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Abstract
Subsurface reservoirs are large complex systems. Reservoir flow models are defined on 
complex grids that follow geology with relatively large block sizes to make consistent 
simulations feasible. Reservoir engineers rely on established reservoir simulation software 
to model fluid flow. Nevertheless, fluid front position inaccuracies and front smearing on 
large grids may cause significant errors and make it hard to predict hydrocarbon produc-
tion efficiency. We investigate higher-order methods that reduce these undesired effects 
without refining the grid, thus making reservoir simulation more accurate and robust. For 
this paper, we implemented a second-order finite volume method with linear programming 
(LP) reconstruction in the open-source industry-grade reservoir simulator OPM Flow (part 
of the open porous media initiative, OPM). We benchmark it against the first-order method 
on full-scale cases with standard coarse and refined grids. We prepared open refined-grid 
models of a synthetic reservoir with an unstructured grid and refined Norne field example. 
Our results confirm that the LP method predicts front positions as accurately as the first-
order method on the refined grid for problems dominated by transport. These include the 
water alternating gas scenario on the synthetic reservoir and piston-type injection on the 
Norne field. Moreover, we study the gains from the LP method for CO

2
 injection problems 

on the Norne field with full multi-phase complexity beyond transport. We observe the rel-
evant difference between the first- and the second-order methods in these cases. However, 
in some configurations, the reservoir complexity overshadows the gains from the second-
order methods.
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1 Introduction

Modeling multi-phase multi-component flow in porous media requires accurate and robust 
numerical methods. It is an essential part of the oil and gas production (Trangenstein and 
Bell 1989; Coats et  al. 1995), carbon storage (Class et  al. 2009; Celia and Nordbotten 
2009; Sandve et  al. 2018; Mykkeltvedt et  al. 2021), enhanced oil recovery (Lake 1989; 
Mykkeltvedt et al. 2017) and many other applications.

The first-order finite volume (FV) is the usual method for modeling multi-phase multi-
component flow. It is the default option in many standard reservoir simulators, both com-
mercial and open-source, for example, ECLIPSE (2014), OPM (Open Porous Media) 
(Lauser et al. 2018), the Matlab Reservoir Simulation Toolbox (MRST) (Lie 2019), DuMux 
(Flemisch et  al. 2011), PFLOTRAN (Lichtner et  al. 2019), an Automatic Differentiation 
General Purpose Research Simulator (ADGPRS) (Voskov and Tchelepi 2012) or TOUGH3 
(Jung et  al. 2017). First-order methods are widely used because of their robustness and 
ease of implementation. Unfortunately, those are known to suffer from numerical diffusion, 
which leads to smearing of the fluid fronts and, therefore, incorrect computations of the 
front position, components concentrations, water breakthrough, etc.

To reduce the numerical diffusion and increase the accuracy, there are mainly two 
options: to refine the grid or increase the order of the numerical method. Grid refinement, 
while being a valid solution in many cases, is often impractical for reservoir simulation due 
to the reservoir size and complex grids, faults, etc. It complicates the model and increases 
the simulation time significantly. On the other hand, increasing the order of the numeri-
cal method can provide a more accurate solution with reduced grid-orientation effects and 
better front resolution on a practical grid block size without modifying the grid (Sammon 
et al. 2001). However, a practical challenge with the higher-order methods is unphysical 
oscillations (undershoots and overshoots) around the front, which require the introduction 
of slope-limiters (LeVeque 2002).

The early papers applying higher-order methods in reservoir simulation date back to 
the 1980s. Bell and Shubin (1985) presented a higher-order Godunov scheme for one- and 
two-dimensional five-spot problems with miscible and immiscible displacement flow mod-
els. In Rubin and Blunt (1991), Blunt and Rubin (1992) and Rubin and Edwards (1993), 
the authors show how higher-order total variation diminishing (TVD) schemes can be 
applied to one- and two-dimensional simplified reservoir simulation. Chen et  al. (1993) 
used second-order TVD- and third-order essentially non-oscillatory (ENO) schemes to 
minimize grid orientation effects and improve front resolution on the 2D five-spot model. 
In May and Berger (2013) proposed to use constraint optimization with linear program-
ming to compute the reconstruction in a higher-order method. And Chen and Li (2016) 
further proposed an improved linear-programming scheme that did not require an initial 
gradient computation.

Despite continued research of higher-order methods in reservoir simulation (Durlofsky 
et al. 1992; Harten 1997; Geiger-Boschung et al. 2009; Lamine and Edwards 2015; Contre-
ras et al. 2016; Mykkeltvedt et al. 2017), most implementations are done in academic codes 
with Cartesian or simplex meshes. Only a few researchers applied them to implementation-
intensive corner-point grids that capture complex geometries of subsurface reservoirs. In 
Lie et al. (2020), a weighted-ENO (WENO, introduced in Jiang and Shu 1996; Liu et al. 
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1994) method was applied to simplified test cases on reservoir-type grids. In Klemetsdal 
et al. (2020), a discontinuous Galerkin (DG) method (introduced for transport problems in 
Cockburn and Shu 1989) was applied for compositional flow on realistic reservoir meshes. 
DG are very promising for such problems; however, since most industrial simulators rely 
on a data layout corresponding to that of first-order FV methods, the implementation of 
DG methods in industrial codes will be even more complicated than reconstruction-based 
higher-order FV methods.

In Klöfkorn et al. (2017), the authors compared three second-order schemes, each with 
several limiting techniques on different 2D and 3D grids, including corner-point examples. 
The study concluded that the second-order method with reconstruction based on optimiza-
tion with linear programming (second-order LP method) was among the best methods for 
3D cases. Moreover, the second-order LP method was most suitable for implementation in 
the full-scale reservoir simulator OPM Flow.

In this paper, we present and verify the implementation of the second-order LP method 
in a full-scale reservoir simulator. To show the method’s capabilities, we run WAG and 
CO2 injection scenarios on a medium-sized synthetic reservoir with an unstructured grid 
and the openly available Norne field. We constructed experiments that isolate and high-
lights the effects of components’ transport, for which the simulation quality will deteriorate 
for the classical methods. The implementation is done in OPM Flow, an open reservoir 
simulator capable of modeling the black-oil model as fast and accurately as conventional 
commercial reservoir simulators (Rasmussen et al. 2021; Lauser et al. 2018; Sandve et al. 
2018). The open-source access allows us to integrate new features directly and verify 
them on industry-standard test cases and field studies. This means that the second-order 
method is readily available for practical reservoir simulation. A reservoir engineer wanting 
to increase the accuracy and improve the fluid front positioning and resolution can start 
the simulation with the higher order flag –enable-higher-order instead of going 
through the time-consuming and work-intensive process of grid refinement.

The paper is organized as follows: We start by describing the first- and second-order 
finite volume methods on reservoir discretizations. Section 3 presents the numerical results 
on realistic cases. We summarise the results in Sect. 4.

2  Discretization

In this section, we discuss discretization used in the fully-implicit numerical method for 
solving the black oil model extended with a solvent component (22–24).

Let us start by introducing a computational grid T  of the domain Ω ⊂ Rd and denoting 
�T  as a tessellation of the boundary �Ω . In the classical cell-centered finite volume method 
the unknown function is approximated by a piece-wise constant function, which takes the 
average value of the unknowns for each discretization element (Eymard et al. 2000). The 
finite volume method uses an integral formulation of the model Eqs.  (22–24) applied on 
each element of the computational grid. For the sake of simplicity, all further derivations 
will be done for the water component equation from (23):

As for time discretization we use an implicit Euler method. Following the derivations from 
LeVeque (2002) and Eymard et al. (2000), we integrate the water component equation over 

(1)
�

�t
AW − ∇ ⋅

�wk

Bw

(
∇p� − ��g

)
= QW .
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the element E ∈ T  , apply the Gauss theorem and get the implicit formulation of a classical 
finite volume scheme:

where the superscripts n and n + 1 denote the time step, Qn+1
�

 is the averaged in time inte-
gral over the element of the right-hand side, AW is the accumulation term of the water com-
ponent, nij is the outer normal to the intersection eij and �n+1

w
 is the water mobility, which 

is equal to the ratio of the relative permeability function to the water viscosity. As we are 
modeling reservoirs, which typically are isolated from the surrounding rocks, a no-flow 
boundary condition is assumed.

The two accumulation terms are linear and can be easily computed using the averaged 
values at each element. The integral in the right-hand side can, in principle, be approxi-
mated using any quadrature rule, we choose the midpoint rule:

To calculate the gradient of the pressure we use the standard two-point flux approximation 
(Aavatsmark 2007; Alyaev et al. 2014) and the gravitational acceleration is approximated 
using the arithmetic mean. The mobility function �n+1

w
 , on the other hand, is non-trivial to 

compute. Let us denote it as:

The reconstruction of the phase mobility function will determine the type of the numerical 
method. As discussed in Lie et al. (2020), one can use either primary variables or the phase 
mobilities to reconstruct the second-order method. We compared the results when recon-
structing primary variables and mobilities in the test run and observed that the choice did 
not influence the results significantly. Also reconstructing mobilities extends the current 
version of OPM more naturally. Therefore, in this paper, we chose to reconstruct the phase 
mobilities in the presented second-order method implementation.

In the first-order method, we use a simple upwind scheme for the mobility evaluation 
and the mid-point rule for the integral:

where �−
ij
 is the mobility function on the element E and �+

ij
—on the neighboring element 

E′ . For boundary elements, the boundary condition value is used instead of the neighbor-
ing value or the same value in the case of a no-flow boundary, which is typical in reservoir 
modeling. Now, when all the terms in (2) are discretized, we can repeat the same procedure 
with the obvious modifications for the other components and get a non-linear system of 
equations. The solution of the system is computed by the Newton method with an auto-
matic differentiation approach for the computation of Jacobian matrices. More details on 
the use of automatic differentiation in OPM can be found in Lauser et al. (2018).

(2)(�AW )
n+1 = (�AW )

n +
dt

|E| ∮�E

�n+1
w

k

Bw

(
∇pn+1

w
− �wg

)
⋅ n dx + Qn+1

�
,

(3)
∮
�E

�n+1
w

k

Bw

(
∇pn+1

w
− �wg

)
⋅ n dx

≈
∑
eij∈�E

|eij|
�n+1
w

(xij)k(xij)

Bw

(
∇pn+1

w
(xij) − �w(xij)g(xij)

)
⋅ nij.

(4)�n+1
w

(xij) = �ij
w
.

(5)�ij
w
=

{
�−
ij

if
(
∇pn+1

w
− �wg

)
⋅ nij ≤ 0,

�+
ij

otherwise,
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For second-order methods we use a reconstructed linear function for every element:

where wE is the coordinates of the barycenter of the element E , and ∇LE is the gradient that 
needs to be computed. For clarity of notation, we are dropping the water component index 
w in the mobility function. The same procedure is applied to all the mobility functions. 
Afterward, the same upwind scheme (5) is used, however, instead of �−

ij
 and �+

ij
 we use the 

reconstructed L−
ij
 and L+

ij
 , which corresponds to the linear reconstructions functions evalu-

ated on the intersections barycenter on element E and its neighbor E′ , respectively:

In order to reconstruct the linear function we need to compute a gradient ∇LE on each ele-
ment. Below we discuss one possible approach to computing the gradient and therefore the 
linear function.

2.1  Linear Programming Reconstruction

One option to compute the gradient for the linear reconstructions is by solving an optimi-
zation problem for each cell. The idea of using linear programming (LP) for reconstruc-
tion and limiting the gradient was presented in May and Berger (2013). The algorithm for 
obtaining the linear reconstruction still consists of two steps: computation of the initial 
gradient and solving a constrained optimization problem, where the goal is to minimize the 
difference between the initial and the limited gradients while satisfying monotonicity con-
straints. Each component of the multidimensional gradient is limited separately using sca-
lars, which means that in the end the direction of the initial gradient could be changed (in 
contrast with scalar limiters, when all gradient’s components are multiplied with the same 
scalar). Chen and Li (2016) addressed this in the paper, where they presented a method 
that does not require an initial gradient computation. Indeed, since both the direction and 
the length of the gradient can be changed by the LP algorithm, it would be beneficial com-
putationally to omit the initial gradient computation. As the authors point out in Chen and 
Li (2016), the two algorithms give different optimal solutions, however, they also present a 
theorem, where they prove that the obtained gradient is sufficiently close to the unlimited 
least squares gradient. The approach used in this paper is based on Chen and Li (2016) and 
will be briefly described below.

Linear programming is an optimization method to find an extremum of the objective 
function under the linear constraints (Nocedal and Wright 2006). In our case, we want to 
minimize the difference between reconstructed values and the cell-averaged values without 
violating the monotonicity conditions:

This means that the reconstructed function evaluated in the center of every neighboring 
element should be bounded by minimum and maximum from the cell-averaged values of 
the current element and the neighbor. The elements center is calculated as an average of 
the corner coordinates. This will allow better numerical accuracy and reduce the numerical 

(6)
LE(x) ∶ = �E + ∇LE ⋅ (x − wE),

LE(wE� ) = �E� , ∀(E,E
�) ∈ �E,

(7)�ij
w
=

{
L−
ij
(w(E,E�)) if

(
∇pn+1

w
− �wg

)
⋅ nij ≤ 0,

L+
ij
(w(E,E�)) otherwise,

(8)min{�E, �E� } ≤ LE(wE� ) ≤ max{�E, �E� }, ∀(E,E
�) ∈ �E.
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diffusion without creating spurious oscillations. This monotonicity condition essentially 
acts like a minmod limiter applied to the gradient of the reconstructed function.

The standard form of the linear programming problem is:

where c̃ and x̃ are vectors from ℝn , vector b̃ belongs to ℝm , and Ã ∈ ℝ
(m×n).

As it was said before, we are minimizing the total gaps between the reconstructed values 
and the cell-averaged values at the neighboring cells:

which is equal to

where v and ṽ are variables defined as

As it was pointed out in Chen and Li (2016), the difference vE� − ṽE� has the same sign as 
vE′ , which brings us to the following LP problem:

where

The transition from max to min formulation in (14) is straightforward, so we will just write 
down how matrix A and vectors b and c from (9) will look like. The unknown vector x is 
the gradient of the linear reconstruction x = [∇Lx

E
,∇L

y

E
,∇Lz

E
]T . The matrix A and vectors 

c and b are:

(9)min c̃Tx̃ subject to Ãx̃ = b̃, x̃ ≥ 0,

(10)�(L) ∶=
∑

∀(E,E�)∈�E

∣ �E� − LE(wE� ) ∣,

(11)
∑

∀(E,E�)∈�E

∣ �E� − LE(wE� ) ∣ =
∑

∀(E,E�)∈�E

∣ �E� − �E − ∇LE ⋅ (wE� − wE) ∣

(12)=
∑

∀(E,E�)∈𝜕E

∣ vE� − ṽE� ∣,

(13)ṽE� = ∇LE ⋅ (wE� − wE) and vE� ∶= 𝜆E� − 𝜆E.

(14)
max

∑
∀(E,E�)∈�E

sgn(vE� )(wE� − wE) ⋅ ∇LE

subject to v−
E� ≤ (wE� − wE) ⋅ ∇LE ≤ v+

E� ,

(15)
v−
E� = min{0, �E − �E� },

v+
E� = max{0, �E − �E� }.

(16)c =

⎡⎢⎢⎢⎢⎢⎢⎣

�
∀(E,E�)∈�E

sgn(vE� )(xE� − xE)

�
∀(E,E�)∈�E

sgn(vE� )(yE� − yE)

�
∀(E,E�)∈�E

sgn(vE� )(zE� − zE)

⎤⎥⎥⎥⎥⎥⎥⎦

,
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We start the iteration process with zero gradient

which corresponds to the first-order scheme. Following May and Berger (2013) and 
Chen and Li (2016), an all-inequality simplex method is used as a linear programming 
solver. Compared to the usual simplex method, the advantage of this method is that it is 
much faster on problems where the number of constraints is bigger than the number of 
unknowns, which is the case for polyhedral meshes where each cell has many neighbors. 
A detailed description of the all-inequality simplex algorithm can be found in the appen-
dix of May and Berger (2013). Further on in this paper, we will refer to this method as the 
second-order LP method.

3  Numerical Results

In this chapter, we test and compare the methods on two realistic reservoirs. In the first test 
case, we compare the methods on a medium-sized realistic reservoir with an unstructured 
corner point grid when modeling water-alternating gas injection (WAG), Sect.  3.1. This 
test case provides a complicated setup in terms of the presented fluids and their interac-
tions; however, the reservoir is relatively small and does not contain complex features like 
faults, regions, etc. After that, we present the simulation results on the Norne field, an open 
data set of a real reservoir on the Norwegian Continental Shelf. We run three different 
experiments on the Norne field. First, we model a piston-type injection on homogeneous 
and heterogeneous Norne fields to observe reduced smearing for the second-order method, 
Sect.  3.2. Second, we run the first-order method on a refined Norne model to validate 
the front resolution of both methods, Sect. 3.2. And finally, we present the carbon diox-
ide injection test case on a heterogeneous Norne field with its full complexity, Sect. 3.3. 
We run several setups to compare the accuracy of the front position of the second-order 
method in less and more complex conditions. We constructed experiments that isolate and 
highlights effects of components’ transport, for which the simulation quality will deterio-
rate for the classical methods.

3.1  Medium‑Sized Realistic Reservoir

In this test case, we model a three-phase flow with four components on a 3D domain with 
an unstructured grid. The phases are the same as in the standard black-oil model: oleic, 
gaseous, and aqueous. The components are oil, gas, water, and solvent. The domain is a 
rectangular hexahedron, which is 7014 m long in X and Y directions and 120 m long in the 
Z direction, having 14 × 14 × 3 grids cells, each 501 m by 501 m by 40 m, see left part of 
Fig. 1. It is located 8325 m below the surface and has two wells—an injector in the lower 

(17)A =

⎡⎢⎢⎢⎢⎢⎢⎣

xE1
− xE yE1

− yE zE1
− zE

⋮ ⋮

xE� − xE yE� − yE zE� − zE
−(xE1

− xE) − (yE1
− yE) − (zE1

− zE)

⋮ ⋮

−(xE� − xE) − (yE� − yE) − (zE� − zE)

⎤⎥⎥⎥⎥⎥⎥⎦

, b =

⎡⎢⎢⎢⎢⎢⎢⎣

v+
E1

⋮

v+
E�

−v−
E1

⋮

−v−
E�

⎤⎥⎥⎥⎥⎥⎥⎦

,

(18)x =
[
∇Lx

E
,∇L

y

E
,∇Lz

E
]T = [0, 0, 0

]T
,
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left corner and a producer in the upper right. Both wells are under rate control with a target 
rate of 12,000 STB/day. The BHP target is set to 1000 psia for the producer and 10000 psia 
for the injector. The fluid properties are adopted from the well-known SPE5 benchmark 
(Killough and Kossack 1987). On this reservoir, we will run both first- and second-order 
methods. As we do not know the “true” solution, we will also run first-order method on a 
refined grid (28 × 28 × 3 grid cells) and view it as the reference solution. Note, we refine 
the grid only in X and Y direction, since fluid flow mostly happening in this direction.

The schedule in this test case emulates WAG (water alternating gas) injection with 1 
and 5-year cycles. During the first 2 years, we perform depletion of the reservoir and only 
produce without injecting. After the first 2 years, we do 20 years of WAG injection with 
1 year cycle, meaning that we inject water for one full year and follow it with gas injection 
for the next full year, both with a constant rate. Afterward, we change the schedule and 
inject gas for 5 consecutive years and water for the next 5 years. The simulation is finished 
with 5 more years of gas injection, which gives us 15 years of WAG injection with 5-year 
cycle. The schedule has two cycle schedules in one, first with the short and second with the 
long span, which will help us to show how the methods perform in different conditions.

Initially, the reservoir is filled with oil in the top layers and water in the bottom. The oil 
in the reservoir is light and has a certain fraction of gas mixed into it. The injected gas con-
sists only of solvent, which is a mix of several components, but mostly consists of methane.

Let us now examine the production rate curves for all the components. We will start 
with the solvent production rate, see Fig. 2. Three curves in the figure correspond to the 
result produced by the first- and second-order methods on the coarse grid and a reference 
first-order method on the refined grid. Throughout the whole simulation time, we see an 
agreement between the second-order method and the reference method. We zoom into 
three parts of the production rate curve: first, to the time when the solvent first reaches the 
producer, second, the waves of 1-year WAG injection, and third, to the last wave of the 
5-year WAG injection. In the first, we see that both the second-order method and first-order 
on fine grid method predict later arrival time and sharper front for the solvent production. 

Fig. 1  Top and west views of the coarse and refined medium-sized reservoir, described in the Sect. 3.1
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This agrees very well with the results obtained for the simple immiscible fluid displace-
ment cases, presented in Klöfkorn et al. (2017). We see a 3-month difference between the 
first- and second-order methods’ curves reaching 200 MSCF/day level of production. In the 
two later stages, we also see a noticeable difference in the results: the second-order method 
tends to show later arrival of the fronts. It also predicts higher local maximums and lower 
local minimums, which is expected as the second-order method reduces smearing.

Gas and oil production rates are shown in Fig. 3. We plot them together because they 
share one interesting feature. We observe a gas wave formed due to the pressure drop in 
the reservoir during the first 2 years of depletion. The gas that was initially dissolved in 
the oil was realized and formed a separate sharp gas wave. And therefore, around 1995 
we observe a pick in gas production and a drop in oil production. The first-order method 
on the refined grid confirms the front position obtained by the second-order method. 

Fig. 2  Solvent production rate: whole simulation time on the left and three zoom-ins on the right
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The second-order method, therefore, outperforms the first order in the accuracy of the 
positioning of the sharp front.

Let us examine closely the water production rate, see Fig.  4. Here we see two 
“waves”: first at the beginning of 1988 and second at the beginning of 1995. However, 
the second-order method gives identical results to the first order on the first wave and 
predicts a later arrival of the waterfront for the second wave. The reason for it is the 
nature of those peaks in water production. The water production rate is plotted together 
with the solvent production rate, such that we know when the injected fluid reaches the 
producer. And in our case, it happens only in 1995 (May 1995 for the first order and 
December 1995 for the second to reach 50 STB/day production rate). This means that 
before that time we produce the reservoir water and its behavior, especially during the 
first 2 years when there is no injection, is pressure driven. And as we do not improve the 
pressure calculations, the production curves for the first- and second-order methods are 
identical. However, when the injected water reaches the producer, we see the transport 

Fig. 3  Gas and oil production rates during the whole simulation time on the right and zoom-ins on the right
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phenomena and the second-order method predicts the later arrival of the waterfront, and 
the reference method agrees with it.

In summary, whenever the transport phenomena were dominant for all production rate 
curves, we saw an improved front position and reduced smearing for the second-order 
method compared to the first-order. The result was verified by the result of the first-order 
method on the refined grid.

3.2  Simulation on the Norne Field

The Norne field is an oil and gas sandstone reservoir on the Norwegian continental shelf. 
It is one of the few fields where the simulation model together with production data was 
published under an open content license. Since then it became a benchmark field model.

In order to compare the performance of the first- and second-order FV methods on a 
realistic reservoir, we are going to use the benchmark simulation model with a grid block 
size of approximately 100 m and a refined Norne model with a grid block size of approxi-
mately 50 m. Since this is a real reservoir, we do not know the analytical solution even to 
the simplest production/injection schedule. That is why we will use the Norne field with 
the refined grid, such that we can compare the results of the second-order method with 

Fig. 4  Production rates of water and solvent during the whole simulation on the right and zoom in on the 
left
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the results of the first-order method on the refined grid. The previous study on the simple 
geometry reservoirs (Kvashchuk et al. 2019) suggests that the second-order method accu-
racy in the front position detection can be compared with the first-order only on the refined 
grid.

Following Lie et  al. (2020) we construct a simple piston-type injection example on 
the Norne field. In order to do so, first we use homogeneous porosity and permeability 
throughout the whole reservoir and neglect regions and fault multipliers, that are used in 
the original model. Second, we fill the whole reservoir with “red” fluid and inject “blue” 
fluid through the east side. Red and blue liquids have the same properties such that we 
can isolate the fluid displacement effects. Third, we put two production wells on the other 
side such that the injected fluid can flow through the reservoir. Finally, we run simula-
tions for almost 25 years (9000 days) for both the first- and second-order methods. The 
field after 4.5 years is shown in Fig. 5. The top row corresponds to the homogeneous case 
and the bottom to the heterogeneous. The difference is more visible for the homogeneous 
grid, which also agrees with the curves in Fig. 7. The curves in the figure represent the 
ratio of the red fluid produced in the reservoir to the total fluid volume. Figure 6 shows 
the actual difference between the results on each grid cell in December 2002, 5 years and 
1 month after the simulation started. The curves in Fig. 7 agrees with the results reported 
in Lie et al. (2020). We see that the second-order finite volume method reduces the smear-
ing effect and that the reduction is more pronounced on the homogeneous media.

We verify the results obtained above by running the same simulation on the refined 
Norne grid. We refine the original grid block, which is approximately 100 m, in X and Y 
directions, and get a refined Norne model with a grid block size of approximately 50 m. 
Since we are focusing on fluid displacement and it is happening in the X–Y plane, we do 
not refine cells in the Z direction, where mostly gravity effects take place. The results on 
the refined grid confirm the behavior of the second-order method that we saw in Klöfkorn 
et al. (2017) and Kvashchuk et al. (2019) and in the previous example—it gives a sharper 
front and predicts its position closer to what is obtained with the first-order method on the 
refined grid, see Fig. 8. In Fig. 8 we see very good agreement between the higher order 
method and the first-order method on the refined grid in predicting the arrival time of the 
fluid front. However, when it comes to later stages of production (around the year 2020), 

Fig. 5  Homogeneous (top) and heterogeneous (bottom) Norne field in the middle of production, east view. 
The results for the first order are on the left, and for the second order on the right side. Here we can clearly 
see the reduced smearing for the second-order method on the homogeneous Norne
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the first- and second-order methods on the coarse grid produce the same result, while the 
first-order on the refined grid predicts a lower number. The results of the first- and second-
order methods on the same grid differ only in how much the front is spread: it is spread 
more for the first-order method and is sharper (less spread) for the second-order. That is 
why after the front is resolved they agree and stay on the same level.

3.3  Carbon Dioxide Injection on Norne

In order to test the performance of the second-order method in more realistic conditions, 
we set up a CO2 injection test case. Even though the Norne field is not a primary candidate 
for the CO2 injection, it can give valuable insight into how the methods compare to the 
realistic field scale model.

For ease of simulation, we will have only two wells—one injector and one producer. 
However, the rest of the complexity of the field is present—we have faults, regions, het-
erogeneity, etc. Also, we change the initial conditions—in this test case, the reservoir is 
filled only with oil at the start of the simulation. The CO2 is injected at a constant rate 
of 100,000  sm3/day from the start of the simulation and for consecutive 5000 days. We 
assume the injected CO2 is miscible in oil when its gas fraction is more than 0.01. We use 

Fig. 6  Difference between the results of the first- and second-order methods
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Fig. 7  The ratio of red liquid produced compared to the volume of total liquids produced in the Norne res-
ervoir. The full simulation time is on the left, and on the right we zoom in from 2000 to 2006

Fig. 8  The ratio of red liquid produced compared to the volume of total liquids produced in the standard 
and refined Norne reservoir. The full simulation time is on the left and from 2003 to 2008—on the right
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the “MISC” keyword (Baxendale 2022) to define that fluid is immiscible at low concentra-
tions and switches to miscible behavior when the concentration increases. For all simulated 
scenarios, the production well is placed in the middle of the reservoir and is controlled by 
a liquid rate target of 4000 sm3/day. It is a horizontal well in layer 13 with wellhead coor-
dinates I = 13 and J = 39 . The injector well will be placed in three different places: first, 
the two wells are in the same compartment meaning that there are no faults between them, 
second—the injector and producer are separated by just one fault; and third, the injector 
well is placed in the corner of the reservoir surrounded by faults, see Fig. 9.

The resulting CO2 (solvent) production rate curves are presented in Fig. 10. In the first 
scenario, solvent reaches the producer faster than in the other two as there are no faults 
between the two wells. We also observe 105 days difference between the first- and second-
order methods’ prediction of when the solvent production rate reaches 1000  sm3/day. In 
two other cases, when we have faults between the injector and producer, we see the same 
trend—the second-order method predicts the later arrival of the carbon dioxide; however, 
the difference is less: solvent production rate reaches 1000 sm3/day with 70 days difference 
for the “behind one fault” case and 65 days difference for the “corner” case. It shows that 
the increased complexity of the reservoir can overshadow the effects gained by using a 
higher-order computational method. However, we still observe a relevant difference in the 
front positioning when using the higher-order method.

4  Conclusion

We showed that the presented second-order linear programming method predicts the fluid 
front position more accurately and decreases the numerical diffusion on realistic reservoir 
models. We also verified the results with the first-order method on the refined grid, both for 
the medium-sized reservoir and the Norne test case. In all the presented test cases, we saw 
that the second-order method would predict the position of the fluid front as accurately as 
the first order on the refined grid.

We also observed that the result depends on the type of fluid flow. When pressure 
effects dominated the fluid flow, we did not observe significant improvements, which 
is not surprising as we did not improve the accuracy of the pressure computation. In 
general, the more complex fluid flow we have, the harder it is to model the process 
and interpret the result. For example, in the simple scenario of carbon dioxide injec-
tion on a complex Norne field, we observed that the difference between the first- and 
second-order methods results depends on the number of faults between the injector 
and the producer. And for piston-type injection, the smearing was reduced more for 

Fig. 9  Positions of the wells in the Norne CO
2
 injection scenarios: left for the wells in the same compart-

ment, middle–wells are separated by a fault, right—injection well in the corner
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the homogeneous grid than for the heterogeneous. More testing in realistic settings is 
needed to answer under which conditions the higher-order methods are most helpful.

A significant advantage of the presented second-order method is the fact that it is 
implemented in the open reservoir simulator OPM Flow (Open porous media), where 
using the higher order method is a simple task of switching the flag when starting 
the simulation. This allows for immediate usage and further testing in realistic set-
tings and facilitates future improvements and extensions of the presented method. This 
means faster learning and more informed decisions when modeling the fluid flow in the 
reservoir.

Fig. 10  Solvent production rate for the three scenarios of solvent injection on Norne. The subplots zoom 
into the times of solvent arrival for each scenario: (1) Wells in the same compartment; (2) Wells separated 
by a fault; (3) Injection well in the corner
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Appendix 1. Modeling Equations

Black‑Oil Model

The black-oil model is a three-phase three-component model, which is an industry-
standard model for the reservoir processes (Chen et  al. 2006). Let us state below the 
assumptions and equations that are governing the model. As phases and components 
share the same names (gas, water, and oil), we will use different indices in order to 
distinguish between them: index � ∈ {w, g, o} (“water”, “gas” and “oil”) for phases 
and index � ∈ {W,G,O} (“Water”, “Gas” and “Oil”) for components. The miscibility 
assumptions are:

• water and gas phases are immiscible,
• the water phase is composed only of water,
• gas phase may contain vaporized oil,
• the oil phase is assumed to be a mixture of gas and oil components.

The densities of the phases are determined by so-called formation volume factors, which 
is the ratio of the phase volume measured at reservoir conditions �� to the phase volume 
measured at standard conditions ��sc:

Here and later on, we will use subscript sc to indicate that quantity was measured at stand-
ard condition.

The water density can be computed using just the water volume formation factor. In 
order to compute oil and gas densities, we need to introduce gas solubility Rs (also called 
dissolved gas-oil ratio), which is the volume of gas at standard conditions VGsc divided by 
the volume of oil at standard conditions VOsc given that they were both obtained from some 
amount of oil phase at reservoir conditions:

and oil volatility Rv , which is the volume of oil at standard conditions VOsc divided by the 
volume of gas at standard conditions VGsc given that they were both obtained from some 
amount of gas phase at reservoir conditions:

This allows for calculating all quantities required for the mass-conservation equations for 
each component. All three equations share the same structure:

where � is the porosity, A�—the accumulation term, v� and Q� is the mass flux and source 
or sink term of the phase � respectively. For each component � the accumulation term and 
the mass flux are:

(19)B� ∶=
��

��sc
.

(20)Rs ∶=
VGsc

VOsc

,

(21)Rv ∶=
VOsc

VGsc

.

(22)
�

�t
(�A�) + ∇ ⋅ v� = Q� ,
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The phase flux u� is determined by the standard multi-phase Darcy equation (Nordbotten 
and Celia 2011), i.e.

where k is the permeability, g - gravity, and kr,� , �� , �� , p� are relative permeability, vis-
cosity, density and pressure of the phase � respectively.

The Model with Solvent

In this study, we use the black-oil model extended with the solvent equation instead of a 
fully compositional model. This choice has been made in OPM to reduce the computa-
tional time and to ease the implementation of the CO2-EOR injection scenario (Sandve 
et al. 2018). However, the proposed second-order methods are not limited to this model and 
in principle can be used in any other formulation. To extend the black-oil model we add the 
following equation:

Additionally, the presence of solvent influences relative permeability and viscosity, and 
these become effective relative permeability kr�e and effective viscosity ��e . The effective 
properties depend on the miscibility factor M and are defined as follows:

Here krgt is the total relative permeability of the gas phase, Sn is the total hydrocarbon 
saturation and Sor and Sgc is the residual oil saturation and the critical gas saturation, 
respectively.

Effective viscosities are calculated using the Todd-Longstaff mixing parameter w (Todd 
and Longstaff 1972):

(23)

AW =
Sw

Bw

,

AO =
So

Bo

+
RvSg

Bg

,

AG =
Sg

Bg

+
RsSo

Bo

,

vW =
uw

Bw

,

vO =
uo

Bo

+
Rvug

Bg

,

vG =
ug

Bg

+
Rsuo

Bo

.

(24)u� = −
kr,�

��

k
(
∇p� − ��g

)
,

(25)As =
Ss

Bs

, vs =
us

Bs

.

(26)kroe =M ⋅
So − Sor

Sn − Sgc − Sor
⋅ krn + (1 −M) ⋅ kro,

(27)krge =M ⋅
Sg + Ss − Sgc

Sn − Sgc − Sor
⋅ krn + (1 −M) ⋅

Sg

Sg + Ss
krgt,

(28)krse =M ⋅
Sg + Ss − Sgc

Sn − Sgc − Sor
⋅ krn + (1 −M) ⋅

Ss

Sg + Ss
krgt.

(29)�oe = �1−w
o

⋅ �w
mos

, �ge = �1−w
g

⋅ �w
msg

, �se = �1−w
s

⋅ �w
m
.
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The fully mixed viscosities for the oil and solvent mixture �mos , the gas and solvent mixture 
�msg , and the oil, gas, and solvent mixture �m are computed using the standard mixing rule 
(Todd and Longstaff 1972).
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