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Abstract

This dissertation presents seismic amplitude versus offset (AVO) inversion methods to
estimate water saturation and effective pressure quantitatively in elastic and viscoelastic
media. Quantitative knowledge of the saturation and pore pressure properties from
pre- or post-production seismic measurements for reservoir static or dynamic modeling
has been an area of interest for the geophysical community for decades. However,
the focus on the existing inversion methodologies and explicit expressions to estimate
saturation-pressure variables or changes in these properties due to production or fluid
injection has been based on elastic AVO models. These conventional methods do not
consider the seismic wave attenuation effects on the reflection amplitudes and therefore
can result in biased prediction.

Numerous theoretical rock physics models and laboratory experiments have demon-
strated the sensitivity of various petrophysical and seismic properties of partially fluid-
filled porous media to seismic attenuation. This makes seismic wave attenuation a
valuable time-lapse attribute to reliably measure the saturation (S,,) and effective pres-
sure (P,) properties. Therefore, in this work, I have developed two AVO inversion pro-
cesses i.e., the conventional AVO inversion method for elastic media and the frequency-
dependent amplitude versus offset (FAVO) inversion technique for the viscoelastic media.
This dissertation first presents the inversion strategies to invert the pre-stack seismic
data for the seismic velocities and density by using the conventional AVO equation
and for the seismic velocities, density, and Q-factors by using the frequency-dependent
AVO method. These inversion methods are then extended to estimate the dynamic
reservoir changes e.g., saturation and pressure variables, and can be applied to predict
the saturation and pressure variables at any stage e.g., before and during production, or
fluid injection, or to estimate the changes in saturation (AS,,) and pressure (AP,). The
first part of the dissertation describes the theory and formulation of the elastic AVO
inversion method while in the second half, I have described the viscoelastic inversion
workflow. FAVO technique accounts for the dependence of reflection amplitudes on
incident angles as well as seismic frequencies and P and S waves attenuation in addition
to seismic velocities and density. The fluid saturation and pressure in the elastic and
inelastic mediums are linked to the reflection amplitude through seismic velocities,
density, and quality factors (Q).

The inversion process is based on the gradient-descent method in which the least-
square differentiable data misfit equation is minimized by using a non-linear limited-
memory BFGS method. The gradients of the misfit function with respect to unknown
model variables are derived by using the adjoint-state method and the multivariable
chain rule of derivative. The adjoint-state method provides an efficient and accurate way
to calculate the misfit gradients. Numerous rock physics models e.g., the Gassmann
substitution equation with uniform and patchy fluid distribution patterns, modified
MacBeth’s relations of dry rock moduli with effective pressure, and constant Q models
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Abstract

for the P and S wave attenuation are applied to relate the saturation and effective
pressure variables with elastic and an-elastic properties and then forward reflectivity
operator. These inversion methods have been defined as constrained problems wherein
the constraints are applied e.g., bound constraints, constraints in the Lagrangian solution,
and Tikhonov regularization. These inversion methods are quite general and can be
extended for other rock physics models through parameterizations.

The applications of the elastic AVO and the FAVO methods are tested on various 1D
synthetic datasets simulated under different oil production (4D) scenarios. The inversion
methods are further applied to a 2D realistic reservoir model extracted from the 3D
Smeaheia Field, a potential storage site for the CO, injection. The inversion schemes
successfully estimate not only the static saturation and effective pressure variables or
changes in these properties due to oil production or CO; injection but also provide a
very good prediction of seismic velocities, density, and seismic attenuation (quantified
as the inverse quality factor). The partially CO,-saturated reservoir exhibits higher P
wave attenuation, therefore, the addition of time-lapse P wave attenuation due to viscous
friction between CO,-water patches helps to reduce the errors in the inverted CO,/water
saturation variables as compared to the elastic 4D AVO inversion.

This research work has a wide range of applications from the oil industry to carbon
capture and storage (CCS) monitoring tools aiming to provide control and safety during
the injection. The uncertainty in the inversion results is quantified as a function of the
variability of the prior models obtained by using Monte Carlo simulation.

Vi
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1. Introduction

1.1 Introduction

Numerous techniques have been used in geosciences for investigating subsurface prop-
erties and among them, the seismic techniques are classified as the most successful and
widely used methods. After the first successful deployment of the seismic method to lo-
cate the Orchard salt dome in 1924 Musgrave (1967), seismic theory and data have been
an integral part of hydrocarbon exploration and field development. For many decades,
seismic methods were used to designate and map the subsurface structures to identify
potential hydrocarbon traps. However, gradually with the improvement in seismic data
quality and computation technology, it becomes possible to use the variations of seismic
amplitude with incident angles/offset (AVO) as a Direct Hydrocarbon Indicator (DHI)
and to use it to differentiate the hydrocarbon-filled sediments from the background
geology or brine-filled rock (Castagna et al. Hilterman [1990} Ostrander [1984).
Over the last two decades, the time-lapse (4D) pre-stack seismic data turned out to be
a useful tool in investigating reservoir complexities, the effect of fluid saturation and
pressure variations separately, etc. (Bhakta and Landrg Corte et al. Landrg
Lang and Grana[2019} Trani et al. 2011).

In the conventional AVO methods, the reflection amplitudes at the geological bound-
ary of two elastic layers depend only on the incident angles, elastic wave velocities, and
density (Buland and Omre Luo et al. Tang et al. [2021). On the other
hand, at the interface of a viscoelastic medium, the reflection amplitude is related to
seismic attenuation (quantified as the inverse quality factor) of the layers and seismic
frequency in addition to the elastic parameters and incident angles (Chen et al.
Innanen Li and Liu[2019). Numerous attempts (Bhakta and Landrg Bhakta

et al. 2022} Corte et al. 2023} Dupuy et al.[2021a; Dupuy et al.[2021b} Forberg et al.
2021}, Grana et al.[2022}, Grana and Mukerji 2013} Landrg 2001; Lang and Grana 2019
Meadows 2001 Trani et al. 2011; Veire et al. 2006)) have been made to estimate the

static or dynamic fluid saturation and pressure properties from the pre-stack seismic
data in the elastic medium. These methods do not incorporate the effect of time-lapse
seismic attenuation. Recently some research (for example, Blanchard and Delommot
Dinh and Van der Baan Morgan et al. Qi et al. has been
made to estimate fluid saturation changes in the viscoelastic media from the time-lapse
seismic data by applying viscoelastic AVO theory. However, their work has various
limitations e.g., ignoring shear wave attenuation due to rock-frame heterogeneities and
not taking into consideration the effect of attenuation due to changes in pore pressure.
This encourages us to investigate the viscoelastic AVO theory more precisely and for
understanding reservoir dynamic changes.

This dissertation is a theoretical and applied contribution towards a better estimation
of saturation and pore pressure changes estimation by applying elastic and viscoelastic
(frequency-dependent) amplitude-versus-offset inversion methods and incorporating
viscous friction between the viscous fluids and between the fluids and solid grain
walls. In addition to the estimation of the reservoir dynamic parameters (e.g., saturation
and pressure) by using seismic inverse modeling, this dissertation also contributes to
predicting the seismic wave velocities and quality factors, and bulk density. This first
chapter gives a summary and brief introduction to the dissertation. I begin with the
seismic time-lapse analysis, the theoretical background of the subject, a brief literature
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review, and a conceptual description of seismic attenuation mechanisms. In the end, the
organization of the dissertation and summary of individual papers is briefly described.

1.2 Seismic time-lapse analysis

At this moment, it is worthwhile to describe the fundamental physical mechanisms that
are relatively associated with hydrocarbon production or fluid injection or environmental
changes caused by variations in the reservoir rock properties or in its pressure conditions.
Primarily and the most noticeable effect is the effect caused due to fluid replacement
in the porous and permeable sediments i.e. when water replaces the pore spaces of
produced oil, the pore pressure drops, and as a result, dissolved gas appears in the
solution below the bubble point (Johnston[2013). Fluid replacement within the reservoir
changes the elastic moduli and bulk density of the saturated rock and consequently may
alter the P wave propagation velocities substantially in reservoir sediments undergoing
hydrocarbon production or fluid injection. However, fluid substitution has a notably
lower effect on the S wave propagation velocity. Variations in the seismic velocities and
density contrast at the reservoir and seal rock interface change the reflection coefficient
series and resultantly translate into interpretable seismic AVO signatures (Du et al.
Wandler et al. 2007). Similarly, fluid migration within the reservoir results in seismic
velocity variations which proceed with noticeable time-shifts of recorded seismic events.
If the elastic parameters e.g., matrix and rock skeleton moduli, fluids moduli, and
petrophysical properties like porosity, pre- and post-production saturation levels, etc.
are known, the effect of change in saturation and pressure on seismic velocities can
be modeled by using Gassmann’s equation (Gassmann [I951; Mavko et al.[2020) and
MacBeth’s modified relationships between dry-rock moduli and effective pressure
(Grana [2016; MacBeth[2004). Bulk density and P wave velocity increase in case water
replaces either oil or gas and then lowers because of gas/CO; substituting water or
oil. Seismic P velocity variations due to fluid substitution are possibly meaningful and
relative changes may reach hundreds of meters per second (Maharramov et al. [2016).

Hydrocarbon production or fluid injection into a reservoir can result in stress vari-
ations. Therefore, pressure changes (e.g., changes in effective pressure due to pore
pressure variations) are another essential mechanism responsible for the time-lapse
effects (Holt et al. Landrg [2001). In general, seismic velocities and density are
higher within compacting reservoir sediments. For example, dropping pore pressure
results in an increase in effective pressure and both acoustic and shear velocities will
typically increase. Conversely, reservoir rock that is under fluid injection normally
shows a decrease in seismic velocities due to an increase in pore pressure (Zoback[2010).
However, almost every researcher (Bhakta and Landrg Forberg et al. Grana
and Mukerji Landrg Lang and Grana[2019; Trani et al. has assumed
pre- and post-production reservoir density independent of the pore pressure changes.
In addition to the changing fluids saturation and pressure, there are numerous other
time-lapse processes e.g., thermal and chemical processes, porosity variations in case
of subsidence, etc. may result in changes in seismic velocities. However, the scope of
this dissertation is to focus on the prediction of the effects of saturation and pressure
changes from pre-stack seismic data.
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In the published scientific literature, a variety of methods based on seismic AVO the-
ory integrated with laboratory measurements and rock physics models (e.g., Gassmann
uniform and patchy fluid distribution models, Hertz—Mindlin method, MacBeth’s com-
pliance model, etc. (Batzle and Wang[1992; Gassmann [I951} Grana 2016} Hill[1963]
MacBeth [2004; Mavko et al. Mindlin[1949)) have been presented for reservoir
dynamic changes estimation. These methods primarily vary in the models subject to
relate the reservoir dynamic parameter domain to the seismic reflectivity domain, for
example, some of the methods use a direct link between two domains, and the alternative
use an intermediary elastic parameter domain between reservoir properties and seismic
response. The methods use the direct links between two domains relying on first- or/and
second-order empirical regression models to relate the rock and pore fluid physics. In the
famous method proposed by Landrg (2001)), explicit expressions for saturation-pressure
changes are derived by directly linking the AVO intercept and gradient with reservoir
dynamic changes and by assuming the linear and quadratic expansions between elastic
properties and reservoir parameters. Developments and extensions in the applications
of Landrg’s approach have been made by including numerous non-linear relationships
between time-lapse AVO and reservoir properties changes (Angelov et al. Bhakta
Lang and Grana Meadows 2001). Similarly, analogous expressions of
Landrg’s method are also presented for the time-shift and seismic impedance attributes
and higher (than 2) P to S wave velocities ratios (Bhakta and Landrg 2014} Grude
etal. Kvam and Landrg Trani et al. Veire et al. 2006). Alvarez and
MacBeth developed an approximation for more intuitive understanding which
allows mapped time-shift and 4D seismic amplitude to be associated directly with the
weighted linear sum of saturation and pore pressure variations. MacBeth et al. (2006)
published a data-driven method similar to Landrg’s linearized model wherein the model
properties are calibrated by using production data instead of laboratory measurements.

An alternative methodology that uses the elastic property domain as an intermediary
between the seismic response and reservoir static or dynamic properties has also been
presented by several researchers. This procedure usually needs a well-founded and
valid petro-elastic model (PEM) to compute the elastic variables and a synthetic seismic
forward model. This workflow allows for using of theoretical rock physics models to
calculate the seismic velocities and density from the basic petrophysical properties such
as fluid saturation, porosity, pressure, mineralogy, etc. These techniques may include
non-linear equations relying on theoretical physics in preference to data observations
and measurements. The relation between seismic reflectivity and elastic parameters can
be defined via any seismic forward modeling method or renowned wavelet convolution
model. These methods comprise on two-step inversion process that first translates the
seismic amplitudes to acoustic impedances and then further invert to the saturation-

pressure changes (Correia et al. [2014; Dadashpour et al. [2008; Davolio et al. 2012

Davolio et al. 2013} Emerick 2014; Grana and Mukerji [2015; Meadows and Cole
Ribeiro and MacBeth 2006).

Bayesian inversion processes are nowadays more commonly applied to solve geo-
physical inverse problems (Buland and Omre Grana et al. Mosegaard
and Tarantola Sen and Stoffa [1996). In the particular context of time-lapse
seismic AVO inversion to reservoir dynamic changes estimation, a variety of inversion
formulations in the Bayesian framework have been proposed (Emerick 2014} Floricich
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et al.|2012; Grana and Mukerji Landa et al. [2015}; Lang and Grana|[2019; Wong

et al. 2015). To address the problem of non-linearities because of gas saturation and
pressure response, Corte et al. (2023) applied a Markov Chain Monte Carlo method
to evaluate the uncertainties in the inverted saturation-pressure variables and sample
the Bayesian posterior distribution. The advantages of these statistically based inver-
sion techniques are that the uncertainties can be assessed analytically. However, the
computational cost and feasibility of applying for large geophysical datasets are usually
not practical due to the spatial correlation of the model properties. Contrastingly, the
adjoint-based non-linear optimization methods are computationally fast and provide
an inverse solution with good convergence. Nevertheless, the implementation of the
adjoint method for non-linear optimization with analytical solutions of the first-order
gradient of the objective function for time-lapse seismic AVO inversion to estimate the
saturation-pressure changes has not been yet proposed.

Similarly, when seismic energy propagates through the subsurface geological strata
or partially fluid fill reservoir rock, both P and S seismic waves are dissipated due to
several mechanisms (Blanchard 2011} Miiller et al. 2010} Pride et al. 2004; Quintal
et al. 2011). However, the effect of time-lapse seismic attenuation (Blanchard and
Delommot 2015} Weinzierl and Wiese on seismic amplitude due to changes in
fluid saturation (especially gas) and pressure has been ignored in the previously discussed
work. Therefore, time-lapse attenuation, if taken into consideration as a monitoring
tool for saturation-pressure changes estimation during hydrocarbon production or CO,
geological storage can provide a more realistic way to find these dynamic variables
(Dinh and Van der Baan [2019). This leads to extending the research domain for further
investigation of reservoir dynamic changes measurement by including the viscoelastic
properties of a medium. A comprehensive discussion on seismic attenuation theory has
been included in the next section to understand seismic attenuation, its types, and the
various mechanisms responsible for it.

1.3 Seismic attenuation theory

Seismic attenuation refers to the loss of coherent wave-front with distance when seismic
energy propagates through the subsurface geological strata. The attenuation is quantified
as the inverse quality factor. Numerous physical mechanisms that can result in seismic
wave attenuation are generally split into two processes: extrinsic and intrinsic attenuation.
Extrinsic attenuation is when the total seismic energy of the wavefield is conserved (e.g.,
geometric spreading and scattering), while intrinsic or inelastic attenuation occurs due to
the conversion of elastic energy into heat, due to particle friction like solid-solid friction
in the grain contacts or micro-cracks or viscous friction between the viscous fluid and
the solid grain walls or crack walls). Intrinsic attenuation of body waves caused by
viscous friction between the viscous fluid in the pore space and the solid grain walls is of
great interest to exploration geophysics (Miiller et al. 2010). The scientific presumption
is that the knowledge of fluid-related attenuation in the oil and gas reservoirs combined
with improved estimation of seismic wave attenuation from the surface seismic data
may help to estimate hydraulic properties and reservoir characterization.

It is widely recognized that the existence of fluids within the rock pore space leads to
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seismic attenuation and velocity dispersion by the predominant phenomenon referred to
as wave-induced fluid flow (WIFF). Wave-induced fluid flow takes place as the seismic
wave passage generates pressure gradients within the porous medium associated with
internal friction. WIFF’s description in partially saturated porous sediments considers
three different length scales - macroscopic, mesoscopic, and microscopic (Toms et al.
and are shown in Figure[I.1] Macroscopic or global flow occurs when the pressure
gradient due to WIFF is over the wavelength of a seismic compressional wave and is
quantified theoretically by Biot’s theory (Biot[1956} Biot[1962; Bourbié et al. [1992}
Pride [2003). Biot’s theory explains the magnitude of observed attenuation for the global
flow mechanisms above 100 kHz seismic frequencies. Alternatively, on the other end
of the heterogeneity scale, due to pore shapes and orientation differences, different
compliances of the adjoining pores may result in local spatial gradients between these
pores. For example, granular rocks are commonly assumed to have quite compliant
pores in the contact areas between adjoining pores and stiffer pores occurring in between
these grains. The passage of a compressional wave in a rock deforms the grain contact
area to a far larger extent compared with the intergranular pores, leading to local pressure
gradients, relative fluid motion, and viscous attenuation. This phenomenon of pore-scale
WIFF is also called local or squirt flow and is responsible for seismic wave attenuation
at ultrasonic frequencies (Johnston et al. Pride et al.[2004; Winkler [T985).

Wave-induced fluid flow can also happen on a scale way smaller compared with the
wavelength but significantly higher than normal pore size due to spatial variations in
rock compliance. This scale of heterogeneities is known as mesoscopic flow (Figure
[[I). The passage of the P wave leads to compression of the porous framework on
the time scales applied by the seismic wave speed. When a compression or a dilation
of seismic energy passes through a rock that has saturation fluid and rock properties
heterogeneities, it creates spatial gradients in the pore pressure. The heterogeneities
present on the length scale larger than the pore scale but lower than the wavelength
cause the development of gradients in the pore pressure on the mesoscale which leads
to seismic energy dissipation in a broad range of frequencies. It is considered that
mesoscopic flow is a substantial phenomenon of partial fluid-related attenuation in the
seismic data frequency range of a few Hz to 1000 Hz (Pride et al. Tisato and
Quintal Toms et al. and therefore is the focus to include in the current
inversion method and this dissertation.

The level of heterogeneities in the reservoir rock, for example, the difference between
the elastic properties of varying parts of rocks and fluid patches, etc. are the significant
source of seismic wave attenuation. The two most noticeable frameworks that have
gained considerable attention in past years are patchy fluid-saturated reservoirs and
fractured rocks. In case of two non-mixing pore fluids with significantly varying
moduli (for instance brine and gas) are present in the form of patches at the mesoscale
results in substantial wave attenuation and velocity dispersion (Caspari et al.
Murphy IIT[T982} Quintal et al. 2011} White et al.[1975). Wave-induced pore pressure
equilibration can be attained only if the seismic wave has an adequately low frequency
such that the characteristic diffusion length (the virtual boundary between uniform and
patchy saturation regimes) is in large contrast to the largest spatial scale of fluid mixing.
However, at higher frequencies, the pressure gradient between neighboring liquid and
gas-saturated phases will not have enough time to re-equilibrate causing an increased
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Observation scale,

macroscale

Mesoscale
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Figure 1.1: Different scales of heterogeneities and WIFF occur in seismic frequencies
range which is known as the mesoscopic scale (from Miiller et al. 2010).

seismic velocity and bulk modulus. This leads to the concept that the existence of two
fluids (partially saturated rocks) in the pore spaces is the source of additional elastic
wave attenuation-dispersion that is specifically associated with the relaxation fluid’s
pore pressure. In a partially saturated porous media, the dependence of frequency on
attenuation-dispersion is controlled by various factors such as fluid distribution patterns,
size and shape of fluid patches, pore connectivity and elastic moduli of the rock-forming
minerals, and properties of fluid phases, etc. (Carcione and Picotti Mavko et al.
Miiller et al. 2010). Figure [I.2]shows the 2D model of the P wave attenuation
due to wave-induced fluid flow (WIFF) in the baseline and monitor cases (left-side
panel). The corresponding attenuation models are computed by using the constant O
rock physics model (Mavko et al.[2020) and are shown in the right-side panel. The
magnitude of attenuation approaches zero when there is a single fluid present, therefore,
in the baseline model which is fully water-saturated, the respective attenuation is zero
or close to zero value. The attenuation has maximum values in the partial fluid saturated
zones (water/CO»), especially in the low CO, zones (e.g., Sco, > 0.9).

In this work, one of the goals is to translate these observed seismic wave attenuation
changes due to WIFF at mesoscale into physical changes within the rock itself and then
used to map ideally any changes in the pressure and saturation.

1.4 Aims and objectives of dissertation

This dissertation deals with the problem of seismic reservoir characterization and
improved oil recovery. The primary focus is on the development of an appropriate
theoretical background and workflow, including the frequency dependence on the time-
lapse (4D) seismic AVO inversion and analysis to estimate viscoelastic properties,
pressure, and fluid saturation changes. The objective is to include the time-lapse seismic
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Figure 1.2: P wave attenuation model due to wave-induced fluid flow (WIFF) in the
baseline and monitor cases. The baseline model represents the full water saturation case
and the CO» has been injected in the monitor model.

attenuation measurements in the 4D AVO inversion workflow while mapping saturation-
pressure variables or changes in these properties. In addition to the frequency-dependent
method, the AVO inversion method is developed without considering the dependence of
reflection amplitudes on seismic frequencies (elastic AVO) and to estimate the elastic
properties and saturation-pressure variables. This project is comprised of several phases
as described below:

In the first step, a theoretical foundation has been developed for without frequency
and frequency-dependent seismic AVO inversion (elastic AVO and FAVO) meth-
ods to estimate the seismic velocities, density, and seismic quality factors. This is
because of the reservoir dynamic properties are linked with seismic reflectivity
through elastic and an-elastic properties. Then, the extension of these inversions
(elastic AVO and FAVO) schemes to map the fluid saturation and pore pressure
changes in the elastic and viscoelastic mediums was carried out. The AVO in-
version methods are applied to the different parameterizations of the model by
using the chain rule of differentiation and by incorporating feasible and adequate
rock-physics relations.

The next phase includes performing of feasibility analysis with 1D synthetic data
to predict the seismic properties of the elastic and viscoelastic medium. Then,
apply the inversion methods to the synthetic data simulated under various time-



Organization of dissertation

lapse scenarios to predict the oil/water saturation and pressure properties and the
changes in saturation-pressure variables due to either production or fluid injection.

* Implementation of the 4D inversion methods to 4D seismic data and compare
the results to those obtained using conventional AVO and FAVO analysis and
inversion. For example, the 4D inversion methods are tested on the 2D model
obtained after CO, injection in the Smeaheia field.

1.5 Organization of dissertation

The estimation of reservoir saturation level and effective pressure by using conventional
and frequency-dependent AVO inversion methods is the primary focus of this disser-
tation. These reservoir properties are linked with seismic reflectivity through elastic
and an-elastic properties in the elastic and viscoelastic media. Therefore, the main
part of the dissertation consists of four independent research papers including their
own abstracts or summaries, introductions, theory and methods (inversion workflows),
applications to data, and appendixes. Two of the four papers are already published
and two are under consideration in widely known scientific journals in geophysics. In
addition, a short chapter summarizing the main conclusions is placed at the end. In the
appendix, I have discussed the computation cost of the adjoint-state-based gradients and
the convergence of the optimization method. The organization of the chapters and the
relationship between these chapters are described as follows:

The paper in Chapter 2, Constrained non-linear AVO inversion based on the adjoint-
state optimization, presents a non-linear seismic AVO inversion method to estimate
the seismic velocities and bulk density from pre-stack seismic data. The inversion
process is formulated by using the gradient descent optimization method wherein the
first-order gradient of the objective function is implemented by using the adjoint-state
method. The error function is minimized by making use of the second-order non-linear
limited-memory BFGS algorithm. The applications of the method were tested on 1D
and 2D synthetic datasets obtained from the Edvard Grieg Field, Norwegian North
Sea, and simulated by using both convolutional modeling and finite difference methods.
The concept behind the methodology of this paper is mainly contributed by the first
two authors. The first author is the principal contributor in the writing of the initial
draft, its layout, and visual presentations of results. My co-authors revised the text and
contributed to technical discussions and suggestions. Wiktor Weibull also helped in the
derivation of the adjoint-based gradients and codding. This paper is published in the
November 2022 issue of Computers & Geosciences.

In the paper in Chapter 3, Constrained non-linear AVO inversion for reservoir
dynamic changes estimation from time-lapse seismic data, we extend the inversion
method described in Chapter 2 to estimate the static saturation and pressure properties
or changes in these properties due to production or fluid injection from pre-stack seismic
data. In this inversion workflow, the forward model comprises of linearized AVO
equation and rock physics models e.g., Gassmann’s equation (1951) and MacBeth’s
modified models (MacBeth, 2004; Grana, 2016) are used to relate the saturation and
pressure variables with elastic properties and then seismic response. Furthermore, the
chain rule of the derivative is used to derive the gradient of the objective function with
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respect to water saturation and effective pressure. The bound constraints based on prior
geological and reservoir engineering knowledge are applied to limit the solution space
of model variables e.g., saturation can only vary between 0 — 1. The applications of the
inversion scheme are first illustrated on 1D synthetic data simulated under various 4D
scenarios and then applied to a 2D model representing the CO; injection field. The main
idea of this inverse workflow is conceptualized with the collaboration of my co-authors.
However, major contributions i.e., manuscript layout and writing, visual presentation of
results, and implementation of code are made by the first author. My co-authors also
contributed to text reviewing and editing, technical suggestions, and discussions, and
by helping to solve the problems experienced during coding. This paper is currently
under review in Geophysics and the results of this paper were also presented at the 6th
International Workshop on Rock Physics, held in A Coruiia, Spain.

In the paper in Chapter 4, Frequency-dependent AVO inversion applied to physically
based models for seismic attenuation, we present a new inversion method to estimate
the elastic and an-elastic properties in the viscoelastic media. The inversion strategy
is based on a similar approach described in Chapter 2. However, in the forward model
of this paper, the reflection amplitude is dependent on seismic frequencies and P and
S wave quality factors in addition to incident angles, P and S wave velocities, and
density. Therefore, the frequency-dependent AVO inversion method helps to estimate
the seismic wave quality factors which potentially provides knowledge about rock and
fluid properties. The inversion scheme is general and therefore we have applied it
to retrieve the quality factors (also referred to as the inverse of seismic attenuation)
based on various physically based attenuation models e.g., empirical relations (Waters
and Waters [[981)), constant Q model (Dvorkin and Mavko [2006; Mavko et al. [2020)
and frequency-dependent White model (Quintal et al.[2009; White et al. [1975)). The
applications are illustrated on 1D and 2D synthetic datasets. Moreover, we also examine
the crosstalk study between the inverted properties classes (e.g., Vp - Op, Vs - Os, Vp — Vs,
Op — Qy) arises due to coupling effects of simultaneous inversion of multi-parameters.
The main contribution i.e., manuscript structure and writing, graphic presentation, and
implementation of code is made by the first author. My co-authors also contributed to
text reviewing and editing, technical suggestions, and discussions, and by helping to
solve the problems experienced during coding. Some of the results of this paper were
presented at the 83rd EAGE Annual Conference & Exhibition, held in Madrid, Spain.
This paper is published in the April 2023 issue of Geophysical Journal International.

In the paper in Chapter 5, Time-lapse frequency-dependent AVO inversion method,
we derive a novel frequency-dependent AVO inversion workflow to estimate water
saturation and effective stress or changes in saturation-pressure variables either due
to production or fluid injection. The proposed method is based on the minimization
algorithm e.g., the gradient descent method which iteratively moves in the descent
direction to find the minima of the least-squares error function. We use the analytical
gradient solution derived in Chapter 4 e.g., the partial derivatives of the Lagrangian with
respect to Vp, Vs, p, Op, and Qs. Then, we implemented the chain rule of derivative and
rock physics theory to obtain the analytical gradient solution of the error function with
respect to saturation and pressure variables. Two rock physics models i.e., Gassmann-
Hill patchy fluid saturation and constant Q models are used to relate the saturation and
pressure variables with seismic elastic and an-elastic properties. The newly derived
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method is applied to various 1D synthetic applications simulated under various 4D
scenarios with and without noise levels. The first author conceptualized the idea and
centrally contributed to writing, implementing the data, and coding. My co-author’s
participation includes reviewing and editing text and equations, technical discussion,
recommendations regarding the formulation of the manuscript, and solving coding-
related issues. Some parts of the results of this paper have been presented at the 21st
annual conference of ITAMG2022 in Nancy, France. This paper will be submitted to
Geophysics or other relevant journals in the future.

Thereafter, in a short Chapter 6, I first outlined the most important results and
outcomes of this dissertation. I then summarize the assumptions and limitations of the
method with some possible future research directions.

In the end, in appendices, I illustrated the benefits i.e., computational cost and
accuracy of the gradient computed by using the adjoint-state method (analytical deriva-
tion) over the finite difference approximation. I also included the convergence of the
non-linear minimization method i.e., L-BFGS around the minimum point.
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2. Constrained non-linear AVO inversion based on the adjoint-state
optimization

2.1 Summary

Pre-stack AVO inversion of seismic data is a modeling tool for estimating subsurface
elastic properties. Our focus is on the model-based inversion method where then
unknown variables are estimated by minimizing the misfit to the observed data. Standard
approaches for non-linear AVO inversion are based on gradient descent optimization
algorithms that require the calculation of the gradient equations of the objective function.
To improve the accuracy and efficiency of these methods, we developed a technique that
uses an implementation of the adjoint-state-based gradient computation. The inversion
algorithm relies on three basic modeling components consisting of a convolution-
based forward model using a linearized approximation of the Zoeppritz equation, the
definition of the objective function, and the adjoint-computed gradient. To achieve
an accurate solution, we choose a second-order optimization algorithm known as the
limited memory - BFGS (L-BFGS) that implicitly approximates the inverse Hessian
matrix. This approach is more efficient than traditional optimization methods. The
main novelty of the proposed approach is the derivation of the adjoint-state equations
for the gradient of the objective function. The application of the proposed method
is demonstrated using 1D and 2D synthetic datasets based on data from the Edvard
Grieg oil field. The seismic data for these applications is generated by using both
convolutional modeling and finite difference methods. The results of the proposed
method are accurate and the computational approach is efficient. The results show
that the algorithm reliably retrieves the elastic variables, P- and S-wave velocities, and
density for both convolutional and finite difference models.

2.2 Introduction

In a seismic inversion, the objective is to reconstruct unknown model variables in
the subsurface, for example, elastic velocities, from a set of seismic measurements,
including seismic amplitudes and travel time measured at the surface (Aki and Richards
[1980). The inversion results are retrieved from seismic reflection data by solving the non-
unique and ill-posed inverse problem and they provide a quantitative model of predicted
physical properties varying laterally and vertically (Buland and Omre 2003b). Seismic
data inversion schemes can be split into two main classes, post-stack (or acoustic)
impedance, and pre-stack (or elastic) inversions. Post-stack inversion aims to predict
acoustic impedance from stacked seismic data and it is often used in stratigraphic
interpretation (Ghosh but it does not give any information about the shear wave
velocity (Maurya et al. Morozov and Ma[2009). On the other hand, pre-stack
inversion is based on the concept of amplitude variations with offset/angle (AVO/A)
and aims to predict a set of elastic attributes such as seismic velocities, impedances,
and density (Downton 2005). AVO inversion results are typically correlated with
petrophysical attributes like porosity, saturation of fluids, and reservoir litho-facies.
These properties play a significant role in lithology prediction, geofluids identification,
and quantitative reservoir characterization (Chiappa and Mazzotti 2009}, Grana[2020;;
Luo et al. Zhao et al.[2014Db). In addition, AVO inversion can also be used in
time-lapse seismic monitoring studies to predict the changes in pressure, saturation,
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and porosity, as an example, for CO, sequestration in depleted reservoirs (Dupuy et al.
Lang and Grana[2019).

A seismic reflection event at the recording point is described generally by the
convolution of the seismic source and the reflectivity series based on the wave equations
(Mallick 2007), Zoeppritz equations (Kurt Liu et al. Skopintseva et al.
or linearized approximations (Aki and Richards Buland and El Ouair
[2006; Buland and Omre 2003b} Downton and Ursenbach Rabben and Ursin
2011} Xiao et al.[2020). The inversion can be performed according to deterministic or
probabilistic inversion methods. For example, based on Aki and Richards linearized
approximation, Hu et al. presents a joint AVO inversion technique in the Bayesian
framework to extract seismic velocities and density parameters, Sengupta et al.
perform Bayesian inversion directly in the depth domain by using linearized Aki and
Richards equation, and Liu et al. present a joint PP and PS inversion method
based on the calculation of a Jacobian matrix of the Zoeppritz approximation. In
addition to gradient-based optimization, the Monte Carlo inversion method (Jin and
Madariaga|[1994) and Bayesian linearized AVO inversion technique based on Gaussian
distributions (Buland and Omre Tarantola[1987) have also been utilized to solve
the inverse problems and quantify the uncertainty of the predicted model. Feng-Qi
et al. (2013) present a Bayesian linearized pre-stack inversion based on a trivariate
Cauchy distribution. Ensemble-based methods such as ensemble Kalman filter and
ensemble smoother (Evensen et al. have been successfully applied to inverse and
data assimilation problems, especially for history matching of borehole and geophysical
data. For example, Luo et al. developed an iterative ensemble smoother based on
a regularized Levenberg-Marquardt (RLM) algorithm for reservoir data assimilation,
and Luo et al. applied the iterative ensemble smoother to 4D-seismic history-
matching. Kolbjgrnsen et al. develop a Bayesian inversion for litho-geofluids
prediction and Grana extends the Bayesian litho-geofluids approach to multiple
prior models. Bayesian methods can also be integrated with stochastic sampling. For
example, Azevedo et al. (2020) uses the stochastic perturbation optimization approach
for the inversion of seismic data for rock properties and facies. In the Bayesian method,
prior information about the subsurface model is included in the inversion in the form of
probability distributions (Gouveia and Scales[1997). However, the prior information is
often difficult to define and the prior uncertainty generally impacts the model predictions.

In deterministic methods, the goal is to predict a best-fit model that is consistent
with the observed data, according to the objective or cost function that defines the
dissimilarity between the true data and the predicted model. The inversion is performed
by searching for the optimal model that minimizes the objective function. Numerous
iterative algorithms such as the Levenberg-Marquardt (LM) algorithm (Levenberg
Marquardt[1963)), Occam’s inversion (Constable et al.[1987), genetic algorithm (Mallick
[1995)), conjugate gradient method (Golub and Van Loan [2013)), simulated annealing
method (Ma[2001) and particle swarm optimization (Shaw and Srivastava[2007) have
been introduced for solving the least-squares optimization problem. These methods
have been used in seismic AVO inversion problems. For example, Luo et al.
and Luo et al. adopt the Fréchet derivatives to compute the derivatives of the
propagator matrix with respect to variables and used the L-BFGS approach for the
optimization of the objective function.
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In this work, we present a constrained non-linear AVO inversion scheme based on
the Aki and Richards linearized approximation, and the inversion algorithm is based on
the minimization of an objective function. We adopt a gradient descent optimization
algorithm depending on the calculation of the gradients of the L2-norm objective
function with respect to the elastic properties, P- and S-wave velocities, and density.
The adjoint-state numerical technique (Plessix[2006) is used for computing the gradients
of the objective function efficiently by employing zero-lag cross-correlation between
forward and reverse propagated data residual. The adjoint state solves a linear system
and computes the gradient of the objective function. The advantage of this method is
that the computational cost of computing the gradient is in practice independent of the
number of model variables (N). Hence, the number of forwarding models required to
compute the gradients through the adjoint-state method is independent of the number
of unknown model variables. This makes adjoint-state faster and more efficient than
other methods, such as finite difference and Fréchet derivatives (Plessix m Adjoint
methods have been recently used in several geophysical inversion problems including
seismic full waveform inversion (Assis and Schleicher 2021} Biondi et al. Hu
et al. Le et al. Pan et al. Ravasi and Vasconcelos Zheglova and
Malcolm 2019} Zhu et al. 2021). Furthermore, the gradient equations obtained via the
adjoint-state technique are exact within the numerical precision (Epelle and Gerogiorgis
[2020). In this work, to minimize the L2-norm objective function, we use the L-BFGS
method (Broyden Fletcher 19705 Goldfarb Liu and Nocedal Nocedal
Shanno [1970), a widely used version of the quasi-Newton iteration method that
does not explicitly calculate the Hessian operator, which reduces the computing time
and memory storage, unlike other classical iterative methods such as Newton-Raphson
or Gauss-Newton methods (Tarantola |2T_KE[) Indeed, the L-BFGS method exclusively
stores model information from a limited number of previous / iterations (usually / < 10)
and provides much faster computational time and improved convergence rates for
geophysical inverse problems (Brossier et al. 2010). The main novelty of the proposed
approach is the calculation of the gradient of the objective function with respect to the
elastic properties using the adjoint-state method. The analytical derivatives computed
by the adjoint state lead to advantages in computational and numerical performance.
To stabilize our AVO inversion results, especially in the case of noisy data, we apply
a Tikhonov regularization method (Aster et al. [2018). The Tikhonov regularization
weights improve the stability of the solution and the accuracy of the optimal model.

We tested the proposed approach using synthetic well logs and seismic data gener-
ated for the Edvard Grieg oil field, in the North Sea, with different noise levels. We also
adopt the staggered-grid finite difference (FD) method (Virieux [1986)) to simulate the
seismic response. The FD approach contains wave propagation effects such as seismic
refraction, reflection, multiple reflections, and offset-dependent geometrical spreading.
To reconcile the results of the convolutional approximation, we define an amplitude
scaling factor that compensates for the effects of offset-dependent geometrical spreading
and provides a good match between the two seismic modeling approaches.

In the following, we first discuss the seismic forward modeling approaches including,
the convolutional model and the finite difference method. Then, we describe the
mathematical formulation for the proposed non-linear inversion algorithm based on
the adjoint-state technique. Next, we illustrate the implementation of the inversion
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algorithm to a synthetic multilayered dataset, with and without seismic noise, obtained
from well logs assuming no multiples nor other wave propagation effects. Then, a 2D
synthetic data example with complex structural features such as inclined strata and
faults, is presented. Finally, we apply the approach to a synthetic dataset based on the
velocity-stress finite difference (FD) model, including wave propagation effects.

2.3 Method

2.3.1 Seismic modeling

In AVO studies, seismic amplitudes are approximated by a convolutional model. In
continuous form, the convolutional model is written as:

d(t,0) = /W(‘L’, 0)Rpp(t — 1, 0)d(T) @1

where d, Rpp, and W are the seismic data, reflectivity, and wavelet respectively. In
equation [2.1] 7 is the two-way travel time (TWT), and 6 is the incident angle. This
approximation does not consider multiples and wave propagation effects like offset-
dependent geometrical spreading, attenuation, or absorption effects. The Ricker wavelet
(Ricker[1953) is commonly used for the convolutional model:

(1 a0 BLPRR)
W(t)(l 2w0t>exp< 4a)ot> (2.2)

whereas @, is the dominant frequency. The reflectivity function Rpp represents the
reflection coefficients of P-to-P waves as a function of ¢ and 6 and is often modeled using
Aki and Richards equation (Aki and Richards[1980), which is a linear approximation of
the non-linear Zoeppritz equation (Zoeppritz[1919) for weak elastic contrasts across the
geological layers. For incident angles less than the acquisition critical angle, the Aki and
Richards equation provides an accurate approximation of the reflection coefficients for
small elastic contrasts. In theory, the proposed methodology could be extended to the
Zoeppritz equation, however, the analytical evaluation of the mathematical formulation
of the gradient is more challenging to derive. The discrete version of Aki and Richards
approximation for Rpp is:

Rpp, (0) = % (1+tan?0) aali —4 (BM )2 AR sin” @

i ﬁ[?[i]z ai]p['} " @
a2 2 !
#3 |14 (ai) 9] pli

where Aa, AP, and Ap are the variations P- and S-wave velocities and density
across the reflecting interface i whereas @,  and p are the corresponding average P-
and S-wave velocities and density.

Alternatively, the seismic response can be modeled by solving the wave equation.
The finite difference (FD) method is often adopted to approximate the partial derivatives
of the wave equation and compute the propagation of seismic waves (Carcione et al.
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[1988). Several numerical schemes have been proposed. In this work, we adopt a
high order (8/") staggered-grid FD scheme (Virieux to numerically model in a
discretized grid the P-SV elastic seismic energy propagating through a heterogeneous
medium using the velocity-stress field. At the time 0, the wave propagating medium
is considered to be in equilibrium; then. time-integrated particle velocity and stress
are propagated. Absorbing boundary conditions (ABCs) are generally assumed for
the mathematical simulation of seismic wave propagation, to avoid artificial boundary
reflection (ABR). In our approach, we consider a perfectly matched layer (PML) to
attenuate modeling boundary reflections. The numerical formulation for the velocity-
stress FD method is given by Virieux (1986). In this work, we adopt this formulation to
compute a synthetic dataset with a different operator than the convolutional model used
for the inversion, to validate the proposed formulation.

2.3.2 AVO inversion

The forward modeling equation of seismic AVO inversion is written as f(m) = d, where
m represents the unknown model variables. The objective of inverse modeling is to esti-
mate the model variables m from the seismic AVO data d. In the proposed formulation,
m represents the elastic model variables as m = [Vp(r), Vs(t),p ()], including P- and
S-wave velocities and density.

To solve the inverse problem, we first define an objective function to model the misfit
J =d — f(m) between the real and predicted data, and then implement an optimization
algorithm to minimize the objective function. Numerous options for the definition of the
objective functions are available in the literature (Alessandrini et al. Faucher et al.
2019). We use the Euclidean norm (L2-norm), as it is widely used in inversion, especially
for problems with a natural scattering of the error components. Mathematically, the
L2-norm objective function is written as:

Jm) = 3 || (2, 0) ~ fm(s, 0)) | e

In our approach, the forward modeling operator is given by the convolutional model:

f(m)=W(t)*Rpp(t, 0|m)+n(t, 0) (2.5)

here, the term 7 represents the random ambient noise and * indicates convolution.

The optimization requires the calculation of the partial derivatives of the gradient
9J 9] 9]
( AVp> Vs’ dp
We adopt the adjoint-state technique to calculate the gradient of the objective
function. The adjoint-state solution of Aki and Richards equation (1980) and derivation
of the gradient is given in Appendix A. The so-obtained partial derivatives with respect
to (Vp, Vs, p) at a given interface 7 are:

) of the objective function J with respect to elastic properties (Vp, Vs, p).
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We then apply a non-linear optimization algorithm, namely L-BFGS, to update
the model variables by minimizing the objective function J according to the L-BFGS
iteration equation[2.9] L-BFGS is a limited-memory quasi-Newton optimization method
often used for solving large-scale non-linear optimization problems where the Hessian
cannot be efficiently computed. The L-BFGS optimization method iteratively approxi-

mates the inverse Hessian using the curvature information from the previous iterations.
The L-BFGS optimization method can be represented as:

Mys1 = my — QGHVJ, k=0,1,2,3,..., 2.9)

where k represents the iteration, o is the scalar step length at iteration k, V.J is the
gradient of the objective function respectively, and Hj describes the inverse Hessian
approximation (H ~ V2J~1) at iteration k. The inverse Hessian Hy is approximated as:

Hy = VkTHka + pksks,{ (2.10)

where Vi =1 — pgyesf » s = micy 1 —my, ye = Vi (mye1) — VI (my), and pg = (vf i) ™"
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In the L-BFGS method, the Hessian approximation is more efficient than in the
original BFGS method. At a given iteration k, suppose that the current solution is m
and the vector pairs of the previous p iterations are {s;,y;} fori =k —p,....k— 1 with
associated matrices V; and scalars p;. We choose an initial H;, and compute H, as:

He= (VL V) HY (Viep--Vie1)

+Pr—p (VkT—l'--VkT—pH) Sk—pSIZ—p (Vk—p+1'--vk—1)

ot (VE - VE ) sk piistpit (Vi piaVior) (2.11)
+...
Pk 15k-15(

We then define a recursive procedure to efficiently calculate the product H;VJy, as
shown in Algorithm 2.1.

Algorithm 2.1: Limited-memory BFGS two-loops recursion.
. Inputs: VJ,, H;

. g < VJi
dori=k—1,k—2,....k—pdo
O PiSiTQ;

- g < q— 0yi;

. end (for)

. T+ Hlq
gori=k—pk—p+1,..,k—1do
9. Bi < piyir;

10. r < r+si(o; — B);

11. end (for)

12. Stop with result H;VJ, =r

0NN N AW~

2.4 Applications

We present numerous numerical examples of synthetic and field datasets used to validate
the proposed inversion using the traditional convolutional model. We then extend
the application to a synthetic dataset generated using the FD method. Two synthetic
subsurface profiles, namely example 1 and example 2, are generated from well logs
using the convolutional model. Then the inversion is extended to synthetic 2D data
generated from an elastic model developed for the Edvard Grieg oil field in the North
Sea.

In example 1, we use a multilayered convolution model to simulate the synthetic
angle gathers from a set of synthetic well logs data. S-wave velocity and density are
computed from P-wave velocity using Castagna’s relation (Castagna et al. and
Gardner’s equation (Gardner et al. respectively. The true model variables and the
initial guesses are shown in Fig. 2.1}

Synthetic AVO seismic gathers up to the maximum angle of incidence 30° are
generated by convolving a 25 Hz Ricker seismic wavelet with PP reflectivity series
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Figure 2.1: Example 1 - Model variables (solid red lines): the P and S wave velocities in
(m/s) and the bulk density in (kg-m ) and the corresponding initial guesses (dashed
blue lines) at the well location in the TWT interval 800 - 1400 ms are plotted in the
figure.

calculated with the linearized Aki and Richards equation. The pre-stack angle gather
profiles without and with seismic random noise levels (S/N = 50) are shown in Fig.
22 Fig. 23] represents the inverted P wave velocity, S wave velocity, and density
from noise-free AVO seismic gather. The inverted variables are in good agreement
with the true model variables. Fig.[2.4] shows the corresponding seismic response of
the true, initial, and inverted models as well as the percent error between true and
predicted seismic gathers. The inversion results prove the accuracy of this inversion
approach. The AVO inversion results with a signal-to-noise ratio (S/N) of 50 are shown
in Fig.[2.3] The inversion results show a good agreement and are consistent with real
models, despite some slight instability of the solution at quite a few points, especially
for S-wave velocity. We speculate that the local instability of the solution might be
due to the discrete nature of the model and the band-limited nature of the data. The
local instability can be mitigated using a regularization method such as total variation
regularization.

We then test the inversion using a synthetic seismic dataset generated from high-
frequency acoustic and shear sonic logs and density data, measured in the Edvard Grieg
oil field. These reference elastic properties Vp, Vs, and p along with initial models are
shown in Fig. 2.6] The presented true well log measurements (Fig. 2.6) are upscaled to
estimate the model variables at the seismic scale (i.e. seismic wavelet scale) from the
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Figure 2.2: Example | - Pre-stack amplitude versus angle (AVA) gathers with different
seismic noise levels (without and with S/N = 50) up to maximum incident angle 30°.
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Figure 2.3: Example 1 - Inverted P- and S-wave velocities (Vp, V) and density (p)

models obtained from noise-free AVO gathers.
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Figure 2.4: Example 1 - AVA seismic response (up to 30°) for baseline true model,
initial model, and inverted model and estimated percent error.
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Figure 2.5: Example 1 - Inverted P- and S-wave velocities (Vp, V) and density (p)
models obtained from noisy (S/N = 50) seismic AVO gather.
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Figure 2.6: Example 2 - Model variables: P and S wave velocities in (m/s) and bulk
density in (kg -m~3) along with corresponding initial models at the well location in the
TWT interval 1700 - 1965 ms.

higher frequency properties (i.e. sonic log). The reservoir zone is located between 1867 -
1888 ms. The convolution-based seismic forward modeling is used to generate pre-stack
seismic AVA gathers (Fig.[2.7) without noise and with S/N = 50. The range of angles
of the incident for seismic waves is from 0 — 30° with an interval of 5°. Figs.[2.8and
29 show the AVA inversion results without and with noise. In the noise-free case, the
comparison between true and inverted models shows that the results are accurate (Fig.
[2:8). Similarly, in the noise-added case, the results also show very good agreement with
the true models (Fig. @) and are consistent with the real models. However, the inverted
results are presented in Figs. [2.8 and 2.9 are after applying small weight Tikhonov
regularization to the density and the shear wave velocity.

We then apply the inversion approach to a synthetic dataset built using the Edvard
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Figure 2.7: Example 2 - Pre-stack amplitude versus angle (AVA) gathers with different
seismic noise levels (without and with S/N = 50) up to maximum incident angle 30°.

Grieg measured data along a section including horizontal and inclined stratigraphy
and faulted geological layers. We adopt an elastic model obtained in previous studies
(referred to as the true model in the following) to generate a synthetic seismic line.
The seismic line comprises 38 common depth points (CDP) and the AVO inversion is
applied trace by trace. The time window is from 500 - 2500 ms. Figs. -212]show
the inversion results for P- and S-wave velocity and density, respectively. Each figure
shows the comparison between the initial model, true model, and inverted results for
all CDPs. For each model variable, we compute the percent error between true and
predicted models. The inversion shows accurate results for P-wave velocity, whereas
density values are slightly under-predicted in the bottom part of the interval, and S-wave
velocity is mismatched in the reservoir region. Fig. [2.13] shows the full stack of the
seismic dataset, obtained after stacking the AVO gathers generated at each trace location,
and the seismic response of the inverted model, showing an overall agreement between
data and predictions. In some of the inversion results, the correlation between the
predicted elastic properties is overestimated, possibly due to the linearization in the
inverse problem. This is a common effect in seismic and petrophysical inversion, due
to the correlation of the seismic angles introduced in the processing which reduces the
degrees of freedom of the solution and makes the problem underestimated.
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Figure 2.8: Example 2 - Inverted P- and S-wave velocities (Vp, V) and density (p)
models obtained from noise-free AVO gathers.
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Figure 2.9: Example 2 - Inverted P- and S-wave velocities (Vp, V) and density (p)
models obtained from noisy (S/N = 50) seismic AVO gather.
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Figure 2.10: 2D profile of inverted P-wave velocity compared to the true and initial
models. The percent errors between true and inverted models are also displayed.
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Figure 2.11: 2D profile of inverted S-wave velocity compared to the initial and true

models. The percent errors are also displayed.

29



2. Constrained non-linear AVO inversion based on the adjoint-state
optimization
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Figure 2.12: 2D profile of inverted density compared to the initial and true models. The
percent errors between the true and predicted models are also displayed.
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Figure 2.13: Full stack seismic section compared to the seismic response of the inverted
seismic profile and percent errors between real and inverted seismic profiles.

We extend the inversion to a seismic dataset generated using the staggered-grid finite
difference model of elastic waves. We first generate the synthetic seismic by computing
the forward model for the entire section from the surface and extracting the reservoir
layer between 1700 and 1888 ms. We perform normal moveout (NMO) correction offset-
to-angle transformation and apply an amplitude scaling factor to remove the effects of
offset-dependent geometrical spreading. The wavelet with a dominant frequency of
25 Hz is used for the FD model. We assumed a layered isotropic elastic medium with
elastic properties given in Fig. [2.]and simulated an OBC seismic survey. The number
of receiver points is 1001 with a constant distance of 5 m, for a 5000 m maximum
offset. The recording interval is 0.002 seconds. The synthetic seismograms generated by
the finite difference simulations are shown in Fig.[2.14] The overburden layers extend
to 1750 m, whereas the reservoir layer is between 1750 and 1940 m, such that the
overburden reflections and associated interbedded multiples are subtracted from the
model. The FD results at the top of the reservoir are shown in (Fig. [2.14k). As the
staggered-grid finite dif<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>