
University of Stavanger

Master of Science in Industrial Asset

Management

Master’s Thesis

The development of a demand
forecasting web application
for Spare Parts Management
using Bootstrapping Method

Author:
Pimprapa Poolsawas
(261817)

Supervisor:
Idriss El-Thalji

Jawad Raza

June 15, 2022

acknowledgements

First of all, I would like to express my greatest gratitude to my professors,
Idriss El-Thalji and Jawad Raza, who pushed my knowledge to new bound-
aries of learning and helped me throughout the project with the report.

I would to show special regards to my partner, Denys Chaikovskyi, who
guide me through the development of the web application. This challenge
could not have been overcome without his help and direction.

I would also like to express my indebtedness to my parents who although
are far away I could not have completed this work without their constant
support.

I acknowledge that without their support, this thesis would have not been
completed as it is now. And for that, I am very thankful.

2

Abstract

The forecast has been recognized as one of the most essential parts of
spare part management, which often impacts inventory costs and perfor-
mance to a large degree. In the case study, the demand pattern of spare
parts from a subsea maintenance service provider is characterized as inter-
mittent demand. This demand pattern is common among spare parts which
accounts for a large portion of inventory costs. As a means of predicting its
intermittent demand, there is a method called WSS bootstrapping method,
described in the literature. We developed a web application based on the
WSS bootstrapping model by Willemain et al. (2004) and an adapted jitter-
ing method by Rego and Mesqutia (2015). The computational results show
that the results of the bootstrapping model often contain true value when
using the 99% confidence interval. The error of the model is lower than our
analysis criterion. Therefore, the performance of the bootstrapping model is
satisfying.

Contents

1 Introduction 5
1.1 Background and motivation 5
1.2 Objectives of Research . 6
1.3 Thesis methodology . 6
1.4 Limitation in the study . 7

2 Research Background 8
2.1 Related research . 8

2.1.1 Demand patterns classification 8
2.1.2 Forecasting intermittent demand 9

2.2 Model: Bootstrap method . 10
2.2.1 Discrete-Time Markov Chains 11
2.2.2 Jittering . 12
2.2.3 Bootstrapping procedure 12

2.3 Forecasting accuracy measures 13
2.3.1 Root Mean Square Error 13
2.3.2 Mean Absolute Error 14
2.3.3 Mean Absolute Percentage Error 14

3 Research methodology and design 15
3.1 Industrial data sets . 15
3.2 Experimental Design . 16

3.2.1 Data preparation . 16
3.2.2 Demand pattern of spare parts 18
3.2.3 Implementation of Bootstrapping 18

4 Application framework 22
4.1 Components . 22
4.2 Algorithms . 24

4.2.1 Data preparation . 24
4.2.2 Demand pattern of spare parts 27

3

CONTENTS 4

4.2.3 Implementation of Bootstrapping 29

5 Analysis and Results 37
5.1 Classification of demand pattern 37
5.2 Validation of Bootstrapping Model 39

6 Discussion 42

A Algorithm Code 44

B Examples of result on UI 49

Chapter 1

Introduction

1.1 Background and motivation

For operation and maintenance service providers, high reliability and avail-
ability of spare part are essential. This is because the lack of spare part can
lead to downtime in the overall process of operation and maintenance and
result in the risk of economic loss and a negative company’s reputation. In
order to avoid the costs of downtime, spare parts should be timely available
in stock. On the other hand, over-stock of spare parts can also be expensive
due to inventory holding costs. In this context, spare part inventory man-
agement plays a crucial role in optimizing spare part stock levels to target
the availability of spare parts at minimal inventory investment.

The present study is motivated by an operation and maintenance service
provider for industrial markets, who is facing these challenges. The company
aims to increase spare part availability and a high service level without over-
stocking undue spare parts in the inventory. This can be challenging since
the consumption of spare parts often fluctuates. There are many periods of
zero consumption of spare parts, and sudden spikes in demand. This makes it
is very difficult to predict the demands of spare parts. As consequence, spare
parts are not available in stock timely and the service company is unable to
perform operations and maintenance on time, affecting clients’ productivity
and causing time delays and high costs.

Several models and methods have been developed with the purpose to
predict demand of spare parts. However, regular forecasting techniques gen-
erate inaccurate estimates when dealing with intermittent demand. One way
to improve the forecast accuracy is to develop smart prediction models that
has potential to capture this intermittent pattern of spare parts needs.

5

CHAPTER 1. INTRODUCTION 6

Many research studies have analyzed the bootstrap methodology (e.g.
Smith and Babai, 2011; Willemain et al., 2004; Porras and Dekker, 2008;
Syntetos et al., 2015). The results show the bootstrap model outperforms
parametric methods with greater inventory cost saving.

In this case study, the WSS Boostraping model with adapted jittering
process will be used to obtained predicted value of yearly demand. The
algorithms of the model are written by Ruby Programming Language from
scratch.

1.2 Objectives of Research

The main objective of this research is to develop a forecasting web application
to predict demand levels of spare parts. Thus, the main objective will be
reached through the following sub-objectives:

• To identify the demand pattern of spare parts;

• To gain a better understanding of a systematic theory for a predictive
model for forecasting spare parts demand;

• To establish competence in predicting spare parts needs and industry
best practices in the area;

• To develop a web application to forecast demand of spare parts in order
to ensure availability of spare parts.

1.3 Thesis methodology

The increase of the advent of technology allows us to develop a web appli-
cation as an automated solution for material requirement planning. In this
study, the main focus will be the development of a demand forecasting web
application. The core algorithms of the application will consist of the adapted
WSS Boostraping model closely following guidelines suggested by Willemain
et al. (2004) and Rego and Mesqutia (2015) as reference materials.

The methodology will discuss more about data preparation, classification
of demand pattern, and finally the bootstrapping model. To assess accuracy
in forecasting, the true demand value for 2021 will be used to compare with
predicted demand value.

The programming language used for bootstrapping algorithms is Ruby.
For the user interface, we use HTML and CSS to provides the structure and
style the web pages.

CHAPTER 1. INTRODUCTION 7

1.4 Limitation in the study

The limitation is mainly the lack of historical data available for usage (e.g.
monthly demand time series and inventory cost). An assumption of monthly
demand need to be made. More details about the assumption will be discuss
further in Chapter 3, Section 3.2.1.

Chapter 2

Research Background

2.1 Related research

2.1.1 Demand patterns classification

The categorization of demand patterns is an essential element that helps
facilitates the selection of a forecasting method. Syntetos et al (2005) pro-
posed a method of demand pattern categorization based on a modification of
Williams’ work. The method considers both the squared coefficient of vari-
ation of demand sizes (CV²) and average time interval factors (ADI). The
study has been shown that these two parameters are very important from a
forecasting perspective [10].

The CV² is defined as the square of the coefficient of variation:

CV 2 =

(
Standard deviation of a population

Average value of a population

)2

(2.1)

The Average Demand Interval (ADI) measures the demand regularity in
time by computing the average interval between two demands:

ADI =

(
Total number of periods

Number of demand buckets

)
(2.2)

Based on the parameters, the demand pattern is classified into four dif-
ferent categories [15]:

• Smooth demand - the regular demand in time and in quantity.

• Intermittent demand - the demand with very little variation in demand
quantity but a high variation in the interval between two demands.

8

CHAPTER 2. RESEARCH BACKGROUND 9

• Erratic demand - the demand with regular occurrences in time and
high quantity variations.

• Lumpy demand - the demand with a large variation in quantity and in
time.

Figure 2.1 presents these four categorization schemes and their break-
point values.

Figure 2.1: Demand pattern categorization (after Syntetos et al, 2005).

2.1.2 Forecasting intermittent demand

Literature shows several studies focusing on different aspects of forecasting
methods for intermittent demand. Croston’s method is the standard para-
metric method and the first method to forecast intermittent demand items
[4]. In this method, demand probability and demand size are estimated sep-
arately. If a positive demand occurs in period t, the estimates of demand
intervals and sizes are updated. Otherwise, if the demand is zero, none of
the parameters are updated. The model can be summarized as the following:

If Xt ̸= 0 then


Zt+1 = αXt + (1− α)Zt

Vt+1 = αq + (1− α)Vt

Yt+1 =
Zt+1

Vt+1

(2.3)

CHAPTER 2. RESEARCH BACKGROUND 10

If Xt = 0 then


Zt+1 = Zt

Vt+1 = Vt

Yt+1 = Yt

(2.4)

Where Zt is the estimate of mean non-zero demand size at time t, Vt is
the estimate of mean interval size between non-zero demands at time t, Yt

denotes an estimate of mean demand size at time t, Xt denotes actual demand
observed at time t, and and q denotes the current number of consecutive
zero-demand periods.

Syntetos and Boylan (2001) identified a bias in Croston’s method since

E
[
X̄t

]
= E

[
Zt

Vt

]
̸= E [Zt]

1
E[Vt]

. In order to Croston’s forecast Xt with a bias,

the authors in [12] modified Croston’s method, known as the Syntetos-Boylan
Approximation (SBA), by multiplying the Croston estimate by a factor of(
1− α

2

)
and the expected estimate of demand per period will be:

E (Y ′
t) = E

(
z′t
p′t

)
=

E (z′t)

E (p′t)
=

µ

p
(2.5)

However, Shenstone Hyndman (2005) showed that Croston’s method
and three related methods (including SBA) can be inconsistent with the
properties of intermittent demand data [8]. In addition, there are some
limitations as to the degree of lumpiness that can be effectively handled
by a parametric distribution. For this reason, non-parametric bootstrapping
approaches have a greater potential to provide further improvements in this
area since it does not rely upon any underlying distributional assumptions.
Moreover, the bootstrapping method can be useful when lacking high-quality
data or historical data [2].

Alternative bootstrapping methods are available in the academic litera-
ture, namely Efron (1979), Snyder (2002), Willemain et al. (2004), Porras
and Dekker (2008), Teunter and Duncan (2009), Zhou and Viswanathan
(2011), and Snyder et al. (2012). The Willemain–Smart–Schwarz model
(WSS) by Willemain et al. (2004) appears to be the most robust boot-
strapping model, with its authors [13] and many empirical studies claiming
significant improvements in forecasting accuracy over parametric approaches.

2.2 Model: Bootstrap method

In the 1970s, bootstrap method was first introduced by Brad Efron to esti-
mate the sampling distribution of an observed sample. Bootstrap samples are
obtained by randomly sampling with replacements from original data points.

CHAPTER 2. RESEARCH BACKGROUND 11

This simple bootstrapping would ignore autocorrelation in the demand se-
quence and produce only the previous demand history numbers as forecast
values. Willemain et al. (2004) proposed an adapted bootstrap method,
called the WSS method. The method comes with two extensions to over-
come the limitations of the original bootstrapping, including Discrete-Time
Morkov Chain and Jittering.

2.2.1 Discrete-Time Markov Chains

A Discrete-Time Markov Chain is a system that describes transitions from
one state to another state over discrete periods of time with a certain prob-
ability, also known as a stochastic process.

Definition

Let {Xt, t ∈ T} be a stochastic process and x[t0,t] = {x0, x1, . . . , xi} be the
sequence of values assumed by the random variables Xt at t0 < t1 < · · · < ti.

The process {Xt, t ∈ T} is a Markov Process if the transition probability
to move at time t + dt to the state xj after the given evolution x[0,t] =
{x0, x1, . . . , xi} depends only by the present state x(t) = xi and not by its
whole history:

Pr
(
x(t+ dt) = xj | x[0,t]

)
= Pr (x(t+ dt) = xj | x(t) = xi)

= pij
(2.6)

pij denotes is called the transition probability from state xi to state xj

The use of Discrete-Time Markov Chains

In the WSS bootstrapping method, Willemain et al. (2004) modeled a two-
state Markov chain for autocorrelation in order to solve the problem of po-
tential dependencies between demand occurrences. The process are divided
into two stages:

• Stage 1: Estimating the occurrence (or non-occurrence) of demand
in the next period, by taking the occurrence (or non-occurrence) of
demand in the current period.

• Stage 2: Resampling the demand size if the forecast of the demand
occurrence appears to be nonzero.

With Markov Chains, we take into account the probability of state tran-
sitions rather than simply randomly sample one of the previous periods.

CHAPTER 2. RESEARCH BACKGROUND 12

2.2.2 Jittering

Willemain et al (2004) first proposed a modification to the sample boot-
strapping method, called “Jittering”. This technique prevents over-plotting
in ordinal data and addresses some possibilities for observing demand values
in the future that have never been observed before.

Let X* be a non-zero demand value that is randomly selected, and let
Z be a standard normal random deviate. The jittering technique works as
follows:

Jittered value = 1 + integer
(
X∗ + Z

√
X∗

)
(2.7)

If jittered value ≤ 0, then jittered value = X∗

However, the jittering technique creates a bias in the forecast of demand
size. The jittering Equation (2.7) has an expected value of E(J) = E(X) +
0.5. This is because when taking the integer part ofX+Z

√
X, we reduce it by

an amount between 0 and 1 which gives an average reduction of 0.5 (assuming
the reduction is uniformly distributed between 0 and 1). Therefore, 1 +
INT (X+Z

√
X) ends up giving an average increase of 0.5. Furthermore, the

retention of the original demand value when the jittering process generates a
negative demand value introduces a second bias as well. This step is sampling
from a truncated normal distribution of Z with a highly negative of Z (which
creates a negative value of J) being replaced by zero. It creates the bias since
the mean of Z value is no longer zero but greater than zero.

To overcome the mentioned biases, Rego and Mesquita (2015) proposed
an adaptation of the jittering process as follows:

Jittered value = integer
(
0.5 +X∗ + Z

√
X∗

)
(2.8)

If jittered value ≤ 0, then jittered value = 1

This simple modification eliminates the upward bias of 0.5, as well as
reduce the second bias in the jittering process.

2.2.3 Bootstrapping procedure

In this study, we refer to the WSS bootstrapping method by Willemain et
al. (2004) with an adapted jittering method by Rego and Mesqutia (2015).
The method works according to the following steps [13, 17]:

• Step 1: Obtain historical demand data (including demand size and
interarrival times) according to the chosen time bucket.

CHAPTER 2. RESEARCH BACKGROUND 13

• Step 2: Estimate transition probabilities for two-state (zero vs. nonzero)
Markov model.

• Step 3: Conditional on last observed demand, use Markov model to
generate a sequence of zero/nonzero values over forecast horizon.

• Step 3: Replace nonzero state markers with a numerical value sampled
at random with replacement from the set of observed nonzero demands.

• Step 4: Jitter the nonzero demand values.

• Step 5: Sum the forecast values over the horizon to get one predicted
value.

• Step 6: Repeat steps 2 –5 many times.

• Step 7: Sort and use the resulting distribution of predicted values.

2.3 Forecasting accuracy measures

Many studies have adopted various accuracy metrics as evaluation criteria
in the recent decades to evaluate the performance of forecasting methods.
Shcherbakov et al. (2013) shows that every accuracy measure has its draw-
backs and there is no perfect single measure that can be used universally.
For this reason, the forecasting accuracy will be analyzed in a combination
of both percentage error-based and absolute error-based measures. Root
Mean Square Error (RMSE), Mean Absolute Error (MAE) and Mean Ab-
solute Percentage Error (MAPE) are the most frequently used criteria to
evaluate the performance of the forecasting models.

2.3.1 Root Mean Square Error

Root Mean Square Error (RMSE) is commonly used as a general purpose
error metric. It assess how well the predicted values from the model fit the
actual values in the dataset. The formula to find the root mean square error
is defined as follows:

RMSE =

√√√√ 1

n

n∑
t=1

(At − Ft

At

)2

(2.9)

CHAPTER 2. RESEARCH BACKGROUND 14

2.3.2 Mean Absolute Error

Mean Absolute Error (MAE) measures the absolute distance between the
original values and predicted values. It provides an indication of the forecast
accuracy by averaging the error term in the forecast for the whole time series.
The formula is defined as follows:

MAE =
1

n

n∑
t=1

|At − Ft| (2.10)

2.3.3 Mean Absolute Percentage Error

Mean Absolute Percentage Error (MAPE) is the most widely used measure
for checking forecast accuracy. It is calculated by dividing the absolute fore-
cast error in each period by the actual value in that period and then averaging
those fixed percentages. This can be expressed as a percentage given as:

MAPE =
1

n

n∑
t=1

∣∣∣∣At − Ft

At

∣∣∣∣× 100 (2.11)

Where:

• n is the number of observations

• At is the actual value at time t

• Ft is the forecast value at time t

Chapter 3

Research methodology and
design

The methodology within this paper is based on the WSS bootstrapping
method with the adapted jittering process. In this section, we will describe
the main characteristics of the data sets and further highlight the data prepa-
ration, the classification of demand pattern and the use of the bootstrapping
method to estimate the yearly demand for spare parts.

3.1 Industrial data sets

To illustrate the effectiveness of the model, we investigated a subsea operation
and maintenance service provider in Norway. The company has more than
1600 types of spare parts, of which only about 10 percent of them have
available historical demand data in both 2020 and 2021. Some spare parts
that occurrences of nonzero demand in 2020 and 2021 less than once are
excluded since these items lacked any basis for the model.

The historical data contain yearly consumption of spare parts, price per
unit, stock quantity, stock value, criticality index, plant, storage location, and
document year. In general, each item was reviewed and given a criticality
score between 0 and 10 (0 = unimportant and 10 = absolutely critical). As
representatives in this case study, we consider high-priority spare parts with
criticality scores of 10 and 9. We sort the spare parts by their values and
select the top 40 items for analysis.

15

CHAPTER 3. RESEARCH METHODOLOGY AND DESIGN 16

3.2 Experimental Design

We intend to predict a yearly demand for 2021 by using yearly demand from
2020 and the earlier years (depending on data availability) as inputs. In order
to assess the accuracy of the forecasting method, we compare the true value
with the predicted value. Figure 3.1 represents the main process steps. More
detail and an illustrative example will be provided for better understanding.

Figure 3.1: Process Mapping Diagram

3.2.1 Data preparation

Due to the unavailability of monthly demand, an assumption on how the
annual demand is distributed throughout the year needs to be made. Repairs
and maintenance work activities in the north sea are typically carried out
in the summer months when the weather is favorable. Thus, we simulate
monthly demand assuming 70 percent of the demands occur in the summer
months and 30 percent in the non-summer month (hereafter referred to as
“the 70/30 assumption”).

Example: SKU-000001000000031794
To further illustrate the process of data preparation, we take the SKU-

000001000000031794 as an example. The item has demands of 14 units in
2019, 12 units in 2020 and 10 units in 2021. We split the 3 years into two
periods: the first period (2019-2020) is used to establish the relationship
about the explanatory variables and estimate transition probabilities; the
second period (2021) is held out for the purpose of assessing accuracy of the
forecasting methods.

The monthly demand of the first period is simulated based on the yearly
demand and the 70/30 assumption, obtaining a time series made up of 24

CHAPTER 3. RESEARCH METHODOLOGY AND DESIGN 17

time points (from x1 to x24) as shown in Table 3.1. Figure 3.1 and 3.2
represent the simulated demand distributions throughout the year 2019 and
2020, respectively.

Table 3.1: SKU-000001000000031794 dataset

Demand (EA) The 70/30 assumption
2019 14 [1, 1, 1, 0, 1, 3, 3, 3, 0, 1, 0, 0]
2020 12 [0, 0, 1, 1, 1, 3, 3, 3, 0, 0, 0, 0]
2021 10 -

The simulated demand series is used as input data for the bootstrap
simulation. For the second period (2021), the demand is held to assess the
accuracy of the forecasting method.

Figure 3.2: The simulation of monthly demand in 2019

Figure 3.3: The simulation of monthly demand in 2020

CHAPTER 3. RESEARCH METHODOLOGY AND DESIGN 18

3.2.2 Demand pattern of spare parts

To determine forecastability of spare parts, we classify the demand profiles
based on the two parameters in the literature: the Average Demand Interval
(ADI) and the square of the Coefficient of Variation (CV²) [10].

Example: SKU-000001000000031794
According to the data preparation process, the monthly demand time

series that we simulated in the data preparation process are shown in the
Table 3.2.

Table 3.2: Demand history over 24 months:

Period 1 2 3 4 5 6 7 8 9 10 11 12
Demand Quantity 1 1 1 0 1 3 3 3 0 1 0 0

Period 13 14 15 16 17 18 19 20 21 22 23 24
Demand Quantity 0 0 1 1 1 3 3 3 0 0 0 0

The Average Demand Interval (ADI) is equal to the average interval
between two demands:

ADI =

(
Total number of periods

Number of demand buckets

)
=

24

14
= 1.7143

To compute the square of the Coefficient of Variation (CV²), we consider
only the non-zero values of the demand history.

CV 2 =

(
Standard deviation of a population

Average value of a population

)2

=

(
0.9897

1.8571

)2

= 0.2840

Therefore, this item is an intermittent demand pattern.

3.2.3 Implementation of Bootstrapping

For bootstrapping models, a first-order two-state Markov chain and the mod-
ification of jittering are used in the model to estimate demand, as suggested
by Willemain et al. (2004) and Rego and Mesqutia (2015). The number of
bootstrap forecasts is set 10,000 for sufficient estimation.

Example: SKU-000001000000031794

Stage 1: Markov Chain

CHAPTER 3. RESEARCH METHODOLOGY AND DESIGN 19

In the first stage, we resample occurrence or non-occurrence of demand,
considering the occurrence or non-occurrence of demand in the previous pe-
riod.

1. Transform the demand time series dt (t = 1, 2, ..., n) into a binary time
series yt (t = 1, 2, ..., n). We record a day with a demand occurrence
as ‘1’ and a day without a demand occurrence as ‘0’.

The actual demand time series:

[1, 1, 1, 0, 1, 3, 3, 3, 0, 1, 0, 0, 0, 0, 1, 1, 1, 3, 3, 3, 0, 0, 0, 0]

The binary time series:

[1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0]

2. Estimate transition probabilities for two-state (zero vs. nonzero) Markov
model. The four conditional probabilities that are relevant in this case
are shown in Table 3.2.

Table 3.3: Conditional probabilities of demand occurrences

Demand today No demand today
Demand yesterday 10/14 = 0.7143 4/14 = 0.2857

No demand yesterday 3/9 = 0.3333 6/9 = 0.6667

Out of the 14 days with demand, there were 10 occasions when the
next day also showed a demand, 4 when not. Of the 10 days without
demand, the last observation must be discounted since we do not know
what happened on the next day. Of the remaining 9 days without
demand, 3 were followed by demand and 6 were not.

3. Generate a random number from a uniform distribution between 0 and
1 or X ∼ U(0, 1).

4. Check the most recent period of the demand history to see if there was
a demand or not.

If there was a demand, then compare the random number to the prob-
ability of demand today given that there was demand yesterday. If the
random number is lower, record a value of 1 for demand occurrence;
else, if it is higher, record a value of 0.

CHAPTER 3. RESEARCH METHODOLOGY AND DESIGN 20

If there was no demand, then compare the random number to the prob-
ability of demand today given that there was no demand yesterday. If
the random number is lower, record a value of 1 for demand occurrence;
else, if it is higher, record a value of 0.

Table 3.4: Conditional probabilities of demand occurrences

Demand Occurence
Period 25 Period 26

Rep Rand Occurs Rand Occurs
1 0.2454 1 0.1455 1
2 0.4454 0 0.5657 0
3 0.9787 0 0.2777 1

The step 3 and 4 are presented in Table 3.3. For the first resampling, the
conditional probability of demand occurrence in Period 25 is 0.3333, because
there was no demand in Period 24. As the random number (Rand = 0.2454)
is in the range from 0 to 0.333, this corresponds to a demand occurrence,
indicated by a ‘1’ in the ‘Occurs’ column. For Period 26, the conditional
probability of demand occurrence is 0.7143 because we have just simulated
a demand occurrence in Period 25. As the next random number (Rand =
0.1455) is in the range from 0 to 0.7143, this again corresponds to a demand
occurrence. Demand occurrences are simulated in exactly the same way for
the second, and third, replications.

Stage 2: Jittering
For stage 2, we resample the size of demand if stage 1 yields demand

occurrence. The modification of the jittering process works as follows:

1. Resample a (positive) demand value, X, from the past periods.

2. Generate a standard normally distributed random variable, Z, with
mean = 0 and variance = 1.

3. Calculate a jittering value, J , using Equation (2.8). If this value is
less than or equal to 0, replace demand size by 1; otherwise, replace
demand size by the jittered value.

Table 3.5: Jittering demand sizes

CHAPTER 3. RESEARCH METHODOLOGY AND DESIGN 21

Period 25 Period 26
Rep X Z J Demand Size X Z J Demand Size
1 1 0.6545 2 2 1 -1.5225 0 1
2 - - - - - - -
3 - - - 3 0.4225 4 4

According to Table 3.3, there were three demand occurrences. The
demand sizes are jittered and shown in Table 3.4. The demand sizes
of the first replication in Period 25 and the third replication in Period
26 are replaced by jittered values, 2 and 4, respectively. For the first
replication in Period 26, the demand size is replaced by 1 due to the
fact that the jittered value is equal to 0.

4. Sum the forecast values over the horizon to get one predicted value.

The bootstrapping process is repeated until we have enough bootstrap
forecasts (1000 BS in this case) for estimating the entire distribution of yearly
demand.

Chapter 4

Application framework

This section will briefly introduce the main components of the application
and the main algorithms that we use for constructing the bootstrapping
model.

4.1 Components

The application database works through PostgreSQL, an open-source re-
lational database management system emphasizing extensibility and SQL
compliance. It compiles to regular HTML, CSS and Ruby.

Figure 4.1 illustrates the Model-View-Controller (MVC) architecture of
the web application. The principle of information flows of the system is
implemented in accordance with MVC. Consider the example:

1. The client goes to the website URL / items (items list).

2. The browser sends a request to the server.

3. On the server, the request is accepted by the Rails router (routes.rb)
and determines which method of the controller to transfer control. In
this case it is the index method.

4. The index method of the items controller takes control. It sends a
query to the Item model, which in turn using ActiveRecord technology
generates a query in SQL for the database used and in accordance with
the parameters, generates a set of data from the database and sends
back them to the controller method.

5. The index controller method processes the data and sends it to the
Index view, which generates (renders) the HTML code (list of items)
and returns it to the controller.

22

CHAPTER 4. APPLICATION FRAMEWORK 23

6. The controller performs a final check and sends the generated page to
the client’s browser via HTTP server (Puma in this case).

7. The browser receives the page and displays it to the user.

Figure 4.1: The Model-View-Controller (MVC) architecture

CHAPTER 4. APPLICATION FRAMEWORK 24

4.2 Algorithms

The algorithms of data preparation, demand pattern of spare parts, and
bootstrapping are written in Ruby Programming Language.

In Ruby, we use initialize method to set the initial values (input data)
when the object of the class is instantiated and assign it to the instance
variables of the class. The call method is a publicly available method that
performs the calculations of the class and controls the flow of the algorithm.
It’s main method that should be used outside of the class and it shapes the
class to follow single responsibility principle.

According to a class that handles end-user requests and generates HTML
page with the results of calculations (ItemsController), more details related
to the algorithms of ItemsController will be provided in Appendix A.

4.2.1 Data preparation

In this this step, the logic behind the algorithm is based on the 70/30 as-
sumption.

Algorithm 1: Data preparation

class GenerateDataService

attr_reader :predicted_demand

attr_reader :prediction_result

def initialize(consumed_qty:)

@consumed_qty = consumed_qty

end

def call

@predicted_demand = generate_predicted_demand

@mean = calculate_mean_by_month

@prediction_result = round_mean_prediction

@prediction_result

end

private

def generate_predicted_demand

pseudo_random_number = []

predicted_demand = []

occurence = Array.new(12, 0)

CHAPTER 4. APPLICATION FRAMEWORK 25

1000.times do

pseudo_random_number = Array.new(@consumed_qty) { r.rand() }

@occurence_of_demand_MC = occurence.dup

pseudo_random_number.each do |elements|

perform_monte_carlo(elements)

end

predicted_demand << @occurence_of_demand_MC

end

predicted_demand

end

def perform_monte_carlo(elements)

case elements

when 0 .. 0.03333333333 # January

@occurence_of_demand_MC[0] += 1

when 0.03333333334 .. 0.06666666666 #February

@occurence_of_demand_MC[1] += 1

when 0.06666666667 .. 0.09999999999 #March

@occurence_of_demand_MC[2] += 1

when 0.10000000000 .. 0.13333333332 #April

@occurence_of_demand_MC[3] += 1

when 0.13333333333 .. 0.16666666665 #May

@occurence_of_demand_MC[4] += 1

when 0.16666666666 .. 0.39999999998 #June

@occurence_of_demand_MC[5] += 1

when 0.39999999999 .. 0.63333333331 #July

@occurence_of_demand_MC[6] += 1

when 0.63333333332 .. 0.86666666664 #August

@occurence_of_demand_MC[7] += 1

when 0.86666666665 .. 0.89999999997 #September

@occurence_of_demand_MC[8] += 1

when 0.89999999998 .. 0.9333333333 #October

@occurence_of_demand_MC[9] += 1

when 0.9333333333 .. 0.96666666663 #November

@occurence_of_demand_MC[10] += 1

else #December

@occurence_of_demand_MC[11] += 1

end

end

CHAPTER 4. APPLICATION FRAMEWORK 26

def calculate_mean_by_month

@predicted_demand.transpose.map do |demands_by_month|

demands_by_month.sum(0.0) / demands_by_month.size

end

end

def round_mean_prediction

result = Array.new(12, 0)

while result.sum < @consumed_qty

max_index = @mean.each_with_index.max.last

if @mean[max_index] > 1.0

result[max_index] = @mean[max_index].round

else

result[max_index] = 1

end

@mean[max_index] = 0

end

result

end

end

Algorithm 1 explanation

initialize : Define @consumed qty as an input

call : Call the methods: generate predicted demand,
calculate mean by month,
and round mean prediction

generate predicted demand : Generate 1000 pseudo random num-
bers to perform Monte Carlo.

perform monte carlo : Iterate over the array of pseudo-
random number. If the random
number equals 0 to 0.03333333333,
mark as “1 unit of spare parts
was used in January” and so forth.

calculate mean by month : Average the demand size each month.

round mean prediction : Choose maximum numbers of mean
and round it to a nearest number
until it hits the yearly demand of
spare parts. The higher value of
mean is, the more likely that de-
mand would occur.

CHAPTER 4. APPLICATION FRAMEWORK 27

4.2.2 Demand pattern of spare parts

In order to classify demand pattern, we need to calculate ADI and CV² then
compare the ADI and CV² values with the cutoffs.

Algorithm 2: Demand pattern of spare parts

Calculate ADI

demand_buckets = []

@prediction_result.each do |element|

if element > 0

demand_buckets << element

end

end

adi = @prediction_result.count.to_f/demand_buckets.count.to_f

Calculate CV^2

average_value_of_pop = demand_buckets.sum(0.0)/demand_buckets.count

x_bar = @prediction_result.sum(0.0)/@prediction_result.count

sum = demand_buckets.sum(0.0) { |demand| (demand -

average_value_of_pop) ** 2 }

standard_deviation = Math.sqrt(sum / (demand_buckets.size.to_f))

square_coefficient_of_variation =

(standard_deviation/average_value_of_pop)**2

Compare with cutoffs

def perform_demand_category(adi, square_coefficient_of_variation)

if adi <= 1.34 && square_coefficient_of_variation <= 0.49

p "Smooth"

elsif adi >= 1.34 && square_coefficient_of_variation >= 0.49

p "Lumpy"

elsif adi < 1.34 && square_coefficient_of_variation > 0.49

p "Erratic"

elsif adi > 1.34 && square_coefficient_of_variation < 0.49

p "Intermittent"

end

end

CHAPTER 4. APPLICATION FRAMEWORK 28

Algorithm 2 explanation

@prediction result.count.to f : Count the number of elements
in @prediction result and con-
vert the values of the numbers
as float.

demand buckets.count.to f : Count the number of elements in
demand buckets.count.to f (how
many non-zero demand occurrence
in demand time series) and con-
vert the values of the numbers as
float.

adi : Calculate adi by using Equation
(2.1).

average value of pop : Average value of demand buckets.

x bar : Average value of @prediction result.

standard deviation : Calculate standard deviation of
@demandbuckets.

square coefficient of variation : Calculate the square of the CV.

perform demand category : Compare with cutoffs ADI and
CV² with the cutoffs.

CHAPTER 4. APPLICATION FRAMEWORK 29

4.2.3 Implementation of Bootstrapping

In this process, we estimate the occurrence (or non-occurrence) of demand
by using Markov Chains and resample the demand size if the forecast of
the demand occurrence appears to be nonzero by using the adapted jittering
process.

Algorithm 3: Initialize inputs and call methods

class PredictNextMonthService

def initialize(new_demands:, original_demand:)

@new_demand = nil

@all_demands = original_demand + new_demands

@original_demand = original_demand

end

def call

set_occurence_of_demand

calculate_month_with_without_demands

calculate_4_conditional_probabilities

set_rand_uniform_distribution

add_new_occurance

add_forecast_value_to_demand

@new_demand

end

Algorithm 3 explanation

initialize : Define new demand and original demand
as inputs

call : Call the methods: set occurence of demand,
calculate month with without demands,
calculate 4 conditional probabilities,
set rand uniform distribution,
add new occurance,
and add forecast value to demand.
Return the variable: @new demand.

CHAPTER 4. APPLICATION FRAMEWORK 30

Algorithm 4: Markov Chains

private

def set_occurence_of_demand

@occurrence_of_demand = @all_demands.map do |d|

d > 0 ? 1 : d

end

end

def calculate_month_with_without_demands

months_with_demands = @occurrence_of_demand.count(1)

months_without_demands = @occurrence_of_demand.count(0)

@number_of_months_with_demands = months_with_demands

@number_of_months_without_demands = months_without_demands

if @occurrence_of_demand.last == 0

@number_of_months_without_demands -= 1

elsif @occurrence_of_demand.last == 1

@number_of_months_with_demands -= 1

end

end

def calculate_4_conditional_probabilities

demand_and_demand = 0

demand_and_no_demand = 0

no_demand_and_demand = 0

no_demand_and_no_demand = 0

@occurrence_of_demand.each_cons(2) do |occurance_a, occurance_b|

if occurance_a == 1 && occurance_b == 1

demand_and_demand += 1

end

if occurance_a == 1 && occurance_b == 0

demand_and_no_demand += 1

end

if occurance_a == 0 && occurance_b == 1

no_demand_and_demand += 1

end

if occurance_a == 0 && occurance_b == 0

CHAPTER 4. APPLICATION FRAMEWORK 31

no_demand_and_no_demand += 1

end

end

@probability_of_demand_and_demand = demand_and_demand.to_f /

@number_of_months_with_demands.to_f

@probability_of_demand_and_no_demand =

demand_and_no_demand.to_f /

@number_of_months_with_demands.to_f

@probability_of_no_demand_and_demand =

no_demand_and_demand.to_f /

@number_of_months_without_demands.to_f

@probability_of_no_demand_and_no_demand =

no_demand_and_no_demand.to_f /

@number_of_months_without_demands.to_f

end

def set_rand_uniform_distribution

@rand_uniform_distribution = Random.rand()

end

def add_new_occurance

@occurrence_of_demand << decide_if_demand_occurs

end

def decide_if_demand_occurs

if @occurrence_of_demand.last == 1

@rand_uniform_distribution <

@probability_of_demand_and_demand ? 1 : 0

else

@rand_uniform_distribution <

@probability_of_no_demand_and_demand ? 1 : 0

end

end

def add_forecast_value_to_demand

if @occurrence_of_demand.last == 1

@new_demand = perform_jittering

else

@new_demand = 0

CHAPTER 4. APPLICATION FRAMEWORK 32

end

end

def perform_jittering

Jittering.new(original_demand: @original_demand).call

end

end

Algorithm 4 explanation

set occurence of demand : Record a month with a demand
occurrence as ‘1’ and a month
without a demand occurrence as
‘0’ into @occurrence of demand.

calculate month with without demands :Count how many months with
demand and without demand.
Discount the last observation.

calculate 4 conditional probabilities :Calculate 4 conditional probabil-
ities: @probability of demand and demand,
@probability of demand and no demand,
@probability of no demand and demand,
@probability of no demand and no demand.

set rand uniform distribution : Generate uniform random
numbers between 0 and 1.

add new occurance : Append occurrences of demand
into @occurrence of demand by
using results from decide if demand occurs.

decide if demand occurs : Compare @rand uniform distribution
with @probability of demand and demand
or @probability of no demand and demand
(depending on current demand).

add forecast value to demand Perform perform jittering and
replace demand size with jitterd
value if there is a demand occur-
rence.

perform jittering Call class Jittering to perform jit-
tering process.

CHAPTER 4. APPLICATION FRAMEWORK 33

Algorithm 5: Jittering Process

class Jittering

def initialize(original_demand:)

@demand = original_demand

end

def call

pick_demand

generate_guassian_random_numbers

jittering

end

private

def pick_demand

picked_demands = []

@demand.each do |d|

picked_demands << d if d > 0

end

@demand_sample = picked_demands.sample

end

def generate_guassian_random_numbers

normal_distribution_generrator = RandomGaussian.new(0, 1)

@rand_normal_distribution = normal_distribution_generrator.rand

end

def jittering

jittered_demand = nil

value = 0.5 + @demand_sample + (@rand_normal_distribution *

Math.sqrt(@demand_sample))

if value > 0

jittered_demand = value.to_i

else

jittered_demand = 1

end

jittered_demand

end

end

CHAPTER 4. APPLICATION FRAMEWORK 34

Algorithm 5 explanation

initialize Define original demand as an
input

call Call the methods: pick demand,
generate guassian random numbers,
jittering.

pick demand Randomly pick non-zero demand
from original demand and save
into @demand sample.

generate guassian random numbers :Generate Gaussian distributed num-
bers with mean = 0 and variance
= 1.

jittering Calculate jittered value by using
Equation (2.8). If jittered value
is more than 0, replace demand
size with the jittered value, oth-
erwise replace it with 1.

CHAPTER 4. APPLICATION FRAMEWORK 35

Algorithm 6: RandomGaussian

class RandomGaussian

def initialize(mean, stddev, rand_helper = lambda { Kernel.rand })

@rand_helper = rand_helper

@mean = mean

@stddev = stddev

@valid = false

@next = 0

end

def rand

if @valid then

@valid = false

return @next

else

@valid = true

x, y = self.class.gaussian(@mean, @stddev, @rand_helper)

@next = y

return x

end

end

private

def self.gaussian(mean, stddev, rand)

theta = 2 * Math::PI * rand.call

rho = Math.sqrt(-2 * Math.log(1 - rand.call))

scale = stddev * rho

x = mean + scale * Math.cos(theta)

y = mean + scale * Math.sin(theta)

return x, y

end

end

Algorithm 6 explanation

initialize Definemean, stddev, and rand helper
as inputs.

rand and self.gaussian Use the Box-Muller transform method
to generate uniformly distributed
random numbers.

CHAPTER 4. APPLICATION FRAMEWORK 36

According to a class that handles end-user requests and generates HTML
page with the results of calculations (ItemsController), more details related
to the algorithms of ItemsController will be provided in Appendix A.

Chapter 5

Analysis and Results

5.1 Classification of demand pattern

According to Syntetos et al. (2005) proposal, we classify 40 items by using
monthly demand from the year 2020. The coefficient of variation (CV²) and
the average demand interval (ADI) are computed by Equation (2.1) and (2.2)
respectively, resulting in Table 4.1. Figure 4.1 displays the results in a scatter
plot to identify general characteristics. Most of the spare part (95%) have
very low size variability but high average demand interval, being classified
as “Intermittent”. The rest of them (5%) are classified as “Erratic” because
of their low average demand interval and high size variability.

The bootstrap methodology may be beneficial in this case study since
many researches show that it has been proved to be appropriate and outper-
form other methods when dealing with intermittent demand items.

Figure 5.1: The simulation of monthly demand in 2019

37

CHAPTER 5. ANALYSIS AND RESULTS 38

Table 5.1: Demand pattern classification

Material ADI The square of CV Category
83915 4.00 0.13 Intermittent
80053 2.40 0.09 Intermittent
86181 6.00 0.00 Intermittent
87754 4.00 0.00 Intermittent
84270 1.09 1.25 Erratic
86023 6.00 0.00 Intermittent
13572 2.40 0.21 Intermittent
86866 12.00 0.00 Intermittent
75807 6.00 0.00 Intermittent
84267 1.09 0.84 Erratic
88362 3.00 0.06 Intermittent
88363 8.00 0.00 Intermittent
62191 6.00 0.00 Intermittent
07176 7.20 0.00 Intermittent
77504 12.00 0.00 Intermittent
80885 3.00 0.00 Intermittent
65586 1.71 0.42 Intermittent
85995 6.00 0.00 Intermittent
83453 3.00 0.06 Intermittent
76831 12.00 0.00 Intermittent
90471 12.00 0.00 Intermittent
86927 12.00 0.00 Intermittent
86926 12.00 0.00 Intermittent
71042 12.00 0.00 Intermittent
64729 6.00 0.00 Intermittent
87399 12.00 0.00 Intermittent
87291 12.00 0.00 Intermittent
84164 3.00 0.00 Intermittent
64728 12.00 0.00 Intermittent
64703 12.00 0.00 Intermittent
80344 12.00 0.00 Intermittent
84275 12.00 0.25 Intermittent
80813 12.00 0.00 Intermittent
53180 4.00 0.00 Intermittent
84186 12.00 0.00 Intermittent
07202 12.00 0.00 Intermittent
53188 12.00 0.00 Intermittent
75070 2.40 0.09 Intermittent
53187 12.00 0.00 Intermittent
56728 2.40 0.09 Intermittent

CHAPTER 5. ANALYSIS AND RESULTS 39

5.2 Validation of Bootstrapping Model

After all the computational works, basic statistical analysis results of the
forecast are obtained and listed in Table 5.2. It becomes clear from the
mean of the forecast value (Ft), that this model’s accuracy oscillates be-
tween under-predicting and over-predicting future demand. Some examples
of the bootstrapping results discussed in this chapter will be presented in the
Appendix B.

In Table 5.3, the 90%, 95%, and 99% forecast intervals for each item the
results are reported. When the actual demand (At) is inside the interval, it
is highlighted in bold. It can be seen that there are 31 of 40 items whose
the actual demand is inside the 99% confidence interval. Whereas, the 90%
and 95% bootstrapped confidence interval do not often contain the actual
demand. Of 40 spare parts, there are 21 and 24 items that contain the
actual demand respectively for the 90% and 95% confidence interval. Hence,
the 99% confidence interval of the mean of the predicted demand seems to
be the best compromise.

Considering the performance of the forecasting model, measurement statis-
tics are calculated further by using the actual demand (At) in 2021 and the
mean of the forecast value (Ft). The proper measures of fit are the Mean
absolute error (MEA) = 0.2735 and the Root Mean Square Error (RMSE)
= 0.4349, calculated from Equation (2.9) and Equation (2.10) respectively.
Based on the minimum RMSE required (≤ 1) [3], the actual demand fits the
mean of the predicted demand quite well. Mean absolute percentage error
(MAPE) is used as a relative error measure. According to Equation 2.11,
MAPE is equivalent to 12.63% which is recognized as good forecasting [1].

In the context of the entire experiment, the model gives fairly good result
and the accuracy and error rate are satisfied. We can conclude the WSS
bootstrapping methods with the adapted jittering process appears to be a
good compromise for obtaining demand forecast intervals. Statistical analysis
indicated acceptance of model simulations.

CHAPTER 5. ANALYSIS AND RESULTS 40

Table 5.2: Statistical analysis results

Material Actual Demand (At) Mean of Forecast Value (Ft) S.D.
83915 3 3.3060 4.5844
80053 8 7.7270 5.8012
86181 1 1.3940 1.7694
87754 3 3.1220 2.8315
84270 36 35.3410 14.5913
86023 2 2.0140 2.8976
13572 5 5.6530 5.1500
86866 1 1.1090 1.6053
75807 2 2.0300 3.0158
84267 52 51.8190 16.7117
88362 8 7.6500 5.8302
88363 2 1.5370 2.1542
62191 2 1.9690 2.8025
7176 2 1.6750 2.3159
77504 1 1.1010 1.4237
80885 3 2.8880 3.7799
65586 15 14.7340 8.5413
85995 1 1.7380 2.5106
83453 4 3.9710 4.9952
76831 1 1.0390 1.5269
90471 1 1.0560 1.4159
86927 1 1.0790 1.5195
86926 1 1.1120 1.5529
71042 1 1.0480 1.4972
64729 2 1.9820 2.9332
87399 1 1.1010 1.5617
87291 1 1.0630 1.5281
84164 2 2.1460 2.8870
64728 2 1.2590 1.6346
64703 1 1.0740 1.5134
80344 2 1.2100 1.6745
84275 11 11.2560 7.4930
80813 1 1.1280 1.6400
53180 2 2.2120 3.2136
84186 3 1.2050 1.6826
7202 2 1.2170 1.6637
53188 1 1.0380 1.4740
75070 4 4.1600 4.9659
53187 1 1.0880 1.5602
56728 6 5.9420 6.5225

CHAPTER 5. ANALYSIS AND RESULTS 41

Table 5.3: Confidence interval of 90%, 95% and 99%

Material At
Confidence Interval

90% 95% 99%
83915 3 3.0675 : 3.5445 3.0219 : 3.5901 2.9326 : 3.6794
80053 8 7.4252 : 8.0288 7.3674 : 8.0866 7.2544 : 8.1996
86181 1 1.3020 : 1.4860 1.2843 : 1.5037 1.2499 : 1.5381
87754 3 2.9747 : 3.2693 2.9465 : 3.2975 2.8913 : 3.3527
84270 36 34.5820 : 36.1000 34.4366 : 36.2454 34.1524 : 36.5296
86023 2 1.8633 : 2.1647 1.8344 : 2.1936 1.7780 : 2.2500
13572 5 5.3851 : 5.9209 5.3338 : 5.9722 5.2335 : 6.0725
86866 1 1.0255 : 1.1925 1.0095 : 1.2085 0.9782 : 1.2398
75807 2 1.8731 : 2.1869 1.8431 : 2.2169 1.7843 : 2.2757
84267 52 50.9497 : 52.6883 50.7832 : 52.8548 50.4577 : 53.1803
88362 8 7.3467 : 7.9533 7.2886 : 8.0114 7.1751 : 8.1249
88363 2 1.4249 : 1.6491 1.4035 : 1.6705 1.3615 : 1.7125
62191 2 1.8232 : 2.1148 1.7953 : 2.1427 1.7407 : 2.1973
07176 2 1.5545 : 1.7955 1.5315 : 1.8185 1.4863 : 1.8637
77504 1 1.0269 : 1.1751 1.0128 : 1.1892 0.9850 : 1.2170
80885 3 2.6914 : 3.0846 2.6537 : 3.1223 2.5801 : 3.1959
65586 15 14.2897 : 15.1783 14.2046 : 15.2634 14.0382 : 15.4298
85995 1 1.6074 : 1.8686 1.5824 : 1.8936 1.5335 : 1.9425
83453 4 3.7112 : 4.2308 3.6614 : 4.2806 3.5641 : 4.3779
76831 1 0.9596 : 1.1184 0.9444 : 1.1336 0.9146 : 1.1634
90471 1 0.9823 : 1.1297 0.9682 : 1.1438 0.9407 : 1.1713
86927 1 1.0000 : 1.1580 0.9848 : 1.1732 0.9552 : 1.2028
86926 1 1.0312 : 1.1928 1.0158 : 1.2082 0.9855 : 1.2385
71042 1 0.9701 :1.1259 0.9552 : 1.1408 0.9260 : 1.1700
64729 2 1.8294 : 2.1346 1.8002 : 2.1638 1.7431 : 2.2209
87399 1 1.0198 : 1.1822 1.0042 : 1.1978 0.9738 : 1.2282
87291 1 0.9835 : 1.1425 0.9683 : 1.1577 0.9385 : 1.1875
84164 2 1.9958 : 2.2962 1.9671 : 2.3249 1.9108 : 2.3812
64728 2 1.1740 : 1.3440 1.1577 : 1.3603 1.1258 : 1.3922
64703 1 0.9953 : 1.1527 0.9802 : 1.1678 0.9507 : 1.1973
80344 2 1.1229 : 1.2971 1.1062 : 1.3138 1.0736 : 1.3464
84275 11 10.8662 : 11.6458 10.7916 : 11.7204 10.6456 : 11.8664
80813 1 1.0427 : 1.2133 1.0264 : 1.2296 0.9944 : 1.2616
53180 2 2.0448 : 2.3792 2.0128 : 2.4112 1.9502 : 2.4738
84186 3 1.1175 : 1.2925 1.1007 : 1.3093 1.0679 : 1.3421
07202 2 1.1305 : 1.3035 1.1139 : 1.3201 1.0815 : 1.3525
53188 1 0.9613 : 1.1147 0.9466 : 1.1294 0.9179 : 1.1581
75070 4 3.9017 : 4.4183 3.8522 : 4.4678 3.7555 : 4.5645
53187 1 1.0068 : 1.1692 0.9913 : 1.1847 0.9609 : 1.2151
56728 6 5.6027 : 6.2813 5.5377 : 6.3463 5.4107 : 6.4733

Chapter 6

Discussion

The results from 1000 replicates for each item support the expected hypoth-
esis. The findings show that the modified WSS bootstrap method performs
very well. According to the evaluation metrics, Root Mean Square Error
(RMSE), Mean Absolute Error (MEA), and Mean Absolute Percentage Error
(MAPE) are in the acceptable accuracy ranges. The proposed bootstrapping
model can therefore be considered as a good forecaster for a subsea opera-
tion and maintenance service provider in the case study. The 99% confidence
interval often contain the true value of demand.

The main issue of this thesis is an unavailability of historical data. Most
often, the model requires historical data of monthly demand for greater than
2 year to detect general trends. In fact, there are 4 out of 40 spare parts that
have data available for at least two years and the data are reported in yearly
consumption. Using only 1 year historical data and the 70/30 assumption to
obtain monthly demand, may induce bias and weak estimation of the model.

Another interesting point is the performance measurement of the model.
RMSE, MEA, and MAPE can be used for general purposes but they are not
suitable for the application of certain data. The mentioned metrics disregard
economical aspects, while it is very important for spare parts management to
consider stock holding cost and stockout cost. These traditional metrics may
not represent the actual performance of the model and lead to a possibly
biased evaluation criterion. This bias can be eliminated by using a new
performance measurement for intermittent demand forecasts proposed by
Martin et al (2020), called Stock-keeping-oriented Prediction Error Costs
(SPEC). But due to the unavailability of data in terms of cost factors, we
were not able to implement this metric to measure the performance of the
model.

42

CHAPTER 6. DISCUSSION 43

Several improvements can be done if high-quality historical data are avail-
able and accessible. We therefore recommend to collect more data to improve
the accuracy of the model and use the SPEC metric in future studies to mea-
sure the actual quality of the model.

Appendix A

Algorithm Code

Algorithm 7: ItemsController

require "histogram/array"

class ItemsController < ApplicationController

before_action :set_item, only: %i[edit update destroy]

def index

@items = Item.all

end

def import

counter = Item.import params[:file]

redirect_to items_path, notice: "Imported #{counter} items"

end

def show

@item = Item.friendly.find(params[:id])

perform_bootstrapping

end

def new

@item = Item.new

end

def edit

end

44

APPENDIX A. ALGORITHM CODE 45

def create

@item = Item.new(item_params)

if @item.save

redirect_to item_url(@item), notice: "Item was successfully

created."

else

render :new, status: :unprocessable_entity

end

end

def update

if @item.update(item_params)

redirect_to item_url(@item), notice: "Item was successfully

updated."

else

render :edit, status: :unprocessable_entity

end

end

def destroy

@item.destroy

redirect_to items_url, notice: "Item was successfully

destroyed."

end

private

def set_item

@item = Item.find(params[:id])

end

def item_params

params.require(:item).permit(:name, :demand_time_series)

end

def perform_monte_carlo

service = GenerateDataService.new(consumed_qty: 14)

service.call

@predicted_demand = service.predicted_demand.map.with_index do

|monte_result,index|

{

APPENDIX A. ALGORITHM CODE 46

name: index,

data: monte_result.map.with_index {|mb,index|

[Date::MONTHNAMES[index+1],mb]}

}

end

@prediction_result = service.prediction_result

@random_seed = service.random_seed

end

def perform_bootstrapping

original_demand = @item.demand_time_series

number_of_orginal_demand = original_demand.size

@sum_original_demand = original_demand.sum(0.0)

@predictions = demand_forecast_values(original_demand)

@graphable_demand_forecast_values =

graphable_demand_forecast_values(@predictions,

original_demand)

@graphable_colors = ["#0d6efd", "#0d6efd"] +

Array.new(@graphable_demand_forecast_values.count - 2,

"#212529")

@graphable_histogram = @predictions.flatten.histogram.transpose

@sum_of_demand_in_each_array = @predictions.map do |demands|

@sum_of_demand_in_each_array = demands.sum(0.0)

end

@graphable_sum_of_demand_in_each_array =

@sum_of_demand_in_each_array.histogram(6)

@graphable_sum_of_demand_in_each_array[0] =

@graphable_sum_of_demand_in_each_array[0].map {|el|

el.round(2)}

@graphable_sum_of_demand_in_each_array =

@graphable_sum_of_demand_in_each_array.transpose

@mean_of_all_array = @sum_of_demand_in_each_array.sum(0.0) /

@sum_of_demand_in_each_array.size

sum = @sum_of_demand_in_each_array.sum(0.0) { |demand| (demand

APPENDIX A. ALGORITHM CODE 47

- @mean_of_all_array) ** 2 }

@standard_deviation = Math.sqrt(sum /

(@sum_of_demand_in_each_array.size))

@confidence_interval_90 =

1.645*(@standard_deviation/Math.sqrt(@sum_of_demand_in_each_array.size))

@confidence_interval_95 =

1.960*(@standard_deviation/Math.sqrt(@sum_of_demand_in_each_array.size))

@confidence_interval_99 =

2.576*(@standard_deviation/Math.sqrt(@sum_of_demand_in_each_array.size))

@confidence_interval_99_99 =

3.291*(@standard_deviation/Math.sqrt(@sum_of_demand_in_each_array.size))

end

def demand_forecast_values(original_demand)

predictions = []

@number_of_samples = 1000

number_of_forecasted_period = 12

@number_of_samples.times do

demands = []

number_of_forecasted_period.times do

demands << PredictNextMonthService.new(new_demands:

demands, original_demand: original_demand).call

end

predictions << demands

end

predictions

end

def graphable_demand_forecast_values(predictions, original_demand)

predictions_with_min_max = predictions.dup

max_numbers = predictions_with_min_max.transpose.map(&:max)

min_numbers = predictions_with_min_max.transpose.map(&:min)

predictions_with_min_max =

predictions_with_min_max.unshift(max_numbers, min_numbers)

graphable_data = predictions_with_min_max.map.with_index do

|demands, index|

APPENDIX A. ALGORITHM CODE 48

{

name: index,

data: demands.map.with_index {|pr,index| ["Month

#{[index+1]}",pr]}

}

end

end

end

Appendix B

Examples of result on UI

49

APPENDIX B. EXAMPLES OF RESULT ON UI 50

APPENDIX B. EXAMPLES OF RESULT ON UI 51

Bibliography

[1] Alayed, E., O’Hegarty, R., Kinnane, O. (2022). Solutions for Ex-
posed Structural Concrete Bridged Elements for a More Sustain-
able Concrete Construction in Hot Climates. Buildings, 12(2), 176.
https://doi.org/10.3390/buildings12020176

[2] Armstrong, J. S. (2001). Judgmental Bootstrapping: Inferring Experts’
Rules for Forecasting. International Series in Operations Research Man-
agement Science, 171–192. https://doi.org/10.1007/978-0-306-47630-3 9

[3] Barnston, A. G. (1992). Correspondence among the Correlation,
RMSE, and Heidke Forecast Verification Measures; Refinement
of the Heidke Score. Weather and Forecasting, 7(4), 699–709.
https://doi.org/10.1175/1520-0434(1992)007

[4] Croston, J. D. (1972). Forecasting and Stock Control for Intermit-
tent Demands. Operational Research Quarterly (1970–1977), 23(3), 289.
https://doi.org/10.2307/3007885

[5] Martin, D., Spitzer, P., Kühl, N. (2020). A New Metric for Lumpy and
Intermittent Demand Forecasts: Stock-keeping-oriented Prediction Error
Costs. Proceedings of the Annual Hawaii International Conference on
System Sciences. https://doi.org/10.24251/hicss.2020.121

[6] Porras, E., Dekker, R. (2008). An inventory control system for spare
parts at a refinery: An empirical comparison of different re-order point
methods. European Journal of Operational Research, 184(1), 101–132.
https://doi.org/10.1016/j.ejor.2006.11.008

[7] Rego, J. R. D., Mesquita, M. A. D. (2015). Demand forecast-
ing and inventory control: A simulation study on automotive spare
parts. International Journal of Production Economics, 161, 1–16.
https://doi.org/10.1016/j.ijpe.2014.11.009

52

BIBLIOGRAPHY 53

[8] Shenstone, L., Hyndman, R. J. (2005). Stochastic models underlying
Croston’s method for intermittent demand forecasting. Journal of Fore-
casting, 24(6), 389–402. https://doi.org/10.1002/for.963

[9] Smith, M., Babai, M. Z. (2011). A Review of Bootstrapping
for Spare Parts Forecasting. Service Parts Management, 125–141.
https://doi.org/10.1007/978-0-85729-039-7 6

[10] Syntetos, A. A., Boylan, J. E., Croston, J. D. (2005). On the catego-
rization of demand patterns. Journal of the Operational Research Society,
56(5), 495–503. https://doi.org/10.1057/palgrave.jors.2601841

[11] Syntetos, A. A., Zied Babai, M., Gardner, E. S. (2015). Fore-
casting intermittent inventory demands: simple parametric methods
vs. bootstrapping. Journal of Business Research, 68(8), 1746–1752.
https://doi.org/10.1016/j.jbusres.2015.03.034

[12] Syntetos, A., Boylan, J. (2001). On the bias of intermittent demand esti-
mates. International Journal of Production Economics, 71(1–3), 457–466.
https://doi.org/10.1016/s0925-5273(00)00143-2

[13] Willemain, T. R., Smart, C. N., Schwarz, H. F. (2004). A
new approach to forecasting intermittent demand for service parts
inventories. International Journal of Forecasting, 20(3), 375–387.
https://doi.org/10.1016/s0169-2070(03)00013-x

[14] Williams, T. M. (1984). Stock Control with Sporadic and Slow-Moving
Demand. Journal of the Operational Research Society, 35(10), 939–948.
https://doi.org/10.1057/jors.1984.185

