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Abstract

This master thesis focuses on developing an automatic approach to detect corporate
greenwashing. To achieve this, data must be collected, and green claims found from this
data must be fact checked. The first step is to collect data by scraping. The web scrapers
in this thesis were designed to extract comprehensive information about companies from
their websites and reports using two datasets as benchmarks. The Fauna dataset was
scraped using a recursive web scraper that extracted data from sub-pages linked to
each company’s website. The CICERO Shades of Green dataset was scraped using a
scraper that visited each link in the dataset to extract the text from each report made
by CICERO.

The collected datasets underwent preprocessing to ensure compatibility with machine
learning models. The texts scraped from the Fauna dataset were often excessively long
due to the abundance of information on the websites. These texts were summarized
using a Transformer model, and irrelevant texts were manually removed from the dataset.
In the case of the Cicero dataset, text augmentation was applied to expand the dataset
and investigate its impact on model performance.

To address the limited data availability, transfer-learning techniques including zero,
one, and two-shot learning were applied to both the Fauna and Cicero datasets. These
techniques leverage pre-trained models to learn from a small amount of labeled data.
Additionally, fine-tuned models were implemented specifically for the Cicero dataset to
provide a basis for comparison. The trained models achieved superior performance to
the transfer-learning models, suggesting that training large models with limited training
data remains an effective approach.



Acknowledgements

I wish to sincerely thank my supervisor Vinay Setty for his excellent guidance through
the assignment. His knowledge of AI models, natural language processing and claim
detection helped me through many issues. I would never have gotten as far as I did
without his expertise.

iv



Contents

Abstract iii

Acknowledgements iv

1 Introduction 1
1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Approach and Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Related Work 5
2.1 Corporate Greenwashing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Machine Learning for Corporate Greenwashing Detection . . . . . 6
2.2 Multi-Label Text Classification Using Transformers . . . . . . . . . . . . . 7
2.3 Transfer Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3.1 Zero-Shot Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3.2 One-Shot Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3.3 Few-Shot Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Fact checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4.1 Fake News Detection . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5 Green rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.5.1 Fauna . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.5.2 CICERO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.6 Scraping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Approach 15
3.1 Collecting Data from Organizations With a Custom Web Scraper . . . . . 15

3.1.1 Porting the Web Scraper to Python . . . . . . . . . . . . . . . . . 16
3.1.2 Expanding the Scraper . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 Automating Green Impact Identification Using Machine Learning . . . . . 19
3.2.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.2 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.3 Categorizing the Dataset . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.4 Balance the Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2.5 Summarizing Scraped Text . . . . . . . . . . . . . . . . . . . . . . 24

v



3.2.6 Manually Checking the Texts . . . . . . . . . . . . . . . . . . . . . 24
3.2.7 A Multi-Label, Zero-Shot Learning Approach . . . . . . . . . . . . 25

3.3 CICERO Shaded of Green . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3.1 Scraping the Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3.2 Extracting Relevant Text . . . . . . . . . . . . . . . . . . . . . . . 28
3.3.3 Balance the Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3.4 Data Augmentation and Undersampling . . . . . . . . . . . . . . . 30
3.3.5 Correcting Texts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3.6 Supervised Training of the Dataset . . . . . . . . . . . . . . . . . . 32
3.3.7 Transfer Learning on the Cicero Dataset . . . . . . . . . . . . . . . 36

4 Experimental Evaluation 39
4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.1.1 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.1.2 Trained Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.1.3 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.1.4 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2.1 Multi-Label, Zero-Shot Learning on Fauna Dataset . . . . . . . . . 43

4.3 Multi-Class Classification on Cicero Dataset . . . . . . . . . . . . . . . . . 44
4.3.1 Trained Models on Cicero Data . . . . . . . . . . . . . . . . . . . . 44
4.3.2 Transfer Learning Models (Zero-Shot, One-Shot, and Few-Shot)

on the Cicero Dataset . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.3.3 Overall Implications of Results on Cicero Data . . . . . . . . . . . 49

5 Conclusions 51
5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.3 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

A Sample Appendix Contents 55
A.1 Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Bibliography 57



Chapter 1

Introduction

1.1 Background and Motivation

Greenwashing is a broad term. In general, it covers the organization’s misleading
information and communication on the performance of environmental public image.
Corporate greenwashing refers to the act of making false or exaggerated environmental
claims to improve a company’s image or reputation. In today’s society, environmental
concerns are a big factor for consumers in their decision-making when buying products. In
2019, Accenture [1] conducted a survey where 72% claimed to buy more environmentally
friendly products than they did five years ago. This causes an increase in the advertising
of sustainable products. Many of these green claims are overstated or falsified. In, [2]
greenwashing is defined as the practice of misleading consumers through unsubstantial,
false, or vague sustainability claims. This kind of disinformation affects consumers,
giving companies an edge in the market they should not have. In other words, unfair
marketing can cause consumers to lose their trust in the green market. Another impact
of greenwashing is that accurate measurement of environmental performance is impeded.
So not only are the companies worse for the environment than they are claiming, but they
are also hampering the research on the environment, which is an important key to saving
the world. These are some aspects of why it’s important to investigate greenwashing and
hold companies accountable for their green claims. The consequences of greenwashing
can be serious, both for consumers and for the environment.

Greenwatch [3] claims that one of the challenges when detecting greenwashing is the
amount of communication channels organizations use to convey their performance on
Sustainable Development Goals (SDG). These claims are mostly published on websites,
reports, and social media. In Norway, there could realistically be a few hundred orga-
nizations worth investigating for greenwashing. When so many organizations have so

1



2 Chapter 1 Introduction

many channels to search for information, it’s really difficult and time-consuming for a
person to manually find green claims. This is one of the motivations for developing an
automatic detector of green claims.

This master’s thesis focuses on investigating techniques for identifying green claims
across various communication channels and handling large volumes of data. The primary
objective is to explore and develop methods that can effectively detect environmentally
friendly assertions made by companies across diverse platforms, mainly websites and
reports. By addressing the challenges posed by the sheer volume of data available,
the thesis aims to contribute to developing an automatic solution to detect corporate
greenwashing.

The thesis will explore various approaches for extracting the data, Additionally, this
thesis will analyze different models and learning techniques. The research endeavor
encompasses the utilization of the newest AI models such as ChatGPT, including the latest
advancements in high-performance Transformer models. These cutting-edge models
serve as the foundation for exploring innovative techniques and methodologies.

1.2 Objectives

This thesis will implement models and solutions that can be helpful to detect greenwashing.
After the approach and results are discussed, the thesis will try to discuss the following
research questions.

• Data Collection and Web Scraping

– RQ1: What datasets currently exist for greenwashing detection and what is
needed?

• Multi-class and Multi-label Classification

– RQ2: Can greenwashing detection be modelled as a multi-class and multi-label
classification task.

• Model Performance Analysis

– RQ3: Which are the best suitable Transformer-based models for greenwashing
detection task.
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1.3 Approach and Contributions

Detecting greenwashing using machine learning is a new research area that has gained
significant attention in recent years. The task of detecting greenwashing refers to
distinguishing between misleading or false green claims from genuine environmentally
friendly initiatives. With a machine learning approach, this means finding these claims
automatically and then fact check them. To find these claims automatically, data
must be collected, mainly by using web scraping methods. Data can be collected by
programmatically extracting information from websites, such as corporate sustainability
reports, press releases, product descriptions, and social media platforms. Web scraping
allows for systematic and large-scale data collection from diverse sources. The aim is for
this data to be used as input from a machine learning model to find a green claim. With
this data and labeled datasets, machine learning models can be trained to learn to find
green claims.

The challenges with this approach are many. Firstly, there is a small amount of labeled
data that can be used. Also, labeled data is often very generalized, which can pose
challenges when dealing with specific and nuanced claims. The existing labeled datasets
may not cover the full range of deceptive practices and tactics employed by companies
engaging in greenwashing. Consequently, ML models trained on such data may struggle to
accurately detect and classify more subtle or context-dependent instances of greenwashing.
The second challenge is that when the data is collected, there are usually a huge amount
of text. Models designed for text processing often face limitations when handling large
amounts of text, leading to performance degradation as the text size increases. Therefore,
methods of reducing the size of the data must also be explored.

Let’s take the example of a fictional company called ”EcoTech Solutions” that claims to
be an eco-friendly technology company. They claim that their computers are made of
hundred percent recyclable products. This is stated in the product page of the computers.
In a general case, there is no way of knowing where this information is, so all text from
the web-site must be collected. Suppose the collected text has a total of 5,000 words
from "EcoTech Solutions," but the model is only capable of handling a maximum of
2,000 words. In this scenario, the text must be summarized down to 2,000 words while
ensuring that the crucial information about the green claim is preserved. If the model
is well-trained, it can identify the claim regarding their computers, which can then be
subjected to fact-checking.

This thesis utilizes analysis of Fauna and Cicero as the foundation for data collection
and machine learning techniques, aiming to identify and detect corporate green claims.
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Fauna is a company that rates companies in the Norwegian market based on certain
criteria. This thesis has tried to develop an automated solution for rating companies
based on information extracted from their respective websites. This process involves
scraping information from various websites and subsequently condensing the extracted
text into a manageable size for machine learning models. Clustering was used to group
the companies because many of them shared criteria. Then a multi-label classification
technique was used to predict what companies fulfilled certain criteria.

CICERO is a center for climate research. They have published research, ”Shades of
Green”, where companies are classified based on environmental risks and ambitions of
companies. The arguments for each classification are published in reports. This dataset is
scraped and utilized for fine-tuning and training transformer models, as well as utilizing
transfer learning techniques on the biggest AI models.

1.4 Outline

In this thesis, the following chapters present a comprehensive exploration of the main
points and structure of the research:

• Related Work

– This chapter provides an overview of previous studies and works related to
the topic of the thesis. It discusses similar research endeavors and establishes
the theoretical background necessary to understand the thesis.

• Approach

– This chapter details the methodology and approach employed in the thesis. It
covers aspects such as data scraping techniques, implementation of models,
and any other relevant procedures utilized during the research.

• Evaluation

– This chapter presents the models used in the thesis, describes the dataset
utilized and analyzes the results obtained from the experiments. It offers a
comprehensive evaluation of the implemented models and their performance.

• Conclusion

– This chapter summarizes the main findings of the research, discusses the
implications of the results, and provides recommendations for future work.
It concludes the thesis by highlighting the contributions made and their
significance in the broader context of the research field.



Chapter 2

Related Work

Woloszyn et al. [4] states that from a computer science perspective, detecting greenwashing
automatically is a problem that is yet to be solved. This is because it’s an area of research
that is relatively new and underexplored. However, detecting and fact-checking fake news
is a similar problem, where tools have been made to detect false claims. This chapter
will discuss some of the challenges to automatically detect greenwashing, approaches that
already have been tried, and some theory needed to understand the thesis.

2.1 Corporate Greenwashing

Corporate greenwashing is a phenomenon where companies engage in misleading or
deceptive environmental claims to improve their public image and attract customers
who are concerned about environmental issues. It is a growing concern, as consumers
increasingly prioritize environmentally sustainable products and services, and companies
seek to capitalize on this trend.

terraChoice [5] analyzed 5,296 environmental claims made by 1,018 consumer products in
the United States and Canada. The study found that more than 95% of the products made
at least one false or misleading environmental claim. This suggests that greenwashing is
a widespread problem and that consumers may be exposed to misleading information
about the environmental impact of the products they buy.

Furlow [6] investigated the prevalence of greenwashing in the hotel industry. The
study found that many hotels engage in greenwashing by making vague or misleading
environmental claims and that this can lead to consumer skepticism and a loss of trust
in green marketing.

5



6 Chapter 2 Related Work

2.1.1 Machine Learning for Corporate Greenwashing Detection

Machine learning has the potential to aid in detecting greenwashing, but there are
limitations to its effectiveness in doing so. One challenge is the limited availability of
data to train machine learning algorithms. As environmental claims can be subjective,
determining what constitutes greenwashing is difficult, and labeling data accurately can
be a challenge. Machine learning algorithms may not be able to detect subtle forms of
greenwashing, such as over-generalization or vagueness, which can make it challenging to
identify greenwashing effectively.

One notable limitation is the limited amount of research available in the field. Detecting
greenwashing automatically involves two essential steps: first, identifying the claim and
secondly verifying it. Unfortunately, this thesis did not discover any relevant research
addressing the first step, which focuses on claim identification. However, a research paper
was found that specifically tackles the latter challenge of claim verification.

Diggelmann et al. [7] presents a new dataset designed to support the fact-checking of
real-world climate claims. The authors note that while climate change is a pressing issue,
it can be difficult for non-experts to verify the accuracy of claims made by public figures
and organizations.

To address this issue, the authors developed a dataset of real-world climate claims,
sourced from publicly available documents and statements made by public figures and
organizations. The dataset includes 9,323 unique claims, covering a range of topics
related to climate change, such as the causes of climate change, the impacts of climate
change, and potential solutions.

The authors also conducted a preliminary evaluation of the dataset, using a set of baseline
models to assess the difficulty of fact-checking the claims. They found that the dataset
poses significant challenges for fact-checking, due to the complexity of the language used
and the diversity of the topics covered.

The authors note that the Climate-Fever dataset can be used to support the development
of new fact-checking models and tools, which could help to improve the accuracy of
information about climate change. By providing a large and diverse dataset of real-world
climate claims, the authors hope to facilitate the development of new approaches to
fact-checking that are better able to handle the complexity of climate-related information

To address the challenge of overcoming the first challenge of identifying green claims,
this thesis will explore some research and theory explained below.
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2.2 Multi-Label Text Classification Using Transformers

Transformers have become a popular tool for natural language processing (NLP) tasks,
including multi-label classification. They work by using a self-attention mechanism to
process input sequences, which allows them to learn complex relationships between words
and capture long-term dependencies in the data. This makes them particularly effective
for handling large datasets with complex input structures, such as text data.

A paper that has used transformers for multi-label classification is Liu et al. [8]. The
authors achieved state-of-the-art performance on several benchmark datasets, including
the Amazon-670K1 and Wiki-500K2 datasets, which contain text reviews labeled with
multiple topics. On the Amazon-670K dataset, their model achieved a micro-F1 score of
87.18%, outperforming the previous state-of-the-art model by over 1 percentage point.
On the Wiki-500K dataset, their model achieved a micro-F1 score of 95.48%, again
outperforming the previous state-of-the-art model by over 1 percentage point.

In Bhavana R and Prabhu [9], the authors fine-tuned the BERT transformer model
for multi-label text classification and achieved state-of-the-art performance on several
benchmark datasets, including the Reuters-215783 and OHSUMED datasets4. On the
Reuters-21578 dataset, their model achieved a micro-F1 score of 94.50%, outperforming
the previous state-of-the-art model by over 1 percentage point. On the OHSUMED
dataset, their model achieved a micro-F1 score of 57.53%, outperforming the previous
state-of-the-art model by over 3 percentage points.

Overall, these papers demonstrate the effectiveness of transformers for multi-label classifi-
cation tasks and the potential of deep learning approaches for natural language processing.
The ability of transformers to learn complex relationships between words and capture
long-term dependencies in the data makes them a powerful tool for handling large and
complex datasets in NLP tasks.

2.3 Transfer Learning

Transfer learning is a technique in machine learning that involves leveraging the knowledge
learned from one task to improve performance on a related task. It is particularly useful
when there is a limited amount of labeled data available for the task at hand, as it allows
for the model to learn from a larger dataset that is related to the target task. With

1https://www.kaggle.com/c/extreme-classification-amazon
2http://manikvarma.org/downloads/XC/XMLRepository.html
3https://archive.ics.uci.edu/ml/datasets/reuters-21578+text+categorization+collection
4http://disi.unitn.it/moschitti/corpora.htm

https://www.kaggle.com/c/extreme-classification-amazon
http://manikvarma.org/downloads/XC/XMLRepository.html
https://archive.ics.uci.edu/ml/datasets/reuters-21578+text+categorization+collection
http://disi.unitn.it/moschitti/corpora.htm
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the increasing availability of large-scale pre-trained models such as BERT, GPT-3, and
Flan-T5, it has become easier to leverage these models as a starting point for various
downstream tasks. These pre-trained models are trained on massive amounts of data and
can capture a wide range of contextual information, which makes them highly effective
for transfer learning. Brown et al. [10] has shown that large language models can perform
competitively on these tasks, with way less data than is required by smaller models.

Transfer learning can be categorized into several different types, including zero-shot
learning, one-shot learning, and few-shot learning. Each of these approaches involves
different levels of prior knowledge and labeled data available for the target task. Examples
with classes of dogs and cats will be utilized to illustrate the distinctions among zero-shot,
one-shot, and few-shot learning.

2.3.1 Zero-Shot Learning

Zero-shot learning is a type of transfer learning where a model is trained to recognize
objects or concepts that it has never seen before. This is done by leveraging the knowledge
learned from a related task or dataset and using it to make predictions about novel objects
or concepts. The model is given a set of classes to predict and then asked to classify a
text based on only prior knowledge. An example prompt can be seen in Figure 2.1.

Figure 2.1: Example prompt of zero-shot learning

2.3.2 One-Shot Learning

One-shot learning is a type of transfer learning where a model is trained to recognize
new objects or concepts with only one or a few examples. This is done by leveraging
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the knowledge learned from a larger dataset of related objects or concepts and using it
to make predictions about new examples with limited labeled data. The model is given
a set of classes to predict as well as one example from each class. Therefore the model
predicts on mostly prior knowledge but also utilizes some examples to make predictions.
An example of a one-shot prompt can be seen in Figure 2.2.

Figure 2.2: Example prompt of one-shot learning

2.3.3 Few-Shot Learning

Few-shot learning is a type of transfer learning where a model is trained to recognize
new objects or concepts with a small number of examples. This is done by leveraging
the knowledge learned from a larger dataset of related objects or concepts and using it
to make predictions about new examples with limited labeled data. In this example, the
model is given two examples per class and asked to predict what animal the last text
describes Figure 2.3.
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2.4 Fact checking

Fact-checking is the process of verifying the accuracy of claims or statements made by
individuals or organizations. In recent years, the rise of fake news and misinformation
has increased the importance of fact-checking, particularly in the context of social media
and online news sources. Many organizations have emerged to help address this issue,
including Factiverse.

2.4.1 Fake News Detection

Factiverse5 is a fact-checking platform that uses artificial intelligence (AI) to analyze
and verify claims made in news articles and social media posts. The company’s system
is designed to analyze large amounts of data and identify patterns and inconsistencies
that may indicate false or misleading information.

One way that Factiverse has helped to address the issue of fake news is by developing
a system that can identify and flag potentially misleading or false information in news
articles and social media posts. The company’s AI algorithms are designed to analyze
the content of articles and posts, as well as the sources of the information, to determine
the likelihood that the information is accurate.

In addition to using AI, Factiverse also relies on human fact-checkers to review and verify
information. This combination of automated and manual fact-checking helps to ensure
the accuracy of the information presented on the platform.

2.5 Green rating

2.5.1 Fauna

Fauna 6 is a company where users can earn points if they shop from a green brand.
For a brand to be green, it must fulfill certain criteria based on the category of the
brand. A fashion brand has different criteria than a food brand. Fashion has criteria
like ”Sustainable raw materials” and ”Repair for free” while food has ”Local Produce”
and ”Foodbox”. Each criterion is weighted a certain amount based on importance for
the environment. A brand is rated from 0 to 100 by adding up the weights from each
criterion that is fulfilled.

5https://www.factiverse.no/
6https://fauna.eco/

https://www.factiverse.no/
https://fauna.eco/
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Fauna has a dataset of approximately 360 brands that operate in the Norwegian sector.
Every brand where a belonging web page was found is manually rated by using information
from the web page to decide if the green criteria are fulfilled. An example of an entry in
the dataset can be seen in Figure 2.4.

2.5.2 CICERO

Center for International Climate Research (CICERO) has published a report series
CICERO Shaded of Green [11]. The series focuses on assessing the environmental and
climate impacts of various economic sectors and policies, as well as exploring potential
solutions for sustainable development. The series have received several climate bond
awards and external assessment provider awards from investors.

The series covers a wide range of topics, including climate change mitigation and
adaptation, energy production and consumption, transportation, land use and forestry,
and international climate policy. The reports are based on rigorous scientific research
and analysis and aim to provide policymakers and stakeholders with evidence-based
recommendations for achieving a more sustainable and resilient future.

Each assessment is given a rating based on environmental performance. There are five
categories where dark green is best and brown is worse. Each rating and corresponding
criteria can be seen in Figure 2.5. On CICERO’s website, there is a list of public reviews.
All assessments with rating ”dark green, ”medium green” and ”light green” are listed
with the report as a PDF.

2.6 Scraping

Web scraping (also known as data scraping or web harvesting) refers to the process of
automatically extracting data from websites using software tools. This data can be used
for a wide range of purposes, such as research, analysis, and modeling. Web scraping
typically involves using a program to visit one or more web pages, extract the relevant
information from the page, and save it to a local file or database. This information may
include text, images, links, and other data that can be parsed and analyzed by data
scientists. Web scraping is often used by data scientists to collect and analyze data
from a variety of sources, including social media, news websites, e-commerce platforms,
and more. By automating the process of data collection, web scraping can help data
scientists to gather large amounts of data quickly and efficiently, allowing them to focus
on analyzing and interpreting the data.
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Factiverse has made a scraper called ACDC, which is written in JavaScript and Rust.
The scraper collects information from an organization’s web page. The various type of
information collected are called signals. For instance, one signal called ”Accounts” saves
information about the organization’s results such as operating income. In another signal,
”Homepage”, the URL of the organization’s web page is saved as well as the HTML of the
URL. All the signals for an organization are saved as an entry in a MongoDB7 database.

7https://www.mongodb.com/

https://www.mongodb.com/
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Figure 2.3: Example prompt of few-shot learning
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Figure 2.4: Example of an entry in the Fauna dataset

Figure 2.5: Ratings and criterias for CICERO Shades of Green



Chapter 3

Approach

3.1 Collecting Data from Organizations With a Custom Web
Scraper

When researching corporate greenwashing, gathering data is fundamental. Most fre-
quently, organizations put information on their web page. Therefore, building a web
scraper that can collect this information can be a powerful tool to automatically research
an organization. In section 2.6, Factiverse’s ACDC scraper was introduced.

ACDC is written in JavaScript. This scraper will first be ported to Python. Python
has better integration with data analysis tools that helps when analyzing the data that
are being scraped. Python also has more support for web scraping libraries, such as
Beatifulsoup1 which is a great tool to parse scraped text. Also, other problems in this
thesis will be written in Python. The scraper will have better integration with these
problems if it’s ported to Python.

One more downside of the scraper is it doesn’t collect text from the web pages. Only
the HTML of the homepage of each organization is saved. In this research, the text from
every sub-page of the organizations will be needed since there is no way of knowing what
sub-domain an organization can write about sustainability. After porting the basic ACDC

scraper to Python, it will also be extended to collect, parse, and save all text from every
sub-domain linked to the homepage of an organization.

1https://beautiful-soup-4.readthedocs.io/en/latest
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3.1.1 Porting the Web Scraper to Python

As stated in section 2.6, the scraper collects different signals from different scripts.
Homepage is the signal responsible for requesting the HTML from a URL and is the only
relevant script for this thesis. This is the script that will be ported to Python.

The homepage is a Node.js program that scrapes company homepages and saves the
HTML body to a MongoDB database. The script first queries the database to find
organizations to scrape. It then iterates through all the organizations. It then searches
Yahoo for the company’s homepage URL and checks that the URL is valid and not
blacklisted. If the URL is valid, the script fetches the page and saves it to the database.
The script uses the got library to make HTTP requests, cheerio to parse the HTML

response, and ora to display a progress spinner. The script also uses the normalize-url

library to normalize URLs and the sleep function from a custom utils.js module to add
delays to the scraping process. In the script, the async keyword is used to define
asynchronous functions that perform non-blocking operations. These functions return
a Promise that resolves with the function’s return value or rejects with an error if one
occurs. By using the await keyword inside another asynchronous function, the code can
wait for the result of the asynchronous operation before continuing execution, without
blocking the thread. This allows for more efficient use of resources and better handling
of I/O-bound tasks, such as making HTTP requests or querying a database.

When porting to Python, the googlesearch module is substituted for Yahoo. Python’s
request module is changed for got to make the HTTP request. BeatifulSoup is used
to parse this response. halo is used to display a spinner while Python’s asynchronous
frameworks asyncio is used instead of the async keyword. These are the most important
changes regarding the modules. The rest of the code is translated directly from JavaScript
to Python.

3.1.2 Expanding the Scraper

The scraper only saves the HTML body of the homepage of each company. Preferably,
all text is needed from the web page for this thesis. To expand the scraper to retrieve all
necessary text from each company’s website, two sub-problems that need to be addressed
are

• Developing a scraping algorithm that can effectively extract the identified text
from an URL while also avoiding collecting irrelevant or duplicate information.
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• To extract data from all sub-domains associated with a company’s URL, an
algorithm needs to be developed that can identify each sub-domain and scrape its
contents.

Developing the Scraping Algorithm

To extract the text from a URL the HTML must first be requested. fetch_html() is
responsible for this. The function takes a session object and a URL as input and returns
the text of the HTML response received from the given URL. The reason for using a
session is to make asynchronous requests, which can perform a lot when synchronous
requests can cause a lot of waiting time. The function first tries to make an HTTP GET
request to the URL using the given session object. If the request succeeds, the function
returns the text of the HTML response. If the request fails due to a UnicodeDecodeError

exception, which is when a request is done with a bad URL. The function tries to resolve
the URL using urllib.request and makes a new HTTP GET request to the resolved
URL. If this request succeeds, the function returns the text of the HTML response. If
the function doesn’t get a HTTP response it returns None.

clean_HTML() is the function responsible for parsing the HTML to natural text. The
function takes an HTML response as input and extracts the natural text content from it.
It uses the BeautifulSoup library to parse the HTML response and extract all the text
inside.

To obtain the most accurate text, different techniques were evaluated. The first method
involved extracting all text from a BeautifulSoup object using get_text(). Redundant
text, such as text in website headers, was then filtered out based on tags. Text inside
classes containing a ”header” tag, which often included non-essential information such as
”log in”, ”register”, and links to other pages, was dropped. However, due to the lack of
consensus on how to create an HTML file, it was discovered during the experiment that
a ”header” could also be a tag for the HTML body. This resulted in cases where all the
text would be decomposed.

Another approach was to consider how natural text is typically stored. Based on this, we
assumed that most text is stored in paragraphs (<p> tags). Therefore, we extracted all
text inside <p> tags by calling get_text() on every result from soup.find_all(’p’).

The function also filters the extracted text based on a blacklist of terms such as ”online
store”, ”log in”, ”sign in”, and ”register”. These terms are removed from the extracted
text.
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Furthermore, the function uses a regular expression to remove special characters and
numbers from the text. The regular expression pattern used is ”[

¯
a-zA-Z]+’

¯
’, which

matches all alphabetic characters and filters out any non-alphabetic characters.

Identify All Sub-Domains and Scrape

The asynchronous function scrape_all_subpages() which scrapes the main page of
a company and all possible subdomains associated with it. The function takes two
arguments - the URL of the main page of the company, and JSONText which is a JSON

object used to save the scraped text.

The function first starts an asynchronous session using aiohttp.ClientSession to make
multiple HTTP requests. It then fetches the HTML of the URL using the fetch_html()

function, and cleans the HTML to extract the title and text using the clean_HTML()

function. The extracted text is then saved in the JSONText object.

The function then uses BeautifulSoup to parse the HTML and find all links associated
with the main page, meaning the first URL is in the sub-domain. It filters the links to
remove any invalid strings using is_valid_string() and modifies the links to ensure
they are absolute URLs. If no links are found, or the links are invalid, the function
attempts to scrape the subdomains using scrape_bad_htmls() which uses Selenium2

that is an open-source tool commonly used for automating web browsers. Selenium
is used to handle pages where Javascript can be blocking. This is because sometimes
Javascript loads content in e.g. nav bars. This takes a few seconds to execute and
consequently blocks the HTTP request.

Once valid links are identified, the function makes multiple HTTP requests from
fetch_html() to fetch the HTML of all subdomains using asyncio.gather. For each
response, the title and text are extracted using the clean_HTML() and saved the text
in the JSONText object based on the title of the page. If the page is an ”About” page,
the text is saved in the About key of the JSONText object. It is assumed that the page
is an ”About” page if the title variable contains the string ”about” or the string ”om
oss” or if the title variable starts with the string ”om”.Every other text is saved to the
”All” key which is a concatenation of all parsed text in every subdomain. If the title has
not been seen before, it is added to the links key of the JSONText object. Finally, the
scraped text is returned in the JSONText object.

2https://www.selenium.dev/

https://www.selenium.dev/
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3.2 Automating Green Impact Identification Using Machine
Learning

As discussed in subsection 2.5.1, Fauna has established a green rating system based on
a set of criteria that green brands must fulfill to earn points. However, this process of
evaluating each brand’s green score is manually conducted by Fauna’s experts, which
can be time-consuming and resource-intensive. Therefore, this thesis aims to explore the
possibility of automating the green scoring process using machine learning techniques, to
provide a more efficient and accurate evaluation of the brands’ sustainability performance.

3.2.1 Problem Definition

Each brand can fulfill multiple green criteria, from now on called labels. Since each brand
can fulfill multiple labels simultaneously, this problem can be considered a multi-label
classification problem.

All text from the website of each brand will be extracted using the custom web scraper.
This text will be used together with the target labels to train a classification model that
can predict if other companies have these labels or not.

3.2.2 Challenges

The labels for each brand’s sustainability rating are manually checked, but the process by
which they are determined and the specific source of the label fulfillment is not recorded
or stored. This means that this information can be anywhere on the website of the
company. Therefore all the text from the website must be checked. The generation of
excess data leads to an increased volume of training data for the model, which in turn
contributes to the complexity of the problem. With more text in the input, the task of
predicting labels becomes increasingly difficult for the model. The dataset contains 360
brands, but a lot of the entries are empty. It is assumed that empty entries are companies
without any web page. These will have to be removed from the dataset. Also, some
companies use anti-scraping techniques to prevent automated scraping. Considering the
difficulty of this problem, the dataset available is quite limited. This thesis will explore
methods to expand the size of the dataset.

By nature, some labels will be more populated than others. This will cause a bias towards
certain labels. In a multi-label classification problem, bias towards certain labels can have
a significant impact on the performance of the model. When there is a lot of bias towards
certain labels, the model may become over-reliant on those labels and may struggle
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to accurately predict the other labels. This can result in an imbalanced distribution
of predictions, with some labels being consistently over-predicted or underpredicted.
Additionally, bias towards certain labels can lead to a lack of diversity in the predicted
labels, potentially leading to missed opportunities for the model to make more nuanced
and accurate predictions. To mitigate the effects of bias in multi-label classification, this
thesis will consider the data and feature selection, as explore appropriate techniques such
as oversampling or undersampling to balance the dataset.

With thirty labels in total, it would be a challenging task for any model to handle such a
large number of labels. The dataset needs to be categorized and further models need to
be trained accordingly. However, dividing the dataset into all eleven categories would
result in an excessive number of models. Hence, it is crucial to find a balance between
the number of models and the labels and explore alternative ways to achieve this.

3.2.3 Categorizing the Dataset

In Figure 3.1 the categories with belonging labels can be seen. After a quick look, it
is obvious that it is possible to merge many of the categories based on shared labels.
Clustering will be used to identify and group together categories with similar label
compositions. By clustering the categories based on their labels, it becomes possible to
identify which labels are common across multiple categories and which labels are unique
to specific categories. K-means is a suitable clustering technique for this task. K-means
is easy to implement and is designed to partition data into groups based on similarity.
A binary vector with information on whether a category has a label or not is passed as
training instances to the cluster. sklearn.cluster.KMeans3 module is used to compute
the clusters.

The most important parameter for this algorithm is the number of clusters to form. There
are some techniques to determine this parameter. The most common is to choose a range
of values. Iterate through all values K and calculate the silhouette coefficient for each
point in the dataset, which measures how similar that point is to its cluster compared
to other clusters. The value of K that maximizes the average silhouette coefficient is
considered to be the optimal number of clusters. However, sometimes it is best to use
prior knowledge or domain knowledge to decide. In this case, it can be seen in Figure 3.1
that there are some obvious groups. These are retail stores, food, and eco-lifestyle.
Therefore it is decided to use 3 as the number of clusters.

Once the clusters have been determined, the selection of appropriate labels becomes
necessary. Some labels are shared over the whole cluster, while others may not be so

3https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html

https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
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Figure 3.1: Categories and labels in the dataset

important. This is also called feature selection. Feature selection is very important
because too many features make it hard for the model to learn. Removing too many
features may cause in loss of too much information. First, it was decided to only keep
strictly shared labels. This means the labels that all categories in the cluster share
are kept. Figure 3.2 shows all labels that were dropped using this method. As can be
seen, some labels should probably be kept, such as 2,8,9 and 20. As a consequence, an
algorithm was developed to measure weights for each label and keep the labels with
weights above a certain threshold. The pseudo-code for this algorithm can be seen in
Algorithm 3.1.

Algorithm 3.1 Find Common Criteria
Input: df brands, list clusters, threshold

Initialize shared_criteria← dict
Initialize cluster_dict← dict

for cluster in clusters do
for category in cluster do

cluster_dict[category]← cluster
end for
cluster_df ← brands[cluster]
nan_percents←

∑m

j=1 NaN
n columns , m = rows cluster_df

row_scores← (1− nan_percents) ∗ df [′weights′]
cluster_df ← cluster_df [row_scores ≥ threshold]

end for

return cluster_df
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Figure 3.2: Dropped labels in the first method

3.2.4 Balance the Dataset

As discussed earlier, the distribution of labels can be uneven. In a multi-label classification
task, an important task is to make sure the training and test data sets are representative
of the overall population of labels. Let’s say the label ”Delivery to doorstep” is represented
one time in the dataset and the train and test sets are divided randomly. If the label only
appears in the test set, the model has not been trained on this label and can therefore
not perform well on the new, unseen data. To address this issue, a technique called
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stratification will be implemented. [12] has a iterative_train_test_split module
utilized to ensure stratification in the train-test split. After testing this module it was
discovered that when labels appeared one time the stratification did not work. This
is because stratification is used to ensure labels are evenly distributed after the split.
Consequently, it was determined to develop a function for oversampling.

In Pykes [13] describes oversampling as an approach where additional examples from the
minority class are generated to balance the distribution of labels. There are different
oversampling methods, such as random oversampling, which duplicates existing examples
from the minority class, and synthetic oversampling, which generates new examples based
on the existing examples. However, oversampling can also introduce some challenges.
For example, it may increase the risk of overfitting, which occurs when the model is
too closely fit to the training data and does not generalize well to new, unseen data.
Oversampling can also introduce bias if the generated examples are too similar to the
existing examples, or if the minority class is artificially over-represented in the training
data. As discussed earlier, this model is very fragile to bias towards labels. Therefore,
only labels that appear one time in the dataset are sampled an extra time to ensure that
the stratification can work properly. oversample_dataframe() is implemented for this
purpose. The pseudo-code for the function can be seen in Algorithm 3.2.

Algorithm 3.2 Undersample Dataframe
Input: dataframe df, string label_column

label_counts← dict
rows_to_repeat← list

for labels in df [label_column] do
for label in labels do

if label in label_counts then
label_counts[label]← value + 1

else
label_counts[label]← 1

end if
end for

end for

filter_labels← labels with 1 count

for label in filter_labels do
rows_to_repeat← rows_to_repeat + df [df [label] == label]

end for

combined_df ← df + df [rows_to_repeat]

return combined_df
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3.2.5 Summarizing Scraped Text

Scraping all the information from a corporate website can involve extracting a large
amount of data, including text, images, videos, and other multimedia content. The text
content alone can be substantial, especially if the website contains a lot of pages or blog
posts. When dealing with long texts in the context of natural language processing, it is
common to encounter a problem where the text is too long to be processed by neural
networks or transformer models. These models typically have a fixed input size and can
only handle a limited number of tokens, usually up to 512. As a result, it is necessary to
preprocess the text and summarize it down to a fixed number of tokens.

Implementing the summarization of a long text using a neural network is a challenge
and there is a big risk of a lot of details and information in the text can go missing. The
goal of the summarization is to reduce the text to 512 tokens. How many words this is
varies a lot, but a rough average, of 512 tokens is around 2500 words. First, each text is
passed into a recursive function that summarizes the text if it’s more than 2500 words.

The summarization method is implemented using a pre-trained BART (Bidirectional and
Auto-Regressive Transformers) model, which is a type of transformer-based architecture
that is commonly used for text generation tasks such as summarization [14]. To process
the text, the code splits it into batches of tokens that correspond to the exact model
maximum length (1024 tokens for BART), using a while loop. It generates a summary
for each batch of tokens using the generate method of the BART model. Finally, the
code decodes the summary outputs back into human-readable text format using the
tokenizer’s decode method and combines them into one string with one paragraph per
summary batch using the join method. The resulting text is the summary of the input
text that has been generated by the BART model.

One alternative approach that was considered was to use GPT-3 to summarize the texts.
This approach is probably the better one as well. GPT-3 has the potential to capture
more of the nuance and context of the original text while still providing a shorter version.
However, summarizing very long texts with GPT-3 can cost a lot of money because it
requires a lot of tokens and GPT-3 charges money per token.

3.2.6 Manually Checking the Texts

After summarizing the texts, it’s easier to check the performance of the scraper as well as
the summarizer. Therefore all the summed texts are checked manually. Simultaneously
checking the texts, they are corrected using Grammarly. It is quickly discovered that the
correctness of the texts is quite good, and the content is not. A lot of the texts contain
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information about cookies, data, privacy, and JavaScript, despite efforts to avoid these
topics.

Since this dataset is to be used for text classification, it was divided to delete all texts
that only contain the topics above, as well as texts that don’t mention anything about
the environment at all. After the manual check, the dataset is reduced significantly from
188 samples to 23 samples.

3.2.7 A Multi-Label, Zero-Shot Learning Approach

Given the small size of this dataset, it is not appropriate to use it for training a machine
learning model as there may not be enough data to generalize well. Hence, other
techniques must be considered to extract meaningful information from the text. These
techniques may include methods such as transfer learning, where a pre-trained model
is fine-tuned on this dataset, or unsupervised learning techniques such as clustering
and topic modeling. Yin et al. [15] suggested employing pre-trained Natural Language
Inference (NLI) models as readily available zero-shot sequence classifiers. By utilizing
this technique, it is possible to achieve high accuracy and efficiency without the need for
extensive training on a specific dataset.

”Some pre-trained NLI models offer zero-shot learning capabilities, which can be easily
accessed through the Huggingface zero-shot-classification pipeline. The models that
support this feature can be found on this page4.” These models support multi-label
classification, which is the ability to assign multiple labels to a single instance. The
models support this by setting multi_label = True in the pipeline. The multi-label,
zero-shot learning algorithm can be seen in Algorithm 3.3.

3.3 CICERO Shaded of Green

The major challenge with the Fauna data is that all text or input has to be scraped from
each company website. Developing the scraper is time-consuming since HTML’s can be
very different from each other and it is not guaranteed to end up with a dataset that will
be suitable for training a machine learning model.

As introduced in subsection 2.5.2, the information about each company is stored in a
PDF. The list of public reviews is not available to download so this dataset must also be
scraped. However, most of the assessments stick to the same pattern so it’s easier to
scrape this dataset.

4https://huggingface.co/models?pipeline_tag=zero-shot-classification&sort=downloads

https://huggingface.co/models?pipeline_tag=zero-shot-classification&sort=downloads


26 Chapter 3 Approach

Algorithm 3.3 Zero-shot multi-label classification using BART-large-mnli model
Input: Dataframe FaunaData

f1_score← from sklearn.metrics
model← Transformers.pipeline(model name)
actual labels← dict
predicted labels← dict
candidate labels← dict

for row in FaunaData do
cluster ← row[′cluster′]
text← row[′text′]
actual labels← row[′labels′]
candiate labels← candidate labels[cluster]
predictions← model(text, candiate labels, multi_label = True)
predicted labels[cluster]← predictions > 0.5
acutal labels[cluster]← actual

end for

for cluster in clusters do
F1 score← f1_score(predicted labels[cluster], acutal labels[cluster])

end for

weighted F1 score← F 1 score
number of clusters

return weighted F1 score

This task aims to generate a dataset containing natural language text about the en-
vironmental aspects of companies, as well as their corresponding ratings. A machine
learning model will be deployed to analyze this text data and forecast the rating of the
companies. Since each company receives one of the multiple ratings, this is considered
a multi-class classification problem. However, the list only possesses the green-rated
assessments which is a drawback since the model will not learn about the companies
without a focus on environmental issues.

3.3.1 Scraping the Dataset

The public list of reviews is called CICERO Shades of Green - Second opinions5.
There are in total 363 assessments with 20 for each page. For each page, there is a
link to each assessment and a button to the next page. Page layout can also be seen in
Figure 3.3. The scraper starts at this page which has a base URL for all the pages. The
blue button is blue until the last page, so the function is made, crawl_page() that calls
each page recursively until the last page. The function is called with the base URL and
the sub-link found by scraping the page and finding the ’href’ tag to the class attribute

5https://pub.cicero.oslo.no/cicero-xmlui/handle/11250/2594071/browse?type=title

https://pub.cicero.oslo.no/cicero-xmlui/handle/11250/2594071/browse?type=title
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of ’next-page-link’ which is the button. This ’href’ contains the sub-link to the next page.
This is found by parsing this page with BeautifulSoup and finding the class. In each
function call, all assessments are scraped.

Figure 3.3: Page layout of the public list of review

To find all assessments the parsing of the page is used. Each page has an unordered list
(ul) where the links to each assessment are stored. So all ’ul’ tags are found on the page
and then all list item (li) items with class name ’ds-artifact-item’ are found. It’s the
list of items that contain the links to the assessments where the PDF is stored. The
function iterates through all these list items and scrapes the page. An example of how
each assessment page looks like can be seen in Figure 3.4. When the page is scraped
the text under the header ”Sammendrag” is parsed and saved. ”Sammendrag” contains
information about the rating and issuer type which will be relevant for this task.

The link to the PDF is found under the header ”Åpne”. To read and scrape the PDF,
the Python library PyPDF26 is used. The content is requested using the same request

library as before. The content is then passed into the PDF reader of PyPDF2. This
outputs all the text in the PDF. Metadata and all text from the PDF are then stored in
a dataframe.

6https://pypi.org/project/PyPDF2/

https://pypi.org/project/PyPDF2/
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Figure 3.4: Page layout of each assessement

3.3.2 Extracting Relevant Text

The first step in the preprocessing of this model is to filter out relevant text from the
PDFs. After a manual scan of the reports it was, it was discovered that most of the
reports had the same structure. The reports that didn’t will be discarded since they often
did not contain any useful information. In Figure 3.5, the front page of the report can be
seen. This is the text that will be filtered out and used for this task. In the figure, there
are two red squares. The first square contains the date when the report was made, and
the second contains the rating of the assessment. To extract the text between these two
squares a Python regex will be used. This regex will find the text after any year, until any
of the rating options. The available rating options can be represented as a single string
that lists all the options separated by the ’or’ operator. In this case, the string is written
as ’Light Green|Medium Green|Dark Green’. The regular expression is constructed
using an f-string and includes the available shading options as a non-capturing group. The
resulting string is as follows: fr’\d4\s+(.*?)\s+(?:shading_options)’. Additional
preprocessing steps, such as removing any extraneous whitespace or newline characters,
are performed on the input data before applying the regular expression. This ensures
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that the input data is in a standardized format that can be correctly parsed by the
regular expression. In the end, the last sentence is also removed because this is the
sentence reasons why the company got its rating.

Figure 3.5: Front page of the reports
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3.3.3 Balance the Dataset

To gain further insight into the population distribution of the dataset, a histogram
was created to visualize the frequency of each class. This histogram can be viewed in
Figure 3.6. As can be seen, there is a small representation of the light green class. To fix
this, undersampling will be used as discussed in . First, the dataset is divided into one
train and one train, and one validation dataset. Then, some of the light green samples
are transferred from the train set to the validation set to balance out the validation
dataset. This is because the validation dataset must contain original samples, while the
training dataset can be balanced later using other techniques.

Figure 3.6: Population distribution of each rating (shading) in the CICERO dataset

3.3.4 Data Augmentation and Undersampling

Undersample the Traning Dataset

In subsection 3.3.3, the method of undersampling was implemented by duplicating
samples from the classes that were only represented one time in the dataset. However, in
the following section, an augmentation technique will be utilized instead. This section
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will utilize the OpenAi API7 to generate additional samples. In Algorithm 3.4, the
algorithm for generating additional samples is shown. The OpenAi API is called with
text-davinci-0028 as engine. Next, all samples labeled as ”Light Green” are iterated
through. The model is given a prompt requesting it to generate text that is similar to the
text associated with the given sample. The response from the model is then added to a
new dataframe. At the end of the loop, the new dataframe is returned and concatenated
with the training dataset.

Algorithm 3.4 Generate new samples
Input: dataframe df, string apikey

new_samplesdf ← dataframe
model← OpenAI(api_key)

for text, label in df [label ==′′ LightGreen′′] do
prompt←′′ Create a similar text to text′′

response← model(prompt)
new_row ← response, label
new_samples_df ← new_samples_df + new_row

end for

return new_samplesdf

Using Data Augmentation to Expand the Training Dataset

The thesis aims to explore the effectiveness of generating data using OpenAI text
generation in improving the performance of models utilized on the dataset. The procedure
depicted in Algorithm 3.4 is employed once again, but this time the entire training dataset
is iterated through and re-sampled by generating new text. As a result, the size of the
training dataset is doubled, and the augmented dataset is saved as train_augmented.
After this, the same procedure is repeated with the train_augmented dataset to create
a new dataset with even more augmented samples.

3.3.5 Correcting Texts

The scraping algorithm used PyPDF29 library to read the texts from the PDFs. One
challenge with this library, and other PDF reading libraries is that the accuracy of the
extracted text is often poor. One example is that words are divided, e.g. ”word” can end
up as ”w” and ”ord”, ”wor” and ”d” or ”wo” and ”rd”. There are many reasons why this
occurs, but inconsistent formatting and embedded fonts are probably the most common

7https://platform.openai.com/docs/api-reference/introduction
8https://platform.openai.com/docs/models/model-endpoint-compatibility
9https://pypi.org/project/PyPDF2/

https://platform.openai.com/docs/api-reference/introduction
https://platform.openai.com/docs/models/model-endpoint-compatibility
https://pypi.org/project/PyPDF2/
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Figure 3.7: Scraped and corrected text utilizing OpenAI’s text generation model.

culprits. One example of the scraped texts can be seen on the left side of Figure 3.7. In
addition to the marked words, punctuation, and commas are almost always misaligned
to the right.

Since NLP models can be sensitive to inaccurate language, the texts must be corrected.
In Python, there are many ways of doing this. The Python library Pyspellchecker

is a popular library for spell checking. However, when using this library each word is
corrected by iterating through every word in the text. Since the biggest problem is
divided words, this is not an effective approach. OpenAI’s approach to correcting text
is more effective because it is based on advanced machine learning algorithms that are
capable of understanding natural language and identifying errors in the text. Therefore,
a similar approach as in section 3.3.4 will be used. This time, each text in the dataset
is iterated through. The prompt now will be ”Correct this text”, followed by the text.
The prompt is fed into the model, and an example response is displayed on the right in
Figure 3.7. The language in the corrected text is nearly flawless, indicating that this
approach to text correction is highly effective.

3.3.6 Supervised Training of the Dataset

The model built for training this dataset mainly uses PyTorch and the Hugging Face

Transformers libraries. The scikit-learn library is used to compute evaluation metrics
and Weights Biases is used for logging. The model is trained on a Azure GPU server.
The GPU has a 15 GB memory.
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Choosing Model

The transformer model called Roberta-Large from the Transformers library is imple-
mented for training on this dataset. Roberta-large is a large-scale neural language model
developed by Facebook AI Research (FAIR) in 2019. It is based on the transformer
architecture and was pre-trained on a large corpus of text data, including both supervised
and unsupervised learning tasks. Roberta-large has several characteristics that make
it a good model for text classification on long texts. Roberta-large has 355 million
parameters, making it one of the largest language models available. There are other
bigger models, but since there is a memory cap of 15GB, this is one of the biggest models
that can be used for training on the GPU. Roberta-large was trained on a diverse range
of data sources and tasks, which helps it to generalize well to different types of text data.
Roberta-large can also be fine-tuned on specific text classification tasks, allowing it to
adapt to the specific characteristics of the target dataset. This is particularly useful for
long texts such as the texts in this dataset, which often require more specialized models
due to length and complexity.

Implementing the Model

The pre-trained RobertaModel10 is imported from Transformers. The RobertaModel is
followed by three fully connected layers: the pre-classifier, the classifier, and the activation
function layer. The pre-classifier layer transforms the 1024 dimensional output from
RobertaModel into a specified hidden_layer_size. The dropout layer is then applied
to reduce overfitting with a dropout decided by the dropout parameter. The classifier
layer performs the final classification, with the number of output classes. Finally, the
activation_func parameter determines which activation function to use for the model’s
non-linearity. The forward method takes in input ids and attention mask parameters
and returns the output of the classifier layer.

In this project, the values for hyperparameters such as hidden_layer_size, dropout,
and activation_func are important factors that determine the performance of the
model. These hyperparameters need to be optimized to obtain the best possible results.
However, the details of how this optimization process is carried out will be explained
later.

The CustomDataset class defines a PyTorch dataset for text classification tasks. The
class takes as input a list of texts and a corresponding list of labels, and a Roberta-large

tokenizer to use for tokenizing the texts. The __getitem__ method tokenizes the text
10https://huggingface.co/roberta-large

https://huggingface.co/roberta-large
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and returns a dictionary containing the input_ids, attention_mask, and label tensors.
The dataset made from this class is then used to create a PyTorch DataLoader object.
The purpose of using a Dataloader is to facilitate the model training process by loading
the data into the model in batches. Loading the entire dataset into memory at once may
not be feasible due to memory limitations. When using Dataloader, each batch of data
is loaded and preprocessed on-the-fly while the model trains on the previous batch. This
helps to conserve memory and increase efficiency during training.

Since there is still an imbalance in the dataset, class weights are calculated before
training the model. The class weights are calculated using Equation 3.1. The class
weights are then passed into the CrossEntropyLoss11 loss function. The loss function
uses reduction=’mean’ as default, which means that loss will be normalized by the sum
of the corresponding weights for each element.

Class weight = maximum count of any class

number of samples in the class
(3.1)

Fine-tuning the Model

To fine-tune the model, hyperparameter tuning is conducted. Weights and Biases

(Wandb)12 is used to logging. One of the features of Wandb is sweeps, which are used to
automate the process of hyperparameter tuning. A sweep involves defining a configuration
space for hyperparameters along with a search method, such as random, grid, or Bayesian.
In the case of this model, the random search method is employed. This entails randomly
selecting a configuration from the parameter range in a single sweep. This means that the
”method” is random. Wandb will run multiple experiments with different combinations of
hyperparameters in that space. The sweep results are then logged to Wandb, allowing for
comparison of the performance of different hyperparameter configurations and selecting
the best one for the model. The validation dataset is utilized to evaluate the model after
every training epoch during the sweeps. Evaluation loss and accuracy are then logged
for each epoch. After the sweep, the parameters from the run with the lowest evaluation
loss are picked to train the model. The parameters used in the hyperparameter tuning
sweep can be seen in Table 3.1.

Training the model

When training on the best parameters found from the sweep, the validation dataset is
not used to evaluate during training. This is because when the model is tested at the

11https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html
12https://wandb.ai/site

https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html
https://wandb.ai/site
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Hyperparameter Values
Optimizer adam, sgd

Activation Function ReLU, sigmoid, tanh
Dropout 0.1, 0.2, 0.3
Epochs 50, 80, 100

Learning Rate min=1e-08, max=1e-05
Batch Size 4

Hidden Layer Size 768, 512, 256
Weight Decay (L2 regularization) min=1e-05, max=1e-03

Table 3.1: Hyperparameter Tuning Parameters

end, it should be evaluated on data that it has not seen before, and using the validation
dataset for evaluation during training could potentially lead to overfitting the validation
dataset. Therefore, the validation dataset is only used to select the best hyperparameters
during the sweep and is not used for evaluation during the final training process.

Training Models with AutoTrain

AutoTrain13 is a cloud-based platform for automated machine learning that enables users
to easily train, test, and deploy machine learning models. The platform has pre-trained
models and datasets available for users to fine-tune their datasets.

One of the main advantages of using AutoTrain is its ease of use. The platform provides
a simple interface for users to upload their data and fine-tune pre-trained models. This
eliminates the need for users to have expertise in machine learning and data science to
achieve high accuracy. Additionally, AutoTrain provides various optimization techniques
to improve the performance of the models, such as automatic hyperparameter tuning
and ensembling.

To train a model in AutoTrain, a new project must be created. The user gives the project
a name, selects the classification task, and selects a model. After the project is created,
the user must upload a training dataset and a validation dataset. Then the platform trains
multiple models and the best one can be selected based on the desired metric. The model
can be uploaded with Transformers.AutoModelForSequenceClassification(model-modelID).

Testing the Model

To test the model, the testing data and the trained model are passed into the training
function. The model.eval() method is called to put the PyTorch model into evaluation

13https://huggingface.co/autotrain

https://huggingface.co/autotrain


36 Chapter 3 Approach

mode before testing it on the test dataset. For each batch of data, the function computes
the model’s predictions using the torch.argmax method to get the index of the highest
predicted score for each input. The true labels and predicted labels are stored in
separate lists. After the loop, true and predicted labels are passed into sklearn.metrics

classification_report which calculates precision, recall, and F1-score for each class,
as well as an overall accuracy score. This report is then logged to Weights and Biases.

3.3.7 Transfer Learning on the Cicero Dataset

As discussed in section 2.3, transfer learning is a powerful technique in the context of
deep learning, especially when the available training data is limited. Due to the limited
availability of training data in the Cicero dataset, this thesis will include experiments
on transfer learning techniques to improve classification performance. Zero, one and
few-shot learning algorithms will be implemented using different models and compared
to each other.

Certain models used in this study have a maximum sequence length of 512, which is
roughly the length of each text instance in the Cicero dataset. These models are only
suitable for zero-shot learning, which means they can classify texts without being trained
on them. However, some other models can handle up to 2048 tokens, enabling them to
perform one-shot learning, which involves learning from three example texts (one for
each class) and then using a single text for classification. GPT-3 and GPT-3.5 can handle
approximately 4000 tokens which are enough for two-shot learning. Six texts, two for
each class are used for learning and one for classification.

Zero-Shot Implementation

How to implement zero-shot learning varies from model to model. The bart-large-mnli

model explained in subsection 3.2.7 is compatible with zero-shot learning which makes it
easy. Some models must be implemented using the model and a tokenizer. Flan-T514 is
such a model. First, the tokenizer processes the zero-shot prompt to create input IDs.
The input IDs are numerical values used to represent the words in the prompt. Each ID
is mapped to a token, where a token is a sequence of characters that represents a single,
meaningful unit of text. Then, the model takes these input IDs as input and produces an
output which is one of the classes. Finally, the tokenizer decodes the output generated
by the model. When using zero-shot on the GPT models, the API for the models is
called with the prompt and the response is the prediction of the model.

14https://huggingface.co/google/flan-t5-xl

https://huggingface.co/google/flan-t5-xl
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Common for all the zero-shot models is how the testing is conducted. To begin, since
there is no training involved, the testing and validation datasets are combined. Next,
the code iterates through each sample and extracts the text and true label. A prompt is
created based on the text by constructing a string that reads: ”Classify as Light Green,
Medium Green, or Dark Green: [text]”. The prompt is passed to the function responsible
for predicting each model. The actual class and the predicted class are then saved. In the
end, all actual and predicted values are saved in a text file and the F1 score is calculated.

One and Two-shot Implementation

The implementation for One ant Two-shot learning is similar since only the API models
have a long enough sequence length for the prompt to fit. The only difference between
One and Two-shot is that in one shot there is one example per class and in two-shot
there is two. This is shown in subsection 2.3.2.

The models are tested similarly to section 3.3.7. The difference is that in each iteration,
example texts are extracted to generate the prompt. For one-shot, one random text for
each class is selected from the dataframe using sample15. The only condition is that
none of the randomly selected texts are the same as the text that is being tested. For
two-shots, two random texts for each class are selected. The algorithm is shown in 3.5.

Algorithm 3.5 One-shot implementation
Input: dataframedf, string api_key

model← OpenAI(api_key)
actual labels← list
predicted labels← list

for text, actual label in df do
text1, text2, text3← df.isin([Light, Medium Green, Dark Green]).sample(3)[′′text′′]

prompt ←′′ ClassifyasLightGreen, MediumGreenorDarkGreen : text1, Class :
LightGreentext2, Class : MediumGreentext3, Class : DarkGreentext, Class :′′
prediction← model(prompt)
actual labels← actual labelslabel
predicted labels← predicted labels + prediction

end for

F1 score← sklearn.metrics(actual labels, predicted labels)

return F1 score

15https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.sample.html

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.sample.html




Chapter 4

Experimental Evaluation

4.1 Experimental Setup

4.1.1 Models

All of the neural networks used in this thesis are large models, designed to handle complex
tasks in natural language processing. Some of these models, such as GPT-3, are among
the largest and most powerful models available today, while others are smaller and more
specialized for specific tasks. A specification of key information of each model used in
this thesis can be seen in subsection 4.1.1.

39
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Model Specification
Model Company Size Max Sequence

Length
Flan-T5-XL Google 3 billion parame-

ters
512 tokens

GPT-Neo 2.7B EleutherAI 2.7 billion param-
eters

2048 tokens

GPT-3 OpenAI 175 billion param-
eters

4000 tokens

GPT-3.5 OpenAI 175 billion param-
eters

4000 tokens

bart-large-mnli Facebook 406 million param-
eters

1024 tokens

mDeBERTa-v3-
base-mnli-xnli

Microsoft Re-
search Asia

432 million param-
eters

512 tokens

roberta-large Facebook 355 million param-
eters

512 tokens

distilroberta-base-
climate-f

Facebook 66 million param-
eters

512 tokens

4.1.2 Trained Models

As described in Section 3.3.6, certain trained models underwent hyperparameter tuning.
This involved conducting 20 runs where random hyperparameters were selected, and
the training process was evaluated. From each fine-tuned model, the configuration from
the run with the lowest evaluation loss was chosen. Additionally, the same models were
trained using AutoTrain, a method that automatically selects the optimal parameters.
A comparison was then made between these approaches, and the model yielding the
highest F1-score was selected as the best.

4.1.3 Metrics

In this thesis, the Weighted F1 score is used as an evaluation metric for comparing the
performance of different models on multi-class classification problems.

In multi-class classification problems, the Weighted F1 score is a suitable evaluation
metric because it takes into account the class imbalance that may exist in the dataset
[16]. The equation for the F1 score can be seen in Equation 4.1. Weighted F1 score
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takes the mean of the F1 score of each class concerning the support for each class. The
support for each class is the number of samples. This gives a more accurate evaluation
of the model’s performance across all classes, rather than just the most frequent ones.

F1 Score = True Positives

True Positives + 1
2(False Positives + True Negatives)

(4.1)

Given that all the problems tackled in this thesis are multi-class classification tasks, the
use of the Weighted F1 score provides a consistent evaluation metric that allows for a
fair comparison of the performance of different models. This is important because it
allows for objective evaluation of the effectiveness of the proposed solutions and helps to
identify the best-performing models for each specific problem.

The F1 score, which is the harmonic mean of precision and recall, provides a combined
measure of both metrics. However, it can be beneficial to analyze precision and recall
individually, especially when they diverge from each other.

Precision represents the proportion of true positive predictions among all positive predic-
tions, indicating the model’s ability to minimize false positives. A high precision value
suggests a low number of false positives, meaning the model is accurately identifying
positive instances.

On the other hand, recall represents the proportion of true positive predictions among
all actual positive instances, indicating the model’s ability to minimize false negatives.
A high recall value implies a low number of false negatives, signifying that the model
effectively captures most positive instances.

Examining precision and recall separately can provide insights into specific aspects of
the model’s performance. If precision is high while recall is low, it suggests that the
model is cautious in making positive predictions and tends to miss some true positive
instances. Conversely, if the recall is high while precision is low, it indicates that the
model is capturing many positive instances but may also produce a higher number of
false positives [17]. In some models, it can be useful to focus on one of these metrics,
depending on the use case.

4.1.4 Datasets

Fauna Dataset

As explained in subsection 3.2.6, the Fauna dataset is reduced to 21 samples. This small
sample size reduces the statistical power of the testing. Therefore, no certain conclusions
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will be made by the results of the models used to test this dataset. However, the results
can give some indications of the model’s performance. As explained, because the dataset
contains so many classes, it’s split into three clusters. Some statistics on the dataset can
be seen in Table 4.1. The shared labels in each cluster that the model will predict can
be seen in Table 4.2.

Fauna Dataset
Cluster Num Labels Num samples
1 6 12
2 6 4
3 4 5

Table 4.1: Key Statistics on the Fauna Dataset

Cluster Labels
Cluster 1 Sustainable raw materials, Second hand, main service, Sustainability

reporting, CO2 emission reporting, Repair for free
Cluster 2 Ghost kitchen, Foodbox, Sustainability reporting, CO2 emission report-

ing, Food waste reporting, Miljøfyrtårn
Cluster 3 Sustainable raw materials, Sustainability reporting, CO2 emission re-

porting, Miljøfyrtårn

Table 4.2: Shared labels in each cluster

The clusters in this study are formed based on the labels provided by Fauna, which are
displayed in Figure 3.1. The resulting clusters are visualized in Table 4.3,. Generally, the
clusters demonstrate a meaningful grouping of companies. However, it is observed that
the self-care category appears somewhat randomly combined with energy and transport
within the clusters.

Fauna Clusters
Cluster 1 fashion tech home family sports
Cluster 2 food eateries
Cluster 3 self-care energy transport

Table 4.3: Fauna clusters grouped by labels

Cicero Dataset

The Cicero dataset is a bit bigger. For the fine-tuned models, the validation data contains
95 samples. Regarding the statistical power of the results, this is considered a small
amount. But 95 samples can be a good starting point for testing a machine learning
model. For the transfer-learning models, the test data contains 248 samples. This is the
concatenation of the normal training data and the validation data. With this amount,
it’s more likely to obtain a representative sample of the population and reduce the impact
of random variability on the results. For statistics on the dataset, see Table 4.4.
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Cicero Dataset
Dataset Num samples Light Green Medium Green Dark Green
Train Normal 153 38 58 56
Train Augmented 300 75 116 109
Validation 95 15 39 41

Table 4.4: Key Statistics on the Cicero Dataset

4.2 Experimental Results

4.2.1 Multi-Label, Zero-Shot Learning on Fauna Dataset

The zero-shot experiment was tested on two models. As explained in subsection 3.2.7,
certain models are compatible with this experiment. bart-large-mnli was tested
because it’s the most popular and best-rated model. The model is a Multi-Genre

Natural Language Inference (mnli). mDeBERTa-v3-base-mnli-xnli is also tested
because it was the second best-rated mnli model. This model is also a Cross-lingual

Natural Language Inference (xnli) model, which means that it’s trained across
multiple languages. The dataset consists of Norwegian and English language so this can
be of importance. The results can be seen in section 4.3.

Model ID Metrics

Cluster 1 Cluster 2 Cluster 3 Weighted avg.

Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

Fine-Tuned

bart-large-mnli 0.53 0.7 0.51 0.63 0.22 0.2 0.47 0.57 0.42 0.54 0.50 0.38
mDeBERTa-v3-
base-mnli-xnli

0.3 0.3 0.27 0.67 0.33 0.37 0.42 0.57 0.48 0.46 0.40 0.37

Table 4.5: Metrics for Multi-Label Zero-Shot Learning on Fauna Data

As discussed in section 4.1.4, the experiment’s limited sample size prevents any conclusion.
However, the results can indicate a few things. First, predicting classes across different
languages is feasible. All of the labels in the dataset are English and the texts is a
mix of English and Norwegian. This suggests that the Transformer models possess
the capability to generalize and understand patterns in multilingual data. The best
model had an overall F1 score of 0.38, suggesting that there is room for improvement.
The models performed better on cluster 1 and cluster 3, where the labels are mostly
’Sustainable raw materials’, ’Sustainability reporting’, and ’CO2 emission reporting’.
These labels are probably easier to map than food labels in cluster 2 that are more
specific like ’Foodbox’ and ”No meat, main concept”. Therefore, achieving an effective
multi-label classification model is partially fulfilled.
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In this thesis, two objectives are addressing the dataset. Collecting the data with a scraper,
and prepossessing it so it’s suitable for machine learning models. After the dataset is
reduced to 21 samples, these objectives have to be classified as partly met, and the reason
is a mix of both. The first obstacle is when extracting data from websites there many of
whom are blocked from scraping. This should be respected. Respecting these limitations
is essential to maintain ethical practices and comply with legal requirements. The second
significant issue encountered was the presence of extensive textual data extracted, which
consisted of a substantial amount of random information. When summarizing these texts
down to a suitable size, it turned out it was difficult to filter out what information is
important to keep and not. Despite the implementation of filters specifically designed to
block random information, such as ”cookies” and ”personal data,” there were instances
where this irrelevant data managed to bypass the filters.

Despite the drawbacks associated with this study, such as limited sample size and
challenges in data extraction, valuable insights and findings were still obtained. This
study has shown that it’s possible to classify corporate websites in green labels with
a pre-trained model and a zero-shot technique to a certain degree. What this means
practically is that if this method can be improved, particularly in the data extraction
step, are significant. Automating the process of rating these companies could result in
substantial time and cost savings. By overcoming the challenges associated with data
extraction and refining the methodology, the rating process could be streamlined and
made more efficient.

In this thesis, other preprocessing steps were also implemented, such as oversampling.
This was because the plan was to use implement a model that could be trained on the
dataset as well. When the dataset become so limited, this wasn’t possible anymore.
However, these are important steps that can be used in the future if a method for
increasing the size of the dataset can be found.

4.3 Multi-Class Classification on Cicero Dataset

Results from all experiments on the Cicero data can be seen in Table 4.6. As can be
seen fine-tuned models are tested on different dataset, while the transfer-learning models
are tested on a concatination of the normal traning and validation data .

4.3.1 Trained Models on Cicero Data

This experiment involved two models that were trained using both fine-tuning and
auto-training techniques. RoBERTa-large is used because it’s a big model pre-trained on
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Model ID Metrics

Light Green Medium Green Dark Green Weighted avg.

Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

Fine-Tuned

Roberta-Large,
Augmented

0.24 0.27 0.25 0.58 0.54 0.56 0.79 0.80 0.80 0.62 0.61 0.61

Roberta-Large,
Normal

0.62 0.53 0.57 0.63 0.79 0.71 0.88 0.71 0.78 0.74 0.72 0.72

distilroberta-base-
climate-f, Normal

0.5 0.2 0.26 0.62 0.74 0.67 0.76 0.78 0.77 0.66 0.67 0.66

Zero-Shot

Bart-large-mnli 0.029 0.45 0.35 0.41 0.67 0.51 0.75 0.03 0.06 0.52 0.37 0.3
Flan-T5-xl 0.24 0.43 0.31 0.41 0.18 0.25 0.46 0.54 0.50 0.40 0.37 0.36
GPT-neo-2.7B 0.0 0.0 0.0 0.40 0.96 0.57 0.56 0.09 0.16 0.38 0.41 0.29
GPT-3 0.33 0.02 0.04 0.41 0.61 0.49 0.46 0.47 0.47 0.41 0.43 0.38
GPT-3.5 0.28 0.25 0.26 0.40 0.52 0.45 0.55 0.42 0.48 0.43 0.42 0.42

One-Shot

GPT-neo-2.7B 0.0 0.0 0.0 0.4 1.0 0.57 1.0 0.02 0.04 0.55 0.41 0.24
GPT-3 0.24 0.21 0.22 0.44 0.73 0.55 0.57 0.24 0.34 0.45 0.43 0.40
GPT-3.5 0.41 0.42 0.41 0.37 0.48 0.42 0.62 0.43 0.51 0.48 0.45 0.45

Two-Shot

GPT-3 0.24 0.17 0.20 0.42 0.70 0.53 0.57 0.29 0.38 0.44 0.43 0.40
GPT-3.5 0.34 0.65 0.45 0.46 0.33 0.39 0.67 0.52 0.58 0.52 0.48 0.48

Table 4.6: Metrics for Fine-Tuned and Trained Models

the massive amount of text data. On the other hand, distilroberta-base- climate-f

is used because the model is additionally pre-trained on climate-related research text
[18]. Distilroberta is a smaller and faster version of Roberta, so it’s interesting to
see how the size of Roberta compares to a model that’s fine-tuned for climate-related
research text.

The best model is the Roberta-large trained with AutoTrain, on the normal dataset.
First of all, an F1-score of 72% can be considered quite good. This is because all of
the texts that are classified are quite long and close to the max sequence length of the
models. Usually, these models perform significantly better on shorter texts. Secondly,
for both the models, AutoTrain performed better than the fine-tuned models, implying
that AutoTrain is one of the most powerful training methodologies available. Another
notable finding is that the larger model, Roberta-large, outperformed the smaller
model, Climatebert, which is specifically trained on climate-related texts. The last
observation is that the model trained on augmented data performed worse compared



46 Chapter 4 Experimental Evaluation

to the original data. This suggests that the augmentation techniques employed did not
effectively enhance the model’s ability to generalize and make accurate predictions.

4.3.2 Transfer Learning Models (Zero-Shot, One-Shot, and Few-Shot) on
the Cicero Dataset

In this experiment, five models are evaluated. Specifically, bart-large-mnli was pre-
trained for this task and will be compared with the largest models available. The other
models range from 2.7 billion parameters up to 175 billion, which are the biggest models
available today. Due to limitations in the maximum sequence length of certain models,
not all experiments are performed on every model. Some models have a maximum
sequence length that is not sufficient to accommodate the required input size.

As explained in section 2.3, Brown et al. [10] showed that extremely large language
models can perform competitively on few-shot, classification tasks with less data than
is required from other models. In this study, it was observed that the best model, a
two-shot prompt with GPT-3.5, exhibited an F1 score that was 24 percent lower than
that of the best-fine-tuned model. This implies a certain degree of competitiveness. The
study also showed that n-shot learning models have a parallel relationship, where the
model with the highest value of n consistently outperformed the models with lower values
of n. This is also the case in this study, at least for GPT-3 and GPT-3.5. This implies
that these models can accurately classify a given text into a green class, with just a few
examples as training data.

Zero-Shot Models

Figure 4.6 shows the predictions from each model from the zero-shot prompt. As can
be seen, there is a big mix of how the models are biased. gpt-neo-2.7B predicts
Medium Green almost all the time. This bias indicates that the model’s predictions
may not be reliable or trustworthy, as it appears to favor a specific class without
considering the diversity of inputs or providing accurate representations of other potential
outcomes. GPT-3 and bart-large-mnli looks to have a little less bias, while GPT-3.5

and flan-T5-xl look like the best model from solely looking at the distribution.

One-Shot Models

Figure 4.10 shows the distribution from the models tested on the one-shot prompt. As
can be seen once again, GPT-Neo is biased in its predictions, indicating that the model
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Figure 4.1: GPT-3 Figure 4.2: GPT-3.5

Figure 4.3: gpt-neo-2.7B Figure 4.4: flan-T5-xl

Figure 4.5: bart-large-mnli

Figure 4.6: Distribution of Predicted vs Actual for Zero-Shot Learning

is not suitable for transfer learning. This time, GPT-3 looks a bit better, now that it’s
managing to predict Light Green sometimes. Once again, GPT-3.5 stands out as the
preferred choice based on the distribution, which is now even more balanced across the
options. Two times, the output from this model was ”N/A (not related to green bonds)”,
which indicates that the model makes predictions based on actual information present in
the texts it analyzes.
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Figure 4.7: GPT-Neo Figure 4.8: GPT-3

Figure 4.9: GPT-3.5

Figure 4.10: Distribution of Predicted vs Actual for One-Shot Learning

Two-Shot Models

Figure 4.13 shows the distribution from the models tested on the two-shot prompt. The
distribution looks similar to the one-shot prompt, but the results are a few percent better.
This model also generated, ”N/A (not related to green bonds)” which means that it is
not completely random when the model does not predict.

Figure 4.11: GPT-3 Figure 4.12: GPT-35

Figure 4.13: Distribution of Predicted vs Actual for Few-Shot Learning
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4.3.3 Overall Implications of Results on Cicero Data

Trained models classified with an F1-score of 72%. This can be considered quite good
considering all texts are long and approximately the max sequence length for the models.
The best transfer-learning models, the two-shot models, performed significantly worse
than the trained models, suggesting that training large models with limited training data
remains an effective approach.

The fact that recall and precision are the same across fine-tuned models suggests that
the models are performing consistently well across all classes. This indicates that the
fine-tuning process has effectively adapted the pre-trained model to the specific task and
data.

On the other hand, the variation in recall and precision observed in the transfer learning
models implies that the performance differs across different classes. This can have a few
implications. Firstly, in the fine-tuned models, it was possible to calculate class weights,
and this was not possible in the transfer-learning models. Secondly, the transfer learning
models may struggle with classes that have different data distributions compared to
the pre-training data. In such cases, the models may not generalize as well to these
specific classes, resulting in lower recall and precision. The model may also struggle at
recognizing certain patterns or features that are highly indicative for some classes, and
can struggle to find patterns in the other classes.

The practical issue with these results is that this thesis aimed to find an automatic
approach to finding green claims or classifying companies as green/not green. The
Cicero data has origin from reports that are manually generated by a research company.
However, it shows that if it’s possible to make companies share reports on a common
communication channel or such, it is possible to automatically classify them.
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Conclusions

5.1 Summary

This thesis has developed web scrapers to scrape two types of datasets. The first scraper
was implemented to scrape all information from the website of each company in the
Fauna dataset. This was done by recursively scraping each sub-page extracted from the
home page of every website. To extract data from the Cicero dataset, a second scraper
was developed. The dataset consisted of entries listed as links within an unordered HTML
list. By visiting each link, the scraper successfully extracted the report text contained
within them.

Both datasets were then prepossessed to ensure compatibility with machine-learning
models. A significant portion of the text scraped from the Fauna dataset was excessively
long, primarily due to the abundance of information available on the websites. These texts
were summarized with a Transformer model to ensure they were shorter than 512 tokens,
which is the max sequence length for most of the Transformer models capable of text
classification. Subsequently, each text within the dataset underwent manual correction,
and those texts that were deemed irrelevant to sustainability were discarded from further
analysis. Texts in the Cicero dataset were augmented to research if expanding the dataset
could enhance the performance of the machine learning models. This was done by asking
ChatGPT to write a similar text to each text in the dataset.

For the Fauna dataset, a zero-shot learning model was implemented for a multi-label
classification task. The task was to classify each scraped text into the "green criteria"
Fauna had already classified the company too. The zero-shot learning technique was used
due to the small size of the dataset. Both fine-tuned models and transfer-learning models
such as zero, one, and two-shot models were implemented to classify the Cicero dataset
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into light green, medium green, or dark green. Both of the multi-class classification tasks
were implemented on multiple models to research what kind of models are most likely to
effectively accomplish the classification task.

5.2 Objectives

The first research question, RQ1, asked what datasets currently exist for greenwashing
detection and what is needed. In this thesis, two datasets have served as benchmarks for
collecting comprehensive information on companies. Both these datasets have their limits.
The Cicero dataset categorizes the extent of ”greenness”. The results from experiments
show that large language models manages to distinct less sustainable companies from
the most sustainable companies. This doesn’t help directly when detecting greenwashing,
since no green claims can be found from this. The information are stored in reports
that are manually generated, which removes the aspect of automatically finding these
claims. The second dataset, can potentially be more efficient to detecting greenwashing
since a model can be trained to distinct green labels of corporate products. From the
experiments on this dataset, it was discovered that when a company website is manually
labeled, it is very hard to train on these labels because a website can contain very much
information. So if this dataset is too used to detect greenwashing, a better scraper must
be implemented, as well as better methods of filtering key information from the websites.

After working on this thesis, there is no doubt to what is needed to detect greenwashing
regarding datasets. A good method must be implemented to annotate green claims in
texts that are published by companies. By doing this, more specific training data can be
made, where green claims are actually connected to some information about the company
or the products of the company.

The second research question, RQ2, asks if greenwashing detection be modelled as a multi-
class and multi-label classification task. Based on the results in this thesis, the answer is
no. RQ2 was addressed by employing Transformer models and leveraging the latest AI
models for both multi-class and multi-label classification tasks. The study incorporated
multiple models and techniques to explore the effectiveness of each approach in achieving
the research objectives. The first classification task, the multi-label classification on the
Fauna dataset, was tested on insufficient data. The other classification task showed that
the large AI models are good enough to classify texts on very small amount of training
data. Therefore, if a technique for annotating superior data can be employed, utilizing
these large AI models as a multi-class or multi-label approach can be utilized to identify
greenwashing.
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During the analysis phase, RQ3 was addressed to determine the most suitable models
with the best performance. The study incorporated multiple models and techniques
to explore the effectiveness of each approach in achieving the research objectives. By
using the power of Transformer models and utilizing the newest and largest AI models
available, the study aimed to enhance the classification accuracy and performance across
both multi-class and multi-label classification scenarios. Various models and techniques
were implemented and evaluated to compare their effectiveness and determine which
approaches yielded the most favorable outcomes.

As discussed, the multi-label models were tested on a limited dataset, which made it
difficult to conclude the models. From the models tested on the Cicero dataset, the
best-trained model performed with an F1 score of 72% which is considered a promising
result in this context.

For the Fauna dataset, a zero-shot learning model was implemented for a multi-label
classification task. The task was to classify each scraped text into the "green criteria"
Fauna had already classified the company too. The zero-shot learning technique was used
due to the small size of the dataset. Both fine-tuned models and transfer-learning models
such as zero, one, and two-shot models were implemented to classify the Cicero dataset
into light green, medium green, or dark green. Both of the multi-class classification tasks
were implemented on multiple models to research what kind of models are most likely to
effectively accomplish the classification task.

5.3 Future Directions

The application of machine learning for corporate greenwashing detection is still in its
early stages, and there is significant potential for further research in this area. There
is some potential for future research in the detection of greenwashing using machine
learning models and techniques, alongside strategies to counter potential attacks on the
algorithm. One crucial aspect that requires attention to bridge the existing gaps in this
thesis is the enhancement of the web scraper. Considering that web pages are likely
to contain a significant number of green claims, this particular area demands extensive
effort and dedication. Additionally, there is a need to conduct further investigation into
structuring and summarizing the vast amount of information obtained from web scraping,
ensuring that it can be effectively utilized by ML models without compromising any
relevant details about the environment.

Additionally, research can be done to create better-labeled datasets to improve the
relevance of the classification. Classifying companies to a degree of green practices, like
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in the Cicero data, is not too relevant when fighting greenwashing. Creating labels that
are more specific to green claims is going to be important when detecting greenwashing.

Investigating real-time monitoring mechanisms can be valuable in identifying green-
washing practices as they occur. Developing algorithms that continuously analyze and
evaluate corporate communications and actions can provide timely insights and assist in
detecting misleading environmental claims.

Overall, continued research in this area is critical to prevent companies from deceiving
consumers and contributing to environmental degradation.



Appendix A

Sample Appendix Contents

A.1 Code

All code implemented for this thesis can be found at https://github.com/factiverse/

acdc/tree/feature/python_rework.

• Path to the script that scrapes the Fauna dataset is:

acdc-data-master/src/signals/homepage.acquire.py

• Path to the script that scrapes the Cicero dataset is:

acdc-data-master/Cicero/scrape_cicero.py

• All prepossessing scripts, ML-models and datasets for the Fauna dataset can be
found in acdc-data-master/Fauna

– Fauna.xslx is used as dataset for zero-shot experiment.

– Fauna_summed.xslx is dataset prior to manually correcting the dataset.

– zero-shot experiments are scripts with prefix: zero_shot_multi_label

– fetch_data.py is to make a dataframe of the data from the database, as well
as summarizing the texts.

– scripts like data_augment.py and impact_classifier2.py are deprecated
due to the small dataset.

• All prepossessing scripts, ML-models and datasets for the Cicero dataset can be
found in acdc-data-master/Cicero

– train.csv is Normal training data. train_augmented.csv is augmented
training data. val.csv is testing data. For transfer-learning experiments,
train.csv and val.csv are concatenated.
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– augment_data_gpt.py is used to make similar texts with GPT API

– autoTrain.py is used to make classification reports from AutoTrain models

– zero-shot experiments are scripts with prefix: zero_shot

– one-shot experiments are scripts with prefix: one_shot

– two-shot experiments are scripts with prefix: few_shot

– fine-tuned models are multi_class_climateRoberta.py, multi_class_Roberta.py
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