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Abstract

In this thesis, I aim to find solutions to the NP-hard sign-problem that
arises when modeling strongly correlated systems in real-time. I will
use the complex Langevin (CLE) method, and address its problem of
runaway trajectories and incorrect convergence using an implicit solver
and a novel kernel optimization scheme, respectively. The implicit solver
stabilizes the numerical solution, making the runaway solution problem a
thing of the past. It also acts as a regulator, allowing for simulation along
the canonical Schwinger-Keldysh contour. Additionally, our investigation
shows that a kernel can act as a regulator as well, resulting in an effective
change in the action and integral measure while leaving the path integral
measure intact.

To restore correct convergence in CLE simulations, we present a novel
strategy that involves learning a kernel and utilizing functionals that
encode relevant prior information, such as symmetries or Euclidean
correlator data. Our approach recovers the correct convergence in the
non-interacting theory on the Schwinger-Keldysh contour for any
real-time extent. It achieves the correct convergence up to three times
the real-time extent of the previous benchmark study for the strongly
coupled quantum anharmonic oscillator.

Furthermore, we investigate the stability of the CLE by calculating the
Lyapunov exponents of the CLE and uncovering that the real-time CLE
behaves like a chaotic dynamical system. This has consequences for
obtaining a reliable gradient of a loss function that contains a real-time
CLE simulation. To address this issue, we adapt the shadowing
sensitivity method to a stochastic differential equation (SDE), which
allows for calculating a reliable gradient of chaotic SDEs.
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1 Introduction

Lattice field theory has made significant strides in shaping our under-
standing of quantum field theory in recent decades. It is often the only
tool available to study theories with a non-perturbative behavior where
conventional methods based on small coupling fail. The numerical sim-
ulation of quantum field theories on a discrete space-time lattice has
allowed for precise first-principles calculations of various quantities, in-
cluding the hadron spectrum [1], heavy quark physics such the spectrum
of quarkonia [2] and exotics xyz states [3], as well as confinement in
the form of the heavy quark potential. However, despite the success of
standard lattice field theory methods in computing static and equilibrium
properties, there remains an important class of dynamical phenomena
that are inherently real-time and out of equilibrium. We must tame the
so-called sign-problem to capture these phenomena.

1.1 Motivation

Many-body real-time simulations are essential for understanding dynam-
ical processes, such as charge transport and thermalization, of systems
in domains like condensed matter physics, high-energy physics, and nu-
clear physics. They are needed to calculate transport coefficients such as
shear and bulk viscosity, charge conductivity, and diffusion constants, to
name a few. In high energy physics, these coefficients play a vital role
in understanding the behavior of the quark-gluon-plasma [4] produced in
heavy-ion collisions [5] and its transition to the hadronic phase. This is
important information for phenomenological studies at, e.g., the Large
Hadron Collider located at CERN. For low-energy applications, the abil-
ity to reliably calculate transport coefficients of charged fermions [6] in
complex atomic lattices is of high importance in the discovery of new
high-temperature superconductivity materials [7].

Real-time quantities, such as the transport coefficient, can be formulated
via quantum field theory on the so-called Schwinger-Keldysh closed time
contour formalism [8, 9]. In this setup, it is real-time correlation functions
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Introduction

that are related to these quantities. However, a non-perturbative treat-
ment is necessary for the abovementioned examples, which correspond
to strongly correlated quantum systems. This means that the dynamical
quantities cannot be computed perturbatively for such systems, and hence
we need a non-perturbatively method to obtain the real-time correlation
functions.

Lattice field theory is the standard approach for evaluating non pertur-
batively the static thermodynamical properties such as its equation of
state of hot nuclear matter (see, e.g., [10]). With this framework, we
can numerically obtain solutions of the Feynman path-integral, which
underlies the standard formulation of quantum field theory quantities in
lattice field theory. However, a direct computation of a real-time correla-
tor using the lattice field theory framework is prevented by the infamous
sign-prblem [11, 12]. It describes the problem of having complex-valued
weights in the path integral or that the sign of the underlying distribu-
tion oscillates. In general, we can say that the problem suffers from a
sign-problem if the phase fluctuation increase as the size of the system
increases. This prohibits the use of the otherwise efficient Mote-Carlo
importance sampling method necessary for numerical computation of the
highly dimensional path integral.

Lattice simulation of static systems are formulated along imaginary (Eu-
cledian) time and can, in principle, via analytic continuation, recover
real-time information of thermal systems. This is due to the relation be-
tween the imaginary time and the physical time (Minkowski) correlators,
which shares a common spectral function [13]. The spectral functions,
which encapsulate information about a system’s dynamical properties and
are linked to real-time correlation functions, serve as the most effective
means to express thermal real-time physics. However, extracting spec-
tral functions from, e.g., lattice QCD data poses a challenge, as they are
concealed within an ill-posed inverse problem. As a result, the spectral
reconstruction method tries to overcome this challenge by incorporating
prior knowledge on the spectrum.

The ill-posed nature of the problem arises from the fact that lattice QCD
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only provides Euclidean-time correlation functions, which are related to
the spectral functions through an integral transform. To extract the spec-
tral functions, one must invert this transform, which is an ill-conditioned
and numerically unstable procedure. Several approaches have been devel-
oped to address this issue. To name some, we have the Bayesian Inference
[13] methods which include the Maximum Entropy Method (MEM)[14],
Bayesian reconstruction [15] and Tikhonov [16]. We also have the Bakus-
Gilbert [17], Padé method[2], Gaussian Processes reconstruction [18],
and approaches directly using machine learning methods[19]. However,
the method suffers from systematic uncertainties due to the ill-posed na-
ture of the problem, which emphasizes the importance of developing
alternative and more robust real-time simulation techniques.

A different area of study that faces challenges similar to those encoun-
tered in investigating dynamical QCD quantities is the computation of
many-body systems in low-energy physics [20]. These simulations con-
front the issue of rapidly increasing complexity as the number of par-
ticles in the system grows. For example, while we can numerically
solve the Schrödinger equation for systems containing a small number
of particles, adding more particles to the problem exponentially increase
computational cost, making it intractable without resorting to approxi-
mations. Developing new algorithms and methods that can accurately
simulate these systems could have far-reaching implications for under-
standing many-body systems and their applications in materials science,
chemistry, and nuclear physics, among others [20]. For example, we can
potentially gain valuable insight into high-temperature superconductivity
by simulating the Hubbard model in Minkowski time [21].

In light of these limitations and challenges, it is clear that direct real-
time simulations are essential for obtaining a more accurate and robust
understanding of the dynamical aspects of QCD and other quantum many-
body theories. Developing new techniques and improving existing ones
to perform real-time simulations will facilitate exploring a wide range of
phenomena in high-energy physics, many-body systems, nuclear physics,
and early universe cosmology. In addition, direct real-time simulations
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are crucial for uncovering the rich dynamical structure underlying the
fundamental interactions in non-perturbative many-body physics.

Various approaches have been developed to tackle the sign problem aris-
ing in dynamical systems. This includes the complex Langevin fram-
work [22], which evolves a complexified field as a stochastic process
in a fictitious time. The Lefschetz thimble methods [23, 24], which is
a group of methods that seek to reduce the sign-problem by deforming
the integration contour into the complex plane in such a way that the
imaginary part of the Feynman weight remains constant. Tensor network
techniques [25, 26] is a method that originates from condensed matter
physics, which represents the quantum many-body states based on their
entanglement structure.

In recent years, many of the improvements made in the field of lattice
simulations and extraction of spectral function have been made by ap-
plying machine learning techniques [27]. This has seen successes such
as improved sampling algorithms using normalizing flows [28] and im-
proved spectral reconstruction methods [19, 29]. These techniques have
also been used successfully in some of the Lefschetz thimbles methods,
where machine learning algorithms have been used to find optimal in-
tegration contours [24]. All of these methods rely on optimization of
a large number of parameters, which is usually done using a gradient-
based optimization scheme. To this end, obtaining efficient and reliable
gradients of quantities related to the method at hand is important.

Differential programming is a paradigm that enables easy computation of
derivatives [30]. The basic building block of a differential programming
system is automatic differentiation, which computes machine-precision
derivatives with minimal changes to the original code. This technique
can be beneficial for quick implementation of gradients, Jacobians, and
Hessians, which in turn are used in optimization algorithms [30]. An
example of such a case is implementing implicit differential equation
solvers, where the (quasi) Newton method to solve the non-linear system
needs the (gradient) Hessian, which only requires the user to provide the
ODE function. Then the AD framework handles the (gradient) Hessian.
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Differential programming can be seen as a generalization of machine
learning implementations, as it builds on the idea of solving problems
by optimizing a functional. Furthermore, this framework allows for op-
timizing arbitrary model structures, making it applicable to any method
containing free parameters. For example, differential programming can
be used to optimize the complex integration path in contour deforma-
tion methods [24] or adjust free parameters in the complex Langevin
method [31].

It has been shown that the sign problem belongs to the class of NP-
hard computational problems [32], which indicates that an efficient and
universally applicable solution may not exist. Differential programming
can aid in exploring different methodologies and optimizing the freedom
inherent in these methods. As long as the gradient is defined, the ability to
compute gradients for any user-defined function allows for a wide range of
applications and problem-solving techniques to be applied in tackling the
sign problem. It also simplifies code, increases flexibility, reduces errors
when implementing gradient-based algorithms, and makes it possible to
implement new methods that have not been tested in the past.

1.2 Short introduction to essential concepts

In this section, I will introduce some basic concepts to motivate the
following chapters. This is not a complete introduction to the topics, as
the following section will only introduce the concepts without derivations.
For further reading on thermal field theory and lattice field theory, see.
[33, 10, 34].

1.2.1 Real-time formulation

Real-time QFT evolves a system in a mixed initial state (𝜌) in Minkowski
time. The expectation value of an observable O is defined as ⟨O⟩ =

Tr[𝜌O]. To study such a system, we use the Schwinger-Keldysh closed
time-path formalism, which formulates the system’s time evolution in
terms of two contour paths. This can be derived by the insertion of
a complete set of field states in the forward path (𝜙+) and the same
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for the backward branch (𝜙−), such that the trace is written as an inte-
gral [34]

⟨O(𝜙)⟩ = 1
𝑍

∫
𝑑𝜙1𝑑𝜙2 𝜌(𝜙1, 𝜙2)

∫ 𝜙1

𝜙2

𝐷𝜙+𝐷𝜙− O(𝜙) 𝑒𝑖𝑆[𝜙+]−𝑖𝑆[𝜙−] .

(1.1)
The initial density matrix 𝜌 connects to the starting point 𝜙1 and endpoint
𝜙2 of the closed-time contour.

In the thermal equilibrium setting with inverse temperature 𝛽 = 1/𝑇 , the
density matrix 𝜌 takes the form of the standard Boltzmann weight 𝜌 =

exp[−𝛽𝐻] [33]. By identifying this with the Eucledian time evolution
operator in compactified imaginary time with time length −𝑖𝛽, we can
rewrite the initial density matrix 𝜌 in terms of 𝑆𝐸

⟨O(𝜙)⟩ = 1
𝑍

∫
𝐷𝜙𝐸𝑒

−𝑆𝐸 [𝜙𝐸 ]
∫ 𝜙𝐸 (0)

𝜙𝐸 (𝛽)
𝐷𝜙+𝐷𝜙− O(𝜙) 𝑒𝑖𝑆[𝜙+]−𝑖𝑆[𝜙−] .

(1.2)
We see that for a time contour with a real-time extent of zero, i.e., only
sampling from the initial density matrix, we recover the usual Euclidean
simulation, defined in the next section. This is why we have noted the
action inserted from the density matrix as 𝑆𝐸 . We can combine the actions
into 𝑖𝑆[𝜙] = 𝑖𝑆[𝜙+] − 𝑖𝑆[𝜙−] − 𝑆𝐸 [𝜙𝐸 ], such that the path integral can
be written in the concise notation

⟨O(𝜙)⟩ = 1
𝑍

∫
𝐷𝜙 O(𝜙)𝑒𝑖𝑆[𝜙] , (1.3)

where the integration contour is part of the action.

1.2.2 Euclidean quantum field theory

It is not generally possible to directly treat numerically the path integral
defined in the previous section (eq. (1.3)). This is normally circumvented
by doing a Wick rotation from Minkiowski time to Eucledian time, which
is a continuation from 𝑡 to 𝑖𝜏, where 𝜏 is the Euclidean time. The resulting
expression for the path integral of an observable O is in the Eucledian
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formalism

⟨O(𝜙)⟩ = 1
𝑍

∫
𝐷𝜙 O(𝜙)𝑒−𝑆𝐸 [𝜙] , 𝑆𝐸 [𝜙] =

∫ 𝛽

0
𝑑𝜏𝐿𝐸 [𝜙] (1.4)

which now creates exponential damping in the Boltzmann weight instead
of the highly oscillating complex weight. The Eucledian time is compact,
restricted to the compact interval 𝜏 ∈ [0, 𝛽], such that 𝜙(0) = 𝜙(𝛽). The
trace in the partition function demands this periodicity. We can compute
static thermodynamical quantities using the Euclidean path integral, but
it does not give access to dynamical quantities. In the view of eq. (1.2),
we can think of it as the initial condition of a thermal system, where the
dynamics of the system are described in the path integral over the 𝜙+ and
𝜙− states.

1.2.3 Monte-Carlo simulations

Monte Carlo simulations represent a powerful and versatile method to
explore non-perturbative systems numerically and are notably employed
in lattice field theory in Euclidean time. The lattice field theory for-
mulation discretizes spacetime into a lattice, effectively transforming the
continuous infinite-sized spacetime of quantum field theory into a finite,
computationally tractable system. The challenge is to compute the path
integral over all allowed field configurations on the lattice, which is where
Monte Carlo simulations come in.

Monte-Carlo integration is a way of numerically computing integrals
by stochastically evaluating the integrand. In lattice field theory, this
method is applied to the path integral. Even though we could sample the
field variables uniformly, this leads to a highly inefficient sampling, as
most field configurations contribute only a small part to the total integral.
The idea of importance sampling solves this problem by sampling the
configurations weighted according to the value of the Boltzmann weight;
𝑒−𝑆𝐸 , i.e., the higher the value of the Boltzmann weight, the more of
the corresponding configuration should appear in the ensemble. Two
examples of implementations of importance sampling are the Metropolis
algorithm [35] and the Hybrid Monte-Carlo (HMC) [36] method.
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Given that we have sampled 𝑁 configurations 𝜙𝑖, distributed according
to the Boltzmann weight, observables can be estimated by the sample
expectation value of the configurations, i.e.,

⟨O⟩ = 1
𝑁

𝑁∑︁
𝑖

O(𝜙𝑖). (1.5)

Here we have denoted each configuration by 𝜙𝑖, where 𝑖 denotes the
configuration number. Even though expectation value notation is used,
this is only an estimated expectation value. The statistical error of the
estimated expectation value can be estimated by

𝜎O =

√√√
1

𝑁 (𝑁 − 1)

𝑁∑︁
𝑖

(O(𝜙𝑖) − ⟨O⟩)2 (1.6)

where we have assumed the configurations to be independent. For cor-
related configurations, which is the case for most importance sampling
algorithms, if the configurations are sampled at every update, the auto-
correlation must be calculated and then add a correction factor to 𝑁 in
the equation above.

1.2.4 Sign problem

The most common way to numerically solve the path integral with a
real Feynman weight is to use Monte-Carlo sampling, as described in
the previous section. On the other hand, the distribution is highly oscil-
latory for a complex Feynman weight exp[𝑖𝑆], such as in the real-time
scenario section 1.2.1. To obtain an accurate result using importance sam-
pling, cancellation of contributions of the same order of magnitude must
be taken care of [11, 12]. This also includes the contributions from the
exponentially suppressed tails, which becomes equally important. This
means that the amount of sampling necessary to obtain an accurate result
increases exponentially. This prohibits the use of Monte-Carlo methods
for problems with even a small sign problem [11, 12].

For example, we can investigate a simple model given by the partition
function 𝑍 =

∫
𝑑𝑥 exp[−𝑥2+𝑖_𝑥], a Gaussian with an additional complex
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Figure 1.1: (left) Distribution of the Feynman weight 𝑧(𝑥) = 𝑒−𝑥
2+𝑖_𝑥 for

_ = 10, showing the real and imaginary part, including the absolute value
which yields a Gaussian distribution with mean 0 and unit variance. (right)
The average phase ⟨𝑒𝑖_𝑥⟩Re𝑆 with changing _.

phase. This is an instructive example, as discussed in ref. [37], which
shows the oscillatory behavior of a complex-valued Feynman weight. In
fig. 1.1, we show the integrand for _ = 0, i.e., the real case, and _ = 10.
We see that both Re𝑧(𝑥) and Im𝑧(𝑥) oscillate heavily, which means that
to obtain a convergent expectation value we need precise cancelations
between the negative and positive parts.

To quantify this behavior, we need to calculate the average phase, which
is given by

∫
𝑑𝑥O𝑒𝑆∫
𝑑𝑥 |𝑒𝑆 | =

𝑍 (_)
𝑍 (0) = ⟨𝑒𝑖_𝑥⟩Re𝑆, where we have used that |𝑒𝑖_𝑥 | = 1.

For this simple model, we can obtain the average phase analytically by
integrating it; this is given by 𝑒−_2/4 [37]. We see that large cancellations
between the positive and negative parts of the integrand are needed for the
expectation value to converge correctly, this requires a large amount of
sampled configurations to get the statistic error smaller than the average
phase. For a small _, reweighting is possible

⟨O⟩𝑆 =
∫
𝑑𝑥O(𝑥)𝑒−𝑥2+𝑖_𝑥∫
𝑑𝑥𝑒−𝑥2+𝑖_𝑥

=

∫
𝑑𝑥 O(𝑥) 𝑒−𝑥

2+𝑖_𝑥

𝑒−𝑥2 𝑒−𝑥
2∫

𝑑𝑥 𝑒−𝑥2+𝑖_𝑥

𝑒−𝑥2 𝑒−𝑥2
=

⟨O𝑒𝑖_𝑥⟩Re𝑆

⟨𝑒𝑖_𝑥⟩Re𝑆

(1.7)
where the denominator becomes the average phase. For _ close to zero,
using the reweighting method eq. (1.7) is possible as the amount of
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Figure 1.2: (Left) Using the reweighting method (eq. (1.7)) to calculate the
⟨𝑥2⟩ observable for an increasing _, shows as the colored data points. The
method fails for a _ around 3.5. The black and gray lines show the solution
to the integral using a numerical quadrature integration; this is done using
the Gauss-Konrad quadrature (QuadGK). (Right) Solving the same problem
on the left using the complex Langevin equation (CLE). This method has no
problems with the increasingly complex phase of this system.

statistics required for the expectation values to converge is with stan-
dard Monte-Carlo sampling of the real part of the action. The average
phase becomes too small for _ ≫ 1. Hence we need a large amount of
configurations to resolve the expectation value of the observable.

In the left panel of fig. 1.2, we have plotted the result of the reweighting
technique using the HMC importance sampling scheme. We see that
when we get close to _ = 4, which corresponds to an average phase of
⟨𝑒𝑖_𝑥⟩Re𝑆 ∼ 0.1 in fig. 1.1, the errorbars increase due to lack of statistics,
and after _ = 5.0 we are unable to get any useful information out of
the configurations. To obtain a reliable result for _ > 5.0, we need to
sample exponentially many configurations for increasing _. This makes it
infeasible to use Monte-Carlo simulation in combination with reweighting
when the average phase becomes small.

As a precursor of the next chapter, we also demonstrate how the complex
Langevin behaves for this problem; this is shown in the right panel of
fig. 1.2. The complex Langevin method has no problem with this added
phase in the Gaussian Feynman weight. Details on the method will be
discussed in the next chapter.
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1.3 Contribution of this thesis

This thesis focuses on real-time simulation using the complex Langevin
method. The goal has been to stabilize and correct the convergence
problem of the complex Langevin equation, with a focus on the application
to real-time simulation. The main contribution of this thesis can be
summarised in the following points,

• Implementation of an implicit scheme to solve the real-time complex
Langevin equation, part of [38] and content of chapter 4.

– Understanding how an implicit scheme effectively introduces
a regulator in the real-time action

– Simulating, for the first time, the anharmonic oscillator directly
on the canonical real-time contour up to a short real-time with
a perfect agreement with the Schrödinger solution both for a
thermal action and a non-equilibrium action.

• Extending the original correctness criterion [39] to the kernel-
controlled complex Langevin (KCLE) and comparing KCLE to the
Lefschetz Thimbles. This is the main part of chapter 5, which is
published in the appendix of [31], and also the main content of the
proceeding [40].

– Boundary terms are calculated for different toy models using
different kernels. We obtain zero boundary terms for some
positive definite kernels while the complex Langevin equation
converges incorrectly.

• Application and optimization of a kernel-controlled complex Langevin
equation in the context of real-time simulations. This is the main
content of [31], which is discussed in chapter 6. Part of this work
is also published in the proceeding [41].

– First simulation of the anharmonic oscillator free theory at ar-
bitrary real-time extent using a kernel in the complex Langevin
equation.

11
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– I have shown analytically for a simple toy model and numeri-
cally for larger systems that a kernel in the complex Langevin
equation can effectively introduce a regulator in real-time ac-
tions.

– Introduced a machine learning-inspired scheme to optimize a
kernel in the complex Langevin equations to recover correct
convergence.

– Introduced a low-cost loss function that can be used to find a
suitable kernel. It allowed us to extend the range of reliabil-
ity three times the previously feasible real-time extent of the
anharmonic oscillator.

The remaining part of this thesis is unpublished and work in progress
related to applying adjoint sensitivity methods to optimize kernels of the
complex Langevin equation.

• Introduced and applied the adjoint sensitivity method to the complex
Langevin equation, using a simple toy model as an example. This
can be found in section 3.3.

• I show that the complex Langevin dynamics for real-time systems
behave chaotically for real-time extent above the point where the
complex Langevin starts to converge to the wrong solution. This is
the first part of chapter 7.

• I have obtained a reliable gradient of the stochastic Lorenz system
using the NILSAS scheme, which has not been achieved before, to
my knowledge. This is the first step in obtaining a reliable adjoint
sensitivity method for the KCLE. This is the last part of chapter 7.

1.4 Outline of thesis

The thesis is structured as follows; In chapter 2, the stochastic quan-
tization and the complex Langevin method are introduced along with
kernel-controlled complex Langevin. Chapter 3 delves into differential
programming concepts, highlighting the adjoint sensitivity method and

12
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presenting a use case with the complex Langevin equation of a simple toy
model.

Chapter 4 explores the application of implicit solvers for numerically solv-
ing the complex Langevin. This chapter demonstrates how the implicit
scheme can achieve unconditionally stable real-time simulation. In chap-
ter 5, the correctness criterion for the complex Langevin equation with a
kernel is derived, and connections to Lefschitz thimbles are made.

The content of chapter 6, introduces a novel scheme for optimizing ker-
nels, and a low-cost method for addressing the real-time problem is de-
veloped. This chapter also investigates the use of a kernel as a regulator
for the real-time complex Langevin equation.

Lastly, chapter 7 discusses the limitations of the standard adjoint sensitiv-
ity method for the real-time complex Langevin method. It then explores a
possible way to obtain a reliable gradient for the complex Langevin, which
can be used in the optimization scheme presented in chapter 6.

In the appendices, I have included a discussion and example of implicit
solvers for the complex Langevin applied to Gauge theories (appendix A),
and in chapter D an example of the use of non-linear adjoint sensitivity
method is applied to a Bayesian spectral reconstruction inference problem
using a Generalized Thikonov regulator.
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2 The Langevin Framework

Quantum expectation values in Eucledian QFT can be expressed by Feyn-
man path integral

⟨𝑂 (𝜙)⟩ = 1
𝑍

∫
𝐷𝜙 𝑂 (𝜙) 𝑒−𝑆(𝜙) , (2.1)

where 𝑍 =
∫
𝐷𝜙 𝑒−𝑆(𝜙) is the partion funciton. In Stochastic Quanti-

zation, we consider the path integral measure 1
𝑍
𝑒−𝑆(𝜙) as a probability

distribution and construct a stochastic process with this distribution as its
stationary distribution. This is similar to obtaining the Boltzmann distri-
bution from the stochastic process of a Brownian particle from statistical
physics. The path integral can be formulated in terms of a stochastic vari-
able 𝜙, which was proposed by Parisi and Wu [22] to evolve in a fictitious
time 𝜏L, which we shall refer to as Langevin time. The degrees of freedom
in the system, therefore, depend on this additional time dimension such
that

𝜙(𝑥) → 𝜙(𝑥, 𝜏L). (2.2)

where 𝑥 donates a vector in n-dimensional Euclidean space. Note that
the Langevin time 𝜏L should not be confused by the Eucledian time. The
fields evolve in Langevin time via the Langevin equation

𝜕𝜙(𝑥, 𝜏L)
𝜕𝜏L

= − 𝛿𝑆(𝑥)
𝛿𝜙(𝑥, 𝜏L)

+ [(𝑥, 𝜏L) (2.3)

with the stochastic noise term following a Gaussian distribution;

⟨[(𝑥, 𝜏L)⟩ = 0, ⟨[(𝑥, 𝜏L)[(𝑥, 𝜏′L)⟩ = 2𝛿𝑛 (𝑥 − 𝑥′)𝛿(𝜏L − 𝜏′L). (2.4)

At this point, it is instructive to write the Langevin equation as a math-
ematically well-defined stochastic differential equation1. We rewrite the
integral as a stochastic integral in either Ito or Stratonovich form. A
stochastic integral is an extension of the standard integral and is defined

1[ is non-differentiable, hence eq. (2.3) is not a well-defined equation as it contains a derivative
of the stochastic process
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as the limit of a sum of random variables multiplied by the corresponding
Wiener increments 𝑑𝑊 . This is defined as the difference between two
Wiener processes with an infinitesimal time change. A Wiener process
𝑊 (𝜏) =

∫
[(𝜏)𝑑𝜏 can be defined via ⟨𝑊 (𝜏L)⟩ and ⟨𝑊 (𝜏L)2⟩ = 𝑡, with

independent increments that are normally distributed with zero mean
and a variance of 𝑑𝜏L, i.e., 𝑊 (𝜏L + 𝑑𝜏L) − 𝑊 (𝜏L) ∼ N (0, 𝑑𝜏L). The
forward Wiener process difference gives Ito’s version of the stochastic
integral∫

𝑓 (𝜏L) 𝑑𝑊 (𝜏L) = lim
𝑛→∞

𝑛−1∑︁
𝑖=0

𝑓 (𝜏𝑖L) (𝑊 (𝜏𝑖+1
L ) −𝑊 (𝜏𝑖L)) (2.5)

while the Stratonovich version is given by evaluating 𝑓 (𝜏L) at the midpoint
in each subinterval. As the noise term in the stochastic process (eq. (2.3))
does not depend on the Langevin time 𝜏L or the field 𝜙, the two flavors
of the stochastic integral are equivalent. Equation (2.3) is now expressed
as

𝑑𝜙(𝑥, 𝜏L) = − 𝛿𝑆

𝛿𝜙(𝑥, 𝜏L)
𝑑𝜏L + 𝑑𝑊 (𝑥, 𝜏L) (2.6)

where 𝑑𝑊 is called a Wiener increments following

⟨𝑑𝑊 (𝑥, 𝜏L)⟩ = 0, ⟨𝑑𝑊 (𝑥, 𝜏L)𝑑𝑊 (𝑥′, 𝜏L)⟩ = 2𝛿(𝑥 − 𝑥′)𝑑𝜏L. (2.7)

To show that we obtain the correct unique stationary distribution, i.e.,
exp[−𝑆], we need to find the equation describing the evolution of the
probability distribution 𝑃(𝜙, 𝜏L). This equation is called the Fokker-
Planck equation. The stationary distribution should, by definition, then
be proportional to exp[−𝑆], i.e., lim𝜏L→∞ 𝑃[𝜙, 𝜏L] ∼ exp[−𝑆]. In the
following, we will follow closely [42] while simplifying the notation,
where possible, such that 𝜙 = 𝜙(𝑥, 𝜏L).

The evolution equation of the distribution 𝑃[𝜙, 𝜏L] can be derived by
investigating the change in an observable due to a change in the Langevin
time 𝜏L. The expectation value of an observable can be calculated from
the distribution 𝑃 by

⟨O(𝜙, 𝜏L)⟩ =
∫

𝐷𝜙𝑃[𝜙, 𝜏L]O(𝜙, 𝜏L), (2.8)
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and the change is then given by

𝑑⟨O(𝜙⟩
𝑑𝜏L

=

∫
𝐷𝜙

𝑑𝑃[𝜙, 𝜏L]
𝑑𝜏L

O(𝜙). (2.9)

Note that the observable is assumed to not depend explicitly on the Lagen-
vin time. We must establish an expression for 𝑑𝑃

𝑑𝜏L
to obtain the Fokker-

Planck equation. This can be achieved by deriving the expression for the
Langevin time derivative of the observable in an alternative way, using
the definition of the Langevin equation. To this end, we expand

𝑑O(𝜙) = 𝛿O(𝜙)
𝛿𝜙

𝑑𝜙 + 1
2
𝛿2O(𝜙)
𝛿𝜙2 𝑑𝜙2 (2.10)

where we have truncated the expansion at 𝑑𝜙2 since 𝑑𝜙2 ≈ 𝑑𝑊2 = 2𝑑𝜏L.
Higher orders will, at most, be proportional to 𝑑𝜏

3/2
L , which can be

neglected if we treat 𝑑𝜏L as infinitesimal. Using eq. (2.6), we can write
the expectation value as

⟨𝑑O(𝜙)⟩ =
〈
−𝛿O(𝜙)

𝛿𝜙

𝛿𝑆

𝛿𝜙
+ 𝛿

2O(𝜙)
𝛿𝜙2

〉
𝑑𝜏L. (2.11)

Now the change in the expectation value of the observable in an infinites-
imal Langevin time interval (𝑑𝜏L) is given by

𝑑 ⟨O(𝜙)⟩
𝑑𝑡

=

〈
−𝛿O(𝜙)

𝛿𝜙

𝛿𝑆

𝛿𝜙
+ 𝛿

2O(𝜙)
𝛿𝜙2

〉
= ⟨𝐿𝑟O⟩. (2.12)

where we have defined the Langevin operator 𝐿𝑟 =
∫
𝑑𝑛𝑥

(
𝛿
𝛿𝜙

− 𝛿𝑆[𝜙]
𝛿𝜙

)
𝛿
𝛿𝜙

.
Rewriting the above expression as an integral over the field degree
of freedoms, using eq. (2.8), and the probability distribution 𝑃[𝜙, 𝜏L]
yields

𝑑 ⟨O(𝜙)⟩
𝑑𝜏L

=

∫
𝐷𝜙

[
−𝛿O(𝜙)

𝛿𝜙

𝛿𝑆[𝜙]
𝛿𝜙

+ 𝛿
2O(𝜙)
𝛿𝜙2

]
𝑃[𝜙, 𝜏L]

=

∫
𝐷𝜙 O(𝜙)

[
𝛿

𝛿𝜙

𝛿𝑆[𝜙]
𝛿𝜙

+ 𝛿2

𝛿𝜙2

]
𝑃[𝜙, 𝜏L] .

(2.13)
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In the second equation, we have used integration by parts, assuming the
probability distribution to vanish at the boundaries. This is an impor-
tant step that plays a critical role in our understanding of the validity,
and we will return to it when discussing the validity of the complex
Langevin.

We can now read off the Fokker-Planck equation by comparing the equa-
tion above to eq. (2.9). Hence the Fokker-Planck equation is given
by

𝑑𝑃[𝜙, 𝜏L]
𝑑𝜏L

=

∫
𝑑𝑛𝑥

𝛿

𝛿𝜙

[
𝛿

𝛿𝜙
+ 𝛿𝑆[𝜙]

𝛿𝜙

]
𝑃[𝜙, 𝜏L] = 𝐿𝑇𝑃[𝜙, 𝜏L] . (2.14)

The Fokker-Planck operator, 𝐿𝑇 , is the formal adjoint operator to the
Langevin operator 𝐿𝑟 . At this point, we will discretize the action, going
from an infinite-dimensional Fokker-Planck equation (infinite due to the
integral over all space-time 𝑥) to a discrete space-time noted by 𝑥𝑖. This
replaces the integral in eq. (2.14) to a sum, partial derivatives replace
the functional derivatives, and the fields are written as 𝜙(𝑥𝑖) = 𝜙𝑖. The
action-discretized Fokker-Planck equation is now written as

𝑑𝑃[𝜙, 𝜏L]
𝑑𝜏L

=
∑︁
𝑖

Δ𝑥
𝜕

𝜕𝜙𝑖

[
𝜕

𝜕𝜙𝑖
+ 𝜕𝑆[𝜙]

𝜕𝜙𝑖

]
𝑃[𝜙, 𝜏L] = 𝐿𝑇𝑃[𝜙, 𝜏L],

(2.15)
where we note that we have not discretized the Langevin time.

We can see directly from the evolution equation above that the stationary
distribution, which follows from 𝑑𝑃

𝑑𝑡
= 0, is satisfied if[

𝜕

𝜕𝜙
+ 𝜕𝑆
𝜕𝜙

]
𝑃[𝜙, 𝜏L] = 0 (2.16)

which is true for 𝑃(𝜙, 𝜏L) = exp[−𝑆]. We can show that this stationary
distribution is unique by performing a similarity transform

�̃�[𝜙, 𝜏L] = 𝑒𝑆[𝜙]/2𝑃[𝜙, 𝜏L] (2.17)
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such that the Fokker-Planck (FP) operator is transformed into a self-
adjoint and positive semi-definite operator

�̃�𝑇 = 𝑒𝑆[𝜙]/2𝐿𝑇𝑒−𝑆[𝜙]/2 =
∑︁
𝑖

(
𝜕

𝜕𝜙𝑖
− 1

2
𝜕𝑆[𝜙]
𝜕𝜙𝑖

) (
𝜕

𝜕𝜙𝑖
+ 1

2
𝜕𝑆[𝜙]
𝜕𝜙𝑖

)
.

(2.18)
We can now see that the modified FP operator has a unique ground state
𝜓0 = 𝑒−𝑆[𝜙]/2, and since it is negative semi-definite, all the eigenvalues,
except for the zero mode, are negative. This can be seen by multiplying
out the parentheses, obtaining two terms; a second derivative operator
𝜕2

𝜕𝜙2 which is negative semi-definite, and −1
4

(
𝜕𝑆[𝜙]
𝜕𝜙

)2
which is negative

definite. By expanding the distribution �̃� in the complete set of eigen-
functions, we get

�̃�[𝜙, 𝜏L] = 𝑎0𝑒
−𝑆[𝜙]/2 +

∞∑︁
𝑛=1

𝑎𝑛𝜓𝑛𝑒
_𝑛𝜏L . (2.19)

In the limit 𝜏L → ∞, the stationary distribution 𝑎0𝑒
−𝑆[𝜙]/2 is ensured

due to the exponential decay of the non-stationary contributions. By a
similarity transform back again, we obtain

lim
𝜏L→∞

𝑃[𝜙, 𝜏L] ∼ 𝑒−𝑆[𝜙] (2.20)

which is the desired stationary distribution, i.e., the Boltzmann weight.

This means that since the Langevin process converges towards the distri-
bution of the Fokker-Planck equation, expectation values of an observable
O can be obtained by the integral

⟨O⟩ = lim
𝑇→∞

1
𝑇

∫ 𝑇

0
𝑑𝜏LO(𝜙(𝜏L)). (2.21)

The field 𝜙(𝜏) is the solution to the Langevin equation. In practice,
the Langevin equation needs to be solved numerically. This means that
we must discretize the Langevin time 𝜏L → Δ𝜏L, which also discretize
the Wiener increments 𝑑𝑊 → Δ𝑊 such that Δ𝑊 ∼ N(0,Δ𝜏L). The
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calculation of observables is now changed from an integral to a sum over
measurements 𝜙(𝜏𝑖L) along Langevin time

⟨O⟩ ≈ 1
𝑁

𝑁∑︁
𝑖

Δ𝜏LO(𝜙(𝜏𝑖L)), (2.22)

which, due to discretization and finite simulation time 𝑇 , is an approxi-
mation of the observable. Details on how to solve the Langevin equation
numerically will be discussed in detail in chapter 4.

As discussed in this section for a real action, the Langevin equation
is a mathematically well-defined method to sample configurations from
the distribution exp(−𝑆), with 𝑆 ∈ R. However, in this thesis, we are
interested in sampling exp(𝑆′) from a distribution where 𝑆′ ∈ C. This is
the topic of the following sections.

2.1 Complex Langevin

We now consider the Feynman weight of real-time QFT in eq. (2.1),
which amounts to a complex-valued expression, and note the exponent
by 𝑖𝑆 ∈ C, where the action 𝑆 can also be complex-valued. The Feynman
path integral is now written as

⟨𝑂⟩ = 1
𝑍

∫
𝐷𝜙 𝑂 [𝜙]𝑒𝑖𝑆[𝜙] (2.23)

where 𝑍 =
∫
D𝜙 exp[𝑖𝑆[𝜙]] denotes the partition function. The dis-

tribution 𝑒𝑖𝑆 is now complex, while the fields 𝜙 are still real quantities.
Parisi [43] and Klauder [44], propose to write the complex Langevin,
which is eq. (2.6) applied to a complex action 𝑖𝑆, as follows

𝑑𝜙 = 𝑖
𝛿𝑆[𝜙]
𝛿𝜙(𝑥) 𝑑𝑡 + 𝑑𝑊 (𝑥) (2.24)

where 𝑑𝑊 is the real Wiener increments from eq. (2.7). The field 𝜙

obtains an imaginary component during the evolution and is therefore
complexified. We can rewrite the evolution equations instead in terms of
the real and imaginary part of the field as

𝜙(𝑥, 𝜏L) = 𝜙𝑅 (𝑥, 𝜏L) + 𝑖𝜙𝐼 (𝑥, 𝜏L), (2.25)
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such that eq. (2.24) turns into two coupled but real-valued equations for
the real- and imaginary part of the field

𝑑𝜙𝑅 = Re

[
𝑖
𝛿𝑆[𝜙]
𝛿𝜙(𝑥)

����
𝜙=𝜙𝑅+𝑖𝜙𝐼

]
𝑑𝜏L + 𝑑𝑊 (𝑥),

𝑑𝜙𝐼 = Im

[
𝑖
𝛿𝑆[𝜙]
𝛿𝜙(𝑥)

����
𝜙=𝜙𝑅+𝑖𝜙𝐼

]
𝑑𝜏L.

(2.26)

We have used the standard construction where the noise term 𝑑𝑊 (𝑥) is
real. There is, however, freedom in the Fokker-Planck equation to rotate
the noise into the complex plane, but this is not discussed in this thesis2;
see, e.g., [45] for more details.

After complexifying the fields and separating the real and imaginary parts
of the evolution, the distribution we are sampling from is now a real and
positive density 𝑃[𝜙𝑅, 𝜙𝐼 , 𝜏L]. It is not a priori known whether this is
equivalent to the complex distribution we expect, and hence we need to
show that lim𝜏L→∞ 𝑃[𝜙𝑅, 𝜙𝐼 , 𝜏L] is equivalent to 𝑒𝑖𝑆.

The corresponing Fokker-Planck equation for the complex Langevin
equation (eq. (2.26)) evolves a real and positive probability density
𝑃[𝜙𝑅, 𝜙𝐼 , 𝜏L] according to

𝜕𝑃[𝜙𝑅, 𝜙𝐼 , 𝜏L]
𝜕𝜏L

= 𝐿𝑇𝑃[𝜙𝑅, 𝜙𝐼 , 𝜏L] (2.27)

where the Fokker-Planck operator 𝐿𝑇 is given by

𝐿𝑇 =
𝜕

𝜕𝜙𝑅

[
𝜕

𝜕𝜙𝑅
− Re

{
𝑖
𝜕𝑆[𝜙]
𝜕𝜙

}]
− 𝜕

𝜕𝜙𝐼
Im

{
𝑖
𝜕𝑆[𝜙]
𝜕𝜙

}
. (2.28)

This can be derived in the same way as in the real-Langevin case by
considering the real and imaginary parts of the fields, in the complex
Langevin, as two separate dimensions, such that the total number of
dimensions is twice that as of the real-Langevin case. However, fol-
lowing the same steps as we did for the real-Langevin when attempting

2This freedom is different from the one we will use to insert a kernel in later sections. Inserting
a complex noise does not alter the drift term.
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to prove the desired stationary distribution, we end up with a Fokker-
Planck operator that is neither Hermitian nor positive semi-definite such
that the proof of convergence is spoiled. To show the convergence of
complex Langevin, we need to compare this Fokker-Planck equation to
the complex Fokker-Planck equation evolving the complex distribution
𝜌(𝜙, 𝜏L);

𝜕𝜌[𝜙, 𝜏L]
𝜕𝜏L

= 𝐹𝐹𝑃𝜌[𝜙, 𝜏L], 𝐹𝐹𝑃 =
𝜕

𝜕𝜙

[
𝜕

𝜕𝜙
− 𝑖 𝜕𝑆[𝜙]

𝜕𝜙

]
(2.29)

where 𝐹𝐹𝑃 is called the complex Fokker-Planck operator.

To prove that the stationary distribution of the complex Fokker-Planck
equation is indeed 𝑒𝑖𝑆, we again perform a similarity transform of both
distribution and operator (as in eqs. (2.17) and (2.18)). We used the
modified Fokker-Planck operator in the real action scenario to show that
the stationary distribution is 𝑒−𝑆. However, this is not generally the
case in the complex Langevin, as the complex Fokker-Planck operator
suffers from being non-Hermitian and, in some cases, even a non-normal
operator. Klauder and Peterson [46] noted a shortage of theorems that
address unbounded, non-normal operators that can be utilized to support
statements of this nature. This statement is still true today.

2.2 Challenges

Now that we understand the complex Langevin framework, I will discuss
the challenges facing the method. These challenges can be broadly clas-
sified into mathematical foundations and practical issues. The practical
aspect encompasses two main problems, namely runaway solutions and
convergence to incorrect solutions, which will be examined thoroughly
in this thesis. On the other hand, the mathematical foundation requires a
formal proof that the Fokker-Planck operators (𝐹𝐹𝑃, 𝐿𝑇 ) and the Langevin
operator (𝐿) generate a unique stationary distribution [47, 48]. This thesis
concentrates on resolving the practical challenges mentioned above.

The first challenge is the instability problem, commonly known as run-
away solutions, which was observed early in applying the Complex
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Langevin method [49, 50]. These instabilities manifest as diverging
trajectories from overshooting during large excursions from stable points.
In some models, the drift term’s streamlined plot reveals paths leading
to infinity within a finite time[51, 52]. Although the noise term should
prevent such trajectories, the drift term can sometimes dominate, such
that 𝜕𝑆

𝜕𝜙
Δ ≫ Δ𝑊 , rendering the theory close to being deterministic. This

dominance can lead to numerical instabilities, causing runaway solu-
tions. Initial attempts to mitigate this issue involved reducing the step
size; however, this approach was computationally expensive and generally
ineffective.

These runaway trajectories should be distinguished from divergent trajec-
tories formed in models where the path integral itself is diverging. Models
like this need an inherent regulator in both the path integral and the com-
plex Langevin equation. We can say the stochastic differential equation
is ill-defined for such problems without a regulator, as the divergent tra-
jectories do not occur due to numerical instabilities. For well-defined
problems, the appearance of runaway trajectories is caused by numerical
instabilities. These systems are often called stiff systems.

With the introduction of adaptive step-size schemes [52], the issue of
runaway trajectories was overcome for a wide range of problems. This
scheme adjusts the step size during the simulation, decreasing it when
the drift term is large and increasing it when it is small. Alternatively, an
implicit scheme can be employed to address instability issues [38], which
will be the primary focus of chapter 4. For this scheme, an adaptive step-
size scheme is unnecessary to prevent runaway trajectories, as the scheme
is stable for all step sizes. This is because of an inherent undershooting
of the true solution, which avoids divergent trajectories. Even though
the individual steps of the scheme are more costly, since a non-linear
equation must be solved at every step, the implicit scheme can, in cases
with highly stiff SDEs, be more efficient than the adaptive step size as it
does not require a small step size to avoid numerical instabilities.

The second challenge concerns the convergence to incorrect solutions.
This issue was identified early on [53] and led to a decline in interest in
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complex Langevin during the 1990s and early 2000s. The reasons for
convergence to the wrong solution are multifaceted. While it is tempting
to attribute its convergence failures to the lack of formal proof for the
method, there are examples where the complex Langevin converges cor-
rectly despite lacking formal justification [46]. Therefore, we separate the
problem of convergence from the mathematical proof and investigate why
convergence breaks down. The failure of convergence has been linked to
the following factors: the stationary distribution of complex Langevin not
being 𝑒𝑖𝑆 [54], the occurrence of "boundary terms at infinity [39, 55], and
ergodicity problems due to poles in the drift term [56]. We will discuss
the first two factors in greater detail below.

The failure of the following limit can characterize the first issue:

lim
𝜏L→∞

𝜌[𝜙, 𝜏L]
?∝ 𝑒𝑖𝑆 . (2.30)

To investigate the cause of this failure, we need to revisit the complex
Fokker-Planck equation, which evolves the complex-valued distribution
𝜌 in Langevin time. As discussed in section 2.1, the absence of formal
proof for the complex Fokker-Planck operator prevents us from deter-
mining when this relation generally breaks. However, we can assert that
if the Fokker-Planck operator admits a complete set of eigenfunctions,
then eq. (2.30) is fulfilled if all eigenvalues, except the zero mode (𝑒𝑖𝑆),
have negative real parts, for the same reasons as for real Langevin (see
chapter 5).

The other issue is the connection between the complex Fokker-Planck
equation evolving the complex distribution 𝜌(𝜙, 𝜏L) and the Fokker-
Planck equation evolving the real distribution 𝑃[𝜙𝑅, 𝜙𝐼 , 𝜏L]. This can
be summarized by needing to prove that

⟨O⟩𝜌 = ⟨O⟩𝑃 (2.31)

holds for some observable O, as first shown in [39]. This relation can be
proven for holomorphic observables as long as the action and drift terms
are also holomorphic.

24



The Langevin Framework

Let us introduce an interpolation function

𝐹 (𝑡, 𝜏) =
∫

D𝜙𝑅D𝜙𝐼𝑃[𝜙𝑅, 𝜙𝐼 , 𝑡 − 𝜏]O[𝜙𝑅 + 𝑖𝜙𝐼 , 𝜏] (2.32)

where O is a holomorphic observable, and 𝑡 and 𝜏 are two different
Langevin times with 0 ≤ 𝜏 ≤ 𝑡. This function interpolates between the
two observables we want to compare in 2.31. Examining 𝐹 (𝑡, 0), we
find

𝐹 (𝑡, 0) =
∫

D𝜙𝑅D𝜙𝐼𝑃[𝜙𝑅, 𝜙𝐼 , 𝑡]O[𝜙𝑅 + 𝑖𝜙𝐼 , 0] = ⟨O⟩𝑃 (2.33)

by comparing to eq. (2.8). To derive the left side of eq. (2.31), we consider
the following real initial condition for the distribution 𝑃:

𝑃[𝜙𝑅, 𝜙𝐼 , 0] = 𝜌[𝜙𝑅, 0]𝛿(𝜙𝐼). (2.34)

If the complex Langevin is ergodic, the dependence on the initial dis-
tribution 𝑃[𝜙𝑅, 𝜙𝐼 , 0] vanishes in the 𝑡 → ∞ limit [48]. Evaluating the
interpolation function at 𝑡 = 𝜏, we obtain

𝐹 (𝑡, 𝑡) =
∫

D𝜙𝑅D𝜙𝐼𝑃[𝜙𝑅, 𝜙𝐼 , 0]O[𝜙𝑅 + 𝑖𝜙𝐼 , 𝑡]

=

∫
D𝜙𝑅D𝜙𝐼𝜌[𝜙𝑅, 0]𝛿(𝜙𝐼 − 𝜙𝐼,0)O[𝜙𝑅 + 𝑖𝜙𝐼 , 𝑡]

=

∫
D𝜙𝑅𝜌[𝜙𝑅, 0]O[𝜙𝑅, 𝑡]

=

∫
D𝜙𝑅

(
𝑒𝑡𝐿𝜌[𝜙𝑅, 0]

)
O[𝜙𝑅, 0] = ⟨O⟩𝜌

(2.35)

where, in the last line, we used integration by parts and the evolution
equation of an observable O (see Ref. [57] for details). As long as the
function 𝐹 is constant in 𝜏, eq. (2.31) is satisfied. Hence, we need to
show that

𝜕

𝜕𝜏
𝐹 (𝑡, 𝜏) =

∫
D𝜙𝑅D𝜙𝐼 {𝑃(𝜙𝑅, 𝜙𝐼 ; 𝑡 − 𝜏)𝐿O[𝜙𝑅 + 𝑖𝜙𝐼 , 𝜏]

− (𝐿𝑇𝑃(𝜙𝑅, 𝜙𝐼 ; 𝑡 − 𝜏))O[𝜙𝑅 + 𝑖𝜙𝐼 , 𝜏]
}
= 0,

(2.36)
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which is true in case we can perform integration by parts on one of the
terms. This leads to the criterion that for eq. (2.31) to be true, the decay
of 𝑃[𝜙𝑅, 𝜙𝐼 , 𝑡−𝜏]O[𝜙𝑅+𝑖𝜙𝐼 , 𝜏] must be fast enough such that it vanishes
at the boundaries [57, 55].

To obtain a testable criterion, we will investigate 𝜕
𝜕𝜏
𝐹 (𝑡, 𝜏) at 𝜏 = 0,

which is a weaker condition than 𝑑
𝑑𝜏
𝐹 (𝑡, 𝜏) = 0, but as demonstrated in

[55], it is sufficient up to some technical conditions. The second term
in eq. (2.36) is zero, while the first comprises the so-called consistency
criterion [57, 55], if integration by parts is allowed, i.e.,

⟨𝐿O⟩ = 0 (2.37)

where 𝐿 is the Langevin operator. We denote the simulation to accumulate
boundary terms if this quantity is non-zero. The integration by parts
is spoiled if the simulation accumulates boundary terms. As shown
in ref. [55], an equivalent criterion without the weaker assumption of
testing only at 𝜏 = 0 can be made by testing if the drift term magnitude
distribution decays faster than any power law.

In practice, the ⟨𝐿O⟩ expectation value is too noisy to yield an accurate
result for many models. Instead, we use a cutoff Ω in the real and
imaginary directions to limit noise at points with a small amount of
statistics. For models on a compact manifold, such as gauge theories on
𝑆𝑈 (𝑁), only a cutoff in the imaginary direction is necessary since the
real remains compact. The boundary terms are now given by

𝐵1(Ω) =
𝜕

𝜕𝜏
𝐹 (Ω; 𝑡, 𝜏)

����
𝜏=0

= ⟨𝐿O⟩Ω (2.38)

where we compute multiple values of Ω, and then read off the plateau for
large Ω. We will discuss examples of such a computation in section 5.3.2,
where the boundary terms calculations of simple systems are carried
out.

We can now define the corectness criterion [57] as follows; There should
be no boundary terms, i.e., eq. (2.38) evaluates to 0 for large cutoff size, or
the distribution of the drift term magnitude decays faster than any power
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law [55]. Secondly, the stationary distribution of the Fokker-Planck must
be 𝑒𝑖𝑆, which amounts to the complex Fokker-Planck operator having
only one unique zero mode, and all the other eigenvalues being negative
such that lim𝜏L→∞ 𝑃[𝜙𝑅, 𝜙𝐼 , 𝜏L] ∝ 𝑒𝑖𝑆.

2.3 Progress on the convergence problem

Several methods have been proposed to tackle the problem of conver-
gence to the wrong solution, but none have solved the problem for all
models. Most of these methods have one thing in common; they rely on
constraining the complex Langevin evolution into a region close to the
original manifold, i.e., the non-complexified manifold. For Gauge theo-
ries like 𝑆𝑈 (𝑁), this will limit the evolution of the complexified fields
in the 𝑆𝐿 (𝑁,C) manifold to be close to 𝑆𝑈 (𝑁). This is related to the
correctness criterion, as this will limit the occurrence of boundary terms
at infinity, i.e., localize the distribution of the drift term magnitude.

The first method discussed here attempts to undo the accumulated bound-
ary terms aposteriori [58]. This can be done by first making an ansatz of
the form of the interpolation function 𝐹 (𝑡, 𝜏) (eq. (2.32)), which relates
it to the first and second order boundary term (𝐵1 and 𝐵2). Then by
evaluating the boundary terms, we can subtract the contribution from the
observable using

⟨O⟩ = ⟨O⟩CL −
𝐵2

2
𝐵1
. (2.39)

The 𝑛th order boundary term is given by the 𝑛th order 𝜏 derivative of
𝐹 (𝑡, 𝜏)(see eq. (2.38) for 𝐵1). Since this strategy relies on an accurate
calculation of the higher order boundary terms, which are inherently
costly due to the increasing statistics needed, the numerical cost will be
high [58]. It also relies on the ansatz of 𝐹 (𝑡, 𝜏) being an appropriate
ansatz.

In gauge theories, the Gauge colling method is necessary, but not always
sufficint, to obtain correct convergence, even for problems whith a small
imaginary contribution in the action. The method was first introduced
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in [59], then updated with an adaptive version in [60], and the mathemat-
ical justification of the method was strengthened in [61]. Gauge cooling
has been used successfully in several models [62, 63] and has been nec-
essary for all gauge theory CLE simulations. The idea of the method
is to carry out multiple gauge transformations of the field between the
Langevin time steps, evolving it toward the compact original manifold.
The method minimizes the unitarity norm, defined in 𝑆𝑈 (𝑁) by a trace of
the gauge link product; 1

𝑁
Tr(𝑈𝑈† − 𝐼). This reduces the unitarity norm

to be small and hence restricts the field d.o.f close to the compact original
manifold3.

For some models, Gauge cooling alone cannot keep the unitary norm
small. The method of Dynamical stabilization [64] has been developed
to make a stronger pull of the evolution towards the original compact
manifold. The method adds an additional drift term which points the evo-
lution toward a smaller unitary norm. This will also keep the simulation
close to the original (non-complexified) compact manifold. The change
in the drift is written as

𝜕𝑆[𝜙]
𝜕𝜙

→ 𝜕𝑆[𝜙]
𝜕𝜙

+ 𝑖𝛼DS𝑀 (2.40)

where𝛼DS is a tunable parameter of the method and 𝑖𝑀 points in the direc-
tion of the original manifold. A recent application of complex Langevin
with dynamical stabilization was carried out for QCD thermodynamics
with finite chemical potential [65]. Since the change to the drift is non-
holomorphic, we cannot apply the correctness criterion directly; hence a
mathematical justification of the method remains open. It can, however,
be shown that the additional term vanishes in the continuum limit.

A similar approach relies on introducing a harmonic oscillator trapping
potential to the action as a regulator to suppress terms far from the original
configuration space [66]. Since the method changes the action and the
theory we try to simulate, the additional potential term introduces a bias
in the simulation. To regain the original theory, we must extrapolate to the

3At the original (non-complexified) manifold, the unitarity norm is zero
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original theory by letting the correction term go to zero. A reweighting
method using a similar regulator was proposed in [67].

A typical example of regularization of the CLE is the U(1) one-link
model with the action 𝑆(𝑥) = 𝑖𝛽 cos(𝑥), which was used in [68]. The
regulated action is 𝑆(𝑥) = 𝑆(𝑥) + 1

2 𝑠𝑥
2, such that for 𝑠 > 0, the Langevin

evolution is trapped close to the origin due to the added potential. For
larger values of 𝑠, it can be shown that the complex Langevin equation
of the modified theory (𝑆) correctly converges. As discussed above, this
does not correspond to the same observable of the U(1) one-link model
action 𝑆, and hence we need to extrapolate [68] or reweight [67] back to
𝑠 = 0.

The problem with such methods is that it is not a complete solution. It
is often impossible to extrapolate back to 𝑠 = 0 as the regulator needs to
be very strong to obtain correct convergence. This is especially true in
strongly correlated systems.

A kernel-controlled Langevin can be introduced to modify the complex
Langevin equation without altering the action or breaking holomorphic-
ity. This exploits freedom in the Fokker-Planck equation, allowing us
to change the convergence behavior of the stochastic process and poten-
tially avoid the convergence to the wrong solution. A potential method
of obtaining a suitable kernel will be the main topic of chapter 6. We
will introduce the kernel-controlled Langevin equation in the next sec-
tion.

2.4 Kernelled complex Langevin

The last two methods, discussed in the previous section, were based on
a change in the drift term or the action. There is, however, a way to
change the complex Langevin without changing the action or spoiling
the holomorphicity. It can be achieved by exploiting freedom in the
Fokker-Planck equation. For real actions, we showed that the stationary
distribution of the Fokker-Planck equation was the desired path integral
measure of the Euclidean path integral. This Fokker-Planck equation is,
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however, not unique in having the desired stationary distribution 𝑒−𝑆. We
can summarize the possible modifications to the original Fokker-Planck
equation by inserting a field-dependent kernel 𝐾 (𝑥, 𝑥′, 𝜙, 𝜏L), which also
explicitly depends on the Langevin-time 𝜏L. In this section, I will in-
troduce the necessary concept of a kernel-controlled complex Langevin
equation.

The change in the Fokker-Planck operator for a real action (eq. (2.14))
following from a field-dependent kernel, independent of Langevin time4,
inserted as follows

𝑑𝑃[𝜙, 𝜏L]
𝑑𝜏L

=

∫
𝑑𝑥𝑑𝑥′

𝛿

𝛿𝜙(𝑥)𝐾 (𝑥, 𝑥′, 𝜙)
[

𝛿

𝛿𝜙(𝑥′) +
𝛿𝑆

𝛿𝜙(𝑥′)

]
𝑃[𝜙, 𝜏L] .

(2.41)
It can be easily verified that a similar derivation of the stationary distri-
bution holds after the insertion of the general kernel 𝐾 (𝑥, 𝑥′, 𝜙) without
modification to the arguments. As the kernel resides on the outside of
the parenthesis

(
𝛿

𝛿𝜙𝑖 (𝑥) +
𝛿𝑆𝐸 [𝜙]
𝛿𝜙𝑖 (𝑥)

)
, the stationary distribution remains un-

changed. In principle, the only criterion we have for the kernel is that
it is real-valued and factorizable. This means that we must be able to
write 𝐾 in terms of a matrix 𝐻 as 𝐾 = 𝐻𝑇𝐻, which guarantees 𝐾 to
be positive semi-definite. In that case, it does not change the negative
semi-definiteness of the modified Fokker-operator in eq. (2.18). In prac-
tice, the kernel will change the Fokker-Planck operator’s eigenvalues.
Hence the Langevin equation’s convergence properties, which can be ex-
ploited to improve the convergence properties of the theory, i.e., the time
it takes for the system to thermalize to a stationary distribution and the
autocorrelation time of the stochastic process, might be changed.

We will assume the action to be discretized to simplify the following
discussion. The integral kernel reduces to a matrix kernel in the following

4For a discussion of a kernel controlled Langevin kernel with a Langevin time dependent
kernel, see ref. [69]
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form5

𝑑𝑃[𝜙, 𝜏L]
𝑑𝜏L

=
∑︁
𝑖 𝑗

𝜕

𝜕𝜙𝑖
𝐾𝑖 𝑗 (𝜙)

[
𝜕

𝜕𝜙 𝑗
+ 𝜕𝑆[𝜙]

𝜕𝜙 𝑗

]
𝑃[𝜙, 𝜏L] . (2.42)

We can now see the kernel’s behavior; it mixes the field at different
positions on the specified lattice, which we indicated with the indices 𝑖
and 𝑗 . Remember that for the kernel to be factorizable, it also needs to
be positive semi-definite, hence, the diagonal elements must be strictly
positive.

The corresponding Langevin equation yields

𝑑𝜙𝑖 =
∑︁
𝑗

[
−𝐾𝑖 𝑗 (𝜙)

𝜕𝑆(𝜙)
𝜕𝜙 𝑗

+
𝜕𝐾𝑖 𝑗 (𝜙)
𝜕𝜙 𝑗

]
𝑑𝑡 +

∑︁
𝑗

𝐻𝑖 𝑗𝑑𝑊 𝑗 (2.43)

where 𝐻𝑖 𝑗 is given by the factorization of the kernel 𝐾𝑖𝑘 = 𝐻 𝑗𝑖𝐻 𝑗 𝑘 . We
see that we obtain an additional term in the Langevin equation given by
the derivative of the kernel. The term emerges due to the product rule
when applying the leftmost derivative in the Fokker-Planck operator to
the kernel and the objects inside the brackets in eq. (2.42).

The simplest example of a kernel is a constant diagonal one; 𝐾𝑖 𝑗 (𝜙) =

𝛾𝛿𝑖 𝑗 , where 𝛾 is a positive real number. Setting 𝛾 = 1 yields the standard
Langevin equation, while a 𝛾 ≠ 1 leads to a redefinition of the time incre-
ment 𝑑𝑡 → 𝛾𝑑𝑡. When discretizing the Langevin equation, introducing
such a kernel with 𝛾 ≠ 1 will change the Langevin step-size of the nu-
merical scheme since the drift term update is proportional to the step-size
Δ𝜏L, and the noise coefficient is proportional to

√
Δ𝜏L.

For the complex Langevin equation, we complexify the fields in the
same way as without the kernel, and hence the kernel-controlled complex
Langevin equation is given by

𝑑𝜙𝑖 =
∑︁
𝑗

[
𝐾𝑖 𝑗 (𝜙) 𝑖

𝜕𝑆(𝜙)
𝜕𝜙 𝑗

+
𝜕𝐾𝑖 𝑗 (𝜙)
𝜕𝜙 𝑗

]
𝑑𝑡 +

∑︁
𝑗

𝐻𝑖 𝑗 (𝜙)𝑑𝑊 𝑗 (2.44)

5See chapter 5 for a similar introduction without discretizing the field.
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where 𝜙𝑖, 𝐾𝑖 𝑗 (𝜙), 𝐻𝑖 𝑗 (𝜙) ∈ C and 𝑑𝑊𝑖 ∈ R. For the real Langevin
equation in eq. (2.43) the matrix kernel was chosen to be factorizable,
meaning 𝐾 = 𝐻𝑇𝐻 to regain a negative semi-definite modified Fokker-
Planck equation. For the case of complex Langevin, we do not have such
restriction, and hence we can choose 𝐻 to be given by the square root
of the kernel, i.e., 𝐾 = 𝐻2, not the transposed/hermitian factorization.
As we do not know apriori if the complex Fokker-Planck equation has
a positive sime-definite spectrum, constraining the choice of the kernel
to be positive definite might be too restrictive as a non-positive definite
kernel might be required to change the eigenvalues of a non-positive
semi-definite operator back into a positive semi-definite one.

As for the complex Langevin equation without a kernel, also in the case
with a kernel, we do not have a general proof of convergence for a general
action. However, as we will discuss in chapter 5 the correctness criterion
can easily be extended to the complex Langevin in the presence of a
kernel.

We introduced the kernel-controlled complex Langevin in this section as
a possible solution to the problem of convergence to the true solution.
The idea is to use the kernel to alter the Fokker-Planck eigenvalues and
limit the accumulation of boundary terms. There are two separate points
in the correctness criterion, namely that the stationary distribution of
𝜌[𝜙, 𝜏L] = 𝑒𝑖𝑆 and the connection between the complex Fokker-Planck
and the real-valued Fokker-Planck, i.e., ⟨O⟩𝜌 = ⟨O⟩𝑃, is true. In the early
investigation into applying a kernel to the complex Langevin to restore
converges by Okamoto et al. in [54, 70], the authors constructed the kernel
such that the eigenvalues of the modified Fokker-Planck equation, i.e.,
after the similarity transform, changed from positive to negative. Another
direction would be to limit boundary terms by effectively including a
push in a similar direction to the dynamical stabilization and regulator
term mentioned in the previous section. This idea will be discussed in
chapter 6.
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Many recent proposals for improved lattice field theory methods rely on
some form of optimization, e.g., training a neural network. Examples of
this are the integration contour optimization for the Thimbles method [24]
to reduce the sign problem and the normalizing flows method to avoid
the critical slowing down in Eucledian Monte-Carlo simulations [71].
Similar techniques have not yet been explored and tested out for the com-
plex Langevin method. In this chapter, we will explore some important
concepts which can make it possible to optimize a kernel in the complex
Langevin equation.

For optimization to be possible, we do, in general, need some kind of
derivative. The methods for computing derivatives on a computer can be
classified into three different categories

• symbolic differentiation, i.e., computing the derivative symbolically
and then evaluating it,

• numerical differentiation, which uses finite difference approxima-
tions,

• automatic differentiation (AD), which we will discuss in the next
section.

For machine learning applications, the latter one is commonly used, as
this is an efficient way to compute the gradient of large models within
machine precision. There are many different implementations of AD, and
most modern machine learning has this built in. The reason this is nor-
mally preferred to symbolic- and numerical differentiation is, in short, a
combination of the ability to obtain gradients directly from programming
code with high precision.

To obtain the gradient, often referred to in the general context as the sen-
sitivity, of iterative methods, like the numerical solution of the complex
Langevin equation, it is necessary with a combination of differentiation
techniques mentioned above. These methods are often called sensitivity
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methods and are usually formulated as solving similar kinds of systems.
This would mean solving an additional stochastic differential equation to
obtain the gradient for the complex Langevin equation. The most efficient
sensitivity framework for systems with a large number of parameters, i.e.,
on the order of 1000 and larger, is called the adjoint sensitivity method,
which will be derived in this chapter.

Although this thesis is directed towards the complex Langevin method,
this chapter introduces some topics of the Differential programming
paradigm in a general context. This chapter will review some aspects
of the differential programming paradigm. We will begin by introduc-
ing auto-differentiation, for a detailed review covering the concepts of
auto-differentiation in detail, see, e.g., ref. [30]. Then develop the neces-
sary ingredients for deriving the adjoint sensitivity method for non-linear
systems and (stochastic) differential equations. In the last chapter, we
demonstrate the use of the adjoint sensitivity method applied to the opti-
mization of a kernel-controlled complex Langevin equation.

3.1 Automatic differentiation

Before delving into automatic differentiation (AD), it is instructive to
examine why AD is the preferred method for large optimization systems.
The case against numerical differentiation, i.e., finite difference methods,
is relatively straightforward, as it suffers from round-off and truncation
errors and scales poorly for a large number of parameters. In many
cases, including the optimization schemes we will investigate later in this
thesis, the number of parameters is significantly larger than 100. This
implies that to evaluate the simple forward finite difference; we need to
evaluate the objective function the same number of times as there are
parameters.

On the other hand, symbolic differentiation can circumvent numerical dif-
ferentiation problems. However, it is plagued by the so-called "expression
swell" phenomenon, which essentially means that the size of the symbolic
expression grows exponentially. Furthermore, it cannot take derivatives
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of specific programming-oriented operations like conditionals, which is
an essential aspect of differential programming.

Automatic differentiation (AD) offers a highly effective approach for
computing derivatives and is a combination of the two in many ways. It
computes numerical derivatives down to machine precision by using what
is called a computational graph of the program, where the nodes are the
building blocks of the code, and the lines are the order of the operations.
We will touch on this in more detail later on. Still, for now, one can
think about these building blocks as mathematical operations with trivial
derivatives, like multiplication and addition. AD has two primary modes:
forward mode and reverse mode. Forward mode is highly efficient for
problems with a small number of input variables and a large number
of output variables. In contrast, the reverse mode AD is well-suited
for problems with many input variables and a small number of output
variables. The forward mode is limited by the number of parameters as
it requires one pass through the function that we want the gradient of
for every parameter. This is cheap for a small number of parameters,
while the adjoint method which only requires one additional pass of the
function for all the parameters is more computationally expensive and is
memory intensive.

In the section below, I will cover aspects of AD relevant to this the-
sis, which is necessarily incomplete; for a detailed introduction, see
ref. [30].

3.1.1 Forward and Backward auto-differentiation

Forward automatic differentiation, also known as forward mode AD, is
an algorithmic approach for evaluating derivatives of a given function.
The key concept behind forward AD is the efficient propagation of di-
rectional derivatives through a sequence of elementary operations. In
forward AD, we compute the derivative with respect to a specific input
variable by applying the chain rule in a forward manner, starting from
the input variables and moving through the intermediate variables to the
output.
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Consider a multivariate function 𝒇 (𝒙) : R𝑛 → R𝑚, and let 𝒙 ∈ R𝑛 be the
input vector. In forward AD, we compute the derivatives of each element
of the function 𝒇 with respect to one of the input variables 𝑥 𝑗 and then
propagate these partial derivatives through the computational graph using
the chain rule to obtain the desired gradient vector ∇ 𝒇 (𝒙).

For example, let us assume the function is a scalar function with two
inputs 𝑥1 and 𝑥2 and three operations, given by

𝑓 (𝑥1, 𝑥2) = ln(𝑥1) + 𝑥1𝑥2. (3.1)

The operations are addition, multiplication between 𝑥1 and 𝑥2, and the
natural logarithm of 𝑥1. The expression for computing the logarithm is
divided into a Taylor series approximation or a similar approximation,
which in turn relies on addition and multiplication operations. In princi-
ple, there is no clear definition of how to divide into elementary operations
in the computational graph. Still, the important distinction is that we can
compute the derivative of ln(𝑥) much faster using the analytic derivative,
𝑑
𝑑𝑥

ln(𝑥) = 1/𝑥, than computing the derivative of the Taylor series expan-
sion using AD. It is, therefore, advantageous to supply the algorithm with
this derivative in the same way as done for multiplication and addition.
We can call these operations the elementary operations of the graph. For
this simple example, the computational graph starts with 𝑥1 and 𝑥2, then
computes 𝑣1 = ln(𝑥1), and in parallel, calculates 𝑣2 = 𝑥1𝑥2. We combine
them into 𝑣3 = 𝑣1 + 𝑣2, which yields the output 𝑓 (𝑥1, 𝑥2).

We can now find the directional derivative in the 𝑥1 direction by propa-
gating the vector 𝒙𝑇 = [1, 0] through a modified graph, where we take
the same directional derivative of the operations (nodes): ¤𝑣1 = 1/𝑥1,
¤𝑣2 = 𝑥2, and ¤𝑣3 = ¤𝑣1 + ¤𝑣2. We denote the directional derivative in the 𝑥1
direction with a dot. We can now read out the derivative 𝜕 𝑓 (𝑥1,𝑥2)

𝜕𝑥1
by the

value 𝜕𝑣3
𝜕𝑥1

= ¤𝑣3. These are the operations that are done in forward-mode
auto differentiation, although the actual implementation might differ to
optimize the algorithm.

Now to compute the full gradient ∇ 𝑓 , we need to evaluate the same graph
for the directional derivative along 𝑥2, which is done the same way as
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above, just by initializing with 𝒙𝑇 = [0, 1]. Forward AD exhibits excel-
lent performance for problems with a small number of input variables
and a large number of output variables, as it requires only a small num-
ber of passes through the computational graph. However, its efficiency
decreases as the number of input variables grows. Fast implementations
of forward-mode AD have been developed in numerous libraries, such as
ForwardDiff.jl [72], which is used later in the thesis.

The most common implementations utilize dual numbers, which is a
truncated Taylor series of the variables 𝑥 = 𝑥 + ¤𝑥𝜖 , where 𝜖 is defined
such that 𝜖2 = 0 and 𝜖 ≠ 01. By construction, the numbers follow the
symbolic differentiation rules of addition and multiplication,

𝑥1 + 𝑥2 = (𝑥1 + 𝑥2) + ( ¤𝑥1 + ¤𝑥2)𝜖, 𝑥1𝑥2 = 𝑥1𝑥2 + ( ¤𝑥1𝑥2 + 𝑥1 ¤𝑥2)𝜖 . (3.2)

For functions, the chain rule is defined by the Taylor expansion around
the dual number

𝑓 (𝑥 + ¤𝑥𝜖) = 𝑓 (𝑥) + 𝑓 ′(𝑥) ¤𝑥𝜖 . (3.3)

As an example, we can get the same derivate as in the previous example
by propagating the dual numbers 𝑥1 = 𝑥1 + 𝜖 and 𝑥2 = 𝑥2 + 0𝜖 = 𝑥2
through the computational graph, using ln(𝑥1) = ln(𝑥1) + 1

𝑥1
𝜖 , where

the output of the function is dual number 𝑓 containing the value and its
directional derivative. The implementation of such an algorithm can be
highly optimized by defining dual numbers as a type similar to complex
numbers. As long as all operations in the code allow dual numbers,
the gradient or Jacobian of the expression can be obtained without any
changes to the original code.

It is also important to note that, given a function 𝑓 : R𝑛 → R𝑛, where the
number of input and output variables are the same, forward mode AD is
often the fastest option, as one pass through the graph gives one column
of the Jacobian, which makes the total number of forward-passes through
the graph 𝑛. This is the same number of passes through the graph as we
need for the reverse-mode AD, which we will discuss next.

1This is a special case of Grassman numbers in a single dimension.
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Reverse-mode automatic differentiation [73], also known as reverse AD,
is another algorithmic approach for evaluating derivatives of a given
function. Unlike forward AD, reverse AD computes the gradients by
applying the chain rule backward, starting from the output variables and
moving through the intermediate variables to the input. This method is
particularly efficient when dealing with functions that have a large number
of input variables and a small number of output variables.

The reverse AD process involves two main steps: the forward pass and the
backward pass. In the forward pass, we evaluate the function 𝑓 (𝒙) and
store the intermediate variables in the computational graph, for simplicity
we assume the function to be scalar-valued. In the backward pass, we
propagate so-called adjoint variables by applying the chain rule in the
reverse direction. The adjoint variables are defined as follows: for each
intermediate variable 𝑣𝑖 in the computational graph, we define its adjoint
variable �̄�𝑖 as the partial derivative of the output 𝑦with respect to 𝑣𝑖:

�̄�𝑖 =
𝜕𝑦

𝜕𝑣𝑖
. (3.4)

The adjoint variables can be computed efficiently by starting from the
output �̄� = 1 and applying the chain rule in the reverse direction:

�̄�𝑖 =
∑︁
𝑗

𝜕𝑦

𝜕𝑣 𝑗

𝜕𝑣 𝑗

𝜕𝑣𝑖
=

∑︁
𝑗

�̄� 𝑗
𝜕𝑣 𝑗

𝜕𝑣𝑖
. (3.5)

Once all the adjoint variables have been computed, the gradient of the
function with respect to the input variables can be obtained as:

𝜕𝑦

𝜕𝑥𝑖
= 𝑥𝑖 =

∑︁
𝑗

�̄� 𝑗
𝜕𝑣 𝑗

𝜕𝑥𝑖
. (3.6)

Reverse AD is particularly well-suited for large-scale optimization prob-
lems with numerous input variables. It requires only a single pass through
the computational graph in the reverse direction to compute the gradient,
regardless of the number of input variables. As in the example of the func-
tion 𝑓 (𝑥1, 𝑥2) = ln(𝑥1) + 𝑥1𝑥2, we can compute the gradient ∇ 𝑓 by first
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a forward-pass to calculate the values at the nodes in the computational
graph, and then one backward pass of the reverse mode AD presented
above. The advantages of reverse mode AD come with the price of in-
creased memory requirement, which in many cases is proportional to the
number of operations. This is because we need to store all intermediate
variables of the computational graph value during the forward pass.

3.1.2 Vector-Jacobian or Jacobian-Vector products

In many scientific applications, we often need to compute vector-Jacobian
products (VJP) of the form 𝝀𝑇 𝐽 or Jacobian-vector products (JVP) of the
form 𝐽𝝀, where 𝝀 is a vector and 𝐽 is a Jacobian. Automatic differentiation
techniques, like forward and reverse mode AD, are closely connected with
the concepts of VJP and JVP. Understanding the differences between
VJP and JVP can help us better grasp the computational efficiency and
advantages of using AD.

To relate JVP, VJP, forward mode AD, and reverse mode AD can inves-
tigate the output of one forward/backward pass of the method. Taking as
an example a function 𝒈(𝑥1, 𝑥2) ∈ R2 the forward mode AD can be seen
as computing [

𝜕𝑔1
𝜕𝑥1

𝜕𝑔1
𝜕𝑥2

𝜕𝑔2
𝜕𝑥1

𝜕𝑔2
𝜕𝑥2

]
𝒆𝑖 = 𝐽𝒈(𝑥1,𝑥2)𝒆𝑖 =

[
𝜕𝑔1
𝜕𝑥𝑖
𝜕𝑔2
𝜕𝑥𝑖

]
=

𝜕

𝜕𝑥𝑖
𝒈, (3.7)

where 𝒆𝑖 the unit vertor in the direction of 𝑥𝑖. This is the same as a JVP,
meaning that 𝐽𝒈(𝑥1,𝑥2) is a Jacobian, and 𝒆𝑖 is a vector. On the other hand,
reverse mode AD starts at the end, such that

𝒆𝑇𝑖 𝐽𝒈(𝑥1,𝑥2) = ∇𝑔𝑖 (𝑥1, 𝑥2) =
[
𝜕𝑔𝑖
𝜕𝑥1
𝜕𝑔𝑖
𝜕𝑥2

]
(3.8)

is a VJP. Here, 𝒆𝑇
𝑖

is the vector that tells us which direction in 𝑓 we
want to get the derivative of. We can see that for scalar functions, i.e., if
𝒈(𝑥1, 𝑥2) ∈ R, having the AD calculation in the VJP form is more efficient
as we obtain the gradient directly from one backward pass.
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Now that we have made a connection between the Forward/backward AD
and the two different products, we can extend it to a general VJP and
JVP. As was eluded to in the AD section, the starting vector of the AD
evaluation, both in the forward and backward AD, was connected to the
directional derivative we want to calculate, i.e., 𝒆𝑖. We could ask the same
question using a general vector 𝝀, such that the meaning of the product
becomes a directional derivative in the 𝝀 direction of either the function
or the input vector depending on the choice of AD. This product can be
obtained without needing direct computation of the full Jacobian as we
only need to initialize the adjoint variables to be propagated in reverse
through the graph. This means that a product 𝝀𝑇 𝐽, or equivalently 𝐽𝑇𝝀,
can be computed by one forward and backward pass by the reverse mode
AD. Similarly, for forward mode AD, we can compute any product of the
form 𝐽𝝀 in one forward pass using dual variables and initializing the dual
variables by the vector 𝝀.

This fact is important as we will later identify VJP in the adjoint sensitivity
methods, which we will be deriving later on. This identification helps
speed up the schemes, as every time such a product appears we only
require one backward AD pass to obtain the full gradient, in contrast to
first computing the Jacobian and then doing the product.

3.1.3 Why Not Use AD for Every Derivative

Automatic differentiation (AD) is a powerful tool for calculating the
derivative of any code, provided it is written in a differentiable program-
ming language. Such languages typically construct a computational graph
to record all the elementary operations of an algorithm, which can then
be utilized in AD calculations. Examples of differentiable programming
languages include Julia and Swift. In these languages, all native code,
with some exceptions, is differentiable as the compiler constructs a graph
when compiling. The Julia programming language offers multiple AD
tools such as Zygote.jl [74], Forward-/ReverseDiff.jl [72], Enzyme.jl [75].
In dynamically typed languages like Python, this functionality can be
achieved using external packages like TensorFlow, autograd, or JAX. To
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build up the computation graph for use in AD in Python, one must write all
operations using the built-in functions of the respective library. With the
current state of available programming languages and packages, obtaining
gradients for custom models has become significantly easier.

However, AD faces challenges when computing the gradient of any iter-
ative method, such as the Newton non-linear solver. AD must propagate
through all the iterations to calculate the gradient of the parameters of
a non-linear function. This process is computationally expensive, and
memory usage accumulates rapidly for reverse-mode AD. Another issue
with propagating AD through all iterations is that iterative schemes only
approximate the solution to the non-linear system, whereas AD computes
the gradient to machine precision. Consequently, an exact gradient of
an approximate solution is obtained, which not only provides redundant
information but can also lead to differentiation of the error in the approx-
imation rather than the derivative of the approximate solution.

This is a similar argument as the one we used for handling the natural
logarithm in our example function 𝑓 (𝑥1, 𝑥2) (eq. (3.1)) where we directly
used the rule of differentiating ln(𝑥) instead of adding the inner calculation
of the Taylor series expansion to the computational graph. This means
that for auto-differentiation to be efficient and stable, we should provide
a method for calculating the gradient of expressions like, e.g., iterative
solvers, series expansions, and expressions with a straightforward gradient
expression.

One approach to address this issue for iterative solvers is to use adjoint
methods, which compute the derivative based solely on the final approx-
imate solution. We will discuss this topic in the next section.

3.2 Adjoint sensitivity methods

In this section, the adjoint sensitivity method is derived. These methods
have been actively developed since the 1980s for differential equations,
with applications to fields such as computational fluid dynamics, in par-
ticular areodynamics [76], metherology [77] and geophysocs [78]. The
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method has been applied to different optimization problems, from shape
optimization of airplane wings and cars to constructing more accurate
models based on physical measurements. The method has gained signif-
icant importance in recent years due to the rise of machine learning. One
exciting application of the method is neural ODEs [79], where a neural
network is built as a differential equation of the form 𝜕𝑢

𝜕𝑡
= NN(𝑢, 𝑡, \),

this has later been generalized to SDEs in [80, 81]. This efficiently de-
scribes time-dependent data, as the network does not have to learn the
time dependence. Moreover, these methods allow for integrating pre-
existing physics knowledge, bypassing the need to learn this information
separately.

In general, we can say that the adjoint sensitivity method is a way of
calculating the gradient of a loss function 𝐿 based on the parameters (\)
or the initial condition of the underlying system 𝐹 (𝑢, ¤𝑢, 𝑡, \) = 02. The
structure of the method is similar for various forms of 𝐹 and requires,
in general, solving a similar system to obtain the gradient. An exam-
ple of systems that we can incorporate into 𝐹 is a non-linear algebraic
system, which we would write 𝐹NL(𝑢, \) = 0 or a differential equation
𝐹DE(𝑢, ¤𝑢, 𝑡, \) = 0. To compute the gradient of these systems, we need
to solve a linear- or a differential equation respectively. These equations
are called the adjoint equation, which we will derive in a general form
below.

Linear systems and non-linear systems

The most elementary adjoint sensitivity equations that can be derived stem
from linear and nonlinear equations, specifically, problems of the form
𝑓 (𝑢(\), \) = 0. In this expression, 𝑢(\) ∈ R𝑀 represents the solution
to the nonlinear equations given the parameterization \ of the nonlinear
equation. This means that a change in \ will necessitate a change in the
solution 𝑢(\) of the non-linear system 𝑓 .

The objective is to obtain the gradient 𝑑𝐿
𝑑\

, which provides the sensitivity

2This is not the most general form of the underlying system, but it incorporates differential
equations and non-linear systems (independent of ¤𝑢).
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of the cost function 𝐿 concerning the parameters \. For the nonlinear
system, this will yield:

𝑑𝐿

𝑑\
= 𝐿\ + 𝐿𝑢𝑢\ = 𝐿\ − 𝐿𝑢

[
𝑓 −1
𝑢 𝑓\

]
= 𝐿\ −

[
𝐿𝑢 𝑓

−1
𝑢

]
𝑓\ (3.9)

Here, the subscripts indicate partial derivatives, e.g. 𝑓𝑢 =
𝜕 𝑓 (𝑢,\)
𝜕𝑢

and
𝐿\ =

𝜕𝐿 (𝑢,\)
𝜕\

. This notation will be used for the rest of this section to
simplify derivations. We have used 𝑑

𝑑\
𝑓 = 𝑓𝑢𝑢\ + 𝑓\ = 0, such that

𝑢\ = − 𝑓 −1
𝑢 𝑓\ 3. We have grouped the 𝐿𝑢 𝑓 −1 terms in the last equality to

emphasize the various ways to compute the gradient. The second equality
necessitates inverting an 𝑀 ×𝑀 matrix and subsequently multiplying by
an 𝑀 × 𝑃 matrix, where 𝑀 represents the system size, i.e., the number
of discrete points in 𝑢, and 𝑃 refers to the number of parameters in the
model, i.e., the length of the parameter vector \. The next step is to
rewrite the last bracket (_𝑇 = 𝐿𝑢 𝑓

−1
𝑢 ) as a linear equation:

𝑓 𝑇𝑢 _ = 𝐿𝑇𝑢 (3.10)

and then use this to calculate the full derivative:

𝑑𝐿

𝑑\

����
𝑓=0

= 𝐿\ − _𝑇 𝑓\ (3.11)

where we evaluate the derivative at the solution to the linear system
𝑓 (𝑢, \) = 0. This reduces the computation of calculating derivatives of
the loss function 𝐿 with respect to its parameters \ to solely computing
the Jacobian 𝑓𝑢 =

𝜕 𝑓 (𝑢,\)
𝜕𝑢

and subsequently solving a linear system. The
cost of obtaining the gradient should be equivalent to one iteration of the
Newton method.

Lagrangian formulation

Since it will be instructive for the next section on ODEs, we will again
derive the adjoint sensitivity equation for the non-linear systems using

3Keep in mind that 𝑢 in this section always refer to the solution of the system 𝑓 = 0.
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the Lagrangian formulation. We now formulate the problem as a mini-
mization problem. Given the solution 𝑢 of 𝑓 (𝑢, \) = 0

L(𝑢, \) = 𝐿 (𝑢, \) + _𝑇 𝑓 (𝑢, \) (3.12)

where we added a zero, due to 𝑓 (𝑢, \) = 0 on the solution. We now take
the derivative of this Lagrangian

𝑑L(𝑢, \)
𝑑\

= 𝐿\ + 𝐿𝑢𝑢\ + _𝑇 ( 𝑓𝑢𝑢\ + 𝑓\) (3.13)

= 𝐿\ + _𝑇 𝑓\ + (𝐿𝑢 + _𝑇 𝑓𝑢)𝑢\ . (3.14)

In the second line, we have reshuffled the equation such that the terms
containing 𝑢\ are grouped. The reason for this grouping is, as we learned
in the previous section, because those terms involve large matrix-matrix
products and hence will be expensive to calculate. To avoid calculating
these quantities, we will instead find _𝑇 such that 𝐿𝑢 + _𝑇 𝑓𝑢 = 0, and
hence only the two first terms contribute to the final result. Remember
that L = 𝐿, since 𝑓 = 0. We can now set up a linear system

𝑓 𝑇𝑢 _ = 𝐿𝑇𝑢 (3.15)

which, after obtaining _, we can use to evaluate the gradient of the loss
function

𝑑𝐿

𝑑\

����
𝑓=0

= 𝐿\ − _𝑇 𝑓\ . (3.16)

Even though the adjoint method can be applied to non-linear problems
with any number of parameters, the method’s efficiency compared to the
forward method, i.e., computing the gradient for each parameter sepa-
rately, is related to the number of parameters. The following section will
derive an equivalent adjoint method for ordinary differential equations
(ODEs).

Ordinary differential equations

We now go on to discuss adjoint sensitivity methods for ordinary differ-
ential equations (ODE), preparing the ground for stochastic differential
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equations in the next section. For a general ODE, we use the form

¤𝑢 = 𝑓 (𝑢, 𝑡, \) (3.17)

where again 𝑓 (𝑢, 𝑡, \) can be a non-linear equation with 𝑢 evaluated at
the time 𝑡 with the parameters \.4

For an ODE system, we now need a generic function 𝑔(𝑢, 𝑡, \) that can
be evaluated at every point in time 𝑡, and from which we define the loss
function, via integration as

𝐿 (\) =
∫ 𝑇

𝑇0

𝑔(𝑢(𝑡), \)𝑑𝑡 (3.18)

Next, we calculate the derivative of the loss function with respect to the
ODE parameters

𝑑𝐿

𝑑\
=

∫ 𝑇

𝑇0

𝑔\ + 𝑔𝑢𝑢\𝑑𝑡. (3.19)

We identify the computationally expensive object 𝑢\ that needs to be
evaluated at any step in time during the simulation. It is expensive
because, at every point in time, the dependence on \ requires us to
evaluate the function 𝑢 and 𝑔 at all points 𝑡 ∈ [𝑇0, 𝑇], for all the values of
\. To compute the equality we use sensitivity variable 𝑠𝑖 = 𝜕𝑢

𝜕\𝑖
, and then

solve the ordinary equation given by taking the partial derivative of the
original ODE from the left, such that we obtain a system of ODEs (one
for each entry in \) given by

𝜕𝑠𝑖

𝜕𝑡
= 𝑓𝑢𝑠𝑖 + 𝑓\𝑖 . (3.20)

This is often called a tangent equation, or the forward sensitivity equation.
We see that this system quickly becomes large for many parameters as we,
in practice, need one ODE for each parameter. This sensitivity method
is efficient for a small number of parameters, similar to the forward auto
differentiation. In fact, we can also identify a Jacobian vector product

4We can derive an adjoint sensitivity method for 𝑓 ( ¤𝑢, 𝑢, 𝑡, \) = 0 by following a similar
derivation. Since the SDE we will consider in the following chapters has a similar form as
eq. (3.17), we will use this as the starting point of the derivation.
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(JVP) in the first term on the right-hand side, which is the same product
we could relate to the forward AD in section 3.1.1.

For a large number of parameters, the adjoint sensitivity method is in
most cases more efficient. We use the Lagrange formulation to derive
the corresponding adjoint equation. Given a solution 𝑢 for one set of
parameters \, we define the Lagrangian as

L =

∫ 𝑇

𝑇0

𝑔(𝑢(𝑡), \)𝑑𝑡 +
∫ 𝑇

𝑇0

_𝑇 ( ¤𝑢 − 𝑓 (𝑢, 𝑡, \)) 𝑑𝑡. (3.21)

where the second part evaluates to zero for any solution of the ODE
(eq. (3.17)). The gradient of this expression reads

𝑑L
𝑑\

=

∫ 𝑇

𝑇0

𝑔\ + 𝑔𝑢𝑢\𝑑𝑡 +
∫ 𝑇

𝑇0

_𝑇 ( ¤𝑢\ − 𝑓\ − 𝑓𝑢𝑢\) 𝑑𝑡 (3.22)

=

∫ 𝑇

𝑇0

𝑔\ − _𝑇 𝑓\𝑑𝑡 +
∫ 𝑇

𝑇0

(
_𝑇 ¤𝑢\ + 𝑔𝑢𝑢\ − _𝑇 𝑓𝑢𝑢\

)
𝑑𝑡 (3.23)

=

∫ 𝑇

𝑇0

𝑔\ − _𝑇 𝑓\𝑑𝑡 +
∫ 𝑇

𝑇0

(
− ¤_𝑇 + 𝑔𝑢 − _𝑇 𝑓𝑢

)
𝑢\𝑑𝑡 (3.24)

+ _𝑇 (𝑇0)𝑢\ (𝑇0) + _𝑇 (𝑇)𝑢\ (𝑇) (3.25)
(3.26)

where we in the second line have reshuffled some of the terms, and in line
3, integration by parts is carried out on the _𝑇 𝜕

𝜕𝑡
𝑢\ term. The trick now is

to force the interior of the second integral’s parentheses to zero by tuning
_. In this way, we do not have to calculate 𝑢\ , and we are only left with
gradients that can be evaluated without too much added computational
cost. We, therefore, need to find the _s, such that − ¤_𝑇 + 𝑔𝑢 − _𝑇 𝑓𝑢 = 0,
which is defining the relation of the so-called adjoint ODE equation
with the initial value _𝑇 (𝑇) = 0. The initial condition arises from the
boundary terms obtained by integration by part, as we also want to set
_𝑇 (𝑇)𝑢\ (𝑇) = 0. For this derivation, we assume that the initial condition
of the ODE is independent of the parameters \, i.e., 𝜕𝑢

𝜕\
(𝑇0) = 0. The
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adjoint equation thus takes the form

¤_ = − 𝑓 𝑇𝑢 _ + 𝑔𝑇𝑢 (3.27)
_(𝑇) = 0 (3.28)

where we have transposed both sides of the equation. To get the full
derivative of the loss with respect to the ODE parameters, we need to
solve eq. (3.27) and then we insert _ in

𝑑𝐿

𝑑\
=

∫ 𝑇

𝑇0

𝑔\ − _𝑇 𝑓\𝑑𝑡. (3.29)

The advantage of the adjoint sensitivity method is that we only need
to evaluate one ODE, no matter how many parameters there are in the
ODE. The added cost for evaluating the gradient of the loss function
amounts to a backward evaluation of the adjoint ODE eq. (3.27), which
in contrast to the forward-sensitivity method, would need to solve the
forward-sensitivity ODE once for every parameter. The drawback of
the adjoint method is that it requires storing the solution of the forward
pass in memory, as it is needed for an accurate solution to the adjoint
equation.

Stochastic Differential equations

To generalize this further to be used in a stochastic differential equation
(SDE), we need to perform similar derivation for the generic SDE

𝑑𝑢 = 𝑎(𝑢, 𝑡, \)𝑑𝑡 + 𝑏(𝑢, 𝑡, \)𝑑𝑊. (3.30)

The derivation of the adjoint method will be the same as for the ODE case,
where we constructed a Lagrangian by adding zero to the loss function
(eq. (3.21)). The constraint is now that the SDE equation is satisfied, i.e.,
¤𝑢 − 𝑠(𝑢, 𝑡, \) + 𝑏(𝑢, 𝑡, \)b = ¤𝑢 − 𝑓 (𝑢, 𝑡, \) = 0, such that the Lagrangian
is given by

L =

∫ 𝑇

𝑇0

𝑔(𝑢(𝑡), \)𝑑𝑡 +
∫ 𝑇

𝑇0

_𝑇 ( ¤𝑢 − 𝑓 (𝑢, 𝑡, \)) 𝑑𝑡. (3.31)
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The adjoint method for the SDE now yields

𝑑_ = (𝑔𝑇𝑢 − 𝑎𝑇𝑢_)𝑑𝑡 − (𝑏𝑇𝑢_)𝑇 𝑑𝑊 (3.32)

where we have rewritten the last term (𝑏𝑢𝑑𝑊)𝑇_ = 𝑑𝑊 · (𝑏𝑇𝑢_) = (𝑏𝑇𝑢_) ·
𝑑𝑊 = (𝑏𝑇𝑢_)𝑇𝑑𝑊 . At this point, we need to treat the noise term carefully,
as this needs to be the same Wiener process as for the forward pass of the
SDE. Let’s take a step back and look into different ways of implementing
this.

The simplest way, which does not require any modifications, is to use
a fixed step-size when solving the SDE forward. We save the Wiener
process step (Δ𝑊) at every time-step in the forward pass and then use the
same step-size in the backward pass in order to deploy the saved Wiener
steps Δ𝑊 when we solve the adjoint system (eq. (3.32)). This, however,
have the drawback of not being applicable for use with adaptive step-size
solvers. For the use of adaptive step-size, we have two options. The first
one is to treat the Wiener process after the forward pass as deterministic
and then interpolate between the points to obtain a deterministic function.
This function can now be used to solve the adjoint system using an
adaptive step-size, as the interpolation will be defined at every point
𝑡. Notice that if we use the interpolation function of Δ𝑊 , the adjoint
equation reduces to a deterministic equation, i.e., an ordinary differential
equation. To our knowledge, this has not been tested before. We will,
therefore, demonstrate this as an example later in this chapter for a simple
toy model complex Langevin equation5.

The second way to do this uses the seeded Brownian tree method. One can
think of the Wiener process as having fractal-like properties, i.e., if one
zooms in on the curve, it will never be a continuous differential function.
This method uses this pattern to be able to draw random numbers between
the points we have saved in a way that satisfies the same Wiener process,
just with more points. This was first implemented in the adjoint sensitivity
method of SDEs in [80, 81]. This is the mathematically formal way to

5We will also use the method of interpolating the noise in a sensitivity method for chaotic
dynamical systems in section 7.4.2, more precisely a stochastic form of the Lorenz system.
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calculate the adjoint SDE equation. However, we see that interpolating
the forward pass noise helps stabilize the adjoint solve for the system we
are interested in. See section 7.4.2, where we tested both methods and
were only able to stabilize the system with the interpolation method.

We will continue the discussion by using the method of interpolating
the noise. Therefore, the noise Δ𝑊 is assumed to be a deterministic
function in the backward pass, such that the stochastic integral changes to
a deterministic integral. The adjoint system can now be written as, where
we use [(𝑡)𝑑𝑡 = Δ𝑊 (𝑡) as the interpolating function,

¤_ = 𝑔𝑇𝑢 − (𝑎𝑢 + 𝑏𝑢[(𝑡))𝑇_. (3.33)

We can identify the _ term as 𝑎𝑢 + 𝑏𝑢[(𝑡) = 𝑓𝑢 from the ODE adjoint
system eq. (3.27). The adjoint system is now solved from 𝑇 to 0 with the
initial value of _(𝑇) = 0. We can then put the solution _ into the equation
for the sensitivity of the loss function 𝐿 on varying the parameters \

𝑑𝐿

𝑑\
=

∫ 𝑇

0

(
𝑔\ − _𝑇 [𝑎\ + 𝑏\[(𝑡)]

)
𝑑𝑡. (3.34)

This approach can be combined with the adjoint solution by using the
fundamental theorem of calculus to turn the integral into a differential
equation. This will save memory as there is no need to store the interme-
diate values of _.

It is important to note that we solve eq. (3.34) for every parameter \ at once,
just like the reverse mode AD. We can ideentify the the vector-jacobian
product (VJP), as the adjoint vector _ times the Jacobian 𝑎𝑢 + 𝑏𝑢[(𝑡) in
eq. (3.33) and 𝑎\ + 𝑏\[(𝑡) in eq. (3.34). This is why the adjoint method
is often compared to reverse auto-differentiation and the backpropagation
algorithm in neural networks, a special case of reverse mode AD.

3.3 Adjoint sensitivity method for complex Langevin

This section will apply the adjoint sensitivity method to the field-independent
kernel-controlled complex Langevin equation eq. (6.9). As we derived the
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adjoint sensitivity method for an SDE in section 3.2, we can directly apply
it to the complex Langevin equation. Let us use the form of the complex
Langevin with a field-independent kernel as given in chapter 2;

𝑑𝜙 = 𝐾𝑖
𝜕𝑆(𝜙)
𝜕𝜙

+ 𝐻𝑑𝑊 (3.35)

where 𝐾 = 𝐻𝑇𝐻. Consider a generic loss function that can be used to
optimize the expectation value of an observable 𝑂 (𝜙) to a given value
𝑦;

𝐿 =

(
𝑦 − 1

𝑇

∫ 𝑇

0
𝑂 (𝜙)𝑑𝑡

)2

= (𝑦 − ⟨𝑂 (𝜙)⟩)2 . (3.36)

Note that this differs from eq. (3.18) as the integral is inside the square.
Nevertheless, if we compute the derivative of this loss function we
get

𝐿𝜙 = 2 (𝑦 − ⟨𝑂 (𝜙)⟩) 1
𝑇

∫ 𝑇

0

𝜕𝑂 (𝜙)
𝜕𝜙

𝑑𝑡. (3.37)

where everything in front of the integral can be summarized into a constant
𝑘 , such that 𝐿𝜙 =

∫ 𝑇
0 𝑘𝑂𝜙𝑑𝑡. This is equivalent to the gradient of the ODE

loss function (eq. (3.19)). Since only the gradient of the loss appears in
the adjoint equation, we can apply 𝑔(𝜙) = 𝑘𝑂 (𝜙) to the method, treating
𝑘 as a constant.

The adjoint equation for the CLE is given by

𝑑_

𝑑𝑡
=
𝜕𝑔(𝜙)
𝜕𝜙

−
[
𝐾
𝜕2𝑆(𝜙)
𝜕𝜙𝜕𝜙

]𝑇
_ (3.38)

_(𝑇) = 0. (3.39)

Note that this is an ordinary differential equation at this point due to the
choice of a field-independent kernel. For a field-dependent kernel, an
additional noise term will appear. Finally, we can compute the gradient
of the loss function eq. (3.36)

𝑑𝐿

𝑑\
=

∫ 𝑇

0

[
𝜕𝑔

𝜕\
− _𝑇 𝜕𝐾

𝜕\

𝜕𝑆(𝜙)
𝜕𝜙

]
𝑑𝑡 −

∫
_𝑇
𝜕𝐻

𝜕\
𝑑𝑊. (3.40)
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where the second integral is stochastic in the Ito-sense. By assuming 𝑑𝑊
to be deterministic, i.e., an interpolation of the Wiener process sampled in
the initial solution of the complex Langevin, the integral reduces to

𝑑𝐿

𝑑\
=

∫ 𝑇

0

[
𝜕𝑔

𝜕\
− _𝑇 𝜕𝐾

𝜕\

𝜕𝑆(𝜙)
𝜕𝜙

− _𝑇 𝜕𝐻
𝜕\
[(𝑡)

]
𝑑𝑡. (3.41)

where [(𝑡) is the interpolation function of the noise. We will use a
linear interpolation of the noise. This is the adjoint sensitivity method for
stochastic differential equations. In practice, we will combine eq. (3.38)
and eq. (3.41) into a system of ODEs.

3.4 Application to toy model

As an example of the adjoint sensitivity method laid out above, we inves-
tigate a simple toy model with the action

𝑆 =
1
2
𝜎𝑥2 + 1

4
_𝑥4 (3.42)

where 𝜎 ∈ C and _ ∈ R, note that this is not the _ used in the adjoint
equation, but a parameter of the model. This model have been studied
exstensively in [54, 70, 82]. We will also discuss this model in detail in
chapter 5. For this section, it is sufficient to know that for the parameters
𝜎 = 4𝑖 and _ = 2; the complex Langevin simulation converges to the
wrong solution. Studies using a field-independent kernel 𝐾 = 𝑒−𝑖

𝜋
3 were

shown to solve the problem of convergence for this set of parameters in
[54]. In this section, let us try to find such a kernel by optimizing a loss
function based on the true solution.

When complexifying the action we change 𝑥 to a complex variable, such
that 𝑥 → 𝑥𝑅 + 𝑖𝑥𝐼 . The corresponding drift term for such a complexified
action is

Re
𝑑𝑆

𝑑𝑥
= 𝜎𝑅𝑥𝑅 − 𝜎𝐼𝑥𝐼 + _(𝑥3

𝑅 − 3𝑥𝑅𝑥2
𝐼 ) (3.43)

Im
𝑑𝑆

𝑑𝑥
= 𝜎𝑅𝑥𝐼 + 𝜎𝐼𝑥𝑅 + _(3𝑥𝐼𝑥2

𝑅 − 𝑥3
𝐼 ) (3.44)
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where we have used 𝜎 = 𝜎𝑅 + 𝑖𝜎𝐼 . When including a field-dependent
(constant) kernel, we get the complex Langevin equation as a system of
SDEs containing the real and imaginary part of 𝑥[

𝑑𝑥𝑅

𝑑𝑥 𝐼

]
=

[
𝐾𝑅 −𝐾𝐼
𝐾𝐼 𝐾𝑅

] [
Re 𝑑𝑆

𝑑𝑥

Im 𝑑𝑆
𝑑𝑥

]
𝑑𝑡 +

[
𝐻𝑅 −𝐻𝐼
𝐻𝐼 𝐻𝑅

] [
𝑑𝑊

0

]
(3.45)

where the two complex kernels,𝐾 and𝐻 (𝐾 = 𝐻2), are written as matrices
corresponding to the complex number. We follow the same convention
with the real and imaginary parts of the kernel noting by 𝑅 and 𝐼 . We use
real noise, so the noise vector only contains a non-zero contribution in
the first element. In practice, we can compute the matrix-vector product
before we apply it to a numerical simulation.

We regain the standard complex Langevin equation for 𝐾 = 1 due to
the two kernel matrices reducing to identity matrices. As we know
that the standard complex Langevin simulation converges to the wrong
solution for the observable ⟨𝑥2⟩, we need to find a kernel that changes
the convergence to regain the correct solution. We, therefore, need to
find a suitable value for 𝐾𝑅 and 𝐾𝐼 . Since we are only after changing the
phase, and not the magnitude (overall change in 𝑑𝑡) we choose the kernel
parameterization to be

𝐾 = 𝑒𝑖\ , 𝐻 = 𝑒𝑖
\
2 . (3.46)

The parameter \ is constrained to 𝜋
2 ≥ \ ≥ − 𝜋

2 such that we can threat 𝐾
as positive definite since the eigenvalues of the 1 × 1 matrix are the same
as the entry. The two values 𝐾𝑅 and 𝐾𝐼 is then given by 𝐾𝑅 = cos(\)
and 𝐾𝐼 = sin(\), and the noise coefficients 𝐻𝑅 = cos(\/2) and 𝐻𝐼 =

sin(\/2).

We will optimize the kernel parameter \ based on the true solution of
an observable O; 𝑦O . The loss function in eq. (3.36) for the O = 𝑥2

observable, is given by

𝐿 =

(
Re𝑦𝑥2 − Re⟨𝑥2⟩

)2
+

(
Im𝑦𝑥2 − Im⟨𝑥2⟩

)2
, (3.47)
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where we have split the real and imaginary parts up. The corresponding
gradient of the loss function with respect to 𝑥 follows again the form in
eq. (3.37), such that for the real part of 𝑥, we get

𝜕𝐿

𝜕𝑥𝑅
= 2

(
Re𝑦𝑥2 − Re⟨𝑥2⟩

) 1
𝑇

∫ 𝑇

0
2𝑥𝑅 (𝑡)𝑑𝑡

+ 2
(
Im𝑦𝑥2 − Im⟨𝑥2⟩

) 1
𝑇

∫ 𝑇

0
2𝑥𝐼 (𝑡)𝑑𝑡

=
1
𝑇

∫ 𝑇

0
2𝑐𝑅𝑥𝑅 (𝑡) + 2𝑐𝐼𝑥𝐼 (𝑡)𝑑𝑡 =

1
𝑇

∫ 𝑇

0
𝑔𝑥𝑅𝑑𝑡.

(3.48)

and the imaginary part

𝜕𝐿

𝜕𝑥𝐼
=

1
𝑇

∫ 𝑇

0
−2𝑐𝑅𝑥𝐼 (𝑡) + 2𝑐𝐼𝑥𝑅 (𝑡)𝑑𝑡 =

1
𝑇

∫
𝑔𝑥𝐼 𝑑𝑡. (3.49)

The two constants 𝑐𝑅 and 𝑐𝐼 are a redefinition of the factor in front of the
corresponding integrals in eq. (3.48). Similar rewriting can be done for
optimizing multiple observables. We can now read off the expressions
inside the integral and use this as 𝜕𝑔

𝜕𝑥
in eqs. (3.38) and (3.41). Note that

𝜕𝑔

𝜕\
= 0.

The adjoint equation is a system of ODEs when including the sensitivity
of the loss function due to changes in the parameter \ ( 𝑑𝐿

𝑑\
= 𝑠\ ∈ R), is

given by

𝜕

𝜕𝑡

[
_𝑅 (𝑡)
_𝐼 (𝑡)

]
=

[
𝑔𝑥𝑅
𝑔𝑥𝐼

]
+

[
𝐾
𝜕2𝑆(𝑥)
𝜕𝑥𝜕𝑥

]𝑇 [
_𝑅

_𝐼

]
𝜕

𝜕𝑡
𝑠\ (𝑡) =

[
_𝑅 _𝐼

] {[
𝜕𝐾

𝜕\

] [
Re 𝑑𝑆

𝑑𝑥

Im 𝑑𝑆
𝑑𝑥

]
+

[
𝜕𝐻

𝜕\

] [
[(𝑡)

0

]} (3.50)

with the inital value _(𝑇) = 0 and 𝑠\ (𝑇) = 0. Note that we have used
brackets around the objects that are matrices, which are all the factors
containing the kernel, i.e., 𝐾 or 𝐻. In the practical implementation of
the equation, both a VJP and JVP can be used in combination with an
auto-differentiation of choice. We can read the final sensitivity by the
value 𝑠\ (0) = 𝑑𝐿

𝑑\
, which is the last point of the solution.
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We need to use this sensitivity to optimize the kernel to update the \
parameter. This can be done using an optimization scheme. Since this
is a one-dimensional optimization problem, we will apply the standard
gradient descent method. The parameter is updated using

\𝑖+1 = \𝑖 − 𝛾 𝑑𝐿
𝑑\

(3.51)

where we start the optimization at \0 = 0 such that𝐾0 = 1. The parameter
𝛾 can be thought of as the step-size of the optimization. The algorithm is
then given by;

1. setup up the problem with \0 = 0,

2. simulate the complex Langevin equation of the problem (eq. (3.45)),

3. calculate the sensitivity 𝑠\ using adjoint equation eq. (3.50),

4. update \ using eq. (3.51),

5. repeat step 2-4, until the value of the loss eq. (3.47) reach desired
tolerance.

For an implementation of the algorithm above, we will use the Differ-
entialEquation.jl [83] library written in Julia as this have both SDE and
ODE solvers available. We will discuss in detail the implementation of
numerical SDE schemes in chapter 4. We will use the standard explicit
Euler-Maruyama scheme with an adaptive step-size for this setup. We
simulate 10 trajectories up to 𝑇 = 500 in Langevin time and save ev-
ery 0.01 to memory. Since we will apply the simulation to the adjoint
method, we also save the noise Δ𝑊 to memory at the same interval. We
thermalize the system from 𝑡 = −5 to 𝑡 = 0 in Langevin time before we
start sampling.

For the adjoint equation, we use the explicit ODE solver Tsit5[84] with
an absolute tolerance of 10−7. The simulation is done from 𝑇 = 500 to
𝑡 = 0 by using a negative signed step-size, i.e., −Δ𝑡. Note that we do not
include the thermalization phase when calculating the loss sensitivity. In
the gradient descent update of the parameter, we use 𝛾 = 0.01 and run
the optimization for 100 steps.
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Figure 3.1: Evolution of a kernel optimization using the adjoint sensitivity
method on the complex Langevin equation. The kernel is optimized based
on the true solution of the observable ⟨𝑥2⟩ plotted in black and gray lines.
The x-axis represents the iteration number of the optimization scheme, and
the scatter points are the real- and imaginary parts of the observable obtained
from the CLE simulation.

The optimization is shown in fig. 3.1, where we plotted the change in the
observable ⟨𝑥2⟩𝐾 during the kernel optimization. Every point represents
one update of the kernel; as can be seen, the observable quickly get close to
the true solution. We find the minimum of the optimization to be \ = 0.9,
which is similar to the one found in [54], i.e. \ = 𝜋/3 ≈ 1.0.

This is a simple example where we obtained a suitable kernel for the
complex Langevin by optimizing against the known solution. In the
context of real-time simulation, this information is available whenever
we can simulate the Eucledian correlator. Another loss function we could
have used to optimize the kernel is by minimizing the boundary terms
⟨𝐿𝑥2⟩ (eq. (5.11)). We could also have obtained this kernel in different
ways, like in [54] where the choice of the kernel is based on the imaginary
part of the drift term, and as we will see in chapter 5, where we will use
the same model and optimize the kernel based on a low-cost loss function
that also yields the same kernel. The method does, however, show the
efficiency in using adjoint sensitivity methods in combination with the
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complex Langevin equation, as it can be used to obtain a suitable kernel by
an optimization scheme. We will introduce such an optimization scheme
for real-time problems in chapter 6.

3.5 Summary and outlook

This chapter gave an introduction to important concepts in differential
programming, with emphasis on the adjoint sensitivity methods. The AD
framework is a useful tool for many kinds of optimization problems, not
only for neural network applications, as it can speed up the implementation
process without a large reduction in computational speed. By identifying
vector-Jacobian (Jacobian-vector) products, we have seen that AD can
be reduced to only a single pass through the function. This product
appears in the adjoint sensitivity method, which can speed up the code
significantly for a large number of parameters.

The adjoint sensitivity method for a non-linear equation was derived as
a simple example before the ODE version. Although it was used as a
precursor to the ODE method, it has many uses. An example of this
is in Bayesian spectral reconstruction, where we can use the method to
efficiently optimize the regulators. An example of such a use case is
presented in chapter D. This makes it possible to optimize for a large
number of parameters, which without such an adjoint sensitivity scheme,
is unattainable.

The adjoint sensitivity method laid out above gives many possibilities for
optimizing a kernel for the complex Langevin equation. We can use it
to, e.g., optimize kernels to reduce auto-correlation time, optimize the
kernel to sample close to the original (non-complexified) manifold in
Gauge theories, and in general, be used to avoid both the convergence
problem and the stability problem of the CLE. This interesting direction
can replace current methods of keeping the sampling of the CLE close to
the original manifold by a holomorphic modification to the CLE.

However, we find that in real-time simulations, the gradient is not well-
defined after a certain real-time extent due to the complex Langevin
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becoming a chaotic system. This is the topic of chapter 7. For such kind
of problems, a different adjoint sensitivity method is needed. The reason
for deriving this method here is that the alternative methods developed
for chaotic systems build on similar equations.
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4 Stable Solvers for Real-Time Complex
Langevin

This chapter is published in Journal of High Energy Physics 08 (2021)
138 [38].

This study explores the potential of modern implicit solvers for stochas-
tic partial differential equations in the simulation of real-time complex
Langevin dynamics. Not only do these methods offer asymptotic stability,
rendering the issue of runaway solution moot, but they also allow us to
simulate at comparatively large Langevin time steps, leading to lower
computational cost. We compare different ways of regularizing the un-
derlying path integral and estimate the errors introduced due to the finite
Langevin time steps. Based on that insight, we implement benchmark
(non-)thermal simulations of the quantum anharmonic oscillator on the
canonical Schwinger-Keldysh contour of short real-time extent.

4.1 Motivation

The sign problem (see ref. [11] for a mini-review) remains one of the cen-
tral open challenges in modern theoretical physics and hinders progress
in various different subfields. It underlies the challenges encountered
in the study of transport properties of the quark-gluon-plasma [85, 86,
87, 88, 89, 90, 91, 92], it is the central hurdle in the exploration of the
QCD phase diagram at large Baryon density [93, 94, 95, 96, 97, 98]
and impacts the study of the thermodynamics of imbalanced Fermi gases
[99, 100, 101], to name just three. The term sign problem refers to the
fact that many strongly correlated quantum systems of phenomenological
relevance can only be expressed through a path integral with complex val-
ued Feynman weight. In turn, Monte-Carlo sampling methods, successful
in case that the Feynman weight is purely real, become inapplicable and
system-specific strategies must be developed. One of the most technically
challenging sign problems occurs in case of quantum systems formulated
in Minkowski spacetime, where the Feynman weight amounts to a pure
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phase.

The sign problem has been shown to be NP-hard [32], which implies
that a one-size-fits-all approach is unlikely to exist. Nevertheless, many
examples are known in which the sign problem has been successfully
overcome or at least tamed. An active research community (for a re-
cent review see ref. [20]) is exploring multiple strategies. Among these
are variants of reweighing, extrapolation from complex parameters and
the reformulation of the system of interest in new degrees of freedom
unaffected by a sign problem.

The present study sets out to contribute to ongoing efforts to beat the
sign problem by considering the complexification of system degrees of
freedom. This research field has a long history, giving birth to two major
promising currents: the Lefshets thimble approach [102] and complex
Langevin [103]. In the former, one identifies manifolds in the complex
plane, the so-called thimbles, on which the imaginary part of the classical
action remains constant and thus ordinary Monte-Carlo sampling may
commence. A residual sign problem persists as one has to average over
different thimbles. Together with the computationally demanding task
of locating the thimbles, these challenges constitute two areas of active
research interest.

Complex Langevin on the other hand is based on the concept of stochastic
quantization [22, 104]. Quantum and statistical fluctuations of a system
are represented by noise in an additional (𝑑 + 1) + 1 temporal dimension,
which reproduces the correlation functions in (𝑑 + 1) dimensions. In
practice one is required to evolve the field degrees of freedom by a
stochastic partial differential equation (SDE) in an additional, so-called
Langevin time, generating representations of the quantum system along
the way. Expectation values of observables are estimated by taking the
mean over these field configurations. Langevin stochastic quantization
has proven successful in systems in which naive Monte-Carlo methods are
also applicable [105]. It has furthermore been shown to correctly simulate
several systems with complex weights and thus complexified field degrees
of freedom [103]. Even though straight forward in principle, it has
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been realized early on by the community that in its standard formulation,
the complex Langevin approach suffers from three major shortcomings,
which have to be addressed, before the method can serve as a reliable tool
in the precision study of strongly correlated quantum systems.

The three main challenges affecting complex Langevin identified in the lit-
erature are its stability, the ergodicity in the presence of non-holomorphic
actions and most crucially the convergence to incorrect results (for recent
insight see e.g. [68, 58]), which is intimately related to the appearance
of tail structures in histograms of observables (see Refs.[55, 62]). We
believe that it is paramount to disentangle each of these issues, in or-
der to be able to solve them one-by-one. Hence we focus in this study
solely on the question of stability, returning to the remaining two in future
work. (I.e. in order to remain in the parameter range where the complex
Langevin method itself is known to converge to the correct results, we
limit ourselves to a short real-time extent in this study.)

The question of stability in complex Langevin is intimately connected to
the well-known phenomenon of runaway solutions. In general, such di-
vergent behavior can arise from two sources. Either the complex Langevin
method itself does not converge to a finite result, or the numerical methods
used to implement the discrete Langevin time evolution introduce arti-
facts, which in turn give rise to unphysical divergencies. In order to make
progress on understanding the former, we must disentangle numerical
artifacts from methods artifacts.

Observed early on [50], runaways are now commonly treated by deploy-
ing adaptive step-size prescriptions [52] in the solution of the stochastic
Langevin dynamics. One motivation for our work is the fact that even
though adaptive step-size has proven to alleviate the problem of run-
aways in many systems in practice, it does not prevent their occurrence
in principle. I.e. runaway solutions may appear even if adaptive step-
size is deployed (see e.g. [59]), which in gauge theories has led to the
introduction to the additional gauge-cooling approach [106].

In this paper we set out to explore solvers that can prevent the occurrence
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of runaway solutions by construction. To this end, we consider the
stability of complex Langevin from the point of view of the stiffness of the
underlying SDEs. While no precise definition of stiffness exists, we take
the pragmatic view that it refers to systems in which naive explicit time-
stepping prescriptions fail to recover the correct solution. Surveying the
landscape of complex Langevin implementations, we find that a majority
of studies rely on the simple forward Euler discretization. Early on,
improvements in the spirit of deterministic Runge-Kutta methods have
been proposed [107], but to our knowledge only two studies [108, 109]
has embraced a higher-order method that takes into account the stochastic
character of the Langevin evolution equation.

Our study aims at bringing to the table some of the progress made in
the solution of SDEs in other fields. In particular, we propose to de-
ploy implicit solvers, which are designed with stiff problems in mind.
Besides the simple Euler-Maruyama scheme, which we use extensively
in this paper, we will discuss what ingredients are needed in order to
set up higher-order schemes for SDEs, compared to the case of purely
deterministic equations.

Once stable solvers are available, we can proceed to investigate the stabil-
ity and accuracy of the complex Langevin method itself. Our goal lies in
simulating real-time physics, which in the continuum requires a form of
regularization. After exploring different ways how a regularization may
be incorporated in the Langevin evolution, we implement high accuracy
simulations of the (0+1) dimensional anharmonic oscillator in thermal
equilibrium and as a genuine initial value problem from a Gaussian den-
sity matrix.

The paper is organized in the following way: we start in section 4.2 with an
introduction of the equations underlying the complex Langevin approach
and discuss some explicit and implicit SDE solvers for their solution. In
the following, we prepare the grounds for numerical simulations by intro-
ducing and discretizing the anharmonic oscillator model in section 4.3.1.
We discuss different ways to regularize its path integral section 4.3.2 and
will learn how to describe the errors made by a finite step size in the
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Langevin evolution. Armed with this insight, we carry out benchmark
complex Langevin simulations of the quantum anharmonic oscillator on
the canonical Schwinger-Keldysh contour at short real-times both in ther-
mal equilibrium and in a non-equilibrium setting in section 4.4. We close
with a summary and outlook in section 4.5.

4.2 Complex Langevin and SDE solvers

The task at hand is to compute quantum statistical expectation values of
an observable 𝑂. Conventionally such expectation values are formulated
in terms of a Feynman path integral

⟨𝑂⟩ = 1
𝑍

∫
D𝜙 𝑂 [𝜙]𝑒𝑖𝑆[𝜙] , 𝑆[𝜙] =

∫
𝑑𝑑𝑥𝐿 [𝜙] . (4.1)

where 𝑍 =
∫
D𝜙 exp[𝑖𝑆[𝜙]] denotes the partition function.

In Stochastic Quantization, we obtain the expectation values from the
evolution of the system in an artificial Langevin time 𝜏L (for an in-
depth review of the approach, see Ref.[53]). The Langevin-like evolution
equation for the field 𝜙(𝑥, 𝜏L) in its simplest form consists of a drift term,
derived from its classical action 𝑆[𝜙], as well as a Gaussian noise term
[(𝑥, 𝜏L)

𝑑𝜙

𝑑𝜏L
= 𝑖
𝛿𝑆[𝜙]
𝛿𝜙(𝑥) + [(𝑥, 𝜏L) with

⟨[(𝑥, 𝜏L)⟩ = 0, ⟨[(𝑥, 𝜏L)[(𝑥′, 𝜏′L)⟩ = 2𝛿(𝑥 − 𝑥′)𝛿(𝜏L − 𝜏′L).
(4.2)

The quantity 𝑥 may e.g. refer to a four-vector 𝑥 = (𝑥0, x) with Minkowski
(real-time) 𝑥0 and the 3 spatial dimensions x. It is important to keep in
mind that the physical time (𝑥0) and the fictitious Langevin time 𝜏L are
not related to each other. Note that the delta function in the correlator of
the noise encompasses all dimensions of x. This prescription places an
independent stochastic process at each space-time point.

Due to the complex drift term, the field degrees complexify and we can
rewrite the evolution equations instead in terms of the real and imaginary
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part of the field as

𝜙(𝑥, 𝜏L) = 𝜙𝑅 (𝑥, 𝜏L) + 𝑖𝜙𝐼 (𝑥, 𝜏L), (4.3)

such that eq. (4.2) turns into two coupled but real-valued equations for
the real- and imaginary part of the field degrees of freedom

𝑑𝜙𝑅

𝑑𝜏L
= Re

[
𝑖
𝛿𝑆[𝜙]
𝛿𝜙(𝑥)

����
𝜙=𝜙𝑅+𝑖𝜙𝐼

]
+ [(𝑥, 𝜏L),

𝑑𝜙𝐼

𝑑𝜏L
= Im

[
𝑖
𝛿𝑆[𝜙]
𝛿𝜙(𝑥)

����
𝜙=𝜙𝑅+𝑖𝜙𝐼

]
.

(4.4)

We have here used the standard construction in which the noise term
[(𝑥, 𝜏L) is real. These are the stochastic partial differential evolution
equations we will solve in the subsequent sections. The first central
task is to find appropriate numerical solvers to accommodate these equa-
tions.

4.2.1 Numerical schemes

Stochastic partial differential equations (SDE) are a central modern tool
in the modeling of various phenomena in science, technology and in par-
ticular finance. Most of the equations arising in these research fields do
not lend themselves to an analytic treatment and thus require numerical
solvers. To this end, the past two decades have seen vigorous research ac-
tivity in the development of accurate and efficient algorithms. One major
impulse towards these developments can be found in the by now classic
book by Klöden and Platen [110], which not only contains a comprehen-
sive survey of both explicit and implicit SDE solvers but also provides
a pedagogic introduction into the underlying Ito and Stratonovic calcu-
lus. One central message of the book states that the series expansions,
commonly used to set up deterministic discretization schemes, need to
be amended by additional terms in the stochastic case due to the different
scaling properties of stochastic variables. In particular, it is shown that
deterministic algorithms may yield much lower convergence rates in an
SDE setting than for the PDEs they were originally designed for.
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The goal of this section is to introduce some of these numerical schemes
and to explicitly match the complex Langevin equations to the mathe-
matical notation used in the literature, preparing us for a straightforward
implementation through standard libraries, such as the SDE solver pack-
age found in the Julia language.

Let us formulate a general stochastic differential equation for 𝑁 stochastic
variables 𝜙𝑖 in Langevin time 𝜏L, enumerated by the superscript 𝑗 .

𝑑𝜙 𝑗 (𝜏L) = 𝑎 𝑗 (𝜙, 𝜏L)𝑑𝜏L +
∑︁
𝑗

𝑏 𝑗 𝑘 (𝜙, 𝜏L)𝑑𝑊 𝑘 . (4.5)

Its evolution is governed by a diffusion term conventionally denoted by
𝑎 𝑗 (𝜙, 𝜏L), which may depend on all other stochastic variables, as well
as the Langevin time explicitly. We incorporate 𝑁 independent Wiener
processes 𝑑𝑊 𝑗 which obey the standard relations〈∫ 𝜏L

0
𝑑𝑊 𝑗

〉
= 0 and

〈∫ 𝜏L

0
𝑑𝑊 𝑗

∫ 𝜏L

0
𝑑𝑊 𝑘

〉
= 𝛿 𝑗 𝑘

∫ 𝜏L

0
𝑑𝜏′L. (4.6)

They affect the dynamical degrees of freedom 𝜙 𝑗 via the mixing ma-
trix 𝑏(𝜙, 𝜏L). This general non-constant noise coefficient matrix may
have a non-trivial dependence on Langevin time and the stochastic vari-
ables.

In the concrete case of stochastic quantization, we replace the discrete
parameter 𝑗 with the combination of an discrete index for field degrees per
spacetime point and the continuous parameter 𝑥. Hence the sum over 𝑗
turns into a combined sum and integral

∑
𝑗 →

∑
𝑗

∫
𝑑𝑥. Kronecker deltas

remain for discrete indices, while we have to introduce Delta functions
for spacetime 𝛿 𝑗 𝑘 → 𝛿 𝑗 𝑘𝛿(𝑥 − 𝑥′). This leads us to the expression

𝑑𝜙 𝑗 (𝑥, 𝜏L) = 𝑎 𝑗 (𝜙, 𝑥, 𝜏L)𝑑𝜏L +
∫

𝑑𝑥′
∑︁
𝑘

𝑏 𝑗 𝑘 (𝜙, 𝑥, 𝑥′, 𝜏L)𝑑𝑊 𝑘 (𝑥′, 𝜏L),

(4.7)
which can be matched to our complex Langevin eq. (4.2) using

𝑎 𝑗 (𝜙, 𝑥, 𝜏L) = 𝑖
𝛿𝑆[𝜙]
𝛿𝜙 𝑗 (𝑥) , 𝑏 𝑗 𝑘 (𝜙, 𝑥, 𝜏L) =

√
2𝛿 𝑗 𝑘𝛿(𝑥 − 𝑥′). (4.8)
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Note that in its standard form, the CL noise coefficients are constant in 𝜙
and 𝜏L.

As a first step, we need to take care of the drift term, which originates
from a discretized action. To this end, one discretizes physical spacetime
on which the field degrees live, turning continuous 𝑥 into a discrete set of
coordinates 𝑥𝑚. The integral in the classical action may be approximated
using a Newton-Cotes formula with the weights 𝜔𝑚 = 𝜔(𝑥𝑚), which
yields the following drift and noise terms for the continuous Langevin
time SDE

𝑎 𝑗 ,𝑚 (𝜙, 𝜏L) =
𝑖

𝜔𝑚

𝜕𝑆[𝜙]
𝜕𝜙 𝑗 (𝑥𝑚)

, 𝑏 𝑗 𝑘,𝑚𝑙 (𝜙, 𝜏L) =
√︂

2
𝜔𝑚

𝛿 𝑗 𝑘𝛿𝑚𝑙 . (4.9)

This expression for the diffusion term 𝑎 and the noise coefficient matrix
𝑏 can be used straightforwardly in numerical schemes for stochastic dif-
ferential equations. In the remainder of this section, we discuss some of
these schemes in more detail.

The most common implementation of the CL dynamics deploys the sim-
ple, i.e. lowest order, Euler-Maruyama (EM) scheme. Discretizing
Langevin time in equidistant steps of size Δ𝜏L we introduce the discrete
Wiener process increment Δ𝑊 𝑗

_
= 𝑊

𝑗

_+1 −𝑊
𝑗

_
. The subscript _ denotes

at which Langevin time step the random variables are evaluated. The
update step is then given by the following expression, where summation
over repeated indices is implied

𝜙
𝑗 ,𝑛

_+1 = 𝜙
𝑗 ,𝑛

_
+ Δ𝜏L

[
\𝑎 𝑗 ,𝑛 (𝜙_+1) + (1 − \)𝑎 𝑗 ,𝑛 (𝜙_)

]
+ 𝑏 𝑗 𝑘,𝑛𝑚 (𝜙_) Δ𝑊 𝑘,𝑚

_

with ⟨Δ𝑊 𝑗 ,𝑛

_
⟩ = 0, ⟨Δ𝑊 𝑗 ,𝑛

_
Δ𝑊

𝑘,𝑚

_
⟩ = Δ𝜏L𝛿 𝑗 𝑘𝛿𝑛𝑚 . (4.10)

Here we actually refer to a whole class of EM schemes, which differ
by the choice of a single real-valued parameter \. It controls the level
of implicitness. For \ = 0 one recovers the fully explicit forward EM
scheme, while for \ = 1 the implicit variant ensues. The choice of
\ = 1/2 is special, as it refers to a semi-implicit Crank-Nicholson-like
implementation of the EM scheme.
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In contrast to the deterministic Euler schemes, the different variants of
the EM scheme for a non-trivial noise term share a numerical accuracy
of strong order O(

√
Δ𝜏L). I.e. in general they perform worse than in

the deterministic case, which is a common ailment afflicting the direct
application of deterministic schemes to SDEs. In the case of simple
CL dynamics we are fortunate however, in that the noise term remains
trivial and thus the simple EM scheme can be shown to be of strong order
O(Δ𝜏L).

While the same numerical accuracy is shared among the different mem-
bers of the EM family of schemes, their numerical stability varies sig-
nificantly. It is well known that the forward EM scheme is at best con-
ditionally stable, while the fully implicit scheme \ = 1 is robust against
instabilities, being what is called in the literature L-stable. Similarly,
it can be shown (c.f. Crank-Nicolson) that the semi-implicit scheme
\ = 1/2 is also unconditionally asymptotically stable [111].

We stress that stability and accuracy are two separate qualities of a scheme,
where stability only refers to the ability of the numerical solver to fol-
low the true solution within the limitations placed by the accuracy of
the scheme. Unconditional stability however also guarantees that as long
as the true solution remains bounded, the scheme will not produce di-
vergent runaway solutions. This property is what leads us to propose
the deployment of (semi-)implicit solvers for complex Langevin, as it al-
lows us to disentangle possible breakdown of the stochastic quantization
prescription from a breakdown of the numerical solver.

In general, an implicit scheme is more costly than its explicit cousin at
each individual update step. We need to solve a non-linear system of
equations arising from the drift term 𝑎 𝑗 ,𝑛 (𝜙_+1) in eq. (4.10), which is
commonly implemented by a variant of Newton’s method. As we will
see, the favorable stability properties may however allow one to choose
larger step sizes in Langevin time, leading to an overall reduction in
computation cost.

Similarly as for deterministic differential equations, one may improve on
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the simple Euler schemes by developing Runge-Kutta solvers for SDEs,
usually referred to as SRK schemes. They offer a straightforward way to
increase the accuracy of the solver by combining approximations of the
stochastic variables at intermediate steps within one update interval. The
simplest of these is the Runge-Kutta Milstein scheme [110, 112] of strong
order O(Δ𝜏L) for diagonal noise

𝜙
𝑗 ,𝑛

_+1 =𝜙
𝑗 ,𝑛

_
+ Δ𝜏L

[
\𝑎 𝑗 ,𝑛 (𝜙_+1) + (1 − \)𝑎 𝑗 ,𝑛 (𝜙_)

]
+ 𝑏 𝑗 ,𝑛 (𝜙_) Δ𝑊

𝑗 ,𝑛

_

+ 1
2
√
Δ𝜏L

(
𝑏 𝑗 ,𝑛 (Υ_) − 𝑏 𝑗 ,𝑛 (𝜙_)

) {
(Δ𝑊 𝑗 ,𝑛

_
)2 − Δ𝜏L

}
with

Υ
𝑗 ,𝑛

_
=𝜙

𝑗 ,𝑛

_
+ 𝑎 𝑗 ,𝑛 (𝜙_) Δ𝜏L + 𝑏 𝑗 ,𝑛 (𝜙_)

√︁
Δ𝜏L.

(4.11)
Again we have indicated a whole family of schemes, whose implicitness
is governed by the \ parameter. Note that these schemes differ from a
naive application of the deterministic second-order Runge-Kutta (RK2)
prescription through the presence of a term quadratic in the Wiener pro-
cess in the second line of eq. (4.11). In case of simple CL eq. (4.2) with
constant real noise coefficients, the Milstein scheme reduces to the EM
scheme, reaffirming that for trivial noise the simplest algorithm already
offers order 1.0 accuracy.

Let us also touch on higher-order schemes. The next order one can reach
is 1.5 [110], at which the SRK prescription for constant additive noise
reads

𝜙_+1 =𝜙_ + Δ𝜏L
1
2
[𝑎 (𝜙_+1) + 𝑎 (𝜙_)] (4.12)

+ 𝑏 Δ𝑊_ +
1

2
√
Δ𝜏L

{
𝑎(Υ_+) − 𝑎(Υ_−)

} {
Δ𝑍_ −

1
2
Δ𝑊_𝑑𝜏L

}
with Υ_± = 𝜙_ + 𝑎 (𝜙_) Δ𝜏L ± 𝑏

√︁
Δ𝜏L.

Here we use vector notation and we have explicitly chosen \ = 1/2 for
simplicity of the presentation. In this equation, we find that a genuinely
new contribution arises even for trivial noise. It consists of a combina-
tion of the drift term together with Wiener processes Δ𝑊 and Δ𝑍 . The
latter one refers to additional independent processes with the same mean
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and variance as the Δ𝑊 as well as ⟨Δ𝑊 𝑗Δ𝑍 𝑗 ⟩ = 0. By incorporating the
proper contributions arising from Ito’s lemma in the series expansions un-
derlying these Runge-Kutta schemes one may thus construct consecutive
improvements to the naive EM scheme.

In our study, we will draw upon the implementation of the above-
mentioned schemes through the SDE module in the DifferentialEqua-
tions.jl [113, 114, 115] library provided in the Julia language. The
concrete implementations of eqs. (4.10) to (4.12) differ slightly due to
performance improvements outlined in the literature (see the documenta-
tion of [113]), which however has no effect on their stability and accuracy
properties.

All the methods listed above can be implemented with an adaptive step-
size prescription. This offers two concrete benefits. On the one hand, the
stability properties of a simulation can be improved, as the step size is
adapted to fulfill the Courant–Friedrichs–Lewy stability condition at each
update. For stiff problems and explicit solvers, this approach is limited
in practice by the step size becoming so small that the number of steps
along Langevin time grows beyond available computational power. On
the other hand adaptive step size also allows us to increase the step size
at intermediate times to reduce the computational burden while staying
within a predefined accuracy tolerance for the update step. One drawback
of adaptive step size is the fact that an analytic investigation of the prop-
erties of the solver becomes more involved. We will thus deploy adaptive
step size in all simulations except those where we study the finite time
discretization artifacts and look at the corrections from the discretized
Fokker-Planck equation.

Many different adaptive step prescriptions are deployed in the literature.
One of the more sophisticated approaches implemented e.g. in the Julia
library compares updates of solvers of different order and takes the dif-
ference as an error estimate [114]. The step size then is chosen to keep
this error estimate below a pre-defined threshold. More simply we may
monitor the size of the drift term in the Langevin equation and adjust the
time step such that the change induced by the drift term remains below a

69



Stable Solvers for Real-Time Complex Langevin

certain threshold. We have found that some adaptive step-size algorithms
implemented in the literature do not contain a limit on the maximum step
size, which may spoil the accuracy of the outcome and required us to
implement such an upper limit by hand.

4.2.2 On the issue of large excursions

Having reviewed different explicit and implicit prescriptions for the so-
lution of the complex Langevin SDE, we may now explore how these
methods fare in addressing the issue of stability. A common challenge
that plagues complex Langevin simulations is the occurrence of large
excursions. While the overwhelming majority of trajectories contribut-
ing to the final expectation value are located in a well-contained area
around the origin, some paths are found to venture significantly further
out into the complex plane. A simple example of this behavior can be
found in the system of a single degree of freedom, evolving in the poten-
tial 𝑉 (𝜙) = 𝑖𝜙4. On average it leads to paths that stay within around 2
dimensionless units from the origin, however excursions up to |𝜙| ∼ 10
sporadically occur.

These excursions can be understood by inspecting the flow field −4𝑖𝜙3,
as shown in fig. 4.1 along the line where 𝜙𝑅 = 𝜙𝐼 . As 𝜙𝐼 ≳ 𝜙𝑅 the
flow lines tilt upward, while for 𝜙𝐼 ≲ 𝜙𝑅 they tilt downwards. As one
moves exactly on top of the line, the field lines will keep going straight
out towards infinity. This is a property of the continuum theory and not
an artifact of the numerical solution.

In principle, this is not a problem, since the noise term makes sure that one
never stays on this line indefinitely. However, as the size of 𝜙 increases,
the size of the flow 4𝑖𝜙3 also increases significantly compared to the noise
term. In turn, after the noise kicks the system away from the diverging
path, it now follows a path dominated by the drift term with only a small
contribution of the noise term. Such a path tends to go out to even
larger values of |𝜙| until it eventually returns to the dominating region. A
representative example is shown in fig. 4.1 as the green solid line.

It has been understood that such excursions constitute one of the rea-
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Figure 4.1: Example of complex Langevin paths for a single degree of
freedom in the potential 𝑉 (𝜙) = 𝑖𝜙4 based on different solvers: (red) explicit
EM, (violet) implicit EM, (dashed) unitary \ = 1/2 EM and the exact solution
given as green line. Each path is initiated at (1.5, 1.47) close to the divergent
flow line. The Langevin time step size is kept constant at Δ𝜏L = 10−4. Note
the characteristic over and undershooting of the explicit and implicit method
respectively.

sons for the stability issues of numerical implementations of complex
Langevin. Let us have a look at how well the true path is recovered by
the simple EM schemes for different settings of implicitness for a fixed
step size. In general, the explicit method is prone to overshooting the
correct trajectory (red solid line), while the fully implicit method also
fails to stay close to it but does so by undershooting the correct result
(violet solid line). The overshooting of the explicit method easily leads
to divergent behavior as the errors accumulate. For the implicit method
on the other hand the simulation remains stable. Note however that its
accuracy still suffers due to the deviation from the true trajectory. The
semi-implicit EM scheme on the other hand combines the best of both
worlds, as it offers the unconditional stability of the implicit scheme and
limits the undershooting to a minimum, as can be seen in the dashed
black line in fig. 4.1. Note that due to the large flow the actual Langevin
time spend in one of these excursions is very small compared to the to-
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tal length of the trajectories needed to accumulate reasonable statistical
uncertainties.

We can understand the behavior seen in fig. 4.1 already from an inspection
of the discretization prescription in the free theory. There the drift term
is linear (𝑎(𝜙) = 𝑖𝑀𝜙) and we can rewrite the EM scheme of eq. (4.10)
as

𝜙_+1 = (1 − 𝑖Δ𝜏L\𝑀)−1
{
(1 + 𝑖Δ𝜏L(1 − \)𝑀)𝜙_ +

√︁
Δ𝜏L[

_
}
. (4.13)

Taking the expectation value of the field at 𝜏L = (_ + 1)Δ𝜏L we get

|⟨𝜙_+1⟩| =
����1 + 𝑖Δ𝜏L(1 − \)𝑀

1 − 𝑖Δ𝜏L\𝑀

���� |⟨𝜙_⟩|. (4.14)

For \ = 0 the fraction simplifies to |1 + 𝑖Δ𝜏L𝑀 | > 1, which induces an
increase in the magnitude of the field value for each step. On the other
hand for \ = 1 one finds |1 − 𝑖Δ𝜏L𝑀 |−1 < 1, which represents shrinkage
of the magnitude. For the special case of (\ = 1

2 ) we obtain a semi-implicit
scheme with |⟨𝜙_+1⟩| = | (1 − 𝑖Δ𝜏L𝑀/2)/(1 + 𝑖Δ𝜏L𝑀/2) | |⟨𝜙_⟩| = |⟨𝜙_⟩|,
which in the free case exactly preserves the magnitude of the expectation
value of the field.

We chose the above example to illustrate a key qualitative difference be-
tween solvers of varying degrees of implicitness. It should be mentioned
that for the specific scenario shown here, the differences are only sizeable
since we do not use an adaptive step size. A Δ𝜏𝐿 = 10−4 allows for stable
dynamics close to the origin where the drift is small. However at |𝜙 | ∼ 10
we have a relatively large drift term of around Δ𝜏𝐿4𝜙3 = 0.4. In prac-
tice, using adaptive step size one would reduce Δ𝜏L along the excursion,
keeping the deviation from the exact solution small. The conclusion that
explicit schemes accumulate errors according to overshooting of the true
trajectory and implicit schemes according to undershooting it remains
unchanged.
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4.3 Towards stable real-time simulations of the quantum an-
harmonic oscillator

4.3.1 Formulating and discretizing the model

Our main goal in this study is to implement stable simulations of the
early real-time dynamics of a strongly coupled quantum anharmonic os-
cillator. This system amounts to a (0+1)d field theory prototype and has
been studied in the literature in detail [106, 116], establishing itself as a
benchmark for the success of different real-time approaches. Real-time
expectation values for an observable O arising in a system that evolves
from a mixed initial state 𝜌 can be described via the Schwinger-Keldysh
closed time-path formalism. In its canonical implementation, it deals
with field degrees of freedom placed on a time contour, with both a
forward-facing branch along the time axis (housing 𝜙+) and a backward
branch (housing 𝜙−), both of which are attached at the initial time to the
density matrix 𝜌(𝜙1, 𝜙2)

⟨O(𝜙)⟩ = 1
𝑍

∫
𝑑𝜙1

∫
𝑑𝜙2 𝜌(𝜙1, 𝜙2)

∫ 𝜙1

𝜙2

𝐷𝜙+𝐷𝜙− O(𝜙) 𝑒𝑖𝑆[𝜙+]−𝑖𝑆[𝜙−] .

(4.15)
Let us consider the case of thermal equilibrium with inverse temperature
𝛽 = 1/𝑇 . The density matrix takes on the standard Boltzmann form
𝜌 ∝ exp[−𝛽𝐻] and we may conveniently absorb the sampling over initial
conditions into a path integral along the imaginary time axis, compactified
to a length of 𝛽

⟨O(𝜙)⟩ = 1
𝑍

∫
𝐷𝜙𝐸𝑒

−𝑆𝐸 [𝜙𝐸 ]
∫ 𝜙𝐸 (0)

𝜙𝐸 (𝛽)
𝐷𝜙+𝐷𝜙− O(𝜙) 𝑒𝑖𝑆[𝜙+]−𝑖𝑆[𝜙−] .

(4.16)
The corresponding Schwinger Keldysh contour now contains three parts:
the forward and backward real-time branch, as well as the Euclidean
contour all of which contribute with their own action and which we will
summarize as 𝑖𝑆[𝜙+] − 𝑖𝑆[𝜙−] − 𝑆𝐸 → 𝑖𝑆[𝜙].
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The real-time action for the anharmonic oscillator explicitly reads

𝑆 =

∫
𝑑𝑥0

{
1
2

(
𝜕𝜙

𝜕𝑥0

)2
−𝑉 (𝜙)

}
, 𝑉 (𝜙) = 1

2
𝑚𝜙2 + _

4!
𝜙4, (4.17)

where _ refers to the coupling constant. We give all of our results in
units of 𝑚, which is the same as setting 𝑚 = 1. The first step to take
is to discretize the time coordinate 𝑥0 ∈ C along the Schwinger-Keldysh
contour. To this end, we introduce a contour parameter b ∈ R which on
the forward and backward branch refers to a real-valued time, while on the
Euclidean branch refers to a negative imaginary time. The time integral in
the action becomes a line integral over the contour parameter, discretized
into 𝑁C steps 𝑎 𝑗 . The fields, evaluated at the discrete real-time steps are
denoted by 𝜙(∑ 𝑗 𝑎 𝑗 ) = 𝜙 𝑗 . We deploy the trapezoidal rule for the action
integral, which amounts to averaging over the left and right Riemann
sums. Consistently we approximate the derivative by finite differences
choosing forward difference at the point 𝑗 and backward differences at
the point 𝑗 + 1, leading us to the standard expression

𝑆 =
1
2

∑︁
𝑗

{ (
𝜙 𝑗+1 − 𝜙 𝑗

)2

𝑎 𝑗
− 𝑎 𝑗

[
𝑉 (𝜙 𝑗+1) +𝑉 (𝜙 𝑗 )

]}
. (4.18)

To implement the complex Langevin equations of motion, we need to
calculate the drift term 𝑖 𝛿𝑆

𝛿𝜙 𝑗
. Using the discretization scheme above we

obtain

𝑖
𝛿𝑆[𝜙]
𝛿𝜙 𝑗

=
𝑖

1
2
(
|𝑎 𝑗 | + |𝑎 𝑗−1 |

) {𝜙 𝑗 − 𝜙 𝑗−1

𝑎 𝑗−1
−
𝜙 𝑗+1 − 𝜙 𝑗

𝑎 𝑗

− 1
2

[
𝑎 𝑗−1 + 𝑎 𝑗

] 𝜕𝑉 (𝜙 𝑗 )
𝜕𝜙 𝑗

}
.

(4.19)

The factor 1
1
2 ( |𝑎 𝑗 |+|𝑎 𝑗−1 |) , which we have included here explicitly in the

drift term must then also be consistently included in the noise term 𝑏 𝑗 𝑘 =√︃
2

1
2 ( |𝑎𝑘 |+|𝑎𝑘−1 |)

𝛿 𝑗 𝑘 . Note however that via a rescaling of the drift term,
one may drop the factors of 𝑎 if one consistently drops them also from
all the Kronecker deltas associate with functional derivatives. At this
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stage we have only discretized the physical coordinates, leaving us with
a continuous Langevin time prescription to stochastically quantize the
anharmonic oscillator.

The discretization of the action already introduces numerical artifacts
in the solution of the continuous-time complex Langevin equation. In
order to make sure that we do not misinterpret such errors as arising from
the finite Langevin time discretization in an actual simulation, we take a
closer look at them here.

Analogous to constructing the transfer matrix operator we can go back-
ward from the discretized path integral to the corresponding operator
expressions while leaving the real-time step size 𝑎 𝑗 finite. In that case,
we have to deal with the fact that the Campbell-Baker-Hausdorff formula
gives non-trivial contributions when decomposing the action integral into
individual exponentials. Let us define the exponentiated Hamiltonian of
the system via the following matrix elements

⟨𝜙 𝑗+1 | exp(𝑖𝑎 𝑗𝐻) |𝜙 𝑗 ⟩ = exp

[
1
2

(
𝜙 𝑗+1 − 𝜙 𝑗

)2

𝑎 𝑗
− 1

2
𝑎 𝑗𝑉 (𝜙 𝑗 ) −

1
2
𝑎 𝑗𝑉 (𝜙 𝑗 )

]
.

(4.20)

According to our eq. (4.18) the RHS contains the potential evaluated
at neighboring values of the field 𝜙 𝑗+1 and 𝜙 𝑗 , which requires that the
potential operator acts on both the left and right state. Since only one
complete set of momentum eigenstates is involved in transforming the
kinetic term back to its operator form we end up with the expression

exp(𝑖𝑎 𝑗 �̂�s) =exp
[𝑎 𝑗

2
𝑉 (𝜙)

]
exp

[
𝑎 𝑗 �̂�

2

2

]
exp

[𝑎 𝑗
2
𝑉 (𝜙)

]
+ O(𝑎2).

(4.21)

Had we considered just one single potential term in eq. (4.18) the corre-
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sponding operator expressions would have turned out to be

exp(𝑖𝑎 𝑗 �̂�r) =exp

[
𝑎 𝑗 �̂�

2

2

]
exp

[
𝑎 𝑗𝑉 (𝜙)

]
+ O(𝑎) or (4.22)

exp(𝑖𝑎 𝑗 �̂�l) =exp
[
𝑎 𝑗𝑉 (𝜙)

]
exp

[
𝑎 𝑗 �̂�

2

2

]
+ O(𝑎). (4.23)

Using as parameters _ = 24 and 𝑚 = 1, similar to what we will deploy
in the actual complex Langevin simulations in the following sections, we
can now study the effects of the finite real-time spacing explicitly. To
this end we compute the forward correlator ⟨𝜙(𝑥0)𝜙(0)⟩ using matrix
mechanics in the truncated Hilbert space spanned by the 32 lowest-lying
energy eigenstates of the harmonic oscillator, according to the different
effective Hamilton operators �̂� defined above.

As can be seen in fig. 4.2, we find a characteristic artifact introduced
by the finite real-time steps. Its main manifestation is the appearance
of a non-zero value of the imaginary part of the correlator at the origin.
Neighboring values of the imaginary part are correspondingly also shifted
away from their true values. When using the O(𝑎) discretization of
eq. (4.22) this effect is of the order of 12% for 𝑎 = 0.08 (with respect to
the maximum value the imaginary part of the correlator takes on.) The
strength of the effect scales as expected linearly with 𝑎 so that we obtain
6% deviation for 𝑎 = 0.04 and 4% deviation for 𝑎 = 0.08/3. Switching
from eq. (4.22) to (4.23) changes the sign in the shift of the imaginary
part, indicating that the discretization amounts to a complex phase factor.
Combining the opposing phase factors in the symmetric formulation of
eq. (4.21) cancels out the effect to a significant extent, reducing the
deviation from the continuum results to 0.2% already for 𝑎 = 0.08. We
will make sure to keep these discretization artifacts below the percent
level in the Complex Langevin simulations in the following.

4.3.2 Regularizing the model

To make the continuum theory well-defined on the canonical Schwinger-
Keldysh real-time contour, we need to introduce an infinitesimal damping
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Figure 4.2: Visualization of real-time discretization artifacts in the unequal-
time correlation function ⟨𝜙(𝑥0)𝜙(0)⟩. True values (solid lines) are obtained
from matrix mechanics in the truncated Hilbert space spanned by 32 energy
eigenstates of the harmonic oscillator. Note the shift in the imaginary part
when using the first order discretization of eq. (4.22) (open squares) for a
lattice spacing of 𝑎𝑚 = 0.08. The symmetric discretization of eq. (4.21)
significantly improves the agreement with the continuum results as seen in
the open circles.

term into the otherwise purely oscillatory behavior of the Feynman path
integral weight. Otherwise, the continuous Langevin-time evolution will
not be able to converge to a finite result. In an analytic setting, this is
conventionally achieved by introducing by hand an additional term 𝑅 > 0
in the action such that the new effective action reads 𝑆 = 𝑆 + 𝑖𝑅(𝜙, 𝜖).
A simple example of such a regulator is 𝑅 = 1

2𝜖𝜙
2 is e.g. discussed in

[117].

It is long known that such a regulator also controls the rate of convergence
in a complex Langevin simulation [106, 118]. Similar to an analytic
computation where the correct result is obtained by setting 𝜖 → 0 only a
posteriori, a simulation operates at finite 𝜖 , which, depending on its chosen

77



Stable Solvers for Real-Time Complex Langevin

value may significantly distort the computed expectation values. Only
after an extrapolation over several different simulations do we recover the
true solution. It goes without saying that the closer we can simulate to
the correct solution, the less troubled the extrapolation procedure will be.
Therefore we will attempt to deploy as small a regulator as possible.

In this section, we will briefly discuss the classic approach to intro-
duce a tilt in the Schwinger-Keldysh contour [106] and report on our
observation that the implicit scheme itself offers a regularization by con-
struction.

Tilted Schwinger-Keldysh contour

One way to regularize our model is to introduce an imaginary tilt in the
Schwinger-Keldysh contour, as deployed e.g. in ref.[106] and shown in
the leftmost panel of fig. 4.3. Since in the thermal setting we are interested
in correlators on the forward contour (the values of the mixed correlators
are related via the KMS relation) one tries to keep the tilt on the forward
branch small. The backward branch on the other hand may tilt downward
more steeply, as long as it reaches the negative imaginary axis before −𝑖𝛽.
To be more concrete, the tilted Schwinger-Keldysh contour (fig. 4.3 a)
has two distinct parts. Part one (C1) is tilted under an angle 𝛼 from 0 to
𝑡𝑚𝑎𝑥−sin(𝛼)𝛽𝑖. Part two (C2) is tilted such that it arrives at the imaginary
axis at the point−𝑖𝛽, which due to periodic boundary conditions coincides
with the starting point of the first part of the contour.

The information about the shape of the real-time contour is fully contained
in the choice of the, in general complex, time step 𝑎 𝑗 . It denotes the
distance between point 𝑗 and 𝑗 + 1 on the contour and appears explicitly
in the complex Langevin drift term in eq. (4.19). A tilt of the real-time

78



Stable Solvers for Real-Time Complex Langevin

contour manifests itself as a non-zero imaginary part in 𝑎 𝑗 such that

𝑆 =
1
2

∑︁
𝑗

{ (
𝜙 𝑗+1 − 𝜙 𝑗

)2

𝑎𝑅
𝑗
+ 𝑖𝑎𝐼

𝑗

− (𝑎𝑅𝑗 + 𝑖𝑎𝐼𝑗 )
[
𝑉 (𝜙 𝑗+1) +𝑉 (𝜙 𝑗 )

]}
=

1
2

∑︁
𝑗

{ (
𝜙 𝑗+1 − 𝜙 𝑗

)2

|𝑎 𝑗 |
(𝑎𝑅𝑗 − 𝑖𝑎𝐼𝑗 ) − (𝑎𝑅𝑗 + 𝑖𝑎𝐼𝑗 )

[
𝑉 (𝜙 𝑗+1) +𝑉 (𝜙 𝑗 )

]}
=𝑆 + 1

2

∑︁
𝑗

{ (
𝜙 𝑗+1 − 𝜙 𝑗

)2

|𝑎 𝑗 |
(−𝑖𝑎𝐼𝑗 ) − (𝑖𝑎𝐼𝑗 )

[
𝑉 (𝜙 𝑗+1) +𝑉 (𝜙 𝑗 )

]}
=𝑆 + 1

2

∑︁
𝑗

{ (
𝜙 𝑗+1 − 𝜙 𝑗

)2

|𝑎 𝑗 |
+

[
𝑉 (𝜙 𝑗+1) +𝑉 (𝜙 𝑗 )

]}
(−𝑖𝑎𝐼𝑗 )

=𝑆 + 𝑖
∑︁
𝑗

𝑅(𝜙, 𝑎𝐼𝑗 ).

(4.24)
We see that if 𝑎𝑖 has a negative imaginary part, the overall prefactor
becomes (−𝑖𝑎𝐼

𝑗
) = +𝑖 |Im(𝑎𝑖) |, turning the corresponding 𝑅 > 0 into a

positive quantity. Coming to the conclusion that such a positive term
𝑅 successfully acts as a regulator however is not as straightforward as
it appears at first sight. In the case of a complex Feynman weight, the
field themselves becomes complexified and 𝑅 exhibits both a real- and
imaginary part. In the free theory ref.[117] has shown that a positive
𝑅 = 1

2𝜖𝜙
2 allows us to take a well defined late Langevin-time limit of

the complex Langevin dynamics with a regularization of the two-point
function that amounts to ⟨𝜙(𝑘)𝜙(−𝑘)⟩ = 𝑖/(𝑘2 − 𝑚2 + 𝑖𝜖) supporting
the downward tilt of the Schwinger-Keldysh contour as an appropriate
regulator.

Reducing the tilt of C1 reduces the strength of the regularization. It is
well known and we have reconfirmed in our numerical experiments that
concurrently the stochastic dynamics become more and more stiff. I.e.
when deploying an explicit scheme the probability to encounter runaway
solutions increases significantly as the tilt is reduced. In the classic work
of [106], an explicit solver was combined with a 0.01𝛽 tilt of the contour.
While this tilt is small at the early times considered in previous and also
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Figure 4.3: Three different realizations of the thermal Schwinger-Keldysh
contour for a system with temperature 𝑇 = 1

𝛽
. The leftmost setting (a)

corresponds to the contour adopted e.g. in ref.[106]. Our first goal is to be
able to remove the tilt on the forward contour (b) and ultimately in preparation
for the non-equilibrium setting to move both the forward and backward branch
very close to the real-time axis (c). We find that the inherent regularization
of the implicit solver allows us to realize scenarios (b) and (c) in practice.

this study, it already introduces a deviation from the true solution in
the unequal-time correlation functions, which goes beyond the statistical
errorbars of the simulation. With the goal of extending CL simulations
to later real-times in the future, we will be urged to reduce the tilt even
further.

As an example let us carry out a simulation using a similar setup as in
[106], with a tilt of 0.01𝛽 in the anharmonic oscillator action (eq. (4.18)).
In order to remain in the region where complex Langevin converges to
the correct result, we select as maximum real-time extent 𝑥max

0 = 0.5. As
a solver the general Euler-Maruyama scheme (eq. (4.10)) with adaptive
step-size1 is chosen. The \ value in 4.10 is set to \ = 1

2 corresponding to a
semi-implicit scheme, which, as we have seen in section 4.2.2, preserves
the magnitude of the expectation value throughout the simulation well.
We average over a total of 500 trajectories, each of which reaches a total

1All simulations based on the implicit scheme can be carried out without adaptive step-size.
The numerical cost in that case will simply be higher, as an overall smaller step-size is needed to
reach the same accuracy. Nevertheless, compared to simulating with an explicit scheme, we can
deploy a much larger step size. The implicit scheme already works well with Δ𝜏L = 10−3, while
the explicit scheme requires us to go to Δ𝜏L = 10−5.
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Langevin time of 𝜏L𝑚 = 100. Observables are read out every 𝛿𝜏L𝑚 = 0.1
in Langevin time.

We plot the real- and imaginary part of the unequal time correlation
function 𝐺++(𝑥0) = ⟨𝜙(0)𝜙(𝑥0)⟩ − ⟨𝜙(0)⟩⟨𝜙(𝑥0)⟩ on the forward branch
vs. the contour parameter b in the top panel of fig. 4.4. While a small
effect, we can already distinguish between the analytic solution on the
real-time axis (black solid) and the solution on the tilted contour ( green
solid ) within the precision of our simulation. The analytic solution here
is obtained again using matrix mechanics in the truncated Hilbert space
spanned by the 32 energy eigenstates of the harmonic oscillator.

As shown in the magnified insets, close to 𝑥0 = 0.5 the tilt leads to a
visible deviation from the true solution. I.e. such a tilt does affect the
solution at early times and will become sizeable once the simulation can
be extended to a phenomenologically relevant real-time extent.

In the lower panel of fig. 4.4 the field expectation value ⟨𝜙⟩ and the equal
time correlation function ⟨𝜙2⟩ are plotted vs. the contour parameter along
both branches of the contour. We find that they agree with the constant
value predicted by the true solution. I.e. as is known, these quantities are
less susceptible to the tilt as the unequal-time correlation function.

Regularization via an implicit scheme

Previous studies and the preceding subsection have shown that intro-
ducing a large enough tilt in the Schwinger-Keldysh contour, as in sec-
tion 4.3.2, allows us to regularize the oscillatory behavior of the path
integral. Depending on the size of the tilt it does so effectively enough for
even an explicit solver to capture the ensuing complex Langevin dynam-
ics. The price to pay is a systematic deviation of the correlation function
from the result on the real-time axis which grows with the maximum
extent of the forward contour.

In this study, our goal is to explore the potential of implicit solvers for
complex Langevin. We have already seen how their simplest formulation,
in form of the EM scheme, avoids the occurrence of runaway solutions in
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Figure 4.4: Simulation results for the anharmonic oscillator based on the
semi-implicit Euler-Maruyama scheme on a 0.01𝛽 tilted contour: (top)
unequal-time correlation function 𝐺++(𝑥0) = ⟨𝜙(0)𝜙(𝑥0)⟩ − ⟨𝜙(0)⟩⟨𝜙(𝑥0)⟩
plotted for real-time values along the forward branch of the tilted Schwinger-
Keldysh contour together with the true solution on the real-time axis (black
solid) and along the tilted contour (green solid). Close to 𝑥0 = 0.5 our
simulation can already distinguish between the two. (bottom) The field ex-
pectation value ⟨𝜙⟩ and the equal-time correlation function ⟨𝜙2⟩ evaluated on
both branches. Agreement with the true solution is observed within errors
within uncertainty (errors appear larger here only since the y-axis scale is
reduced compared to the top panel).
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section 4.2.2. We will return to the evolution equations and show that the
formulation of the general EM scheme harbors additional terms, which
play a role in the regularization of the path integral itself.

Let us focus on the simple but relevant case of the free theory here with
𝑉 (𝜙) = 1

2𝑚
2𝜙2. The update step of the general EM scheme reads

𝜙_+1
𝑗 = 𝜙_𝑗 + 𝑖𝜖 𝑗

[
\
𝜕𝑆_+1

𝜕𝜙 𝑗
+ (1 − \) 𝜕𝑆

_

𝜕𝜙 𝑗

]
+ √

𝜖 𝑗[
_
𝑗 , (4.25)

where 𝜖 𝑗 = Δ𝜏L
|𝜔 𝑗 | . To simplify the derivation below, we assume without

loss of generality that the step size 𝜖𝑖 = 𝜖 is constant along the contour.
In the free theory we may in addition write the action in a simple matrix
form as 𝜕𝑆_

𝜕𝜙 𝑗
= 𝑀𝜙_

𝑗
. Substituting this into eq. (4.25) yields

(𝐼 − 𝑖𝜖\𝑀) 𝜙_+1 =
{
(𝐼 + 𝑖𝜖 (1 − \)𝑀)𝜙_ +

√
𝜖[_

}
. (4.26)

The explicit entries in 𝑀𝑖 𝑗 are obtained via eq. (4.19) as

𝑀 𝑗 𝑘 =


1
𝑎 𝑗−1

+ 1
𝑎 𝑗

− 1
2
[
𝑎 𝑗−1 + 𝑎 𝑗

]
𝑚2, 𝑗 = 𝑘

− 1
𝑎 𝑗
, 𝑗 = 𝑘 − 1

− 1
𝑎 𝑗−1

, 𝑗 = 𝑘 + 1.
(4.27)

In order to proceed, we bring the implicit part of the update over to
the RHS and assume that 𝜖 is sufficiently small to expand the inverse
matrix. The relevant quantitative criterion here is that the magnitude of the
eigenvalues of 𝜖\𝑀 are smaller than 1, i.e., the max [|_1 |, |_2 |, ...] < 1.
In turn, we obtain

𝜙_+1 = (𝐼 − 𝑖𝜖\𝑀)−1 {
(𝐼 + 𝑖𝜖 (1 − \)𝑀)𝜙_ +

√
𝜖[_

}
(4.28)

=

∞∑︁
𝑘=0

(𝑖𝜖\𝑀)𝑘
{
(𝐼 + 𝑖𝜖 (1 − \)𝑀)𝜙_ +

√
𝜖[_

}
. (4.29)

Let us truncate the expansion at second order in 𝜖 and focus on the
contributions to the drift term

𝜙_+1 =

{(
1 + 𝑖𝜖𝑀 − 𝜖2\𝑀2

)
𝜙_ +

√
𝜖[_

}
+ O(𝜖3/2). (4.30)
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The correction to the drift term of second order in 𝜖 may be absorbed into
an effective action for the general EM scheme

𝑆\ =
1
2
𝜙

(
𝑀 + 𝑖𝜖\𝑀2

)
𝜙 = 𝑆explicit +

𝑖𝜖

2
\
∑︁
𝑗

𝑆2
𝑗 . (4.31)

The expression for 𝑆\ tells us that the difference between the EM scheme
with finite \ and the fully explicit one lies in the presence of one additional
term. It is proportional to the complex unit 𝑖 and both depend on the time
step and the implicitness parameter. Similar to the regulator term from a
tilted contour in eq. (4.24) it is positive and thus leads to a damping of the
oscillations of the path integral. eq. (4.31) thus constitutes a new means
of regularization unavailable to explicit solvers.

The above argument is further supported by numerical tests, which show
that the regularization becomes weaker as the Langevin time step is
reduced. Intuitively it also agrees with the behavior of the numerical
solvers we discussed in the context of large excursions in section 4.2.2.
The term proportional to 𝜖2 in eq. (4.30) features a minus sign, which
leads to the stable undershooting of the true solution shown in fig. 4.1.
In turn, it is this correction that will prevent the Langevin dynamics from
diverging in the late Langevin time limit, realizing the role of a regularizer
in the underlying path integral.

4.3.3 Finite Langevin time step errors

We have argued in the preceding section that implicit solvers provide a
novel intrinsic regularization of the underlying complex path integral.
This regularization depends on the implicitness parameter but more im-
portantly depends on the finite Langevin time step Δ𝜏L. It tells us that
for finite step size our system remains well defined but that when mov-
ing towards continuous Langevin time, the dynamics will become more
difficult to tame, as we concurrently remove our regularization. This co-
nundrum can be avoided if it is possible to analytically correct for the finite
Langevin step size corrections in our observables. Then we may choose a
small but not too small value of Δ𝜏L (depending on the parameters of the
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system) and carry out the simulation in a well-defined manner, accounting
for the difference to the continuous Langevin solution a posteriori. In this
section, we set out to derive such correction terms.

Our strategy is as follows: As a first step, we follow [107] and show that
the effects of an implicit solver scheme at finite Langevin step size Δ𝜏L
can be cast in the language of an effective action for the Fokker-Planck
equation. In order to exploit the well-established methods underlying
the derivation of the Fokker-Planck equation from Langevin dynamics,
we restrict ourselves to a scenario with purely real Feynman weights, i.e.
the imaginary time one. We continue in a second step to guess how the
effective action obtained in the real case generalizes to the complex case.
This heuristic step is supported by numerical evidence, which confirms
that it allows us to correct numerical artifacts introduced by finite Δ𝜏L in
practice.

Let us again focus on the simple but relevant free theory with 𝑉 (𝜙) =
1
2𝑚

2𝜙2. The update step of the general EM scheme, now for the Euclidean
action reads

𝜙_+1
𝑗 = 𝜙_𝑗 − 𝜖 𝑗

[
\
𝜕𝑆_+1

𝜕𝜙 𝑗
+ (1 − \) 𝜕𝑆

_

𝜕𝜙 𝑗

]
+ √

𝜖 𝑗[
_
𝑗 , (4.32)

where 𝜖 𝑗 = Δ𝜏L
|𝜔 𝑗 | and the negative sign in the drift term arises from the

Wick rotation into imaginary time. For \ = 0 these dynamics have been
investigated in ref.[107].

To simplify the derivation below, we assume without loss of generality
that the step size 𝜖𝑖 = 𝜖 is constant along the contour. Remember that in
the free theory can write the action in a simple matrix form as 𝜕𝑆_

𝜕𝜙𝑖
= 𝑀𝜙_.

Substituting all into eq. (4.32) yields

(𝐼 + 𝜖\𝑀) 𝜙_+1 =
{
(𝐼 − 𝜖 (1 − \)𝑀)𝜙_ +

√
𝜖[_

}
. (4.33)

Let us bring the implicit part of the update over to the RHS and take 𝜖 is

85



Stable Solvers for Real-Time Complex Langevin

small enough to expand the first term in parentheses

𝜙_+1 = (𝐼 + 𝜖\𝑀)−1 {
(𝐼 − 𝜖 (1 − \)𝑀)𝜙_ +

√
𝜖[_

}
(4.34)

=

∞∑︁
𝑘=0

(−𝜖\𝑀)𝑘
{
(𝐼 − 𝜖 (1 − \)𝑀)𝜙_ +

√
𝜖[_

}
. (4.35)

The above expression, up to order 𝜖5/2, can be written in index notation,
using 𝑀 𝑗 𝑘𝜙

_
𝑘
= 𝜕𝑆_

𝜕𝜙 𝑗
= 𝑆_

𝑗
as

𝜙_+1
𝑗 = 𝜙_𝑗 − 𝜖𝑆_𝑗 + 𝜖2\𝑀 𝑗 𝑘𝑆

_
𝑘 +

(√
𝜖𝛿 𝑗 𝑘 − 𝜖3/2\𝑀 𝑗 𝑘

)
[_𝑘 + O(𝜖5/2)

= 𝜙_𝑗 − 𝑓 _𝑗 [𝜙] .
(4.36)

We will now derive the corresponding Fokker-Plank equation and the
effective action based on the above update prescription. The standard
approach (see e.g. [119]) is to rewrite the probability distribution for 𝜙,
denoted as P[𝜙] at discrete Langevin time step _+1 in terms of its values
at step _ using a delta-distribution. The argument of the delta distribution
contains the Langevin update step from _ to _ + 1 and is averaged over
the ensemble

P_+1 [𝜙] =
∫

[𝑑𝜙′]
〈∏

𝑗

𝛿

(
𝜙 𝑗 − 𝜙′𝑗 + 𝑓 𝑗 [𝜙′]

)〉
P_ [𝜙′] . (4.37)

After expanding the delta function in powers of 𝑓 𝑗 and integrating over 𝜙′
one arrives at the Kramers-Moyal expansion for the discretized stochastic
process,

P_+1 [𝜙] = P_ [𝜙] +
∞∑︁
𝑛=1

1
𝑛!
∇ 𝑗1 ...∇ 𝑗𝑛

(
⟨ 𝑓 𝑗1 ... 𝑓 𝑗𝑛⟩P_ [𝜙]

)
. (4.38)

A Fokker-Planck equation may be obtained by considering terms up to
the order 𝜖2, which are encoded in the correlation functions of the up-
date term 𝑓 . To make these explicit we use the following properties of
the noise ⟨[ 𝑗 ⟩ = 0, ⟨[ 𝑗[𝑘⟩ = 2𝛿 𝑗 𝑘 , ⟨[ 𝑗[𝑘[𝑙⟩ = 0 and ⟨[ 𝑗[𝑘[𝑙[𝑚⟩ =
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4
(
𝛿 𝑗 𝑘𝛿𝑙𝑚 + 𝛿 𝑗 𝑙𝛿𝑘𝑚 + 𝛿 𝑗𝑚𝛿𝑘𝑙

)
, which leads to the following four expres-

sions:

⟨ 𝑓 𝑗 ⟩ =𝜖𝑆 𝑗 − 𝜖2\𝑀 𝑗 𝑘𝑆𝑘 + O(𝜖3),
⟨ 𝑓 𝑗 𝑓𝑘⟩ =𝜖2𝑆 𝑗𝑆𝑘 + 2𝜖𝛿 𝑗 𝑘 − 2𝜖2\ (𝑀𝑘𝑙𝛿 𝑗 𝑙 + 𝑀 𝑗 𝑙𝛿𝑘𝑙) + O(𝜖5/2),

⟨ 𝑓 𝑗 𝑓𝑘 𝑓𝑙⟩ =2𝜖2 (
𝑆 𝑗𝛿𝑘𝑙 + 𝑆𝑘𝛿 𝑗 𝑙 + 𝑆𝑙𝛿 𝑗 𝑘

)
,

⟨ 𝑓 𝑗 𝑓𝑘 𝑓𝑙 𝑓𝑚⟩ =4𝜖2 (
𝛿 𝑗 𝑘𝛿𝑙𝑚 + 𝛿 𝑗 𝑙𝛿𝑘𝑚 + 𝛿 𝑗𝑚𝛿𝑘𝑙

)
.

(4.39)
To the lowest order in 𝜖 we obtain the following Fokker-Planck equa-
tion

𝜕

𝜕𝜏L
P = ∇ 𝑗

[ (
𝑆 𝑗 + ∇ 𝑗

)
P

]
+ O(𝜖3/2), (4.40)

which by a change of variable, P = 𝑒−𝑆/2Ψ, can be shown to converge
to the correct equilibrium distribution in the case of a real-valued action.
Now the Kramer-Moyal expansion up to corrections of order O(𝜖3) on the
other hand contributes additional terms to the Langevin time evolution of
the probability distribution

𝜕𝑡P = ∇ 𝑗

(
𝑆 𝑗 + ∇ 𝑗

)
P + 𝜖

{
−\𝑀 𝑗 𝑘∇ 𝑗 (𝑆𝑘P) + 1

2
∇ 𝑗∇𝑘 (𝑆 𝑗𝑆𝑘P)

−\ (𝑀𝑘 𝑗 + 𝑀 𝑗 𝑘 )∇ 𝑗∇𝑘P + ∇ 𝑗∇2(𝑆 𝑗P) + 1
2
∇2∇2P

}
+ O(𝜖5/2).

(4.41)

Since it is the equilibrium distribution, which is of main interest to us, let
us set the LHS to zero. To be more concise we will rewrite 𝑀 𝑗 𝑘 = −∇ 𝑗𝑆𝑘

and use eq. (4.40) to make the replacement∇ 𝑗P = −𝑆 𝑗P+O(𝜖) within the
curly brackets of eq. (4.41), consistent with the order of the approximation.
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The new terms at this order then give

∇ 𝑗

{
\𝑀 𝑗 𝑘𝑆𝑘 +

1
2
(𝑆 𝑗 𝑘𝑆𝑘 + 𝑆 𝑗𝑆𝑘𝑘 − 𝑆 𝑗𝑆2

𝑘 ) − \ (𝑀𝑘 𝑗 + 𝑀 𝑗 𝑘 )𝑆𝑘 (4.42)

+∇𝑘 (𝑆 𝑗 𝑘 − 𝑆 𝑗𝑆𝑘 ) +
1
2
∇ 𝑗 (−𝑆𝑘𝑘 + 𝑆2

𝑘 )
}
P (4.43)

=∇ 𝑗

{
−\𝑀𝑘 𝑗𝑆𝑘 +

1
2
(𝑆𝑘 𝑗𝑆𝑘 + 𝑆 𝑗𝑆𝑘𝑘 − 𝑆 𝑗𝑆2

𝑘 ) (4.44)

+(𝑆 𝑗 𝑘 𝑘 − 𝑆 𝑗 𝑘𝑆𝑘 − 𝑆 𝑗 𝑘𝑆𝑘 − 𝑆 𝑗𝑆𝑘𝑘 + 𝑆 𝑗𝑆2
𝑘 ) (4.45)

+1
2
(−𝑆𝑘𝑘 𝑗 + 𝑆𝑘𝑘𝑆 𝑗 + 2𝑆𝑘 𝑗𝑆𝑘 − 𝑆2

𝑘𝑆 𝑗 )
}
P (4.46)

=∇ 𝑗

{
\𝑆 𝑗 𝑘𝑆𝑘 −

1
2
𝑆 𝑗 𝑘𝑆𝑘 +

1
2
𝑆 𝑗 𝑘 𝑘

}
P (4.47)

=∇𝑖
{
−

(
1
2
− \

)
𝑆 𝑗 𝑘𝑆𝑘 +

1
2
𝑆 𝑗 𝑘 𝑘

}
P (4.48)

=∇ 𝑗

{
1
2
∇ 𝑗𝑆𝑘𝑘 −

1
2

(
1
2
− \

)
∇ 𝑗𝑆

2
𝑘

}
P . (4.49)

Reexpressed as a modified action we arrive at the intermediate result

0 = ∇ 𝑗

[ (
𝑆 𝑗 + ∇ 𝑗

)
P

]
, 𝑆 = 𝑆 + 𝜖

2

∑︁
𝑘

{
𝑆𝑘𝑘 −

(
1
2
− \

)
𝑆2
𝑘

}
. (4.50)

In the above expression, we see that the \ parameter governs the size and
sign of a real-valued addition to the action. For \ > 1

2 the contribution
is positive and for \ < 1

2 it is negative, distinguishing clearly between
the implicit regime and the explicit regime. Note that similar to our
discussion of the large excursions, the semi-implicit case of \ = 1

2 is
special, as it cancels all corrections associated with the 𝑆2

𝑘
term.

The derivation outlined above cannot be translated one-to-one into the
complex case. We would need to instead express the complex Langevin
evolution in terms of the real-valued joint probability distribution of the
real- and imaginary part of the complexified fields. Doing so, we were
unable to derive a similarly closed-form as eq. (4.49). The structure of
the correction terms obtained in the real case however invites a heuristic

88



Stable Solvers for Real-Time Complex Langevin

generalization to the complex domain using the replacement −𝑆 → 𝑖𝑆,
which leads to

0 = ∇ 𝑗

[ (
−𝑖𝑆 𝑗 + ∇ 𝑗

)
P

]
, 𝑆 = 𝑆 + 𝜖

2

∑︁
𝑘

{
𝑆𝑘𝑘 + 𝑖

(
1
2
− \

)
𝑆2
𝑘

}
. (4.51)

Let us find out whether this expression describes the dynamics of the
complex Langevin simulation in practice. Similar to the discussion for
the real-valued case in [107], we can attempt to counteract the effects
introduced by a finite Langevin step size 𝜖 in the action by a redefinition
of the fields. In our case the leading order change in fields according to
eq. (4.51) amounts to

𝜙 𝑗 = 𝜙 𝑗 −
𝑖𝜖

2

(
1
2
− \

)
𝑆 𝑗 , (4.52)

where 𝑆 𝑗 is nothing but the drift term. Note that 𝑆 𝑗 𝑗 in the free theory is
just a constant, so that acting with one more derivative on it makes that
term vanish. Thus the redefinition of the fields changes the action to first
order in 𝜖 such that it cancels the 𝑆2

𝑗
contribution in eq. (4.51)

𝑆[𝜙] ∼ 𝑆[𝜙] − 𝑖𝜖
2

(
1
2
− \

) ∑︁
𝑘

𝑆2
𝑘 . (4.53)

I.e. if eq. (4.51) is the correct generalization then observables evaluated
in terms of 𝜙𝑖 instead of 𝜙 should show reduced deviations from the
continuous Langevin time result. For the equal time two-point function
we e.g. obtain the following corrected expression〈

𝜙2
𝑗

〉
=

〈
𝜙2
𝑗

〉
−𝜖

(
1
2
− \

) 〈
𝜙 𝑗 (𝑖𝑆 𝑗 )

〉
Σ

−𝜖
2

4

(
1
2
− \

)2 〈
𝑆2
𝑗

〉
. (4.54)

For later reference, we denote the correction term linear in 𝜖 as Σ. In
order to assess the validity of the above arguments, let us simulate the
harmonic oscillator on the real-time contour c) of fig. 4.3, i.e. on a contour
without tilt in the real-time branch, up to a maximum extent of 𝑥max

0 = 0.5.
Deploying an equidistant real-time spacing on the forward and backward
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branch of the contour and a Langevin time step of Δ𝜏L = 10−2, we
compute the difference between the numerical result and the analytic
solution Δ𝜙2 = ⟨𝜙2⟩CL − ⟨𝜙2⟩QM as the colored boxes in the top panel of
fig. 4.5 vs. the contour parameter b. We find characteristic features in
both the real- and imaginary part of this quantity. The artifacts introduced
by the implicit solver at finite Langevin time show opposite sign in the
imaginary part and same sign in the real-part comparing the forward
and backward branch. On the Euclidean time interval, only the real-part
receives significant modifications.

Interestingly, the correction term (𝜙 − 𝜙)2 taken from eq. (4.54), when
plotted as the colored triangles in fig. 4.3 already follows the behavior of
the deviations in a qualitative fashion. At the same time, we observe that
it appears to consistently over-predict those artifacts. Limiting ourselves
to the corrections linear in Langevin step size 𝜖 , shown in gray, we
find that they capture the artifacts even more accurately. This difference
between the linear and quadratic terms in 𝜖 to us hints at the need to
include higher-order corrections in the expansion of eq. (4.51) to arrive at
a reliable correction term beyond leading order. To conclude, we find that
the linear correction terms derived from a heuristic generalization of the
robust result in eq. (4.50) capture the discrete dynamics of our complex
Langevin simulation in a qualitative fashion, lending numerical support
to eq. (4.51).

The correction terms obtained in eq. (4.51) contain the first and second
derivative of the action 𝑆𝑘 and 𝑆𝑘𝑘 . We can gain additional insight
into what role they play from the following considerations based on the
translation invariance of the integrals over the fields. Let us start by
stating the fact that

⟨(𝜙 𝑗 + 𝜙0)𝑛⟩ =
∫

𝐷𝜙(𝜙 𝑗 + 𝜙0)𝑛 exp(𝑖𝑆(𝜙 𝑗 ))

=

∫
𝐷𝜙(𝜙 𝑗 )𝑛 exp(𝑖𝑆(𝜙 𝑗 − 𝜙0)) (4.55)

where we have shifted the integral in the second line, such that the constant
𝜙0 has been moved into the exponent. While the distribution obtained
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Figure 4.5: Comparison of the finite Langevin step-size artifacts in the
equal-time correlator Δ𝜙2 = ⟨𝜙2⟩CL − ⟨𝜙2⟩QM to the estimates of that error
based on eq. (4.54). The filled triangles denote the full estimate including
the terms proportional to 𝜖2, which provide the correct qualitative behavior
but systematically overestimate Δ𝜙2. On the other hand the leading order
expression Σ, proportional to 𝜖 , shown as filled circles captures the error
even quantitatively within the statistical uncertainty. The position along the
contour is parametrized by b, which for b < 1 points to real-time values and
for 1 < b < 2 refers to imaginary times. (top) Estimation of the errors in the
free theory (harmonic oscillator) using Δ𝜏L = 10−2, as well as (bottom) for
the anharmonic oscillator at _ = 24 with Δ𝜏L = 10−3. In both cases, the data
is based on 1000 separate trajectories each of total length 𝜏L = 200.
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from CL is different, the expectation values of the shifted system will
still be the same. We can now exploit the presence of 𝜙0 in the integrand
and the weight to derive relations between different n-point correlation
functions. Using the first and second derivative with respect to 𝜙0 we
have

∇𝜙0 ⟨(𝜙 𝑗 + 𝜙0)𝑛⟩|𝜙0=0 =𝑛⟨(𝜙 𝑗 )𝑛−1⟩ = ⟨(𝜙 𝑗 )𝑛 (−𝑖𝑆 𝑗 )⟩ (4.56)
∇2
𝜙0
⟨(𝜙 𝑗 + 𝜙0)𝑛⟩|𝜙0=0 =𝑛(𝑛 − 1)⟨(𝜙 𝑗 )𝑛−2⟩ = ⟨(𝜙 𝑗 )𝑛 (−𝑖𝑆 𝑗 𝑗 − (𝑆𝑖)2)⟩.

(4.57)

Using the first derivative with 𝑛 = 1 and the second derivative with 𝑛 = 0
we obtain the following two expressions respectively

⟨1⟩ = ⟨𝜙 𝑗 (−𝑖𝑆 𝑗 )⟩, 0 = ⟨−𝑖𝑆 𝑗 𝑗 − (𝑆𝑖)2⟩. (4.58)

For the free case, 𝑆 𝑗 𝑗 is a constant. The first term is particularly interesting
as it tells us that for continuous Langevin time, the term ⟨𝜙 𝑗 (−𝑖𝑆 𝑗 )⟩ should
be constant and correspond to the normalization of the system. In the
presence of discrete Langevin time steps, we found that it is a term
proportional to ⟨𝜙 𝑗 (−𝑖𝑆 𝑗 )⟩, which describes the corrections and which
are not constant as shown in fig. 4.5. We thus interpret the corrections
in eq. (4.54) as counteracting in part the deviations from the correct
normalization of the continuum theory.

When we derived the modifications to the Fokker-Planck equation in the
free theory, we were able to express them in terms of the quantity 𝑆 𝑗 . We
may ask whether this expression also holds in the interacting theory. To
this end, we carry out simulations of the anharmonic oscillator at short
real-times on the untilted Schwinger-Keldysh contour up to 𝑥max

0 = 0.5,
where complex Langevin is known to converge to the correct solution
(for more details see section 4.4.1). The same solver as for the harmonic
oscillator is deployed and we choose a Langevin step-size of Δ𝜏L = 10−3.
In the lower panel of fig. 4.5 we plot the resulting deviations from the
analytic solution (filled boxes), compared to the naive application of
eq. (4.54) to the interacting theory (filled triangles). Again we observe
that the expression up to second order in 𝜖 slightly overestimates the
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artifacts but that restricting us to the linear term in 𝜖 allows us to capture
the discretization errors within uncertainties.

With an expression at hand that allows us to correct the finite Langevin
step size corrections for small values of 𝜖 , we are able to exploit the
regularization properties of the implicit solvers in practice. What remains
for each explicit system is to choose a step-size and \ parameter, keeping
in mind the trade-off between regularization artifacts and numerical cost.
Having too small of a step size in the implicit scheme will reduce the
effect of the regulator, which in turn will lead to the appearance of large
excursions. Even though these excursions do not represent a problem
in principle (the approach is inherently stable) they may lead to high
computational cost if a fixed accuracy goal is prescribed. Using an
intermediate step sizes ∼ 10−3 appears to give the best trade-off for the
interacting systems considered in this study. The finite step size provides
an effective regulator to the path integral and the finite step-size artifacts
can be remedied by the correct procedure discussed above.

We emphasize that the implicit EM scheme provides enough of an in-
trinsic regularization that we may forego a tilting of the Schwinger-
Keldysh contour all together. I.e. we gain access to the fields very
close to the actual forward and backward real-time branch of the canoni-
cal Schwinger-Keldysh contour, which is particularly useful in the study
of non-equilibrium field theory, in which the forward and backward cor-
relators are not related via the KMS relation.

Armed with the insight laid out in the previous sections we are now ready
to carry out stable simulations of the quantum anharmonic oscillator at
short real times.

4.4 Stable CL simulations at short real-times

In this section, we present numerical results of simulating real-time com-
plex Langevin on the canonical Schwinger-Keldysh contour with short
time extent of 𝑥max

0 = 0.5 using the implicit EM scheme. We will start out
with a system in thermal equilibrium which is formulated on contour c) of
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fig. 4.3. As a second example, we take a look at a system with Gaussian
initial conditions, where only the forward and backward real-time branch
of the contour remains and a Euclidean branch is absent.

4.4.1 Dynamics in thermal equilibrium

Our simulation uses the same parameters as adopted in the classic work
of ref.[106], i.e. _ = 24 and 𝑚 = 1. To discretize the real-time contour
c) in fig. 4.3 for a temperature 𝑇 = 1/𝛽 = 1 and real-time extent of
𝑥max

0 = 0.5, we use 16 points for the forward and backward branch each
and an additional 32 points along the negative imaginary time axis. This
choice of an equidistant |𝑎 | = 0.031 guarantees that the finite time spacing
artifacts to the correlation functions remain at the permille level.

To regularize the path integral we deploy the general EM scheme with
its implicitness parameter set to \ = 0.6. We use the adaptive step size
prescription of the Julia stochastic processes library with a maximum step
size of Δ𝜏L = 0.005. This choice provides an efficient enough regular-
ization to avoid costly excursions, while at the same time the deviation
from the continuous Langevin result remains smaller than our statistical
uncertainty. For the computation of the correlation functions of interest,
field configurations are collected based on 500 different trajectories. We
read out observables on each of them in intervals of 𝛿𝜏L = 0.1 up to a
total Langevin time of 𝜏L = 100.

In the top panel of fig. 4.6 we show the unequal time correlation function
𝐺 = ⟨𝜙(0)𝜙(b)⟩−⟨𝜙(0)⟩⟨𝜙(b)⟩, which for b < 1/2 amounts to𝐺++(𝑥0 =

b) = ⟨𝜙(0)𝜙(b)⟩ − ⟨𝜙(0)⟩⟨𝜙(b)⟩ and for b > 1/2 to 𝐺+−(𝑥0 = 1 − b) =
⟨𝜙(0)𝜙(b)⟩ − ⟨𝜙(0)⟩⟨𝜙(b)⟩. The corresponding continuum Langevin
time solution is plotted as solid black curve, which is obtained from
a matrix mechanics computation based on the truncated Hilbert space
spanned by the lowest 32 energy eigenstates of the harmonic oscillator.
The magnified insets confirm that our solution accurately reproduces the
continuum solution on the forward and backward branch of the canonical
Schwinger-Keldysch contour up to these early real-times.

In the lower panel of fig. 4.6 we plot the Euclidean correlator 𝐺𝐸 (𝑥0 =
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Figure 4.6: (top) Two unequal time correlation functions along the real-time
branches of the canonical Schwinger-Keldysh contour. For b < 1/2 the data-
points represent 𝐺++(𝑥0 = b) = ⟨𝜙(0)𝜙(b)⟩−⟨𝜙(0)⟩⟨𝜙(b)⟩ and for b > 1/2 we
have 𝐺+−(𝑥0 = 1 − b) = ⟨𝜙(0)𝜙(b)⟩ − ⟨𝜙(0)⟩⟨𝜙(b)⟩. Note the excellent accu-
racy in reproducing the continuous Langevin time result given as black solid
line. (bottom) The Euclidean correlator 𝐺𝐸 (𝑥0 = −𝑖(b − 1)) = ⟨𝜙(0)𝜙(b)⟩
evaluated on the imaginary time branch of the canonical Schwinger-Keldysh
contour together with the continuous Langevin time solution (black solid)
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−𝑖(b − 1)) = ⟨𝜙(0)𝜙(b)⟩. It features a vanishing imaginary part and a
real part which correctly exhibits a symmetry around 𝑥0 = −𝑖𝛽/2, corre-
sponding to the contour parameter b = 1.5 here. Again the continuum
solution from matrix mechanics is given as solid black line and we find
excellent agreement.

Let us take a look at another set of observables, which have been discussed
in the literature. The top panel of fig. 4.7 we show the field expectation
value ⟨𝜙⟩ (filled box and triangle) and the equal time correlation function
⟨𝜙2⟩ (filled star and cross) along the whole extent of the simulation
contour parametrized by b. Within the statistical uncertainties of our
simulation, we find full agreement with the continuous-time Langevin
solution. Should one be interested in higher precision results, one will
eventually find minute differences from the continuum result, similar to
those shown in the lower panel of fig. 4.5.

We foresee that the new insight obtained in eq. (4.54) will help us in
future studies to distinguish artifacts arising from finite Langevin-time
discretization from those connected to a convergence to the wrong result.
One concrete example is the equal-time correlation function, whose de-
viation from a constant value has previously been taken as an indication
for the arrival at an unphysical solution. If the errors from a finite Δ𝜏L are
accounted for, can the remaining deviation be unambiguously associated
with wrong convergence.

The last result in this section we present in the lower panel of fig. 4.7.
In preparation for the simulation of genuine field theory in higher di-
mensions and for the simulation out-of-equilibrium in the next section,
we compute the forward 𝐺+−(𝑥0) = 𝐺> (𝑥0) and backward correlator
𝐺−+(𝑥0) = 𝐺< (𝑥0) together with the analytic solution as solid lines. In
thermal equilibrium, the information of these two quantities is redundant
due to the KMS relation and because we are in a quantum mechanical set-
ting their interrelation is actually trivial. Their real parts agree, while their
imaginary parts are the negative of each other. They nevertheless take on
a central role in field theory, as their difference 𝜌 = 𝐺> −𝐺< encodes the
spectral function of the system, which harbors a wealth of phenomeno-
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Figure 4.7: (top) The field expectation value ⟨𝜙⟩ (box and triangle), as well
as the equal-time correlation function ⟨𝜙2⟩ (filled star and cross) evaluated
in thermal equilibrium along the whole simulation contour, parametrized by
b. The continuous Langevin time solution from matrix mechanics is given
as solid line. (bottom) The phenomenologically relevant forward 𝐺+− =

𝐺> and backward 𝐺−+ = 𝐺< correlation functions. Note that only in the
thermal setting the information they contain is redundant with that of the
𝐺++ correlator.
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logically relevant pieces of information. Thus an accurate reproduction
of these correlation functions between fields on different branches of the
contour is an important benchmark for the complex Langevin procedure.
In addition, only when we simulate close enough to the real-time axis, do
we have access to these quantities in an undistorted fashion and in turn
compute the spectral function of the system.

4.4.2 Non-equilibrium dynamics

Having confirmed the efficacy of the implicit solver for the simulation
of the early real-time dynamics of the anharmonic oscillator in thermal
equilibrium the next step is to move to an out-of-equilibrium setting.

We follow ref.[106] and choose a Gaussian initial density matrix. Its
form allows us to incorporate the information about initial conditions into
a modification of the action of the system on the first and last point on
the Schwinger-Keldysh contour. Note that here the contour consists only
of a forward and backward real-time branch, which are not connected
via periodic boundary conditions. The most general form of the Gaus-
sian density matrix [34] leads to the following expression for the system
action

𝑆G [𝜙+, 𝜙−] =𝑆[𝜙+] − 𝑆[𝜙−] − 𝑖𝑆0(𝜙+ [𝑡 = 0], 𝜙− [𝑡 = 0]) with

𝑆0 [𝜙+, 𝜙−] =𝑖 ¤𝜙0(𝜙+ − 𝜙−) −
𝜎2 + 1

8Z2

(
(𝜙+ − 𝜙0)2 + (𝜙− − 𝜙0)2

)
+ 𝑖[

2Z

(
(𝜙+ − 𝜙0)2 − (𝜙− − 𝜙0)2

)
+ 𝜎

2 − 1
4Z2 (𝜙+ − 𝜙0) (𝜙− − 𝜙0) .

(4.59)

The five independent parameters, which specify the Gaussian initial state,
represent the initial values of the field expectation value, the two-point
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correlation function and their derivatives

𝜙0 =⟨𝜙(𝑡 = 0)⟩, ¤𝜙0 = ⟨ ¤𝜙(𝑡 = 0)⟩,
Z2 =⟨𝜙(𝑡 = 0)𝜙(𝑡 = 0)⟩𝑐,

[Z =
1
2
⟨ ¤𝜙(𝑡 = 0)𝜙(𝑡 = 0) + 𝜙(𝑡 = 0) ¤𝜙(𝑡 = 0)⟩𝑐,

[2 + 𝜎2

4Z2 =⟨ ¤𝜙(𝑡 = 0) ¤𝜙(𝑡 = 0)⟩𝑐 .

(4.60)

The subscript 𝑐 refers to the connected correlator, in which the expectation
value of the field and its derivatives are subtracted.

The drift term of the discretized complex Langevin dynamics (eq. (4.19))
is affected by the Gaussian initial density matrix only at the boundaries
of the contour. Consistent with the trapezoidal rule underlying the dis-
cretization of the action integral, we choose forward derivatives at the
starting point and backward derivatives when considering the endpoint
of the contour. No changes are needed at intermediate contour steps.
Similar to [106] we set [ = 0 and ¤𝜙0 = 0, which leads to the following
two explicit terms to implement at the boundary

𝛿𝑆G
𝛿𝜙0

=
1
|𝑎0 |

{
−𝜙1 − 𝜙0

𝑎0
− 1

2
𝑎0
𝜕𝑉 (𝜙0)
𝜕𝜙0

+ 1
2
𝑖

[
𝜎2 + 1

4Z2 (𝜙0 − 𝜙) −
𝜎2 − 1

4Z2 (𝜙𝑁C − 𝜙)
]}
,

𝛿𝑆G
𝛿𝜙𝑁C

=
1

|𝑎𝑁C−1 |

{
𝜙𝑁C − 𝜙𝑁C−1

𝑎𝑁C−1
− 1

2
𝜕𝑉 (𝜙𝑁C )
𝜕𝜙𝑁C

+1
2
𝑖

[
𝜎2 + 1

4Z2 (𝜙𝑁C − 𝜙) −
𝜎2 − 1

4Z2 (𝜙0 − 𝜙)
]}
.

(4.61)

The Langevin equation remains in its standard form for the field degrees
on the forward and backward branch respectively

𝜕𝜏L𝜙±(𝑥) = 𝑖
𝛿𝑆G [𝜙+, 𝜙−]
𝛿𝜙±(𝑥)

+ [(𝑥, 𝑡), (4.62)

with no changes to the noise term.
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As in previous studies in the literature, we deploy here 𝑚 = 1 and a
relatively small coupling of _ = 1. This choice leaves us safely in the
regime where CLE converges to the right solution. The field starts out
at a finite expectation value 𝜙0 = ⟨𝜙(𝑡 = 0)⟩ = 1 at rest ¤𝜙0 = 0. The
spread in the values of the initial field, encoded in the correlation function
is set symmetrically 𝜎 = 1 to a value of Z = 1. Mixing terms between
field and derivatives vanish via [ = 0. We distribute 32 points along
each of the two real-time branches to cover the maximum time extent of
𝑥max

0 = 0.5.

Similar to the thermal case we deploy the EM solver with \ = 0.6 im-
plicitness parameter using the Julia adaptive step size prescription with
a maximum Langevin step size of Δ𝜏L = 0.005. Statistics are collected
on 500 different trajectories of length 𝜏L = 100, reading out observables
on intervals 𝛿𝜏L = 0.1. Comparisons to matrix mechanics are also avail-
able in this scenario, however, the energy eigenfunctions of the harmonic
oscillator are not well suited for truncating this particular Hilbert space.
Instead, we discretize the Hamiltonian in the coordinate basis using 1024
points in the distance range ⟨𝑥⟩ ∈ [−10, 10], the result of which will be
shown as solid lines in the subsequent plots.

Our out-of-equilibrium simulation results are collected in fig. 4.8. Now
with time translational invariance gone, we can follow the non-trivial
behavior of the field expectation value ⟨𝜙⟩, plotted as solid squares and
triangles in the upper panel along the contour, parameterized by b. The
initial conditions of 𝜙0 = 1 as well as unit variance manifest themselves
in the value ⟨𝜙2⟩(b = 0) = 2. Our results agree within statistical uncer-
tainties with the analytic solution on the real-time axis.

The most interesting unequal-time correlation functions in the out-of-
equilibrium scenario are the forward and backward quantities 𝐺+− = 𝐺>

and 𝐺−+ = 𝐺<, which provide access to the spectral function of the
system. Plotted in the lower panel of fig. 4.8, we find that here the statis-
tical error remains larger than in the thermal case at the same collected
statistics, indicating the presence of larger excursions in the Langevin
dynamics as in the more strongly coupled thermal case. Compared to the
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Figure 4.8: (top) The field expectation value ⟨𝜙⟩ (box and triangle), as well
as the equal-time correlation function ⟨𝜙2⟩ (filled star and cross) evaluated
out-of equilibrium for a Gaussian density matrix, along the whole simulation
contour, parametrized by b. The continuous Langevin time solution from
matrix mechanics is given as solid line. (bottom) The phenomenologically
relevant non-equilibrium forward 𝐺+− = 𝐺> and backward 𝐺−+ = 𝐺< corre-
lation functions.
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continuous Langevin time solution from matrix mechanics, the numerical
solution again shows excellent agreement.

4.5 Summary and Outlook

In this study, we have explored and showcased the potential of implicit
solvers in real-time complex Langevin simulations. With the intention to
disentangle the issue of numerical artifacts, such as runaway trajectories,
from foundational issues, such as the convergence to wrong results, our
focus in this paper remained restricted solely to early real-times.

Two central benefits of the implicit solvers were laid out in detail. On
the one hand, the implicit solvers can be shown to be unconditionally
asymptotically stable, preventing the occurrence of runaway trajectories,
as long as the underlying complex Langevin dynamics remain finite.
Using the Langevin dynamics of the free theory as a simple but relevant
example, we showed in section 4.2 that the difference between implicit and
explicit methods lies in the accumulation of errors that either undershoot
or overshoot the true trajectory. While the undershoot in the implicit case
also leads to a reduction in accuracy of the solution, it manages to prevent
the occurrence of runaways.

In section 4.3 we carried out a comparison of the update prescription for
the explicit and implicit EM scheme, which revealed that the effect of the
latter can be captured in one additional term in an effective action. That
term takes the form of a regulator +𝑖𝑅 and depends on the implicitness
parameter \, as well as Langevin step size Δ𝜏L. Since 𝑅 > 0, it indeed
dampens the oscillations in the underlying path integral. We conclude
that this additional term provides an intrinsic regularization of the path
integral unavailable to the explicit solvers.

Subsequently, we analyzed the finite Langevin time discretization artifacts
in terms of an effective action in the Fokker-Planck equation for the case
of a purely real path integral. We then heuristically generalized the result
to the complex case and provided numerical support that our educated
guess indeed captures the numerical artifacts introduced due to finite
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Langevin time steps in the free theory and even the strongly coupled
interacting case. This correction formula allows us to exploit the inherent
regularization properties of the implicit solvers in practice, as we may
now simulate the system at a small but finite Langevin step size Δ𝜏L
in a well-defined manner and correct for the effect of the regulator a
posteriori.

The first three sections have provided us with insight into the regular-
ization properties of different numerical schemes, insight into the effects
of finite real-time discretization and we have derived the form of finite
Langevin time steps artifacts that allow us to compensate for the effect of
the regulator. We thus proceeded in section 4.4 to carry out benchmark
numerical simulations of the anharmonic oscillator in (0 + 1)𝑑 on the
canonical Schwinger-Keldysh contour without tilt and maximum real-
time extent of 𝑥max

0 = 0.5 (Source code for this simulation is written in
Julia and is available at [120]). Both in the thermal case and in a scenario
with Gaussian non-thermal initial conditions, we find excellent agree-
ment between the complex Langevin simulation and the analytic solution
from matrix mechanics. The fact that the implicit solver gives access
to the backward path on the real-time axis allows us for the first time
to compute the actual forward and backward correlators 𝐺+− = 𝐺> and
𝐺−+ = 𝐺<, whose difference encodes the phenomenologically relevant
spectral function of the system.

We believe that the availability of implicit solvers and an improved un-
derstanding of discretization artifacts will help to improve the reliability
of the complex Langevin approach and provides new momentum to at-
tack the pressing open challenges associated with it. The stability and
regularization properties of the implicit schemes offer benefits in other ap-
plications of complex Langevin beyond real-time simulations, such as the
treatment of strongly interacting systems at finite chemical potential (for
a recent review on CL and the QCD phase diagram see e.g. [98]).

Many different paths forward exist. One aspect we are following up on
is the role of regularization in the path integral for the success of com-
plex Langevin convergence. When we introduce a tilt in the Schwinger-
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Keldysh contour it led us in eq. (4.24) to a regulator term that incorporates
all terms of the action. We may instead ask how the system reacts to in-
troducing a regulator on individual terms in the action

𝑆 = 𝑖
∑︁
𝑗

[
(𝜙 𝑗 − 𝜙 𝑗−1)2

𝑎 𝑗
− 𝑎 𝑗

𝜎

2
𝜙2
𝑗 − 𝑎 𝑗

_

24
𝜙4
𝑗 ], (4.63)

by modifying in either the kinetic, mass or self-interaction term the lattice
spacing from 𝑎 𝑗 → 𝑎 𝑗 − 𝑖^ with ^ > 0. In the following we will thus
work with the contour b) of fig. 4.3, where the forward branch is located
on the real-time axis and only the backward branch tilts downwards to
intersect with the imaginary time axis at 𝛽.

We have seen that for 𝑥max
0 = 0.5 the complex Langevin approach in the

strongly coupled thermal scenario with _ = 24 converges to the correct
solution given by matrix mechanics. Extending the contour to later
real-times, we encounter significant deviations already at 𝑥max

0 = 0.8. A
prominent characteristic of the incorrect solution is an artificial downward
shift in the real-part of the unequal-time correlation function, as shown by
the red data points in fig. 4.9. In addition, the curvature of the imaginary
part of the correlator, given as open squares also deviates from the true
solution beyond statistical uncertainty.

In the regime 0.75 < 𝑥max
0 ≲ 1 we observe that this incorrect convergence

can be overcome by a choice of regularization on the forward branch.
Interestingly, when introducing an imaginary part in the 𝑎 𝑗 ’s associated
with the interaction term (blue filled square and open circle) the simu-
lation outcome remains unchanged. On the other hand, modifying the
kinetic term with a small imaginary part 𝑎 𝑗 −𝑖×10−3 leads to a significant
improvement as indicated by the brown-filled circle and open triangles,
which agree with the analytic solution from matrix mechanics. On the
other hand, such a regularization based strategy fails to achieve its pur-
pose, once the real-time extent of the Schwinger-Keldysh contour goes
beyond unity in units of the mass. Our goal in future work is to gain a
systematic understanding of how the regularization achieves to recover
the correct results, possibly by studying the associated Fokker-Planck
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Figure 4.9: Comparison of the unequal-time correlation function 𝐺++ in
thermal equilibrium from matrix mechanics (black crosses) with complex
Langevin simulations carried out on a Schwinger-Keldysh contour of inter-
mediate real-time extent 𝑥max

0 = 0.8. Here the forward branch of the contour
resides on the real-time axis and the backward contour tilts down to intersect
with the imaginary axis at 𝛽 (c.f. b) in fig. 4.3). The direct simulation
based on the explicit EM scheme converges to an incorrect result given by
the red data points. No improvement is observed for regularizing the 𝜙4 term
(blue). The correct solution is recovered when regularizing the momentum
term (brown).

equation in low-dimensional models.

Furthermore, the availability of implicit and in particular higher-order
solvers benefits the systematic exploration of kernels for the Langevin
dynamics (for a modern perspective on CL kernels see e.g. [121]). In the
real-valued case, kernels can be used to improve the convergence proper-
ties of the stochastic quantization procedure. In complex Langevin, they
have been studied with mixed success as means to remedy the convergence
to wrong solutions. Robust numerical SDE solvers (c.f. the Runge-Kutta
Milstein scheme of eq. (4.11)), which can accommodate non-trivial ker-
nels with Langevin-time and field dependencies will allow us to explore
a much broader class of kernels than before in future studies.
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5 Kernels, Thimbles and the Correctness
Criterion

This chapter is an extension of the appendix of the paper [31] and the
main content of proceeding [40]. We start by deriving the correctness
criterion for a kernel-controlled complex Langevin equation (KCLE). The
derivation is based on the work done in [39], and is extended to KCLE by
showing the necessary steps that change due to a kernel. This allows us
to compute boundary terms, as the first part of the correctness criterion
test.

We then investigate the use of a kernel in simple models where we compare
the sampled configurations to the corresponding thimble structure of the
model. We see that the KCLE samples differently, relative to the thimbles
for a set of optimal kernels. These kernels were selected as they showed
to have no boundary terms. For these toy models, it is also possible
to calculate the Fokker-Planck operator eigenvalues such that we can
see when the complex Fokker-Planck equation has the correct stationary
distribution. This gives us insight when the KCLE correctly converges,
as this information cannot be seen directly from the boundary terms
calculation alone.

5.1 Correctness criterion in the presence of a kernel

In this section, we discuss the correctness criterion in the presence of a
kernel in the CL evolution. As mentioned in section 2.2 there are two parts
to the correctness criterion that need to be fulfilled in order for complex
Langevin to converge to the correct solution. We must avoid boundary
terms for the real-valued distribution Φ(𝑥𝑅, 𝑥 𝐼) and the complex Fokker-
Planck eq. (2.29) must have the correct equilibrium distribution. If both
conditions are fulfilled, the correctness criterion is satisfied, hence

lim
𝜏L→∞

1
𝜏L

∫ 𝜏L

0
𝑑𝜏′L𝑂 [𝜙𝑅 + 𝑖𝜙𝐼]

?
=

1
𝑍

∫
D𝜙 𝑂 [𝜙]𝑒𝑖𝑆𝑀 [𝜙] (5.1)

holds.
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To check if the equilibrium distribution of 𝜌(𝑥, 𝜏𝐿) is exp[iSM] we need
to either solve the Fokker-Planck equation explicitly or inspect the eigen-
value spectrum of the Fokker-Planck equation [122]. To make an infer-
ence about correct convergence based on the eigenspectrum, the eigenvec-
tors of the Fokker-Planck operator must form a complete set, as otherwise
there exist non-orthogonal zero modes competing with the 𝑒𝑖𝑆𝑀 station-
ary distribution. For a non-self-adjoint operator, this is not always the
case.

To show the connection between the eigenvalues of the Fokker-Planck
equation and the equilibrium distribution we use a similarity transform
to define the operator 𝐺 from the Fokker-Planck operator 𝐿 including the
kernel

𝐺 (𝑥) =𝑈𝐿 (𝑥)𝑈−1 = 𝑒−
1
2 𝑖𝑆𝑀 (𝑥)𝐿 (𝑥)𝑒 1

2 𝑖𝑆𝑀 (𝑥)

=

(
𝜕

𝜕𝑥
+ 1

2
𝑖
𝜕𝑆𝑀

𝜕𝑥

)
𝐾 [𝑥]

(
𝜕

𝜕𝑥
− 1

2
𝑖
𝜕𝑆𝑀

𝜕𝑥

)
,

(5.2)

which by definition has the same eigenvalues as 𝐿. The transformation
is carried out here to follow closely the conventional way of proving the
correct convergence for a real action 𝑆. I.e., when 𝑆 is real, 𝐺 becomes
a self-adjoint and hence negative semi-definite operator. For complex
actions, 𝑖𝑆𝑀 , this transformation is not necessary for the following argu-
ments. It is however useful in practice as a pre-conditioner for calculating
the eigenvalues of the Fokker Planck operator. The complex distribu-
tion 𝜌(𝑥, 𝜏𝐿) is also transformed based on the same transformation, such
that

�̃�(𝑥, 𝜏𝐿) = 𝑒−𝑖
1
2 𝑆𝑀 𝜌(𝑥, 𝜏𝐿), where ¤̃𝜌(𝑥, 𝜏𝐿) = 𝐺 (𝑥) �̃�(𝑥, 𝜏𝐿) (5.3)

is the Fokker-Planck equation for the transformed operator. Since we
are interested in the stationary distribution, we construct the eigenvalue
equation

𝐺 (𝑥)𝜓𝑛 (𝑥) = _𝑛𝜓𝑛 (𝑥). (5.4)

Due to the form of the operator, we know that it must have at least one
zero eigenvalue, _ = 0, associated with the eigenvector 𝑒𝑖 1

2 𝑆𝑀 .
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The formal solution of the Fokker-Planck equation after the similarity
transform of eq. (5.3) is given by

�̃�(𝑥; 𝜏𝐿) = 𝑒𝜏𝐿𝐺 (𝑥) �̃�(𝑥, 0) (5.5)

and by expanding �̃�(𝑥; 0) in the eigenbasis 𝜓𝑛, and using 𝜓0𝑒
_0𝑡 = 𝑒

1
2 𝑖𝑆𝑀

we get

𝜌(𝑥; 𝜏𝐿) =𝑒
1
2 𝑖𝑆𝑀 (𝑥) �̃�(𝑥; 𝜏𝐿) (5.6)

=𝑒
1
2 𝑖𝑆𝑀 (𝑥)

∞∑︁
𝑛=0

𝑎𝑛𝜓𝑛 (𝑥)𝑒_𝑛𝜏𝐿 = 𝑐𝑒𝑖𝑆𝑀 (𝑥) +
∞∑︁
𝑛=1

𝑎𝑛𝜓𝑛 (𝑥)𝑒_𝑛𝜏𝐿

(5.7)

such that when 𝜏𝐿 → ∞ only the first term is left, namely the equilib-
rium distribution exp[iSM]. This is however only true if Re _𝑛 ≤ 0, in
which case the spectrum of 𝐺 provides information of the equilibrium
distribution of the Fokker-Planck equation.

The second condition, which needs to be satisfied is that the sampling of
CL gives the same distribution as the complex Fokker-Planck equation.
To establish that it does, we follow the correctness criterion of ref. [57].
Let us show that the criterion also holds in the presence of a kernel by
revisiting some central steps of the original proof. We start with the
Fokker-Planck equation for complex Langevin, which operates on a real
distribution Φ(𝑥𝑅, 𝑥 𝐼 ; 𝑡) for the complexified degrees of freedom 𝑥𝑅 and
𝑥 𝐼 . Let us take a look at the Fokker-Planck equation, which evolves the
distribution of an observable O
𝜕𝜏𝐿O(𝑥𝑅, 𝑥 𝐼) =

[
(𝐻𝑅𝜕𝑥𝑅 + 𝐻𝐼𝜕𝑥𝐼 )2

+ Re
{
𝑖𝐾 [𝑥𝑅 + 𝑖𝑥 𝐼]∇𝑆𝑀 + 𝜕𝐾 [𝑥𝑅 + 𝑖𝑥 𝐼]

𝜕𝑥𝑅

}
𝜕𝑥𝑅

+Im
{
𝑖𝐾 [𝑥𝑅 + 𝑖𝑥 𝐼]∇𝑆𝑀 + 𝜕𝐾 [𝑥𝑅 + 𝑖𝑥 𝐼]

𝜕𝑥𝑅

}
𝜕𝑥𝐼

]
O(𝑥𝑅, 𝑥 𝐼)

=𝐿𝑇𝐾O(𝑥𝑅, 𝑥 𝐼),

(5.8)

where we can identify the operator 𝐿𝐾 to be the bilinear adjoint of the
Fokker-Planck operator 𝐿𝑇

𝐾
[57]. If we assume that O is holomorphic, we
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know that 𝜕𝑥𝐼O = 𝑖𝜕𝑥𝑅O → 𝑖𝜕𝑧O, where for the last equality we have
used the following relation between derivatives 𝜕𝑥𝑅O(𝑥𝑅+𝑖𝑥 𝐼) → 𝜕𝑧 𝑓 (𝑧)
with 𝑧 = 𝑥𝑅 + 𝑖𝑥 𝐼 . Replacing derivatives yields the following Langevin
equation for the holomorphic observable O expressed in the complex
variable 𝑧

𝜕𝑡O =

[
𝐾 [𝑧]𝜕2

𝑧 + 𝑖𝐾 [𝑧]∇𝑆𝑀𝜕𝑧 +
𝜕𝐾 [𝑧]
𝜕𝑧

𝜕𝑧

]
𝑓 (5.9)

= [𝜕𝑧 + 𝑖∇𝑆𝑀] 𝐾 [𝑧]𝜕𝑧O = �̃�𝑇𝐾O, (5.10)

where in the last equality we have used that 𝐾 [𝑧]𝜕2
𝑧 + (𝜕𝑧𝐾 [𝑧])𝜕𝑧 =

𝜕𝑧𝐾 [𝑧]𝜕𝑧 based on integration by parts. We have now shown that ( �̃�𝑇
𝐾
−

𝐿𝑇
𝐾
)O = 0 for a Fokker-Planck equation with a field-dependent kernel. In

turn, we conclude that the correctness criterion also holds for a kernelled
complex Langevin equation.

For the above derivation to hold there may not arise any boundary terms
given by[68]

𝐵𝑛 =

∫
𝑑𝑥𝑅𝑑𝑥 𝐼Φ(𝑥𝑅, 𝑥 𝐼)

(
�̃�𝑇𝐾

)𝑛
O(𝑥𝑅 + 𝑖𝑥 𝐼) (5.11)

where �̃�𝑇
𝐾

is the Langevin operator given by

�̃�𝑇𝐾 = (𝜕𝑧 + 𝑖∇𝑆𝑀)𝐾 [𝑧]𝜕𝑧 . (5.12)

The formal criterion is then that the observable ⟨�̃�𝑇
𝐾
O⟩ should be zero.

This expression for 𝐵 includes contributions from the full range of values
of the d.o.f. between −∞ to ∞. Including all of these will introduce
significant amounts of noise in the expectation value. This can be avoided
by introducing a cut-off Ω for the values for 𝑥𝑅 and 𝑥 𝐼 in the calculation
of the observable. The boundary terms of eq. (5.11) are thus calculated
using

𝐵Ω
𝑛 =

〈(
�̃�𝑇𝐾

)𝑛
O(𝑥𝑅 + 𝑖𝑥 𝐼)

〉
Ω

=

〈{(
�̃�𝑇
𝐾

)𝑛 O(𝑥𝑅 + 𝑖𝑥 𝐼), if 𝑥𝑅 ≤ Ω𝑥𝑅 and 𝑥 𝐼 ≤ Ω𝑥𝐼

0, otherwise

〉 (5.13)
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where Ω𝑥𝑅 and Ω𝑥𝐼 denote the individual cutoffs for the real- and imag-
inary part respectively. In the case of scalar fields (which in contrast to
gauge fields do not feature a compact dimension), we need to cut off in
both 𝑥𝑅 and 𝑥 𝐼 direction. We will in this paper stick to considering the
cut-off to be a square. For all the values outside the square we set the
contributions to the expectation value to zero.

Since the observable of interest in the simple models is 𝑧2 (i.e. it is
the most difficult to capture accurately), we find the boundary terms
observable from eq. (5.13) to be

�̃�𝑇𝐾 𝑧
2 =(∇𝑧 + 𝑖∇𝑆𝑀)𝐾 (𝑧)∇𝑧𝑧2 = (∇𝑧 + 𝑖∇𝑆𝑀)𝐾 (𝑧)2𝑧
=2((∇𝑧𝐾 (𝑧))𝑧 + 𝐾 (𝑧) + 𝑖∇𝑆𝑀𝐾 (𝑧)𝑧)
=2𝐾 (𝑧) (1 + 𝑖∇𝑆𝑀 𝑧) + 2(∇𝑧𝐾 (𝑧))𝑧, (5.14)

which for a field-independent kernel reduces to ⟨�̃�𝑇
𝐾
𝑧2⟩Ω = ⟨2𝐾 +

𝑖𝑧∇𝑆𝑀⟩Ω.

We have discussed both ingredients necessary to establish correct con-
vergence of our simulation in the presence of a kernel, i.e. the behavior
of the Fokker-Planck spectrum and boundary terms. The boundary terms
can be calculated in practice without problems, while the eigenvalues of
the Fokker-Planck operator of eq. (5.4) so far remain out of reach for
realistic systems, due to computational cost.

5.2 Lefschetz thimbles

Now we briefly introduce the Lefschetz thimble method, which we will
use in the next sections. For a detailed review of the method, see ref. [24].
We will define the thimbles for a complex action 𝑆(𝑥), and as for the
complex Langevin method, we extend the field variable 𝑥 into the complex
plane, i.e., 𝑥 → 𝑧 = 𝑥 + 𝑖𝑦. The Lefschetz thimbles [23, 102, 24]
are defined as the paths of the steepest descent of the real-part of the
action. They can be obtained by evolving the gradient descent/flow
equation

𝜕𝑧

𝜕𝜏
= −𝜕𝑆(𝑧)

𝜕𝑧
, (5.15)
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which evolves the complexified 𝑥 towards the thimble. The endpoints of
the thimbles are located at the critical points, this is the fixed point of the
flow (which are the stationary solutions of the drift term in the complex
Langevin equation) given by the solution to

𝜕𝑆(𝑧)
𝜕𝑧

= 0. (5.16)

Along the thimble, the imaginary part of the field variable 𝑧 is constant.
This can be seen from the change in the action due to the flow equation
eq. (5.15), which is given by

𝜕𝑆

𝜕𝑧
=
𝜕𝑆

𝜕𝑧

𝜕𝑧

𝜕𝜏
=
𝜕𝑆

𝜕𝑧

𝜕𝑆

𝜕𝑧
=

����𝜕𝑆𝜕𝑧 ����2 , (5.17)

this is a real quantity; hence, the imaginary part of the action does not
change. This is important because we can sample along these thimbles
with constant imaginary parts, avoiding the sign problem. We will not
get into more detail about the method as the next section focuses on
how the complex Langevin method samples relative to the Lefschetz
thimbles.

5.3 Constant kernels and correct convergence in simple mod-
els

In this section, we investigate concrete examples of one-degree-of-freedom
models and how we can tune kernels to get correct convergence. In the lit-
erature (see e.g. [54, 70]) kernels for these models have been constructed
by hand. The motivation behind this section is to understand how the
kernels affect the behavior of the complex Langevin simulation. To this
end, we connect kernel-controlled complex Langevin to the Lefschetz
thimbles and the correctness criterion [57].

We investigate the one-degree-of-freedom model with the action

𝑆 =
1
2
𝜎𝑥2 + _

4
𝑥4, (5.18)
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which leads to the following partition function

𝑍 =

∫
𝑑𝜙𝑒−𝑆, (5.19)

i.e., we use the same convention as in the literature [54, 70, 82]. This
model is interesting as it exhibits similar properties as the interacting
real-time model: the convergence problem appears, breaking both the
boundary term condition and the equilibrium distribution of the Fokker-
Planck equation for various parameters.

We will therefore take a closer look at two specific sets of parameters.
The first one is 𝜎 = 4𝑖 and _ = 2 where we can find an optimal kernel,
and as the second parameter, we choose 𝜎 = −1 + 4𝑖 with the same
_ = 2, where for correct convergence we have to go beyond a constant,
field-independent kernel.

In section 6.3.1, we will look at a variant of this model corresponding
to 𝜎 = 𝑖 and _ = 0 in eq. (5.18). The optimal field independent kernel
𝐾 = −𝑖 transforms the complex Langevin equation to sample exactly on
the Lefschetz thimble. In contrast, the models considered here are non-
linear and therefore have more than one critical point. The relation to
the Lefschetz thimbles is, therefore, not as simple. The critical points for
eq. (5.18), can be found via

𝜕𝑆(𝑥)
𝜕𝑥

= 0. (5.20)

which are located at 𝑥 = 0,±
√︁
𝜎/_ [57]. We see that the smaller the

real-part of the 𝜎 parameter becomes, the further out into the complex
plane the two critical points away from the origin are located.

5.3.1 Non-uniqueness of the optimization

In [54], they found that the optimal kernel for the one-degree-of-freedom
models rotates the drift term such that the direction is towards the origin.
They first show this by using the simple model with parameters 𝜎 = 𝑖 and
_ = 0 and show that the optimal kernel 𝐾 = −𝑖 yields −𝑥 as the drift term.
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In the optimization of kernels, we will use this fact such that the drift term
is as close as possible to −𝑥. For non-linear systems, it is not as trivial
as for the linear system, since for a field-independent kernel, there does
not exist a kernel that converts the drift term into −𝑥. What we can do
instead is to find a kernel that makes the drift term as close as possible to
be −𝜙. This will be discussed in detail in section 6.4.2, where we use this
argument to construct a loss function to optimize a kernel for a real-time
system. We will define the optimization function here as

𝐿𝐷 =

〈���𝐷 (𝑥) · (−𝑥) − ||𝐷 (𝑥) | | | |𝑥 | |
���b〉 (5.21)

with 𝐷 = 𝐾𝛿𝑆/𝛿𝑥. 𝐿𝐷 was constructed with the idea in mind that to
remove boundary terms we wish to penalize drift away from the origin.
In this section, we discuss the fact that there exist multiple critical points
to 𝐿𝐷 , which may or may not correspond to a kernel that restores correct
convergence.

Let us start with the parameter set 𝜎 = 4𝑖 and _ = 2 in eq. (5.18). For
this choice, ref. [54] showed that a constant kernel can be constructed that
restores correct convergence.

In a one-degree-of-freedom model, where the constant kernel is noth-
ing but a complex number, we can optimize by brute force. Using the
parametrization

𝐾 = 𝑒𝑖\ , 𝐻 =
√
𝐾 = 𝑒𝑖

\
2 (5.22)

we only have to consider a single compact parameter: \ ∈ [0, 2𝜋). A
scan of the \ values reveals two minima of the 𝐿𝐷 loss function. One
at \1 = 𝜋

3 and one at \2 = 2𝜋
3 , where the first one corresponds to the

kernel found manually in ref [54]. When deriving the optimal kernel,
the authors also obtained two solutions, which correspond to these two
kernels. They selected the correct one by requiring the kernel to belong
to the first Riemann sheet when taking a square root. In our case, we
too need to select the correct one and in this simple model can use the
correctness criteria directly to do so.
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To proceed in this direction, let us take a look at the complex Langevin
distribution according to the two kernels found in the optimization process
and compare them to the Lefschetz thimble structure of the model. The
thimble here consist of three different parts as shown by red lines in
fig. 5.1, together with the critical points (green points). Note that the
thimbles always cross through the critical points. The distribution of the
complex Langevin evolution is shown as a point cloud. The three different
distributions shown in each panel correspond to the case of (top left)
𝐾0 = 1, (top right) 𝐾1 = exp[−𝑖𝜋/3] and (bottom) 𝐾2 = exp[−𝑖2𝜋/3].
One can clearly see that for the trivial kernel complex Langevin tries to
sample parallel to the real axis.

In the top right and bottom of fig. 5.1, we have plotted the complex
Langevin distribution obtained after introducing one of the two kernels
that minimize 𝐿𝐷 . Again we find that the angle of the noise term decides
where CL samples. We see that the highest density of the CL distribution
lies along the direction in which the thimble passes through the critical
point at the origin. Further out from the origin, the distribution follows
closely the angle of the noise term, which is 𝐻1 =

√
𝑒−𝑖𝜋/3 = 𝑒−𝑖𝜋/6 for the

first kernel (top left) and 𝐻2 =
√
𝑒−𝑖2𝜋/3 = 𝑒−𝑖𝜋/3 for the second (bottom).

I.e. we can distinguish that sampling with the first kernel leads to samples
slightly closer to the thimbles going out along the real-axis, compared
to the other kernel which favors sampling more closely along the parts
of the thimble that eventually run off to infinity. We will give a formal
explanation for this behavior in the next paragraphs.

As shown in section 5.1 the correctness criterion consist of two parts,
the first one states that no boundary terms may appear and the second
requires that the eigenvalues of the complex Fokker-Planck equation need
to have a negative real part. For this simple model we can compute both
of these criteria, which is illustrated in fig. 5.2.

The left plot contains the boundary terms for the real-part of the observ-
able ⟨𝑥2⟩. Each of the curves corresponds to one of the three kernels
𝐾𝑖. They are computed using the boundary term expectation value of
eq. (5.13). We see that both of the kernels lead to very small values of the
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Figure 5.1: Distribution of the complex Langevin simulation and the Lef-
schetz thimble (red line) for the model of eq. (5.18) with 𝜎 = 4𝑖 and
_ = 2, using different kernels; 𝐾0 = 1 (top left), 𝐾1 = exp[−𝑖𝜋/3] (top
right) and𝐾2 = exp[−𝑖2𝜋/3] (bottom). The green points denote the critical
points given by the solution to eq. (5.20). The color in the distribution heat
map corresponds to the number of samples at the corresponding position (a
lighter color refers to a higher value).

boundary terms for this observable, while the complex Langevin process
without kernel exhibits a clear boundary term. However, at this point we
cannot yet say which of the two kernels produces the correct solution, if
any.

In order to see which of them is correct, we need to look at the right
plot in fig. 5.2 where the five eigenvalues of the Fokker-Planck operator
are plotted, which have the largest real-part (blue lines). They are plotted
against different kernel parameters \ and the red lines indicate the position
of the two kernels that optimize 𝐿𝐷 . The eigenvalue calculation is carried
out using a restarted Arnoldi method solver, which internally uses a
Krylov-Schur method. We see that there is a region of \ where the
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Figure 5.2: (left) Boundary term according to the 𝑥2 observable for the
model of eq. (5.18) with 𝜎 = 4𝑖 and _ = 2, evaluated for the three different
kernels 𝐾𝑖 discussed in the main text. (right) the five eigenvalues of the
Fokker-Planck operator with the largest real part (blue lines) plotted against
the kernel parameter \. The position of the two kernels that optimize 𝐿𝐷 are
indicated by red lines.

eigenvalues are all satisfying Re(_) ≤ 0, which includes the kernel \1 =

− 𝜋
3 . It is exactly this kernel, which, when incorporated into the complex

Langevin evolution gives the right solution for the model. For smaller
\s, the eigenvalues will eventually cross the zero. This is the region
where one finds the second kernel \2 = −2𝜋

3 . We can therefore attribute
the failure to restore correct convergence with the second kernel to a
violation of the correctness criterion pertaining to the spectrum of the
complex Fokker-Planck equation.

The interesting point here is that the boundary terms do not seem to
distinguish between the two kernels as both lead to quickly diminishing
distributions.

5.3.2 Limitation of constant kernels and boundary terms

Let us now go to the set of parameters 𝜎 = −1 + 4𝑖 and _ = 2, for which
there does not exist a constant kernel, which restores correct convergence.
It is however possible to construct a field-dependent kernel that solves the
problem [70].

We can understand this behavior, as the constant kernel that is optimal in
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Figure 5.3: Distribution of the complex Langevin simulation and the Lef-
schetz thimbles (red line) for the model of eq. (5.18) with 𝜎 = −1 + 4𝑖 and
_ = 2, using different kernels; 𝐾0 = 1 (top left), 𝐾3 = 𝑒−𝑖

3𝜋
4 (top right) and

𝐾4 = 𝑒𝑖
𝜋
2 (bottom). The green points are the critical points given by the

solution to eq. (5.20).

the sense of removing boundary terms, does not achieve correct conver-
gence of the complex Fokker-Planck equation to the correct 𝑒−𝑆.

This can be seen again by plotting the CL distribution for some of the
local minima of the 𝐿𝐷 loss function. For this parameter space there are
more than two, but we have picked out two of the solutions which have
the interesting property that they both have no boundary terms, and still
does not converge to the true solution. The kernels that are picked have
the parameters \3 = −3𝜋

4 and \4 = 𝜋
2

The CL distribution together with the thimble is plotted in fig. 5.3 for the
three different kernels 𝐾0 = 1 (top left), 𝐾3 = exp(𝑖\3) (top right) and
𝐾4 = exp(𝑖\4) (bottom). We see that the thimbles show three distinct
structures, connecting at infinity. To obtain the thimbles we evolve the
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Figure 5.4: (left) Boundary term according to the 𝑥2 observable for the model
of eq. (5.18) with 𝜎 = −1 + 4𝑖 and _ = 2, evaluated for the three different
kernels 𝐾𝑖 discussed in the main text. (right) the five eigenvalues of the
Fokker-Planck operator with the largest real part (blue lines) plotted against
the kernel parameter \. The position of the two kernels that optimize 𝐿𝐷 are
indicated by red lines.

gradient flow equation starting from a small offset from the critical points
(which all are saddle points) and then combine the six part of the thimbles.
The CL distribution without a kernel (top left plot in fig. 5.3) again favors
sampling parallel to the real-axis, while the two other kernels sample
completely different parts of the thimbles. The distribution for 𝐾3 is
located along the thimble crossing the origin. The other kernel (𝐾4),
follows the other two thimbles crossing the critical points away from
the origin. We can explain this behavior with the angle of the noise
coefficient. For 𝐾3 we have an angle of −3𝜋

8 against the real axis and for
𝐾4 we have an angle of 𝜋

4 against the real axis.

In fig. 5.4 (left) the boundary terms for this set of model parameters is
calculated for the observable Re ⟨𝑥2⟩ and plotted for increasing square
box cutoff. We see that without a kernel, there are boundary terms present,
as the blue datapoints do not go to zero for large cutoff. This can also
been seen directly from the distribution in fig. 5.3 which exhibits a large
spread and hence the falloff of the distribution is not fast enough. For the
two kernels, 𝐾3 and 𝐾4, that correspond to a local minimum in 𝐿𝐷 , the
system does not show any boundary terms. This is an important point as
even though we have avoided boundary terms, the CL dynamics under
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the kernels 𝐾3 and 𝐾4 still does not converge to the correct solution. In
turn it appears that it is in general not enough to remove the boundary
terms to achieve correct convergence. In fact one also need to be sure that
the complex Fokker-Planck equation converges to the desired equilibrium
distribution.

In fig. 5.4 (right) we show the five eigenvalues of the Fokker-Planck
equation with the largest real-part plotted against the parameter \ which
determines the kernel 𝐾 = 𝑒𝑖\ . For the parameters chosen here, we find
that both kernels lie outside of the admissible region1, where Re _ ≤ 0.
Interestingly at \ = 0 the eigenvalues actually all lie in the lower half
complex plane but there the boundary criterion is not fulfilled. But as
one increases the imaginary part of 𝜎, e.g. at 𝜎 = −1 + 5𝑖, one finds
that the eigenvalues for the identity kernel 𝐾 = 1 already take on positive
real-parts.

5.4 Summary

In this chapter, we have derived the correctness criterion for a kernel-
controlled complex Langevin equation. We ended up with the formula to
calculate boundary terms, similar to the standard boundary term calcula-
tion but now including a kernel.

We proceed by choosing optimal kernels for a toy model, for two different
parameter sets, based on minimizing the drift not pointing toward the
origin. The optimal kernels for this loss function also corresponded to
zero boundary terms, however, only one of them corresponded to a correct
convergence of the CLE.

This means that we cannot rely solely on the boundary terms to check if the
kernel-controlled complex Langevin simulation converged to the correct
solution, or not. We also need to check the Fokker-Planck eigenvalues,

1An interesting observation was made in [70], that combining kernels, which sample different
parts of the thimble into a field-dependent kernel seems to work well. The motivation was to find
a kernel that would reduce the drift term to −𝑥 when either the 𝑥2 or the 𝑥4 term in the action
dominates. A similar argument for constructing a field-dependent kernel can now be made via
the minima of the 𝐿𝐷 loss function, which favor sampling different parts of the thimbles.
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which is equivalent to stating that we need to also check whether the
stationary distribution is exp[−𝑆]. Checking the second criterion for
larger problems is however not feasible with today’s methods, as it requires
us to calculate the Fokker-Planck eigenvalues. The size of the Fokker-
Planck operator scales as 𝑁𝑑 , where 𝑁 is the number of points along
every dimension 𝑑. For a 4-dimensional model with 10 lattice points in
every dimension (𝑑 = 104) using 𝑁 = 100 points to express these points,
this means a matrix of the size 10204 , which is too large to be able to find
eigenvalues of.

We have also investigated the connection between the application of
a kernelled Langevin equation and Lefschetz thimbles. This showed
that applying a kernel will change the CLE distribution based on the
match between the kernel’s angle and the thimble’s angle at the critical
points.
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6 Towards learning optimized kernels for
complex Langevin

This chapter is published in Journal of High energy Physics 04. (2023)
057 [31].

We present a novel strategy aimed at restoring correct convergence in
complex Langevin simulations. The central idea is to incorporate system-
specific prior knowledge into the simulations, in order to circumvent the
NP-hard sign problem. In order to do so, we modify complex Langevin
using kernels and propose the use of modern auto-differentiation methods
to learn optimal kernel values. The optimization process is guided by
functionals encoding relevant prior information, such as symmetries or
Euclidean correlator data. Our approach recovers correct convergence
in the non-interacting theory on the Schwinger-Keldysh contour for any
real-time extent. For the strongly coupled quantum anharmonic oscillator
we achieve correct convergence up to three-times the real-time extent of
the previous benchmark study.

6.1 Motivation

Strongly correlated quantum systems underlie some of the most pressing
open questions in modern theoretical physics. Whether it is the transport
of highly energetic partons through a liquid of deconfined quarks and
gluons [123], created in heavy-ion collisions [5] or the transport of non-
relativistic fermions [6], captured in the iconic Hubbard model [21] at low
energies. When formulated in Minkowski time, quantum field theories
so far have defied a treatment by conventional Monte-Carlo simulation
techniques, due to the presence of the notorious sign problem [11, 12].
And while progress has been made in extracting real-time dynamics from
Euclidean time simulations using e.g. Bayesian inference [124], the
sign problem prevails by rendering the extraction ill-posed and equally
exponentially hard.

The sign problem has been proven to be NP-hard [32], which entails that
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no generic solution method is likely to exist. In turn, if we wish to make
inroads towards overcoming the sign problem, system-specific solutions
are called for.

Over the past decade, several approaches to tackle the sign problem have
been put forward [11, 20]. They can be divided into system-specific and
system-agnostic approaches. The reformulation strategies discussed e.g.
in Refs. [125, 126, 127] are an example of the former class, where the
partition function of the original system is re-expressed in terms of new
degrees of freedom, for which no sign problem exists. While highly
successful in the systems for which a reformulation has been discovered,
no systematic prescription exists to transfer the approach to other systems.
The other approaches, among them reweighting, extrapolation from sign-
problem free parameter ranges [128, 100, 129, 130], density of states
[131, 132, 133], tensor networks [25, 26], Lefschetz thimbles [23, 102, 24]
and complex Langevin (CL) [104, 53] all propose a generic recipe to
estimate observables in systems with a sign problem. As the NP-hard sign
problem however requires system-specific strategies, all of these methods
are destined to fail in some form or the other. Be it that their costs
scale excessively when deployed to realistic systems (e.g. reweighting,
Lefschetz thimbles, tensor networks) or that they simply fail to converge
to the correct solution (complex Langevin).

Both the Lefschetz Thimbles and complex Langevin belong to the class
of complexification strategies [20]. They attempt to circumvent the sign
problem by moving the integration of the Feynman integral into the com-
plex plane. After complexifying the degrees of freedom, the former
proposes to integrate over a specific subspace on which the imaginary
part of the Feynman weight remains constant (thimble), while the lat-
ter proposes to carry out a diffusion process of the coupled real- and
imaginary part of the complexified degrees of freedom.

In this paper our focus lies on the complex Langevin approach, as it
has been shown to reproduce correctly the physics of several strongly
correlated model systems, albeit in limited parameter ranges [47]. Most
importantly in its naive implementation it scales only with the volume
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of the system, similar to conventional Monte-Carlo simulations. In the
past, complex Langevin had suffered from two major drawbacks: the
occurrence of unstable trajectories, called runaways and the convergence
to incorrect solutions. In a previous publication [38] we have shown how
to avoid runaways by deploying inherently stable implicit solvers (c.f. the
use of adaptive step size [52]). In this study we propose a novel strategy
to restore correct convergence in the complex Langevin approach.

One crucial step towards establishing complex Langevin as reliable tool
to attack the sign problem is to identify when it converges to incorrect so-
lutions. The authors of ref. [57] and later [55] discovered that in order for
CL to reproduce the correct expectation values of the underlying theory,
the histograms of the sampled degrees of freedom must fall off rapidly
in the imaginary direction. Otherwise boundary terms spoil the proof of
correct convergence. The absence of boundary terms has been established
as necessary criterion and efforts are underway [134] to compensate for
their presence to restore correct convergence.

With QCD at the center of attention, the gauge cooling strategy [59, 135],
based on exploiting gauge freedom, has been proposed. It has recently
been amended by the dynamic stabilization approach [64, 136], which
modifies the CL stochastic dynamics with an additional drift term. Both
are based on the idea that by pulling the complexified degrees of freedom
closer to the real axis, boundary terms can be avoided. Their combi-
nation has led to impressive improvements in the correct convergence
of complex Langevin in the context of QCD thermodynamics with finite
Baryo-chemical potential [137] and is currently explored in the simulation
of real-time gauge theory [138].

We focus here on scalar systems formulated in real-time on the Schwinger-
Keldysh contour (for a Lefschetz thimble perspective see [116, 139]). For
scalars, gauge freedom does not offer a rescue from the convergence prob-
lems. The fact that dynamical stabilization introduces a non-holomorphic
modification of the drift term means that the original proof of convergence
is not applicable, which is why we refrain from deploying it here. Fur-
thermore the boundary term correction requires that the eigenvalues of
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the Fokker-Planck equation associated with the original system lie in the
lower half of the complex plane, which is not necessarily the case in the
scalar systems that we investigate.

The convergence problem in real-time complex Langevin is intimately
connected with the extent of the real-time contour [106]. In a previous
publication [38] we showed that for a common benchmark system, the
strongly correlated quantum anharmonic oscillator, real-time simulations
directly on the SK contour are feasible for times up to 𝑚𝑡max = 0.5.
Convergence quickly breaks down when extending the contour beyond
this point.

Within the complex Langevin community, coordinate transformations
and redefinitions of the degrees of freedom have been used in the past to
weaken the sign problem in a system specific manner (see e.g. discussion
in [121]). All of these reformulations can be captured mathematically
by introducing a so called kernel for complex Langevin. It amounts to
a simultaneous modification of the drift and noise contribution to the
CL stochastic dynamics. In the past it has been used to improve the
autocorrelation time in real-valued Langevin simulations [53] and has
been explored in simple model systems to restore the convergence of
complex Langevin (see e.g. [54]). The construction of the kernels,
as discussed in the literature applies to a specific system only and so
far no systematic strategy exists to make kernels work in more realistic
theories.

Our study takes inspiration from both conceptual and technical devel-
opments in the machine learning community. In machine learning, an
optimization functional, based on prior knowledge and data is used to
train an algorithm to perform a specific task. The algorithm depends on
a set of parameters, e.g. the weights of a neural network, which need to
be tuned to minimize the prescribed optimization functional. Highly ef-
ficient automatic differentiation programming techniques [30] have been
developed to compute the dependence of the outcome of complex al-
gorithms on their underlying parameters. Here we utilize them to put
forward a systematic strategy to incorporate prior knowledge about the
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system into the CL evolution by learning optimal kernels.

In section 6.2 we review the concept of kernelled Langevin, first in the
context of Euclidean time simulations and subsequently for use in com-
plex Langevin. In section 6.3 we show how the concept of a kernel
emerges in a simple model system and how it relates to the Lefschetz
thimbles of the model. Subsequently we discuss that a constant kernel
can be used to restore convergence of real-time complex Langevin for
the quantum harmonic oscillator. The kernel found in this fashion will
help us to improve the convergence of the interacting theory too. Sec-
tion 6.4 introduces the central concept of our study: a systematic strategy
to learn optimal kernels for complex Langevin, based on system-specific
prior information. Numerical results from deploying a constant kernel to
the quantum anharmonic oscillator are presented in section 6.4.3 (Source
code for the kernel optimization and simulation is written in Julia and
available at [140]), leading to a significant extension of correct conver-
gence. In the appendices, we discuss some of the limitations of constant
kernels and show in the context of simple models that correct conver-
gence requires not only the vanishing of boundary terms but in addition
requires the spectrum of the associated Fokker-Plank equation to remain
negative.

6.2 Neutral and non-neutral modifications of Langevin dynam-
ics

Stochastic quantization, the framework underlying Langevin simulations,
sets out to construct a stochastic process for fields in an artificial addi-
tional time direction 𝜏L with a noise structure, which correctly reproduces
the quantum statistical fluctuations in the original theory. In the context
of conventional Monte-Carlo simulations in Euclidean time, where ex-
pectation values of observables are given by the path integral

⟨𝑂⟩ = 1
𝑍

∫
D𝜙 𝑂 [𝜙]𝑒−𝑆𝐸 [𝜙] , 𝑆𝐸 [𝜙] =

∫
𝑑𝑑𝑥𝐿𝐸 [𝜙], (6.1)

with Euclidean action 𝑆𝐸 , the goal thus is to guarantee at late Langevin
times a distribution of fields Φ[𝜙] ∝ exp

(
− 𝑆𝐸 [𝜙]

)
. The chain of con-
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figurations 𝜙(𝜏𝐿) underlying the distribution Φ[𝜙], can then be used to
evaluate the expectation values of observables 𝑂 from the mean of sam-
ples ⟨𝑂⟩ = lim𝜏L→∞

1
𝜏L

∫ 𝜏L
0 𝑑𝜏′L𝑂 [𝜙(𝜏′L)]. The simplest stochastic pro-

cess, which realizes this goal and which is therefore commonly deployed
is

𝑑𝜙

𝑑𝜏L
= −𝛿𝑆𝐸 [𝜙]

𝛿𝜙(𝑥) + [(𝑥, 𝜏L) with

⟨[(𝑥, 𝜏L)⟩ = 0, ⟨[(𝑥, 𝜏L)[(𝑥′, 𝜏′L)⟩ = 2𝛿(𝑥 − 𝑥′)𝛿(𝜏L − 𝜏′L).
(6.2)

Its drift term is given by the derivative of the action 𝑆𝐸 and the noise terms
[ are Gaussian. The associated Fokker-Planck equation reads

𝐹FP =

∫
𝑑𝑑𝑥

𝜕

𝜕𝜙(𝑥)

(
𝜕

𝜕𝜙(𝑥) +
𝛿𝑆𝐸 [𝜙]
𝛿𝜙(𝑥)

)
,

𝜕Φ(𝜙, 𝜏L)
𝜕𝜏L

= 𝐹FPΦ(𝜙, 𝜏L).
(6.3)

For an in-depth review of the approach see e.g. ref. [53].

In the following we will discuss the fact that there exists the freedom
to introduce a so called kernel into eq. (6.3), which as a purely real
quantity allows us to modify the above Fokker-Planck equation with-
out spoiling the convergence to the correct stationary solution Φ[𝜙] =

lim𝜏𝐿→∞Φ[𝜙, 𝜏𝐿] ∝ exp
(
−𝑆𝐸 [𝜙]

)
. One may use this freedom to improve

autocorrelation times of the simulation and for other problem-specific op-
timizations as has been explored in the literature.

Subsequently we will turn our attention to the case of complex Langevin,
where the simplest stochastic process proposed by stochastic quantization
is not guaranteed to converge to the correct solution. In that case we will
explore how a reparametrization of the associated Fokker Planck equa-
tions through in general complex kernels can be used to not only change
the convergence speed but actually to change the stationary distribution
itself, allowing us to recover correct convergence where the naive process
fails.
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6.2.1 Kernelled Real Langevin

As alluded to above, there exists a freedom to reparametrize the Fokker-
Planck eq. (6.3) by introducing a real-valued kernel function𝐾𝑖 𝑗 (𝑥, 𝑥′, 𝜙; 𝜏L)

𝐹FP =
∑︁
𝑖, 𝑗

∫
𝑑𝑑𝑥

∫
𝑑𝑑𝑥′

𝜕

𝜕𝜙𝑖 (𝑥)
𝐾𝑖 𝑗 (𝑥, 𝑥′, 𝜙; 𝜏L)

(
𝜕

𝜕𝜙 𝑗 (𝑥′)
+ 𝛿𝑆𝐸 [𝜙]
𝛿𝜙 𝑗 (𝑥′)

)
.

(6.4)
Written in its most generic form, it may couple the different degrees of
freedom of the system (according to the 𝑖 𝑗 indices), it may couple different
space-time points (according to its 𝑥 and 𝑥′ dependence) and may depend
explicitly both on the Langevin time 𝜏L, as well as the field degrees of
freedom 𝜙. The corresponding Langevin equation reads

𝑑𝜙𝑖 (𝑥, 𝜏L)
𝑑𝜏L

=
∑︁
𝑗

{
−

∫
𝑑𝑑𝑥′𝐾𝑖 𝑗 (𝑥, 𝑥′; 𝜙)

𝛿𝑆𝐸 [𝜙]
𝛿𝜙 𝑗 (𝑥′, 𝜏L)

+
∫

𝑑𝑑𝑥′
𝛿𝐾𝑖 𝑗 (𝑥, 𝑥′; 𝜙)
𝛿𝜙 𝑗 (𝑥′, 𝜏L)

+
∫

𝑑𝑑𝑥′𝐻𝑖 𝑗 (𝑥, 𝑥′; 𝜙)[(𝑥′, 𝜏L)
}

with

𝐾 (𝑥, 𝑥′; 𝜙) =
∑︁
𝑘

∫
𝑑𝑑𝑥′′𝐻𝑖𝑘 (𝑥, 𝑥′′; 𝜙)𝐻 𝑗 𝑘 (𝑥′, 𝑥′′; 𝜙),

(6.5)

where in the last equation we assume that 𝐾 is factorizable. In practice
we will either choose kernels, which can be factorized using the square
root of their eigenvalues or will start directly by constructing the function
𝐻 that can be combined into an admissible 𝐾 .

Let us gain a bit of intuition about the role of the kernel when considering
it in its simplest form, a constant scalar kernel, which multiplies each d.o.f.
with a real number 𝛾. Inspecting eq. (6.5) we find that, as it appears in
front of the drift term and as square root in front of the noise term, 𝛾
simply leads to a redefinition of the Langevin time coordinate 𝜏′L = 𝛾𝜏L.
While the stationary solution is left unchanged, the convergence time has
been modified.
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Even for more general kernels, the fact that 𝐾 appears in the generalized
Fokker-Planck eq. (6.4) on the outside of the parenthesis

(
𝛿

𝛿𝜙𝑖 (𝑥) +
𝛿𝑆𝐸 [𝜙]
𝛿𝜙𝑖 (𝑥)

)
tells us that the stationary distribution remains unchanged. It goes without
saying that choosing 𝐾𝑖 𝑗 (𝑥, 𝑥′; 𝜙) = 𝛿𝑖 𝑗𝛿(𝑥′ − 𝑥) we regain the standard
Langevin eq. (6.2).

6.2.2 Kernelled Complex Langevin

Let us now consider the application of stochastic quantization to complex-
valued path integrals, in particular to those describing real-time physics
in Minkowski time. Here the observables are given by Feynman’s path
integral

⟨𝑂⟩ = 1
𝑍

∫
D𝜙 𝑂 [𝜙]𝑒𝑖𝑆𝑀 [𝜙] , 𝑆𝑀 [𝜙] =

∫
𝑑𝑑𝑥𝐿𝑀 [𝜙], (6.6)

which houses the Minkowski time action of the theory 𝑆𝑀 . Stochastic
quantization in this case proposes to modify the real-valued stochastic
process of eq. (6.2) via the substitution −𝑆𝐸 → 𝑖𝑆𝑀 such that

𝑑𝜙

𝑑𝜏L
= 𝑖
𝛿𝑆𝑀 [𝜙]
𝛿𝜙(𝑥) + [(𝑥, 𝜏L) with

⟨[(𝑥, 𝜏L)⟩ = 0, ⟨[(𝑥, 𝜏L)[(𝑥′, 𝜏′L)⟩ = 2𝛿(𝑥 − 𝑥′)𝛿(𝜏L − 𝜏′L).
(6.7)

It is obvious that even if one starts out with purely real degrees of freedom
at 𝜏L = 0, the presence of the complex drift term necessitates the com-
plexification 𝜙 = 𝜙R + 𝑖𝜙I, each of which will obey a coupled stochastic
evolution.

In the complexified scenario, the question of correct convergence is not as
simple to answer as in the purely real case. The most stringent criterion
refers to whether complex Langevin reproduces the correct expectation
values

lim
𝜏L→∞

1
𝜏L

∫ 𝜏L

0
𝑑𝜏′L𝑂 [𝜙𝑅 + 𝑖𝜙𝐼]

?
=

1
𝑍

∫
D𝜙 𝑂 [𝜙]𝑒𝑖𝑆𝑀 [𝜙] (6.8)

of the theory, defined on the right. And indeed it has been found that the
dynamics of eq. (6.7) may violate the equal sign of eq. (6.8). I.e. complex

130



Towards learning optimized kernels for complex Langevin

Langevin converges, but it does not converge to the correct solution. In
this study we set out to recover correct convergence by introducing kernels
into the complex Langevin dynamics.

To this end we consider a not-necessarily real kernel function 𝐾 (𝑥, 𝑥′; 𝜙)
which enters the complexified dynamics as

𝑑𝜙

𝑑𝜏L
=

∫
𝑑𝑑𝑥′

{
𝑖𝐾 (𝑥, 𝑥′; 𝜙) 𝛿𝑆𝑀 [𝜙]

𝛿𝜙(𝑥′, 𝜏L)
+ 𝜕𝐾 (𝑥, 𝑥′; 𝜙)
𝜕𝜙(𝑥′, 𝜏L)

+ 𝐻 (𝑥, 𝑥′; 𝜙)[(𝑥, 𝜏L)
}

with ⟨[(𝑥, 𝜏L)⟩ = 0, ⟨[(𝑥, 𝜏L)[(𝑥′, 𝜏′L)⟩ = 2𝛿(𝑥 − 𝑥′)𝛿(𝜏L − 𝜏′L)

and 𝐾 (𝑥, 𝑥′; 𝜙) =
∫

𝑑𝑑𝑥′′𝐻 (𝑥, 𝑥′′; 𝜙)𝐻 (𝑥′, 𝑥′′; 𝜙).
(6.9)

Expressed as two separate but coupled stochastic processes for the real-
and imaginary part of the complexified field we obtain

𝑑𝜙𝑅

𝑑𝜏L
=

∫
𝑑𝑑𝑥′

{
Re

[
𝐾 [𝜙]𝑖 𝛿𝑆𝑀 [𝜙]

𝛿𝜙
+ 𝛿𝐾 [𝜙]

𝛿𝜙

]
+ Re [𝐻 [𝜙]] [

}����
𝜙=𝜙𝑅+𝑖𝜙𝐼

,

𝑑𝜙𝐼

𝑑𝜏L
=

∫
𝑑𝑑𝑥′

{
Im

[
𝐾 [𝜙]𝑖 𝛿𝑆𝑀 [𝜙]

𝛿𝜙
+ 𝜕𝐾 [𝜙]

𝜕𝜙

]
+ Im [𝐻 [𝜙]] [

}����
𝜙=𝜙𝑅+𝑖𝜙𝐼

.

(6.10)

Note that at this point we are dealing with two different concepts of
Fokker-Planck equations. One describes how the probability distribution
Φ[𝜙𝑅, 𝜙𝐼] of the real- and imaginary part 𝜙𝑅, 𝜙𝐼 of the complexified field
evolve under eq. (6.9)

𝜕Φ

𝜕𝜏L
=

[(
𝜕

𝜕𝜙𝑅
𝐻𝑅 +

𝜕

𝜕𝜙𝐼
𝐻𝐼

)2
− 𝜕

𝜕𝜙𝑅
Re

{
𝑖𝐾
𝜕𝑆𝑀

𝜕𝜙
+ 𝜕𝐾
𝜕𝜙

}
− 𝜕

𝜕𝜙𝐼
Im

{
𝑖𝐾
𝜕𝑆𝑀

𝜕𝜙
+ 𝜕𝐾
𝜕𝜙

}]
Φ = 𝐿𝐾Φ.

(6.11)

We define the operator for the real Fokker Planck equation, which has
been separated into real and imaginary part, as 𝐿𝐾 , not to be confused
with the original now complex Fokker Planck equation 𝐹𝐹𝑃, which was
only defined on the real part of 𝜙. For the term quadratic in derivatives,
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we have split the kernel K into the product of H functions, as shown in
eq. (6.9), such that each derivative acts on either the real or the imaginary
part of 𝐻 respectively. Since it is the noise term of the Langevin eq. (6.9)
that translates into a term quadratic in derivatives in the Fokker-Planck
language, it is there that 𝐻 appears in eq. (6.11).

It is important to recognize that the correct late Langevin-time distribution
of this Fokker-Planck equation is purely real and therefore is not related
in a trivial manner to the Feynman weight exp[iSM] of the original path
integral, as has been established in simple models in the literature as
discussed e.g. in refs. [122, 141, 142, 103, 143].

The other Fokker-Plank equation is not a genuine Fokker-Planck equation,
in the statistical sense, as it does not describe the evolution of a real-
valued probability density 𝑃[𝜙, 𝜏𝐿] but instead that of a complex-valued
distribution 𝜌(𝜙, 𝜏𝐿)

𝜕

𝜕𝜏𝐿
𝜌(𝜙, 𝑡) = 𝐹𝐹𝑃𝜌(𝜙, 𝜏𝐿), (6.12)

𝐹𝐹𝑃 =
∑︁
𝑖, 𝑗

∫
𝑑𝑑𝑥

∫
𝑑𝑑𝑥′

𝜕

𝜕𝜙𝑖 (𝑥)
𝐾𝑖 𝑗 (𝑥, 𝑥′, 𝜙; 𝜏L)

(
𝜕

𝜕𝜙 𝑗 (𝑥′)
− 𝑖 𝛿𝑆𝑀 [𝜙]

𝛿𝜙 𝑗 (𝑥′)

)
.

It is this equation whose late time limit we expect to reproduce the
Feynman weight lim𝜏𝐿→∞ 𝜌(𝜙, 𝜏𝐿) = exp[iSM] and we will refer to in the
following as the complex Fokker-Planck equation.

Significant progress in the understanding of the convergence properties
of complex Langevin had been made starting with ref. [57] in the form of
so-called correctness criteria.

The criteria most often discussed in the literature are boundary terms (for a
detailed exposition see Refs. [57, 55]). They tell us if the expectation value
calculated from the real distribution Φ(𝜙𝑅, 𝜙𝐼 ; 𝜏L) (eq. (6.11)), which we
can sample using the CL, is the same as the expectation value obtained
from the complex distribution 𝜌(𝜙; 𝜏L). The latter one can only be ob-
tained from solving the complex Fokker-Planck equation, eq. (6.12). The
two expectation values, ⟨O⟩Φ(𝜏L) = ⟨O⟩𝜌 (𝜏L) only agree ifΦ(𝜙𝑅, 𝜙𝐼 ; 𝜏L)
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falls off exponentially fast. If it does not fall of sufficiently fast, it will
produce boundary terms and the equal sign in eq. (6.8) is not valid. This
criterion is however not sufficient as it does not guarantee the equilib-
rium distribution of the complex Fokker-Planck equation to be exp[iSM].
These two criteria combined are however sufficient to claim convergence
of the CL to the true solution. For a proof that the correctness criterion
still holds after introducing a kernel into the CL, we revisit the proof in
section 5.1.

How can a kernel help to restore the correct convergence? Not only do we
need to make sure that no boundary terms arise in sampling eq. (6.10) but
also that the complex Fokker-Planck equation has a unique and correct
complex stationary distribution. I.e. we need in general a non-neutral
modification of the complex Langevin dynamics.

If we were to introduce a real-valued kernel, similarly to the case of con-
ventional real-valued Langevin, we will be able to change the speed of
convergence but not the stationary solution. On the other hand, since the
drift term is complex, there is no reason not to consider also complex val-
ued kernels, which will act differently on the stochastic process for 𝜙𝑅 and
𝜙𝐼 , representing a genuine non-neutral modification in the correspond-
ing Fokker-Planck eq. (6.11). Similarly in the complex Fokker-Planck
eq. (6.12) the presence of a complex 𝐾𝑖 𝑗 can change the stationary distri-
bution through a reshuffling of the associated eigenvalues, as is discussed
in more detail in section 5.1. For a comprehensive discussion of dif-
ferent modifications to complex Langevin, including kernels, see also
ref. [121].

In the following sections we will start off with constructing an explicit ex-
ample of a field-independent kernel that improves convergence in the free
theory and find that it can restore correct convergence in the interacting
theory to some degree. We will then continue to present our novel strat-
egy to learn optimal kernels for the restoration of correct convergence and
showcase their efficiency in a benchmark model system. Subsequently
we discuss the limitations of field-independent kernels and shed light on
how kernels connect to the correctness criteria.
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6.3 A field independent kernel for real-time complex Langevin

In this section, we will manually construct one specific field-independent
kernel and demonstrate its use to improve convergence in real-time sim-
ulations of the quantum anharmonic oscillator. The form of the kernel
is motivated by insight gained in a simple one d.o.f. model and reveals
an interesting connection between kernelled Langevin and the thimble
approach. Since in the following only low dimensional model systems
are considered, we will refer to the dynamical degrees of freedom from
now on as 𝑥.

6.3.1 A kernel for the simplest real-time model

Following ref. [54] let us investigate the simplest model of real-time
physics, the integrals

⟨𝑥𝑛⟩ = 1
𝑍

∫
𝑑𝑥 𝑥𝑛 exp[−1

2
𝑖𝑥2], 𝑍 =

∫
𝑑𝑥 exp[−1

2
𝑖𝑥2] . (6.13)

Attempting to solve this expression using the complex Langevin approach
for 𝑥(𝜏𝐿), leads to a stochastic process

𝑑𝑥

𝑑𝜏𝐿
= −𝑖𝑥 + [, (6.14)

with Gaussian noise [. Equation (6.14) fails at reproducing correct values
of ⟨𝑥𝑛⟩.

We can understand this failure by recognizing that without regularization
the original integral in eq. (6.13) is not well defined and this lack of
regularization is inherited by the Langevin eq. (6.14).

One way to proceed is to explicitly modify the action by introducing a
regulator term, such as 𝜖𝑥2. The integral becomes well-defined and its
value is obtained when we let 𝜖 → 0 at the end of the computation. In
a numerical setting this would require to explicitly include the regulator
term, carry out the corresponding simulation for different values of 𝜖 and
extrapolate 𝜖 → 0. There are two drawbacks to this strategy: first it
requires several evaluations of the simulation, which can be expensive
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for large systems. The second reason is that the relaxation time for the
simulation grows, the smaller 𝜖 becomes, and hence in practice we cannot
make 𝜖 arbitrarily small.

Let’s consider an alternative strategy of solving the integral of eq. (6.13),
which relies on contour deformations, the so-called Lefschetz thimble
method. We will carry out a change of variables in the integral which
moves the integration path into the complex plane and which in turn will
weaken the oscillatory nature of the integrand. This method is based
on a continuous change of variables according to the following gradient
descent equation

𝑑𝑥

𝑑𝜏
=
𝑑𝑆𝐸 [𝑥]
𝑑𝑥

, (6.15)

which complexifies the degree of freedom, 𝑥 = 𝑎 + 𝑖𝑏. Equation (6.15)
evolves the formerly real-valued 𝑥 towards the so called Lefschetz thimble
which is the optimal contour deformation where the imaginary part of the
action stays constant.

Following the steps outlined in [144], we solve the flow of eq. (6.15)
analytically which gives 𝑥(𝑥, 𝜏) = 𝑥(cosh(𝜏) − 𝑖 sinh(𝜏)). For large
values of 𝜏 it leads to

𝑥(𝑥, 𝜏) 𝜏≫1≈ 𝑥(1 − 𝑖) 1
2𝑒−2𝜏 =

𝑥

2𝑒−2𝜏 𝑒
−𝑖 𝜋4 . (6.16)

The above equation tells us that the optimal thimble in this system lies on
the downward 45◦ diagonal in the complex plane 𝑧(𝑥) = 𝑥𝑒−𝑖 𝜋4 . On this
contour the integrand of the original integral eq. (6.14) reduces to a real
Gaussian 𝑒−𝑥2 for which no regularization is required.

If we flow for just a very small 𝜏 = 𝜖 , we obtain on the other hand
cosh(𝜏) − 𝑖 sinh(𝜏) ≈ 1 − 𝑖𝜖 and∫

𝑑𝑥 exp[−1
2
𝑖𝑥2] =

∫
𝑑𝑥
𝜕𝑥

𝜕𝑥
exp[−1

2
𝑖𝑥2] (6.17)

= (1 − 𝑖𝜖)
∫

𝑑𝑥 exp[−1
2
𝑖𝑥2(1 − 𝑖𝜖)2]

≈ (1 − 𝑖𝜖)
∫

𝑑𝑥 exp[−1
2
𝑖𝑥2 − 𝜖𝑥2] .
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We see that the term 𝜖 here takes on the role of a regulator in the action
but due to its presence also in the Jacobian, the value of the integral is
not changed. This is different from introducing the regulator only in the
action itself.

Hence the obvious benefit of the deformation method is that we can
introduce a regulator to tame oscillations without the need to extrapolate
that regulator in the end. The closer we approach the optimal thimble,
the easier the integral will be to solve numerically.

How can such a coordinate transformation be implemented in complex
Langevin? Intuitively the action in the integral is what influences the drift
in complex Langevin and the measure is related to the noise structure.
The above tells us that the change we introduced will therefore affect the
drift quadratically, while it occurs in the noise linearly. Thinking back to
eq. (6.9), we see that this is just how a field-independent kernel modifies
the complex Langevin equations.

For the optimal thimble with 𝑧(𝑥) = 𝑥𝑒−𝑖 𝜋4 the modification in the drift
therefore becomes 𝐾 = 𝑒−𝑖

𝜋
2 = 1

𝑖
and for the noise 𝐻 =

√
𝐾 =

√
−𝑖. This

leads to the following stochastic process

𝑑𝑥

𝑑𝜏𝐿
= −𝑥 +

√
−𝑖[, (6.18)

which had been identified as optimal already in ref. [54]. This stochastic
process converges to the correct solution of the integral eq. (6.13). In-
terestingly the imaginary unit has disappeared from the drift term since
the kernel 𝐾 exactly canceled it there and instead moved it over into the
noise term.

As the last step, let us show explicitly that the choice of kernel above
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indeed amounts to a coordinate transform. Following [121] we have

𝑑𝑥

𝑑𝜏𝐿
= − 𝐻𝐻𝑇 𝜕𝑆𝐸 (𝑥)

𝜕𝑥
+ 𝐻[ (6.19)

⇒ 𝐻−1 𝑑𝑥

𝑑𝜏𝐿
= −𝐻𝑇 𝜕𝑆𝐸 (𝑥)

𝜕𝑥
+ [ (6.20)

⇒ 𝑑𝑢

𝑑𝜏𝐿
= −𝐻𝑇 (𝐻𝑇 )−1 𝜕𝑇 (𝑢)

𝜕𝑢
+ [ = −𝜕𝑇 (𝑢)

𝜕𝑢
+ [. (6.21)

Here 𝑥 = 𝐻𝑢 and 𝑇 (𝑢) = 𝑆𝐸 (𝐻𝑢) = 𝑆𝐸 (𝑥). We find that introducing a
kernel 𝐾 = 𝐻𝐻𝑇 in the evolution equation for 𝑥 has the same effect as
carrying out a coordinate transformation to 𝑢 = 𝐻−1𝑥.

As an example of the complex Langevin dynamics in the absence (left
panel) and presence (right panel) of the kernel discussed above, we show
the corresponding scatter plots in fig. 6.1. The kernel has indeed rotated
the noise into the direction of the thimble, along which the system now
samples. Note that while the naive CL dynamics have been implemented
using the semi-implicit Euler-Maruyama scheme to avoid runaways, we
are able to carry out the kernelled dynamics with a fully explicit solver
without adaptive step size. The reason is that on the deformed contour
the integral has already been regularized.

This result shows that in the simple model discussed here we can find a
kernel that both restores correct convergence of the complex Langevin
dynamics and at the same time removes the need for a regulator. Both
are related to the fact that the kernel effectively instituted a coordinate
transform that amounts to a deformation of the integration contour into
the complex plane. In the next section, we will consider a similar kernel
for the harmonic oscillator.

We investigated the relationship between the Lefschetz thimbles and
kernel-controlled complex Langevin in section 5.3.2, where a similar
analysis was performed in a system where a _

4𝑥
4 term has been added

to the action. As such a one-degree-of-freedom model has a non-linear
drift term, a constant kernel, in that case, will not suffice to remove the
imaginary unit from the drift term, and hence the complex Langevin
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Figure 6.1: Distribution of a complex Langevin simulation (scatter points)
and the Lefschetz thimble (red line) for the model eq. (6.13). (left) simulation
according to the naive CL eq. (6.14) and (right) simulation after introducing
the kernel in eq. (6.18). The color of the scatter points refers to the number of
measurements recorded at the corresponding position, a lighter color indicates
a larger number. Note that the optimal kernel has moved the sampling onto
the single thimble present in this simple system.

will not sample directly on the thimble as was the case for the example
above.

6.3.2 A kernel for the harmonic oscillator

When constructing a kernel for the harmonic oscillator, we encounter sim-
ilar difficulties related to stability and convergence of complex Langevin
process as in the previous section. In order to see how an optimal kernel
can be chosen we revisit the discussion originally found in refs. [54,
53].

The continuum action of this one-dimensional system is given by

𝑆𝑀 =

∫
𝑑𝑡

{
1
2

(
𝜕𝑥(𝑡)
𝜕𝑡

)2
− 1

2
𝑚2𝑥2(𝑡)

}
=

∫
𝑑𝑡

{
1
2
𝑥(𝑡)

(
− 𝜕2

𝑡 −
1
2
𝑚2

)
𝑥(𝑡)

}
,

(6.22)

In quantum mechanics the fields 𝜙 are the position 𝑥 and the coordinates,
previously called 𝑥, are the time 𝑡. The corresponding complex Langevin
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equation reads

𝑑𝑥(𝑡, 𝜏𝐿)
𝑑𝜏𝐿

= −𝑖
(
𝜕2
𝑡 + 𝑚2

)
𝑥(𝑡, 𝜏𝐿) + [(𝑡, 𝜏𝐿). (6.23)

In the absence of a regularization, this stochastic process is unstable and
does not show convergence to the correct result. In analogy with the
results for the simple model system in the previous section we will argue
analytically that correct convergence can be achieved in this system via a
kernel with the property −

(
𝜕2
𝑡 +𝑚2

)
𝐾 (𝑡− 𝑡′) = 𝑖𝛿(𝑡− 𝑡′). This kernel will

render the drift term trivial, proportional to 𝑥 itself and move all complex
structure into the noise.

Following [54, 53] we solve eq. (6.23) analytically and obtain for the
two-point correlator in Fourier space

⟨𝑥(𝜔, 𝜏𝐿)𝑥(𝜔′, 𝜏′𝐿)⟩

= 𝛿(𝜔 + 𝜔′) 𝑖

𝜔2 − 𝑚2

(
𝑒𝑖(𝜔

2−𝑚2) |𝜏𝐿−𝜏′𝐿 | − 𝑒𝑖(𝜔2−𝑚2) (𝜏𝐿+𝜏′𝐿)
)
.

(6.24)

Obviously this expression does not have a well defined value in the late
Langevin-time limit. Introducing an explicit regulator of the form 𝑖𝜖𝑥(𝑡)2

yields

𝑆𝑀 =

∫
𝑑𝑥

1
2

{
𝜕0𝜙(𝑥)𝜕0𝜙(𝑥) − (𝑚2 − 𝑖𝜖)𝜙2(𝑥)

}
(6.25)

and improves the situation, as now the stochastic process correctly con-
verges to

lim
𝜏𝐿→∞

⟨𝑥(𝜔, 𝜏𝐿)𝑥(𝜔′, 𝜏𝐿)⟩ = 𝛿(𝜔 + 𝜔′) 𝑖

𝜔2 − 𝑚2 + 𝑖𝜖
. (6.26)

A careful analysis of the associated Fokker-Planck equation in ref. [117]
however reveals that the relaxation time towards the correct solution scales
with 1/𝜖 . I.e. carrying out a CL simulation based on a small regulator
𝜖 will lead to slow convergence. In addition one also needs to take the
limit 𝜖 → 0 as well as Δ𝜏L → 0, which may not commute [42].

Since the action of the harmonic oscillator in Fourier space decouples into
a collection of non-interacting modes we may deploy a similar strategy
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for each mode as we considered in the simple model of the preceding
section. I.e. we introduce a kernel, which moves the integration onto the
single thimble for each mode.

𝜕

𝜕𝜏L
𝑥(𝜔, 𝜏𝐿) = 𝑖�̃� (𝜔) 𝛿𝑆𝑀 [𝑥]

𝛿𝑥(𝜔) +
√︃
�̃� (𝜔)b (𝜔, 𝜏𝐿), (6.27)

⟨b (𝜔, 𝜏𝐿)⟩ = 0, ⟨b (𝜔, 𝜏𝐿)b (𝜔′, 𝜏′L)⟩ = 2𝛿(𝜔 + 𝜔′)𝛿(𝜏𝐿 − 𝜏′𝐿). (6.28)

This train of thought leads us to choose the following field-independent
kernel, which had been explored in ref. [54] before

�̃� (𝜔) = 𝑖𝐴(𝜔)
𝜔2 − 𝑚2 + 𝑖𝜖

, 𝐾 (𝑡) =
∫

𝑑𝜔

(2𝜋) �̃� (𝜔)𝑒−𝑖𝜔𝑡 , (6.29)

where 𝐴(𝜔) is a real, positive and even function of𝜔. Thus for a constant
𝐴(𝜔), �̃� (𝜔) is nothing but the propagator of the free theory in momentum
space.

The corresponding correlation function is found to read

lim
𝜏L→∞

⟨𝜙(𝜔, 𝜏L)𝜙(𝜔′, 𝜏L)⟩ = 𝛿(𝜔 + 𝜔′) �̃� (𝜔)
𝐴(𝜔)

= 𝛿(𝜔 + 𝜔′) 𝑖

𝜔2 − 𝑚2 + 𝑖𝜖

(6.30)

which is the correct result. The most important difference to simply
introducing a regulator in the action however lies in the fact that now
the relaxation time for each mode is proportional to 1/𝐴(𝜔) and not
proportional to 1/𝜖 and no extrapolation in 𝜖 needs to be carried out. For
completeness let us note the corresponding coordinate space complex
Langevin process

𝜕

𝜕𝜏L
𝑥(𝑡, 𝜏𝐿) = 𝑖

∫
𝑑𝑡′ 𝐾 (𝑡 − 𝑡′) 𝛿𝑆𝑀 [𝑥]

𝛿𝑥(𝑡′) + 𝜒(𝑡, 𝜏𝐿), (6.31)

𝜒(𝑡, 𝜏𝐿) =
∫

𝑑𝜔𝑒𝑖𝜔𝑡
√︃
�̃� (𝜔)b (𝜔, 𝜏𝐿). (6.32)
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6.3.3 A kernel for real-time Langevin on the thermal SK contour

The analytic study of the one d.o.f. model and the harmonic oscillator
have provided us with insight into how a kernel can be used to both satisfy
the need for regularization of the path integral and achieve convergence
to the correct solution of the associated complex Langevin equation in
practice.

We will now construct the corresponding kernel for the harmonic oscilla-
tor at finite temperature, discretized on the Schwinger-Keldysh contour.
Numerical simulations will confirm the effectiveness of the kernel in the
non-interacting theory.

The Schwinger-Keldysh contour for a quantum system at finite tempera-
ture encompasses three branches. The forward branch along the conven-
tional time axis reaches up to a real-time 𝑡max and the degrees of freedom
associated with it are labeled 𝑥+(𝑡). The backward branch with 𝑥−(𝑡)
returns to the initial time 𝑡0 in reverse and the Euclidean branch which
houses 𝑥𝐸 (−𝑖𝜏) and extends along the negative imaginary time axis. The
physical length of the imaginary time branch dictates the inverse temper-
ature of the system. A sketch of our contour setup is shown in the left
panel of fig. 6.2.

In the action of the system, the integration over time is rewritten into
an integration over a common contour parameter 𝛾. The d.o.f. on the
different branches are then distinguished by the values of the contour
parameter 𝑥(𝛾) and we will drop the superscript in the remainder of the
text.

As sketched in the right panel of fig. 6.2, we will refer to the equal- and
unequal-time two-point correlation functions along the SK contour in the
following, plotted against the contour parameter. The reader can identify
the values along the forward and backward branch as being mirrored,
connecting to the values on the Euclidean branch that show the expected
periodicity of a thermal theory.

When discretizing the action for use in a numerical simulation the direc-
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t
x+(t)

x-(t) tmax

β
x(ɣ) = {x+,              ɣ<tmax

x-,       tmax<ɣ<2tmax
xE 2tmax< ɣ }

xE(-iτ)

Re[〈x²(ɣ)〉]
Re[〈x(0)x(ɣ)〉]

Im[〈x(0)x(ɣ)〉]

Im[〈x²(ɣ)〉]

real-time
domain

Euclidean
domain

Figure 6.2: (left) Sketch of the Schwinger-Keldysh contour deployed in our
study with forward 𝑥+(𝑡) and backward 𝑥−(𝑡) branches on the real-time axis,
connected to an imaginary time branch 𝑥𝐸 (−𝑖𝜏). The contour parameter
𝛾 is used to address all branches in a unified manner. (right) Sketch of
the visualization of our observables along the contour parameter 𝛾 for the
example of 𝑚𝑡max = 1. The analytic solution of the real- and imaginary
part of the equal time correlator ⟨𝑥2(𝛾)⟩ and the unequal time correlator
⟨𝑥(0)𝑥(𝛾)⟩ will be plotted in the real-time 𝛾 < 2𝑚𝑡max and subsequently
Euclidean domain 𝛾 > 2𝑚𝑡max.

tion of each branch of the SK contour is encoded in a contour spacing
𝑎𝑖 ∈ C. Computing the drift term for an arbitrary contour yields

𝑖
𝜕𝑆𝑀 [𝑥]
𝜕𝑥 𝑗

=
𝑖

1
2
(
|𝑎 𝑗 | + |𝑎 𝑗−1 |

) {𝑥 𝑗 − 𝑥 𝑗−1

𝑎 𝑗−1
−
𝑥 𝑗+1 − 𝑥 𝑗

𝑎 𝑗
(6.33)

− 1
2

[
𝑎 𝑗−1 + 𝑎 𝑗

] 𝜕𝑉 (𝑥 𝑗 )
𝜕𝑥 𝑗

}
.

This expression simplifies if we use a constant magnitude step-size |𝑎𝑖 | =
|𝑎 |, such that the prefactor in the above equation can be reduced to 𝑖

|𝑎 | . In
that case we can go over to a convenient matrix-vector notation

𝑖∇𝑥𝑆𝑀 [𝒙] = 1
|𝑎 | 𝑖𝑀𝒙, (6.34)
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where

𝑀 𝑗 𝑘 =


1
𝑎 𝑗−1

+ 1
𝑎 𝑗

− 1
2
[
𝑎 𝑗−1 + 𝑎 𝑗

]
𝑚2, 𝑗 = 𝑘

− 1
𝑎 𝑗
, 𝑗 = 𝑘 − 1

− 1
𝑎 𝑗−1

, 𝑗 = 𝑘 + 1.
(6.35)

Based on the findings in the previous sections the form of the optimal
discrete free theory kernel in coordinate space will be the inverse propa-
gator

𝐾 = 𝐻 𝐻𝑇 = 𝑖𝑀−1, (6.36)

where 𝐻 is the factorized kernel used in the noise term. The form of this
kernel relies on the matrix 𝑀 to be invertible, and 𝑀−1 to be factorizable,
both of which holds. We obtain 𝐻 =

√
𝑖𝑀−1 by using the square root of

the eigenvalues. Written in differential form with Wiener processes 𝑑𝑾,
the corresponding Langevin equation reads

𝑑𝒙 =
1
|𝑎 |

(
𝑖

𝑀
𝑖𝑀𝒙

)
𝑑𝜏𝐿 +

√︂
2
𝑖

𝑀
𝑑𝑾 = − 1

|𝑎 | 𝒙𝑑𝜏𝐿 +
√︂

2
𝑖

𝑀
𝑑𝑾, (6.37)

which leaves us with a complex non-diagonal noise coefficient
√︃

2𝑖
𝑀

and
a drift term pointing in the direction of −𝒙.

Let us demonstrate the effect of this kernel by carrying out a simulation for
the following parameters. We discretize the canonical SK contour with
𝑁𝑡 = 50 points on the forward and backward branch each and 𝑁𝜏 = 5
points on the imaginary branch. Note that we do not introduce any tilt
here. Choosing a mass parameter 𝑚 = 1, the imaginary branch extends
up to 𝑚𝜏max = 1. As real-time extent, we choose 𝑚𝑡max = 10. The value
chosen here is arbitrary as the kernelled dynamics of the free theory are
stable and converge for any real-time extent. The results of the simulation
without a kernel are given in the top panel of fig. 6.3 and rely on the
implicit Euler-Maruyama scheme to avoid the occurrence of runaway
solutions. The results with our choice of kernel are shown in the bottom
panel and were obtained using a simple forward-stepping Euler scheme
at Δ𝜏L = 10−3 without adaptive step size. In each case we generate
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100 different trajectories, saving configurations at every 𝑚Δ𝜏𝐿 = 0.1
in Langevin time up to a total of 𝑚𝜏𝐿 = 100. Each panel in fig. 6.3
showcases four quantities plotted against the contour parameter 𝛾. Their
values for 0 < 𝑚𝛾 < 10 are obtained on the forward branch, those for
10 < 𝑚𝛾 < 20 on the backward branch and the small piece 20 < 𝑚𝛾 < 21
denotes the Euclidean time results. The real- and imaginary part of the
equal time expectation value ⟨𝑥2(𝛾)⟩ are plotted as green and pink data
points respectively. The real- and imaginary-part of the unequal time
correlator ⟨𝑥(0)𝑥(𝛾)⟩ on the other hand are plotted as orange and blue
data points. The analytically known values from solving the Schrödinger
equation are underlaid as black solid lines.

The results without a kernel show both deviations from the correct result
and exhibit relatively large uncertainties. The reason lies in the slow
relaxation rate to the correct result due to the presence of an explicit reg-
ulator. Here the regulator is provided by our use of an implicit numerical
scheme (Euler-Maruyama with implicitness parameter \ = 1.0 and an
adaptive step-size with a maximum step size of 10−3), but could equally
well be introduced by adding a small term 𝑖𝜖𝑥2 to the system action.
Using a stronger regulator, e.g., tilting the contour, would yield a shorter
relaxation time, but any such explicit regulator distorts the results away
from the actual 𝜖 → 0 physical solution. It is interesting to note that it is
the equal time observable ⟨𝑥2⟩ that is performing the worst. We will see
later on that this is the hardest observable to accurately reproduce.

For the bottom plot we use the free theory propagator kernel, eq. (6.36).
This simulation now aligns excellently with the true solution for all the
observables.

After applying the kernel, the problem is regularized and thus less stiff,
and we can revert to using a fixed step-size explicit Euler-Maruyama
scheme. The step-size here is 𝑑𝜏L = 10−3. The fact that we do not need
to impose an explicit regulator term is important as in this case we only
need to take the limit Δ𝜏L → 0 to obtain a physical result, and do not
need to extrapolate the regulator term to zero (𝜖 → 0). This might be
important considering the recent work in ref. [145], which shows that one
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Figure 6.3: The result of a complex Langevin simulation of the real-time
harmonic oscillator without a kernel (top) and with a kernel (bottom) for the
observables ⟨𝑥2⟩, and the correlator ⟨𝑥(0)𝑥(𝑡)⟩. Simulations are carried out
with 100 trajectories and up to 𝑚𝜏𝐿 = 100 in Langevin time, saving at every
𝑚Δ𝜏𝐿 = 0.1 using the implicit scheme Euler-Maruyama with \ = 1.0 with
adaptive step-size with tolerance 10−3 (top) and the explicit scheme Euler-
Maruyama with \ = 0 with fixed step-size Δ𝜏L = 10−3 (bottom). Values of
the correlators from the solution of the Schrödinger equation are given as
solid black lines.
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encounters subtleties in taking the limit of the regulator 𝜖 → 0.

6.3.4 A kernel for the quantum anharmonic oscillator

Not only did the kernel in the free theory change the convergence behav-
ior of the complex Langevin simulation, it also removed the need of a
regulator in the action. The obvious next step is to explore the interacting
theory where the problem of convergence to the wrong solution is more
severe. The potential term in the action is now given by

𝑉 (𝑥) = 1
2
𝑚𝑥(𝑡)2 + _

4!
𝑥(𝑡)4, (6.38)

where we use 𝑚 = 1 and _ = 24. This choice of parameters has been de-
ployed in the past as benchmark for strongly-interacting real-time complex
Langevin in refs. [135, 38]. As ref. [135] formulated the real-time dynam-
ics on a tilted contour they found correct convergence up to 𝑡max = 0.8,
while ref. [38] worked with an untilted contour and observed onset of
incorrect convergence already above 𝑡max = 0.5. In the following we will
remain with an untilted contour.

We find that using the free kernel of eq. (6.36) the convergence to the
correct solution can be extended slightly to around 𝑡max = 0.75. If in
addition we modify the free theory kernel by rescaling the contributions
from the kinetic term with a common prefactor 𝑔 and modify the mass
term away from the free theory value 𝑚

𝑀 𝑗 𝑘 (𝑔, 𝑚𝑔) =


𝑔

𝑎 𝑗−1
+ 𝑔

𝑎 𝑗
− 1

2
[
𝑎 𝑗−1 + 𝑎 𝑗

]
𝑚2
𝑔, 𝑗 = 𝑘

− 𝑔

𝑎 𝑗
, 𝑗 = 𝑘 − 1

− 𝑔

𝑎 𝑗−1
, 𝑗 = 𝑘 + 1.

(6.39)

convergence can be pushed up to 𝑡max = 1.0 by using the heuristically
determined parameter values 𝑔 = 0.8 and 𝑚𝑔 = 1.8. The CL equation we
simulate is given by

𝑑𝒙 =
1
|𝑎 |

[
𝑖

𝑀 (𝑔, 𝑚𝑔)
𝑖

(
𝑀 (1, 𝑚)𝒙 + _

3
𝑥2𝒙

)]
𝑑𝜏𝐿 +

√︄
2𝑖

𝑀 (𝑔, 𝑚𝑔)
𝑑𝑾 .

(6.40)
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We carry out simulations, assigning 𝑁𝑡 = 10 points to the forward and
backward branches each and 𝑁𝜏 = 10 points to the imaginary branch
of the contour. Here we use the implicit Euler-Maruyama scheme with
implicitness parameter \ = 0.5. Even though we do not need a regulator
in the presence of the kernel, the system retains some of its stiffness
in contrast to the free theory. The use of an explicit scheme with e.g.
adaptive step size is possible, however we find it more efficient to rely
on an implicit scheme, as it allows the use of much larger Langevin step
sizes.

The results of two simulations with a maximum real-time extent 𝑡max = 1.0
are shown in fig. 6.4. One is carried out without a kernel and using an
implicit scheme (top) and the other in the presence of a kernel based
on the parameters 𝑔 = 0.8 and 𝑚𝑔 = 1.8 (bottom). The graphs show
the real and imaginary part of the equal time ⟨𝑥(𝑡)𝑥(𝑡)⟩ (green and pink
data points) and unequal time correlator ⟨𝑥(0)𝑥(𝑡)⟩ (orange and blue
datapoints) plotted against the contour parameter 𝛾. For 0 < 𝑚𝛾 < 1 and
1 < 𝑚𝛾 < 2 it refers to the forward and backward branch of the contour
and for 2 < 𝑚𝛾 < 2.9 denotes the imaginary time branch.

The top panel indicates that naive complex Langevin fails to converge to
the correct solution at this real-time extent of 𝑚𝑡max = 1. It is interesting
to point out the failure of CL at two specific points along the contour, the
first one is the starting point at 𝛾 = 0, which is connected by periodic
boundary condition to the Euclidean path. Then at the turning point of the
contour at maximum real-time extent, corresponding to 𝑚𝛾 = 1, the real
part of the ⟨𝑥2⟩ observable lies significantly away from the true solution.
This points seems to be most affected by the convergence problem of the
CLE.

In the lower panel, the simulation in the presence of the modified free the-
ory kernel is presented. The outcome of the kernelled complex Langevin
evolution is very close to the correct solution and shows only small statis-
tical uncertainties. Note however that especially the observable ⟨𝑥2⟩ still
shows some deviation from the true result beyond the statistical error bars
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Figure 6.4: Anharmonic oscillator at 𝑚 = 1 and _ = 24 up to 𝑡max = 1
in real-time without (top) and in the presence (bottom) of the heuristic free
theory kernel with 𝑔 = 0.8 and 𝑚𝑔 = 1.8 from eq. (6.40). Both simulations
are carried out generating 100 trajectories simulated up to 𝑚𝜏𝐿 = 100 in
Langevin time, saving configurations at every 𝑚Δ𝜏𝐿 = 0.01. We deploy
the Euler-Maruyama solver with \ = 1.0 without kernel (top), and \ = 0.5
with kernel (bottom). Values of the correlators from the solution of the
Schrödinger equation are given as solid black lines.
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indicating that exact correct convergence has not yet been achieved1

The above results are promising, as they indicate that in principle the
convergence problem of real-time complex Langevin can be attacked by
use of a kernel. At the same time explicitly constructed kernels, such as
the modified free theory kernel are limited in the range of real-time extent
in which they are effective. The question at hand is how to systematically
construct kernels that will restore convergence at even larger real-time
extent.

6.4 Learning optimal kernels

In this section, we introduce our novel strategy to systematically construct
kernels to improve the convergence of real-time complex Langevin. Our
goal is to overcome the limitations of explicitly parametrized kernels, such
as the one of eq. (6.39). While optimal parameter values 𝑔 and 𝑚𝑔 were
found for this kernel, they only achieved correct convergence for a limited
𝑚𝑡max ≤ 1. Most importantly it is not clear how to systematically modify
that kernel for realizing convergence at larger real-time extent.

Instead we set out to use a generic parametrization of the kernel. We
propose to use an expansion in a set of complete basis functions of the
dynamical d.o.f. In this study, as a proof of principle, we will restrict
ourselves to a field-independent kernel, which can be understood as the
first term in an expansion in powers of the field. This field-independent
kernel for the quantum anharmonic oscillator on the Schwinger-Keldysh
contour will take the form of a 𝜏𝐿 independent matrix 𝐾 with (2𝑁𝑡 +
𝑁𝜏)2 entries, multiplying the 2𝑁𝑡 d.o.f. on the forward and backward
contour and the 𝑁𝜏 ones on the imaginary time branch. It is the values
of these matrix entries that we set out to tune in order to achieve optimal
convergence.

And even though simple model systems indicate that a field-dependent

1This behavior may be understood in terms of boundary terms. The kernel manages to
significantly reduce the magnitude of boundary terms for ⟨𝑥2⟩ where it differs from the true
solution the boundary terms, while small, are not exactly zero.
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kernel is needed to achieve correct convergence in case of strong com-
plex drift terms, we find that an optimal field-independent kernel can
already extend the range of convergence of the anharmonic oscillator out
to 𝑚𝑡max = 1.5, three times larger than the previous record set for CL in
ref. [106].

In order to obtain kernel values that restore correct convergence, we
formulate an optimization problem based on a cost functional, which
incorporates prior knowledge about the system of interest. Taking ad-
vantage of modern programming techniques that allow us to compute the
dependence of a full complex-Langevin simulation on the entries of the
kernel we propose to iteratively learn the optimal kernel. The fact that we
incorporate prior information into the simulation opens a novel path to
beat the notorious sign problem, i.e. for the first time complex Langevin
can be amended by system-specific information in order to restore correct
convergence.

6.4.1 The optimization functional

In order to guarantee that a complex Langevin simulation converges to
the true solution we must fulfill the correctness criteria of [57]. First we
must ensure the absence of boundary terms and second that the late-time
distribution of the complex Fokker-Planck equation is indeed exp[iSM].
Constructing a loss function for both criteria however is only feasible
for very low dimensional models, as it entails calculating the eigenval-
ues and eigenvectors of the complex Fokker-Planck operator, which is
prohibitively expensive already for the anharmonic oscillator discussed
here.

Instead we will retain only the first ingredient of the correctness criteria,
the absence of boundary terms and use other prior information in order
to guide the kernelled complex FP equation to the correct stationary
solution. The boundary terms can be calculated via the expectation value
⟨𝐿𝑐O⟩𝑌 where 𝐿𝑐 is the Langevin operator and O refers to any observable
(for a detailed discussion see e.g. [68]). In section 5.1 we demonstrate
that the correctness criterion still holds with a kernel and how to calculate
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these boundary terms.

Besides the boundary terms, we often possess additional relevant prior
information about the system at hand. We can e.g. compute correlation
functions in Euclidean time using conventional Monte-Carlo methods. In
addition, we know that in thermal equilibrium the correlation functions
on the forward and backward branch are related due to the KMS relation.
In order to exploit this prior information it is vital for the CL equations
to be formulated on the canonical SK contour, whose real-time branches
lie parallel to each other and connect to the Euclidean branch at the ori-
gin. In a tilted contour setup, access to the Euclidean branch is limited
and the comparison of the values on the forward and backward branch
is much more involved. In addition, symmetries provide powerful con-
straints to the simulation, as e.g. time-translation invariance in a thermal
system renders local observables such as ⟨𝑥𝑛 (𝛾)⟩ constant along the full
contour.

We quantify the distance of the simulated result from the behavior dictated
by prior knowledge via a loss function 𝐿prior. The comparison is carried
out on the level of expectation values of observables, where apriori known
values from conventional Euclidean simulations are referred to as ⟨O⟩MC
and those from the complex Langevin simulation in the presence of a
kernel by ⟨O⟩𝐾 .

In principle one can distinguish between four categories of prior knowl-
edge:

• Euclidean correlators (𝐿eucl), which are accessible via conventional
Monte-Carlo simulations:

𝐿eucl =
∑︁
O

∫
𝑑𝜏

��� ⟨O(𝜏)⟩𝐾 − ⟨O(𝜏)⟩MC

���2/𝜎2
⟨O(𝜏)⟩𝐾

𝜏 ∈ imaginary time

• Model symmetries (𝐿sym), which exploit that the expectation values
of observables O must remain invariant under a symmetry transfor-
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mation 𝑇b governed by a continuous (or discrete) parameter b:

𝐿sym =
∑︁
O

∫
𝑑b |⟨𝑇bO⟩𝐾 − ⟨O⟩𝐾 |2/𝜎2

⟨O(𝜏)⟩𝐾

• Contour symmetries (𝐿rt), which arise predominantly in systems in
thermal equilibrium:

𝐿C =
∑︁
O

∫
𝑑𝛾

���⟨OC+ (𝛾)⟩𝐾 − 𝐹 [⟨OC− (𝛾)⟩𝐾]
���2/𝜎2

⟨O(𝜏)⟩𝐾

with 𝐹 analytically known

• Boundary terms (𝐿BT), which can be explicitly computed from the
outcome of the kernelled Langevin simulation:

𝐿BT =
∑︁
O

���⟨𝐿𝑐 (𝐾)O⟩𝐾
���2/𝜎2

⟨O(𝜏)⟩𝐾

In practice one wishes to combine as many of these different contributions
as possible. To this end they must be added as dimensionless quantities.
This is why each of the terms above is normalized by the variance of the
complex Langevin simulation. In order for the combined functional to
provide a meaningful distinction of the success of convergence (also in the
case of e.g. the free theory as shown in fig. 6.3) we propose to introduce
an overall normalization for the combined prior functional

𝐿prior = Ntot

(
𝐿eucl + 𝐿sym + 𝐿C + 𝐿BT

)
. (6.41)

There is an element of arbitrariness in what overall normalization to
choose, and we find that the best distinction between wrong and correct
convergence is achieved if one uses the relative error of the most difficult
observable to reproduce. In case of the systems studied here this amounts
to the relative error of the equal time correlator obtained in the com-
plex Langevin simulation with respect to the correct known value from
Euclidean simulations Ntot = max𝛾{𝜎⟨𝑥2⟩𝐾 (𝛾)/⟨𝑥2⟩MC(𝛾)}.
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We carry the subscript 𝐾 in the expectation values above, in order to
emphasize that the loss functional depends implicitly on the choice of
kernel used in the underlying complex Langevin simulation. The num-
ber of observables O contained in the cost functional is not specified
here and depends on the problem at hand. In practice, we find that of-
ten including the apriori known Euclidean one- and two-point functions
already allow us to reliably distinguish between correct and incorrect
convergence.

In the next section, we will discuss both fully general numerical strategies
to locate the minimum of the optimization functional, as well as an
approximate low-cost approach, which we have deployed in the present
study.

6.4.2 Optimization strategies

General approach

The task at hand is to find the critical point of a cost functional that is
comprised of a subset of the contributions listed in the previous section,
i.e. of 𝐿eucl, 𝐿sym, 𝐿C or 𝐿BT. Generically each contribution can be
written as the expectation value of a known function 𝐺, depending on
the dynamical degrees of freedom 𝑥 and the kernel 𝐾 , i.e. 𝐿prior [𝐾] =

|⟨𝐺 [𝑥, 𝐾]⟩𝐾 |2. In order to make the dependence of the expectation value
on the kernel explicit we consider the d.o.f. within the simulation to
explicitly depend on 𝐾 as 𝑥(𝐾). This allows us to remove the subscript
𝐾 from the expectation value so that 𝐿prior [𝐾] = |⟨𝐺 [𝑥(𝐾), 𝐾]⟩|2.

Let us characterize the kernel via a set of variables ^. We emphasize that
this does not limit the general nature of the approach, as ^ may refer to
the prefactors of a general expansion of the kernel in a complete set of
basis functions.

To efficiently locate its critical point we deploy standard numerical opti-
mization algorithms, which utilize the information of the gradient of the
functional with respect to the parameters of the kernel. The computational
challenge lies in determining the gradient robustly. In the continuum, the
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gradient of the loss reads

∇^𝐿prior [𝐾] =2
⟨𝐺 [𝑥(𝐾), 𝐾]⟩
|⟨𝐺 [𝑥(𝐾), 𝐾]⟩| ⟨∇^𝐺 [𝑥(𝐾), 𝐾]⟩ (6.42)

=2
⟨𝐺 [𝑥(𝐾), 𝐾]⟩
|⟨𝐺 [𝑥(𝐾), 𝐾]⟩| {⟨∇𝑥𝐺 [𝑥(𝐾), 𝐾] · ∇^x⟩ + ⟨∇^𝐺 [𝑥, 𝐾]⟩}

(6.43)

In order to evaluate eq. (6.43) we need to compute the change in the field
𝑥(𝐾), which depends on the kernel. This requires taking the gradient
of the CL simulation itself. While a demanding task, dedicated meth-
ods to evaluate such gradients have been developed, which underpin the
recent progress in the machine learning community. They are known
as differential programming techniques (for an in-depth review see e.g.
ref. [30]).

As a first option, we considered using direct auto-differentiation2 on the
full loss function, as we are dealing with the standard setting of estimat-
ing the gradient of a highly dimensional functional whose output is a
single number. For small systems with a number of degrees of freedom
O(10), forward-auto-differentiation is feasible as it requires multiple runs
of the full CL simulation. As the number of independent d.o.f. grows,
backward-auto-differentiation offers us to reduce the number of neces-
sary simulation runs, trading computational cost for increased memory
demands to store intermediate results of the chain rule it computes in-
ternally. We find that already for the quantum anharmonic oscillator
this direct computation of the gradient is too costly and thus not practi-
cal.

A more advanced approach, which promises to avoid the cost and memory
limitations of direct auto-differentiation are so-called sensitivity analysis
methods, such as e.g. adjoint methods for stochastic differential equations.
A detailed discussion of these methods is beyond the scope of this paper

2Auto-differentiation is a method to compute derivatives to machine precision on digital
computers based on an efficient use of the chain rule, exploiting elementary arithmetic operations
in the form of dual variables (see e.g.[146]). We have used the Julia library Zygote.jl[74] and
ForwardDiff.jl for computing gradients.
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and the interested reader is referred to refs. [147, 148, 83] for further
details.

We find that for the specific case of real-time complex Langevin, these
methods in their standard implementation, as provided e.g. in [83] are
challenged in estimating the gradient robustly. We believe that the dif-
ficulty here lies in the stiffness of the underlying stochastic differential
equation. One possible way out is to deploy sensitivity analysis methods
specifically developed for chaotic systems, such as Least Square Shadow-
ing algorithms, discussed e.g. in Refs. [149, 150]. While these methods
at this point are still too slow to be deployed in CL simulations, the rapid
development in this field over the past years is promising.

Our survey of differential programming techniques indicates that while
possible in principle, the optimization of the loss functional 𝐿 (𝐾) is
currently plagued by issues of computational efficiency. We believe
that implementing by hand the adjoint method for the real-time complex
Langevin systems considered here will offer a significant improvement
in speed and robustness compared to the generic implementations on the
market. This line of work goes beyond the scope of this manuscript and
will be considered in an upcoming study.

To make headway in spite of these methods limitations we in the following
propose an approach to compute an approximate low-cost gradient, which
in practice allows us to significantly reduce the values of the optimization
functional.

A low cost update from an heuristic gradient

Our goal is to compute a gradient, which allows us to approximately
minimize the cost functional 𝐿prior [𝐾] without the need to take derivatives
of the CL simulation. The approach we propose here relies on using a
different optimization functional, whose form is motivated by the need to
avoid boundary terms. While updating the values of the kernel according
to a heuristic gradient obtained from this alternative functional, we will
monitor the values of the true optimization functional, selecting the kernel
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which achieves the lowest value of 𝐿prior [𝐾].

We saw that the optimal kernel for the free theory reduces the drift term
to a term in the direction of −𝑥. This drift term points towards the origin.
In this spirit we construct a functional that penalizes drift away from the
origin.

The starting point is the following expression, where we define 𝐷 =

−𝑖𝐾𝜕𝑆𝑀/𝜕𝑥 as the drift term modified by the kernel

𝐷 (𝑥, 𝐾) · (−𝑥) = | |𝐷 (𝑥, 𝐾) | | | |𝑥 | | cos \. (6.44)

Here cos\ denotes the angle between the drift and the optimal direction.
As we wish to align the drift and −𝑥, our optimization problem becomes
finding a kernel 𝐾 such that

min
𝐾

{𝐷 (𝑥, 𝐾) · (−𝑥) − ||𝐷 (𝑥, 𝐾) | | | |𝑥 | |} . (6.45)

We can write down different loss functionals which encode this mini-
mum

𝐿𝐷 =

〈���𝐷 (𝑥) · (−𝑥) − ||𝐷 (𝑥) | | | |𝑥 | |
���b〉

=
1
𝑇

∫ ���𝐷 (𝑥(𝜏L)) · (−𝑥(𝜏L)) − ||𝐷 (𝑥) | | | |𝑥 | |
���b (6.46)

The choice of b determines how steep the gradients on the functional
are and we find that in practice a value between 1 < b < 2 leads to
most efficient minimization, when 𝐿𝐷 is used to construct the heuristic
gradient we describe below.

Note that turning the drift towards the origin differs from the strategy
employed by dynamic stabilization. The scalar counterpart to minimizing
the unitarity norm is driving the values of the complexified 𝑥 towards the
real axis. In addition, in dynamical stabilization a non-holomorphic term
is added to the action. Here the CL equation is modified only by a kernel,
which still leads to a holomorphic complex Langevin equation that leaves
the correctness criteria intact.
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The exact gradient of the functional 𝐿𝐷 of eq. (6.46) also contains the
costly derivatives over the whole CL simulation. However we find that in
practice for values 1 ≤ b ≤ 2 in 𝐿𝐷 these contributions can be neglected.
We believe the reason to lie in the fact that 𝐿𝐷 consists of the difference
between two terms that contain the same powers of 𝑥. I.e. we find that
carrying out the optimization using only the explicit dependence of 𝐿𝐷 on
the kernel 𝐾 , which is computed using standard auto-differentiation. The
approximate gradient allows us to locate kernel values, which significantly
reduce the values of the true optimization functional 𝐿prior [𝐾]. The
kernels identified in this way in turn achieves correct convergence on
contours with larger real-time extent than previously possible.3.

The full optimization scheme can be summarized as follows:

1. Initialize the kernel parameters yielding the initial kernel 𝐾1

2. Carry out the CL simulation with 𝐾1 and save the configurations
{𝑥 𝑗 }1, where the subscript indicates that this is the first iteration

3. Compute the values of the loss functions 𝐿𝐷 and 𝐿prior [𝐾1]

4. Compute the gradients of the loss function 𝐿𝐷 ({𝑥 𝑗 }1, 𝐾1) with
respect to the kernel parameters using auto-differentiation

5. Update the kernel parameters using one step of the ADAM opti-
mization scheme

6. Rerun the CL simulation with the new kernel 𝐾𝑖+1 and save a new
set of configurations {𝑥 𝑗 }𝑖+1

7. Loop over step 3 - 6 for 𝑁 steps, or until 𝐿𝐷 have reached a minimum
and then select the kernel parameters with the smallest 𝐿prior [𝐾𝑖]

We will demonstrate the efficiency of the proposed optimization based
on the heuristic gradient in the next section, where we learn optimal ker-
nels for the quantum harmonic and anharmonic oscillator on the thermal
Schwinger-Keldysh real-time contour.

3Note that disregarding the costly terms in the gradient of the true cost functional 𝐿prior [𝐾]
introduced in section 6.4.1 did not lead to a viable minimization of its values.
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6.4.3 Learning optimal kernels for the thermal harmonic oscillator

To put the strategy laid out in the previous section to a test we set out
here to learn a field-independent kernel for the quantum harmonic oscil-
lator on the canonical Schwinger-Keldysh contour at finite temperature.
In section 6.3.3 we had identified one kernel by hand, which actually
minimizes the low-cost functional eq. (6.46). We will compare it to the
learned kernel at the end of this section.

We simulate on the canonical Schwinger-Keldysh contour with real-time
extent 𝑚𝑡max = 10 and an imaginary time branch of length 𝑚𝛽 = 1. The
contour will be discretized with steps of equal magnitude |𝑎𝑖 | = |𝑎 | such
that 𝑁𝑡 = 25 points are assigned to the forward and backward branch each
and 𝑁𝜏 = 5 to the imaginary time axis.

The field-independent kernel therefore is a complex 55 × 55 matrix,
which we parametrize via two real matrices 𝐴 and 𝐵 such that 𝐾 =

𝑒𝐴+𝑖𝐵. This choice is arbitrary and is based on the observation that the
minimization procedure is more robust for the exponentiated matrices
than when using 𝐴 + 𝑖𝐵 directly. The kernel is initialized to unity before
the start of the optimization by setting all elements of 𝐴 and 𝐵 to zero.
The optimization itself, as discussed in the previous section, is carried
out using the approximate gradient following from 𝐿𝐷 with a choice of
b = 2.

One needs to choose the actual cost functional 𝐿prior based on prior
knowledge through which to monitor the optimization success. We de-
cide to include the known values of the Euclidean two-point correlator
⟨𝑥(0)𝑥(−𝑖𝜏)⟩ and exploit the knowledge about the symmetries of the sys-
tem, which require that ⟨𝑥⟩ = ⟨𝑥3⟩ = 0, as well as ⟨𝑥2(𝛾)⟩ = ⟨𝑥2(0)⟩.
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This leads us to the following functional

𝐿prior = Ntot

(
(6.47)∑︁

𝑖∈𝑆𝐾

{
|⟨𝑥(𝛾𝑖)⟩𝐾 |2/𝜎2

𝑥K + |⟨𝑥3(𝛾𝑖)⟩𝐾 |2/𝜎2
𝑥3

K

+ |⟨𝑥2(0)⟩MC − ⟨𝑥2(𝛾𝑖)⟩𝐾 |2/𝜎2
𝑥2

K

}
+

∑︁
𝑖∈Eucl.

|⟨𝑥(0)𝑥(𝜏𝑖)⟩MC − ⟨𝑥(0)𝑥(𝜏𝑖)⟩𝐾 |2/𝜎2
𝑥𝑥K

)
where the first sum runs over all points of the discretized Schwinger-
Keldysh contour, while the second sum only contains the correlator on
the Euclidean branch. As discussed before, the overall normalization is
based on the uncertainty of the equal-time 𝑥2 correlator.

Since we start from a trivial kernel, we must make sure that our simulation
algorithm provides a regularization and remains stable even for stiff dy-
namics. Therefore we solve the complex Langevin stochastic differential
equation using the Implicit Euler-Maruyama scheme with implicitness
parameter \ = 1.0 and adaptive step-size. For every update of the CL
configurations we simulate 30 different trajectories up to a Langevin time
of 𝑚𝜏𝐿 = 30, with a thermalization regime of 𝑚𝜏𝐿 = 5 in Langevin time
before we start collecting the configurations at every 𝑚Δ𝜏𝐿 = 0.05 in
Langevin time. To calculate the expectation values, we compute sub-
averages from the saved configurations in each trajectory separately. The
final mean and variance are then estimated from the results of the different
trajectories.

The iterative optimization of the kernel values, based on the low-cost
functional and its approximate gradient, is performed using the ADAM
(Adaptive Moment) optimizer with a learning rate of 0.001. This is an
improved gradient descent optimizer, which combines gradient descent
momentum and an adaptive learning rate.

Since we know that the complex Langevin simulation will be the slowest
part of the optimization scheme we will only run the full CL simulation
for every five optimization steps. For this simple model it would not be
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a computation time problem to update the expectation values in 𝐿𝐷 after
every kernel update, but for realistic models in higher dimensions this
might be too expensive. As the distributions of the observables should be
similar for a small change in the kernel we indeed find that not updating
the CL configurations at every update steps still allows us to obtain a good
estimate of the heuristic gradient.

Starting with the unit kernel, the functionals 𝐿𝐷 = 6.58 × 1011 and
𝐿prior = 107 show appreciable deviation from zero. After 32 steps of the
ADAM optimizer we manage to find values of 𝐾 which reduce the value
of 𝐿prior = 26.5 indicating that the apriori known information has been
well recovered.

The results for the simulation with the optimal learned kernel are plotted
in fig. 6.5, based on 100 trajectories (top) and 400 trajectories (bottom)
each of which progresses up to 𝑚𝜏𝐿 = 100 in Langevin time . The x-axis
refers to the contour parameter 𝛾, such that at 𝑚𝛾 = 10 we are at the
turning point of the real-time branch of the Schwinger-Keldysh contour
and at 𝑚𝛾 = 20 the contour has returned to the origin, before extending
along the imaginary axis to𝑚𝑡 = −𝑖. We plot the real- and imaginary part
of the unequal time correlator ⟨𝑥(0)𝑥(𝛾)⟩ as orange and blue data points,
while the real- and imaginary part of the equal time expectation value
⟨𝑥2(𝛾)⟩ are given in green and pink respectively. The analytically known
values from solving the Schrödinger equation are underlaid as black solid
lines.

How has the learned kernel improved the outcome? When comparing to a
simulation without kernel in the top panel of fig. 6.3 we see that using the
same amount of numerical resources (i.e. 100 trajectories at 𝑚𝜏𝐿 = 100)
the learned kernel has reduced the resulting errorbars significantly. On
the other hand in the top panel of fig. 6.5 residual oscillations in ⟨𝑥2⟩ seem
to persist. One may ask whether these indicate incorrect convergence,
which is why we provide in the lower panel the result after including 400
trajectories at the same Langevin time extent. One can see that not only
the errorbars further reduce but also that the oscillatory artifacts have
diminished. The improvement amounts to another factor of two in terms
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Figure 6.5: Harmonic oscillator in the presence of our learned optimal kernel,
based on the heuristic gradient from the loss function in eq. (6.46). We
simulate on the SK contour with 𝑚𝑡max = 10 in real-time and choose 𝑚 = 1.
Simulating up to 𝑚𝜏𝐿 = 100 in Langevin time, we combine samples from
100 (top) and 400 (bottom) different trajectories. Note that improved statistics
diminishes the residual oscillatory artifacts in ⟨𝑥2⟩. Values of the correlators
from the solution of the Schrödinger equation are given as solid black lines.
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Figure 6.6: (left) An explanatory sketch of our visualization of the complex
kernel used in the simulations. The top major panel denotes the values of the
real part and the lower major panel those of the imaginary part of the kernel.
Inside each panel the values of the kernel are ordered along the contour
parameter, indicating which parts of the kernel couple which range on the
contour. (center) The free theory kernel in eq. (6.36), constructed explicitly
in the previous section for 𝑚𝑡max = 10. The repeating pattern indicates an
oscillatory behavior in coordinate space arising from the fact that this kernel
is just the propagator of the free theory. (right) In the optimal learned kernel
based on the low-cost update we have subtracted the unit matrix from the
real-part to avoid it dominating the other structures. We find that the learned
kernel exhibits some of the structure of the manually constructed kernel but
in general has a more simple form, which nevertheless manages to achieve
correct convergence of the complex Langevin dynamics.

of 𝐿prior from the value 𝐿prior = 26.5 in the top panel to 𝐿prior = 13.4
in the lower panel. We emphasize that we did not use the analytically
known solution of the system for the optimization procedure.

Let us inspect the learned kernel and compare it to the free theory prop-
agator kernel of eq. (6.36). In fig. 6.6 we visualize the structures of the
kernel by plotting a heat-map of the matrix entries of the complex matrix
kernel. The right sketch shows how the matrix is structured, where the
top panel refers to the real part and the lower panel to the imaginary
part. The entries of the matrices are laid out corresponding to the contour
parameter 𝛾. The smaller regions inside the two panels indicate how the
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kernel mixes points along the time contour. The ++ corresponds to the
mixing of the forward branch of the contour, while +− mixes the forward
and backward branch time points. There exists also a small strip involving
the Euclidean points, mixing with the real-time points (𝐸+ and 𝐸−), as
well as a small corner (𝐸𝐸) mixing within the Euclidean points.

The different regions shown in the sketch can easily be recognized in
the two kernel structure plots. Note that we have subtracted the unit
matrix from the real-part of the optimized kernel to more clearly expose
off-diagonal structures, if present. The manually constructed free theory
propagator kernel (middle), as expected from being the inverse free prop-
agator, exhibits an oscillatory pattern. It leads to a significant coupling
between the forward and backward time points, due to an anti-diagonal
structure in the real and imaginary parts, forming an oscillatory cross
pattern. This anti-diagonal behavior is much less pronounced in the op-
timized kernel (left). In its real-part it mainly exhibits a diagonal which
is not as wide as in the manually constructed kernel. There is however
a small negative structure present, an off-diagonal band, similar to the
black part in the middle panel.

For the imaginary part, the patterns close to the diagonal are similar
between the manually constructed kernel and the optimal learned kernel.
Both possess a diagonal close to zero and a broad sub/super-diagonal that
switches sign at the turning points between the ++ and −− part of the
time contour. We also see that the anti-diagonal structure is similar for a
very short part in the +− and −+ quadrants in the imaginary panel. The
rest of the +− and −+ quadrant seems to contain noise.

While some similarities exist between the explicit kernel and the optimal
learned kernel, it appears that correct convergence requires some non-
trivial structure in the imaginary part of K. The learned kernel achieves
correct convergence with much less structure than the manually con-
structed one.
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6.4.4 Learning optimal kernels for the strongly coupled anharmonic os-
cillator

After successfully testing the learning strategy for a field-independent
kernel in the free theory in the previous section, we are now ready to attack
the central task of this study: learning an optimal kernel for a strongly
coupled quantum system in order to extend the correct convergence of
the corresponding real-time complex Langevin simulation.

We deploy the same parameter set as before with 𝑚 = 1 and _ = 24. In
section 6.3.4 we showed that for a real-time extent of𝑚𝑡max = 1 an explicit
kernel based on insight from the free theory can be constructed, which
allows us to restore correct convergence within statistical uncertainties
(see fig. 6.4).

Here we set out to learn an optimal kernel based only on the combination
of our low-cost functional and prior knowledge of the Euclidean two-
point functions and time-translation invariance of the thermal system.
Since we restrict ourselves to a field-independent kernel we expect that
our approach will be able to improve on the manually constructed kernel
but will itself be limited in the maximum real-time extent up to which
correct convergence can be achieved.

As testing ground we selected three different real-time extents,𝑚𝑡max = 1,
𝑚𝑡max = 1.5 and 𝑚𝑡max = 2, all of which show convergence to the wrong
solution when performing naive complex Langevin evolution.

We discretize the real-time contour with a common magnitude of the
lattice spacing |𝑎𝑖 | = |𝑎 |. I.e. depending on the maximum real-time
extent the number of grid points changes. E.g. in case of 𝑚𝑡max = 2 we
use 𝑁𝑡 = 20 on the forward and backward part of the real-time contour
each, and 𝑁𝜏 = 10 for the imaginary part of the contour. Due to the
stiffness of the complex Langevin equations in the interacting case, all
CL simulations are performed with the Euler-Maruyama scheme with
\ = 0.6 and adaptive step-size. We simulate 40 different trajectories up to
𝑚𝜏𝐿 = 40 in Langevin time, computing observables at every𝑚Δ𝜏𝐿 = 0.02
step.
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The setup for learning the optimal kernel is very similar to that in the
previous section. The kernel parametrization is given by 𝐾 = 𝑒𝐴+𝑖𝐵,
where 𝐴 and 𝐵 are real matrices. We search for the critical point of the true
loss function 𝐿prior (see eq. (6.47)) via the heuristic gradient obtained from
the loss function 𝐿𝐷 of eq. (6.46). We find that minimization proceeds
efficiently, when choosing the parameter b = 1 in 𝐿𝐷 . The optimal kernel
is chosen according to the lowest values observed in 𝐿prior.

We find that for a trivial unit kernel where complex Langevin fails, the cost
functional 𝐿prior based on prior information indicates values of 𝐿prior

𝑚𝑡max=1 =

942, 𝐿prior
𝑚𝑡max=1.5 = 597320 and 𝐿

prior
𝑚𝑡max=2 = 12923. The left column of

fig. 6.7 shows from top to bottom the rows correspond to results of
the naive CL simulation for 𝑚𝑡max = 1, 𝑚𝑡max = 1.5 and 𝑚𝑡max = 2
respectively. As in previous comparison plots the real- and imaginary
part of the unequal time correlation function ⟨𝑥(0)𝑥(𝛾)⟩ is given by
orange and blue data points, while the real- and imaginary part of the
equal time expectation value ⟨𝑥2(𝛾)⟩ is represented by the green and pink
symbols respectively. The analytically known values from solving the
Schrödinger equation are underlaid as black solid lines.

The results of real-time CL in the presence of the optimal learned kernel
for the anharmonic oscillator are shown in the right column of fig. 6.7.
For 𝑚𝑡max = 1 we achieve to lower the value of 𝐿prior

𝑚𝑡max=1 = 14.3. At
this low value all the correlation functions plotted, agree with the true
solution within uncertainties. Note that we manage to restore correct
convergence for the unequal time correlation function on the real-time
axis, even though no prior information about these points was provided
in 𝐿prior nor 𝐿𝐷 . In contrast to the use of the modified free theory kernel,
we see here that ⟨𝑥2⟩ does not show a systematic shift on the real-time
branches anymore.

We continue to the second row, where, via an optimal learned kernel,
we achieve extending the correctness of CL into a region inaccessible
to the modified free theory kernel at 𝑚𝑡max = 1.5. The value of the
functional encoding our prior knowledge has reduced to 𝐿

prior
𝑚𝑡max=1.5 =

48.1. We find that the unequal time correlation function values are
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Figure 6.7: Complex Langevin simulation of the strongly coupled anharmonic
oscillator on the thermal Schwinger-Keldysh contour in the absence (left) of
a kernel and in the presence of the optimal learned field-independent kernel
(right). The top row corresponds to results from a contour with real-time
extent 𝑚𝑡max = 1, while the center row shows results for 𝑚𝑡max = 1.5 and the
bottom row for 𝑚𝑡max = 2. Values of the correlators from the solution of the
Schrödinger equation are given as solid black lines.
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reproduced excellently, while the real- and imaginary part of ⟨𝑥2⟩ show
residual deviations from the correct solution around those points along
the SK contour, where the path exhibits sharp turns, i.e. at the end point
𝛾 = 𝑡max and the point where the real-time and Euclidean branch meet
𝛾 = 2𝑡max.

The results shown in the third row clearly spell out the limitation of the
field-independent kernel we deploy in this study. At 𝑚𝑡max = 2 we do not
manage to reduce the value of the cost functional below 𝐿

prior
𝑚𝑡max=2 = 759.

Correspondingly in the bottom row of fig. 6.7 it is clear that CL even in the
presence of the field-independent kernel fails to converge to the correct
solution. Interestingly the imaginary part of the unequal-time two-point
correlator still agrees very well with the true solution on the forward
branch while its real part already shows significant deviations from the
correct solution. This deviation of the unequal time correlation function
affects also the values of the equal-time correlation function which is far
from constant and thus leads to a penalty in 𝐿prior, correctly indicating
failure of correct convergence.

There are two possible reasons behind the failure of convergence at
𝑚𝑡max = 2. One is that the low-cost gradient obtained from 𝐿𝐷 is unable
to bring the kernel close to those values required for restoring correct
convergence. The other is that the field-independent kernel is not ex-
pressive enough to encode the change in CL dynamics needed to restore
correct convergence. In simple models it is e.g. known from ref. [70]
that field-independent kernels may fail to restore correct convergence for
large imaginary drift. We believe that, as a next step, the investigation of
field dependent kernels is most promising.

The unequal time correlation function is most relevant phenomenolog-
ically, as it encodes the particle content and occupation numbers in the
system. We thus compare in fig. 6.8 the values of ⟨𝑥(0)𝑥(𝑡)⟩ along the
forward real-time extent of the contour for𝑚𝑡max = 1.0, 1.5 and 2.0 to the
correct solution given as black solid line. Here we can see in more detail
that for a real-time extent of 1 and 1.5 CL with the optimal learned kernel
converges to the true solution within uncertainties. At 2 the real part of
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Figure 6.8: A detailed comparison of the unequal time correlation functions
⟨𝑥(0)𝑥(𝑡)⟩ from fig. 6.7 evaluated in the presence of the optimal learned field-
independent kernel on contours with 𝑚𝑡max = 1, 1.5 and 2 respectively.The
different colored circles correspond to the real-part while the squares to the
imaginary part of the correlator. Values of the correlators from the solution
of the Schrödinger equation are given as solid black lines.

the correlator begins to deviate from the correct solution. Note that the
most difficult points to achieve convergence at are 𝑡 = 0 and at 𝑡 = 𝑡max.
Similarly we find that these points are also the ones, where the equal time
correlator deviates the most from the correct solution, an important fact
as this allows this deviation to contribute to the penalty in 𝐿prior.

In fig. 6.9 we plot a heat map of the values of the kernels with𝑚𝑡max = 1.5
(center) and 𝑚𝑡max = 2 (right) compared to the free theory propagator
kernel from eq. (6.36) (left) for 𝑚𝑡max = 1.5. (for a sketch of the structure
of the heat map see the left panel of fig. 6.6). We have subtracted the unit
matrix from the real-part of the two optimized kernels. They both exhibit
a diagonal band in the real part, which is thinner than the one in the free
theory kernel. It is interesting to see that both show non-trivial structures
passing through the 𝑡max point and when connecting to the Euclidean
branch. In the imaginary part the structures have more similarity with the
free theory propagator kernel, where a sign change occurs as one moves
away from the diagonal. The difference in the optimal kernels between
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Figure 6.9: (left) Free theory kernel for the SK contour with 𝑚𝑡max = 1.5.
(center) The optimal learned kernel in the interacting theory for 𝑚𝑡max = 1.5,
which achieves correct convergence of CL. The diagonal entries with values
close to unity are subtracted from the kernel. (right) The kernel obtained
as a result of the optimization procedure in the case of 𝑚𝑡max = 2.0, which
does not achieve correct convergence. At the turning point at 𝑡max and when
connecting to the Euclidean domain the kernel for the interacting theory
shows nontrivial structure not present in the free theory.

𝑚𝑡max = 1.5 and 𝑚𝑡max = 2 is small overall.

6.5 Summary and Conclusion

In this paper we proposed a novel strategy to recover correct convergence
of real-time complex Langevin simulations by incorporating prior infor-
mation into the simulation via a learned kernel. The effectiveness of the
strategy was demonstrated for the strongly coupled anharmonic oscillator
on the Schwinger Keldysh contour by extending correct convergence in
this benchmark system up to 𝑚𝑡max = 1.5, three times the previously
accessible range of 𝑚𝑡max = 0.5.

After discussing the concept of neutral and non-neutral modifications of
Langevin dynamics by use of real and complex kernels, we demonstrated
that an explicitly constructed complex kernel can be used to improve the
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convergence behavior of real-time complex Langevin on the Schwinger-
Keldysh contour. Taking insight from a single d.o.f. model and the
harmonic oscillator, approximately correct convergence in the strongly
coupled anharmonic oscillator was achieved up to 𝑚𝑡max = 1. As no
systematic extension to the explicit construction of that kernel exists, we
instead proposed to learn optimal kernels using prior information.

The ingredients to learning an optimal kernel are prior information and an
efficient prescription for computing gradients. Prior information comes
in the form of apriori known Euclidean correlation functions, known
symmetries of the theory and the Schwinger-Keldysh contour, as well
as information on the boundary terms. Here we included only the first
two types of information, which sufficed to achieve improvements in
convergence. We surveyed different modern differential programming
techniques that in principle allow a direct optimization of the kernel
based on the full prior information, but found that in their standard imple-
mentations they are of limited use in practice due to runtime or memory
limitations. Instead we constructed an approximate gradient based on
an alternative optimization functional, inspired by the need to avoid the
presence of boundary terms. This optimization functional possesses a
gradient, which can be approximated with much lower cost than that of
the original optimization functional. The low-cost gradient in practice
is computed using standard auto-differentiation. By minimizing with
this gradient and monitoring success via the full prior information cost
functional we proposed, we were able to locate optimal kernels.

Our strategy was successfully applied first to the harmonic oscillator on
the thermal SK contour. We managed to restore correct convergence
with an optimal learned field-independent kernel that shows a simpler
structure compared to the manually constructed kernel. This result bodes
well for future studies, where we will investigate in detail the structure of
the optimal learned kernel to draw conclusions about the optimal analytic
structure for extending the approach to a field-dependent kernel.

The central result of our study is the restoration of correct convergence in
the strongly correlated anharmonic oscillator on the thermal SK contour
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up to a real-time extent of 𝑚𝑡max = 1.5, which is beyond the reach of
any manually constructed kernel proposed so far. We find some remnant
deviations of the equal-time correlation function ⟨𝑥2⟩ from the true so-
lution at the turning points of the SK contour. The phenomenologically
relevant unequal-time correlation function ⟨𝑥(0)𝑥(𝑡)⟩ on the real-time
branch on the other hand reproduces the correct solution within statistical
uncertainty.

While our strategy based on a field-independent kernel is successful in a
range three times the previous state-of-the-art, we find that the restricted
choice of kernel limits its success at larger real-time extent.

We conclude that our study provides a proof-of-principle for the restora-
tion of correct convergence in complex Langevin based on the inclusion
of prior information via kernels. Future work will focus on extending the
approach to field-dependent kernels, carefully reassess the discretization
prescription of the SK at the turning points and improve the efficiency of
the differential programming techniques necessary to carry out a mini-
mization directly on the full prior knowledge cost functional.
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7 Towards a reliable gradient for the com-
plex Langevin equation

The previous chapter introduced a novel optimization algorithm that
uses prior knowledge to optimize a kernel suitable to make the kernel-
controlled complex Langevin equation correctly converge. When trying
to optimize a kernel based on eq. (6.47), we see that we are not able to
obtain a reliable gradient for the optimization scheme, i.e., the value of the
loss function is not reducing. Therefore, an alternative gradient formu-
lation is needed for optimizing the kernel-controlled complex Langevin
equation based on eq. (6.47). This chapter will present a possible direc-
tion for achieving this goal by using sensitivity methods used in fields
with chaotic systems. We will uncover the underlying problem of why the
standard method to obtain gradient is ill-defined in the real-time complex
Langevin system and build towards a reliable gradient by introducing a
different adjoint sensitivity method.

We have already seen that adjoint methods are effective tools for the
optimization of iterative schemes, including stochastic differential equa-
tions, which we showed an example of in section 3.31. It is a way to
obtain gradients by only having to solve a similar system once, namely
the corresponding adjoint equation. This can be used for many different
systems, like non-linear equations, differential equations, and stochastic
differential equations. The first two have been successfully implemented
in various systems, with an increasing interest in the last decade. It
can help solve inverse problems as the spectral reconstruction example
in chapter D, estimate simulation errors, and be used in control pro-
cesses and systems [148] to name a few applications. The stochastic
differential equation version has only recently been introduced formally
in [80, 81].

Sensitivity methods tend to fail when the dynamical system is chaotic,
and we seek to calculate long-time averaged quantities. In these cases,

1An example of a non-linear system is shown in chapter D, where we optimize a regulator for
the Bayesian reconstruct of spectral functions.
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the computed gradient is larger than expected and will exponentially
increase for a longer simulation time. This failure is caused by the
so-called "butterfly effect", which appears in systems that are overly
sensitive to initial conditions and changes in system parameters. The
reason for such failure to obtain reliable gradients in chaotic systems was
first explained in [151], where they identified the problem in the Lorenz
system and showed that it is due to positive Lyapunov exponents. Much
research has been carried out to overcome this failure, resulting in different
methods that have made it possible to obtain such sensitivities in fields
like computational fluid dynamics [152, 153] and climate modelling [154,
155] where chaotic systems often arise.

Several methods of avoiding the problem of unstable gradients have been
proposed [156, 157, 154, 155, 158, 159], but in this section, we will focus
on the class of algorithms that are based on the shadowing lemma [153,
149, 152]. In short, these algorithms do not compute the gradients based
on a perturbation in the parameter of interest but rather a perturbation
in the trajectory based on the parameter of interest, i.e., a shadowing
trajectory.

The outline of this chapter is as follows; we start in section 7.1 by in-
troducing what a chaotic system is in terms of the Lyapunov exponents
of a dynamical system. In section 7.2 we apply the formalism to the
real-time complex Langevin equation and show that it is chaotic. Then,
in section 7.3, we use the Lyapunov exponents to show why standard
methods of obtaining gradients fail in the real-time complex Langevin
before we go on to introduce the shadowing sensitivity methods in sec-
tion 7.4 and its stochastic version. Finally, in section 7.4.2, we apply the
stochastic NILSAS scheme to obtain gradients based on the parameters
of the stochastic Lorenz system.

7.1 Chaotic systems and Lyapunov exponents

Chaos theory is a branch of mathematics that studies dynamical systems
that exhibit complex and unpredictable behavior, even in the presence

174



Towards a reliable gradient for the complex Langevin equation

of deterministic rules. These systems are characterized by their sensi-
tive dependence on initial conditions, which means that small changes
in the starting points can lead to vastly different outcomes over time.
This phenomenon is also known as the "butterfly effect". Chaos theory
has found applications in various fields, such as physics, meteorology,
biology, engineering, and economics.

One of the crucial concepts in chaos theory is the Lyapunov expo-
nent [160], which helps quantify the rate of divergence or convergence
of nearby trajectories in a dynamical system. The Lyapunov exponent
measures the system’s stability and predicts chaotic behavior; a positive
Lyapunov exponent indicates that the system is chaotic, while a negative
exponent signifies stability. In ordinary differential equations, this can be
visualized by investigating the trajectories around a single stable (critical)
point, where positive exponents would circle around the stable point end
eventually end at the point. A positive Lyapunov exponent would start
diverging away from the point, and an exponent of 0 would circle around
the point in a stable orbit.

As a general concept, let’s investigate a dynamic system of the form

𝑑𝑥(𝑡)
𝑑𝑡

= 𝑓 (𝑥, \, 𝑡) (7.1)

where 𝑥 is the state variable and \ the system parameters. We are inter-
ested in the evolution of the separation between two trajectories 𝑥(𝑡) and
𝑥′(𝑡), noted by 𝑧(𝑡) = 𝑥(𝑡) − 𝑥′(𝑡). The initial condition of the two trajec-
tories is an infinitesimal distance apart such that 𝑧(0) → 0. The stability
of the ODE can be assessed by investigating the 𝑧(𝑡); for a stable system,
we have 𝑧(𝑡) → 0. The evolution of the separation is given by

𝜕𝑧(𝑡)
𝜕𝑡

=
𝜕 𝑓 (𝑥, \)
𝜕𝑥

𝑧(𝑡) = 𝐽 (𝑥, 𝑡)𝑧(𝑡) (7.2)

where we have noted the Jacobian of the system as 𝐽 (𝑥, 𝑡). The general
solution to this system is given by

𝑧(𝑡) = 𝐻 [𝑥, 𝑡]𝑧(0) = 𝑒
∫ 𝑡

0 𝑑𝑡 ′𝐽 (𝑥,𝑡)𝑧(0). (7.3)
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Note that the evolution operator𝐻 [𝑥, 𝑡] depends on all the previous values
of 𝑥. The amplitude of the separation is given by

|𝑧(𝑡) |2 = |𝐻 [𝑥, 𝑡]𝑧(0) |2 = 𝑧𝑇 (0)𝐻𝑇𝐻𝑧(0). (7.4)

We can see that if 𝐻 is an orthogonal matrix, i.e., 𝐻𝑇𝐻 = 𝐼, then we get
|𝑧(1) |2 = |𝑧(0) |2 → 0, and hence the separation of the two trajectories
remains infinitesimal. To quantify the separation, we look at the infinite
time limit of the operator and linearize the system. We define

lim
𝑡→∞

[
𝐻𝑇𝐻

]1/2𝑡
= 𝑃 (7.5)

which will reach a stationary value for a finite 𝑡 if the system is ergodic.
The eigenvalues `𝑖 of 𝑃 now yield the Lyapunov exponents by

_𝑘 = log `𝑘 . (7.6)

The Lyapunov exponents _𝑖 now describe the magnitude of the separation
change, i.e.,

|𝑧(𝑡) | = 𝑒_𝑡 |𝑧(0) |, (7.7)

while the eigenvectors of 𝑃 describe the direction of the change. The most
important of the Lyapunov exponents is the one with the largest real part,
denoted as _1 and often called maximum Lyapunov exponents (MLE).
This will dominate the change in separation distance 𝑧(𝑡). If the MLE is
negative, then 𝑒_1𝑡 tends to 1 in the infinite limit, such that 𝐻𝑇𝐻 = 𝐼. The
system can be said to be stable for _1 < 0.

If the MLE is positive (_1 > 0) the separation distance will exponen-
tially increase. In these cases, the system is not considered stable since
an infinitesimal change in the system yields an exponentially different
trajectory. To compute the Lyapunov exponents, we need to compute
𝐻 (𝑥, 𝑡). This can be done by rewriting the time evolution operator into
an evolution equation given by

𝑑

𝑑𝑡
𝐻 (𝑥, 𝑡) = 𝐽 (𝑥, 𝑡)𝐻 (𝑥, 𝑡). (7.8)
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Figure 7.1: This shows several realizations of the Lorenz system, where
all trajectories are initialized around 𝑥(0) with a Gaussian distribution with
variance 0.001. The black line is the reference trajectory, initialized as 𝑥(0)
without any perturbation. We see that the cloud of trajectories stays together
in the beginning but quickly deviates.

with the initial condition 𝐻 (0) = 𝐼. We can evolve the equation up to
a final time 𝑇 , then compute the eigenvalues of 𝑃 = 𝐻𝑇𝐻; then we can
read out the MLE by sorting the eigenvalues by the real part.

A convenient way to think about it is if we propagate a cloud of initial
vectors 𝑥(0) + 𝛿𝑥(0), where 𝛿𝑥(0) is distributed according to a Gaussian
distribution, forward in time. The distribution of vectors will expand and
contract in different directions, the magnitude of this behavior is what
we refer to as the Lyapunov exponents (LEs). It is important to mention
that the LEs are not local objects and hence correspond to a mode in
the long-time behavior of the system. The direction of the deformation
of the distribution is given by the covariant Lyapunov vectors (CLV)2
𝜓1(𝑥), 𝜓2(𝑥), ..., which satisfy the equation

𝑑

𝑑𝑡
𝜓𝑖 (𝑥(𝑡)) = 𝐽 (𝑥, 𝑡)𝜓𝑖 (𝑥(𝑡)) − _𝑖𝜓𝑖 (𝑥(𝑡)) (7.9)

2This term is misleading, as it does not refer to the eigenvector of the corresponding LEs, but
rather the corresponding eigenvectors of the local LEs, which is often called the characteristic
Lyapunov exponents.
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where _𝑖 is the corresponding LE. These vectors indicate the direction of
the deviation given by the corresponding LE. For a given LE, with the
magnitude _𝑖, the corresponding difference between the two trajectories
(𝑧) increases in the direction of 𝜓𝑖. Let’s try to visualize this using the
Lorenz attractor, which we will introduce in section 7.4.2. Figure 7.1 show
the trajectory of 𝑥(𝑡), without a perturbation added (reference trajectory)
in black. Then the cloud of points initialized around 𝑥(0) with a Gaussian
distribution with variance 0.001, is shown in blue. Initially, all the
trajectories will follow the same path; each time it gets close to zero on
the x-axis, the perturbed trajectories start to deviate from the reference
trajectory, i.e., the variance of the distribution of the cloud increases.
However, it stays close to the reference trajectory until it crosses zero
on the x-axis the second time. At this point, the variance of the cloud
increases fast, as some of the trajectories follow the left side and the rest
on the right-hand side. The system has so-called unstable CLV directions
corresponding to the positive Lyapunov exponents.

It has been observed that the computation of the flow matrix 𝐻 fails
for large times 𝑡 [160]. This can be avoided with the help of a suitable
re-ortonormalization scheme. One of these methods is the Benettin algo-
rithm [161], which computes the 𝑛’th largest Lyapunov exponents (LE).
We will concentrate on the exponent with the largest real part, which is
often called MLE (_1), so we do not need to compute more than one
LE. This scheme re-orthonormalize the solution at checkpoints during
the evolution of the so-called tangent equation3, given by

¤𝑢(𝑡) = 𝐽𝑢(𝑡) (7.10)

where 𝑢(𝑡) is a vector, which is initialized with a random value 𝑢0 and
then orthonormalized, such that �̄�0 =

𝑢(𝑡)
| |�̄�(𝑡) | | . This flow’s late time limit

is independent of the initial condition [161]. We evolve the equation
over a time Δ𝑇 until the first checkpoint at 𝑡1. We then save 𝑢(𝑡1) to
memory and orthonormalize the vector before continuing the evolution
of �̄�(𝑡1) = 𝑢(𝑡1)

| |�̄�(𝑡1) | | . We then repeat this process up to a final time 𝑇 , with

3This is often referred to as a flow equation in lattice field theory
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a total of 𝑀 = 𝑇
Δ𝑇

intermediate checkpoints. The MLE is then given
by [161]

_1 =
1
𝑀

𝑀∑︁
𝑖

ln | |𝑢(𝑡𝑖) | |. (7.11)

Note that we only use the values at the checkpoints before normalizing
them (�̄�) and use this as the initial condition for the evolution Δ𝑇 to the
next checkpoint.

For simplicity, we will define a chaotic system to be a system with pos-
itive Lyapunov exponents. Although this is not a formal definition, it
is sufficient for describing the problem of the gradient of the complex
Langevin. Next, we will show that the real-time complex Langevin evo-
lution of the anharmonic oscillator is, in fact, chaotic by calculating the
Lyapunov exponents. It is important to note that the Lyapunov exponents
calculated here only approximate the system’s behavior, as the complex
Langevin equation is inherently stochastic.

7.2 Lyapunov exponent of Real-time CLE

Before we continue discussing the properties of a chaotic system, we will
calculate the Lyapunov exponents of the real-time systems discussed in
chapter 6. This measure can tell us whether or not the system is chaotic
and the dynamical system’s stability. The complex Langevin is a dynam-
ical system in the fictitious Langevin time, which is different from most
dynamical systems considered in the context of chaotic systems.

We assume the Lyapunov method for the abovementioned dynamical
systems can be generalizable to stochastic dynamical systems. This is be-
cause the complex Langevin, with a constant (field-independent) kernel,
has a constant noise coefficient. In the linearization of the system, as was
done to obtain eq. (7.8), the noise terms drop out, as the Jacobian does
not contain the noise term. There are, however, some subtleties to this
when it comes to field-dependent noise terms, which we will not go into
here, see [162] for a detailed overview.
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7.2.1 Lyapunov exponent of free theory

We will first discuss the free theory, as this is a linear SDE and, therefore,
trivial to obtain the Lyapunov exponent. The SDE for the free theory is
given, as described in section 6.3.3, by

𝑑𝜙 = 𝑖𝑀𝜙𝑑𝑡 + 𝑑𝑊 (7.12)

where 𝑖𝑀𝜙 is a linear rewriting of the drift term. We saw in chapter 6
that this action supplied to the Schwinger-Keldysh contour has a large
relaxation time, and by using the free theory propagator kernel (𝐾 =

(𝑖𝑀)−1), the relaxation time was reduced significantly.

Computing the Lyapunov exponents (LEs) of this system is trivial as we
have already linearized the SDE, which yields a constant Jacobian of
𝐽free = 𝑖𝑀 . The LEs are the real-part of the eigenvalues of the Jaco-
bian. Supplied with a free theory propagator kernel, we get a completely
degenerate set of Lyapunov exponents at _𝑖 = −1, since the Jacobian is
given by 𝐽free,K = −𝐼.

For a real-time of 𝑡max = 10, we get the Lyapunov exponent, computed by
the largest eigenvalues of 𝑀 , to be _𝐾=𝐼1 = −10−5, while with the kernel,
we get _𝐾=−𝑖𝑀−1

1 = −1. This indicates, in the same way as was shown
in section 6.3.3, that by applying the free theory kernel, we speed up the
convergence rate of the simulation. The Lyapunov exponent without the
free-propagator kernel applied gets closer and closer to zero for increasing
real-time, and already at 𝑡max = 30, we have a Lyapunov exponent of the
order _𝐾=𝐼1 = −10−8. Hence, the stability measure indicates how far it
is feasible to simulate in real-time, which for the free theory without a
kernel, quickly becomes expensive.

The MLEs for the free theory with and without a kernel are plotted in
the upper panel of fig. 7.2, named "𝐾 𝐼 free" for the free theory without a
kernel, and "𝐾𝑀 free" with the free theory propagator kernel. As we saw,
the MLEs for the kernel are constant equal to −1, while without a kernel
quickly increase towards 0.
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Figure 7.2: Calculation of maximum Lyapunov exponents (MLE) for increas-
ing real-time extent using different contour, system, and kernel setups. The
blue squares (𝐾 𝐼 ) show the anharmonic oscillator (AHO) without a kernel on
the canonical Schwinger-Keldysh (SK) contour. The orange circles are the
same model on the right SK contour. The greed triangles (𝐾𝑀 ) are the same
model on the canonical SK using the free theory propagator kernel. The free
theory is shown for the yellow crosses and purple triangles without (𝐾 𝐼 free)
and with (𝐾𝑀 free) a kernel. We treat the CLE systems with MLE above 0
to be chaotic systems.

7.2.2 Interacting theory

We can now investigate the Lyapunov exponent for the real-time system
where the complex Langevin converges to the wrong solution at a small
real-time extent. For the free theory, a small Lyapunov exponent indicates
a slow convergence to the expected solution. It is, therefore, interesting
to investigate if similar behavior is present in the interacting theory where
we know there is a failure in convergence to the wrong solution.

Since the system is non-linear, we cannot base the Lyapunov exponent’s
(LE) calculation on the drift coefficient’s eigenvalues. We will therefore
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use the method described in the previous section, where we need to evolve
the tangent equation for MLE 𝑢(𝑡). For the real-time complex Langevin
system, the tangent equation is written by

𝑑

𝑑𝑡
𝑢(𝑡) = 𝐾 𝑖

𝜕2𝑆[𝜙]
𝜕𝜙2 𝑢(𝑡), (7.13)

which is initialized with 𝑢(0) as a random vector normalized to one. We
then read off the MLE by eq. (7.11).

We plot the result for different real-times in the upper panel of fig. 7.2
for different setups. The blue squares (𝐾 𝐼) are the anharmonic oscillator
with 𝑚 = 1, _ = 24, and time discretization of 𝑎 = 0.1 on the canonical
Schwinger-Keldysh contour (panel c in fig. 4.3). The orange circles have
the same setup, except for the contour is now panel b in fig. 4.3, which
follows the real-time axis to 𝑚𝑡max, and tilted directly down to −𝑖𝛽. We
use the name Schwinger-Keldysh (SK) right for this contour, adopted
from [135].

We see that the canonical SK contour leads to less stability, as expected.
It also crosses the zero line already at 𝑚𝑡max = 0.7, while the SK right
contour crosses the zero line at 𝑚𝑡max = 1.3. This means that after this
point, the system is considered to be chaotic. We will come back to why
this is important in the next section. It is also interesting to compare this
to when the complex Langevin converges to the wrong solution. This is at
𝑚𝑡max ≈ 0.7 for the canonical SK contour, while 𝑚𝑡max ≈ 1.1 for the SK
right contour. Although this is not a criterion for when the CLE converges
incorrectly, it does indicate the effect of a new important contribution to
the dynamical system at this transition point. Since we know the system
to have more than one critical point (classical solution), it indicates that
the critical points not located at zeros get a stronger attraction force for
larger real-time. This can contribute to the system becoming chaotic, as
the CLE can transition between the different attractors (critical points) in
a chaotic way.

We have also included the anharmonic oscillator simulation with the free
theory propagator for comparison, which is denoted 𝐾𝑀 . This converges
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to the wrong solution at around 𝑚𝑡max ≈ 1.0, while the MLE is still
negative. This shows that the link between the convergence to the wrong
solution and the Lyapunov exponent is unrelated. It is also worth noting
that we see a steep increase in the MLE when using this kernel. This
indicates that after 𝑚𝑡max ≈ 1.0, the difference between the anharmonic
oscillator (AHO) and the free theory (harmonic oscillator) is increasing.
In practice, this means that the in the AHO, the 𝜙4 term is increasingly
dominant for a larger real-time.

These findings have several impacts on the numerical simulation of the
system. First, this indicates that much care is needed when selecting
numerical schemes for simulation to a large real-time extent. Secondly,
the problem of obtaining a gradient of the simulation, e.g., using the
adjoint sensitivity method, is due to the Lyapunov exponent becoming
positive. We will come back to the latter one in the next section.

We know that the value of the Lyapunov exponents dictates the stability
of the simulation. And we already showed that there is a big difference in
stability for the free theory with and without the free propagator kernel.
However, the difference is larger when transitioning between a negative
MLE and a positive one, which means a transition from a stable attractor
to an unstable attractor. This indicates that we need a high-accuracy
solver to get reliable results. In fact, it might be necessary to modify the
complex Langevin equation with, e.g., a kernel to make the computation
accurate enough.

We can reduce the MLE down to being negative again using a suitable
kernel obtained by the use of an optimization scheme. In fig. 7.3, we
performed a kernel optimization using the 𝐿𝐷 low-cost loss function
and calculated the MLE after each optimization step for several real-
time extents. In the upper panel, we see the decrease in MLE after
each step, where 𝑚𝑡max = 0.5, 1.0, 1.5 continue decreasing, while the
𝑚𝑡max = 2.0, 3.0 stays constant early on.

The low-cost gradient is able to obtain a reliable gradient of the system,
which at this point might be counterintuitive. However, we can think of
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Figure 7.3: The iterations from a kernel optimization using the low-cost
gradient, where we have plotted the MLE (top panel) and the loss function
𝐿𝐷 (bottom panel). We see a constantly decreasing MLE and 𝐿𝐷 for small
𝑚𝑡max, while for larger 𝑚𝑡max, both the MLE and 𝐿𝐷 flatten out after just a
few iterations.
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this loss function to be on the level of the configurations, i.e., approx-
imate each configuration to be independent of the simulation. In this
approximation, the gradient is not dependent on the dynamical system in
Langevin time. Hence, it is not affected by the problems of an ill-defined
gradient, as we will discuss in the next section. Keep in mind that the
gradient of 𝐿𝐷 is an approximation.

Even though the gradient of 𝐿𝐷 is not susceptible to the problems with
chaotic systems, the change in the kernel parameters is. This means that
since we need a finite change to the kernel, this is considered a change
in the parameters of the system. In the next section, we will see that
this change is similar to the change in the initial condition of a chaotic
system. Hence, we do expect that any update to the kernel, even with a
correct gradient, does not guarantee a reduction in the loss. This is due to
the unpredictability of the system. We can see that for a longer real-time
extent in fig. 7.3, the update in the MLE is oscillating more and more. On
average, 𝐿𝐷 is decreasing when using the low-cost gradient, which means
that for this specific loss function, we are able to optimize a kernel.

In the lower panel fig. 7.3, we show the improvements in 𝐿𝐷 . We see
that the loss is decreasing for all the real-time extents, but for the longer
real-times, it oscillates. This behavior is common when optimizing a
loss function, but we see a difference between the 𝑚𝑡max = 0.5 and the
longer real-time extent. Although there is an overall improvement for the
𝑚𝑡max > 0.5, changes in the kernel are unpredictable due to the positive
or small negative Lyapunov exponent.

Let us speculate on a possible connection between the Fokker-Planck
operator eigenvalues and the Lyapunov exponents. While they are not the
same mathematical construct, we know that both quantities express in-
formation about the stability and convergence properties of the stochastic
dynamical system. This could mean linking the two concepts, e.g., the
MLE yielding an upper bound for the eigenvalue with the largest eigen-
value. If this eigenvalue is positive, we know that the complex Langevin
is not converging to the true solution [46] (see chapter 5), i.e., the sta-
tionary distribution of the Fokker-Planck equation is not 𝑒𝑖𝑆. Although
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this is speculation, such a connection would be important as we can
safely say that the boundary terms break the convergence of the complex
Langevin.

Now that we have shown that the real-time complex Langevin equation
is chaotic at the real-time extent we are interested in, in the next section,
we will use this to show why the gradient of such a system is ill-defined
when formulating the derivative in the standard way.

7.3 When a gradient is ill-defined

For some systems, the adjoint sensitivity method laid out in section 3.2
fails to give a reliable gradient; in fact, for some cases, it even diverges
for increasing simulation time. Although the gradient of the complex
Langevin equation does not diverge, it does yield incorrect results similar
to other chaotic systems. The category of system where the gradient of
the simulation is ill-defined can be categorized under chaotic systems
and, more precisely, systems with positive Lyapunov exponents.

We can, in principle, compute these gradients with finite differences,
automatic differentiation, and tangent/adjoint sensitivity methods. For
chaotic systems, all of them yield incorrect gradients due to the positive
Lyapunov exponent. The fundamental reason for the breakdown is that the
infinite time limit and the infinitesimal perturbation limit do not commute
for time-average quantities, such that [151]

lim
𝛿\→0

lim
𝑇→∞

1
𝑇

∫ 𝑇

0

𝑔(𝑥(𝑡, \ + 𝛿\), \ + 𝛿\) − 𝑔(𝑥(𝑡, \), \)
𝛿\

𝑑𝑡

≠ lim
𝑇→∞

1
𝑇

∫ 𝑇

0
lim
𝛿\→0

𝑔(𝑥(𝑡, \ + 𝛿\), \ + 𝛿\) − 𝑔(𝑥(𝑡), \)
𝛿\

𝑑𝑡

(7.14)

does not hold. The first equation states that we first integrate up to the
𝑇 → ∞ and then take the limit 𝛿\ → 0. While the other equation
states that we first take the derivative of the integrand with respect to the
parameter \ and then let 𝑇 → ∞. As we cannot compute the integral
and then take the limit 𝛿\ → 0 on a computer, we need to compute it via
the right-hand side, which is incorrect in this case. In fact, it is not even
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defined for chaotic systems, as the integrand itself tends to infinity in the
𝑇 → ∞ limit.

To see this we use the chain rule on the integrand of the right-hand
side

lim
𝛿\→0

𝑔(𝑥(𝑡; \ + 𝛿\), \ + 𝛿\) − 𝑔(𝑥(𝑡; \), \)
𝛿\

=
𝜕𝑔

𝜕𝑥

𝜕𝑥

𝜕\
. (7.15)

For a chaotic system 𝜕𝑔

𝜕\
increase exponentially, and hence grows to ∞ for

𝑡 → ∞. We can see this by investigating the tangent equation (which we
derived in eq. (3.20))

𝑑

𝑑\

𝑑𝑢(𝑡)
𝑑𝑡

=
𝑑𝑣(𝑡)
𝑑𝑡

=
𝜕 𝑓

𝜕𝑢
𝑣(𝑡) + 𝜕 𝑓

𝜕\
= 𝐽𝑣(𝑡) + 𝜕 𝑓

𝜕\
(7.16)

where 𝐽 =
𝜕 𝑓

𝜕𝑢
is the Jacobian. The solution to the tangent equation will

have a solution of the form

𝑣(𝑡) = 𝑒
∫ 𝑡

0 𝐽 (𝜏)𝑑𝜏𝑣(0) + 𝐶 (𝑢), (7.17)

where𝐶 (𝑢) is due to the second term on the right-hand side of the tangent
equation. We can now identify 𝐻 = 𝑒

∫ 𝑡
0 𝐽 (𝜏)𝑑𝜏 as the same object we used

to calculate the Lyapunov exponent, and hence we see that 𝑣(𝑡) will, in
fact, increase exponentially in the same way as an infinitesimal change in
the initial condition.

This means that attempts to obtain the gradient using the adjoint sensi-
tivity method of a loss function, including a chaotic system, will have
an ill-defined gradient. This practically means, as we mentioned in sec-
tion 6.4, that we cannot directly optimize the loss function eq. (6.43) using
the adjoint sensitivity method for real-time extents where CLE converges
to the wrong solution. We will now demonstrate this difficulty using the
real-time complex Langevin equation.

7.3.1 Testing the adjoint sensitivity method on real-time complex Langevin

To demonstrate the difficulties with adjoint methods applied to the real-
time complex Langevin, we must compare it to real-time extents with
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positive Lyapunov exponents. In the context of the optimization scheme
laid out in section 6.4, this is not easy, as the complex Langevin already
converges correctly in the region of negative LEs. This means that the
loss function tends toward zero for an increasing simulation time. If we
instead optimize a kernel based on a fixed Langevin time extent, i.e., we
use the same initial condition and random seed up to a finite time 𝑇 for
every update step. We are able to see improvement as the kernel tries to
correct the statistical error in the observable estimation.

For example, we can optimize the 𝑥 observable, which should be zero at
all points along the contour. For a finite simulation time, the estimated
mean of the observable, ⟨𝑥⟩𝑇 , is only equal to zero within statistical and
systematic error. For this optimization, however, we disregard the statis-
tical error, such that we are only interested in optimizing the estimated
mean to be zero.

We use a simulation time of 𝑇 = 5, with 5 different trajectories, with
the canonical Schwinger-Keldysh contour, the lattice spacing of 𝑎 = 0.1,
and the implicit Euler-Maruyama scheme. The loss function is setup to
minimize the ⟨𝑥⟩𝑇=5 observable, and is written as

𝐿𝑥 (𝐾) = [Re⟨𝑥⟩𝑇=5]2 + [Im⟨𝑥⟩𝑇=5]2 . (7.18)

The optimization uses the ADAM optimizer, with a learning rate of 0.002.
We can think of the optimization as a simplified version of an optimization
scheme to reduce the burn-in time, i.e., the time it takes for the simulation
to start sampling from the stationary distribution of the Fokker-Planck
equation. A proper investigation into such a method can be interesting as it
can potentially speed up computations of more complicated models.

In fig. 7.4, we have plotted the loss function for the first 15 iterations of the
optimization scheme for different real-time extents. We have normalized
the loss function based on the value of the first iteration for readability.
As expected from the Lyapunov exponents of the same real-time extents,
we see that only 𝑚𝑡max = 0, 0.2, 0.3, and 0.5 obtains reliable gradients.
In all of these real-time extents, the loss improvement is smooth for the
first 5 iterations, but after this, the 𝑚𝑡max = 0.5 starts increasing again.
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Figure 7.4: Adjoint sensitivty method optimizing of simple loss funciton
eq. (7.18) for different real-time extents. We see that for the 𝑚𝑡max that is
not chaotic, the loss decreases exponentially until it reaches a plateau. The
exception is 𝑚𝑡max = 0.5, which initially decreases, but pushes the MLE up
such that the CLE becomes chaotic. We see no improvement in the loss for
higher 𝑚𝑡max.

This is because the kernel pushes the Lyapunov exponent to be positive,
making the gradient ill-defined. The optimization does not improve the
loss for the two last ones (𝑚𝑡max = 0.8, 1.0), which is expected since they
both exhibit positive MLE.

7.4 Shadowing sensitivity algorithms

We have seen that the adjoint sensitivity method fails for the real-time
complex Langevin equation. I have investigated possible methods to
obtain a reliable gradient of the real-time complex Langevin, and in this
section, I will review a potential solution to the problem. The method is
adopted to work with stochastic differential equations and use a stochastic
Lorenz attract as a test model.

I will discuss the group of sensitivity methods that rely on the shadowing
lemma, which is the most prominent method to obtain gradients of chaotic
dynamical systems [153]. Although many versions of the method have
been proposed based on the same lemma, we will introduce the idea
using the initial method presented in [153]. In the following section,
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I will apply a different version, called the NILSAS (non-intrusive least
square adjoint shadowing) method, to the stochastic Lorenz system. Here
I will only present the changes done to the algorithm and refer to [152]
for more information on the derivation. The reason for the difference
in method is that I found the intuition of how the method works easier
to understand for the initial case. At the same time, the NILSAS is a
more efficient method, which is constructed such that previous adjoint
sensitivity implementations can easily be converted.

The least square shadowing (LSS) sensitivity algorithm is based on find-
ing a so-called "shadow trajectory", which is a perturbed trajectory that
stays close to the unperturbed trajectories at all times. The existence of
such a trajectory follows from the shadowing lemma [163], which states
that;

Consider a solution 𝑢 to ¤𝑢 = 𝑓 (𝑢; \), if this system has a hyperbolic
strange attractor and if some system parameter \ is slightly perturbed by
some 𝛿\, then for any 𝛿 > 0 there exist 𝜖 > 0, such that for every 𝑢 that
satisfies | |𝑑𝑢/𝑑𝑡 − 𝑓 (𝑢; \ + 𝛿\) | | < 𝜖 , there exists a true solution �̄� and a
time transformation 𝜏(𝑡), such that | |�̄�(𝜏(𝑡)) −𝑢(𝑡) | | < 𝛿, |1−𝑑𝜏/𝑑𝑡 | < 𝛿
and 𝑑�̄�(𝜏)

𝑑𝜏
− 𝑓 (�̄�; \ + 𝛿\) = 0.

In words, this means that it is possible to find a trajectory �̄�(𝜏(𝑡)) that
closely follows the original solution 𝑢(𝑡). The shadowing solution satisfy
the original system ¤𝑢 = 𝑓 (𝑢; \) up to a round off error 𝜖 , and by intro-
ducing a time transformation 𝜏(𝑡) the system 𝑑�̄�(𝜏)

𝑑𝜏
− 𝑓 (𝑢(𝜏); \ + 𝛿\) = 0

holds.

For the shadowing lemma to work, the attractor associated with the system
must be hyperbolic. This means that the tangent space can be divided into
stable, neutrally stable, and unstable components throughout the attrac-
tor, corresponding to negative, zero, and positive Lyapunov exponents.
Although not all attractors can be broken down in this way, the Chaotic
Hypothesis [157] suggests that many high-dimensional chaotic systems
behave as if they were hyperbolic. For instance, the Lorenz attractor [164],
which we will introduce in section 7.4.2, has only one non-hyperbolic
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point, which is the unstable fixed point at the origin. Since most phase
space trajectories don’t go through this point, the shadowing lemma ap-
plies to the majority of trajectories on the Lorenz attractor4.

One way to find the shadowing trajectory is to perform a least square
minimization of the shadowing trajectory. The minimization problem
can be written as

min
�̄�

1
2

∫ 𝑇

0
| |�̄�(𝜏, \ + 𝛿\) − 𝑢(𝑡, \) | |2𝑑𝑡, such that

𝑑�̄�(𝜏, \ + 𝛿\)
𝑑𝜏

= 𝑓 (�̄�(𝜏, \ + 𝛿\), \ + 𝛿\)
(7.19)

which minimzes the difference between the shadowing trajectory �̄�(𝜏)
and the original solution 𝑢(𝑡). This is in the literature called the Least
Squares Shadowing (LSS) problem. The LSS problem is said to be well-
conditioned, compared to the initial chaotic problem, which means that
the condition number stays constant close to zero for the LSS, while it
increases exponentially for the original problem [149].

We can now use this minimization problem to obtain a gradient of a
chaotic dynamical system, as we now have a method of obtaining perturba-
tion to a trajectory without it diverging from the original one. We are inter-
ested in the gradient of a loss function 𝐿∞(\) = lim𝑇→∞

1
𝑇

∫ 𝑇
0 𝑔(𝑢(𝑡), \)𝑑𝑡,

as we discussed in section 3.2. We insert the shadowing trajectory in the
loss function

𝐿∞(\) ≈ 𝐿𝑇𝑙𝑠𝑠 (\) =
1

𝜏(𝑇) − 𝜏(0)

∫ 𝜏(𝑇)

𝜏(0)
𝑔(�̄�(𝑡), \)𝑑𝑡. (7.20)

Because of the shadowing trajectory �̄� is well-conditioned[153], the gra-
dient of the loss function 𝐿𝑙𝑠𝑠 is also well defined at a finite time 𝑇 .
In contrast to the standard definition in eq. (7.14), the limit of 𝑇 → 0
and the derivative 𝛿\ → 0 now commmute, as the difference between
𝐿𝑇
𝑙𝑠𝑠
(\) at \ and \ + 𝛿\ uniformly converges to the derivative as 𝛿\ van-

ishes [153].
4It should be noted that for systems that include non-hyperbolic points, the magnitude bounds

in the shadowing lemma 𝜖 and 𝛿 needs to be chosen small.
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We can compute the derivative 𝑑𝐿𝑇
𝑙𝑠𝑠

(\)
𝑑\

by a linearization of the constrained
minimization problem (LSS problem, eq. (7.19)). This can be obtained
by Taylor expanding the shadowing solution �̄�(𝜏, \ + 𝛿\), around 𝛿\, and
then dividing by 𝛿\ in the LSS minimization problem (eq. (7.19)). We
can write

�̄�(𝜏(𝑡, \ + 𝛿\), \ + 𝛿𝜏) = 𝑢(𝑡) + 𝑣(𝑡)𝛿\,

where 𝑣(𝑡) = 𝑑

𝑑\
�̄�(𝜏(𝑡, \), \)

(7.21)

and

𝜏(𝑡, \ + 𝛿\) =
∫ 𝑡

0
(1 + [(𝑡′)𝛿\)𝑑𝑡′, where [(𝑡) = 𝑑

𝑑\

𝑑𝜏(𝑡)
𝑑𝑡

(7.22)

where we have defined the time-dialation [(𝑡), which is introduced due
to the time transformation 𝜏(𝑡). The new minimization problem can now
be written in terms of 𝑣(𝑡), which is the quantity of interest in most
sensitivity methods. Since we have changed the minimization problem to
a problem in 𝑣, the construction needs to be similarly converted. This can
be done by operating with 𝑑

𝑑\
on the constraint from the LSS problem.

Hence we obtain the constrained minimization problem in 𝑣 [153]

min
𝑣

1
2

∫ 𝑇

0
| |𝑣 | |2𝑑𝑡, with

𝑑𝑣

𝑑𝑡
=
𝜕 𝑓

𝜕𝑢
𝑣 + 𝜕 𝑓

𝜕\
+ [ 𝑓 . (7.23)

To obtain the derivative of the loss function, we can use the result from
this problem directly in [153]

𝑑𝐿𝑇
𝑙𝑠𝑠

𝑑\
=

∫ 𝑇

0

𝜕𝑔

𝜕𝑢
𝑣(𝑡) + 𝜕𝑔

𝜕\
+ [(𝑡) (𝑔(𝑢(𝑡)) − 𝐿 (\))𝑑𝑡 (7.24)

We can understand the terms inside the integral as follows; the first
term describes the contribution by the perpendicular distance between
the shadowing trajectory and the original trajectory, and the second term
is the changes in the loss function due to a change in the parameter (this
also appears in the standard adjoint sensitivity method (eq. (3.29))). The
last term is a correction term due to the time transformation 𝜏(𝑡). For a
derivation of the equation above, we refer to the appendix of [153].
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Now we have all the ingredients to construct a routine to solve the problem.
When deriving the adjoint equation, we did a lengthy discussion on how
to solve a similar constrained problem, where we have an optimization
problem constrained by a differential equation. Therefore we set up a new
Lagrangian of the following form [149]

Γ =

∫ 𝑇

0

(
𝑣𝑇𝑣 + 𝛼2[2 + 2𝜔𝑇

[
𝑑𝑣

𝑑𝑡
− 𝜕 𝑓

𝜕𝑢
𝑣 − 𝜕 𝑓

𝜕\
− [ 𝑓

] )
, (7.25)

where we introduced an adjoint variable 𝜔5. Following the steps intro-
duced in section 3.2, we arrive at the following set of equations [153]

𝑑𝑣

𝑑𝑡
− 𝜕 𝑓

𝜕𝑢
𝑣 − 𝜕 𝑓

𝜕\
− [ 𝑓 = 0 (7.26)

𝑑𝑤

𝑑𝑡
+ 𝜕 𝑓
𝜕𝑢

𝑇

𝑤 − 𝑣 = 0 (7.27)

𝑤(0) = 𝑤(𝑇) = 0 (7.28)
𝛼2[ − 𝑤𝑇 𝑓 = 0 (7.29)

that we need to solve in order to obtain the sensitivity 𝑑𝐿𝑇
𝑙𝑠𝑠

𝑑\
by inserting

the resulting values of 𝑣(𝑡).

The abovementioned algorithm is called the Least Square Shadowing
sensitivity method [149]. It has, however, been much progress in this
field in the last 10 years, both in terms of more efficient algorithms and
in the reliability of the method. One of these improvements is the NIL-
SAS (Non-Intrusive Least Squares Adjoint Shadowing) algorithm [152].
This also uses the shadowing lemma and transforms the linearized LSS
problem (eq. (7.23)) into a discrete minimization problem subjected to
a set of adjoint equations. These equations are the same as the ones we
already have derived for the adjoint sensitivity method (eq. (3.27)). In
practical applications, the NILSAS algorithm is implemented in a non-
intrusive manner, meaning that it does not require any modifications to
the underlying numerical solvers or the original dynamical system. This

5This have the same purpose as the adjoint variable _ for the standard adjoint sensitivity
method.
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is an important feature, as it enables the application of the algorithm to a
wide range of existing simulation codes and models with minimal effort.
In the next chapter, we will introduce the method and modify the parts
needed to make it applicable to a stochastic differential equation.

7.4.1 Stochastic NILSAS

In the previous section, we introduced the simplest version of a least
square shadowing sensitivity method, where the basic principle was to
solve a constrained optimization problem to obtain the sensitivity. For
many applications of sensitivity schemes, the adjoint equation is already
accessible or can be implemented without many changes to the code.
To this end, a more efficient strategy using the adjoint sensitivity equa-
tions has been constructed. This is called the NILSAS (non-intrusive
least square adjoint shadowing) sensitivity method [152]. The central
difference between these two methods is that the LSS uses the shadowing
direction, while the NILSAS uses the adjoint shadowing direction.

The adjoint shadowing direction is similar to the shadowing direction,
which is 𝑣(𝑡) for the LSS algorithm, i.e., the direction from the unper-
turbed trajectory 𝑢(𝑡) to the perturbed trajectory 𝑢′(𝜏). Instead of sat-
isfying the tangent equation (eq. (7.26)), it satisfies the inhomogeneous
adjoint [152] equation

𝑑𝑣(𝑡)
𝑑𝑡

+
(
𝜕 𝑓

𝜕𝑢

)𝑇
𝑣(𝑡) = −𝜕𝑔(𝑢, 𝑡)

𝜕𝑢
, 𝑣(𝑇) = 0 (7.30)

where an important difference is that it contains 𝑔(𝑢, 𝑡), which is part of
the loss function. The initial condition is defined at the last point 𝑇 in
the time span of the simulation of the original system. Since the equation
is only defined in the reverse direction, the corresponding Lyapunov
exponents and their corresponding covariance Lyapunov vectors are also
the adjoint versions. This is nothing more than the same formalism,
as derived in section 7.1, just in the reverse time direction. Note that
this equation, as we discussed in chapter 3, is of an adjoint equation
formulation as it contains the transpose of the Jacobian

(
𝜕 𝑓

𝜕𝑢

)
times the

vector (VJP product).
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The minimization problem used in this method is

min
𝑎∈R𝑀

1
2

∫ 𝑇

0
| |𝑣 +𝑊𝑎 | |2, subjected to

∫ 𝑇

0
⟨𝑣 +𝑊𝑎, 𝑓 (𝑢, 𝑡)⟩ = 0

(7.31)
where ⟨·, ·⟩ is the inner product in Euclidean space, and �̄� is a matrix
containing a subspace of adjoint CLVs, which is set to 𝑀 > 𝑚𝑢𝑠 where
𝑚𝑢𝑠 is the number of unstable CLVs in the system. The matrix 𝑀 spans
the entire non-stable CLV subspace [152]. We can find �̄� by the so-called
homogenous equation [152]

𝑑𝑊 (𝑡)
𝑑𝑡

+
(
𝜕 𝑓

𝜕𝑢

)𝑇
𝑊 (𝑡) = 0, 𝑊 (𝑇) = 𝑄 (7.32)

where 𝑄 is any random unit vector. After solving the minimization
problem eq. (7.31), we can obtain the sensitivity by applying 𝑣(𝑡) to

𝑑𝐿

𝑑\
=

∫ 𝑇

0
𝑣(𝑡) 𝜕 𝑓

𝜕\
+ 𝜕𝑔(𝑢(𝑡))

𝜕\
𝑑𝑡. (7.33)

The way we calculate the NILSAS algorithm has many similarities to
the Benettin algorithm [161] for the Lyapunov exponent calculation we
discussed in section 7.1. We solve the homogenous- (eq. (7.32)) and the
inhomogenous (eq. (7.30)) equation with a checkpointing scheme and
re-orthonormalize the vector 𝑣(𝑡) and 𝑣(𝑡) at intermediate checkpoints.
The full algorithm can be found in section 7.A.

The NILSAS algorithm is developed for deterministic systems, i.e., differ-
ential equations and not stochastic differential equations. The conversion
into a stochastic differential equation can be done by changing the ho-
mogenous (eq. (7.32) and in-homogenous adjoint (eq. (7.30)) equation
into the adjoint equation for an SDE eq. (3.32). As far as the author knows,
no shadowing sensitivity method has been tested before for a chaotic
stochastic differential equation. We will therefore apply the method to a
known chaotic stochastic different equation, namely the stochastic Lorenz
system [164] in the next section.
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Adopting the algorithm for stochastic differential equations (SDEs) will
follow the exact version of the deterministic case laid out in the pre-
vious section, except for the adjoint (homogenous and in-homogenous)
equations. For an SDE of the form

𝑑𝑥 = 𝑎(𝑥, 𝑡, \)𝑑𝑡 + 𝑏(𝑥, 𝑡, \)𝑑𝑊, (7.34)

with Wiener increments 𝑑𝑊 , we again use the interpolated noise version,
such that 𝑑𝑊 → [(𝑡)𝑑𝑡. We can now rewrite the equations as

𝑑𝑊 (𝑡)
𝑑𝑡

+
(
𝜕𝑎

𝜕𝑢
+ 𝜕𝑏
𝜕𝑢
[(𝑡)

)𝑇
𝑊 (𝑡) = 0, 𝑊 (𝑇) = 𝑄 (7.35)

for the homogenous equation and

𝑑𝑣(𝑡)
𝑑𝑡

+
(
𝜕𝑎

𝜕𝑢
+ 𝜕𝑏
𝜕𝑢
[(𝑡)

)𝑇
𝑣(𝑡) = −𝜕𝑔(𝑢, 𝑡)

𝜕𝑢
, 𝑣(𝑇) = 0 (7.36)

for the inhomogeneous equation. We have seen that the adjoint sensi-
tivity method for SDEs with the interpolating noise successfully yields
gradients in the complex Langevin equation when the Lyapunov expo-
nent is negative. A thorough investigation into when the approximation
of interpolating noise should be carried out, including a derivation of
the shadowing sensitivity method based on the shadowing lemma for a
stochastic differential equation to see whether we need to correct for the
noise in the cases where we e.g. have field dependence in the noise
coefficients. This is, however, out of the scope of this thesis.

We now have an implementation of a shadowing sensitivity algorithm that
can be applied to stochastic differential equations, such as the complex
Langevin. In the next section, we will put it to the test on the stochastic
Lorenz system.

7.4.2 Sensitivity of stochastic Lorenz system

As an illustrative example of implementing the shadowing sensitivity
algorithm, we will utilize the stochastic version of the standard Lorenz
system. The deterministic Lorenz system [164] is a popular toy model
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frequently employed for testing algorithms in chaotic systems, which
originates back to Lorenz’s observation of unusual behavior (now rec-
ognized as chaotic behavior) in a more extensive system of atmospheric
convection. Lorenz and his colleagues sought to replicate this behavior
in a smaller and simpler model, creating the Lorenz system, which ex-
hibits the same chaotic patterns. The system of equations constituting the
Lorenz system is given by

¤𝑥 = 𝜎(𝑦 − 𝑥),
¤𝑦 = 𝑥(𝜌 − 𝑧) − 𝑦,
¤𝑧 = 𝑥𝑦 − 𝛽𝑧,

(7.37)

where 𝑥, 𝑦, and 𝑧 represent the state variables, and𝜎, 𝜌, and 𝛽 are positive
parameters corresponding to the Prandtl number, Rayleigh number, and
a geometric factor, respectively.

Typically, the values of the 𝜎 and 𝛽 parameters are fixed at 10 and 8
3 ,

respectively, while the 𝜌 parameter is varied. The system exhibits chaotic
behavior when 𝜌 > 24.74. For 𝜌 < 24.74, the trajectory converges
to one of the model’s fixed points; however, in the chaotic regime, the
trajectory experiences a repulsive force from each critical point, causing
it to oscillate back and forth.

The deterministic Lorenz system is well-known for its sensitivity to ini-
tial conditions, leading to chaotic behavior often visualized as the iconic
Lorenz attractor. This sensitivity presents a challenge for calculating
gradients, as they increase exponentially with time. Consequently, the
longer the system is simulated, the more significant the divergence be-
tween infinitesimal perturbations in initial conditions or model parameters
regarding the final position.

Since the complex Langevin equation is a stochastic differential equation
(SDE), we will evaluate the NILSAS method on a stochastic version of
the Lorenz system by introducing an additive noise to each equation in
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the system. The modified system of equations is as follows:

𝑑𝑥 = (𝜎(𝑦 − 𝑥))𝑑𝑡 + 𝛼𝑑𝑊1,

𝑑𝑦 = (𝑥(𝜌 − 𝑧) − 𝑦)𝑑𝑡 + 𝛼𝑑𝑊2,

𝑑𝑧 = (𝑥𝑦 − 𝛽𝑧)𝑑𝑡 + 𝛼𝑑𝑊3,

(7.38)

where 𝛼 is a positive constant, and 𝑑𝑊1(𝑡), 𝑑𝑊2(𝑡), and 𝑑𝑊3(𝑡) are
independent Wiener processes. The stochastic terms account for random
disturbances in the system.

This same model has been considered in [154, 159], where both obtained
reliable sensitivities (derivatives) of the parameters 𝜌 and𝜎. The methods
considered in these papers differ from the shadowing methods, as they
do not seek to find a shadowing trajectory but by inserting a spring term
in the definition of the derivative that can force the trajectories to avoid
diverging from each other.

In the presence of noise, the system can display various noise-induced
phenomena, such as stochastic resonance, noise-induced transitions, and
noise-enhanced stability. These phenomena stem from the interplay be-
tween deterministic and stochastic forces, resulting in unexpected system
behaviors. We will assign the noise coefficient a value of 𝛼 = 10 and com-
pute the gradient of the expectation value of the z-component, i.e.,

⟨𝑧⟩ = 1
𝑇

∫ 𝑇

0
𝑧𝑑𝑡 (7.39)

with respect to the parameters 𝜌 and 𝛼.

We compare the results of the expectation value gradient to a fitting of
a tangent line. To do this we compute expectation values around the
desired parameters 𝜌 and 𝛼 and then fit a line through the points to
measure the gradient, which can be seen in fig. 7.5. The change of
⟨𝑧⟩ based on 𝜌 follows a linear trend, while the changing 𝛼 is not. To
obtain the gradient at 𝛼 = 10, we fit a tangent line to the points close
to 𝛼 = 10. The computed gradient is only an approximation of the
true gradient. Still, we do not need higher accuracy to demonstrate the
algorithm for an SDE optimization scheme. The fitted lines give the
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Figure 7.5: We compute the expectation value of ⟨𝑧⟩ for different values
of 𝜌 (top) and 𝛼 (bottom) around the point where we try to calculate the
derivative to approximate the derivative. The fit a tangent model, for the fit
to the change in 𝛼 values (bottom), only the points close to 𝛼 = 10 are used
in the fit.
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approximated gradient 𝑑⟨𝑧⟩
𝑑𝜌

���
𝜌=32

≈ 0.92 and 𝑑⟨𝑧⟩
𝑑𝛼

���
𝛼=10

≈ 0.15. The points
are calculated by simulating 100 different trajectories from 0 to 100 in
time, sampling at every 0.001. We compute the expectation values first
for the individual trajectories, then take the mean of the trajectories and
compute the standard error. We use the implicit Euler-Maruyama scheme
(eq. (4.10) with \ = 1.0).

We set up the NILSAS algorithm, see section 7.A for the full algorithm,
with simulation time between the checkpoints by Δ𝑇 = 0.005 and the
setting 𝑀 = 3 which correspond to the system having 2 unstable CLVs.
The adjoint solution is obtained by solving an ODE containing all the
equations in one, i.e., the two adjoint equations eqs. (7.35) and (7.36) and
all the integrations in eq. (7.42). Since the system size is not big, we use
the built-in linear solver in Julia to solve the linear system eq. (7.50).

To see the improvement when using the NILSAS method, we will compare
the result of the NILSAS method with the forward auto-differentiation
method section 3.1 and the adjoint sensitivity method. The auto differen-
tiation (AD) version is computed by propagating the dual number through
the full SDE simulation. The adjoint sensitivity solution uses the same
method as discussed in section 3.2. We have also tested computing the
gradients using the method in [80, 81], which applies a Brownian tree
method for the noise process, both for the adjoint sensitivity method and
in the NILSAS. Both of them have adjoint equations that diverge, such
that no points were obtained to show here.

The results are shown in fig. 7.6 where we see 𝑑⟨𝑧⟩
𝑑𝜌

in the upper plot
and 𝑑⟨𝑧⟩

𝑑𝛼
in the lower plot. We find that the NILSAS method reproduces

the gradient found in fig. 7.5. We calculate the gradient for 30 different
trajectories and then compute the mean and standard error from these.
Note that the AD and the adjoint result are shown as absolute values in
the logarithm plot in the upper panel of the plots; we also remove the
error bars when they cross below 0.

Our results show that the NILSAS algorithm yields accurate gradients.
At the same time, the forward auto-differentiation and the adjoint method
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Figure 7.6: Comparison of the NILSAS algorithm, standard adjoint sensitivity
method, and forward-AD to compute the change in the z-component due to
change in (Top) 𝜌 and (Bottom) 𝛼 of the Stochastic Lorenz system. The
lower panel in the two plots is a zoomed-in version to show the NILSAS
result compared to the solution obtained by the tangent line in fig. 7.5, which
is the dashed gray line. To be able to use the log axis in the upper panels,
we have taken the absolute value of the AD result for the AD and adjoint
result; we have also removed the errorbar of the values where the bar would
extend from top to bottom in the plot to improve readability.
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fail to produce reliable results, as expected, due to the chaotic nature of
the stochastic Lorenz system. Furthermore, we observe that the error
in the gradients computed using forward auto-differentiation increases
exponentially with longer simulation times, highlighting the advantage of
the NILSAS algorithm for sensitivity analysis in chaotic systems.

This is the first time that any shadowing sensitivity method has been
applied to a stochastic differential equation. The method is stable for a
long simulation time, although we see that it quickly reaches the long time
average for both observables. This is in contrast to the adjoint sensitivity
method, which tends towards the solution in the first two points but does
not reach it before it exponentially increases.

7.5 Summary and concluding remarks

This chapter delves into the complexities facing the gradient related to the
real-time complex Langevin simulations. We started by investigating the
reason why the gradient of a loss function that encompasses a real-time
Complex Langevin equation is ill-defined. To do this we introduced the
Lyapunov exponents, which measure stability in a system. We applied
it to both the free theory and the interacting theory of the real-time
CLE and saw that for an increasing real-time, the Lyapunov exponent
with the largest real-part (MLE) increased in both cases. For the free
theory, the MLE tended towards 0, while in the interacting theory, we had
a similar increase but now obtained a positive MLE. This examination
hints at a transition in the dynamical system, where the complex Langevin
converges to the wrong solution.

A positive MLE indicates a chaotic system, which we linked the failure of
obtaining a reliable gradient to. The breakdown of the gradient happens
because the limit of the simulation time 𝑇 and the derivative limit do not
commute. We showed an example using the adjoint sensitivity method
to optimize the ⟨𝑥⟩ observable for increasing real-time. We saw that its
gradient optimization failed at the real-time extent where the Lyapunov
exponent becomes positive.
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To avoid this problem we reviewed the method of shadowing sensitiv-
ity analysis, which is a method to obtain gradients of chaotic dynamical
systems. We then adopted the NILSAS scheme for stochastic differen-
tial equations, which we successfully applied to the stochastic Lorenz
attractor. This shows the method’s applicability to optimizing kernels in
the real-time complex Langevin equation, where the standard sensitivity
method fails.

We conclude that our study provides a framework to explain the stability
and chaotic behavior of the real-time complex Langevin in terms of Lya-
punov exponents. Future work will focus on building a tailored sensitivity
method to the complex Langevin equation that can handle the chaoticity
appearing in real-time systems. Further investigation into the shadowing
sensitivity method or an alternative method is needed. If this succeeds,
we can optimize kernels in the complex Langevin equation, extending the
real-time contour extent.

7.A Appendix: NILSAS algorithm

To set up the NILSAS algorithm one needs to provide it with the number
of unstable CLVs, such that 𝑀 ≥ 𝑚𝑢𝑠 + 1, where 𝑚𝑢𝑠 is the number of
unstable CLVs, the number of segments 𝐾 and the segment length Δ𝑇 .
The total simulation time is 𝑇 = 𝐾Δ𝑇 . The algorithm is summarized
below in a similar form as stated in [152].

• Integrate the primal system for sufficiently long time before 𝑡 = 0
so that 𝑢(𝑡 = 0) is on the attractor.

• Compute the trajectory 𝑢(𝑡), 𝑡 ∈ [0, 𝑇], by integrating the primal
system.

• Generate terminal conditions for 𝑊𝑖 and 𝑣𝑖 on the last segment
𝑖 = 𝐾 − 1:

(a) Randomly generate a 𝑚×𝑀 full rank matrix,𝑄′. Perform𝑄𝑅

factorization: 𝑄𝐾𝑅𝐾 = 𝑄′.

(b) Set 𝑝𝐾 = 0.
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• Compute𝑊 𝑖 and 𝑣𝑖 on all segments. For 𝑖 = 𝐾 − 1 to 𝑖 = 0 do:

(a) To get 𝑊 𝑖 (𝑡), whose columns are homogeneous adjoint solu-
tions on segment 𝑖, solve:

𝑑𝑊 𝑖

𝑑𝑡
+

(
𝜕𝑎

𝜕𝑢
+ 𝜕𝑏
𝜕𝑢
[(𝑡)

)𝑇
𝑊 𝑖 = 0, 𝑊 𝑖 (𝑡𝑖+1) = 𝑄 (7.40)

To get 𝑣𝑖 (𝑡), solve the inhomogeneous adjoint equation:

𝑑𝑣𝑖

𝑑𝑡
+

(
𝜕𝑎

𝜕𝑢
+ 𝜕𝑏
𝜕𝑢
[(𝑡)

)𝑇
𝑣𝑖 = −𝜕𝑔(𝑢, 𝑡)

𝜕𝑢
, 𝑣𝑖 (𝑡𝑖+1) = 𝑝𝑖+1

(7.41)

(b) Compute the following integrations;

𝐶𝑖 =

∫ 𝑡𝑖+1

𝑡𝑖

𝑊 𝑖𝑊
𝑇

𝑖 𝑑𝑡, 𝑑𝑤𝑣𝑖 =

∫ 𝑡𝑖+1

𝑡𝑖

𝑊
𝑇

𝑖 𝑣𝑑𝑡, (7.42)

𝑑
𝑤 𝑓

𝑖
=

∫ 𝑡𝑖+1

𝑡𝑖

𝑊
𝑇

𝑖 [𝑎 + 𝑏[(𝑡)] 𝑑𝑡, (7.43)

𝑑
𝑣 𝑓

𝑖
=

∫ 𝑡𝑖+1

𝑡𝑖

𝑣𝑇 [𝑎 + 𝑏[(𝑡)] 𝑑𝑡, (7.44)

𝑑
𝑤 𝑓𝑠
𝑖

=

∫ 𝑡𝑖+1

𝑡𝑖

𝑊
𝑇

𝑖

[
𝜕𝑎

𝜕\
+ 𝜕𝑏
𝜕\
[(𝑡)

]
𝑑𝑡, (7.45)

𝑑
𝑣 𝑓𝑠
𝑖

=

∫ 𝑡𝑖+1

𝑡𝑖

𝑣𝑇
[
𝜕𝑎

𝜕\
+ 𝜕𝑏
𝜕\
[(𝑡)

]
𝑑𝑡, (7.46)

𝑑
𝑔\
𝑖

=

∫ 𝑡𝑖+1

𝑡𝑖

𝜕𝑔

𝜕\
𝑑𝑡, (7.47)

where 𝑑𝑤𝑣
𝑖
, 𝑑

𝑤 𝑓

𝑖
, 𝑑

𝑤 𝑓\
𝑖

∈ R𝑀 ; 𝑑𝑣 𝑓 , 𝑑𝑣 𝑓\ , 𝑑𝑔\ ∈ R; 𝐶 ∈ R𝑀×𝑀

is the covariant matrix.

(c) Orthonormalize homogeneous adjoint solutions via QR fac-
torization:

𝑄𝑖𝑅𝑖 = 𝑊𝑖(𝑡𝑖) (7.48)

(d) Rescale the inhomogeneous adjoint solution using 𝑄𝑖:

𝑝𝑖 = 𝑣𝑖 (𝑡𝑖) −𝑄𝑖𝑏𝑖, where 𝑏𝑖 = 𝑄
𝑇
𝑖 𝑣𝑖 (𝑡𝑖). (7.49)
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• Compute the adjoint shadowing direction {𝑣𝑖}𝐾−1
𝑖=0 .

(a) Solve the NILSAS problem on multiple segments:

min
𝑎0,...,𝑎𝐾−1∈R𝑀

𝐾−1∑︁
𝑖=0

(
1
2
𝑎𝑇𝑖 𝐶𝑖𝑎𝑖 + (𝑑𝑤𝑤𝑣𝑖 )𝑇𝑎𝑖

)
, s.t.

𝑎) 𝑎𝑖−1 = 𝑅𝑖𝑎𝑖 + 𝑏𝑖, 𝑖 = 1, . . . , 𝐾 − 1,

𝑏)
𝐾−1∑︁
𝑖=0

(𝑑𝑤 𝑓
𝑖

)𝑇𝑎𝑖 +
𝐾−1∑︁
𝑖=0

𝑑
𝑣 𝑓

𝑖
= 0.

(7.50)

This is a least squares problem in {𝑎𝑖}𝐾−1
𝑖=0 ⊂ R𝑀 . In appendix

A of [152], a suggestion on how to solve this problem is laid
forward using the Lagrange multipliers optimization method.

• Compute the derivative by:

𝑑𝐽avg

𝑑𝑠
≈ 1
𝑇

𝐾−1∑︁
𝑖=0

∫ 𝑡𝑖+1

𝑡𝑖

(
�̄�𝑇𝑖

[
𝜕𝑎

𝜕\
+ 𝜕𝑏
𝜕\
[(𝑡)

]
+ 𝜕𝑔
𝜕\

)
𝑑𝑡 (7.51)

=
1
𝑇

𝐾−1∑︁
𝑖=0

(
𝑑
𝑣 𝑓\
𝑖

+ 𝑎𝑇𝑖 𝑑
𝑤 𝑓\
𝑖

+ 𝑑𝑔\
𝑖

)
(7.52)
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8 Summary and Outlook

In this thesis, I have put new ideas forward to improve the complex
Langevin simulation of real-time dynamics of quantum systems on the
Schwinger-Keldysh contour. I have mainly focused on improving the
numerical stability (removing runaway trajectories) of the real-time com-
plex Langevin using an implicit scheme and increasing the range of the
real-time extent accessible with the complex Langevin equation using a
novel optimization scheme to find a suitable kernel.

I explored the potential of implicit solvers for the real-time complex
Langevin simulation in chapter 4. We showed that by using an uncon-
ditionally stable scheme, like the implicit Euler-Maruyama scheme, the
real-time Langevin equation remained stable, and no runaway trajecto-
ries occurred, even on the canonical Schwinger-Keldysh contour. The
implicit scheme made such a simulation possible for two reasons; first,
it is a scheme that can handle stiff equations, and second, because the
method undershoots the true trajectories, it adds an effective regulator to
the action. We showed this analytically for the free theory case.

This allowed access to the backward path of the Schwinger-Keldysh con-
tour, which is important to be able to simulate non-equilibrium physics
on the Schwinger-Keldysh contour. Since the effective regulator is pro-
portional to the Langevin step-size, we only need to obtain the limit of
𝑑𝑡 → 0, and not both 𝑑𝑡 → 0 and the regulator limit 𝜖 → 0 if a regulator
is inserted by hand in the action or as a tilt of the contour.

Future work regarding implicit solvers is implementing an efficient ver-
sion for gauge theories. I have not discussed the underlying construction
in the main part of the thesis. Still, from this preliminary work carried
out during this thesis project, I conclude that it can be achieved by the
so-called stochastic RKMK [165, 166], a geometric version of the Runge-
Kutta schemes for stochastic differential equations. In appendix A, I have
introduced the main ingredients. The main idea in these schemes is to
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use the Magnus solution of the SDE, which is of the form [167]

𝑈𝑘 (𝑡) = 𝑒Ω𝑘 (𝑡)𝑈𝑘 (0) (8.1)

whereΩ𝑘 (𝑡) is given by solving a Stochastic differential equation in the Lie
Alebra. This method reduces to the geometric Euler-Maruyama scheme,
used in most complex Langevin gauge theory simulations, e.g., [59, 65],
if the SDE in the exponent is discretized with one step of the explicit
Euler-Maruyama scheme. However, applying one step of an implicit
scheme when discretizing Ω𝑘 (𝑡) corresponds to an implicit scheme when
updating the links𝑈𝑘 (𝑡).

We have seen that a suitable kernel for the real-time complex Langevin can
regulate the action. This means that using such a kernel does not need
an implicit scheme or adaptive step-size to avoid runaway trajectories.
This is because the kernel can be considered a coordinate transformation
of the integration contour. It introduces a similar regularization as in
the case of contour deformation, which also is a coordinate transform of
the integration contour. This means that by introducing a suitable kernel
we not only add an effective regulator to the action but also change the
integration measure. This leaves the path integral measure intact. This
is not the case when regulating the action by, e.g., tilting the contour or
with the implicit scheme since this adds a regulator to the action without
changing the integral measure. Stabilizing the CLE using a kernel in
gauge theory is a promising direction and was tested successfully for an
anisotropic kernel in [63]. Thus research into other kernels that can both
regularize and stabilize the CLE is a promising way forward for real-time
dynamics using complex Langevin.

We introduced in chapter 6 a novel optimization scheme, based on the
direction of the drift term, that we showed was able to both introduce a
regulator and correct convergence of the complex Langevin for interme-
diate real-time extents. The procedure optimizes a constant kernel by a
gradient of the drift direction loss function (𝐿𝐷) which does not need to
evaluate the full stochastic differential equation, only the configurations
sampled from the simulation. This allowed us to extend the real-time sim-
ulation up to 𝑚𝑡max = 1.5 for the anharmonic oscillator on the canonical
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Figure 8.1: Simulation of the (1+1)D 𝜙4 field theory using 𝑚 = 1, _ = 1,
𝛽 = 0.4 and 𝑚𝑡max = 1.6. The lattice size is 𝑎𝑠 = 𝑎𝑡 = 0.2 with 8 points in
the spatial direction. We use the canonical Schwinger-Keldysh contour with
8 points forward and backward paths along the real-time axis and 2 in the
Euclidean part. We compare the results obtained using the thimble method
in [139], which are the black and gray points. Grady and 𝐽0 are two different
methods of obtaining the Jacobian. We plot the correlator at 𝑝 = 0, such
that 𝜙(𝑡, 𝑝 = 0) = 1

𝑁𝑠

∑𝑁𝑠
𝑛 𝜙𝑡 ,𝑛. The plot shows that the kernel-controlled

CLE can obtain the same result as the current state-of-the-art direct real-time
simulation method.

Schwinger-Keldysh contour. This is 3 times the extent possible without a
kernel. We also showed that a kernel for the free theory could be obtained,
which in the same way as the free theory propagator kernel, regularizes
the action and reduces the simulation’s relaxation time. For example, we
optimized a kernel for 𝑚𝑡max = 10, where the final kernel regulated the
theory and allowed for convergence to the correct solution.

Future work to optimize kernels is to apply the scheme to (1+1)D and
(2+1)D 𝜙4 field theory. The computational complexity of the complex
Langevin scales proportionally to the volume of the lattice; while applied
with a kernel this changes to volume squared. Although this will affect
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the computation time, small system sizes in (2+1)D scalar theory is still
within reach with a medium-sized desktop machine. I show a preliminary
result in fig. 8.1, where we compare the solution to the result obtained
using the Lefschetz-Thimble method in [139]. The thimble result is the
gray and black points, where we show both the thimble results from [139]
using two different methods to obtain the Jacobian. We compute the
real-time correlator in (1+1)D for 𝑝 = 0, with 𝑚 = 1, _ = 1, 𝛽 = 0.4
and 𝑚𝑡max = 1.6, we refer to [139] for details on the model setup. The
result was obtained using the same optimization method discussed in
section 6.4.

The kernel optimization scheme can potentially also be applied to gauge
theories. A suitable loss function for theories can be to minimize the
unitarity norm, as this has shown to be the dominant criterion to avoid
convergence to the wrong solution. In principle had the potential of
replacing both the gauge cooling [59] and dynamical stabilization [136];
kernel optimization is, however, more computationally expensive than
those two methods as it would require a field-dependent kernel.

However, in the case of real-time simulation, we do not know if optimizing
a kernel such that the field values sampled by the complex Langevin are
localized close to the un-complexified manifold is optimal. For problems
with a complex-valued Eucledian action, these have turned out, so far,
to be optimal. At the same time, in real-time simulations, it is unclear
whether this remains the important sampling region, i.e., it is unclear
whether a small unitarity norm is still a valid criterion for successful
large real-time extent.

An important part of further investigation into kernel optimization should
be to find a better functional parameterization. By this, I mean to find
a kernel parameterization that contains fewer parameters and, more im-
portantly, can be scaled between real-time lengths. This would allow the
optimization to start at a small real-time extent and then optimize the pre-
trained kernel further in a longer real-time extent. For very long real-time
extents, this is necessary. This would also allow for more flexible kernels
which do not connect all space-time points but only the most important
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ones. Finding such a parameterization is hard, as we do not have any
prior information on what form such a kernel should take.

Another improvement can be made by allowing for field-dependent ker-
nels, which require an extra term in the complex Langevin equation
(eq. (6.9)). This will allow the kernel to change depending on the field
configuration, allowing for a much more specialized kernel. This has al-
ready been tested for a simple toy model in [70], using a field-dependent
kernel that changes between two constant kernels based on the magnitude
of 𝑥2. This can, in principle, be extended to larger systems, like real-time
simulation, and would be an interesting path forward for the optimization
scheme.

However, the problem, in this case, is how to construct a suitable loss
function. We proposed a systematic and system-specific optimization
scheme in chapter 6 to find a suitable kernel for avoiding convergence to
the wrong solution. This allows for the construction of kernels based on
prior information in a systematic way by minimizing a loss function. In
fact, by optimizing a kernel using the scheme laid out in section 6.4, we
should, in principle, be able to get around the convergence to the wrong
solution, and hence the sign problem, for systems in thermal Equilibrium.
For these systems, we have prior knowledge such as symmetries of the
theory, apriori known Eucledian correlation functions, and information
about the boundary terms. However, we found that direct optimization
of this loss function was problematic as the gradient is ill-defined at
intermediate to long real-time extent.

The advantage of such a loss function is that we are much less susceptible
to the kernel yielding a Fokker-Planck operator with positive eigenvalues.
This can be achieved as we know the complex Langevin to yield correct
convergence to some observables, like ⟨𝜙(𝑥)⟩ in the thermal 𝜙4 simula-
tions. The loss function would strictly enforce that this stays true by, e.g.,
multiplying the 𝐿Sym by a large factor.

We show in chapter 7 that to obtain a reliable gradient of the real-time
complex Langevin, we need to overcome the obstacle of chaotic dynam-
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ical systems yielding ill-defined gradients. By computing the Lyapunov
exponents, we showed that the real-time complex Langevin is a chaotic
dynamical system. We saw that for increasing real-time extent that the
Lyapunov exponent increased, and for the interacting theory, it became
positive around the point where the simulations converged to the wrong
solution. For a positive MLE, we know that the system is chaotic, meaning
that it is very sensitive to changes in the initial conditions and parame-
ters of the model. For systems with a positive Lyapunov exponent, we
showed that computing the gradient numerically yielded an ill-defined
gradient, such that any attempts to obtain a reliable gradient using stan-
dard methods, such as the adjoint sensitivity method, auto differentiation
or finite-differences, would yield an incorrect gradient.

A possible way to get around this problem is to use a method to obtain
the gradient of the loss with respect to the parameters, often called the
sensitivity of the parameters, in a model by a method called least square
shadowing (LSS) sensitivity method, which we discussed in section 7.4.
These methods are capable of obtaining sensitivities of chaotic dynamical
systems. I adopted a variant of this group of methods called the NILSAS
(non-intrusive shadowing adjoint sensitivity) to be able to obtain sensitiv-
ities of stochastic differential equations. We use a new technique to solve
the adjoint equation of the stochastic differential equation by interpolat-
ing the noise generated in the solution of the SDE. To our knowledge,
this has not been used previously, and we see that it effectively stabi-
lizes the adjoint equation for stochastic differential equations. The rest
of the NILSAS algorithm was left unchanged. We tested the method
using stochastic Lorenz equations, where we obtained correct gradients
in contrast to the adjoint sensitivity method and forward auto differentia-
tion, where the gradient error increased exponentially fast for increasing
simulation time.

Although we have made progress toward direct real-time simulations,
we are still far from the point where we can accurately read off the
phenomenological relevant low-frequency part of the spectral function
accurately. To quantify how far we need to go in real-time to get an
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accurate estimate of the spectral function, we will simulate the free theory
using complex Langevin. By using the free theory propagator kernel,
which we introduced in eq. (6.36), there is no restriction on the real-time
extent from a convergence point of view. Therefore, we have tested with
various real-time extents, namely 30, 100, 300, and 500, to see when we
can read out the peak position of the spectral function within an error of
0.01. See details of the implementation in appendix B.

We saw that we were able at 𝑚𝑡max = 500 to read off the spectral peak
within an error of 0.01. While for the other 𝑚𝑡max, the error amounted
to more than 0.01. This is assuming we do not a priori know that the
peak is a delta peak, as in this case, we could have fitted such a peak to
the spectral function data. Another method would be to fit the real-time
correlator, but this does not generalize to any real-time correlator, i.e.,
it again assumes the form of the spectral function. We need a direct
simulation of real-time dynamics for systems where we do not know the
spectral function’s shape.

When simulating the complex Langevin for such a long real-time, dis-
cretization problems arise, which were not visible for shorter real-times,
as is well known from the study of one-dimensional classical initial value
problems[168]. This discrepancy is due to discretization in the time
contour; in addition, the Langevin time discretization will also have an
effect on the late time behavior. In the free theory, such discretization
artifact arises as a scaling in the time direction, and we can show that
it only amounts to a linear scaling in time. However, in interacting the-
ories, this scaling arises both in the time direction and the correlator’s
magnitude. This means that much care must be taken for long real-time
interacting theories to achieve high enough accuracy. The reason for
this is the positive Lyapunov exponent, which tells us that the simulation
requires high-accuracy solvers for the result to be reliable. If we apply
the low-cost kernel optimization scheme to a real-time of 𝑚𝑡max = 5.0,
we see an indication of similar scaling artifacts as in the free theory.
Although the optimized kernel-controlled CLE simulation converges to
the wrong solution, we can recover the true solution by introducing a
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time-dependent scaling factor in the real-time correlator and time direc-
tion. It is clear that the CLE converges to the wrong result; however,
it is surprising that scaling the CLE solution is sufficient to obtain the
correct solution. As the complex Langevin at 𝑡𝑚max = 5.0 have positive
LEs after optimization, we can speculate that part of the failure is due
to discretization artifacts either in Langevin time or in real-time. Future
work into efficient high-order methods that can handle non-diagonal noise
coefficients is necessary.

In conclusion, the kernel-controlled complex Langevin is a potentially
effective way to resolve the sign problem in dynamic systems. By sys-
tematically incorporating prior knowledge through a kernel optimization
scheme and a dependable gradient of the CLE, we can restore precise
convergence and grant access to direct real-time simulations for more
complex models.
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A Implicit solvers for gauge theories

This section will briefly outline how to construct an implicit method for
complex Langevin applied to gauge theories. In these models, the CLE
is defined in terms of the gauge links𝑈, such that the equation evolves on
the corresponding manifold. The CLE for a SU(𝑁) theory with the link
variables𝑈𝑘 ∈ SU(𝑁), 𝑘 = 1, ..., 𝑁 , can we written as

𝑑𝑈𝑘 = −
∑︁
𝑎

𝑖_𝑎
{
𝑈𝑘𝐷𝑎,𝑘𝑆[𝑈]𝑑𝑡 +𝑈𝑘 ◦ 𝑑𝑊𝑎,𝑘

}
(A.1)

where the group generators _𝑎, 𝑎 = 1, ..., 𝑁2 − 1 satisfies 𝑡𝑟 (_𝑎_𝑏) =

2𝛿𝑎𝑏. The operator 𝐷𝑎,𝑘 means the left Lie derivative operator, which
can be computed as

𝐷𝑎,𝑘𝑆[𝑈] = lim
𝜖→0

𝑆[�̃�𝜖 ] − 𝑆[𝑈]
𝜖

, with �̃�𝜖
𝑙 = 𝑒

𝑖𝜖𝛿𝑘𝑙_𝑎𝑈𝑙 . (A.2)

We emphasize that ◦ represents the Stratonovich interpretation of the
stochastic integral. The Ito version can be written as

𝑑𝑈 𝑗 = −
𝑛2−1∑︁
𝑎=1

𝑖_𝑎
[
𝑈𝑘𝐷𝑎,𝑘𝑆[𝑈]𝑑𝑡 +𝑈𝑘𝑑𝑊𝑎,𝑘

]
+ 1

2
𝑈𝑘𝑑𝑡 (A.3)

where we have used the conversion formula

�̄�(𝑈) = 𝐴 − 1
2
𝐺 (𝑈)𝐷𝑈𝐺 (𝑈). (A.4)

We can see that the continuum complex Langevin in the Ito sense can be
rewritten as an exponential

𝑑𝑈𝑘 = exp

(
−

∑︁
𝑎

𝑖_𝑎
{
𝐷𝑎,𝑘𝑆[𝑈]𝑑𝑡 + 𝑑𝑊𝑎,𝑘

})
𝑈𝑘 (A.5)

using the Ito calculus identities 𝑑𝑊𝑎,𝑘𝑑𝑊𝑏, 𝑗 = 2𝑑𝑡 𝛿𝑎,𝑏𝛿𝑘, 𝑗 and 𝑑𝑡2 =

𝑑𝑡 𝑑𝑊𝑎,𝑘 = 0. Now that we have the CLE written in Ito form, we can
use numerical schemes for geometric SDEs in Ito form. At the point
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of writing no general scheme for Stratonovich integral form has been
made.

The type of scheme we can construct falls under the stochastic Runge-
Kutta Munte-Kaas (RKMK) scheme. RKMK schemes[165, 166] are used
to solve ordinary differential equations on Lie groups by stepping along
the time direction in the Lie Algebra and then using the exponential map
to get it back to the group at each step. This limit the evolution of the links
to the group. The main idea of these methods is to rewrite the evolution
equation, eq. (A.5), in terms of the Magnus expansion. For a stochastic
differential equation in the Ito sense, this is written as[167]

𝑈𝑘 (𝑡) = 𝑒Ω𝑘 (𝑡)𝑈𝑘 (0). (A.6)

whereΩ(𝑡) is given by a stochastic differential equation in the Lie algebra.
The general form of this SDE is given by

𝑑Ω = −
∑︁
𝑎

{𝐴𝑎𝑑𝑡 + Γ𝑎𝑑𝑊} (A.7)

𝐴𝑎 =dexp−1
Ω

(
𝑖_𝑎𝐷𝑎,𝑘𝑆[𝑈]

)
+ dexp−1

Ω (𝐶𝑎) (A.8)

𝐶𝑎 =

∞∑︁
𝑝=0

∞∑︁
𝑞=0

1
𝑝 + 𝑞 + 2

(−1)𝑝
𝑝!(𝑞 + 1)!ad𝑝

Ω

(
adΓ𝑎

(
𝑎𝑑

𝑞

Ω
Γ𝑎

))
(A.9)

Γ𝑎 =dexp−1
Ω (𝑖_𝑎) (A.10)

where is derived in [167], see [169] for an introduction to the mathematical
notation used in the equation above.

After the rewrite above, we can now discretize theΩ SDE in the same way
as a normal non-geometric SDE, using already existing SDE schemes. We
get the scheme used in most CL studies for gauge theories by evolving
the SDE for Ω ones in the lowest order explicit discretization. This
yields [167]

𝑈
(ℎ+1)
𝑘

= 𝑒
−∑

𝑎 𝑖_𝑎

{
𝐷𝑎,𝑘𝑆

(ℎ)Δ𝑡+Δ𝑊ℎ
𝑎,𝑘

}
𝑈

(ℎ)
𝑘

(A.11)

The lowest order implicit scheme with one step of the Ω SDE is given
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by
Ω

(ℎ)
1 =

∑︁
𝑎

𝑖_𝑎

[(
\𝐷𝑎𝑆[exp(Ω(ℎ)

1 )𝑈 (ℎ)]

+ (1 − \)𝐷𝑎,𝑘𝑆[𝑈 (ℎ)]
)
Δ𝑡 + Δ𝑊𝑎

𝑛

]
𝑈

(ℎ+1)
𝑘

= 𝑒Ω
(ℎ)
𝑘 𝑈

(ℎ)
𝑘

(A.12)

where we first need to solve the non-linear equation to obtain Ω
(ℎ)
1 , which

we then apply directly to the update of the links in the next equation.
We introduced the implicitness parameter \ in the same way as in the
standard implicit Euler-Maruyama schemeeq. (4.10). For \ = 0, we regain
eq. (A.11) An efficient non-linear solver is necessary for this scheme to
be sufficiently fast.

A.1 Simple example

The implicit solver was tested for a simple Polyakov chain model in
𝑆𝑈 (2), where as expected, the solution follows on top of the explicit
solver until it reaches a point where runaway trajectories occur. At this
point, the explicit will diverges to infinity, while the implicit will, as seen
in chapter 4, undershoot and avoid the runaway trajectory.

The model is given by the action [59]

𝑆 = − 𝛽
2

Tr[𝑈1𝑈2...𝑈𝑁𝑙 ] (A.13)

where 𝑁𝑙 is the number of links in the model. We use the same parameters
as in [59], which is 𝛽 = 1

2 (1 +
√

3𝑖) and 𝑁𝑙 = 30. When using the explicit
scheme without adaptive step-size (gEM), this parameter has runaway
trajectories. For adaptive step-size the CLE has no runaway solution but
converges to the wrong solution. If we apply the Implicit scheme without
adaptive step-size we also have no runaway trajectories, which means that
it is stable. Still, the convergence to the wrong solution problem persists
as expected1.

1The code for the simulation can be found at GaugeSQM.jl
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For this model, the advantage of the implicit scheme is limited since it does
not improve the convergence rate. But since we see that it does, in fact,
undershoot, which is the reason why it avoids the runaway trajectories,
it can be useful in other problems. Examples are problems where a
significantly smaller step-size is necessary in the adaptive scheme than
the implicit scheme, which means that the implicit scheme can be faster.
Another problem type is the real-time gauge theory models, where we
saw in the scalar theories that the implicit scheme provided an effective
regulator to the action.
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Figure A.1: Simulation of the 𝑆𝑈 (2) Playakov chain with 𝑁𝑙 = 30, and all
except the adaptive scheme uses 𝑑𝑡 = 10−3. (Top) The real and imaginary
part of the action in Langevin time. We see the runaway trajectory of the
explicit gEM scheme (orange). The other schemes avoid runaway trajectories
but still accumulate boundary terms. (Bottom) The unitarity norm of the
same schemes, where the explicit gEM diverges, and the other schemes stay
close at a relatively large unitarity norm.
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B Extracting the spectral function of free
theory correlator

In this appendix, we will explore a real-time simulation up to 𝑚𝑡 = 500
of the free theory using the free theory propagator kerneleq. (6.36). This
real-time extent is chosen to obtain a resolution of the spectral function
around 0.01. The study of such kind of real-time simulations can be
instructive in showing that the complex Langevin equation, with a suitable
kernel, can correctly obtain the spectral function, which can explain all
dynamical quantities.

We have used 5 points pr. unit real-time, such that a total of 2500 points is
used in the forward path. Then an additional 2500 in the backward path,
giving a total of 5004 points, including the 4 Eucledian points1. For the
numerical setup, we use the implicit Euler-Maruyama schemeeq. (4.10),
with the implicitness parameter \ set to \ = 0.5. This is because we want
as accurate a solver as we can. Since the introduction of a kernel both
removed the need for a regulator and stabilized the simulation, the implic-
itness parameter only contributes to the accuracy. The scheme is similar
to the Crank-Nicholsen scheme in ordinary differential equations.

In fig. B.1, we present two distinct segments of the forward correlator:
the upper plot depicts the interval from 𝑚𝑡 = 0 to 𝑚𝑡 = 50, while the
lower plot covers the range from 𝑚𝑡 = 450 to 𝑚𝑡 = 500. It is evident that
within the initial segment (𝑚𝑡 = 0 to 𝑚𝑡 = 50), the Complex Langevin
Equation (CLE) converges to the accurate solution, as determined by
solving the Schrödinger equation. However, a deviation between the CLE
and Schrödinger solutions is observed at extended real-time intervals.
This discrepancy grows linearly over time, affecting both the real and
imaginary components. By applying a scaling factor of 𝑚𝑡′ = 1.005𝑚𝑡,
the Schrödinger solution is recovered up to a real-time value of 𝑚𝑡 =
500.

1We use periodic boundary condition, which means that the last point at −𝑖𝛽 is the same as
the first point

221



Extracting the spectral function of free theory correlator

Figure B.1: Simulation of the free-theory harmonic oscillator on the canonical
Schwinger-Keldysh contour up to 𝑚𝑡max = 500 in real-time. The top and lower
panels show the correlator ⟨𝑥(0)𝑥(𝑚𝑡)⟩ at different times along the forward
path; top from 0 to 50 and bottom from 450 to 500. We see a scaling in the
CLE solution compared to the Schrödinger solution at large real-times.
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The underlying cause of this observed shift is discretization artifacts, not
the wrong convergence problem of the complex Langevin. There are
two sources of such a discretization artifact; the dominant one is due to
the discretization of the action, which means that by adding more points
on the time contour, we reduce the deviation at large real-time. The
second source of discretization artifacts is the numerical accuracy of the
stochastic differential scheme. However, this is subdominant, and we have
only seen a small improvement in accuracy in late real-time by increased
solver accuracy. This deviation will be important in the interacting case,
discussed in the next section, as similar scaling appears already in short
real-time.

The spectral function is computed by the real-time correlator’s discrete
Fourier transform (DFT) from 𝑚𝑡 = 0 to 𝑚𝑡 = 500. To obtain a real
output of the (DFT) we mirror it around zero and take the conjugate, such
that ⟨(0)𝑥(𝑡)⟩ = ⟨(0)𝑥(−𝑡)⟩∗. We also remove the last point to obtain
a periodic signal. The DFT is done using the FFTW library, and the
result is shown for the Scrödinger solution (QM) and the CLE solution in
fig. B.2.

We see that the peak of the spectral functions is close to 𝜔 = 1.0, which
is the same as the Schödinger solution (𝑄𝑀). However, we get a wider
peak for the complex Langevin version, indicating that the peak location
is not exactly at 1.0. The reason for the peak being slightly off is due to
the scaling we see in late real-time.
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Figure B.2: The spectral function extracted from a real-time correlator simu-
lated up to 𝑚𝑡max = 500 in real-time. The gray dashed line is the Schrödinger
solution with a peak position at 𝜔 = 0.999, while the blue band in the result
from the CLE simulation with a peak position at 𝜔 = 1.005.
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C Exploring long real-time behaviour

We saw in chapter 6 that the optimized kernel successfully regains the
correct solution at intermediate real-time extent but falls short at real-
times of 𝑚𝑡max = 2.0. We see that the problems arise at the turning
point at 𝑚𝑡max, which can be explained by the contour turning back in
the opposite direction. To avoid the sharp 180 turn, we change the time-
contour to follow the real-axis up to 𝑚𝑡max, and then tilt in the backward
path such that it hits −𝑖𝛽 in the imaginary time path (see panel b in
fig. 4.3). This path then consists only of two parts, the forward-path
along real-time up to 𝑚𝑡max and then a second line from 𝑚𝑡max to −𝑖𝛽1.
We call this contour the Schwinger-Kelysh right contour, which was used
in ref. [135], not that we do not use a tilt in the forward path of the
contour.

We follow the same steps as laid out in section 6.4.2 again using a real-
time extent of𝑚𝑡max = 5.0, with 16 points per unit time in real-time. This
corresponds to a lattice spacing of 𝑎 ≈ 0.06. The optimization is done
by simulating 30 trajectories up to 𝜏L = 10 for every update step, and the
final simulation is done with 100 trajectories up to 10 in Lengevin rime.
Where we use the simulation with the smallest 𝐿prior (eq. (6.47)).

The result for the forward correlator ⟨𝑥(0)𝑥(𝑡)⟩ is shown in the upper panel
of fig. C.1, which shows a correspondence with the Schrödinger solution
only up to a short real-time and then start deviating. The later real-time
is, however, still regaining the oscillatory pattern of a damped oscillator.
We see a difference between this result and the one in section 6.4, where
we are now able to correctly obtain the first point of the correlation, i.e.,
⟨𝜙2(0)⟩, which was not the case in fig. 6.7. We observe that this difference
is due to the change in contour from the canonical real-time contour in
section 6.4 and the Schwinger-Keldysh right contour in fig. C.1.

Since we can correctly simulate up to intermediate real-times of𝑚𝑡 = 1.5,
as shown in section 6.4, we can use this to calibrate the longer real-time

1We could alternatively use the time-contour used in [116]. We find, however, that the tilted
backward contour is more stable for the complex Langevin simulations.
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Figure C.1: Real-time simulation up to 𝑚𝑡max = 5.0 on the Schwinger-Keldysh
right contour (b in fig. 4.3) using the 𝐿𝐷 loss function. (Top) The result after
optimization, where we see the solution does not match the true solution
(black line) given by the Scrödinger solution. (Bottom) Scaling the solution
in 𝑚𝑡 direction and the correlator as explained in the text using based on the
known time interval 𝑚𝑡 = 0 to 𝑚𝑡 = 1.5. We now see it matches close to the
Scrödinger solution after the scaling.
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simulation on the short real-time part. This is done in the lower panel of
fig. C.1, where we have optimized 4 parameters to fit a linear interpolation
of the solution to the 𝑚𝑡 = 1.5 simulation. The scaling is for the time
𝑚𝑡 (1 + 𝑠1) and scaling the correlator using ⟨𝑥(0)𝑥(𝑡)⟩(1 + 𝑚𝑡𝑠2).

The optimization uses a grid scan of the 4 parameters in a range between
0 and 0.4 for the four different parameters. The resulting parameters is
𝑠𝑅1 = 0.09, 𝑠𝑅2 = 0.22, 𝑠𝑅1 = 0.115 and 𝑠𝑅2 = 0.13.

Even though this scaling based on prior known real-time simulation does
not rely on the true solution, we do not propose this update as a reliable
scheme to be used for larger models. This is more of an interesting
observation that we can obtain a simulation close to the true solution
with only a simple scaling function in the real-time direction and the
correlation magnitude.

The reason why such a scaling is possible is, however, unclear. We know
from appendix B that scaling in the time direction can be caused by dis-
cretization artifacts due to lattice spacing and the accuracy of the numer-
ical solver. We know from the discussion of fig. 4.2 that in the Interacting
theory, discretization artifacts from the lattice spacing cause changes in
the time direction and scaling in the correlator. This can therefore explain
why we also need to scale the magnitude of the correlator.
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D Generalized Thikonov

This appendix will delve into the fascinating topic of the inverse problem
of spectral reconstruction in field theory. This is an area of active research
with a broad range of theoretical and experimental physics applications.
In this regard, we will apply adjoint methods to non-linear problems
and not introduce the Bayesian spectral reconstruction method in detail.
We refer the reader to ref. [2, 124], which provides an excellent and
comprehensive review of this method.

I have added this appendix as an instructive application of the adjoint
method to non-linear equations. This shows the power of the adjoint
method, as we are able to optimize a matrix with O(104) parameters by
only solving one linear equation. See section 3.2 for the derivation of the
method.

I will first introduce what spectral reconstruction is and the ill-posed
problem that comes with it. Then I will define a new regulator, which we
name the Generalized Thikonov regulator[16] that is based on a multi-
variate Gaussian, with a correlation matrix Σ. We will then define an
optimization scheme to optimize the correlation matrix Σ, using the
mock spectral function, and then define a new loss function that is used
to optimize Σ that does not know about the mock spectral function.

D.1 Short introduction to the inverse problem of spectral re-
constructions

The essence of this method lies in the fact that the Euclidean correlator
shares vital information with the spectral representation of the real-time
correlator; they both possess a common spectral function. The kernel
function that facilitates the convolution from the spectral function to the
Euclidean data is given by

𝐾 (𝜔, 𝜏) = 𝑒−𝜔𝜏 . (D.1)

where 𝜏 represents the Euclidean time index.
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To express the inverse problem, we establish the connection between the
discrete spectral function 𝜌(𝜔) over the Matsubara frequencies 𝜔𝑙 and
the Euclidean correlator 𝐷 (𝜏) through the discrete integral

𝐷𝑖 =

𝑁𝜔∑︁
𝑘

Δ𝜔𝑘𝐾 (𝜔𝑘 , 𝜏𝑖)𝜌(𝜔𝑘 ), where 𝑖 ∈ [1, ..., 𝑁𝜏] (D.2)

with𝐾 denoting the Euclidean kernel (eq. (D.1)). Lattice computations in
Euclidean time can only calculate a finite number of points, represented
by 𝑁𝜏, along the compact imaginary axis. The correlator points 𝐷𝑖 are
computed from the lattice data and are thus accompanied by a statistical
error. Given a finite number of data points with a statistical error Δ𝐷,
determining the spectral function 𝜌(𝜔) becomes an inverse problem due
to the lack of a one-to-one correspondence when inverting the equation,
as 𝑁𝜏 ≪ 𝑁𝜔. Consequently, multiple spectral functions 𝜌 can reproduce
the data 𝐷𝑖 within the statistical uncertainty. The task at hand, therefore,
is to identify the most probable spectral function, considering both the
available data and prior information about the system.

D.2 Bayesian spectral reconstruction

One approach to extract the spectral function from the Euclidean data
via the inverse problem eq. (D.2) is to use Bayesian inference [13]. This
approach uses the Bayes theorem to incorporate prior information as a
regularization to construct a systematical prescription to tackle the ill-
posed problem. Using the language of probabilities, we can formulate
the problem in terms of the posterior distribution 𝑃[𝜌 |𝐷, 𝐼], which, given
a spectral function 𝜌, denotes the probability to be correct based on the
data 𝐷 and some prior information 𝐼. Bayes theorem is defined as

𝑃[𝜌 |𝐷, 𝐼] = 𝑃[𝐷 |𝐼]𝑃[𝜌 |𝐼]
𝑃[𝐷 |𝐼] (D.3)

which relates the posterior distribution via the likelihood probability
𝑃[𝐷 |𝜌, 𝐼], the prior 𝑃[𝜌 |𝐼] and the evidence 𝑃[𝐷 |𝐼].
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If we assume the input data to be normally distributed, we can define the
likelihood function as

𝑃[𝐷 |𝜌, 𝐼] = 𝑁𝑒−𝐿 , 𝐿 =
1
2

∑︁
𝑗 𝑘

(𝐷 𝑗 − 𝐷𝜌

𝑗
)𝐶−1

𝑗 𝑘 (𝐷𝑘 − 𝐷𝜌

𝑘
) (D.4)

where 𝐷𝜌 is given by inserting 𝜌 into eq. (D.2), 𝐷𝑖 mean Euclidean data
point at the 𝑖th time step and𝐶𝑖 𝑗 is the covariance matrix of the mean data
points (𝐷𝑖).

We diagonalize the covariance matrix such that the likelihood can be
written in terms of the diagonal basis. The eigenvalues of the covariance
matrix 𝜎𝑘 are used together with the transformed data �̃�𝑘 and kernel �̃�
to compute �̃�𝜌

𝑘
. This yields the following likelihood, together with the

other coordinate transformations [124]

𝐿 =
1
2

∑︁
𝑘

(
�̃�𝑘 − �̃�𝜌

𝑘

)2
/𝑐2

𝑘 , �̃�𝑘 =
∑︁
𝑗

𝑅−1
𝑘 𝑗 𝐷 𝑗 , �̃� 𝑗 𝑙 =

∑︁
𝑘

𝑅−1
𝑗 𝑘𝐾𝑘𝑙 .

(D.5)

We compute the maximum a posteriori distribution by finding the ex-
tremum of taking the log, which by defining the prior as 𝑃[𝜌 |𝐼] = 𝑒𝑆

we get that we should maximize −𝐿 + 𝑆 = 0. We find the maxima by
multiplying by −1 and find where the derivative is 0, i.e., we solve the
equation

𝛿𝐿

𝛿𝜌
− 𝛿𝑆

𝛿𝜌
= 0, (D.6)

which, in general, is a non-linear equation.

D.3 A generalized Tikhonov regulator

The next step is to define an appropriate regulator to incorporate prior
information. There are three main regulates used for spectral recon-
structions; these are the Maximum Entropy Method (MEM) [14, 13], the
Bayesian reconstruction [15] (BR) method and the Tikhonov regulariza-
tion [16]. The first two methods are the most prominent methods used for
reconstructing positive spectral functions for lattice QCD, while the last
one is popular in many different fields to solve inverse problems.
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For testing purposes, we will use the Tikhonov regulator, which is defined
by

𝑆𝑇𝐾 =
𝛼

2
(𝜌𝑙 − 𝑚𝑙)2 (D.7)

where 𝛼 is a hyperparameter and 𝑚𝑙 is the default model which de-
notes the most probable apriori value of 𝜌𝑙 . It stems from assigning
the prior to be the product of normal distributions, such that 𝑃[𝜌 |𝐼] =

Π
𝑁𝜔
𝑙

N[𝑚𝑙 , 1/
√
𝛼] ∝ exp[−𝑆𝑇𝐾]. We omit the normalization as this can

be factored into the 𝛼. A standard way to optimize the 𝛼 parameter is by
minimizing

𝐽 = (𝐿 − 𝑁𝜏

2
)2 (D.8)

where 𝐿 is the likelihood function (eq. (D.5)).

This regulator has, however, some well-known drawbacks, the first of
which is the oscillatory behavior (ringing effect) at small 𝜔. This is a
general artifact of spectral reconstruction due to a small number of input
data. Since this regulator does not yield a positive spectral function
by construct, it is more susceptible to this ringing effect. The second
drawback is in reconstructing spectral functions from most lattice QCD
data, as these are known to have positive spectral functions, which we
cannot enforce with this regulator.

In this section, we will try to improve the Tikhonov method by general-
izing the method to have correlations between the different 𝜌𝑙s. This is
done by using the multivariate normal distribution as the prior, i.e.,

𝑃[𝜌 |𝐼] = 𝑒−(𝜌𝑙−𝑚𝑙)𝑇Σ𝑙𝑘 (𝜌𝑘−𝑚𝑘) (D.9)

where Σ is a positive semi-definite correlation matrix. The regulator now
becomes

𝑆𝐺𝑇𝐾 = (𝜌𝑙 − 𝑚𝑙)Σ𝑙𝑘 (𝜌𝑘 − 𝑚𝑘 ). (D.10)

The task at hand is now to optimize the correlation matrixΣ to incorporate
more prior information than was possible with 𝛼. Note that Σ is a semi-
positive definite matrix, so the optimization needs to consider this when
updating the kernel’s parameters. To enforce semi-positive definiteness,
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we use the Cholesky decomposition. In this way, the parameters of Σ are
defined in a lower triangular matrix 𝐿, and then Σ is defined as Σ = 𝐿𝐿𝑇 .
We have outlined the details of this in section D.A.

This is where the adjoint method comes in, as we can now use the adjoint
sensitivity method for a non-linear equation to optimize such a matrix.
For a matrix optimization of this size, with O(104) parameters calculating
gradients of a loss function using finite-difference or forward-difference
would be very costly. We could have applied directly the reverse mode
AD, but as we have discussed in chapter 3, using AD directly on the
iterative method is not, in general, the best solution.

D.4 Optimization algorithm

We optimize a loss function 𝑅(Σ, 𝑚) and minimize eq. (D.6) with 𝑆𝐺𝐾𝑇 .
Since 𝐿 and the regulator 𝑆𝐺𝐾𝑇 are linear terms after taking the derivative
with respect to 𝜌, we can rewrite the minimization in terms of a linear
system; 𝐴(Σ)𝜌 = 𝑏(Σ, 𝑚). The optimization algorithm now works like
this;

1. Initialize the Σ{0} matrix using a suitable parameterization, and set
𝑚{0} to zero. The parameterization of the two objects is merged
into a vector v.

2. Run a Bayesian reconstruction with the initial Σ{0} and 𝑚{0} to
obtain �̂�{0}, which in the Tikhonov case would be to solve the linear
equation 𝐴(Σ{0})𝜌 = 𝑏(Σ{0}, 𝑚{0}).

3. Calculate the adjoint linear system 𝜕 𝑓

𝜕𝜌

𝑇
_ = 𝜕𝑅

𝜕𝜌

𝑇 , where 𝑓 ( �̂�) = 𝜕𝐿
𝜕𝜌

−
𝜕𝑆𝐺𝐾𝑇
𝜕𝜌

= 0. Insert the solution_ into the gradient of the loss function
𝑅 with respect to the parameters of Σ and𝑚; ∇v𝑅 |𝜌=�̂� = 𝜕𝑅

𝜕𝑣
−_𝑇 𝜕 𝑓

𝜕𝑣
.

4. Update the parameters of 𝛼 and 𝑚 corresponding to the gradient
calculated in the previous step using an optimization algorithm.
This chapter will use the ADAM optimizer with an initial learning
rate of [ = 0.01. Then use the parameters to update Σ and 𝑚.
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5. Rerun step 2 - 4, if no improvements have been made for the last
20 steps, decrease the learning rate by 5𝑒 − 1 and then continue the
loop. Stop the optimization if the learning rate reaches the stopping
criterion of 1𝑒 − 5.

D.4.1 Mock data

In this chapter, we will use mock spectral functions, constructing the
spectral function using a distribution or a sum of distributions. We will
be using relativistic Breit-Wigner distribution in different forms. A single
relativistic Breit-Wigner distribution is defined by

𝜌BW(𝜔) = 4𝐴Γ𝜔
(𝑀2 + Γ2 − 𝜔2)2 + 4Γ2𝜔2 . (D.11)

We construct the data from the mock spectral function

�̃�𝜏 =

𝑁𝜔∑︁
𝑖

𝑑𝜔𝑖𝐾𝜏,𝑖𝜌(𝜔𝑖). (D.12)

To make the mock data �̃� generated from the mock spectral function
𝜌 realistic, we also need to add noise. To do this we sample a set of
configurations (𝑁Conf.) with an added noise, i.e., the configuration 𝛾 is
drawn using 𝐷𝛾 = �̃�+b. The noise b is drawn from a normal distribution
N(0, 𝑏2

𝑛) with variance given by 𝑏𝑛 =
√
𝑁Conf.𝑛�̃� (𝑝𝜏), where 𝑛 is now

a parameter to change the magnitude of the noise. The noise parameter
will be set to 𝑛 = 10−4 for this test.

We use 3 different mock data 𝐵1, 𝐵2, 𝐵3, which are all given by one or
two BW peaks with the parameters;

• 𝐵1: Single positive BW peak; 𝐴1 = 1.0, Γ1 = 0.5 and 𝑀1 = 3.0.

• 𝐵2: Two BW peaks, both positive; 𝐴1 = 0.8, Γ1 = 0.5 and𝑀1 = 2.0,
and 𝐴1 = 1.0, Γ1 = 0.5 and 𝑀1 = 5.0.

• 𝐵3: Two BW peaks where one is positive and one negative; 𝐴1 =

−0.15, Γ1 = 0.8, 𝑀1 = 1.5 and 𝐴2 = 1.0, Γ2 = 0.8,𝑀2 = 3.0.
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• 𝐵4: Gluon-like spectra, with two equal sized BW peaks, one positive
and one negative; 𝐴1 = −0.3, Γ1 = 0.4,𝑀1 = 2.5 and 𝐴2 = 1.0,
Γ2 = 0.8,𝑀2 = 4.0.

For all the example below we use the same setup; 𝑁Conf. = 1000, 𝑛 = 10−4,
and 𝑁𝜏 = 30, with 𝛿𝜏 = 1. We discretize the spectral function with
𝑁𝜔 = 500 in the interval 𝜔 ∈ [0, 10].

D.5 Learning regulator from mock data

In this section, we will see what theΣ in the 𝑆𝐺𝐾𝑇 looks like if we optimize
it to an apriori-know spectral function. Although this scheme cannot be
used for an unknown spectral function, it is interesting to see if we can
recognize patterns in the Σ correlator, which we can then use in other
examples. The optimization will use the loss function 𝑅True(Σ, 𝑚) =

(𝜌𝑖𝑛 − 𝜌𝐺𝐾𝑇 (Σ, 𝑚)).

We will investigate a relativistic Breit-Wigner peak, with an additional
negative BW peak in front to make the spectral function non-positive;
this is the mock setup 𝐵3. We have plotted the input peak, i.e., mock data
(𝜌𝑖𝑛), together with the optimized GKT and standard Tikhonov in fig. D.1.
We see that we obtain, as expected, a spectral function that matches the
mock spectral function.

In the lower panel of fig. D.1 we show Σ, which is a 𝑁𝜔 × 𝑁𝜔 matrix.
This has a distinct structure for small 𝜔. This pattern is undoing the
oscillations occurring in the standard Tikhonov method. This means that
to remove such oscillations, we need to correlate the different 𝜔 values
in the regulator, and not only having a diagonal matrix or just a number
𝛼.

D.6 Loss function to optimize general Thikonov regulator

Instead of using the true mock function to learn the structure of Σ, let’s
see if we can find a different loss function that optimizes Σ to enforce
other criteria. Examples of this are smoothness and positivity. I have
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Figure D.1: (Top) Spectral reconstruction using the generalized Thikonov
method (𝜌GTK) trained on the mock input spectral function 𝜌In. We show
the standard Thikonov method as an example of the oscillations appearing in
small 𝜔. (Bottom) A heatmap of the optimized Γ matrix kernel where the x-
and y-axis represent the position in the matrix in terms of the corresponding
𝜔 value.
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defined a set of unique loss functions that we will combine into the loss
function 𝑅, on which we based the optimization.

𝑅 = 𝑅□𝜌 + 𝑅Pos. + 𝑅Linear. (D.13)

The different terms are explained in the subsections below.

D.6.1 Smoothness

First out, we have a smoothness loss function, which minimizes the
oscillations of the spectral function. This is based on the second-order
derivative being small. This can potentially remove oscillations, but if
this loss function is 0, we have a constant spectral function, which is also
not what we want. We essentially want to tune the parameters such that
this loss function is small but not zero. If we know the arc length of the
spectral function, we could use this to constrain this loss function. The
regulator is given by

𝑅□𝜌 =

𝑁𝜔∑︁
𝑘=2

𝑓 (𝜔𝑖)Δ𝜔(𝜌𝑘 − 𝜌𝑘−1)2 (D.14)

where we choose the function 𝑓 (𝜔𝑖) = 1
𝜔𝑖

, to make the focuse of this loss
function at small 𝜔 where the oscillations are strongest.

D.6.2 Positivity

Next, we have a positivity loss function, which penalizes the negative
parts of the spectral function. We have used a loss function that does not
require the spectral function to be positive, i.e., which would be to use
a log function or a step function at 𝜌 = 0. I have found that a smooth
function is preferable to avoid sudden changes in the optimization.

The loss function is a linear function for the spectral function less than
some hyperparameter 𝛽; 𝜌𝑖 < 𝛽, and exponential decaying when 𝜌𝑖 ≥ 𝛽,
where the connection between the two is set such that the function be-
comes smooth, and differential at all points. The function is as fol-

237



Generalized Thikonov

lows

𝑅Pos. =

𝑁𝜔∑︁
𝑘=1

𝑓 (𝜔𝑖)
{
−(𝜌𝑖 − 𝛽) + 𝛾, 𝜌𝑖 < 𝛽

𝛾𝑒−(𝜌𝑖−𝛽)/𝛾, 𝜌𝑖 ≥ 𝛽
(D.15)

where 𝛾 and 𝛽 are two real parameters to tune. We will use 𝛾 = 0.05
and 𝛽 = 0.5. The idea behind this regulator is that we want to push the
spectral function to be positive without setting a strict boundary at 0. We
use 𝑓 (𝜔) = exp [−𝜔] which again focus the on the omegas close to 0.
This, by definition, is normalized to 1 at 𝜔 = 0.

D.6.3 Linear loss

The last regulator function is a linear loss function that penalizes high
positive peaks, which is enforced at a large 𝜔 span. The linear loss
function is

𝑅Linear =

𝑁𝜔∑︁
𝑘=1

𝑓 (𝜔𝑖)𝑎𝜌2
𝑖 (D.16)

where 𝑎 = Δ𝜔 in this section and 𝑓 (𝜔) = 𝜔2 is the a function prioritizing
the intermediate to large 𝜔 values.

D.7 Learning General Tikhonov regulator

In this section, we present the result for the four mock spectra 𝐵1,𝐵2,𝐵3
and 𝐵4, using the loss function from the previous section and the opti-
mization scheme from section D.4. The results, compared to the standard
Thikhonov method, are shown in fig. D.2. We see that the 𝜌𝐺𝐾𝑇 generally
has a peak position and peak width closer to the mock spectral function
for all the tested mock spectral functions.

In 𝐵1 and 𝐵2, which both have positive spectral functions, the method
removed most of the oscillations for small 𝜔. For 𝐵3 and 𝐵4, some small
oscillations are left from small𝜔, but it is significantly reduced compared
to the standard Tikhonov method, especially for 𝐵4, which has very strong
oscillations.
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Figure D.2: Result using the Generlized Tikhonov (𝜌𝐺𝐾𝑇 ) after optimizing
the regulator parameters Σ and 𝑚, using the loss function 𝑅. The spectral
function is compared to the mock spectral function 𝜌𝐼𝑛 and to the stanrard
Tikhonov 𝜌𝑇𝐾 where 𝛼 is optimized using 𝐿 − 𝑁𝜏

2 = 0. We use the different
BW mock data; top left is 𝐵1, top right is 𝐵2, bottom left is 𝐵3 and bottom
right is 𝐵4.
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D.8 Summary

In this appendix, we have introduced a generalized Thikhonov regulator
based on the multivariate Gaussian distribution such that the different 𝜔
points are correlated in the regulator. We were then able to optimize
a regulator such that the oscillations disappear, where we saw that the
oscillation pattern was removed by a similar pattern in Σ. An interesting
next step would be to find a functional parameterization of this kernel and
see if this can be generalized to other mock spectral functions.

We then introduced an optimization scheme with a corresponding loss
function that improved the Tikhonov method. Although the scheme, first
and foremost, acts as a test of the adjoint sensitivity method, it is still a
promising sign that we can improve the well-established Tikhonov method
for the mock data used here, which is still used in some applications.

D.A Positive definite matrix optimization

In many applications, it is necessary to optimize a positive definite matrix.
This can be done by minimizing the matrix to be positive definite, i.e.,
incorporating it into the loss function or forcing it to be positive definite
by construction. The advantage of the latter one is that one does not need
to use additional computational cost in the optimization scheme to also
optimize for a positive definite matrix. But introducing the constraint on
the matrix in the loss function might lead to a better-behaving optimization
problem; this depends on the problem at hand.

In this appendix, we will show how one can force the matrix to be
positive definite by construction. A positive definite matrix is defined
by the matrix satisfying 𝑥𝑇𝑀𝑥 > 0 for all 𝑥 ∈ R𝑛 \ {0}, which is
equivalent to the matrix being symmetric with positive eigenvalues. Since
we want to have a positive definite matrix by construction we can use the
Cholesky decomposition. This decomposes the matrix into a lower-
triangular matrix 𝐿 with a positive diagonal such that the positive definite
matrix 𝑀 is defined as 𝑀 = 𝐿𝐿𝑇 . This means that the entries of the off-
diagonal elements of 𝐿 are only required to be real, while the diagonal

240



Generalized Thikonov

must consist of positive entries.

The parameterization of 𝑀 ∈ R𝑁×𝑁 is now done via the lower-triangular
entries of 𝐿 ∈ R𝑁×𝑁 , such that the number of parameters 𝐿𝑖 𝑗 ∈ R are
𝑁2+𝑁

2 . To optimize the parameters of the matrix 𝑀 , we, therefore, need to
take the gradient of the matrix with respect to the lower-triangular entries
of the matrix 𝐿, which is

𝜕

𝜕𝐿𝑖 𝑗
𝑀𝑘𝑙 =

𝜕

𝜕𝐿𝑖 𝑗
𝐿𝑘𝑚𝐿𝑙𝑚 = 𝛿𝑘𝑖𝛿 𝑗𝑚𝐿𝑙𝑚 + 𝐿𝑘𝑚𝛿𝑖𝑙𝛿 𝑗𝑚 = 𝛿𝑘𝑖𝐿𝑙 𝑗 + 𝐿𝑘 𝑗𝛿𝑖𝑙

(D.17)
for 𝑖 > 𝑗 > 1 and 𝑖 ∈ {1, ..., 𝑁}. We can parameterize the entries with a
log function to force the diagonal entries of 𝐿 to be positive.

D.B Gradient of the generalized Thikonov regulator

To optimize the parameters of the general Thikonov regulator we need the
gradient of the regulator with respect to the parameters and the spectral
function. The partial derivative with respect to the spectral function is
trivial as we are only left with the Σ matrix.

𝜕

𝜕𝜌𝑖

𝜕𝑆𝐺𝐾𝑇

𝜕𝜌 𝑗
= Σ𝑖 𝑗 (D.18)

For the parameters of the Σ matrix, which is required to be positive
definite, we need to take the gradient of the parameters 𝐿𝑖 𝑗 , and the
resulting

𝜕

𝜕𝐿𝑖 𝑗

𝜕𝑆𝐺𝐾𝑇

𝜕𝜌𝑘
=

𝜕

𝜕𝐿𝑖 𝑗
Σ𝑘𝑙 (𝜌𝑙 − 𝑚𝑙) = (𝛿𝑘𝑖𝐿𝑙 𝑗 + 𝐿𝑘 𝑗𝛿𝑖𝑙) (𝜌𝑙 − 𝑚𝑙)

= 𝛿𝑘𝑖𝐿𝑙 𝑗 (𝜌𝑙 − 𝑚𝑙) + 𝐿𝑘 𝑗 (𝜌𝑖 − 𝑚𝑖).
(D.19)

This can be implemented efficiently in an adjoint equation by first calcu-
lating the matrix-vector product 𝐿 (𝜌−𝑚), then identifying the _𝑇

𝑖
𝛿𝑖 𝑗 as a

row-vector in the first term, calculating _𝑇𝐿 in the second term and then
indexing from the vector jacobian products (VJP). See section 3.1.2 for
more information.
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We parameterize the elements with a log function to keep the diagonal
positive. This means that the gradient for the diagonal elements of 𝐿 is
changed to be

𝜕

𝜕𝐿𝑖𝑖

𝜕𝑆𝑔𝐾𝑇

𝜕𝜌𝑘
=

𝜕

𝜕𝐿𝑖𝑖
Σ𝑘𝑙 (𝜌𝑙 − 𝑚𝑙) = ( 𝛿𝑘𝑖

𝐿𝑖𝑖
𝐿𝑙𝑖 + 𝐿𝑘𝑖

𝛿𝑖𝑙

𝐿𝑖𝑖
) (𝜌𝑙 − 𝑚𝑙)

=
1
𝐿𝑖𝑖
𝐿𝑙𝑖 (𝜌𝑙 − 𝑚𝑙) + 𝐿𝑘𝑖

1
𝐿𝑖𝑖

(𝜌𝑖 − 𝑚𝑖).
(D.20)
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