to the left shows better performance.

• Press 2 if the clip to the right shows better performance.

• Press 3 if both clips appear to be the same or if you have no preference.

• Press 4 if you find it difficult to understand or observe the content of the clips.

4. Please note the following:

• Base your evaluation solely on the visual information presented in the clips.

• Do not consider any additional knowledge or context beyond what is shown.

• If both clips look the same to you or you cannot determine a preference, select
option 3 for equal.

• If you find it challenging to understand or observe the content of the clips,
select option 4 for incomparable.

We appreciate your careful evaluation and feedback. Your input will help us assess the
performance of the AI in the given task accurately.



Appendix B

Instructions to Compile and Run
System

The purpose of this appendix is to provide instructions on how to install, compile, and
run the Human-Guided Phasic Policy Gradient system developed in this research, hosted
on the Github repository found at https://github.com/DagValvik/Human-Guided-

Phasic-Policy-Gradient-in-Minecraft.

B.1 Installation and Execution Instructions

Detailed instructions for installing the necessary software and dependencies, setting up
the system, and running the code are provided in the README file in the GitHub
repository. Please follow the instructions in the README for a step-by-step guide on
how to install and execute the system.

B.2 Source Code/Class Structure

The source code is structured into several files and directories for easy readability and
maintainability.

• code/ - Directory containing the main behavior cloning and HPPG code.

• data/ - Directory holding the data. You should download the BASALT dataset
and place your foundation model files here.

• scripts/ - Directory containing utility scripts for downloading and splitting data.
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Each Python file contains relevant comments to explain what each part of the code does.
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