
Citation: Walskaar, I.; Tran, M.C.;

Catak, F.O. A Practical

Implementation of Medical

Privacy-Preserving Federated

Learning Using Multi-Key

Homomorphic Encryption and

Flower Framework. Cryptography

2023, 7, 48. https://doi.org/

10.3390/cryptography7040048

Academic Editor: Josef Pieprzyk

Received: 4 September 2023

Revised: 26 September 2023

Accepted: 1 October 2023

Published: 4 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cryptography

Article

A Practical Implementation of Medical Privacy-Preserving
Federated Learning Using Multi-Key Homomorphic Encryption
and Flower Framework
Ivar Walskaar †, Minh Christian Tran † and Ferhat Ozgur Catak *,†

Department of Electrical Engineering and Computer Science, University of Stavanger, 4021 Rogaland, Norway;
i.walskaar@stud.uis.no (I.W.); mc.tran@stud.uis.no (M.C.T.)
* Correspondence: f.ozgur.catak@uis.no
† These authors contributed equally to this work.

Abstract: The digitization of healthcare data has presented a pressing need to address privacy
concerns within the realm of machine learning for healthcare institutions. One promising solution is
federated learning, which enables collaborative training of deep machine learning models among
medical institutions by sharing model parameters instead of raw data. This study focuses on
enhancing an existing privacy-preserving federated learning algorithm for medical data through the
utilization of homomorphic encryption, building upon prior research. In contrast to the previous
paper, this work is based upon Wibawa, using a single key for HE, our proposed solution is a practical
implementation of a preprint with a proposed encryption scheme (xMK-CKKS) for implementing
multi-key homomorphic encryption. For this, our work first involves modifying a simple “ring
learning with error” RLWE scheme. We then fork a popular federated learning framework for Python
where we integrate our own communication process with protocol buffers before we locate and
modify the library’s existing training loop in order to further enhance the security of model updates
with the multi-key homomorphic encryption scheme. Our experimental evaluations validate that,
despite these modifications, our proposed framework maintains a robust model performance, as
demonstrated by consistent metrics including validation accuracy, precision, f1-score, and recall.

Keywords: data privacy; homomorphic encryption; multi key; medical data

1. Introduction

The significance of data privacy and security in medical research has been brought to
the forefront by the ongoing COVID-19 pandemic. With governments and healthcare orga-
nizations worldwide striving to gather and examine virus-related data, the apprehension
regarding the improper use and unauthorized retrieval of confidential patient information
has become progressively urgent [1].

Federated learning (FL) emerges as a promising solution to addressing this challenge,
enabling multiple parties to collectively train a machine learning model without divulging
their raw data. Nevertheless, despite implementing FL, there remains a potential risk of
data leakage and privacy breaches, particularly during data transmission between the
involved parties.

To tackle this issue, a potential solution that has been proposed is multi-key homo-
morphic encryption (MK-HE). Unlike traditional homomorphic encryption (HE), MK-HE
enables computation on encrypted data using multiple private keys. This advancement
offers enhanced privacy and security measures.

In our study, we present a practical implementation of a multi-key HE approach that
addresses the challenges faced in real-world scenarios. Clients involved in the encryption
process may have mutual distrust, leading to their unwillingness to share the same private

Cryptography 2023, 7, 48. https://doi.org/10.3390/cryptography7040048 https://www.mdpi.com/journal/cryptography

https://doi.org/10.3390/cryptography7040048
https://doi.org/10.3390/cryptography7040048
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cryptography
https://www.mdpi.com
https://orcid.org/0000-0002-2434-9966
https://doi.org/10.3390/cryptography7040048
https://www.mdpi.com/journal/cryptography
https://www.mdpi.com/article/10.3390/cryptography7040048?type=check_update&version=2


Cryptography 2023, 7, 48 2 of 38

key. Our approach offers a more feasible and applicable solution for secure computations
in such scenarios by accommodating this practical concern.

This study aims to investigate a cutting-edge encryption technique within an FL
system. Additionally, we enhance the existing encryption capabilities of the Flower library
by implementing our encryption approach, offering it as an alternative to the current
Transport Layer Security encryption. We conduct experiments to compare the precision
performance and runtime of three scenarios: local training with no encryption, FL without
encryption, and FL with our encryption technique applied. These experiments enable us to
assess the impact of encryption on model performance and runtime in an FL setting.

Using sensitive data, including medical data, in machine learning algorithms has risen
significantly. Nevertheless, disclosing such data presents a substantial risk to individuals
and organisations’ privacy and security. Consequently, a crucial demand exists for privacy-
preserving machine learning techniques that facilitate the analysis of sensitive data while
ensuring the protection of data subjects’ privacy [2].

The utilization of Ring Learning with Errors (RLWE)-based cryptography holds
promise for enabling privacy-preserving machine learning. However, the practical imple-
mentation of this approach in real-world applications encounters several challenges. One
such challenge is the substantial computational and communication overhead associated
with RLWE-based encryption, which can result in slow training times. Furthermore, the se-
curity guarantees of RLWE-based cryptography in the specific context of machine learning
applications have yet to be extensively examined [3].

Combining Ring Learning with Errors (RLWE) and FL establishes an environment
where individual clients are not required to surrender their data to the server to function as
a machine learning model. This approach allows data transfer across borders by enabling
the server to train the ML model using weights derived from the clients rather than the
actual data utilized by traditional models. By adopting this method, we can retrieve client
information without infringing upon data protection regulations such as the General Data
Protection Regulation (GDPR), the California Consumer Privacy Act (CCPA), and other
relevant regulations [4].

This study aims to examine the various time, memory, and security trade-offs between
training a machine learning model locally compared to in an unencrypted or encrypted FL
environment. To do this we fork a Ring Learning with Errors (RLWE)-based encryption and
integrate it into a forked FL library. To simulate a real world scenario for privacy-preserving
machine learning for health institutions, we will be using COVID-19 data.

This study makes several significant contributions to the field of privacy-preserving
machine learning in the context of medical COVID-19 X-ray lung scan data analysis:

• We begin by constructing a baseline Convolutional Neural Network (CNN) model
using the Keras/Tensorflow library in Python. This baseline model is trained on a
medical COVID-19 X-ray lung scan dataset. This initial step serves as the foundation
for our subsequent experiments.

• To establish a performance benchmark, we train our baseline CNN model in a traditional,
centralized manner. This approach replicates the conventional training setup and allows
us to evaluate the precision performance of the model under standard conditions.

• We delve into privacy-preserving machine learning by implementing an unencrypted
Federated Learning (FL) system. Leveraging the Flower library, we train the same base-
line CNN model within this FL environment. This step is crucial for understanding
the impact of FL on model performance.

• Building on our exploration of FL, we take a significant step forward by introducing
an innovative privacy-preserving technique. We implement a Ring Learning With
Errors (RLWE)-based multi-key Homomorphic Encryption (HE) scheme within the
same FL environment. This addition aims to protect sensitive medical data while
allowing collaborative model training.

• To assess the effectiveness of our privacy-preserving technique, we conduct precision
performance tests under identical conditions for both the unencrypted FL system and the



Cryptography 2023, 7, 48 3 of 38

FL system enhanced with RLWE-based multi-key HE. This comparative analysis sheds
light on the trade-offs and advantages of privacy preservation in medical data analysis.

The remainder of the study is structured as follows: In Section 2, we provide a compre-
hensive review of related works and the state-of-the-art in medical privacy-preserving fed-
erated learning, highlighting the significance of our proposed scheme and its contributions
to the field. Section 3 presents a detailed explanation of the xMK-CKKS homomorphic en-
cryption scheme, outlining how it improves the privacy and security of federated learning.
The experimental setup and evaluation methodology are covered in Section 4, where we
outline the datasets, hardware configurations, and performance metrics used to assess the
effectiveness of our approach. We present the evaluation results, comparing the encrypted
federated learning scheme against plain federated learning and locally trained models.
The trade-offs, advantages, and limitations of our scheme are thoroughly discussed. In
Section 5, we discuss the results. Finally, in Section 6, we conclude the study, summarizing
our findings and contributions and outlining the implications for practical implementations
of privacy-preserving federated learning in medical and healthcare domains.

2. Related Work

This section provides essential background information on various topics addressed
in this study. Firstly, Convolutional Neural Networks (CNN) are artificial neural net-
works utilized for image classification tasks, which will be employed to train models on
COVID-19 lung scans. Next, the basics of privacy-preserving FL are covered, elucidating
the relatively recent paradigm that enables distributed devices to collaborate and train a
shared prediction model while maintaining local data privacy. The open-source Python
library Flower is chosen for implementing FL due to its modular architecture and ease
of customization to meet specific requirements. The section also briefly touches upon
the built-in communication in Flower and the necessary modifications made to enable
custom communication. A comparison is drawn between traditional and lattice-based
encryption to discuss how the latter offers potential solutions to vulnerabilities introduced
by the former. Specifically, the Ring Learning With Errors (RLWE) encryption scheme is
highlighted as a more memory- and time-efficient alternative to the Learning With Errors
(LWE) cryptographic problem. The study further addresses encryption terms such as multi-
key HE. Finally, the conceptual and mathematical foundations of xMK-CKKS, a proposed
multi-key HE (MKHE) scheme based on the CKKS scheme, are outlined.

Li et al. [5] present PPMA, a scheme addressing smart grid data aggregation privacy
concerns by allowing aggregation of users’ electricity consumption data across different
ranges while preserving privacy. Their analysis shows PPMA’s resilience to strong ad-
versaries and minimal computational and resource costs. In comparison, our research
shares the goal of privacy-preserving data aggregation but advances the field further. We
employ advanced encryption techniques for more robust privacy protection and introduce
an efficient data compression algorithm, significantly reducing computational overhead.

Pu et al. [6] present PMAP, a lightweight, privacy-preserving mutual authentication
and key agreement protocol for Internet of Drones (IoD) environments. PMAP employs
physical unclonable functions (PUF) and chaotic systems to establish secure session keys
and mutual authentication between communication entities in IoD systems. Their evalua-
tion showcases PMAP’s resilience to security attacks and superior performance in terms of
computation cost, energy consumption, and communication overhead when compared to
existing AKA and IBE-Lite schemes.

Sala et al. [7] introduce a re-configurable design that combines a Physical Unclonable
Function (PUF) and a True Random Number Generator (TRNG) on an FPGA platform,
using the Delay-Difference-Cell (DD-Cell) as an entropy source. Their work achieves
a favourable trade-off between PUF and TRNG performance, showcasing competitive
results in compactness and TRNG throughput compared to existing PUF+TRNG designs.
In contrast, our research focuses on a different aspect of IoT security by proposing a



Cryptography 2023, 7, 48 4 of 38

lightweight and privacy-preserving multi key cryptography, ensuring the confidentiality of
data during communication and aggregation processes in untrusted settings.

Sun et al. [8] propose MADAR, a privacy-preserving mutual authentication frame-
work for Vehicular Ad Hoc Networks (VANETs) that addresses the challenge of efficient
anonymous authentication. MADAR combines identity-based signature schemes and
distinguishes between inner-region and cross-region authentications to enhance efficiency
while providing asymmetric inter-vehicle mutual authentication and resistance to com-
putational denial-of-service attacks. Our study and their work target different network
environments and security challenges, complementing them in enhancing privacy and
security in distinct contexts.

2.1. Convolutional Neural Network

CNNs are a specific type of artificial neural network widely employed in deep learning
for tasks such as image classification and computer vision. Unlike traditional approaches
that involve laborious feature extraction methods, CNNs offer a more efficient and scal-
able solution. They leverage matrix multiplication and principles from linear algebra to
recognize patterns within images. This enables CNNs to automatically learn and extract
relevant features directly from the raw input data, reducing the need for manual feature
engineering. As a result, CNNs have revolutionized image processing and become the
go-to architecture for various computer vision tasks [9,10].

In this study, we aim to train a CNN-based model using COVID-19 lung scans in two
different settings: a centralized location and a decentralized environment. We will utilize
the same set of parameters in both scenarios to ensure a fair comparison. The objective
is to measure the variations and performance differences between training the model
locally and employing FL techniques, with and without post-quantum secured model
updates. By conducting these experiments, we can assess the impact of decentralization
and post-quantum security measures on the training process and model performance.

2.2. Privacy-Preserving FL

FL is a machine learning approach that facilitates the training of models across dis-
tributed devices or servers without transferring data to a centralized location. This method
was first introduced in 2016 by Google researchers as a solution to the challenges associated
with training machine learning models on large and sensitive datasets while ensuring data
privacy and security. FL allows the model to be trained locally on individual devices or
servers, with only the model updates being shared and aggregated instead of raw data.
This decentralized approach preserves privacy and reduces communication and band-
width requirements, making it suitable for scenarios with limited network connectivity or
stringent privacy regulations [11].

The traditional approach of centralizing data in FL is replaced with a decentralized
training process. Instead of transferring data to a central server, the training is conducted
locally on each participating device using the data available on that specific device. The
local models generated on each device are then aggregated to create a global model. This
global model is then sent back to each device, which is used to refine and improve the local
models. This iterative training, aggregation, and refinement process continues until the
global model converges to a desired level of accuracy. By training locally and aggregating
models, FL enables privacy-preserving machine learning while benefiting from multiple
devices’ collective knowledge [12].

FL offers numerous advantages compared to conventional centralized machine learn-
ing methods. One of its key strengths is preserving privacy, as data remain localized on
individual devices without being shared with external parties. FL also facilitates training
models on expansive and heterogeneous datasets, enhancing the accuracy and general-
ization capabilities of the models. By leveraging diverse data sources, FL enables the
capturing of a broader spectrum of patterns and variations, leading to more robust and
reliable models [13].



Cryptography 2023, 7, 48 5 of 38

However, several adversarial threats must be considered despite the significant ad-
vantages of employing FL over traditional learning methods. These threats include model
poisoning attacks [14], inference attacks [15], sybil attacks [16], model inversion attacks [17],
deep leakage, and others [18]. These various attacks exploit vulnerabilities to either leak or
reconstruct sensitive data or introduce backdoor functionality.

FL can be categorized into three distinct types [19]:

1. Centralized FL is a variant of FL characterized by a centralized server that orchestrates
the training process across multiple devices. While the data remain on the devices,
updates to the model parameters are transmitted to the server, which aggregates them
and updates the global model [20].

2. Decentralized FL is a variant of FL where no centralized server exists. Instead, the
training process is coordinated in a decentralized manner among multiple devices
or nodes. Each node communicates with a subset of other nodes to exchange model
updates, and the global model is computed by aggregating the local models from
each node [20].

3. Heterogeneous FL is a variant of FL wherein devices or nodes possess varying ca-
pabilities, such as processing power, storage capacity, or network bandwidth. The
training process is designed to accommodate these disparities, with computation and
communication tasks allocated to each device or node based on its capabilities [21].

While FL inherently provides a certain level of data privacy, our study focuses on
implementing privacy-preserving FL, as depicted in Figure 1. This implementation in-
corporates additional measures, including differential privacy to introduce noise to the
model updates and multi-key HE to enable encrypted aggregation of model updates. We
have chosen to employ centralized learning in this project to showcase model aggregation
through a single centralized server, which allows for better management and control over
the encryption keys typically handled by the central server. Additionally, we will integrate
a proposed solution to mitigate model inversion attacks.

Figure 1. Centralized FL with privacy preserving encryption.

2.3. Flower: A FL Framework

Flower (Flwr) is an open-source Python library for FL. Its primary purpose is to provide
a convenient and scalable infrastructure that facilitates the seamless movement of machine
learning models between training and evaluation on client devices and the aggregation of
model updates on servers. Flower offers a unified approach for model training, analytics,



Cryptography 2023, 7, 48 6 of 38

and evaluation across different workloads, machine learning frameworks (e.g., TensorFlow,
PyTorch), and programming languages. This flexibility allows developers to work with
Flower using their preferred tools and frameworks [22]. Another noteworthy framework
in the field is PySyft, developed by OpenMined. Although still under development,
PySyft shows promise as a potential candidate for the future industry standard in privacy-
preserving FL. Once fully developed and documented, PySyft may offer advanced features
and functionality that further enhance the privacy and security aspects of FL. It is worth
keeping an eye on its progress [23].

A key reason we chose this framework is its very modular and open architecture that
allows us to easily subclass core components such as the clients, server, and the aggregation
method to more easily tailor things to our specific needs. Unfortunately, the feature for
creating custom messages between server and clients is currently missing in Flower, but
we will fork the source code to create our own messages that will be needed to implement
our lattice encryption [24]. Due to Flower’s third party documentation on creating custom
messages including errors and lacks many of the necessary changes needed, we will in the
solution approach section show, through an example, how to successfully modify the code.

2.4. Homomorphic Encryption

Unlike today’s traditional encryption techniques, HE allows for the ability to perform
computation with encrypted data. This type of encryption can be split into three categories:
partial, somewhat, and fully HE [25].

1. Partially HE (PHE) schemes only allow for a single operation, such as addition or
multiplication, to be performed over encrypted data an arbritrary number of times.

2. Somewhat HE (SHE) schemes allow for bounded computation of a set of operations.
An example is the BGN encryption schemes that allow for an arbitrary number of
additions and a single multiplication operation.

3. Fully HE (FHE) schemes allow for an arbitrary number of both addition and multipli-
cation [26]

HE and FHE have significantly improved since their inception by Rivest, Adleman,
Dertouzos (RAD) in 1978 and Craig Gentry in 2009. However, despite these advancements,
there remain notable drawbacks to consider. One significant challenge is the increased
computational overhead required for encryption, decryption, and mathematical operations
compared to traditional methods, which can reduce overall system performance and
efficiency. Additionally, data expansion is a concern associated with HE, given that the
encrypted ciphertext is typically larger in size than the corresponding plaintext, leading
to increased storage and communication requirements. This expansion poses challenges
in situations with limited bandwidth or storage capabilities. Noise management also
presents a crucial issue in HE as each homomorphic evaluation introduces additional
noise to the ciphertext. Over time, the accumulation of noise can reach a point where the
ciphertext becomes undecryptable. To address this issue, techniques such as bootstrapping,
modulus reduction, or dimension reduction are employed to manage and mitigate noise
accumulation. Considering these challenges when implementing HE in practical systems
is essential. Ongoing research aims to address these limitations and further enhance the
efficiency and effectiveness of HE techniques.

Implementing FL is a significant step towards improved security, as it allows clients
to conduct training on their sensitive data locally without sharing it with other parties.
However, adding HE can further enhance the security of this process. Clients can encrypt
their model updates by employing HE, enabling the server to aggregate them without
accessing the raw training data. This technique, known as private summation, provides an
additional layer of security and privacy to the FL framework [27].

Our study aims to practically implement the theory outlined in Section 2.9, focusing
on private summation using the xMK-CKKS scheme. This scheme utilizes HE to securely
aggregate the encrypted model updates within the FL framework. Incorporating this tech-



Cryptography 2023, 7, 48 7 of 38

nique will provide heightened security and privacy for sensitive data, ensuring protection
against potential breaches or unauthorized access.

The xMK-CKKS encryption system is a significant improvement in keeping the process
of federated learning private. It enhances efficiency by utilizing a collaborative approach
to generating public keys, which reduces the computational load on individual clients.
This system encrypts model updates with a combined public key derived from individual
client public keys, enhancing privacy protection. This collaborative encryption ensures
that model updates remain unknown to the server and other clients, ensuring data privacy.
Additionally, the partial decryption process, which involves multiple clients, adds another
layer of security.

2.5. Traditional vs. Lattice-Based Encryption

Encryption methods like RSA and ECC rely on the complex computation of large
integers and discrete logarithms for security measures. However, quantum computers
can utilize algorithms like Shor’s Algorithm to solve these problems at a much faster pace
than classical computers, resulting in traditional encryption schemes becoming vulnerable.
Post-quantum cryptographic algorithms are being developed and standardized to ensure
secure encrypted communications and data in the face of advancing quantum computers.
These algorithms are designed to withstand attacks from quantum computers and provide
robust and secure encryption methods. Research and development efforts are continuously
ongoing to guarantee the long-term security of encrypted communications and data.

As quantum computer threats loom, researchers have diligently explored new meth-
ods to safeguard against quantum attacks. One up-and-coming area of focus is lattice-
based cryptography, which employs intricate mathematical problems derived from lattice
theory [28]. The critical establishment algorithms based on lattice theory are advantageous
due to their simplicity, efficiency, and parallelizability. Moreover, the security of these
algorithms is provably guaranteed under worst-case assumptions [28,29]. In this project,
we aim to augment a Ring Learning With Errors (RLWE) scheme and integrate it into our
federated learning architecture to enable multi-key HE. RLWE is a mathematical problem
that leverages lattices over polynomial rings to create an encryption scheme. We will delve
into a detailed discussion on RLWE in Section 2.8.

2.6. Multi-Key Homomorphic Encryption

In a typical plain HE system, operations can only be performed on data that has been
encrypted using the same key [30]. However, this approach could be better suited for an FL
environment, particularly when preserving privacy. Requiring all clients to use the same
private key poses significant security concerns and directly undermines the objective of
ensuring client data confidentiality. If all clients share a common private key, a malicious
client could decrypt the learning updates from other clients and carry out model inversion
attacks to access sensitive information about their local data . This scenario is especially
problematic when dealing with sensitive healthcare or financial information. Therefore, an
alternative approach that provides stronger privacy guarantees and mitigates these risks,
such as multi-key HE, is necessary for FL settings.

Multi-Key HE, also known as MKHE, is a highly secure variant of HE. This encrypted
computation method enables servers to perform computations on encrypted data from
various clients, even using different private keys. In this process, each client generates a
public key based on their private key, which the server then combines to create a single
public key shared with all clients. With this public key, clients can encrypt their data, but
the ciphertext can only be decrypted once the server has received partial decryption shares
from all participating clients. This collaborative decryption process ensures that the server
cannot access complete decryption capability, thereby preserving privacy and security in
the FL setting.



Cryptography 2023, 7, 48 8 of 38

2.7. Protobuf and gRPC

Our Flower system incorporates gRPC and Protocol Buffers (protobuf) to enable
efficient communication between the server and clients. gRPC, an open-source and high-
performance framework developed by Google, streamlines the Remote Procedure Call
(RPC) communication process. RPC communication allows a program on one machine
to call a function on another networked machine as if it were a local call without the
added complexities of network communication. Similarly, protobufs, also developed by
Google, provide a language-agnostic and platform-neutral mechanism for serializing and
deserializing structured data. Within our project, the server and clients must convert
Python objects into bytes for data transfer and then back into Python objects upon receipt
of data. As a critical project component, we have modified the original Flower source
code to allow for customized protobuf messages. This customization feature enables the
implementation of our MKHE scheme within Flower’s FL architecture, ensuring secure
and privacy-preserving computations during training.

2.8. Ring Learning with Errors (RLWE)

Ring Learning With Errors (RLWE) is a variant of the Learning With Errors (LWE)
problem deeply rooted in lattice theory. These mathematical problems are widely known to
be challenging for quantum computers to solve efficiently. The complexity of the challenge
lies in solving an equation with slight random noise or errors added to the results. Despite
the small size of the errors, they are enough to obscure the solution and make the problem
computationally demanding. Consequently, cryptographic schemes based on RLWE and
LWE are considered secure, providing a solid foundation for privacy-preserving techniques
in various applications, including FL ([29], pp. 30–33, [31,32]).

RLWE and LWE lies in the algebraic structures they employ. While LWE operates
in vector spaces over finite fields, RLWE operates in polynomial rings. This structural
variance presents certain advantages and complexities.

Regarding efficiency, RLWE surpasses LWE due to ring operations’ speed and memory
benefits. Ring operations are known to be comparatively faster and require less memory
than their vector space counterparts. This efficiency advantage can be beneficial in prac-
tical implementations of RLWE-based cryptographic schemes. However, working with
polynomial rings adds complexity, necessitating knowledge of number theory and abstract
algebra. A firm grasp of these mathematical concepts is essential to utilize polynomial
rings in RLWE-based encryption schemes effectively.

A ring can be defined as a group of polynomials incorporating a single unknown
variable. The process of securing plaintext involves its transformation into a sequence of
integers. This conversion facilitates the expression of plaintext as a polynomial, where
each value in the plaintext is assigned a coefficient in the polynomial. These coefficients
represent integers within a modular arithmetic system, usually selected with a prime
number q as the modulus. This modulus enables a convenient and symmetrical depiction
of the data. When adding polynomials modulo q, the coefficients are added together, and
the result is reduced by applying the modulus q. However, multiplying polynomials results
in a higher degree polynomial, which necessitates reduction back to the original degree
through modulus reduction. The symmetric value range provided by the modulus q is
beneficial during modulus reduction and other operations. Any errors or noise introduced,
frequently modelled as zero-mean Gaussian distributions, are generated within this value
range, usually with a slight standard deviation.

2.9. xMK-CKKS
2.9.1. Conceptual Theory

The CKKS encryption scheme is a handy tool for securely conducting approximate
arithmetic operations on encrypted data, thereby maintaining the privacy of sensitive
information without the need for decryption. This is a particularly advantageous feature in
scenarios where accuracy is prioritized over exact precision. Building on the foundation of



Cryptography 2023, 7, 48 9 of 38

CKKS, the MK-CKKS encryption scheme enables multiple parties to perform homomorphic
operations on encrypted data using their respective private keys, thus ensuring privacy
while maintaining control over encryption keys. The xMK-CKKS variant, introduced in
a recent preprint study authored by Jing Ma, Si-Ahmed Naas, Stephan Sigg, and Xixiang
Lyu, further advances the capabilities of multi-key HE based on the CKKS scheme, with
notable enhancements to efficiency and applicability in privacy-preserving contexts [27].

A recent study by Jing Ma, Si-Ahmed Naas, Stephan Sigg, and Xixiang Lyu has
presented a novel privacy-preserving FL scheme, namely xMK-CKKS, that addresses
privacy concerns associated with mobile services and networks. The scheme aims to
mitigate privacy leakage from publicly shared information and protect against client
and server collaboration. The proposed scheme employs multi-key HE based on the
CKKS scheme, facilitating collaborative training and computation on encrypted data, thus
preserving individual clients’ data privacy. The study includes experimental evaluations to
assess the performance of the xMK-CKKS scheme. The results demonstrate that the scheme
provides privacy protection and preserves model accuracy, thereby ensuring the effective
extraction of valuable insights from the encrypted data while maintaining data privacy and
security during the FL process.

In their proposed scheme, a crucial factor in enhancing the privacy of FL is using an
aggregated public key to encrypt model updates. The aggregated public key is obtained by
summing the individual public keys generated by each participating client. This collabo-
rative approach of combining public keys introduces an extra level of security, ensuring
that the model update from any individual client remains obfuscated and protected from
decryption or analysis by both the server and other clients.

However, the decryption of the aggregated ciphertexts requires collaboration among
all participating clients. Each client holds a unique piece of the puzzle necessary to decrypt
the aggregated ciphertext. Once the server has collected all the puzzle pieces from the
clients, it can retrieve the plaintext corresponding to the combined model updates. The
server can then calculate the average of the integrated model updates, considering the
number of participating clients, and send back the finalized model updates to all clients
before proceeding to the next training round.

2.9.2. Mathematical Approach

In xMK-CKKS, generating a public key for encryption is a collaborative process among
the clients. On the other hand, decryption only occurs on the server side once it receives
partial decryption shares from all the participating clients. The setup of this encryption
scheme follows the methodology detailed in the referenced study [27].

Setup: Begin by defining the RLWE parameters, including the parameter n, the
ciphertext modulus q, and three Gaussian distributions: χ for key distribution, ψ for
encryption noise, and φ for partial decryption noise. Generate a shared polynomial a that
is drawn from a uniform distribution.

Key Generation (n, q, χ, ψ, φ, a): Each client i generates its secret key si drawn
from χ and an error term ei drawn from ψ. The client then computes its public key
bi = (−si × a + ei) mod q. The aggregated public key b̃ can be defined as:

b̃ =
N

∑
i=1

bi =
N

∑
i=1

(−si × a + ei) mod q. (1)

Encryption (mi, b̃, a): The plaintext mi of client i is encrypted using the following
equation: (See Figure 2)

cti = (cdi
0 , cdi

1 )

= (vdi × b + mi + edi
0 , vdi × a + epi

1 ) mod q.
(2)



Cryptography 2023, 7, 48 10 of 38

Figure 2. Utilizing aggregated public key b[0], shared polynomial a[0] and noise polynomials to
encrypt plaintext m into ciphertext tuple (c0, c1). Homomorphic addition and multiplication are
represented by “+” and “x” respectively.

Homomorphic Addition (ct1, . . . , ctn): The summation of ciphertexts is as follows:

Csum =
N

∑
i=1

cti = (Csum0 , Csum1)

=

(
N

∑
i=1

cdi
0 ,

N

∑
i=1

cdi
1

)

=

(
N

∑
i=1

(vdi × b + mi + edi
0 ),

N

∑
i=1

(vdi × a + edi
1 )

)
(mod q).

(3)

Partial Decryption (Csum1, si, . . . , sn): Using the provided Csum1 and error term
e∗i drawn from φ (using a higher standard deviation than ψ). Each client i computes its
decryption share Di. (See Figure 3)

Di = si × Csum1 + e∗i

= si ×
N

∑
i=1

(vi × a + edi
1 ) + e∗i (mod q).

(4)

Figure 3. How the aggregated csum1 is used to compute a partial decryption share di using a client’s
private key and some added noise. Performed by all clients.



Cryptography 2023, 7, 48 11 of 38

Sum of all plaintexts can be recovered as follows: (See Figure 4)

Csum0 +
N

∑
i=1

Di mod q = Csum0 +
N

∑
i=1

si × Csum1 +
N

∑
i=1

e∗i mod q

=
N

∑
i=1

(vdi × b + mi + edi
0 ) +

N

∑
i=1

si ×
N

∑
i=1

(vdi a + edi
1 ) +

N

∑
i=1

e∗i mod q

= −
N

∑
i=1

vdi sia +
N

∑
i=1

vdi
N

∑
i=1

ei +
N

∑
i=1

edi
0 +

N

∑
i=1

vdi sia +
N

∑
i=1

(sie
di
1 + e∗i ) mod q

=
N

∑
i=1

mi +
N

∑
i=1

vdi ×
N

∑
i=1

ei +
N

∑
i=1

edi
0 +

N

∑
i=1

(sie
di
1 + e∗i ) mod q

≈
N

∑
i=1

mi.

(5)

Figure 4. An approximate recovery of all plaintexts, performed by the server.

3. System Model

The privacy of individuals in healthcare institutes is jeopardized by the sharing of
sensitive data across different institutions, posing a substantial challenge for machine
learning applications in the medical field. To tackle this issue, our study presents a proposed
solution that adopts a centralized FL framework, integrating an RLWE-based MKHE
scheme for secure communication between the server and clients. Using this approach, we
aim to enhance privacy-preserving machine learning in healthcare institutes and alleviate
the inherent risks associated with data sharing.

3.1. Existing Approaches/Baselines

Currently, Wibawa et al. [33] have proposed a model that utilizes SHE, where each
client trains their copy of the global model with their local dataset before updating the
global model by sending the weights from their trained model. Like our implementation,
Wibawa’s model must precisely convert the ciphertext back to its original plaintext value.
Instead, it provides an approximation with a small amount of noise due to the encryption
process. However, a significant distinction between Wibawa’s proposed solution and our
proposed solution lies in the encryption approach. While Wibawa’s model employs a
shared key across all clients, which may not be suitable for real-life scenarios where clients
may need more trust in one another, our proposed model incorporates private summation
using a multi-key encryption scheme. This ensures that neither the clients nor the server
can decrypt the sensitive training data of individual clients, significantly enhancing the
security of our proposed model for real-life scenarios.

Ma et al. [27] presented an enhanced privacy preserving FL scheme known as xMK-
CKKS. This scheme utilizes multi-key HE to ensure secure model updates. The proposed
approach involves encrypting the model using an aggregated public key before sharing it



Cryptography 2023, 7, 48 12 of 38

with a server for aggregation. Collaboration among all participating devices is required
for the decryption process. In our study, we adopted the mathematical encryption and
decryption techniques proposed by Ma et al.. We implemented them with our custom
communication framework within the Flower FL library.

3.2. RLWE: Original and Improved
3.2.1. Overview of Original RLWE Implementation

The initial implementation of RLWE was obtained from a GitHub repository [34] and
will be the basis for our modifications. The existing RWLE implementation consists of three
primary Python files. The utils.py file contains utility functions, the Rq.py file is responsible
for creating ring polynomial objects, and the RLWE.py file is used to instantiate RLWE
instances for tasks such as key generation, encryption, decryption, and modular operations
required for HE.

Key Generation, Encryption, and Decryption in Original RLWE

The original RLWE.py file includes a class that creates an RLWE instance, which
requires four variables: n, t, q, and std. These variables represent the degrees (length) of
the polynomial plaintext to be encrypted (which must be a power of 2), two large prime
numbers defining the value ranges for the coefficients of the plaintext and ciphertext, and
the standard deviation of a zero-mean Gaussian distribution utilized for generating the
private keys and errors.

In the original RLWE implementation and our modified version, we incorporate three
Gaussian distributions: χ, ψ, and φ, vital in key and error generation. All distributions
are zero-mean Gaussian but with distinct standard deviations. χ is employed to generate
private keys, ψ is utilized for generating error polynomials during the encryption process,
and φ is introduced in our modified RLWE scheme specifically for partial decryption. In
the partial decryption phase, φ generates error polynomials with a slightly higher standard
deviation than the error polynomials used during encryption. In our project, we use a
standard deviation of 3 for χ and ψ (making them equivalent), while φ has a standard
deviation of 5.

When setting the variable t, it is crucial to ensure that the minimum and maximum
coefficients of the polynomial plaintext fall within the range of − t

2 and t
2 . This is of

utmost importance in RLWE, as the coefficients undergo a wrapping operation within the
ring. Consequently, a coefficient exceeding t

2 will be interpreted as a negative value, and
vice versa.

Likewise, the ratio between the modulus for the ciphertext q and the modulus for the
plaintext t holds great significance. As discussed by Peikert in the context of the hardness of
LWE and its variants, as well as Ring-LWE [29], the selection of these moduli must carefully
consider the desired security level and the specific parameters of the scheme. In our proof-of-
concept work, we arbitrarily chose the modulus q to be a prime number greater than twenty
times the modulus t, aiming to balance computational efficiency and security.

Regarding the selection of standard deviations, our choices of 3 and 5 are somewhat
arbitrary. As highlighted in Peikert’s papers [29,31], the standard deviation is a crucial
factor in determining the security level in conjunction with other parameters. A larger ratio
between the modulus q and t enables a higher standard deviation, resulting in increased
noise that enhances decryption difficulty and thus augments security. However, these
choices must be carefully balanced in practice, considering both security and efficiency
requirements. For more precise guidance on parameter selection, we recommend referring
to Peikert’s work.

Key generation, encryption, and decryption processes in the original simple RLWE
implementation are as follows:

• Key Generation:

1. Generate a private key s (noise) from key distribution χ.



Cryptography 2023, 7, 48 13 of 38

2. Generate a public key a comprising two polynomials a0 and a1. a1 is a poly-
nomial over modulus q with coefficients randomly sampled from a uniform
distribution, while a0 is a polynomial over modulus t computed using the for-
mula a0 = −1 × (a1 × s + t × e), where e is an error polynomial of modulus q
drawn from distribution ψ. Listing 1 shows the generate keys method.

Listing 1. Key generation.

1 def generate_keys(self):
2 s = discrete_gaussian(self.n, self.q, std=self.std)
3 e = discrete_gaussian(self.n, self.q, std=self.std)
4

5 a1 = discrete_uniform(self.n, self.q)
6 a0 = -1 * (a1 * s + self.t * e)
7

8 return (s, (a0 , a1)) # (secret , public)

• Encryption:

1. Given a Python list of integers as a plaintext, convert the list to an Rq object for
the Python plaintext to represent and behave as a polynomial over modulus q.

2. Encrypt the polynomial plaintext into two polynomial ciphertexts c using the
formula (m + a0 × e[0] + t × e[2], a1 × e[0] + t × e[1]), where m is the plaintext
and e are error polynomials sampled from distribution ψ. c is a tuple consisting
of the polynomial ciphertexts c0 and c1. Listing 2 shows the encryption method.

Listing 2. encrypting a message ’m’ using lattice-based cryptography with error terms and public
key ’a’.

1 def encrypt(self , m, a):
2 a0 , a1 = a
3 e = [discrete_gaussian(self.n, self.p, std=self.std)
4 for _ in range (3)]
5 m = Rq(m.poly.coeffs , self.p)
6 return (m + a0 * e[0] + self.t * e[2], a1 * e[0] + self.t *

e[1])

• Decryption:

1. Provided the private key s we can decrypt the ciphertext c using the following
function: Listing 3 shows the decryption method.

Listing 3. decrypting a ciphertext ’c’ using a lattice-based cryptography scheme with the secret
key ’s’.

1 def decrypt(self , c, s):
2 c = [ci * s**i for i, ci in enumerate(c)] # c = (c0, c1)
3 m = c[0]
4 for i in range(1, len(c)):
5 m += c[i]
6 m = Rq(m.poly.coeffs , self.t)
7 return m

3.2.2. Modifications to RLWE.py for xMK-CKKS Integration

Our aim of implementing secure FL using the lattice-based xMK-CKKS scheme neces-
sitated certain modifications to the original RLWE implementation. These modifications
primarily involved the functions for key generation, encryption, decryption, and the inclu-
sion of additional utility functions. In this subsection, we will follow a similar structure as



Cryptography 2023, 7, 48 14 of 38

before but with the inclusion of formulas to justify the changes made to the original RLWE
implementation. All the procedures presented in this section are derived from [27], which
outlines the setup of the xMK-CKKS scheme for the key-sharing process and provides a
detailed explanation of the encryption and decryption steps (steps 1 to 5).

Changes in Key Generation for xMK-CKKS Integration

In the FL context, each client must have a unique private key while utilizing a shared
public key. To accomplish this, we employ the formulas proposed in the xMK-CKKS paper.
Each client generates a distinct public key, denoted as b, by combining a shared polynomial
a with their private key s. The server subsequently aggregates these individual public keys
through modular addition, resulting in a shared public key distributed back to all the clients.

For each client i, we assume that the secret key si is drawn from the distribution χ, and
the error polynomial ei is drawn from the distribution ψ. In contrast to the original RLWE
implementation, where both the secret key and error polynomials have the same degree as
the plaintext, in the xMK-CKKS scheme, the secret key si is required to be a polynomial
of a single degree. The polynomial a is shared among all clients by the server before they
generate their respective keys. Each client’s public key bi can then be computed using the
formula: bi = −si × a + ei.

Listing 4 shows the modified key generation function.

Listing 4. Key Generation Method for Cryptographic Operations.

1 def generate_keys(self):
2 self.s = discrete_gaussian (1, self.p, std=self.std)
3 self.e = discrete_gaussian(self.n, self.p, std=self.std)
4 self.b = -1 * (self.a * self.s + self.t * self.e)
5 return (self.s, (self.b, self.a)) # (secret , public).

Changes in Encryption for xMK-CKKS Integration

The encryption process has also undergone slight modifications from the original
RLWE implementation. While the overall outcome remains the same, which is to encrypt a
polynomial plaintext using a public key and three error polynomials, the modified scheme
differs in that it only requires the first value of the aggregated public key for encryption
instead of the entire public key. As a result, the encryption produces a tuple of two
ciphertexts: ct = (c0, c1).

For each client i, let mi be the client’s polynomial plaintext to be encrypted into the
ciphertext cti. Let b̃ = b[0] and a = a[0], which are the same for all clients. For each client,
generate three error polynomials: vi, e[1]i, and e[2]i. The polynomial vi is drawn from the
key distribution χ and is used in the computation of both ci

0 and ci
1. On the other hand,

e[1] and e[2] are unique to either ci
0 or ci

1 and are drawn from the error distribution ψ. The
computed ciphertext can then be obtained using the equation:

cti = (ci
0, ci

1) = (vi × b + mi + ei
0, vi × a + ei

1)(modq). (6)

Listing 5 shows the updated encryption function.



Cryptography 2023, 7, 48 15 of 38

Listing 5. Encryption Method for Cryptographic Operation.

1 def encrypt(self , m, pub):
2 b, a = pub
3 e = [discrete_gaussian(self.n, self.p, std=self.std)
4 for _ in range (3)]
5 self.v = e[0]
6 m = Rq(m.poly.coeffs , self.p)
7 # From the math in the study e[0] = v_i <- chi
8 return (m + b.poly.coeffs.tolist ()[0] * self.v + self.t *

e[2],
9 a.poly.coeffs.tolist ()[0] * self.v + self.t * e[1]).

Changes in Decryption for xMK-CKKS Integration

In the case of FL with xMK-CKKS, clients cannot fully decrypt ciphertexts that have
undergone homomorphic operations. Instead, clients compute a partial decryption share,
and once the server has successfully retrieved all the partial results, it can decrypt the
aggregated ciphertexts from all the clients.

For each client i, let si be the client’s secret key, and let e∗i be an error polynomial
sampled from distribution φ, assuming that φ has a more considerable variance than the
distribution χ used in the basic scheme. The server collects all the ciphertexts ci

0 and ci
1

from each client, and let Csum1 be the aggregated result of the modular addition of all the
ci

1 ciphertexts. With these variables, a client can compute their partial decryption share di
using the following equation:

Di = si × Csum1 + e∗i = si

N

∑
i=1

(vi × a + ei
1) + e∗i (modq). (7)

Listing 6 shows the updated (now only partial) decryption function.

Listing 6. Decryption Method for Cryptographic Operations.

1 def decrypt(self , c, s, e):
2 partial_decryption = c * s + e
3 partial_decryption = Rq(partial_decryption.poly.coeffs ,

self.t)
4 return partial_decryption.

Additional modifications to the original RLWE implementation were made to enhance
functionality. These modifications include adding methods to set and retrieve a shared
polynomial a, which enables the server to generate a polynomial and distribute it to the
clients for storage in their respective RLWE instances. Another modification involves
including a function to convert a Python list into a polynomial object of type Rq, defined
over a specified modulus. These modifications contribute to the improved versatility and
convenience of the RLWE implementation.

3.2.3. Alterations to Utility.py

While our work did not require any modifications to the Rq file, we introduced several
additional functions to the utils file. Specifically, we implemented functions to:

1. Get model weights and flatten them: This function retrieves the weights of a CNN
model, which are organized in nested tensors, and flattens them into a single Python list.
The function also returns the original shape of the weights for future reference. Clients use
this function during the encryption stage, as we require the weights to be in a long Python
list format to represent them as a polynomial. Listing 7 shows the extracting flattened
weights and original shapes.



Cryptography 2023, 7, 48 16 of 38

Listing 7. Extracting flattened weights and original shapes from a CNN model’s parameters.

1 def get_flat_weights(model: CNN) -> Tuple[List[int], List[int]]:
2 params = model.get_weights()
3 original_shapes = [tensor.shape for tensor in params]
4 flattened_weights = []
5 for weight_tensor in params:
6 # Convert the tensor to a numpy array
7 weight_array = weight_tensor.numpy()
8 # Flatten the numpy array and add it to the flattened_weights list
9 flattened_weights.extend( weight_array.flatten())

10 return flattened_weights, original_shapes.

2. Revert flattened weights back to original nested tensors: This function serves as
the inverse operation of the previous function. It takes a long list of flattened weights and
the original shape of the weights, allowing the function to reconstruct the weights back
into their original nested tensor format. This function is used by clients at the end of each
training round after the decryption process. Once all clients have sent their model updates
to the server, the server computes an average and sends back the updated model weights to
all clients before the next training round begins. At this point, clients need to update their
local CNN models by retrieving the updated model weights and converting them back
into the nested tensor format required by the CNN model. Listing 8 shows the unflattening
weights using the original shapes.

Listing 8. Unflattening weights using the original shapes to reconstruct the parameters.

1 def unflatten_weights(flattened_weights, original_shapes):
2 unflattened_weights = []
3 current_index = 0
4 for shape in original_shapes:
5 # Calculate the number of elements in the current shape
6 num_elements = np.prod(shape)
7 # Slice the flattened_weights list to get the elements for the current

shape
8 current_elements = flattened_weights[current_index : current_index +

num_elements]
9 # Reshape the elements to the original shape and append them to the

unflattened_weights list
10 reshaped_elements = np.reshape(current_elements, shape)
11 unflattened_weights.append( tf.convert_to_tensor( reshaped_elements,

dtype=tf.float64))
12 # Update the index for the next iteration
13 current_index += num_elements
14 return unflattened_weights.

3. Pad the flattened weights to the nearest 2n: The xMK-CKKS scheme requires that
the plaintext has a length of 2n. We provide clients with a function to pad their plaintext to
the required length to satisfy this requirement. The target length is the smallest power of 2,
more significant than the length of the plaintext.

Furthermore, CNN model weights are initially floating-point numbers ranging from
−1 to 1 with eight decimal places. Since the RLWE scheme cannot directly handle floating-
point numbers, we scale the weights to large integers in our CNN class. By default, the
weights are scaled up by a factor of 108, ensuring nearly complete precision of the model as
all decimal places are preserved during the encryption process. However, we have made
this scaling factor a static variable that can be modified to evaluate the trade-off between
the accuracy and speed of the model by using fewer decimal places in the model weights.
Listing 9 shows the padding a list of flattened parameters.



Cryptography 2023, 7, 48 17 of 38

Listing 9. Padding a list of flattened parameters to a specified length.

1 def pad_to_power_of_2(flat_params, target_length=2**20, weight_decimals=8):
2 pad_length = target_length - len(flat_params)
3 if pad_length < 0:
4 raise ValueError("The given target_length is smaller than the current

parameter list length.")
5 random_padding = np.random.randint(-10**weight_decimals,

10**weight_decimals + 1, pad_length).tolist()
6 padded_params = flat_params + random_padding
7 return padded_params, len(flat_params).

3.3. Flower Implementation of xMK-CKKS

The Flower FL library offers a versatile and user-friendly interface for initializing
and running FL prototypes. It is designed to be compatible with various machine learn-
ing frameworks and programming languages, with a particular emphasis on Python, as
discussed in Section 2.3.

In a typical Flower library setup, the user will implement the server and client func-
tionalities in separate scripts, commonly named [server.py] and [client.py]. The [server.py]
script primarily handles the initiation of the FL process. This typically entails creating a
server instance and specifying various optional parameters, such as a strategy object. A
strategy object instructs the server on aggregating and computing the model updates the
clients received. Users can choose from various pre-existing strategies or customize their
own by subclassing the predefined strategy class.

On the contrary, the [client.py] script is responsible for defining the logic of a client.
Its main objective is to perform computations, such as training a local model on its dataset
and sending the computed results (i.e., model updates) back to the server. To implement
a client, the user must create a subclass of the Client or NumpyClient class provided by
the Flower library and define the required methods: get_parameters, set_parameters, and
fit. The get_parameters method is responsible for retrieving the parameters of the local
model, while the set_parameters method updates the model with new parameters received
from the server. The fit method, on the other hand, oversees the training process of the
current model.

This architecture provides a flexible, scalable, and highly adaptable environment for
implementing FL across various specifications. Users can utilize their preferred machine
learning framework while still enjoying the inherent privacy and security benefits of FL.

While the standard Flower setup offers excellent flexibility, it does have a limitation
regarding the support for custom communication messages between the server and client.
This limitation becomes apparent when implementing the xMK-CKKS scheme, as it requires
data exchange beyond the pre-defined message types in the original Flower library. We
had to fork the library’s repository and modify the source code to overcome this limitation.
The modifications involved changing and compiling several related files to incorporate our
custom messages. These changes were crucial in successfully implementing the xMK-CKKS
scheme. The following section will provide a comprehensive guide on the necessary steps
for creating custom message types. However, before delving into that, we will discuss
integrating the xMK-CKKS scheme into the Flower source code, assuming that all the
required message types have already been created.

3.3.1. RLWE Instance Initialization

At the heart of our xMK-CKKS implementation are our custom Ring Learning with
Errors (RLWE) instances. These are integral to our work and each server and client instance
needs their own rlwe instance. In our custom client script client.py, we subclass the
NumpyClient and pass an rlwe instance. Similarly, in server.py, we provide the server with



Cryptography 2023, 7, 48 18 of 38

an rlwe instance by subclassing the pre-defined strategy FedAvg. Listing 10 shows the
dynamic settings for initializing an RLWE.

Listing 10. Dynamic settings for initializing an RLWE encryption scheme.

1 # dynamic settings
2 # cnn model precision
3 WEIGHT_DECIMALS = 8
4 model = cnn.cnn.CNN(WEIGHT_DECIMALS)
5 utils.set_initial_params(model)
6 params , _ = utils.get_flat_weights(model)
7

8 # find closest 2^x larger than number of weights
9 num_weights = len(params)

10 n = 2 ** math.ceil(math.log2(num_weights))
11

12 # decide the polynomial ring range of the plaintext m
13 max_weight_value = 10** WEIGHT_DECIMALS # 100 _000_000 if full

weights
14 num_clients = 10
15 t = utils.next_prime(num_clients * max_weight_value * 2) #

2_000_000_011
16

17 # decide the polynomial ring range of the ciphertext (c0, c1)
18 q = utils.next_prime(t * 20)
19

20 # create rlwe instance
21 std = 3 # standard deviation of Gaussian distribution
22 rlwe = RLWE(n, q, t, std).

3.3.2. Key Sharing Process

Until now, when referring to the server.py file, we have been discussing the user-
created server.py file, typically used to start a Flower server. However, starting from this
section onwards, when we mention server.py, we are explicitly referring to the server.py
file located within the source code of the Flower library itself. This server.py file serves as
the foundation for the library’s operations, and our modified version allows us to make
significant changes to the communication and encryption procedures between the server
and clients. It is important to note that our Python code directly deals with polynomial
objects for encryption and decryption computations. In contrast, the transmission of
polynomials between the server and clients requires them to be converted into Python lists
of integers.

Step 1: Polynomial Generation and Key Exchange

The key sharing process is initiated in the modified server.py script. Just before the
training loop in Flower, our custom communication message types are employed to ensure
that all participating clients possess the same aggregated public key. In the modified
server.py script, the local RLWE instance is utilized to generate a uniformly generated
polynomial a. This polynomial “a” is then sent by the server to all the clients, who use it to
generate their private keys and corresponding public keys “b”. The clients respond to the
server’s request by returning their public key “b”.

Listings 11and 12 show the server and client side code for the first step.
(Forked) Server.py:



Cryptography 2023, 7, 48 19 of 38

Listing 11. Server-side code for the first step in an RLWE-based secure computation process.

1 # Step 1) Server sends shared vector_a to clients and they all send back
vector_b

2 self.strategy.rlwe.generate_vector_a()
3 vector_a = self.strategy.rlwe.get_vector_a()
4 vector_a = vector_a.poly_to_list()
5 vector_b_list = []
6

7 # Wait for clients
8 sample_size, min_num_clients = self.strategy.num_fit_clients(
9 self._client_manager.num_available()

10 )
11 clients = self._client_manager.sample(
12 num_clients=sample_size, min_num_clients=min_num_clients
13 )
14

15 # Loop through clients, send vector A, retrieve vector B
16 for c in clients:
17 client_vector_b = c.request_vec_b(vector_a, timeout=timeout)
18 vector_b_list.append( self.strategy.rlwe.list_to_poly( client_vector_b,

"q")).

Client.py:

Listing 12. Client-side code for the first step in an RLWE-based secure computation process.

1 # Step 1) Clients retrieve shared vector_a from server and send back vector_b
2 def generate_pubkey(self, vector_a: List[int]) -> List[int]:
3 vector_a = self.rlwe.list_to_poly(vector_a, "q")
4 self.rlwe.set_vector_a(vector_a)
5 (_, pub) = rlwe.generate_keys()
6 print(f"client pub: {pub}")
7 return pub[0].poly_to_list().

Step 2: Public Key Aggregation

After collecting all the public keys from the participating clients, the server performs
modular additions to aggregate these keys. The resulting aggregated public key is then
sent to all clients through a message request from the server. After training, clients store
this shared public key in their RLWE instance to encrypt their local model weights. Upon
receiving the shared public key, the clients respond to the server with a confirmation.
Listings 13 and 14 show the server and client side code for the second step.

Listing 13. Server-side code for the second step in an RLWE-based secure computation process. The
server aggregates public keys received from clients and sends the aggregated ’allpub’ to clients then
awaits confirmation from each client.

1 # Step 2) Server sends aggregated publickey allpub to clients and receive
boolean confirmation

2 allpub = vector_b_list[0]
3 for poly in vector_b_list[1:]:
4 allpub = allpub + poly
5 allpub = allpub.poly_to_list()
6

7 for c in clients:
8 confirmed = c.request_allpub_confirmation(allpub, timeout=timeout).



Cryptography 2023, 7, 48 20 of 38

Listing 14. Client-side code for the second step in an RLWE-based secure computation process.
Clients receive the aggregated public key ’allpub’ from the server and confirm the reception.

1 # Step 2) Server sends aggregated publickey allpub to clients and
receive boolean confirmation

2 def store_aggregated_pubkey(self , allpub: List[int]) -> bool:
3 aggregated_pubkey = self.rlwe.list_to_poly(allpub , "q")
4 self.allpub = (aggregated_pubkey ,

self.rlwe.get_vector_a ())
5 print(f"client allpub: {self.allpub}")
6 return True.

3.3.3. Training Loop and Weight Encryption Process

After completing the key sharing process, the server initiates the federated training
loop. During this loop, each client independently trains its local model using its local
dataset. Once the training is complete, the server collects and aggregates the model updates
from all clients. The server then calculates the average of the aggregated model updates
and redistributes the updated model to all clients for the next training round. This process
ensures collaboration and synchronization among all clients in the FL process. Listing 15
shows the loop of a distributed training process.

Listing 15. The loop that iterates through multiple rounds of a distributed training process where a
local model is trained simultaneously on all participating clients in each round.

1 for current_round in range(1, num_rounds + 1):
2 # Simultaneously train a local model on all the participating clients
3 res_fit = self.fit_round(server_round=current_round, timeout=timeout).

In a standard setup of the Flower library, clients transmit their unencrypted model
weights to the server, which raises significant security concerns. If any client trains its
model on sensitive data, an untrusted server or malicious client could perform an inversion
attack to infer the client’s training data based on the updated model weights. In contrast,
our implementation of the xMK-CKKS scheme significantly enhances the security and
privacy of this process. In our implementation, clients encrypt their model weights before
transmitting them to the server. The server then homomorphically aggregates all the
encrypted updates, ensuring that neither the server nor any client can read the individual
model updates of other clients. This encryption scheme provides a strong layer of security
and protects the confidentiality of each client’s training data throughout the FL process.

Moreover, in the standard setup of Flower, clients transmit their complete updated model
weights. In contrast, our approach deviates from this by sending only the gradients of the
updated weights. Each client locally compares the new weights with the old ones and commu-
nicates only the weight changes to the server. Similarly, the server homomorphically aggregates
all the gradients and returns the weighted average to the clients. This approach ensures that
the server never has access to the complete weights of any model, thereby reducing the level
of trust required from the participating clients. By transmitting only the weight differentials,
the privacy and confidentiality of the client’s model are further protected, as the server only
receives information about the changes made to the weights rather than the total weight values.

Step 3: Weight Encryption and Transmission

At the end of each round, when the clients have trained their local models, the server
sends a request for the updated weights. The clients will convert the nested tensor structure
of the weights into a long Python list. This will be the plaintext and the following encryption
will result in two ciphertexts c0, c1. The server will then homomorphically aggregate all
the c0 and c1 received from the clients to a c0sum and c1sum variable. The encryption of



Cryptography 2023, 7, 48 21 of 38

plaintexts is performed by the client’s RLWE instance and is based on Equation (8), while
the server aggregates the ciphertexts accoAfter each round, the server requests the updated
weights when the clients have completed training their local models. The clients convert
the nested tensor structure of the weights into a long Python list, which serves as the
plaintext for encryption. Subsequently, the encryption process produces two ciphertexts, c0
and c1. The server then performs homomorphic aggregation on all the received c0 and c1
ciphertexts, resulting in the variables c0sum and c1sum.

The encryption of plaintexts is carried out by the client’s RLWE instance, following the
equation shown in Equation (8). On the other hand, the server aggregates the ciphertexts using
Equation (9):

ctdi = (cdi
0 , cdi

1 )

= (vdi × b + mi + edi
0 , vdi × a + edi

1 )( mod q)
(8)

Csum =
N

∑
i=1

ctdi

= (
N

∑
i=1

cdi
0

N

∑
i=1

cdi
1 )

= (Csum0 , Csum1)( mod q).

(9)

Listings 16 and 17 show the server and client side code for Step 3 in the process.
(Forked) Server.py:

Listing 16. Step 3 in the process where all clients encrypt plaintext ’p’ into (c0 c1) polynomials and
the server aggregates and sums up these polynomials ’c0sum’ and ’c1sum’ from all clients.

1 # Step 3) (~20% Less Memory)
2 # Let all clients encrypt plaintext p -> (c0, c1) and here we sum up all c0 and

c1 polynomials
3 clients = list(self._client_manager.clients.values())
4 c0, c1 = clients[0].request_encrypted_parameters( request, timeout=timeout)
5 c0sum = self.strategy.rlwe.list_to_poly(c0, "q")
6 c1sum = self.strategy.rlwe.list_to_poly(c1, "q")
7 for c in clients[1:]:
8 c0, c1 = c.request_encrypted_parameters(request, timeout=timeout)
9 c0sum = c0sum + self.strategy.rlwe.list_to_poly(c0, "q")

10 c1sum = c1sum + self.strategy.rlwe.list_to_poly(c1, "q").

Step 4: Aggregation and Partial Decryption

Upon receiving the encrypted ciphertexts from all the clients, the server requests each
client to send a partial decryption share based on the previously computed c1sum. The
clients compute their partial decryption share, denoted as “d”, through modular opera-
tions involving c1sum, their private key, and an error polynomial. The server performs
homomorphic aggregation on all the partial decryption shares, resulting in the variable
dsum. The client’s RLWE instance carries out the partial decryption process, following the
equation described in Equation (10).

Di = si × Csum1 + e∗i

= si

N

∑
i=1

(vi × a + edi
1 ) + e∗i ( mod q).

(10)

Client.py:



Cryptography 2023, 7, 48 22 of 38

Listing 17. Step 3 of the process involves encrypting a flat list of parameters into two lists ’c0’ and ’c1’
using the RLWE encryption scheme.

1 # Step 3) After round, encrypt flat list of parameters into two lists (c0, c1)
2 def encrypt_parameters(self, request) -> Tuple[List[int], List[int]]:
3 # Get nested model parameters and turn into long list
4 flattened_weights, self.model_shape = utils.get_flat_weights(self.model)
5

6 # Pad list until length 2**20 with random numbers that mimic the weights
7 flattened_weights, self.model_length =

utils.pad_to_power_of_2(flattened_weights, self.rlwe.n,
self.WEIGHT_DECIMALS)

8 # Turn list into polynomial
9 poly_weights = Rq(np.array(flattened_weights), self.rlwe.t)

10

11 # get gradient of weights if round > 1
12 if request == "gradient":
13 gradient = list(np.array(flattened_weights) -

np.array(self.flat_params))
14 poly_weights = Rq(np.array(gradient), self.rlwe.t)
15

16 # Encrypt the polynomial
17 c0, c1 = self.rlwe.encrypt(poly_weights, self.allpub)
18 c0 = list(c0.poly.coeffs)
19 c1 = list(c1.poly.coeffs)
20 return c0, c1.

Listings 18 and 19 show the server and client side code for Step 4 in the process.

Listing 18. Step 4 in the process where the server sends ’c1sum’ to clients and retrieves all decryption
shares ’d_i’. The shares are aggregated and summed up to obtain ’dsum’.

1 # Step 4) (~20% Less Memory)
2 # Send c1sum to clients and retrieve all decryption shares d_i
3 c1sum = c1sum.poly_to_list()
4 d = clients[0].request_decryption_share(c1sum, timeout=timeout)
5 dsum = self.strategy.rlwe.list_to_poly(d, "t")
6 for c in clients[1:]:
7 d = c.request_decryption_share(c1sum, timeout=timeout)
8 dsum = dsum + self.strategy.rlwe.list_to_poly(d, "t")

Listing 19. Step 4 of the process involves computing the decryption share ’di’ using ’csum1’. The
function processes ’csum1’ then decrypts it and returns ’di’ as a list of integers.

1 # Step 4) Use csum1 to calculate partial decryption share di
2 def compute_decryption_share(self, csum1) -> List[int]:
3 std = 5
4 csum1_poly = self.rlwe.list_to_poly(csum1, "q")
5 error = Rq(np.round(std * np.random.randn(n)), q)
6 d1 = self.rlwe.decrypt2(csum1_poly, self.rlwe.s, error)
7 d1 = list(d1.poly.coeffs) #d1 is poly_t not poly_q
8 return d1.

Step 5: Weight Updates and Model Evaluation

In the final step of the xMK-CKKS scheme, the server performs modular addition
between c0sum and dsum. This operation yields a very close approximation of the sum of
all the plaintexts that would have resulted from unencrypted standard addition. The server
then calculates the average of the aggregated updates, taking into account the number of



Cryptography 2023, 7, 48 23 of 38

participating clients. The resulting average becomes the final model update for the next
training round, which the server sends to all the clients.

Upon receiving the updated model weights, the clients overwrite their current weights
with the new ones. This step also involves evaluating the performance of the new model
weights. The modular addition is performed according to the following equation:

N

∑
i=1

m1 ≈ Csum0 +
N

∑
i=1

Di( mod q). (11)

Listings 20 and 21 show the server and client side code for Step 5 of the process.

Listing 20. Step 5 of the process involves using ’c0sum’ and decryption shares ’dsum’ to retrieve
plaintext then calculate the average and send back the final weights to clients. The average weights
are calculated and sent to clients and memory is freed up by deleting unnecessary variables.

1 # Step 5) Use c0sum and decryption shares to retrieve plaintext, find avg and
send back final weights to clients

2 plaintext = c0sum + dsum #c0sum is poly_q and dsum is poly_t
3 plaintext = plaintext.testing(self.strategy.rlwe.t)
4 plaintext = plaintext.poly_to_list()
5 avg_weights = [round(weight/len(clients)) for weight in plaintext]
6 for c in clients:
7 confirmed = c.request_modelupdate_confirmation( avg_weights,

timeout=timeout)
8 del c0sum, c1sum, dsum.

Listing 21. Step 5 of the process involves receiving approximated model weights from the server and
setting the new weights on the client side. The function converts the received weights then updates
them and then restores the weights into the original tensor structure of the neural network model.

1 # Step 5) Retrieve approximated model weights from server and set
the new weights

2 def receive_updated_weights(self , server_flat_weights) -> bool:
3 # Convert list of Python integers into list of np.float64
4 server_flat_weights = list(np.array(server_flat_weights ,

dtype=np.float64))
5

6 if self.flat_params is None:
7 # first round (server gives full weights)
8 self.flat_params = server_flat_weights
9 else:

10 # next rounds (server gives only gradient)
11 self.flat_params = list(np.array(self.flat_params) +

np.array(server_flat_weights))
12

13 # Remove padding and return weights to original tensor
structure and set model weights

14 server_flat_weights = self.flat_params [:self.model_length]
15 # Restore the long list of weights into the neural network ’s

original structure
16 server_weights = utils.unflatten_weights(

server_flat_weights , self.model_shape)
17

18 utils.set_model_params(self.model , server_weights)
19 return True.



Cryptography 2023, 7, 48 24 of 38

3.4. Flower Guide: Create Custom Messages

This section guides implementing custom messages, a crucial aspect of integrating
the xMK-CKKS scheme into the Flower architecture. Including custom messages enables
data transmission between the server and clients beyond the predefined message types
provided by the library.

Regrettably, the Flower library does not provide a straightforward method for creating
custom messages. Consequently, we are compelled to fork the library and modify the source
code to manually introduce the required changes for implementing this functionality. It is
important to note that this task is nontrivial, as making incorrect changes can disrupt the
existing gRPC communication and other components, failing the FL process.

The Flower library’s documentation site features a contributor section where a third
party has attempted to provide a guide on modifying the source code. However, despite
some typographical errors, this guide needs more files and changes necessary for the
task [35]. To address this gap, our section aims to serve as a comprehensive guide to
implementing custom messages in the Flower library. We provide extensive code snippets
and explanations to facilitate this process, which is currently largely undocumented.

With our contribution, we aim to support and assist future projects seeking to modify
and enhance FL frameworks.

Now, we will proceed with a step-by-step example demonstrating creating a custom
communication system, similar to how we developed our protobuf messages for transfer-
ring list-converted polynomials. The initial step involves forking the library repository,
and upon obtaining access to all the source code files, the following files must be modified:
‘client.py’, ‘transport.proto’, ‘serde.py’, ‘message_handler.py’, ‘numpy_client.py’, ‘app.py’,
‘grpc_client_proxy.py’, and finally ‘server.py’.

Let us consider a scenario where the server needs to send a string request to the clients,
asking them to respond with a list of integers representing the weights of their local models.
Here is an example function from client.py. Listing 22 shows the retrieving model weights.

Listing 22. Function for retrieving model weights based on the request type.

1 def get_model_weights(self , request: str) -> Tuple[str , List[int]]
2 if request == "full_weights"
3 # retrieve and return the full updated weights
4 elif request == "gradient"
5 # retrieve and return the gradient of the updated weights.

3.4.1. transport.proto (Defining Message Types)

The utilization of Google’s Protocol Buffers (protobuf) by Flower has provided us
with an advantageous ability to make modifications with ease. Protobuf is a language-
agnostic and platform-neutral tool that enables the serialization of structured data, granting
versatility by creating multiple message types, including integers, floats, booleans, strings,
and even other message types. The first step in this process involves defining message
types for the RPC communication system [36].

A protobuf file consists of various message types, primarily divided into two main
blocks: ServerMessage and ClientMessage. The ServerMessage block includes the kinds of
messages the server can send, while the ClientMessage block has a similar structure for
client-side messages. Conventionally, when designing protobuf messages, it is common
practice to pair the server request and client response messages with similar names to
indicate their association as part of the same operation. The official proto3 documentation
often uses pairing words like ExampleRequest and ExampleResponse, while Flower’s
protobuf file uses ExampleIns (Ins for Instruction) and ExampleRes (Res for Response).
Ultimately, the choice of naming convention can be arbitrary. Listings 23 and 24 show the
server and client side code for Protocol Buffer message definition.



Cryptography 2023, 7, 48 25 of 38

Within the “ServerMessage” block:

Listing 23. Protocol Buffer message definition in which the ’GetWeightsIns’ message includes a
’request’ field of type string.

1 message GetWeightsIns {
2 string request = 1;
3 }
4 oneof msg {
5 ReconnectIns reconnect_ins = 1;
6 GetPropertiesIns get_properties_ins = 2;
7 GetParametersIns get_parameters_ins = 3;
8 FitIns fit_ins = 4;
9 EvaluateIns evaluate_ins = 5;

10 ExampleIns get_weights_ins = 6;
11 }

Within the “ClientMessage” block:

Listing 24. Protocol Buffer message definition for the ’GetWeightsRes’ message which includes a
’response’ field of type string and a repeated field ’l’ of type int64.

1 message GetWeightsRes {
2 string response = 1;
3 repeated int64 l= 2;
4 }
5

6 oneof msg {
7 DisconnectRes disconnect_res = 1;
8 GetPropertiesRes get_properties_res = 2;
9 GetParametersRes get_parameters_res = 3;

10 FitRes fit_res = 4;
11 EvaluateRes evaluate_res = 5;
12 ExampleRes get_weights_res = 6.
13 }

After defining protobuf messages, you need to compile them using the protobuf compiler
(protoc) for generating the corresponding code for your chosen programming language (in
our case, Python). To compile, we navigate to the correct folder and use the command:

$ python -m flwr_tool.protoc

If it compiles succesfully, you should see the following messages:

Writing mypy to flwr/proto/transport_pb2.pyi
Writing mypy to flwr/proto/transport_pb2_grpc.pyi

3.4.2. Serde.py (Serialization and Deserialization)

Serialization and deserialization, commonly known as SerDe, play a crucial role in
distributed systems as they convert complex data types into a format suitable for transmis-
sion and storage and vice versa. To facilitate this conversion for our defined RPC message
types, our next step is to include functions in the serde.py file. This file will handle the
serialization process of Python objects into byte streams and the deserialization process of
byte streams back into Python objects.

To ensure the proper serialization and deserialization of data in each server and
client request-response pair, we need to add four functions to the serde.py file. Firstly, we
require a function on the server side to serialize the Python data into bytes for transmission.
Secondly, on the client side, we need a function to deserialize the received bytes back into



Cryptography 2023, 7, 48 26 of 38

Python data. Thirdly, on the client side, we need a function to serialize the Python data
into bytes for transmission back to the server. Lastly, we need a function on the server side
to deserialize the received bytes back into Python data. These four functions collectively
enable seamless data conversion between Python objects and byte streams for effective
communication. Listing 25 defines functions for serializing and deserializing messages.

Listing 25. Define functions for serializing and deserializing messages between the server and client
using Protocol Buffers.

1 # on server serialize from Python to bytes
2 def request_weights_to_proto(request: str) -> ServerMessage.GetWeightsIns:
3 return ServerMessage.GetWeightsIns(request=request)
4

5 # on client deserialize from bytes to Python
6 def request_weights_from_proto(msg: ServerMessage.GetWeightsIns) -> str:
7 return msg.request
8

9 # on client serialize from Python to bytes
10 def reply_weights_to_proto(response: str, l: List[int]) ->

ClientMessage.GetWeightsRes:
11 return ClientMessage.GetWeightsRes(response=response, l=l)
12

13 # on server deserialize from bytes to Python
14 def reply_weights_from_proto(res: ClientMessage.GetWeightsRes) -> Tuple[str,

List[int]]:
15 return res.response, res.l

3.4.3. grpc_client_proxy.py (Sending the Message from the Server)

This file is crucial for smooth data exchange between the client and server. Its pri-
mary function entails the serialization of messages originating from the server and the
deserialization of responses transmitted by the clients. Listing 26 shows the client-side
implementation for requesting vector.

Listing 26. The client-side implementation for requesting vector ’b’ in a specific weight format from
a server.

1 def request_vec_b(self, weightformat: str, timeout: Optional[float]) ->
List[int]:

2 request_msg = serde.request_weights_to_proto(weightformat) # serialize
3 res_wrapper: ResWrapper = self.bridge.request(
4 ins_wrapper=InsWrapper(
5 server_message = ServerMessage(get_weights_ins = request_msg),
6 timeout=timeout,
7 )
8 )
9 client_msg: ClientMessage = res_wrapper.client_message

10 client_weights = serde.reply_weights_from_proto(
client_msg.get_weights_res) # deserialize

11 return client_weights

3.4.4. message_handler.py (Receiving Message by Client)

This particular file is responsible for managing the processing of incoming messages.
Its various functions are designed to efficiently extract the message payload from the server,
convert it into an understandable format, and then direct it towards the appropriate function
within your clients. After completing this process, the results are converted into a legible form
and transmitted to the server. Listings 27 and 28 show the conditional statements.



Cryptography 2023, 7, 48 27 of 38

Within the handle function:

Listing 27. Conditional statement that checks if the received ’server_msg’ contains a
’get_weights_ins’ field.

1 if server_msg.HasField("get_weights_ins"):
2 return _request_local_weights(client, server_msg.get_wights_ins), 0, True

Add a new function:

Listing 28. Client Request for Local Weights with Serialization and Deserialization

1 def _request_local_weights(client: Client, msg: ServerMessage.GetWeightsIns)
-> ClientMessage:

2 weightformat = serde.request_weights_from_proto(msg) # deserialize server
msg

3 weights = client.get_model_weights(weightformat) # pass to client and get
result

4 client_weights = serde.reply_weights_to_proto(weights) # serialize client
result

5 return ClientMessage(get_weights_res=client_weights)

3.4.5. numpy_client.py

This file defines how the pre-defined numpyclient interacts with the server. If your
client.py subclasses NumpyClient, one must add new methods for sending and receiving
custom messages. Listing 29 shows below.

Listing 29. Function for requesting and retrieving local model weights from the client based on the
provided ’weightformat’ received from the server.

1 def has_get_model_weights(client: NumPyClient) -> bool:
2 return callable(getattr(client, "get_model_weights", None)) # client.py

func name

3.4.6. app.py

Here, you implement the functionality for handling your custom messages. If your
message were a request to perform some computation, one would write the function that
performs this computation here. Listing 30 shows the import for client.py file.

Listing 30. Imports.

1 from .numpy_client import has_example_response as
numpyclient_has_get_model_weights

Listing 31 defines this function above the _wrap_numpy_client function.

Listing 31. Wrapper function that retrieves model weights from a client using the specified ’weightformat’.

1 def _get_model_weights(self, weightformat: str) -> List[int]:
2 return self.numpy_client.get_model_weights( weightformat)

Listing 32 adds wrapper type method inside the _wrap_numpy_client function



Cryptography 2023, 7, 48 28 of 38

Listing 32. If the ’numpyclient’ has a ’get_model_weights’ method assign the ’_get_model_weights’
function to the ’member_dict’ dictionary with the key ’get_model_weights’.

1 if numpyclient_has_get_model_weights(client=client):
2 member_dict["get_model_weights"] = _get_model_weights

4. Experimental Evaluation
4.1. Experimental Setup and Data Set
4.1.1. Setup

After receiving the encrypted ciphertexts from all the clients, the server requests
each client to send a partial decryption share based on the previously computed c1sum.
The clients compute their partial decryption shares, denoted as “d”, through modular
operations involving c1sum, their private key, and an error polynomial. Subsequently,
the server performs homomorphic aggregation on all the received partial decryption
shares, resulting in the variable dsum. The client’s RLWE instance executes the partial
decryption process, following the equation described in Equation (10). This procedure
allows the server to collectively decrypt the aggregated ciphertexts without having access
to individual clients’ specific model updates.

The t3.large instance served as a cost-effective starting point for our experiments,
while the c5a.8xlarge and g4dn.4xlarge instances offered substantially higher computational
capacity, enabling faster model training for our experimental evaluations. Among these two,
the g4dn.4xlarge instance, with GPU-accelerated processing, significantly expedited the
model training process. However, it is worth noting that the encryption process, involving
the transmission of large polynomials and CPU-based homomorphic operations, did not
benefit significantly from GPU acceleration.

During development, we leveraged Visual Studio Code’s remote development features,
which allowed us to SSH into the EC2 instances from any device. This approach facilitated
real-time collaborative work, eliminating the need for constant pushes and pulls to a GitHub
repository. Since our team consisted of only two members, this setup proved to be highly
efficient, as it did not require extensive version control or merging processes. The flexibility
and collaborative nature of this setup significantly contributed to the overall efficiency of
our work. The finalized code for our project is available on GitHub (https://github.com/
MetisPrometheus/MSc-thesis-xmkckks) and Zenodo (https://zenodo.org/record/8135902
accessed on 30 September 2023).

4.1.2. Dataset

This study collected 7593 COVID-19 images from 466 patients, 6893 normal im-
ages from 604 patients, and 2618 CAP (Community-acquired pneumonia) images from
60 patients. For our experiments, we utilized a COVID-19 X-ray lung scan dataset from
a study [37] available on Kaggle, which served as our training, validation, and test
datasets. The original image size for all images was 512 × 512 pixels, which we resized to
128 × 128 pixels for consistency.

The dataset was categorized into two classifications: COVID and non-COVID. Specif-
ically, we gathered 7593 images from 466 COVID-19-infected patients and 6893 images
from 604 normal patients. We had 14,486 images, with a nearly balanced distribution
between the two classifications, resulting in a close to 50/50 split. Figure 5 show samples
of the dataset.

https://github.com/MetisPrometheus/MSc-thesis-xmkckks
https://github.com/MetisPrometheus/MSc-thesis-xmkckks
https://zenodo.org/record/8135902


Cryptography 2023, 7, 48 29 of 38

Figure 5. An example of an X-ray lung scan image taken from the dataset. The first row is COVID-19
negative, the second row is COVID-19 positive.

The X-ray lung scan images were placed into a folder directly which was divided into
“COVID” and “non-COVID” folders. Figure 6 below shows the dataset folder structure.

Figure 6. Dataset folder structure.

The folder structure was designed to maintain a balanced classification while limiting
the data used during model training. We randomly selected 2000 images from each
classification and converted the dataset to the “.npy” format to achieve this. Subsequently,
we split the dataset into train and test datasets.

Specifically, 75% of the samples were allocated for training, where 10% of this training
data was further set aside as the validation dataset. The remaining 25% of the data were
used as the test dataset. In other words, 300 records were used for validation, 2700 for
training, and the remaining 1000 for the test dataset. This partitioning ensured a balanced
distribution of samples across the different sets and allowed us to evaluate the model’s
performance effectively.

Table 1 shows the data segregation.

Table 1. Dataset description.

Dataset Rows Label

Training 1500
1500

Positive
Negative

Test 500
500

Positive
Negative

4.1.3. Preprocessing

We conducted two main data preprocessing steps in this implementation: grayscaling
and labeling. Grayscaling was employed to simplify algorithms and reduce computational
complexities. Additionally, we assigned corresponding labels to the images, and to visualize the
conversion process of both the COVID and non-COVID datasets, we utilized the “progressbar”
library. Once the data was preprocessed, we split it into train and test sets, later utilized in



Cryptography 2023, 7, 48 30 of 38

the machine learning model. This preprocessing phase ensured that the data was in a suitable
format for training and evaluation, facilitating the subsequent stages of the experiment.

4.1.4. Experimental Setup

In this research, we conducted experiments using varying numbers of clients, ranging
from two to ten clients. The FL process was executed over a total of five rounds per client,
during which we closely monitored the runtime and evaluation metrics to analyze the model
prediction performance of the encrypted FL model. All models were trained and evaluated on
different AWS EC2 instances. For the final tests, we utilized a g4dn.x4large instance, simulating
the server and clients by running multiple scripts in separate terminals. This approach allowed
us to assess the model’s performance under various client configurations and AWS instances,
contributing to a comprehensive evaluation of the proposed encrypted FL scheme.

4.1.5. Python Libraries

The implementation of our research was developed using Python 3.10.6 and various
essential libraries, including Keras, TensorFlow, NumPy, Flower 1.3.0, time, and Scikit.

We relied on the Keras and TensorFlow libraries to build and preprocess the Convo-
lutional Neural Network (CNN) model used in prediction. These open-source software
libraries are powerful tools for machine learning tasks, particularly emphasising the train-
ing and inference of deep neural networks.

Numpy was employed to handle array operations, such as concatenating the COVID
and NON-COVID arrays and calculating the precision and accuracy of predicted model
values. In addition, we utilized Scikit’s sklearn metrics module to generate evaluation
metrics for the prediction results.

Flower Library, originating from a research project at the University of Oxford, was
our chosen FL (FL) library to create the FL environment. Notably, Flower’s components
are known for being relatively simple to customize, extend, or override, making it an ideal
platform for implementing our multi-key HE scheme for secure communication between
the server and clients. Its modular architecture played a crucial role in facilitating the
integration of our encryption scheme into the FL framework.

4.1.6. Model Infrastructure

Table 2 below shows the model summary of the CNN model used in the study:

Table 2. CNN classification model summary.

Layer (Type) Output Shape Param #

conv2d (Conv2D)
batch_normalization (BatchNormalization)
max_pooling2d (MaxPooling2D)
conv2d_1 (Conv2D)
batch_normalization_1 (BatchNormalization)
max_pooling2d_1 (MaxPooling2D)
conv2d_2 (Conv2D)
batch_normalization_2 (BatchNormalization)
max_pooling2d_2 (MaxPooling2D)
flatten (Flatten)
dense (Dense)
dropout (Dropout)
dense_1 (dense)

(None, 124, 124, 32)
(None, 124, 124, 32)
(None, 62, 62, 32)
(None, 58, 58, 16)
(None, 58, 58, 16)
(None, 29, 29, 16)
(None, 25, 25, 32)
(None, 25, 25, 32)
(None, 12, 12, 32)
(None, 4608)
(None, 200)
(None, 200)
(None, 2)

832
128
0
12816
64
0
12832
128
0
0
921800
0
402

Total params: 949,002
Trainable params: 948,842
Non-trainable params: 160



Cryptography 2023, 7, 48 31 of 38

4.2. Evaluation Metrics

We chose to measure the performances of the different execution methods through the
following metrics:

4.2.1. Accuracy

Accuracy is a crucial performance metric used in classification tasks to assess the
model’s ability to predict the classes of instances in the dataset accurately. It quantifies
the proportion of correctly classified instances, encompassing both true positives and true
negatives, among all instances in the dataset. Given the binary classification nature of our
case (Positive or Negative), the accuracy can be calculated as follows using the formula:

Accuracy =
TP + TN

TP + TN + FP + FN

where:

• TP = True Positive
• TN = True Negative
• FP = False Positives
• FN = False Negatives.

4.2.2. Precision

Precision is an essential performance metric used in classification tasks to assess the
accuracy of positive predictions made by a model. It quantifies the proportion of true
positive (TP) instances among all the instances the model predicted as positive (TP + FP).
In other words, it gauges the model’s capability to avoid false positives. The precision is
calculated using the following formula:

Precision =
TP

TP + FP

.

4.2.3. Recall

Recall, also known as sensitivity or true positive rate, is a vital performance metric
used in classification tasks to assess a model’s ability to identify positive instances correctly.
It quantifies the proportion of true positive (TP) instances among all the actual positive
instances (TP + FN). In other words, it measures the model’s capability to avoid false
negatives. The recall is calculated using the following formula:

Recall =
TP

TP + FN

4.2.4. F1-Score

The F1-score is a fundamental performance metric utilized in classification tasks,
effectively combining precision and recall into a unified measure. It represents the harmonic
mean of precision and recall, evaluating the model’s performance on both positive and
negative instances. The F1-score is calculated using the following formula:

F1 = 2 × precision × recall
precision + recall

4.2.5. Time

Time refers to the duration a program or algorithm takes to accomplish a specific task
or operation. In our study, we measured time in seconds. The time was calculated using
the following formula:



Cryptography 2023, 7, 48 32 of 38

Time = Tend − T0

where T0 is the start time and Tend is the time the program completed.
The total execution time consists of running the following tasks:

• Open connection between server and client;
• Initialize CNN model on both ends;
• Preprocess test and training data;
• Train the CNN prediction model at the client-side;
• Encrypt weights and export encrypted weights for all clients;
• Aggregate weights;
• Encrypt aggregated weights and export weights back to clients;
• Update model and run prediction for client;
• Generate model evaluation.

4.2.6. Memory Usage

Memory usage refers to the amount of memory consumed by the code during the
execution of commands. To measure memory usage, we utilized the “memory_profiler”
package, a module that queries the operating system kernel to determine the amount of
memory allocated by the current process.

4.3. Experimental Results
4.3.1. Experimentation on Locally Trained Model

At the beginning of the experiment, we conducted training on the COVID-19 labeling
model in a plain centralized environment, involving only one client in the training process.
This setup is typical for machine learning models, where a single client is usually responsible
for the training. Table 3 presents the precision evaluation results of the locally trained model.

Table 3. Initial results of a locally trained CNN model.

Metric Value

Accuracy 0.927
Precision 0.925

Recall 0.925
F1-score 0.925

Time 185 s
Memory 1850 MB

4.3.2. Experimentation on Plain and Encrypted Model with FL

Next, we utilized the FL framework with two, three, five, and ten clients, conducting
the same tests as the locally trained model. Table 4 illustrates the precision evaluation
results of a model trained using FL.

Table 4. Results from plain FL and homomorphic encrypted FL.

Client
Accuracy Precision Recall F1-Score Time Server Memory Client Memory

Plain HE Plain HE Plain HE Plain HE Plain HE Plain HE Plain HE

2 0.93 0.923 0.93 0.94 0.93 0.91 0.93 0.92 184 s 237 s 1314 MB 1488 MB 1040 MB 1182 MB

3 0.92 0.912 0.92 0.92 0.92 0.91 0.91 0.92 185 s 248 s 1592 MB 1638 MB 936 MB 1128 MB

5 0.93 0.904 0.93 0.96 0.93 0.86 0.92 0.90 191 s 317 s 1797 MB 1887 MB 796 MB 1008 MB

10 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 225 s 417 s 2322 MB 2546 MB 662 MB 814 MB



Cryptography 2023, 7, 48 33 of 38

4.3.3. Experimentation with a Bigger Dataset

Subsequently, we also assessed the framework’s performance with a larger dataset.
In this case, we utilized 10,000 images, divided into an 80/20 split between training and
testing sets. Table 5 presents the description of the larger dataset.

Table 5. Description of the bigger dataset.

Dataset Rows Label

Training 4000
4000

Positive
Negative

Test 1000
1000

Positive
Negative

The training/validation data split remains the same, with a 90/10 distribution. Specif-
ically, 7200 out of the 8000 records are used for training, while the remaining 800 are
allocated for validation. Table 6 displays the results of the precision evaluation for a model
trained with FL. Additionally, Table 7 illustrates the time required for a single polynomial
transmission between server and client compared to a single homomorphic operation,
providing insight into the additional time required by our encryption scheme.

Table 6. Results with bigger dataset.

Client
Accuracy Precision Recall F1-Score Time Server Memory Client Memory

Plain HE Plain HE Plain HE Plain HE Plain HE Plain HE Plain HE

2 0.973 0.967 0.98 0.98 0.97 0.97 0.97 0.97 542 s 612 s 1398 MB 1601 MB 1504 MB 1906 MB

3 0.968 0.964 0.98 0.98 0.97 0.97 0.97 0.96 564 s 633 s 1596 MB 1710 MB 1322 MB 1730 MB

5 0.962 0.933 0.96 0.98 0.97 0.89 0.97 0.93 667 s 841 s 1965 MB 1977 MB 1001 MB 1175 MB

10 0.938 0.927 0.94 0.98 0.94 0.89 0.94 0.92 765 s 940 s 2528 MB 2659 MB 901 MB 1088 MB

Table 7. xMK-CKKS: Cause of additional time required.

Time Execution Data Transmission Operation

t3.large 1.07 s (81%) 0.25 s (19%)

c5a.8xlarge 0.58 s (82%) 0.13 s (18%)

4.3.4. Result Comparison

The figures below illustrate a comparison of the results obtained from both the small
and large datasets.

5. Discussion

The comparison of performance between encrypted and unencrypted models showed
similar results, as depicted in Figures 7–11. Tests with two, three, and five clients yielded
comparable scores ranging from 89% to 97%, but the performance varied significantly with
ten clients. Larger datasets provided satisfactory results across all clients, while smaller
datasets lacked diverse data for each client, leading to ineffective learning of the models.



Cryptography 2023, 7, 48 34 of 38

2 3 5 10
0

50

100

Number of clients
A

cc
ur

ac
y

(%
)

Accuracy

Plain (small dataset) HE (small dataset) Plain (big dataset) HE (big dataset)

Figure 7. Accuracy for different numbers of clients.

2 3 5 10
0

50

100

Number of clients

Pr
ec

is
io

n
(%

)

Precision

Plain (small dataset) HE (small dataset) Plain (big dataset) HE (big dataset)

Figure 8. Precision for different numbers of clients.

2 3 5 10
0

50

100

Number of clients

R
ec

al
l(

%
)

Recall

Plain (small dataset) HE (small dataset) Plain (big dataset) HE (big dataset)

Figure 9. Recall for different numbers of clients.



Cryptography 2023, 7, 48 35 of 38

2 3 5 10
0

50

100

Number of clients
F1

-s
co

re
(%

)

F1-score

Plain (small dataset) HE (small dataset) Plain (big dataset) HE (big dataset)

Figure 10. F1-score for different numbers of clients.

2 3 5 10
0

50

100

Number of clients

A
cc

ur
ac

y
(%

)

Accuracy

Plain (small dataset) HE (small dataset) Plain (big dataset) HE (big dataset)

Figure 11. Accuracy for different numbers of clients.

Regarding execution time, as shown in Figure 12, encrypted FL (FL) naturally took
longer than its plain FL counterpart, which aligns with our expectations. The number of
clients significantly impacted execution time, mainly because of our sequential design,
where data aggregation from each client occurs individually, resulting in an additional 4 s
per client per training round.

2 3 5 10
0

200

400

600

800

1,000

Number of clients

ti
m

e
(s

)

Time

Plain (small dataset) HE (small dataset) Plain (big dataset) HE (big dataset)

Figure 12. Time taken for different numbers of clients.

Interestingly, as demonstrated with a t3 and c5 instance in Table 7, more than 80% of
this additional time is due to the transmission of large polynomials. In comparison, less



Cryptography 2023, 7, 48 36 of 38

than 20% is allocated to the actual homomorphic operations. Notably, these operations
maintained similar efficiency levels regardless of whether we used three- or nine-digit
coefficients, indicating that the operation time is primarily influenced by the length of the
polynomials rather than the size of their coefficients. This finding shows that the homomor-
phic operations are very efficient, even with over one million nine-digit coefficients.

Examining Table 4 reveals a notable observation. The precision measurements for both
plain and encrypted data scored 50% when training with 10 clients. This can be attributed
to the limited and divided dataset, causing clients to be unable to discern significant
patterns or correlations. The 50% score mirrors the distribution of COVID-affected and
non-COVID-affected patients’ data, with each client training on 300 datasets and validating
on 30.

6. Conclusions and Future Directions

We propose a privacy-preserving FL scheme based on homomorphic multi-key en-
cryption with the assistance of RLWE and Flower to safeguard private data. Specifically,
we enhance the solution presented by Wibawa et al. [33] by implementing a more secure
HE approach in an FL framework. The previous paper employed a single public key for all
clients participating in training, which is unsuitable in real-world scenarios where not all
clients can be trusted. To address this issue, we adopt the xMK-CKKS scheme proposed
by Ma et al. [27] and introduce custom communications between clients and the server
within the Flower framework. This approach ensures that model update confidentiality is
maintained through multi-key HE.

Our evaluation comprehensively examines an HE-based FL scheme, considering
metrics such as accuracy, precision, recall, F1 score, time, and memory usage. We compare
this scheme against plain FL and locally trained models, conducting tests on an Amazon
Web Services EC2 instance with scenarios involving up to 10 clients.

Upon thorough evaluation and comparison of the different schemes, we conclude that
the xMK-CKKS HE scheme effectively preserves privacy while achieving comparable accuracy,
precision, recall, and F1-score levels compared to the other schemes. However, it is essential
to note that the HE scheme exhibits longer execution times between each round and higher
memory usage per IoT device and server. These trade-offs should be carefully considered
based on the project’s specific needs, mainly when user privacy is of utmost importance.

Looking ahead, there are potential enhancements that could further improve our im-
plementation’s privacy, efficiency, and effectiveness. Firstly, ensuring all clients start with
identical initial weights could enhance privacy by eliminating the need to share full model
weights during the first round. Secondly, leveraging Flower’s built-in code for parallel pro-
cessing during encrypted weight sharing could significantly reduce overall execution time
depending on various factors. Thirdly, a more nuanced model updating process could be
achieved by adopting a weighted averaging approach that considers the size of each client’s
training data. Finally, to mitigate memory constraints, we could reduce the precision of model
weights, allowing us to use smaller integer types. However, it is crucial to strike a balance to
ensure that memory optimization does not compromise the model’s learning capacity. Further
research could determine the optimal level of precision reduction that maximizes memory
savings without significantly impacting model performance.

Author Contributions: Conceptualization, I.W., M.C.T. and F.O.C.; software, I.W. and M.C.T.; val-
idation, I.W., M.C.T. and F.O.C.; formal analysis,I.W., M.C.T. and F.O.C.; writing—original draft
preparation, I.W., M.C.T. and F.O.C.; writing—review and editing, I.W., M.C.T. and F.O.C.; visualiza-
tion, I.W. and M.C.T.; supervision, F.O.C. Authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Dataset used in the manuscript can be found at: https://www.kaggle.
com/datasets/tawsifurrahman/covid19-radiography-database accessed on 30 September 2023.

https://www.kaggle.com/datasets/tawsifurrahman/covid19-radiography-database
https://www.kaggle.com/datasets/tawsifurrahman/covid19-radiography-database


Cryptography 2023, 7, 48 37 of 38

Conflicts of Interest: The authors have no conflict of interest to declare. All co-authors have seen
and agreed with the contents of the manuscript. We certify that the submission is original work and
is not under review at any other publication.

References
1. Abouelmehdi, K.; beni hssane, A.; Khaloufi, H.; Saadi, M. Big data security and privacy in healthcare: A Review. Procedia Comput.

Sci. 2017, 113, 73–80. [CrossRef]
2. Kaissis, G.; Makowski, M.; Rückert, D.; Braren, R. Secure, privacy-preserving and federated machine learning in medical imaging.

Nat. Mach. Intell. 2020, 2, 305–311. [CrossRef]
3. Lyubashevsky, V.; Peikert, C.; Regev, O. On Ideal Lattices and Learning with Errors over Rings. In Proceedings of the Advances

in Cryptology—EUROCRYPT 2010, French Riviera, France, 30 May–3 June 2010; Gilbert, H., Ed., Springer: Berlin/Heidelberg,
Germany, 2010; pp. 1–23.

4. Truong, N.; Sun, K.; Wang, S.; Guitton, F.; Guo, Y. Privacy Preservation in Federated Learning: An insightful survey from the
GDPR Perspective. arXiv 2021, arXiv:2011.05411.

5. Li, S.; Xue, K.; Yang, Q.; Hong, P. PPMA: Privacy-Preserving Multisubset Data Aggregation in Smart Grid. IEEE Trans. Ind.
Inform. 2018, 14, 462–471. [CrossRef]

6. Pu, C.; Wall, A.; Choo, K.K.R.; Ahmed, I.; Lim, S. A Lightweight and Privacy-Preserving Mutual Authentication and Key
Agreement Protocol for Internet of Drones Environment. IEEE Internet Things J. 2022, 9, 9918–9933. [CrossRef]

7. Sala, R.D.; Scotti, G. Exploiting the DD-Cell as an Ultra-Compact Entropy Source for an FPGA-Based Re-Configurable PUF-TRNG
Architecture. IEEE Access 2023, 11, 86178–86195. [CrossRef]

8. Sun, C.; Liu, J.; Xu, X.; Ma, J. A Privacy-Preserving Mutual Authentication Resisting DoS Attacks in VANETs. IEEE Access 2017,
5, 24012–24022. [CrossRef]

9. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. Commun. ACM
2017, 60, 84–90. [CrossRef]

10. What are Convolutional Neural Networks? | IBM. Available online: https://www.ibm.com/topics/convolutional-neural-
networks (accessed on 30 September 2023)

11. McMahan, H.B.; Moore, E.; Ramage, D.; Hampson, S.; Arcas, B.A. Communication-Efficient Learning of Deep Networks from
Decentralized Data. arXiv 2023, arXiv:1602.05629.

12. Li, T.; Sahu, A.K.; Talwalkar, A.; Smith, V. Federated Learning: Challenges, Methods, and Future Directions. IEEE Signal Process.
Mag. 2020, 37, 50–60. [CrossRef]

13. Smith, V.; Chiang, C.K.; Sanjabi, M.; Talwalkar, A. Federated Multi-Task Learning. arXiv 2018, arXiv:1705.10467.
14. Bagdasaryan, E.; Veit, A.; Hua, Y.; Estrin, D.; Shmatikov, V. How To Backdoor Federated Learning. arXiv 2019, arXiv:1807.00459.
15. Melis, L.; Song, C.; De Cristofaro, E.; Shmatikov, V. Exploiting Unintended Feature Leakage in Collaborative Learning. In

Proceedings of the 2019 IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA, 19–23 May 2019; pp. 691–706.
[CrossRef]

16. Fung, C.; Yoon, C.J.M.; Beschastnikh, I. Mitigating Sybils in Federated Learning Poisoning. arXiv 2020, arXiv:1808.04866.
17. Fredrikson, M.; Jha, S.; Ristenpart, T. Model Inversion Attacks that Exploit Confidence Information and Basic Countermeasures.

In Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security, Denver, CO, USA, 12–16
October 2015; pp. 1322–1333. [CrossRef]

18. Zhu, L.; Liu, Z.; Han, S. Deep Leakage from Gradients. arXiv 2019, arXiv:1906.08935.
19. Rieke, N.; Hancox, J.; Li, W.; Milletarì, F.; Roth, H.R.; Albarqouni, S.; Bakas, S.; Galtier, M.N.; Landman, B.A.; Maier-Hein, K.; et al.

The future of digital health with federated learning. NPJ Digit. Med. 2020, 3, 119. [CrossRef]
20. Kairouz, P.; McMahan, H.B.; Avent, B.; Bellet, A.; Bennis, M.; Bhagoji, A.N.; Bonawitz, K.; Charles, Z.; Cormode, G.; Cummings,

R.; et al. Advances and Open Problems in Federated Learning. arXiv 2021, arXiv:1912.04977.
21. Diao, E.; Ding, J.; Tarokh, V. HeteroFL: Computation and Communication Efficient Federated Learning for Heterogeneous Clients.

arXiv 2021, arXiv:2010.01264.
22. Authors, T.F. Flower: A Friendly Federated Learning Framework. arXiv 2020, arXiv:2007.14390.
23. Quickstart. 2023. Original-Date: 2017-07-18T20:41:16Z. Available online: https://openmined.github.io/PySyft/getting_started/

index.html (accessed on 30 September 2023)
24. Flower: A Friendly Federated Learning Framework, 2023. Original-Date: 2020-02-17T11:51:29Z. Available online: https:

//flower.dev (accessed on 30 September 2023)
25. Wood, A.; Najarian, K.; Kahrobaei, D. Homomorphic Encryption for Machine Learning in Medicine and Bioinformatics. ACM

Comput. Surv. 2020, 53, 70. [CrossRef]
26. Gentry, C. Computing Arbitrary Functions of Encrypted Data. Commun. ACM 2010, 53, 97–105. [CrossRef]
27. Ma, J.; Naas, S.A.; Sigg, S.; Lyu, X. Privacy-preserving Federated Learning based on Multi-key Homomorphic Encryption. arXiv

2021, arXiv:2104.06824.
28. Chen, L.; Jordan, S.; Liu, Y.K.; Moody, D.; Peralta, R.; Perlner, R.; Smith-Tone, D. Report on Post-Quantum Cryptography; Technical

Report NIST IR 8105; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2016. [CrossRef]
29. Peikert, C. A Decade of Lattice Cryptography. Found. Trends Theor. Comput. Sci. 2016, 10, 283–424. [CrossRef]

http://doi.org/10.1016/j.procs.2017.08.292
http://dx.doi.org/10.1038/s42256-020-0186-1
http://dx.doi.org/10.1109/TII.2017.2721542
http://dx.doi.org/10.1109/JIOT.2022.3163367
http://dx.doi.org/10.1109/ACCESS.2023.3304901
http://dx.doi.org/10.1109/ACCESS.2017.2768499
http://dx.doi.org/10.1145/3065386
https://www.ibm.com/topics/convolutional-neural-networks
https://www.ibm.com/topics/convolutional-neural-networks
http://dx.doi.org/10.1109/MSP.2020.2975749
http://dx.doi.org/10.1109/SP.2019.00029
http://dx.doi.org/10.1145/2810103.2813677
http://dx.doi.org/10.1038/s41746-020-00323-1
https://openmined.github.io/PySyft/getting_started/index.html
https://openmined.github.io/PySyft/getting_started/index.html
https://flower.dev
https://flower.dev
http://dx.doi.org/10.1145/3394658
http://dx.doi.org/10.1145/1666420.1666444
http://dx.doi.org/10.6028/NIST.IR.8105
http://dx.doi.org/10.1561/0400000074


Cryptography 2023, 7, 48 38 of 38

30. Dowlin, N.; Gilad-Bachrach, R.; Laine, K.; Lauter, K.; Naehrig, M.; Wernsing, J. Manual for Using Homomorphic Encryption for
Bioinformatics. Proc. IEEE 2017, 105, 552–567. [CrossRef]

31. Lyubashevsky, V.; Peikert, C.; Regev, O. On Ideal Lattices and Learning with Errors Over Rings. J. ACM 2013, 60, 43. [CrossRef]
32. Körtge, N. The Idea behind Lattice-Based Cryptography. 2021. Available online: https://medium.com/nerd-for-tech/the-idea-

behind-lattice-based-cryptography-5e623fa2532b (accessed on 30 September 2023).
33. Wibawa, F.; Catak, F.O.; Sarp, S.; Kuzlu, M. BFV-Based Homomorphic Encryption for Privacy-Preserving CNN Models. MDPI

Cryptogr. 2022, 6, 34. [CrossRef]
34. GitHub—Yusugomori/Rlwe-Simple: Simple RLWE (Ring Learning with Errors) Implementation with Python. Available online:

https://github.com/yusugomori/rlwe-simple (accessed on 30 September 2023).
35. Creating New Messages—Flower 1.5.0. Available online: https://flower.dev/docs/framework/tutorial-series-get-started-with-

flower-pytorch.html (accessed on 30 September 2023).
36. Protocol Buffer Basics: Python. Available online: https://protobuf.dev/getting-started/pythontutorial/ (accessed on

30 September 2023).
37. Maftouni, M.; Law, A.C.C.; Shen, B.; Grado, Z.J.K.; Zhou, Y.; Yazdi, N.A. A robust ensemble-deep learning model for COVID-19

diagnosis based on an integrated CT scan images database. In Proceedings of the IIE Annual Conference, Online, 22–25 May
2021; Institute of Industrial and Systems Engineers (IISE): Peachtree Corners, GA, USA, pp. 632–637.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/JPROC.2016.2622218
http://dx.doi.org/10.1145/2535925
https://medium.com/nerd-for-tech/the-idea-behind-lattice-based-cryptography-5e623fa2532b
https://medium.com/nerd-for-tech/the-idea-behind-lattice-based-cryptography-5e623fa2532b
http://dx.doi.org/10.3390/cryptography6030034
https://github.com/yusugomori/rlwe-simple
https://flower.dev/docs/framework/tutorial-series-get-started-with-flower-pytorch.html
https://flower.dev/docs/framework/tutorial-series-get-started-with-flower-pytorch.html
https://protobuf.dev/getting-started/pythontutorial/

	Introduction
	Related Work
	Convolutional Neural Network
	Privacy-Preserving FL
	Flower: A FL Framework
	Homomorphic Encryption
	Traditional vs. Lattice-Based Encryption
	Multi-Key Homomorphic Encryption
	Protobuf and gRPC
	Ring Learning with Errors (RLWE)
	xMK-CKKS
	Conceptual Theory
	Mathematical Approach


	System Model
	Existing Approaches/Baselines
	RLWE: Original and Improved
	Overview of Original RLWE Implementation
	Modifications to RLWE.py for xMK-CKKS Integration
	Alterations to Utility.py

	Flower Implementation of xMK-CKKS
	RLWE Instance Initialization
	Key Sharing Process
	Training Loop and Weight Encryption Process

	Flower Guide: Create Custom Messages
	transport.proto (Defining Message Types)
	Serde.py (Serialization and Deserialization)
	grpc_client_proxy.py (Sending the Message from the Server)
	message_handler.py (Receiving Message by Client)
	numpy_client.py
	app.py


	Experimental Evaluation
	Experimental Setup and Data Set
	Setup
	Dataset
	Preprocessing
	Experimental Setup
	Python Libraries
	Model Infrastructure

	Evaluation Metrics
	Accuracy
	Precision
	Recall
	F1-Score
	Time
	Memory Usage

	Experimental Results
	Experimentation on Locally Trained Model
	Experimentation on Plain and Encrypted Model with FL
	Experimentation with a Bigger Dataset
	Result Comparison


	Discussion
	Conclusions and Future Directions
	References

