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a b s t r a c t

Machine learning methods have in various ways emerged as a useful tool for modeling the dynamics
of physical systems in the context of partial differential equations (PDEs). Nonlinear conservation laws
(NCLs) of the form ut+f (u)x = 0 play a vital role within the family of PDEs. A main challenge with NCLs
is that solutions contain discontinuities. That is, one or several jumps of the form (uL(t), uR(t)) with
uL ̸= uR may move in space and time such that information about f (u) in the interval associated with
this jump is not present in the observation data. Moreover, the lack of regularity in the solution u(x, t)
prevents use of physics informed neural network (PINN) and similar methods. The purpose of this
work is to propose a method to identify the nonlinear flux function f (u, β) with variable parameters
of an unknown scalar conservation law

ut + f (u, β)x = 0 (∗)

with u as the dependent variable and β as the parameter. In a recent work we introduced a framework
coined ConsLaw-Net that combines a symbolic multi-layer neural network and an entropy-satisfying
discrete scheme to learn the nonlinear, unknown flux function f (u;β) for various fixed β . Learning
the flux function with variable parameters, marked as f (u, β), is more challenging since it requires an
understanding of the relationship between the variable u and parameter β as well. In this work we
demonstrate how to couple ConsLaw-Net to the Linear Regression Neural Network (LRNN) to learn
the functional form of the two variable function f (u, β). In addition, ConsLaw-Net is here further
developed and made more generic by using a refined discrete scheme combined with a more general
symbolic neural network (S-Net). We experimentally demonstrate that the upgraded ConsLaw-Net
integrated with LRNN is well-suited for learning tasks, achieving more accurate identification than
existing learning approaches when applied to problems that involve general classes of flux functions
f (u, β). The investigations of this work are restricted to the class of polynomial, rational functions.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

1.1. Background

Machine learning methods for solving partial differential equa-
ion problems have been widely used in science and engineering,
or example, electromagnetism [1], aerodynamics [2,3], weather
rediction [4], and geophysics [5]. Raissi et al. [6] introduced
he physics informed neural networks (PINNs) for solving partial
ifferential equations (PDEs) and learning parameters in PDEs.
ong et al. [7,8] proposed PDE-Net that combines numerical ap-
roximation of differential operators and symbolic multi-layer
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neural networks. The authors reported that PDE-Net has the
most flexible and expressive power by learning both differential
operators and the nonlinear response function of the underlying
PDE model. In this work, we focus on the problem of learning the
unknown nonlinear flux function f (u, β) that is involved in the
eneral scalar nonlinear conservation law. Here we are restricted
o the one-dimensional case, given by

t + f (u, β)x = 0, x ∈ (0, L)
u|t=0 = u0(x)
ux|x=0 = ux|x=L = 0

(1)

here u = u(x, t) is the main variable and β is a parameter,
ypically, related to different forces that drive the process under
onsideration. Note that this extension to include dependence on
parameter β is highly relevant for many situations where dif-
erent physical parameters naturally vary over certain intervals.
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isplacement of several fluids is one classical example where
uantities like fluid viscosity and density may strongly influences
he displacement behavior and their roles are expressed in a β-
ike parameter [9,10]. In the context of learning f (u;β) for a fixed
, we identify f (u;β) with u as the only variable based on a series
f observations {u(xj, ti)} at specific time points {ti} described on
spatial grid {xj}. However, when learning f (u, β), we seek the
nalytical expression of f (u, β) that includes both the variable
and the parameter β , given a set of observations {u(xj, ti)} at
arious time points ti and at different values of β over an interval
f interest.
There are special challenges in identifying f (u, β) in (1) as

ompared to previous PDE models as studied in, e.g., [6–8]. Firstly,
n our scenario, the term f (u, β)x in (1) cannot be expressed
y fu(u, β)ux since u generally is not a differentiable function.
onsequently, we cannot approximate differential operators us-
ng convolutions, as done in [7,8]. In our earlier work [11], we
emonstrated that the proposed ConsLaw-Net for solving f (u;β)
or a fixed β can handle this problem. Secondly, variable u and
arameter β are completely distinct. How to learn the functional
elation between u and β? A natural idea is to try to discover
heir relationship by treating both as variables. I.e., feed u and
into the ConsLaw-Net at the same time. However, it seems

ifficult to control and minimize the error associated with both
and β simultaneously. The discrete scheme we use to rep-

esent the entropy solution of (1) would produce a cumulative
rror in the ConsLaw-Net, especially when the number of itera-
ions is large. Incorporating learning of an unknown parameter
nto the ConsLaw-Net significantly increases the complexity of
he calculations involved in minimizing the loss function. To
vercome this, we introduce a Linear Regression Neural Net-
ork(LRNN) to distill the structure of f (u, β) learned by relying
n the ConsLaw-Net for a few selected values of β .
At this stage, it seems appropriate to highlight some essential

eatures of the entropy solution associated with (1). It is well
nown that conservation laws of the form (1)1,2 (Cauchy prob-
em) do not in general possess classical solutions. Instead, one
ust consider weak solutions in the sense that the following

ntegral equality holds [12–14]∫
Ωx

∫ T

0

[
uφt + f (u, β)φx

]
dx dt +

∫
Ωx

u0(x)φ(x, t = 0) dx = 0 (2)

or all φ ∈ C1 such that φ(x, t) : Ωx × (0, T ) → R and which is
ompactly supported, i.e., φ vanishes at x → Ωx and t → T .
t follows that if a discontinuity occurs in the solution, i.e., a
eft state uL and a right state uR, then the speed s satisfies the
ankine–Hugoniot jump condition [12,14], i.e.,

=
f (uL, β) − f (uR, β)

uL − uR
. (3)

However, direct calculations show that there are several weak
solutions for one and the same initial data [13]. To overcome
this issue of non-uniqueness of weak solutions, we need criteria
to determine whether a proposed weak solution is admissible or
not. This has led to the class of entropy solutions, which amounts
o introducing an additional constraint which ensures that the
nique physically relevant one is found among all the possible
eak solutions. There are different ways to express the entropy
ondition for scalar nonlinear conservation laws. One variant is
y introducing an entropy pair (η, q) where η : R → R is any
trictly convex function and q : R → R is constructed as [14,15]
where f ′(s) represents derivative with respect to s since β is a
assive parameter)

(v, β) =

∫ v

f ′(s, β)η′(s) ds (4)

0

2

or any v. This implies that q′
= f ′η′. Then, u is an entropy

olution of (1)1,2 if (i) u is a weak solution in the sense of (2);
ii) u satisfies in a weak sense η(u)t + q(u, β)x ≤ 0 for any pair
η, q). This condition can also be formulated as the following char-
cterization of a discontinuity (uL, uR) [14,16]: For all numbers v
etween uL and uR,
f (v, β) − f (uL, β)

v − uL
≥ s ≥

f (v, β) − f (uR, β)
v − uR

(5)

where s is given by (3). In particular, it gives a tool for construct-
ing unique solutions of nonlinear scalar conservations laws as
given by (1).

The ConsLaw-Net framework introduced in [11] relies on dif-
ferent symbolic neural networks, S-Net-M for multiplicative func-
tion and S-Net-D for division function to represent the flux func-
tion, and are combined with an entropy consistent discrete nu-
merical scheme (ECDNS) to identify f (u;β) for a fixed β . How-
ever, this ConsLaw-Net has two shortcomings: Firstly, the en-
tropy consistent numerical scheme relies on a global estimate
of |fu(u;β)| through M = maxu |fu(u;β)|. This facilitates the
ymbolic neural network to find the optimal solution quickly.
owever, it is also known to corrupt data accuracy. In this work
e explore whether the flux function can be correctly learned
hen the symbolic neural network is coupled with a numerical
cheme that relies on a local estimate of the form Mj+1/2 =

ax{|fu(un
j ;β)|, |fu(u

n
j+1;β)|} where un

j and un
j+1 refer to u at spa-

ial grid points xj and xj+1, to improve the overall accuracy of
he method. Secondly, there are two different symbolic neural
etworks involved, S-Net-M and S-Net-D for multiplicative and
ivision functions, respectively. We must decide which type of
ymbolic neural network to use by comparing the final losses of S-
et-M and S-Net-D, which obviously increases the computational
urden.

.2. Purpose of this work

In particular, our main contribution by this work includes:

• Provide a method for learning of the functional form of the
nonlinear two-variable function f (u, β) where u is the main
variable and β is a parameter. To our knowledge, this repre-
sents the first approach to learn the unknown nonlinear flux
function involved in a scalar conservation law, with respect
to both its dependent variable u as well as the parameter β .

• We update the ConsLaw-Net proposed in [11] regarding the
following two aspects:

– We use a local rather than global estimate of the wave
speed for the Rusanov scheme. Specifically, we use a
local estimate Mj+1/2 = max{|fu(un

j ;β)|, |fu(u
n
j+1;β)|}

instead of a global estimate of M = maxu |fu(u;β)|.
This updated ECDNS provides a more accurate descrip-
tion of observation data versus the underlying flux
function, but also increases the computational time for
model optimization (i.e., identification of the unknown
flux function). The success of applying the improved
numerical scheme demonstrates that the methodology
can be extended to a wider variety, i.e., the ConsLaw-
Net model has some robustness;

– We employ a unified Symbolic Multi-layer Neural Net-
work (S-Net) to learn f (u;β), regardless of whether
it is a division or a multiplication function that is
involved in the unknown underlying conservation law
(1).

Hence, the updated ConsLaw-Net is a refinement and a

generalization as compared to its first version presented
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Fig. 1. Pipeline for our approach. There are two steps: 1⃝ using the improved ConsLaw-Net to learn f (u;β) where β ∈ {β∗

0 , β
∗

1 , . . . , β
∗

Nβ
}. We use the symbol β∗

to distinguish the values of β used in the first step. The learned expression f (u;β∗

i ) in each subproblem i is referring to an equation with u as variable but not
β∗

i . 2⃝ Given the results of the first step, we first construct a collection of candidate models of the two variable function f (u, β), and then use LRNN to obtain the
coefficients of the selected candidate model. If this candidate model can satisfy the error criterion, we will apply it to compute the solutions of (1). Otherwise, we
reselect the candidate model and repeat the process in the second step.
in [11]. However, this comes with an additional challenge
related to the optimization of (1). To handle this, we design
a new loss function.

• Learned graph neural networks (GNNs) have recently been
established as fast and accurate methods when applied to
PDEs with regular solutions, such as the Wave equation,
Poisson, or Navier–Stokes equations [17–19]. We compare
our method with the GNNs method proposed in [17]. Ex-
periments show that our method generates relative accurate
predictions whereas this GNN does not seem to have a
built-in capacity to handle the problem (1) well.

The proposed approach is summarized in Fig. 1. This method
consists of two steps. The first step is to use the optimized
ConsLaw-Net to learn f (u;β) for a few values of β , whereas
the second step is to use LRNN to learn f (u, β) relying on the
results of the first step. The challenge with lack of uniqueness,
i.e., the fact that many different flux functions can give rise to
the same observation data, is dealt with by using a combination
of two different components: (i) we collect observation data
corresponding to a set of different initial states; (ii) regularity in-
formation pertaining to the class of flux functions f (u, β) we seek,
is incorporated through the use of symbolic neural networks, as
mentioned above.

1.3. Related work

Learning the flux function of a nonlinear conservation law
from sparse data has important applications in industry. There are
several examples of non-machine approaches to deal with this
problem. Holden et al. used the front-tracking algorithm to re-
construct the flux function from observed solutions with suitable
initial data [20] for a traffic flow relevant model. Recent stud-
ies on the reconstruction of the flux function for sedimentation
problems involved the separation of a flocculated suspension into
a clear fluid and a concentrated sediment [21,22]. In particular,
Bürger and Diehl revealed that the inverse problem of identifying
the batch flux density function has a unique solution, and derived
an explicit formula for the flux function [23]. This method was re-
cently extended to construct almost the entire flux function [24]
using a cone-shaped separator. Diehl explored a direct inversion
method using linear combinations of finite element hat functions
to represent the unknown nonlinear function [25].

With the development of deep AI, more and more neural
network methods are used to solve forward and inverse problems
3

of PDEs and ODEs. These problems frequently involve recovering
solutions to PDEs [6] or physical quantities, such as the density,
viscosity, or other material parameters [26–28], from a sparse set
of measurements. We refer to [29,30] for examples of methods
based on assuming that the governing PDE is linear combina-
tion of a few differential terms in a prescribed dictionary, and
the objective is to find the correct coefficients. Raissi et al. [6]
introduced the physics informed neural networks (PINNs) for
solving two types of problems: data-driven solutions and data-
driven discovery of partial differential equations. Except for a
few scalar learnable parameters, the explicit form of the PDEs
is assumed to be known in the second problem. Therefore, the
structure of the equation is used as part of the loss function to
guide the optimization. However, PINNs seem not able to learn
the nonlinear hyperbolic PDE that governs two-phase transport
in porous media [10]. It was suggested that this shortcoming of
PINNs for hyperbolic PDEs is due to the lack of regularity in the
solution. Mesh-based simulations have recently made significant
progress [17,18], enabling faster runtimes than principled solvers,
and higher adaptivity to the simulation domain compared to the
grid-based convolutional neural network (CNNs) [31,32]. Neu-
ral networks have been used also in combination with discrete
schemes to accelerate computations of PDEs [33].

The rest of this paper is organized as follows: In Section 2
the updated version of the ConsLaw-Net proposed in [11] is
described. In particular, it is described how LRNN is used to
learn the two variable flux function f (u, β). In Sections 3 and 4
we present different experimental results on identifying f (u, β)
using our method by exploring performance, respectively, for two
different families of flux functions. In Section 5, we close with a
discussion and outlook.

2. Method

2.1. The first step: using an improved ConsLaw-net to learn the fixed
parameter problem f (u;β), with β ∈ {β∗

0 , β
∗

1 , . . . , β
∗

Nβ
}.

2.1.1. Entropy consistent discrete numerical scheme (ECDNS)
We investigate a discretization of the spatial domain [0, L] in

terms of {xi}
Nx−1
i=0 where xi = (1/2+i)∆x for i = 0, . . . ,Nx−1 with

∆x = L/Nx. Furthermore, we consider time lines {tn}Nt
n=0 with

Nt∆t = T . Our discrete version of (1) is based on the Rusanov
scheme [12] which takes the form

un+1
= un

− λ(F n
− F n ), λ =

∆t
,
j j j+1/2 j−1/2

∆x
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Fig. 2. The structure of S-Net with three hidden layers.
n+1
1 = un+1

2 , un+1
Nx

= un+1
Nx−1 (6)

with j = 2, . . . ,Nx−1 and where the Rusanov flux takes the form

F n
j+1/2 =

f (un
j ;β) + f (un

j+1;β)

2
−

Mn
j+1/2

2
(un

j+1 − un
j ).

We adopt a local estimation by using Mn
j+1/2 =

ax{|fu(un
j ;β)|, |fu(u

n
j+1;β)|} instead of a global approximation

through Mn
j+1/2 = maxu |fu(u;β)|, as used in [11]. The local

estimation is beneficial to simulation accuracy but harmful to
the optimization of the model. The CFL condition determines the
magnitude of ∆t for a given ∆x through the constraint [12]

CFL :=
∆t
∆x

M ≤ 1, M = max
u

|fu(u;β)|.

We invoke the CFL condition in Algorithm 1. Algorithm 2 presents
how to learn the solution Un

=
{
u(xj, tn)

}Nx
j=1 of the discrete

conservation law (6). The local estimation Mn
j+1/2 is used to define

the interface flux Fj+ 1
2

in Algorithm 2. Note that we for sim-
licity ignore the explicit dependence on β in Algorithm 1 and
lgorithm 2 since they are applied for f (u;β) with a fixed choice
f β .

Algorithm 1: CFL
Input: L: length of the spatial domain; Nx: the number of

spatial grid cells; f (u): the nonlinear flux function;
T : computational time period;

Output: ∆t: local time interval

∆x = L/Nx
M = max

u
|f ′(u)|

dt = ( 34∆x)/(M + 0.0001)
n_time = ⌊T/dt⌋
∆t = T/n_time

2.1.2. S-net
Inspired by [34,35], we use the S-Net to represent the un-

nown function f (u;β) because S-Net can learn the analytical
expression of the flux function f (u;β). In this work we no longer
distinguish between S-Net-M and S-Net-D, but instead use S-Net-
D as S-Net to learn all functions. Fig. 2 depicts the building of
4

Algorithm 2: DataGenerator
Input: T : computational time period; Nx: the number of

spatial grid cells; L: length of the spatial domain;
u0 = {u0(xj)}

Nx
j=1: initial state set of dimension Nx;

f (u): the flux function;
Output: U = {un

j }: the solution based on initial state u0;

∆t = CFL(L, Nx, f (u), T )
∆x = L/Nx
U[0] = u0
ũ = u0
for n = 1,...,T/∆t do

for j = 1,...,Nx - 1 do
Fj+1/2 =

1
2

(
f (ũj) + f (ũj+1)

)
−

max{|f ′(ũj)|,|f ′(ũj+1)|}
2

(
ũj+1 − ũj

)
end
for j = 2,...,Nx - 1 do

uj = ũj −
∆t
∆x

(
Fj+1/2 − Fj−1/2

)
end
u1 = u2
uNx = uNx−1
ũ = u
U[i] = u

end

S-Net in the form of f = g/h with three hidden layers. As shown
in Fig. 2, the identity directly maps u from input layer to the first
hidden layer. The linear combination map uses parameters w1
and b1 to choose two elements from u and are denoted by α1
and β1.

(α1, β1)T = w1 · (u) + b1,w1 ∈ R2×1, b1 ∈ R2×1 (7)

These two elements of α1 and β1 are multiplied which give

f1 = α1β1 (8)

Apart from u gotten by the identity map, f1 also is input to the
second hidden layer

(α , β )T = w · (u, f )T + b ,w ∈ R2×2, b ∈ R2×1. (9)
2 2 2 1 2 2 2
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imilarly with the first hidden layer, we get another combinat-
on f2

2 = α2β2 (10)

hen we obtain the numerator part g and the denominator part h
of the flux function f (u) based on w3, b3 and w4, b4, respectively.

g = w3 · (u, f1, f2)T + b3,w3 ∈ R1×3, b3 ∈ R (11)

h = w4 · (u, f1, f2)T + b4,w4 ∈ R1×3, b4 ∈ R (12)

he analytic expression of the flux function f is the combination
f g and h, i.e.,

f =
g
h
. (13)

The parameters involved in the network described above is de-
noted by θ and the resulting function according to (13) is denoted
by fθ(u). More information about S-Net can be found in [11].

2.1.3. The ConsLaw-net
The ConsLaw-Net combines ECDNS and S-Net to learn f (u;β)

with β ∈ {β∗

0 , β
∗

1 , . . . , β
∗

Nβ
}. We consider observation data in

terms of x-dependent data at fixed times {t∗i }
Nobs
i=1 extracted from

the solution U as follows:

Usub =

{
u(xj, t∗1 ), u(xj, t

∗

2 ), . . . , u(xj, t
∗

Nobs
)
}
, j = 1, . . . ,Nx. (14)

Eq. (14) is utilized to select synthetic observation data denoted by
Usub as well as predictions based on the learned fθ(u;β) written
as Ûsub. We specify times for collecting the time dependent data

Tobs = {t∗i = i∆tobs : i = 1, . . . ,Nobs}. (15)

Typically, we set Nobs = 9 with ∆tobs = 0.1. For clarity, we use
fθ(u;β) to denote the function learned by S-Net. During S-Net
training, fθ(u;β) is fed into Algorithm 2 to obtain the predicted
solution Û . Similar with Usub, choose predicted solutions Ûsub
according to (15). The difference between Usub and Ûsub, denoted
as Ldata, is involved in the optimization of the model. In addition
to Ldata, we also introduce Ldenominator

γ and Lnumerator
γ in the loss

function to limit the search space of the flux function. Detailed in-
formation on the loss functions is given in Section 2.3. Herein, we
use the second-order quasi-Newton method, L-BFGS-B [36,37], to
update the parameter vector θ. Finally, we get the best flux func-
tion fθ∗ (u;β) and use it to represent the learned conservation law
for the selected β . The learning process is depicted in Algorithm
3.

Overall, learning the fixed parameter problem f (u;β) can be
formalized as a nonlinear optimization problem as follows:

min
f (u)

Loss(Usub, Ûsub),

s.t. f (u) ∈ R(u)
(16)

where f (u) is the flux function to be learned and R(u) is the set of
rational functions. Usub and Ûsub are extracted from the solution
of Eq. (1) with fixed parameter β based on the true flux function
and learned flux function, respectively. Loss is the operator that
measures the difference between Usub and Ûsub and Loss(Usub, Ûsub)
is the objective function.

2.1.4. Why use S-net instead of the piecewise affine functions
method or the finite polynomial expansion method?

A wide range of methods exists to solve nonlinear optimiza-
tion problems, including traditional approaches like gradient-
based and Quasi-Newton methods, as well as contemporary
methods such as machine learning techniques. James and
Sepúlveda [38,39] minimized Loss(Usub, Ûsub) by means of gra-
dient methods. Since Loss(U , Û ) may not be differentiable
sub sub o

5

Algorithm 3: ConsLaw-Net
Input: T : computational time period; Nx: the number of

spatial grid cells; L: length of the spatial domain;
u0: initial state vector of dimension Nx; f (u;β):
true flux function with fixed parameters β; θ0:
initial parameters of S-Net; θ: parameters of S-Net;
fθ(u;β): flux function generated by S-Net; T_obs:
observation time points Eq. (15); Loss: loss
function; epoch: the number of epoch;
DataGenerator: Algorithm 2

Output: fθ∗ (u;β): the best flux function generated by the
S-Net based on parameter vector θ∗;

U =DataGenerator(T ,Nx, L, u0, f (u;β))
U_sub = {u ∈ U |t ∈ T_obs}
θ = θ0
for i = 1,...,epoch do

Û = DataGenerator(T ,Nx, L, u0, fθ (u;β))

Û_sub = {u ∈ Û |t ∈ T_obs}
loss = Loss(U_sub, Û_sub)
Updating θ and loss by optimizer L-BFGS-B;

end
θ∗

= θ

with respect to the parameters of f (u;β) and the dependence
f objective function on these parameters occurs via the PDE
olution, additional assumptions have to be made, and the formal
radient is obtained by means of an adjoint equation. Already for
hyperbolic scalar conservation law in one dimension, the prob-

em of identifying a nonlinear flux f (u;β) is generally ill-posed
n the sense that f (u;β) is not uniquely determined by observed
ata. For example, the same discontinuity in a solution may arise
rom different flux functions. Recently, Diehl in [25] formulated a
eneral flux identification method based on expanding the flux
unction in terms of piecewise affine functions with unknown
eights and obtained the least squares solution to the integrated

orm of the conservation equation which could also contain a
iffusion term.
To solve the nonlinear optimization problem (16), we have

pted for machine learning methods, which offer greater ro-
ustness and flexibility. In particular, we are using S-Net, as
mployed in [7,8,34,35], to learn the unknown function. Besides
-Net, other classical methods explicitly represent functions, such
s the piecewise affine functions method described in [25] and
he finite polynomial expansion method. In the piecewise affine
unctions method, divide the u-axis into n equidistant intervals:
et umax be the largest value of the data and set uk = kumax/n for
= −1, . . . , n + 1. Assume that

(u) =

n∑
k=0

fkψk(u) (17)

here fk is n + 1 parameters to be determined, and the affine
unctions are defined by

k(u)=

⎧⎪⎨⎪⎩
u−uk−1
uk−uk−1

, uk−1 < u ≤ uk
uk+1−u
uk+1−uk

, uk < u ≤ uk+1

0, Otherwise
(18)

here k = 0, . . . , n. The polynomial expression with respect to u
s given by:

(u;β) =
c0 + c1u + c2u2

+ c3u3
+ · · · + cnun1

d0 + d1u + d2u2 + d3u3 + · · · + dnun2
(19)

e acquire the coefficients {fk}nk=0 of (17) and {ci}
n1
i=0 and {di}

n2
i=0

f Eq. (19), respectively, by using the observation data set. From
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he various methods available, we have decided to implement the
-Net approach for the following reasons:

• Experimental performance: In Section 3.1.2 we do a compar-
ison of S-Net, the piecewise affine function representation,
and the finite polynomial expansion method. It is observed
that the performance of S-Net is clearly better than these
two other methods for our test cases.

• Robustness: S-Net demonstrates a high capacity to handle
noisy and incomplete data [11]. In our problem, the number
of local time steps (of length ∆t) we need to compute nu-
merical solutions through ECDNS is higher than the number
of observation data, i.e., ∆t ≪ ∆tobs. Since ∆t is dictated by
the CFL condition for the given choice of the flux function f
(which will vary during the training), we do not know that
∆tKi = t∗i for i = 1, . . . ,Nx for some integer Ki. In that case,
we choose the one closest to t∗i . Given that the observations
are derived from approximate data, we have opted for S-Net
due to its robustness.

• Flexibility: S-Net is flexible and powerful. Expanding func-
tions with more variables is easy with S-Net, as it can
automatically detect nonlinear relationships between input
variables. The finite polynomial expansion method requires
the manual listing of all possible combinations, which be-
comes an exhaustive task as the number of variables in-
creases, potentially leading to an exponential growth in
the number of combinations. Furthermore, incorporating
nonlinearities such as sine and cosine into S-Net is straight-
forward, enabling it to learn combinations of variables that
act on sine or cosine.

2.2. The second step: using LRNN to learn f (u, β)

From the first step, we have learned the fixed parameter
roblems fθ∗ (u;β), β ∈ {β∗

0 , β
∗

1 , . . . , β
∗

Nβ
}. Based on the above

esults, we learn f (u, β) using LRNN in the following section.

.2.1. Generate observation data Y
We have learned the analytical expressions of fθ∗ (u;β) with

ome fixed β in the first step, denoted as

′
=

{
fθ∗ (u;β)

⏐⏐⏐ u ∈ [min(u0),max(u0)], β ∈ {β∗

0 , β
∗

1 , . . . , β
∗

Nβ }

}
.

ince the solution of (1) is TVD (total variation diminishing) [15,
0], we know that the solution u(x, t) at any time t > 0 does
ot contain any new maxima or minima as compared to the
nitial data u0(x), i.e., min u0(x) ≤ u(x, t) ≤ max u0(x). In the
ollowing we tactically assume that 0 ≤ u0(x) ≤ 1, therefore
≤ u(x, t) ≤ 1,∀t ∈ [0, T ]. Consider a discretization of u ∈ [0, 1],
enoted as

=

{
u
⏐⏐⏐ ui = i∆u, i = 0, 1, 2, . . . ,Nu,∆u = 1/Nu

}
. (20)

Therefore, a discrete version of Y ′ is obtained by

Y =

{
fθ∗ (ui;β)

⏐⏐⏐ ui ∈ U , β ∈ {β∗

0 , β
∗

1 , . . . , β
∗

Nβ }

}
. (21)

Typically, Nu = 400. Y will be used as the observation data to
train LRNN.

2.2.2. Construct the candidate models for f (u, β) based on Linear
Regression Neural Network (LRNN)

Next, we create the candidate models of f (u, β) that contain
multiplication function form (22) and division function form (23):

f (u, β) =

K∑ Ji∑(
aijβ iuj) (22)
i=0 j=0

6

f (u, β) =

∑K
i=0

∑Ji
j=0

(
aijβ iuj

)∑P
i=0

∑Qi
j=0

(
bijβ iuj

) (23)

here K , Ji, P,Qi ∈ N, and P =
{
aij|i = 0, . . . , K ; j = 0 · · · Ji

}
∪{

bij|i = 0, . . . , P; j = 1, . . . ,Qi
}

⊂ R, β i denotes the i-th power
of β , uj represents the j-th power of u. The largest power of u,
.e., Ji, Qi, can in principle be any positive integer. The use of (22)
nd (23) implies that the flux function f (u) we seek to identify is
estricted to be a polynomial, rational function or one that can
e well approximated within this class. We can appropriately
imit the candidate models by using the learned expressions of
(u;β∗) obtained from the first step. Generally speaking, the
iggest power of u in the true function will not be greater than the
argest power in the learned expressions. P is the vector of the
arameters we want to learn in the second phase. According to
he Occam’s razor principle, the preferred formula is singled out
y being the simplest one that still predicts well. Therefore, we
est the candidate model based on the principle from simplicity
o complexity. That is, from multiplication to division models, and
rom lower to higher powers. If the simple model can meet the
rror requirements in the validation set, we use this simple model
nstead of the complex model.

Specifically, to begin with a straightforward approach, we set
= 1 and J0 = J1 = 1 in (22), which yields a simple model,

(u, β) = a00 + a01u1
+ a10β + a11βu1. (24)

here are four unknown parameters, namely a00, a01, a10, a11, in
(24). These parameters can be optimized based on the results
obtained in the first step described in Section 2.1, denoted as
a∗

00, a
∗

01, a
∗

10, a
∗

11. The learning process is explained in detail in
Sections 2.2.3 and 2.2.4. The resulting equation can be denoted
as

f (u, β) = a∗

00 + a∗

01u
1
+ a∗

10β + a∗

11βu
1. (25)

To evaluate the ability of (25) in representing the true flux func-
tion, we must validate it using a separate dataset. This valida-
tion dataset, denoted as Uvalidsub , comprises the solutions extracted
from Eq. (1) for specific time points (15), generated using β that
was not used in the first step. We can then solve for Eq. (1) with
the learned flux function (25) using the same β as the validation
dataset, resulting in the estimated solutions Ûvalidsub . If the errors
between Uvalidsub and Ûvalidsub satisfy the specific error requirement ∆,
e consider the learned equations to be a suitable representation
f the true flux function. In this case, we do not conduct further
alidation of the other candidate models. However, if the errors
o not meet the requirements, we move to a more complex
odel. For instance, we may set K = 1 and J0 = J1 = 2 in (22).
e gradually increase the complexity of the candidate models
ntil we find one that satisfies the error requirements.

.2.3. Establish the input X
After choosing the possible expression of f (u, β), we have to

stablish the features of the expression in order to learn the
oefficients aij, bij in (22) or (23). For each item aij(bij)β iuj in
(22) and (23), we can build features according to β iuj. Take the
possible expression (26) as an example.

f (u, β) = a00 + a01u1
+ a02u2

+ β(a10 + a11u1
+ a12u2). (26)

or every β ∈ {β∗

0 , β
∗

1 , . . . , β
∗

Nβ
} and ui ∈ U , we can create a set

f features

i,β = {1, u1
i , u

2
i , β, βu

1
i , βu

2
i }.

enote the features of the potential formulation of f (u, β) as

=

{
X

⏐⏐⏐ u ∈ U , β ∈ {β∗, β∗, . . . , β∗
}

}
. (27)
i,β i 0 1 Nβ
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2.2.4. Train the model
Assume the parameter vector of LRNN is W, so

Y = WTX. (28)

Using the neural network, we can easily getWwhich is the vector
of coefficients of the possible expression of f (u, β).

2.2.5. Test on the validation dataset
After obtaining the trained model, it is tested on the validation

set. If the error condition is satisfied, the model behavior can be
predicted using the new parameter β and initial state u0. Fig. 3
depicts the pipeline for the second step of our approach.

2.3. Loss functions

2.3.1. Loss function used in the first step
Optimizations of the ConsLaw-Net, including using a local es-

timate Mj+1/2 = max{|fu(un
j , β)|, |fu(u

n
j+1, β)|} instead of a global

estimate M = maxu |fu(u, β)| and employing a unified S-Net to
learn f (u;β), place high demands on our loss functions. To obtain
the solutions of (1), we need to estimate the quantity M , that
decides the local time interval ∆t used in Algorithm 2. If M is
oo large, it will cause ∆t too small according to ∆t =

3
4∆x

M+0.0001
in Algorithm 1. In this case, the numerical scheme needs to be
iterated tens of thousands of times to obtain the solutions of
(1), which takes an inordinate amount of time. As a result, we
estimate an upper bound on M , denoted as α. In our experiments,
α = 100. When M < α, we compare the difference between
Usub and Ûsub to guide optimization, written as Ldata and defined
in (30). S-Net has two sub-neural networks, g(u) and h(u), to learn
the numerator and the denominator, respectively.

There are two cases where the M value is too large caused by
g(u) and h(u). One is when the denominator h(u) is very close to 0,
and the other is when the value of the denominator is reasonable,
but the numerator g(u) is vast. The above situations inevitably
occur during the optimization of the model. To deal with these
two cases, we introduce Ldenominator

γ and Lnumerator
γ to optimize the

model. Therefore, the loss function used in Algorithm 3 can be
7

expressed as

Loss=

⎧⎨⎩
Ldata M<α
Ldenominator
γ M≥α, Ldenominator

γ ̸=0
Lnumerator
γ M≥α, Ldenominator

γ =0
(29)

here Ldata, Ldenominator
γ , and Lnumerator

γ are defined as follows:
Ldata

: Assume we have Kini different initial states used for the
raining process, and solutions are described on a grid of Nx grid
ells and at Nobs different times. The true observation data set
enoted by {Usub,k(xj, t∗i ) : 1 ≤ k ≤ Kini; 1 ≤ j ≤ Nx; 1 ≤

≤ Nobs} is obtained using Algorithm 2. The predicted data is
reated by an iterative loop in Algorithm 3, and is denoted by
Ûsub,k(xj, t∗i ) : 1 ≤ k ≤ Kini; 1 ≤ j ≤ Nx; 1 ≤ i ≤ Nobs}. So we
efine the data approximation term Ldata as:

data
=

1
KiniNxNobs

Kini∑
k=1

Nx∑
j=1

Nobs∑
i=1

(
Usub,k(xj, t∗i ) − Ûsub,k(xj, t∗i )

)2
. (30)

Ldenominator
γ : To steer the network away from small values

of the denominator, we add a penalty term to our objective
(29), denoted by Ldenominator

γ . Compute the values of the subneural
network h(u) on U (20), written as

H = {h(ui)|i = 0, 1, 2, . . . ,Nu} .

If there are elements in H smaller than γ , it can cause M to be too
large (i.e., M ≥ α). In our experiment, we set γ = 0.001 and let
Ldenominator
γ be associated with the net effect of these small values
of H

Ldenominator
γ =

Nu∑
0

|h(ui)| I(h(ui) < γ ),

I(h(ui) < γ ) =

{
1, if h(ui) < γ

0, otherwise
(31)

ote that 0 < Ldenominator
γ < (Nu + 1)γ .

Lnumerator
γ : When the value of the denominator h is greater

han γ , i.e., h(ui) ≥ γ for all i ∈ U implying that Ldenominator
γ = 0,

nd the value of the numerator g is too large, M can also be too
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ig (i.e., M ≥ α). In this situation, we compute the approximate
erivative of f (u) with respect to u ∈ [0, 1]. For that purpose we
ntroduce

′
= U ∪ {1 +∆u} = {ui|i = 0, 1, 2, . . . ,Nu+1} .

e compute the discrete derivative of f (u) on U ′, denoted by

f (u) =

{
f (ui+1) − f (ui)

∆u

⏐⏐⏐i = 0, 1, 2, . . . ,Nu

}
here Lnumerator

γ is set to be

numerator
γ = max(|Df (u)|) − α. (32)

he purpose of Ldenominator
γ and Lnumerator

γ is to steer the loss function
29) in a direction such that Loss = Ldata is the dominating
erm, which allows to identify the unknown flux function. As u
s bounded by [0, 1], Ldata in the case of M < α is much smaller
8

than Ldenominator
γ or Lnumerator

γ which are at work in the case of
≥ α. During the optimization process of the neural network,

he parameters are updated in the direction that minimizes the
oss function (29), i.e., the situation where loss is governed by
denominator
γ or Lnumerator

γ will be avoided. In this sense, the presence
f Ldenominator
γ and Lnumerator

γ steers the loss function (29) in a direc-
ion such that Loss = Ldata is the governing term, which allows to
dentify the unknown flux function.

.3.2. Loss function used in the second step
We optimize models using the Adam optimizer [41] for 5000

pochs and minimize MSE between observation data (21) and
redicted values YW =

{
fW (ui, β)

⏐⏐⏐ui ∈ U , β ∈ {β∗

0 , β
∗

1 , . . . , β
∗

Nβ
}

}
generated by LRNN where W represents the parameter vector,
see (28). One of the primary reasons for selecting Adam is its
ability to automatically adjust the learning rate, which ensures
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he accuracy of learning. For clarity, we denote the trained LRNN
unction as fW∗ (u, β). The loss function is written as

Loss =
1

(Nu + 1)(Nβ + 1)

Nu∑
i=0

Nβ∑
j=0

(
fθ∗ (ui;β

∗

j ) − fW (ui, β
∗

j )
)2 (33)

. Learning a general class of nonlinear flux functions f (u, β)

In this section, we consider a class of nonlinear conservation
laws that naturally arise from studying displacement of one fluid
by another fluid in a vertical domain. The resulting displacement
process involves a balance between buoyancy and viscous forces.
Depending on the properties of the fluids used, there is room for
various types of displacement behavior. This is expressed by the
fact that one can derive a family of flux functions f (u, β) which
takes the following form as illustrated in [9]

f (u, β)=
1
2
u(3 − u2) +

β

12
u2

(
3
4

−2u+
3
2
u2

−
1
4
u4

)
. (34)

he parameter β represents the balance between gravity
(buoyancy) and viscous forces. In this work, β ∈ [−400, 500].
ifferent values of β result in different types of flux functions.
ig. 4(a) shows the shape of f (u, β).
In the following, we generate synthetic data with a few dif-

erent values of β and a class of initial data u0(x). As mentioned
n the introduction, observation data of the entropy solution
eaves room for many possible flux functions to be candidates to
xplain the observations. However, as demonstrated in [11], the
ombination of using a few initial data combined with additional
egularity by representing the unknown flux function through
ymbolic multilayer neural networks, enables identification of the
elevant flux function quite effectively. In other words, as more
nitial data is added (with corresponding observation data), more
etails of the physically relevant flux function are revealed.
We consider a spatial domain L = 10 such that x ∈ [0, 10] and

time interval [0, T ] with T = 2. We collect observation data in
he form (14) with Nobs = 9. The aim is to identify the unknown
lux function f (u, β) for u ∈ [0, 1].

.1. The first step: using the improved ConsLaw-net to learn f (u;β)
here β = {10, 130, 200, 300}

.1.1. The results of using S-net to represent f (u;β)
In order to learn f (u;β) for u ∈ [0, 1], we consider a set

f initial data {uk
0}

K
k=1 such that 0 ≤ uk

0(x) ≤ 1. We choose
ox-like states that give rise to Riemann problems, one at each
nitial discontinuity. In the following, we apply a numerical grid
omposed of Nx = 400 grid cells and choose observation data
14) with time points

t∗i } = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. (35)

-Net is used to represent the unknown flux function f (u;β)
here β ∈ {10, 130, 200, 300}. Set three hidden layers in S-Net,
nd the total number of trainable parameters in every subprob-
em is 28. Choose the observations from the solutions U gener-
ted by Algorithm 2 based on initial states shown in Table 7 in
ppendix A.1. Finally, we obtain after training the S-Net denoted
y fθ∗ (u;β) by applying Algorithm 3. The resulting analytical ex-
ressions are given in Table 1. fθ∗ (u;β) differs from the true one.
owever, we recall that what matters is the derivative f ′

θ∗ (u;β).
o visualize the learning effect, we plot the translated function
θ∗ (u;β) − f (u = 0;β) in Fig. 5. Clearly, the improved ConsLaw-
et has the ability to identify the true flux function with quite
ood accuracy for the flux fθ∗ (u;β) with β ∈ {10, 130, 200, 300}.
9

.1.2. Comparison of S-net versus the piecewise affine functions and
he finite polynomial expansion methods.

In addition to utilizing S-Net to represent the flux function, we
lso investigated the piecewise affine functions method (17) and
18) and the finite polynomial expansion method (19). Figs. 6(a)
nd 6(b) demonstrate the learned flux function f (u;β) for β =

200 and β = 300, respectively, using the piecewise affine func-
tions method with n = 10 in (17). Lower values of n gave
better results with less oscillatory behavior. Figs. 6(c) and 6(d)
demonstrate the learned flux function f (u;β) for β = 200 and
β = 300, respectively, using the finite polynomial expansion
method (19) with n1 = 8 (β = 200) and n1 = 7 (β = 300). Upon
comparing these figures with Figs. 5(c) and 5(d), it is evident that
the flux function learned by S-Net is clearly better than the results
obtained by these two methods.

3.2. The second step: using LRNN to learn the flux function (34)

In this section, we distill the analytical expression correspond-
ing to (34) from the results of the four subproblems where β =

10, 130, 200, 300. We build candidate models in the form of (22)
and (23) with different values of K , Ji, P,Qi. For example, setting
K = 1 and Ji = 6 in (22), we obtain

fW (u, β)

= a00 + a01u + a02u2
+ a03u3

+ a04u4
+ a05u5

+ a06u6

+ β(a10 + a11u + a12u2
+ a13u3

+ a14u4
+ a15u5

+ a16u6).

(36)

The learning details using LLNN on (36) are shown in the follow-
ing. Herein,

{
aij|i = 0, 1; j = 0, 1, 2, . . . , 6

}
is the set of parame-

ters that we will learn in the second step. Discretize u ∈ [0, 1]
into 401 points: {ui}

i=400
i=0 , and use the following 14 features at

each point ui ∈ {ui}
i=400
i=0 :

Xi,β = [1, ui, u2
i , u

3
i , u

4
i , u

5
i , u

6
i , β, βui, βu2

i , βu
3
i , βu

4
i , βu

5
i , βu

6
i ].

Feed features X =
{
Xi,β |i = 0, 1, 2...400;β = 10, 130, 200, 300

}
into LRNN, and finally we acquire the learned parameters of
{aij|i = 0, 1; j = 0, 1, 2, . . . , 6} by using Adam optimizer to train
the LRNN. The learned analytical expression of (36) is denoted by

fW∗ (u, β)

= 0.15651u6
− 0.018213u5

− 0.39308u4
− 0.33295u3

+ 0.19598u2
+ 1.3823u + 0.008492

+ β( − 0.037291u6
+ 0.051649u5

+ 0.059704u4

− 0.12439u3
+ 0.048243u2

+ 0.0020499u
− 1.7243e − 5).

(37)

Is the identified two variable function fW∗ (u, β) in (37) capable to
represent (34) for different β in the whole interval [−400, 500]?
We test on the validation set where β = −50 and β = 350
(which is well outside the β values used for training). Table 2
shows the test results of (37) where K = 1 and Ji = 6. Obviously,
for both cases β = −50 and β = 350, the error is relatively small,
and meets the criteria we set, ∆ = 0.0001. We also test other
candidate models on the validation set. The results are shown in
Table 3. These models may perform better in one case, but worse
in another, such as K = 1 and Ji = 4. Or even worse in both cases,
such as K = 1 and Ji = 2. It is obvious that when K = 1 and
Ji = 6, the candidate model has the best performance. Therefore,
we choose (37) as the preferred learned model and use it to test
for new initial states and parameters.
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Table 1
The expression results of identification of flux function fθ∗ (u;β) with specific β .
β The identification of flux function fθ∗ (u;β)

β1 = 10 fθ∗ (u;β1) =
−0.0005u8+0.0029u7−0.0036u6−0.0030u5+0.3214u4−0.9641u3−0.0198u2+1.7007u−1.6453
0.0002u8−0.0014u7+0.0018u6+0.0015u5−0.0013u4+0.0025u3+0.0431u2−0.0663u+1.0205

β2 = 130 fθ∗ (u;β2) =
0.0171u8−0.0451u7−0.0553u6+0.1688u5+0.6588u4−0.9677u3−1.2969u2+1.2216u−0.5410
0.0058u8−0.0153u7−0.0188u6+0.0573u5−0.4797u4+0.5975u3+0.9857u2−0.3791u+0.3038

β3 = 200 fθ∗ (u;β3) =
−3.004e−6u8+0.0001u7−0.0005u6−0.0144u5−0.0181u4−0.3600u3−2.2609u2+1.7718u−0.6950
9.4576e−6u8−0.0004u7+0.0015u6+0.0453u5+0.1119u4+0.0464u3+0.7181u2−0.4093u+0.2220

β4 = 300 fθ∗ (u;β4) =
2.001e−5u7−0.0071u6−0.0981u5−0.2864u4−0.1568u3−3.1849u2+2.6000u−0.9848

−1.1929e−5u7+0.0042u6+0.0585u5+0.1709u4−0.0887u3+0.6433u2−0.4293u+0.2083
Fig. 6. The graphical results of identification of flux function fθ∗ (u;β) using the piecewise affine functions method (17) and (18) (upper row) and the finite polynomial
expansion method (19) on β = 200, 300 (lower row). In each subplot, the solid red line is the true function, and the orange dashed line is the learned function.
Fig. 7. (a) Learned flux function (37). (b) The difference between the true flux function (34) and learned (37).
(

.3. Results and discussions

In Fig. 7(a) we first visualize the learned flux function fW∗ (u, β)
given by (37) whereas Fig. 7(b) visualizes the error between
10
learned flux function and the true flux function f (u, β) given by
34) for β ∈ [−200, 500] and u ∈ [0, 1]. The absolute error of the
two functions is less than 0.038 over the entire domain. Specifi-
cally, we set β = −400,−300,−200, 100, 400, 500 separately to
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a

Fig. 8. The generalization ability of (37) tested for β = −400,−300,−200, 100, 400, 500. In each subplot, the solid red line is the true function, and the orange
dashed line is the learned function.
Table 2
The results of (37) applied on the test data β = −50 and β = 350. The value of Error is the MSE between true
and predicted solutions of (1) at times (35). We also plot the solution at time point t = 0.3, 0.6, 0.9 respectively.
In each subplot, the solid red line is the true solution, and the blue dashed line is the solution generated by

(37) based on initial state u0 =

{
1.0, if x ∈ [4.5, 6]
0.0, otherwise

.

β Error t = 0.3 t = 0.6 t = 0.9

β = −50 7.5443e−05

β = 350 0.0001
Table 3
The results of different candidate models on the validation set. The value is the MSE between true and predicted solutions of (1)

at times (35) for four different initial states u0
β=−50,350 =

{
1.0, if x ∈ [4.5, 6]
0.0, otherwise

, u1
β=−50,350 =

{
0.9, if x ∈ [3.5, 5]
0.0, otherwise

, u2
β=−50,350 ={

0.8, if x ∈ [5, 6.5]
0.0, otherwise

and u3
β=−50,350 =

{
0.7, if x ∈ [3, 6]
0.0, otherwise

, respectively.

β K = 1,
Ji = 1

K = 1,
Ji = 2

K = 1,
Ji = 3

K = 1,
Ji = 4

K = 1,
Ji = 5

K = 1,
Ji = 7

K = 1,
Ji = 8

β = −50 0.0013 0.0011 0.0006 0.0002 0.0002 0.0002 0.0003

β = 350 0.0515 0.0046 0.0083 0.0019 0.0028 0.0002 0.0012

β k = 2,
Ji = 1

K = 2,
Ji = 2

K = 2,
Ji = 3

K = 2,
Ji = 4

K = 1,
Ji = 3,
P = 1,
Qi = 3

K = 1,
Ji = 4,
P = 1,
Qi = 4

K = 1,
Ji = 5,
P = 1,
Qi = 5

β = −50 0.0018 0.0056 0.0177 0.0095 0.0004 0.0002 0.0001

β = 350 0.0522 0.0049 0.0977 0.0221 0.0004 0.0005 0.0004
test the generalization ability of fW∗ (u, β) (37). In Fig. 8, we show
the true and the learned function with different values of β . It
seems clear that (37) has relatively strong generalization ability.

In addition, we compare the modified graph neural networks
(GNNs) used in [17] with our approach. The GNNs method offers
faster runtimes than other solvers like PINNs and grid-based
CNNS [31,32] and better adaptivity to the simulation domain [17–
19]. One major difference between our method and the GNNs
method is that our method first learns the expression of f (u, β)
nd then uses the learned model to compute solutions of (1)
11
based on new initial states and parameters. In contrast, the GNNs
method directly predicts the solution of (1). This type of GNNs
is called message passing neural networks (MPNNs) [42], and is
given in the form
du(xi, t)

dt
= F̂θ (xN(i) − xi, ui, uN(i), βi) (38)

where xi is the coordinate of the node i, N(i) is the neighborhood
of node i, θ denote parameters of the MPNNs and βi is the physical
parameter in the flux function. We use Rprop optimizer [43] to
minimize the loss function with learning rate set to lr = 10−6
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Fig. 9. The compared results of our method and the GNNs method. We compare the two methods at β = −200 (top row) and β = 400 (bottom row) based on

initial state u0 =

{
1.0, if x ∈ [4.5, 6]
0.0, otherwise

. Left: True solutions of (1). Middle: Solutions generated by our method. Right: Solution generated by the GNNs method.
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or 5000 iterations and batch size set to 4. To be fair, the GNNs
ethod and our method use the same observational data. The

rained model is used to predict based on new initial states and
arameter β .
Fig. 9 shows the solutions of (1) with β = 400 and β =

200 using the two different methods. Our method performs
etter than the GNNs model. The ConsLaw-Net method is based
n a discrete scheme which is entropy consistent and therefore
an deal with formation of discontinuities in the solutions. The
bove simulation result for GNN suggests that it has not a built-in
apacity to deal with discontinuous solutions.

. Learning the flux function f (u, β) =
u2

(
1−β(1−u)4

)
u2+0.5(1−u)4

In this section, we consider a class of nonlinear conservation
aws that appears in the context of two-phase flow in porous
edia [10]. Displacement of two fluids in an inclined reservoir
ives rise to a family of flux functions in the form

(u, β) =
u2

u2 + 0.5(1 − u)4
(
1 − β(1 − u)4

)
. (39)

he parameter β represents the gravity effect. Herein, we study
∈ [−10, 10]. Fig. 4(b) shows the shape of f (u, β). In the

ollowing, we generate synthetic data with different values of β
nd a class of initial data u0(x). Consider a spatial domain L = 10
uch that x ∈ [0, 10] and a time interval [0, T ] with T = 2.

.1. The first step: using the improved ConsLaw-net to learn f (u;β)
here β ∈ {−1, 1, 3, 5, 7}

Set a numerical grid composed of Nx = 400 grid cells, and
onsider observation data (14) with

t∗i } = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. (40)

-Net with three hidden layers is used to represent the unknown
lux function f (u;β), where β ∈ {−1, 1, 3, 5, 7}. The total number
f trainable parameters in every subproblem is 28. Choose the ob-
ervations from the solutions U generated by Algorithm 2 based
n initial states shown in Table 8 in Appendix A.2. Finally, we
12
btain after training the S-Net denoted by fθ∗ (u;β) by applying
lgorithm 3. The resulting analytical expressions are given in
able 4. We plot the translated function fθ∗ (u;β) − f (u = 0;β)
n Fig. 10. Clearly, the improved ConsLaw-Net has the ability to
dentify the true flux function in most ranges except for some lack
f accuracy for u ∈ {0, 0.2}.

.2. The second step: using LRNN to learn Eq. (39)

In this section, we distill the analytical expression that can
pproximate the true function (39) from the five subproblems
here β = −1, 1, 3, 5, 7. We build candidate models in the form

of (22) and (23) with different values of K , Ji, P,Qi. For example,
etting K = 1, Ji = 5, P = 1 and Qi = 5 in (23), then we get Eq.
(41) (see Box I) where W =

{
aij, bij|i = 0, 1; j = 0, 1, 2, . . . , 5

}
is the set of parameters that we will learn in the second step.
Discretize u ∈ [0, 1] into 401 points: {ui}

i=400
i=0 , and build the

following 12 features at each point ui ∈ {ui}
i=400
i=0 :

Xi,β =[1, ui, u2
i , u

3
i , u

4
i , u

5
i , β, βui, βu2

i , βu
3
i , βu

4
i , βu

5
i ].

ut features X =
{
Xi,β |i = 0, 1, 2...400;β = −1, 1, 3, 5, 7

}
into

LRNN, and finally we acquire the learned parameters of{
aij, bij|i = 0, 1; j = 0, 1, 2, . . . , 5

}
by using Adam optimizer. The

learned analytical expression of f (u, β), in terms of g and h, then
becomes

gW∗ (u, β) = β(0.099u5
+ 0.078u4

+ 0.261u3
− 0.184u2

− 0.021u − 0.00012)

+ 1.920u5
+ 0.380u4

− 0.113u3
+ 0.852u2

− 0.060u + 0.0003

hW∗ (u, β) = β(0.126u5
+ 0.183u4

+ 0.0645u3
− 0.186u2

+ 0.048u − 0.0016)

+ 1.710u5
+ 0.400u4

+ 0.509u3
+ 0.487u2

− 0.3112u + 0.17557

(42)

ence, the learned expression of f (u, β) is given by

W∗ (u, β) =
gW∗ (u, β)

. (43)

hW∗ (u, β)
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Table 4
The results of identification of flux function fθ∗ (u;β) with specific β .
β The identification of flux function fθ∗ (u;β)

β1 = −1 fθ∗ (u;β1) =
−0.0808u8+0.2555u7−0.0379u6−0.4234u5+3.2486u4−4.6848u3−3.2596u2+3.6620u−1.2970
0.3590u8−1.1358u7+0.1685u6+1.8822u5−2.9914u4+2.7129u3+2.6686u2−1.7852u+0.6337

β2 = 1 fθ∗ (u;β2) =
−0.9589u8+4.7491u7−6.1089u6−0.2182u5+7.73097u4−13.0489u3+0.7633u2+4.3662u−2.3523

1.4639u8−7.2501u7+9.3260u6+0.3332u5−7.0604u4+8.1785u3+1.9316u2−2.5813u+1.2348

β3 = 3 fθ∗ (u;β3) =
0.0002u8+0.0091u7+0.1226u6+0.7346u5+2.5724u4+6.5190u3+7.1617u2−1.9897u−0.0680
0.0003u8+0.0121u7+0.1630u6+0.9770u5+3.3709u4+7.7091u3+5.9935u2−5.3643u+2.4714

β4 = 5 fθ∗ (u;β4) =
1.1340u8+5.2921u7+8.9497u6+6.3207u5+2.1223u4+1.8374u3+1.4766u2−0.3334u−0.5300

1.7459u8+8.1478u7+13.7791u6+9.7314u5+3.8413u4+4.16754u3+1.1539u2−2.7925u+1.4449

β5 = 7 fθ∗ (u;β5) =
7.2266e−5u8+0.0031u7+0.0486u6+0.3395u5+0.8249u4−0.1620u3+2.3615u2−0.6630u−0.1760
7.7078e−5u8+0.0033u7+0.0518u6+0.3621u5+0.8955u4+0.1576u3+4.0315u2−3.2001u+0.9126
Fig. 10. The graphical results of identification of flux function fθ∗ (u;β) for β = −1, 1, 3, 5, 7. In each subplot, the solid red line is the true function, and the orange
ashed line is the learned function.
fW (u, β) =

a00 + a01u + a02u2
+ a03u3

+ a04u4
+ a05u5

+ β(a10 + a11u + a12u2
+ a13u3

+ a14u4
+ a15u5)

b00 + b01u + b02u2 + b03u3 + b04u4 + b05u5 + β(b10 + b11u + b12u2 + b13u3 + b14u4 + b15u5)

(41)

Box I.
m
h
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W
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β

e
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Next, we verify that (43) is a model that can represent well the
rue family of flux functions (39). We test (43) on the validation
et where β = −3 and β = 9. Table 5 shows the results.
bviously, whether it is for β = −3 or for β = 9, the error
s relatively small, and meets the criteria we set ∆ = 0.0007.
We also test other candidate models on the validation set. The
results are shown in Table 6. It is obvious that when K = 1,
Ji = 5, P = 1 and Qi = 5 the candidate model has the best
performance. Therefore, we choose (42) and (43) as the preferred
learned model and use it to test new initial states and parameters.

4.3. Results and discussions

In Fig. 11 we first show the learned flux function (43) (panel
a) and the error between true flux function (39) and the learned
(43) (panel b) with β ∈ [−10, 10] and u ∈ [0, 1]. The absolute
error of the two functions is less than 0.118 over the entire
domain. Specifically, we set β = −10,−7,−5, 8, 9, 10 separately
 t

13
to test the generalization ability of (43). In Fig. 12, we show the
true and the learned function with different values of β . The
odel performs well for most parameter choice of β in [−10, 10],
owever, conduct worse when β < −8 although still within our
cceptable range ∆ = 0.13.
Finally, we compare the GNNs method with our approach.
e use Rprop optimizer [43] to minimize the loss function with

earning rate set to lr = 10−6 for 5000 iterations and batch size
et to 5. Fig. 13 shows the solutions of (1) with β = −7 and

= 9 using the two different methods. The proposed method
nables quite a nice approximation of the true predicted behavior
hereas the GNNs fail to capture it, most likely, since it has not
een constructed to handle discontinuous behavior.

. Conclusion

In this paper we have developed a framework that combines
he recently proposed ConsLaw-Net with LRNN to learn the func-
ional form of the two variable function f (u, β) involved in the
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Fig. 11. (a) Flux function (43). (b) The difference between the flux function (39) and (43).

Fig. 12. The generalization ability of the model (43) for β = −10,−7,−5, 8, 9, 10. In each subplot, the red solid line is the true function, and the orange dashed
line is the learned function.

Fig. 13. The compared results of our method and the GNNs method. We compare the two methods at β = −7(top row) and β = 9(bottom row) based on initial

state u0 =

{
1.0, if x ∈ [4.5, 6]
0.0, otherwise

. Left: True solutions of (1). Middle: Solutions generated by our method. Right: Solutions generated by the GNNs method.

14
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Table 5
The results of (43) on the validation data β = −3 and β = 9. The value of Error is the MSE
between true and generated solutions of (1) at times (40). We also plot the solution at time point
t = 0.3, 0.6, 0.9 respectively. In each subplot, the solid red line is the true solution, and the blue

dashed line is the solution generated by (43) based on initial state u0 =

{
1.0, if x ∈ [4.5, 6]
0.0, otherwise

.

β Error t = 0.3 t = 0.6 t = 0.9

β = −3 0.0002

β = 9 0.0006
Table 6
The results of other candidate models on the validation set. The value is the MSE between true and predicted

solutions of (1) at times (40) for four different initial states given by u0
β=−3,9 =

{
1.0, if x ∈ [4.5, 6]
0.0, otherwise

,

u1
β=−3,9 =

{
0.9, if x ∈ [3.5, 5]
0.0, otherwise

, u2
β=−3,9 =

{
0.8, if x ∈ [5, 6.5]
0.0, otherwise

and u3
β=−3,9 =

{
0.7, if x ∈ [3, 6]
0.0, otherwise

,

respectively.
β K = 1,

Ji = 6
K = 1,
Ji = 7

K = 1,
Ji = 8

K = 1,
Ji = 3,
P = 1,
Qi = 3

K = 1,
Ji = 4,
P = 1,
Qi = 4

β = −3 0.0014 0.0005 0.0005 0.0210 0.0003

β = 9 0.0038 0.0036 0.0026 0.0146 0.0008
A

conservation law (1). More precisely, the method is composed
of the following two steps: (i) learn f (u;βi) for a few selected
βi in an interval of interest; (ii) Combine the obtained f (u;βi)
ith LRNN to learn the full two-variable function f (u, β). As a
y product of this method we have improved the ConsLaw-Net
y employing an entropy consistent numerical scheme which
elies on local information (relatively the discrete spatial grid)
bout the unknown flux function f (u, β). This makes the resulting
onsLaw-Net more generic and useful for challenging real-world
ata. The well-known challenge with identification of a nonlinear
lux function from data due to appearance of discontinuities and
ack of uniqueness (i.e., many different flux functions can fit with
he observation data), is dealt with by relying on an entropy
onsistent numerical scheme in combination with a small set
f more or less randomly selected initial data. We experimen-
ally demonstrate the effectiveness of our method when applied
o synthetic data generated from two different families of flux
unctions f (u, β) given by (34) and (39), respectively.

Our method is sensitive to the selection of the initial states,
as initial states affect the distribution of the observed data. If the
data is not sufficiently evenly distributed, it may lead to failure
in the first step of the learning process. The optimization of the
second step is heavily dependent on the results of the first step,
and a small error in the first step may amplify this error in the
second step. However, in a setting where the observation data
comes from measurements of experimental data our approach
gives a systematic way to try to learn an underlying conserva-
tion law that can explain the observation data. Before using the
learned conservation law for prediction one must be aware that
enough variation in initial data has been provided.

Overall, our approach based on ConsLaw-Net and LRNN has
shown a good ability learn the unknown flux function with vari-
able parameters f (u, β). Possible further extensions can be to
explore the method in higher dimensional spaces and consider
15
other types of observation data than we have used in this work.
An interesting direction for further investigations is to see if there
is room for including in the loss function some explicit character-
istics of the entropy solution that will make the identification of
the flux function more efficient.
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Appendix

A.1. The initial states used to train f (u;β) in Section 3.1

See Table 7.

.2. The initial states used to train f (u;β) in Section 4.1

See Table 8.
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Table 7
The initial states used to train f (u;β) in Section 3.1.

u0
β=10 =

{
1.0, if x ∈ [0, 3]
0, otherwise

u0
β=130 =

{
1.0, if x ∈ [4.5, 6]
0.3, otherwise

u1
β=130 =

{
0.8, if x ∈ [5, 6.5]
0.2, otherwise

u2
β=130 =

{
0.85, if x ∈ [4, 7]
0, otherwise

u3
β=130 =

{
0.95, if x ∈ [0, 3]
0, otherwise

u4
β=130 =

{
0.7, if x ∈ [3, 6]
0, otherwise

u5
β=130 =

{
0.9, if x ∈ [3.5, 5]
0, otherwise

u0
β=200 =

{
1.0, if x ∈ [4.5, 6]
0.3, otherwise

u1
β=200 =

{
0.8, if x ∈ [5, 6.5]
0.2, otherwise

u2
β=200 =

{
0.85, if x ∈ [4, 7]
0, otherwise

u3
β=200 =

{
0.95, if x ∈ [0, 3]
0, otherwise

u4
β=200 =

{
0.7, if x ∈ [3, 6]
0, otherwise

u5
β=200 =

{
0.9, if x ∈ [3.5, 5]
0, otherwise

u0
β=300 =

{
1.0, if x ∈ [4.5, 6]
0.3, otherwise

u1
β=300 =

{
0.8, if x ∈ [5, 6.5]
0.2, otherwise

u2
β=300 =

{
0.85, if x ∈ [4, 7]
0, otherwise

u3
β=300 =

{
0.95, if x ∈ [0, 3]
0, otherwise

u4
β=300 =

{
0.7, if x ∈ [3, 6]
0, otherwise

u5
β=300 =

{
0.9, if x ∈ [3.5, 5]
0, otherwise

u6
β=300 =

{
0.6, if x ∈ [3.5, 5]
0, otherwise

u7
β=300 =

{
0.4, if x ∈ [3.5, 5]
0, otherwise

u8
β=300 =

{
0.35, if x ∈ [3.5, 5]
0, otherwise
Table 8
The initial states used to train f (u;β) in Section 4.1.

u0
β=−1 =

{
0.8, if x ∈ [4, 6]
0, otherwise

u1
β=−1 =

{
1.0, if x ∈ [4, 6]
0, otherwise

u2
β=−1 =

{
0.9, if x ∈ [3, 5]
0, otherwise

u3
β=−1 =

{
0.95, if x ∈ [2.5, 4.5]
0.3, otherwise

u4
β=−1 =

{
0.85, if x ∈ [2.5, 4.5]
0.3, otherwise

u0
β=1 =

{
0.8, if x ∈ [4, 6]
0, otherwise

u1
β=1 =

{
1.0, if x ∈ [4, 6]
0, otherwise

u2
β=1 =

{
0.9, if x ∈ [3, 5]
0, otherwise

u3
β=1 =

{
0.7, if x ∈ [2.5, 4.5]
0.2, otherwise

u4
β=1 =

{
0.6, if x ∈ [2.5, 4.5]
0.2, otherwise

u5
β=1 =

{
0.5, if x ∈ [2.5, 4.5]
0.2, otherwise

u0
β=3 =

{
0.8, if x ∈ [4, 6]
0, otherwise

u1
β=3 =

{
1.0, if x ∈ [4, 6]
0, otherwise

u2
β=3 =

{
0.9, if x ∈ [3, 5]
0, otherwise

u3
β=3 =

{
0.95, if x ∈ [2.5, 4.5]
0.3, otherwise

u4
β=3 =

{
0.85, if x ∈ [2.5, 4.5]
0.3, otherwise

u5
β=3 =

{
1.0, if x ∈ [2.5, 4.5]
0.2, otherwise

u6
β=3 =

{
0.9, if x ∈ [2.5, 4.5]
0.2, otherwise

u0
β=5 =

{
0.8, if x ∈ [4, 6]
0, otherwise

u1
β=5 =

{
1.0, if x ∈ [4, 6]
0, otherwise

u2
β=5 =

{
0.9, if x ∈ [3, 5]
0, otherwise

u3
β=5 =

{
0.95, if x ∈ [2.5, 4.5]
0.3, otherwise

u4
β=5 =

{
0.85, if x ∈ [2.5, 4.5]
0.3, otherwise

u0
β=7 =

{
0.8, if x ∈ [4, 6]
0, otherwise

u1
β=7 =

{
1.0, if x ∈ [4, 6]
0, otherwise

u2
β=7 =

{
0.9, if x ∈ [3, 5]
0, otherwise

u3
β=7 =

{
0.95, if x ∈ [2.5, 4.5]
0.3, otherwise

u4
β=7 =

{
0.85, if x ∈ [2.5, 4.5]
0.3, otherwise
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