

FACULTY OF SCIENCE AND TECHNOLOGY

MASTER’S THESIS

Study program/specialization:

MSc. Petroleum Engineering/Drilling and Wells

The spring semester, 2023

Open / Restricted

Author:

Muhammad Suleman

Supervisor at UiS:

Prof. Dan Sui

External supervisor(s):

Juan Camilo (ProWellPlan AS)

Thesis title:

Autonomous Well Trajectory Design considering the Limitation of Torque and Drag Forces

Credits (ECTS): 30

Keywords:

Trajectory design, Automation, well planning,

Bezier curve, torque and drag limitations,

optimization.

Pages: 80

Stavanger,

15 June 2023

i

Muhammad Suleman

Autonomous Trajectory Design

Considering the Limitation of Torque and

Drag Forces

ii

Master Thesis Project for the degree of

MSc in Petroleum Engineering

Stavanger, June 2023

University of Stavanger

Faculty of Science and Technology

Department of Energy and Petroleum Engineering

iii

 Abstract

In the oil and gas industry, designing well trajectories is an important part of drilling

operations that affect well construction, completion, and production. But the current

trajectory planning process works in isolation and does not take many engineering

constraints into account, which leads to inefficiency, manual iterations, and less-than-

ideal results. This study aims to solve the problem by making an automated system

for designing 3D trajectories that uses engineering calculations and focuses on torque

& drag analysis. The objectives of this research include the development of algorithms

to automate and optimize trajectory design, the integration of torque and drag

calculations to avoid drill string damage through buckling or over torque, and the

evaluation of the system’s performance through case studies. The research also

explores the kick-off point optimization and trajectory optimization between target

points to enhance well placement and planning efficiency. The significance of this

research lies in its potential to revolutionize well planning processes and minimize the

cost associated with planning complex wells. It will help the industry by making

trajectory planning easier, saving time and money, and minimizing the risks of drilling

operations.

iv

Acknowledgments

I would like to begin by expressing gratitude to Allah, the Most Merciful, for granting

me the strength, guidance, and blessings that have enabled me to complete my

research.

I also wish to extend my heartfelt thanks to my parents and family who have been my

constant source of love, support, and encouragement throughout my academic

journey. Their unwavering faith in my abilities has been a driving force behind my

success, and I am eternally grateful for their love and guidance.

I would like to thank Professor Dan Sui, my thesis supervisor, for her invaluable

guidance, support, and expertise throughout the entire process. Her insightful

feedback, constructive criticism, and encouragement have been instrumental in

shaping my research and academic growth.

I am also grateful to the ProWellPlan AS team, whose support made this research

possible. Their contribution and partnership have been critical in the successful

completion of this thesis.

Lastly, I would like to extend my gratitude to the University of Stavanger, for providing

me with an exceptional learning environment and for facilitating my academic growth.

The knowledge and skills I have gained during my studies will undoubtedly have a

profound impact on my future endeavors

v

List of Abbreviations

AI Artificial Intelligence

DL Dog Leg

DLS Dog-leg severity

E Easting

ERD Extended Reach Drilling

ERW Extended Reach Wells

GA Genetic Algorithm

KOP Kick-off point

MD Measured Depth

ML Machine Learning

MOP Multi-objective Optimization Problem

N Northing

PSO Particle Swarm Optimization

PWP ProWellPlan

ROP Rate of Penetration

RPM Revolutions per minute

RSS Rotary Steerable system

T&D Torque and Drag

TOB Torque on Bit

TVD True Vertical Depth

UTM Universal Transverse Mercator

V Vertical Depth

WOB Weight on Bit

vi

Table of Contents

Abstract iii

Acknowledgments iv

List of Abbreviations v

1 Introduction 1

1.1 Background .. 1

1.2 Problem Statement .. 1

1.3 Research Objectives and Scope .. 2

1.4 Research Significance ... 3

1.5 Thesis Structure ... 3

2 Literature Review 5

2.1 Basics of Trajectory Design ... 5

2.2 Overview of Trajectory Design Methods .. 7

2.3 Challenges in Trajectory Design Process .. 11

2.4 Optimization Techniques ... 15

3 Methodology and System Architecture 19

3.1 Trajectory Design Workflow ... 19

3.2 System Inputs .. 21

3.3 System Automation and Optimization .. 26

3.4 System Outputs ... 37

3.5 System Architecture ... 37

4 Case Studies and Results 40

4.1 Case Study on Extended Reach Well .. 40

4.2 Case Study on Optimization of KOP .. 51

vii

5 Conclusion and Future Work 60

5.1 Conclusion ... 60

5.2 Limitations .. 61

5.3 Future Work ... 62

6 References 65

7 Appendix 68

viii

List of Figures

Figure 2.1 Inclination and Azimuth of Wellbore [3] ... 6

Figure 2.2. Trajectory Through 4 Targets Using Minimum Curvature Method [5] 8

Figure 2.3 Radius of Curvature Method [6] .. 9

Figure 2.4 A Third-Order Bezier Curve [8] .. 10

Figure 2.5 Screenshot of Compass Software by Landmark 13

Figure 3.1 Optimized Trajectory Design System .. 20

Figure 3.2 Example of 3D Trajectory Through Two Points [18] 29

Figure 3.3 Force Balance on Drill String Element [19].. 33

Figure 4.1 Screenshot of ProWellPlan Filtering Feature .. 42

Figure 4.2 Filtered Trajectories for ERWs using ProWellPlan 42

Figure 4.3 Screenshot of ERW from ProWellPlan .. 44

Figure 4.4 Optimized Trajectory Design Through Target Points 46

Figure 4.5 Top View of Generated Optimized Trajectory ... 47

Figure 4.6 3D View of Generated Optimized Trajectory ... 47

Figure 4.7 Azimuth, Inclination, and DLS Graph for Generated Trajectory 48

Figure 4.8 Drag Force Graph for Generated Trajectory. .. 49

Figure 4.9 Torque Graph for Generated Trajectory .. 50

Figure 4.10 Well Trajectory for 33/9-A-15 CT4 from ProWellPlan 52

Figure 4.11. 3D-Generated Trajectory with Optimized KOP 55

Figure 4.12 KOP-Optimized Trajectory properties ... 56

Figure 4.13. Force Values for KOP-Optimized Trajectory .. 57

Figure 4.14. Torque Values for KOP-Optimized Trajectory 58

ix

List of Tables

Table 3.1 Structure of Target and Optimization Points ... 23

Table 3.2 Description of Input Parameters ... 25

Table 3.3 Description of Optimization Parameters ... 36

Table 3.4 Description of System Files Coded in Python. .. 39

Table 4.1. Survey Points for Extended Reach Well .. 43

Table 4.2 Target Points for Extended Reach Wells .. 44

Table 4.3 Hole and Pipe Properties for ERW Case Study .. 45

Table 4.4 Optimization Parameters .. 46

Table 4.5 Survey Points for 33/9-A-15 CT4 from ProWellPlan 52

Table 4.6 Target Points for KOP Optimization Case Study 53

Table 4.7 Multi Point Optimization Problem ... 59

1

Chapter 1

1Introduction

1.1 Background

In the oil and gas industry, drilling operations play a pivotal role in the extraction of

hydrocarbon resources from the subsurface. An essential and primary aspect of

planning drilling operations is trajectory design, which involves determining the optimal

path and placement of the wellbore. The trajectory design has a significant impact on

the success and efficiency of drilling projects. It influences well construction,

completion, and production phases, directly affecting factors such as wellbore stability,

cost-effectiveness, and resource recovery.

Trajectory design is a complex task that requires careful consideration of various

geological, engineering, and operational factors. It particularly plays a crucial role in

the success of horizontal drilling operations, especially in extended-reach wells where

excessive torque and drag can have critical limitations during drilling [1].

The current trajectory design process has extensive room for improvement using

automation, optimization, and machine learning algorithms. Advancing trajectory

design practices using these methods are of paramount importance to industry.

1.2 Problem Statement

The design of well trajectories plays a crucial role in well planning, impacting the

overall well design and drilling program. However, traditional approaches to trajectory

design have been fragmented and isolated, leading to inefficiencies and time-

consuming processes. Well trajectories were typically designed separately by the

directional service companies, well planners, and geologists using different

applications and tools. Surface and subsurface coordinates, along with operator-

2

provided constraints, formed the basis of trajectory design. The lack of integration and

validation of engineering factors, such as geomechanics, torque and drag, and bottom

hole assembly (BHA) tendency, further complicated the process. As a result, trajectory

design has involved multiple iterations, discussions, and data sharing to address

constraints and validation issues identified by other workflows. This approach of

disconnected workflows hindered the efficiency and effectiveness of trajectory design,

leading to suboptimal outcomes and increased time investment for engineers [2].

Therefore, there is a pressing need for an innovative solution that automates the

trajectory design process, incorporates engineering calculations, and streamlines the

optimization of drilling trajectories while considering critical constraints such as torque

and drag forces. By addressing these challenges, the industry can enhance

operational outcomes, minimize risks, and improve overall drilling performance.

1.3 Research Objectives and Scope

The primary objective of this research is to develop an automated 3D trajectory design

system that considers engineering calculations, specifically focusing on torque and

drag analysis. A new autonomous approach will be proposed where torque and drag

calculations are incorporated into the process of trajectory design. The system aims

to streamline the trajectory design process and enhance operational outcomes during

drilling operations.

The research objectives include:

1. Developing algorithms and methodologies to automate trajectory design,

incorporating subsurface target points and engineering constraints.

2. Integrating torque and drag calculations into the trajectory design process to

ensure the drill string's ability to withstand forces exerted during drilling.

3. Evaluating the performance and effectiveness of the automated trajectory

design system through case studies.

4. Assessing the potential for optimization of kick-off point (KOP) and target

points, to improve wellbore placement and drilling efficiency.

3

The scope of this research focuses on the automation of trajectory design and the

integration of torque and drag calculations. While the other engineering calculations,

such as hydraulics and casing design, can be integrated into the system in the future,

they are beyond the current scope of this research. The research will contribute to

advancing trajectory design practices and laying the foundation for further

enhancements in well-planning processes.

1.4 Research Significance

The research on automated 3D trajectory design considering engineering calculations,

particularly torque and drag analysis, holds significant importance in the field of drilling

operations. By developing an automated system that integrates engineering

calculations into trajectory design, this research has the potential to revolutionize well

planning processes and improve drilling efficiency.

The significance of this study lies in several key aspects. Firstly, the automated

trajectory design system can reduce the time and resources required for trajectory

planning by eliminating the manual optimization process and enabling engineers to

generate well plans more efficiently. Secondly, by incorporating torque and drag

analysis, the system ensures that the trajectory design accounts for critical operational

constraints, thereby reducing the risk of drill string failures and improving overall

drilling performance. Additionally, the research outcomes will provide valuable insights

into the benefits of automated trajectory design and serve as a foundation for further

enhancements and integration of additional engineering calculations in future studies.

The outcomes of this research can benefit the oil and gas industry by enhancing well-

planning processes, minimizing operational risks, and ultimately optimizing drilling

operations for improved productivity and cost-effectiveness.

1.5 Thesis Structure

The literature review in Chapter 2 explores the existing knowledge and research

related to trajectory design in drilling operations. It provides an overview of traditional

trajectory design approaches. The chapter also reviews the importance of engineering

calculations in trajectory design, focusing on torque and drag analysis. By examining

4

relevant literature and research, this chapter establishes the foundation for the

development of an automated trajectory design system.

In Chapter 3, the methodology employed for developing the automated 3D trajectory

design system is described in detail. It outlines the steps involved in algorithm

development and the integration of torque and design model. It provides insights into

the workflow, showcasing the seamless integration of torque and drag model, into the

trajectory design process. The chapter also discusses the methods utilized to ensure

accurate trajectory design. By providing a comprehensive explanation of the

methodology, this chapter establishes the basis for the implementation of the

automated system. It also describes the code and tools used for developing and

implementing the system.

Chapter 4 of this thesis presents the implementation of the autonomous trajectory

design system through two case studies. The first case study focuses on extended

reach well design, showcasing the system's ability to generate optimized trajectories

that reach distant target points while adhering to specified constraints. The second

case study addresses the optimization of the kick-off point. The results from both case

studies demonstrate the system's effectiveness in generating optimized trajectories to

achieve desired objectives. The findings and results of the automated system will be

discussed here.

Chapter 5 summarizes the practical implementation of the automated 3D trajectory

design system in various areas of well planning and drilling operations. It highlights

the system's ability to automate well planning, ensure trajectory correctness during

drilling operations using RSS, and optimize key trajectory points such as the kick-off

point (KOP), surface points, and subsurface points. The chapter discusses the

effectiveness and limitations of the system and offers recommendations for future

enhancements and integration of additional engineering calculations. By presenting a

clear conclusion and future research directions, this chapter concludes the thesis.

5

Chapter 2

2Literature Review
This chapter provides an in-depth analysis of existing research and studies relevant

to trajectory design. It explores the current state of the field, highlighting key concepts

and methodologies that contribute to the understanding of automated trajectory design

systems. Methods and approaches from the reviewed literature are critically analyzed

and synthesized to establish a foundation for the research presented in the thesis.

2.1 Basics of Trajectory Design

In well-trajectory design, understanding the fundamental concepts and terms is crucial

before we go into further details. A well path is composed of segments that connect

fixed points along the trajectory, starting from the well-head and progressing toward

the target. Each segment is associated with coordinates in a 3D dimensional system,

including north, east, and true vertical depth (TVD), allowing for precise positioning of

the wellbore.

The well path is planned segment by segment, with each step causing changes in the

north, east, and TVD coordinates. By carefully coordinating and planning the well path,

a detailed plan of the well is formed. The subsurface team often provides target

coordinates, which serve as reference points for drilling engineers to plan the well from

the well-head to reach the designated targets [3].

The well trajectory design considers various factors such as inclination, azimuth, and

dogleg severity which determine the overall shape and position of the wellbore.

2.1.1 Inclination

Inclination refers to the angle at which the wellbore deviates from the vertical axis. It

plays a crucial role in determining the trajectory of the well path. It is measured from

6

zero degree which is vertical, up to 90 degrees representing a horizontal shape. Figure

2.1 shows the inclination angle of a wellbore as I.

2.1.2 Azimuth

Azimuth is another critical parameter that helps define the direction of the wellbore. It

refers to the horizontal angle measured in degrees clockwise from a reference

direction, typically North. The borehole trajectory can be visualized within a circular

representation of 360 degrees. When observing the well from above, the borehole can

traverse in any direction around this circle, with the north direction corresponding to 0

or 360 degrees, the east direction to 90 degrees, and so on. In Figure 2.1, the angle

represented by the Direction angle is the azimuth of the wellbore.

Figure 2.1 Inclination and Azimuth of Wellbore [3]

2.1.3 Dog Leg and Dog Leg Severity

In well-trajectory design, the concept of dog leg and dogleg severity is important to

understand. The term "dog leg" (DL) refers to the change in wellbore direction. On the

other hand, the "dog leg severity" (DLS) quantifies the magnitude or severity of the

change in wellbore direction over a specific interval, typically measured in degrees per

100 feet or 30 meters.

7

The DL and DLS concepts can be explained using Figure 2.1 where I is inclination. If

we consider two inclinations representing I 1 and I 2, then DL is given in (1)

𝐷𝐿 𝐼 𝐼

(1)

Dog leg severity is a measure of the rate of change of direction within a specific interval

of the wellbore. It is calculated by dividing the change in direction (in degrees) by the

length of the interval (in feet or meters). The resulting value represents the average

degree change per unit of length and indicates the smoothness or abruptness of the

wellbore curvature. DLS in deg/30 meters is given in (2) where DL is defined in (1)

and CL is Curve Length between two survey points for which DLS is calculated.

𝐷𝐿𝑆
𝐷𝐿
𝐶𝐿

30

(2)

Another equation for DLS developed by Lubinski is given in (3) where L represents
length, I represent Inclination and A represents Azimuth.

𝐷𝐿𝑆   
2

𝐿    𝐿
∗ 𝑠𝑖𝑛 𝑠𝑖𝑛

𝐼 𝐼
2

 𝑠𝑖𝑛
𝐴 𝐴

2
 ∗ 𝑠𝑖𝑛 𝐼 𝑠𝑖𝑛 𝐼

(3)

Higher dog leg severities indicate more pronounced changes in wellbore direction

within a given interval, while lower values indicate smoother transitions. Managing dog

leg severity is crucial to ensure the integrity and stability of the wellbore, optimize

drilling efficiency, and minimize operational challenges such as increased torque and

drag, casing wear, and equipment limitations.

2.2 Overview of Trajectory Design Methods

Wellbore trajectory design involves determining the optimal path and geometry of the

wellbore to reach the desired target zones efficiently while considering various

technical constraints. Over the years, numerous techniques and methodologies have

been developed to address the challenges associated with wellbore trajectory design.

8

Specifically, this section focuses on three prominent methods: the Minimum Curvature

method, the radius of curvature method, and the relatively newer method of the Bezier

Splines method. These methods will be briefly explored and summarized.

2.2.1 Minimum Curvature Method

One commonly used technique or in other words, the industry standard is the minimum

curvature method for survey calculation in directional drilling [4]. It approximates the

wellbore path as a series of straight lines and circular arcs [5]. This method offers

simplicity in calculation and has been widely adopted in practice.

Figure 2.2. Trajectory Through 4 Targets Using Minimum Curvature Method [5]

Figure 2.2 shows this method through points p1, p2, p3, and p4. t represents tangents,

R1 and R2 are the radii of curvatures with the angle of curvatures represented as a1

and a2.

2.2.2 Radius of Curvature Method

In the radius of curvature method, the wellbore is assumed to be curved in either or

both vertical and horizontal projections. Each segment of measured depth is defined

by data obtained at both ends of the segment. It involves an approximation of the well

path, where it is assumed that the path can be represented as a circular arc in both

the horizontal and vertical planes [6].

9

Figure 2.3 Radius of Curvature Method [6]

Figure 2.3 shows the circular arc between points A and B, having radii Rv and Rh in

vertical and horizontal planes respectively. a and b represent the inclination and

azimuth for a continuous arc connecting the two points A and B. In this approach, the

well path can be described as a circular arc in the vertical plane, wrapping around a

right cylinder.

2.2.3 Bezier Spline Method

Liu et al. in 1991 [7] discussed the use of spline curve methods for coordinate

calculations in wellbore trajectories. It is a relatively new approach to complex three-

dimensional trajectory design. These mathematical curves provide more flexibility and

a superior approach in terms of coding compared to other methods. One of the

remarkable advantages of this method is its ability to describe the trajectory using a

single expression that encompasses all three space coordinates. This eliminates the

need to work with separate coordinate functions, simplifying the representation of the

trajectory and enhancing its efficiency [8].

The reasoning for the selection of this method over the minimum curvature method is

given in Section Error! Reference source not found.2.2.4. The remaining details of

the Bezier spline method and how it is implemented are discussed in Chapter 3.

10

Figure 2.4 A Third-Order Bezier Curve [8]

In Figure 2.4, a single third-order Bezier curve is shown between point S and point E.

CS and CE are control points for this red curve and I1, I2, I3, and I4 represent intermediate

points.

2.2.4 Comparison of Trajectory Design Methods

Well trajectories have significant impacts on other design considerations such as drill

string design, casing design, torque and drag estimation, and wellbore pressure

calculations. Incorrect designs can lead to problems like wellbore instability, loss of

circulation, and drill string failure, which are costly. Initially, vertical wells were drilled,

but with the move towards drilling complex and designer wells, more complex

calculations became necessary. Survey calculations were introduced to monitor the

inclination and azimuth of wells as they bend and turn simultaneously.

The minimum curvature method assumes a circular arc in an inclined plane, which

results in constant curvature between survey points. This constant curvature model of

the minimum curvature method introduces discontinuity at the survey course intervals.

This type of constant curvature model due to discontinuity may result in the omission

of some contact forces which will result in the underprediction of the hook load or the

stresses in the drill string components or casing or drill pipe wear calculations.

11

On the other hand, the radius of curvature method assumes the well path as a circular

arc in both vertical and horizontal planes. It is more suitable for rotary mode drilling.

But for recent drilling with RSS, when the wellbore twists and turns, this method results

in discontinuity in the engineering calculations also.

In contrast, the Bézier method (spline method) provides a continuous curvature profile

along the wellbore trajectory. By using spline curves, the well path can be smoothly

interpolated between survey points, eliminating the discontinuities found in other

methods [9].

2.3 Challenges in Trajectory Design Process

Well planning involves designing various aspects of well construction, including

trajectory, wellbore geometry, fluids, casing, drill string, and cement, all of which are

interconnected to optimize well performance. The trajectory design determines the

path of the wellbore from the surface location to the target reservoir and influences the

overall well depth. It serves as a crucial reference for other drilling programs

components, such as casing and drill string loads, drill bit and steering tool design,

and well production outcomes. Thus, designing an optimal trajectory is vital for the

overall success of the well.

Traditionally, trajectory design has been conducted in isolation by geologists or

directional drilling vendors, aiming to connect the surface location with the target

reservoir. Certain constraints, such as kickoff point depth, maximum allowable dogleg

severity, final inclination, and azimuth approaching the reservoir, are considered

during the design process. However, the design process primarily relies on manual

methods, involving the selection and connection of hold and curve sections from the

surface to the total depth. The outcome of this process heavily relies on the

competence and experience of the planner, which may not always result in the most

optimized design.

Once the engineers complete the trajectory design, it is shared with other planning

team members via email or manual data transfer for further analysis and validation. If

12

engineering validations, such as anticipated total pressure, BHA tendency, or

maximum torque, indicate discrepancies, it may necessitate revising the trajectory

design. This feedback loop requires communication with the trajectory planner to make

further adjustments, such as shortening the total depth, minimizing dogleg severity at

shallower depths, or reducing the maximum inclination in the tangent section.

Unfortunately, this iterative process often involves utilizing multiple software modules

or applications, leading to time-consuming efforts [2].

2.3.1 Use of Landmark Software

Halliburton Landmark's Compass software is a widely used tool in the field of trajectory

design for drilling operations. Compass provides capabilities that enable engineers to

plan wellbore trajectories using the minimum curvature method [10].

It is important to note that the trajectory design is not directly connected to the

engineering calculations like torque and drag in tools like Compass. For such

calculations and analysis, another tool named Well Plan is used. These two aspects

of well planning and drilling operations typically work in isolation, each focusing on its

specific set of considerations.

The trajectory design phase in Compass primarily focuses on generating a well path

that connects the specified survey points measured in measured depth, inclination,

and azimuth. This process involves mathematical calculations based on the minimum

curvature method to obtain the remaining parameters related to the trajectory. The

objective of this method is to create a continuous trajectory through survey points.

13

Figure 2.5 Screenshot of Compass Software by Landmark

To address these challenges, there is a growing need for automated and integrated

trajectory design approaches that streamline the iterative process and enable real-

time engineering validations. Such solutions would significantly reduce manual effort,

enhance design optimization, and improve overall efficiency in well-planning

workflows. By leveraging advanced computational algorithms and integrating

engineering calculations, these automated systems can revolutionize trajectory design

and enable more accurate and efficient well construction.

2.3.2 Effect of Trajectory on Torque and Drag Forces

The trajectory of a wellbore has a significant effect on the torque and drag forces

encountered during drilling operations. Torque refers to the rotational force required

to turn the drill string, while drag refers to the axial resistance encountered as the drill

string moves through the wellbore.

For example, in ERWs, managing torque and drag is a significant challenge. As the

lateral length increases, torque and drag can become substantial, limiting the

achievable reach, and affecting drilling efficiency. Excessive torque can lead to

14

equipment failures and drilling issues, while high drag can hinder the drilling progress.

Mitigating torque and drag requires advanced modeling techniques, proper wellbore

positioning, and the use of specialized drilling tools and technologies designed to

minimize these forces.

Here's how the trajectory impacts the torque and drag forces:

1. Wellbore Inclination:

The inclination angle of the wellbore, which is the angle at which the wellbore

deviates from vertical, plays a crucial role in torque and drag forces. As the

inclination angle increases, the torque required to turn the drill string also

increases. This is because the weight of the drill string component acts

perpendicular to the wellbore inclination, creating a larger moment arm and thus

increasing the torque.

2. Dogleg Severity:

Doglegs occur when the wellbore changes direction abruptly, resulting in a

significant change in inclination and azimuth. Higher dogleg severity,

characterized by sharper changes in direction, can significantly impact torque

and drag forces. In such sections, the drill string experiences additional bending

stresses, which contribute to increased torque and drag. These stresses can

lead to higher frictional forces between the drill string and the wellbore walls.

3. Wellbore Curvature:

The curvature of the wellbore, including its radius of curvature, also affects

torque and drag forces. In curved sections, the drill string experiences bending

and torsional forces, which contribute to increased torque. The tighter the radius

of curvature, the greater the torque required to navigate the wellbore. Similarly,

drag forces can increase in curved sections due to the increased contact area

between the drill string and the wellbore walls.

4. Wellbore Friction:

Friction between the drill string and the wellbore walls is a major contributor to

drag forces. The trajectory of the wellbore influences the contact area between

15

the drill string and the wellbore, affecting the amount of friction encountered.

Changes in inclination, azimuth, or curvature can lead to variations in the

contact area, resulting in fluctuating drag forces along the wellbore trajectory.

5. Cuttings Accumulation:

During drilling, cuttings are generated and circulated to the surface. In deviated

or horizontal sections, cuttings tend to settle and accumulate on the low side of

the wellbore. This accumulation can create additional resistance against the

drill string, leading to increased drag forces. Proper well trajectory design,

including sufficient inclination and appropriate cleaning techniques, is essential

to minimize cuttings accumulation and mitigate its impact on torque and drag

forces.

It is crucial to consider the trajectory's effect on the torque and drag forces during well

planning and drilling operations. By optimizing the wellbore trajectory and considering

factors such as inclination, dogleg severity, curvature, friction, and cuttings

management, drilling engineers can mitigate excessive torque and drag forces,

improving drilling efficiency, reducing wear and tear on drilling equipment, and

minimizing the risk of operational issues.

2.4 Optimization Techniques

Optimization is a fundamental process in various fields that aims to find the best

possible solution from a set of feasible options. It plays a crucial role in decision-

making, resource allocation, system design, and problem-solving across diverse

domains such as engineering, economics, logistics, and computer science.

Optimization techniques encompass a wide range of methods and algorithms that are

designed to systematically search for and identify optimal solutions within a given

problem space. These techniques enable us to maximize desired objectives, minimize

costs, satisfy constraints, or strike a balance between conflicting factors.

16

The choice of an appropriate optimization technique depends on the nature of the

problem, the complexity of the search space, and the specific requirements of the

application. Various optimization techniques have been developed over the years,

each offering unique advantages and approaches to tackling different types of

problems.

One widely used category of optimization techniques is evolutionary algorithms, which

draw inspiration from the principles of natural selection and genetic inheritance.

Evolutionary algorithms, such as Genetic Algorithms (GA) and Particle Swarm

Optimization (PSO), employ populations of candidate solutions that evolve over

generations through the application of genetic operators like mutation, crossover, and

selection. These algorithms exhibit robustness, adaptability, and the ability to handle

complex search spaces [11] [12].

2.4.1 Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a popular optimization technique inspired by the

collective behavior of bird flocks or fish schools. It is a population-based, stochastic

optimization algorithm that can be used to solve a wide range of optimization

problems, including trajectory design in various fields such as robotics, engineering,

and computer science.

The concept of PSO is based on the idea of simulating the social behavior of a group

of particles, known as a swarm, searching for the optimal solution in a

multidimensional search space. Each particle in the swarm represents a potential

solution and moves through the search space by adjusting its position and velocity

based on its own experience and the collective knowledge of the swarm.

At each iteration, particles evaluate their fitness value, which represents how well their

current position satisfies the optimization objective. The particles then update their

velocities and positions based on their individual experience, the best solution they

have encountered so far (personal best), and the best solution found by any particle

in the swarm (global best).

17

The update process involves balancing exploration (searching for new solutions) and

exploitation (exploiting promising regions) by adjusting the particle's velocity and

position. By sharing information and learning from each other's experiences, particles

can quickly converge to better solutions over iterations [13] [14].

2.4.2 Genetic Algorithm Optimization

Genetic algorithm is a powerful optimization technique that can be applied to various

problem domains, including trajectory optimization in drilling operations. They are

inspired by the process of natural selection and mimic the principles of evolution to

search for the optimal solution within a given problem space. In the context of trajectory

design, genetic algorithms offer an efficient approach to finding the best trajectory that

satisfies the specified constraints [15].

The genetic algorithm optimization process involves several key steps. Firstly, an initial

population of potential solutions, known as individuals or chromosomes, is randomly

generated. Each individual represents the location of a single or more than one point

between target points in local coordinates. The population is evaluated based on a

fitness function, which measures the quality or performance of each individual.

The fitness function is designed to capture the objective of the optimization problem.

In the case of trajectory design, it accounts for factors of MD, Torque, and Drag forces

combined. The fitness function quantifies the fitness or suitability of each individual

within the population.

The next step is the application of genetic operators to create new generations of

individuals. These genetic operators include selection, crossover, and mutation.

Selection involves choosing individuals from the current population based on their

fitness. Individuals with higher fitness are more likely to be selected for the next

generation, simulating the concept of survival of the fittest.

Crossover involves combining genetic information from selected individuals to create

offspring. This process mimics genetic recombination in nature, where traits from

parents are passed on to their offspring. By exchanging and recombining genetic

18

material, the algorithm explores different combinations of trajectory characteristics and

can potentially discover better solutions.

Mutation introduces random changes or modifications to the genetic information of

individuals. This helps to maintain diversity within the population and prevents

premature convergence to suboptimal solutions. Mutation allows for the exploration of

new regions in the search space and can lead to the discovery of previously

unexplored trajectories.

The process of selection, crossover, and mutation is repeated iteratively over multiple

generations. With each generation, the population evolves, and the fitness of

individuals typically improves. The algorithm continues until a stopping criterion is met,

which could be a maximum number of generations, the convergence of fitness values,

or the attainment of a satisfactory solution [16] [17].

19

Chapter 3

3Methodology and System Architecture

This chapter presents the methodology and system architecture employed in the

development of an autonomous trajectory design system. It outlines the workflow

followed and provides an overview of the key components and processes involved.

The objective of this chapter is to describe the sequential steps involved in the

workflow, from the input stage where user-defined information is provided to the output

stage where a final trajectory is generated that satisfies the specified constraints. It

also highlights the use of optimization techniques during the trajectory generation

process through multiple subsurface target points.

The mathematical models used in the trajectory design process with calculations of

azimuth, inclination, DLS, torque, and drag forces are described in detail. Moreover,

the details of optimization algorithms are described for readers. The inclusion of these

mathematical calculations and algorithmic formulas provides a comprehensive

understanding of the underlying principles and methodologies employed in the

autonomous trajectory design system. By examining these calculations, readers can

gain insight into the technical aspects of trajectory generation and optimization.

3.1 Trajectory Design Workflow

The brief workflow for the developed system is presented in Figure 3.1. It begins with

the input stage, where the user provides the necessary information. This includes

specifying the geological target points along with optimization points and defining the

maximum Dog Leg Severity and the pipe/hole properties required for torque and drag

calculations. The coordinates of points that the user selects as optimization points will

be evaluated, changed, and optimized using genetic algorithm.

20

Figure 3.1 Optimized Trajectory Design System

In the automation and optimization phase, an autonomous trajectory generation

algorithm is implemented. This algorithm automatically generates an initial trajectory

to calculate various trajectory parameters out of which MD, Torque, Drag, and DLS

are used in an optimization algorithm named GA (Genetic Algorithm). GA then

21

evaluates the objective function and constraints to calculate new coordinates for the

optimization points. Here multi-objective optimization is used where MD, Torque, and

Drag are combined in one equation, and the objective of GA is to minimize it.

Moreover, constraints for maximum DLS and maximum torque as makeup torque is

also defined for GA to follow.

After multiple iterations, GA gives the best coordinates for the optimized point, using

which trajectory is generated and plotted. To optimize the overall trajectory, the

optimization algorithm can modify the path between the multiple target points if we

give optimization points between all target points. It is also possible for users to

optimize the target point itself if required. This algorithm ensures that the constraints,

such as the maximum DLS and torque and drag limitations, are met while generating

the final optimized trajectory.

The output of the thesis workflow is the final best trajectory that satisfies the user-

defined constraints. A use case for this system is implemented and analyzed using the

extended reach well example in Chapter 40. It is presented as the result of this

research, showcasing the ability of the autonomous trajectory design system to

generate trajectories that adhere to the specified limitations.

Overall, the algorithm proposed in this thesis encompasses the generation of

trajectories based on user inputs, their optimization considering torque and drag

constraints, and the delivery of a final trajectory that meets the desired objectives.

3.2 System Inputs

The inputs of the system consist of following parameters:

1. Given target points

2. Number of optimization points

3. Configuration and Operational data

4. Engineering Constraints

22

3.2.1 Given Target Points

The first step of the trajectory design system is defining the geological target points.

They are defined in a local coordinate system, using Northings (N), Eastings (E), and

True Vertical Depths (TVD) in the form of arrays of [N, E, V]

The local coordinate system provides a consistent reference framework for

representing the target points and can be easily converted to other systems like UTM.

By using Northing, Easting, and vertical position, each target point is specified relative

to a reference point of wellhead location. Wellhead location is defined as [0, 0, 0]

corresponding to [N, E, V]

To illustrate the concept, consider one point which is defined as:

[N, E, V] = [0, 0, 500] (meters)

Here, the Northing is 0 meters, the Easting is 0 meters, and the TVD is 500 meters.

This indicates that the first target point is located 500 meters below the wellhead

position.

Moving on to the second target point, let's say it is [100, 100, 700], we observe that

the Northing and Easting values are 100 each, suggesting that the point moved 100

meters towards north and 100 meters towards east respectively. However, the TVD

value is 700, indicating that the point is positioned 700 meters below the reference

elevation. As we progress to define other target points through the array, each

subsequent target point represents a specific location in 3D space through which

trajectory should be generated.

Here, it is important to note that the negative sign with Northing and Easting represents

opposite directions towards south and west respectively.

23

3.2.2 Number of Optimization Points

Along with defining the target points, users can define the multiple optimization

points using unknown coordinates, like using arrays of zeros or any other digits as

initial guess.

So, it is required to identify each coordinate as either given (target point) or require

optimization (optimized point). There is no restriction on number of consecutive

optimization or target points. User has freedom to define whatever point as

optimization point along the trajectory. This is demonstrated in an example shown in

Table 3.1 where points 2, 4 and 5 are marked as the ones that require optimization,

while other points are marked as given target points.

Table 3.1 Structure of Target and Optimization Points

Point # Coordinates (m) Type

0 [0, 0, 0] Given

1 [0, 0, 500] Given

2 [X1, X2, X3] Require Optimization

3 [100, 100, 700] Given

4 [X4, X5, X6] Require Optimization

5 [X7, X8, X9] Require Optimization

6 [520, 370, 1200] Given

The optimization algorithm will automatically calculate the coordinates for the points

that require optimization considering the limitations and constraints defined by user.

3.2.3 Configuration Data and Operational Data

To effectively perform trajectory design and optimization, the system requires certain

necessary configuration data and operational data. These configuration data provide

essential inputs that define the physical properties of the drilling system. Among the

crucial configuration data are parameters related to the drill pipe, including its inner

diameter (ID), outer diameter (OD), and density. While operational data includes

weight on bit, torque on bit and mud weights. These parameters are essential for

accurately calculating torque and drag forces exerted on the drill string during drilling

24

operations. All the parameters that needed to be defined for the system are listed in

Table 3.2

3.2.4 Engineering Constraints

In addition to specifying geological target points and optimization points, the

autonomous trajectory design system incorporates engineering constraints to ensure

desired trajectory design. These constraints are essential in guiding the trajectory

generation process and optimizing the drilling path accordingly.

One of the primary engineering constraints considered is the maximum Dog Leg

Severity. It measures the rate of change of wellbore inclination and azimuth and

controlling it within predefined limits is essential to reduce the risks of drill string

failures, operational failures, and tool failures. By defining a maximum DLS value, the

trajectory design system ensures that the final generated path does not exceed this

limit at any point in the wellbore path. If GA does not find any path that satisfies the

defined maximum DLS within the maximum iterations defined, it gives the closest

value to the maximum DLS defined.

Furthermore, torque and drag calculations are integrated for assessing the mechanical

forces acting on the drill string during drilling operations. Torque refers to the rotational

force required to turn the drill string, while drag is the resistance encountered by the

drill string as it moves through the wellbore. Excessive torque and drag can lead to

increased energy consumption, equipment wear and tear, and potential drilling issues.

Therefore, the trajectory design system considers the torque and drag limitations by

considering factors such as drill string properties, wellbore friction factors, mud

properties, and drilling parameters. Parameters that needed to be defined are listed in

Table 3.2

By defining these constraints, the autonomous trajectory design system ensures that

the generated trajectory is also compliant with the operational limitations. The

integration of these constraints into the trajectory optimization algorithm allows for the

iterative modification of the path, aiming to achieve an optimal trajectory that meets

the user-defined constraints.

25

Table 3.2 Description of Input Parameters

Parameter Description Unit

DLS_max
Maximum DLS to be used as a constraint

for GA optimization.

deg/30

meters

nt

Used for controlling the resolution of

generated trajectory. It controls the

distance between t values for the Bezier

curve which varies from 0 to 1.

-

Pipe od Pipe outer Diameter inches

Pipe id Pipe Inner Diameter inches

Pipe length
Calculated by pipe bottom (default = Total

MD) and pipe top (default = 0)
meters

Pipe makeup_torque Makeup torque value for pipe kN * meter

odAnn Diameter of Hole or casing inches

wob

Weight on bit

(it effects the axial forces and have impact

in calculation of drag forces)

kN

tbit

Torque on bit

(It impacts the torque values of the drill

string)

kN * meter

fric
Friction factor (can be an array of multiple

friction factors against MD for sections).
-

densities
Mud density and pipe density (default pipe

density = 7.8)
sg

max_iter
Maximum Iterations for the optimization

problem
-

26

3.3 System Automation and Optimization

After target points along with constraints and operational parameters are given as

input, the system moves to the next phase of automation and optimization. Automation

and optimization are key components of this system, aimed at enhancing the efficiency

and accuracy of trajectory design in drilling operations.

Automation involves the development of computational methods that can

autonomously generate well trajectories based on user-defined inputs using multiple

Bezier splines. By automating the trajectory design process, time-consuming manual

iterations can be minimized allowing for faster trajectory generation.

Optimization, on the other hand, focuses on refining and improving the generated

trajectories. GA algorithm iteratively modifies the path between target points to

optimize the trajectory while ensuring that the specified constraints, such as maximum

Dog Leg Severity and torque and drag limitations, are met.

The combination of automation and optimization not only streamlines the trajectory

design process but also leads to the discovery of more optimal drilling paths.

3.3.1 Generating Trajectory using Bezier Curves

Trajectory design involves a step-by-step process that begins with receiving user-

defined target points, maximum DLS (Dog Leg Severity), and torque/drag constraints

as input.

Jie Cao and Dan Sui (2022) [18] described the detailed process to design trajectories

by using multiple Bezier splines. The first step of trajectory design in three-dimensional

space is the calculation of control points for cubic Bezier curves between target points.

These control points are calculated with continuity conditions that enable the creation

of a smooth and continuous trajectory.

A Bezier curve C(t) is a parametric curve based on Bernstein polynomials B(t). It is

defined in (4).

27

𝑪 𝒕 𝐵 , 𝑡 𝑷

(4)

where,

Pi are the control points.

𝑛 is the degree of the curve. As we are using cubic Bezier curves, the degree of the

curve will be three.

t is the curve function parameter, and it varies from 0 to 1.

𝐵 , is the th Bernstein polynomials of degree 𝑛

𝐵 , 𝑡
𝑛!

𝑖! 𝑛 𝑖 !
𝑡 1 𝑡

(5)

It should be noted that the Bezier curve always interpolates the first and last control

points but not necessarily the other middle control points [18].

The cubic Bezier curve in three dimensions is mainly used in this research and it is

expressed in equation (6).

𝑪 𝒕 𝟏 𝑡 𝟑𝐏 𝟑 𝟏 𝑡 𝟐𝑡𝐏 𝟑 1 𝑡 𝑡𝟐𝐏 𝑡𝟑𝐏

(6)

where P0, P1, P2, and P3 are the control points considering degree n = 3. The matrix

of a cubic Bezier curve is defined in equation (7).

(7)

28

C(t) in equation (7) is just one curve between P0 and P3 obtained by varying values

of t from 0 to 1. Consider P0 as the first target point and P3 as the second target point.

More target points can be connected using multiple curves by satisfying the continuity

conditions. There are three continuity conditions C0, C1, and C2 described by Jie Cao

and Dan Sui [18]. These are:

1. C0 continuity condition ensures that the well path is continuous. However, it

may result in discontinuous azimuth and inclination angles, which do not satisfy

the requirements of a well-path design.

2. C0 and C1 continuity ensure the designed well path becomes not only

continuous but also smooth. This means that the azimuth and inclination of the

well path are continuous throughout.

3. C0, C1 and C2 continuity ensures that in addition to continuous azimuth and

inclination, the Dog Leg Severity remains continuous along the measured depth

of the trajectory.

The choice of continuity conditions can be adjusted based on the specific requirements

of the path design. Conventional well path designs typically do not necessitate the C2

continuity condition, as C0 and C1 continuity is often sufficient to achieve the desired

continuity and smoothness. In our algorithm, we used the C2 continuity condition to

generate trajectory after KOP.

3.3.2 Calculation of Trajectory Parameters

To determine the azimuth, inclination, DLS, and other parameters for each section of

the trajectory, mathematical calculations are discussed here. These calculations

consider the defined target points and calculated control points. Then trajectory is

generated through those using control points before calculating trajectory parameters.

By accurately calculating these parameters, the trajectory can be precisely guided to

achieve the intended goals of optimization defined by the user.

29

Let's consider a well-path design using a cubic Bezier curve, which provides a smooth

trajectory in three-dimensional space. The schematic representation of this well path

is depicted in Figure 3.2 Example of 3D Trajectory Through Two Points with the

Cartesian coordinate system of (N, E, V), or equivalently (x, y, z), where N represents

the north direction, E represents the east direction, and V represents the vertical

direction [18].

Figure 3.2 Example of 3D Trajectory Through Two Points [18]

At any arbitrary point C(t) along the well path, we can consider a small element of

displacement represented by dx, dy, and dz. These elements correspond to

infinitesimal changes in the north, east, and vertical directions, respectively. This small

element allows us to analyze the local behavior of the well path at that specific point.

By examining the local properties of the well path, we can gain insights into its

curvature, inclination, and changes in direction. These properties are essential in

30

understanding the behavior of the wellbore and ensuring its successful navigation with

desired properties.

The characteristics of the well trajectory are determined through the utilization of the

Bezier curve function C(t) and its derivatives. The tangent vectors of the Bezier curve

are denoted as T, as depicted in Figure 3.2. Additionally, the unit tangent vector is

represented as Tu. By utilizing these vectors, we can derive trajectory-specific

properties.

𝑻
𝑑𝐶 𝑡

𝑑𝑡
 𝐶 𝑡

(8)

𝐓
𝐓

‖𝐓‖

𝐶 𝑡
‖𝐶 𝑡 ‖

(9)

and,

𝐶 𝑡 𝐶 𝑡 , 𝐶 𝑡 , 𝐶 𝑡

(10)

The unit tangent vector at any point along the curve can also be expressed in terms

of its coordinates using the inclination (θ) and azimuth (a)

𝑇 𝑠𝑖𝑛𝜃. 𝑐𝑜𝑠𝛼 , 𝑠𝑖𝑛𝜃. 𝑠𝑖𝑛𝛼 , 𝑐𝑜𝑠𝜃

(11)

By combining equation (10) and (11), we can determine the inclination (θ) and

azimuth (𝛼) at a specific point along the curve.

𝑡𝑎𝑛 𝛼
𝑑𝑦
𝑑𝑥

(12)

31

𝑡𝑎𝑛 𝜃
𝑑𝑥 𝑑𝑦

𝑑𝑧

(13)

where

𝑑𝑥 𝐶 𝑡 , 𝑑𝑦 𝐶 𝑡 , 𝑎𝑛𝑑 𝑑𝑧 𝐶 𝑡

(14)

The Curvature of a Bezier Curve in three dimensions is given by equation (15)

𝑘 𝑠
C 𝐶 C 𝐶 C 𝐶 C 𝐶 C 𝐶 C 𝐶

𝐶 𝐶 𝐶

(15)

where,

s is the arc length on a Bezier curve and is given by equation (16)

𝑠 ‖𝑪 ‖ 𝑑𝜏 𝐶 𝐶 𝐶 𝑑𝜏

(16)

The curvature is directly determined by the first and second derivatives of the path

curves, highlighting the importance of smoothness in influencing the curvature values.

Similarly, the DLS is sensitive to the smoothness of the path, as it is determined based

on the curvatures according to the relationship described in equation (17) in units of

degrees/30 meters.

𝐷𝐿𝑆
180 30 𝑘 𝑠

𝜋

(17)

Therefore, when designing the well path using the Bezier curve, the crucial element is

the control points. The properties of the well path, such as inclination and azimuth, are

32

functions of the parameter t, corresponding to a specific measured depth along the

trajectory.

3.3.3 Torque and Drag Model

To calculate torque and drag forces, a mathematical model and algorithms suggested

by Johancsik, Friesen, & Dawson, 1984 [19] are employed which is a soft string model.

This model considers the geometry and properties of the wellbore, drill string, and

mud, along with the drilling parameters. They consider the interactions between the

drill string and the wellbore, including the effects of contact friction and wellbore

tortuosity. By simulating the drilling operation and incorporating these factors, torque

and drag forces can be calculated and analyzed.

The calculation begins at the bottom of the drill string and proceeds upward,

considering each short element of the drill string and its contribution to the overall axial

and torsional load. The first step in the calculation is determining the normal force

acting on a short, slightly curved element of the drill string. This is achieved by

considering the weight of the element (W) and the two tension forces (Ft + ΔFt) exerted

by the drill string. The net normal force (Fn) is obtained by taking the negative vector

sum of the normal components from the weight and tension forces as shown in Figure

3.3.

33

Figure 3.3 Force Balance on Drill String Element [19]

While the axis of the element is assumed to be an arc of a circle, it is important to note

that this circle is not usually vertical. As a result, the net normal force is not typically in

the vertical plane. However, for friction calculations, only the magnitude of the normal

force is required, not its direction [19].

The magnitude of the normal force can be calculated using the equation (18).

𝐹 𝐹 ∆𝛼 𝑠𝑖𝑛𝜃 𝐹 ∆𝜃 𝑊𝑠𝑖𝑛𝜃

(18)

Equation (18) considers the weight of the element W, the tension forces Ft, the

inclination (θ), and azimuth (𝛼) to determine the normal force. It serves as a

fundamental component for further calculations related to torque and drag forces.

The equation for the tension increase is given in equation (19)

∆𝐹 𝑊𝑐𝑜𝑠𝜃 𝜇𝐹

(19)

Similarly, the torsional increase is given in equation (20)

34

∆𝑀 𝜇𝐹 𝑟

(20)

Equation (19) for calculating torque and drag forces includes a plus or minus sign to

account for the direction of pipe motion, whether it is upward or downward. The plus

sign corresponds to upward motion, where friction adds to the axial load, while the

minus sign corresponds to downward motion, where the opposite occurs. In practice,

when presenting data, this sign is often associated with the friction coefficient μ,

allowing for the identification of coefficients calculated from slack-off drag

measurements. [20]

All these equations provide an exact representation when applied to infinitesimal

elements of the drill string. However, when longer elements are considered, small

errors are introduced due to the neglect of second-order terms.

By following this stepwise approach and incorporating the necessary mathematical

models and algorithms, it becomes possible to calculate and analyze the torque and

drag forces experienced during drilling operations.

3.3.4 Integration and Modification of Torque and Drag Model

To incorporate the calculation of torque and drag forces into the trajectory design

process, Open-source Torque and Drag Model in python language Version0.1.1

available at [https://pypi.org/project/torque-drag] is utilized as a foundational

framework. This model provides a solid foundation for torque and drag calculations,

considering various factors such as wellbore geometry, drill string properties, mud

characteristics, and drilling parameters.

However, to meet the specific requirements of the trajectory design methodology in

this thesis, certain modifications are made to the existing torque and drag model. One

notable addition is the consideration of makeup torque as a constraint. Makeup torque

refers to the torque applied to the threaded connections during the assembly of the

drill string. It provides the limitation of torque that can be applied to drill string during

35

the drilling operation. Exceeding makeup torque can damage the connections

permanently.

By incorporating makeup torque limitations into the torque and drag model, the

trajectory design process becomes more comprehensive. The modified model takes

into account the maximum allowable makeup torque at the connection point along the

drill string. This ensures that the generated trajectories adhere to the physical

limitations imposed by makeup torque, thereby enhancing the practicality and

reliability of the resulting well paths.

3.3.5 Optimization Algorithm for Trajectory Design

Optimization of generated trajectory can be accomplished by adding additional points

in between target points through which the trajectory needs to be passed. The number

and location of points play an important role in determining the overall trajectory.

Once the initial trajectory is designed, an iterative optimization process is implemented

by varying the coordinates of optimization points. GA optimization is implemented to

achieve the required position of the point according to user-defined constraints with

the combined objective of minimizing MD, torque, and drag forces. The objective

function is defined by combining these three parameters as per equation described in

(21).

𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑 𝑐𝑜𝑠𝑡 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛
1
3

𝑀𝐷
1
3

𝑇
1
3

𝐹

(21)

 where,

MD = Measured Depth, meters

T = Torque, kN.m

F = Drag Force, kN

Note that here all MD, T and F are given equal weightage. Here all these parameters

are directly proportional to each other, so their weightage does not affect the overall

36

impact on result considerably. This means increasing MD also increases torque and

drag forces in general. But in future cases, when more cost functions will be included,

their weightages will also play a considerable role if they are inversely proportional to

each other.

Other optimization parameters that needed to be defined are described in Table 3.3

Table 3.3 Description of Optimization Parameters

Optimization

Parameter
Description

Objective function
A combined function including MD, Torque, and Drag is

introduced in our system for optimization

Variables: n_dim

These are equal to the number of coordinates for

optimization points (For Example, it is 3 variables in case

of 1 optimization point corresponding to [N, E, V]

lb Lower boundary for search space

ub Upper boundary for search space

max_iter
Maximum number of iterations allowed during the

optimization process

constrain_eq
Functions defining constraints. In this system, there are

two constraints, DLS and Makeup Torque.

This process evaluates the initial trajectory based on criteria. Optimization algorithms

are then employed to modify the trajectory iteratively. Small perturbations or

adjustments are introduced to the position of the optimization point to generate new

candidate trajectories. The optimization process aims to select the fittest trajectories

37

that meet the engineering constraints while discarding weaker alternatives. Multiple

iterations refine the trajectory until the optimization objectives are met.

The final trajectory is generated once the optimization process is completed. This

trajectory satisfies the user-defined constraints and objectives. Graphical

representation of trajectory profile, azimuth, inclination, DLS, torque, and drag

provides a clear visualization of the trajectory and facilitates analysis and evaluation.

3.4 System Outputs

The finalized trajectory using the best-optimized solution is plotted using a Python

package named plotly [21]. The best-optimized solution is in the form of coordinates

for optimized points which are shown as [X1, X2, X3], [X4, X5, X6] and [X7, X8, X9] in

Table 3.1.

Using the coordinates of these optimized points and target points, Six graphs are

generated for detailed analysis and visualization. Three out of six graphs visualize the

generated trajectory, and the remaining shows the trajectory parameters and torque

and drag values for generated trajectory. List of these graphs is listed below:

1. TVD (meters) vs Easting (meters)

2. Northing (meters) vs Easting (meters)

3. 3D Trajectory Design

4. Azimuth (°), Inclination (°), DLS (°/30 meters) vs MD (meters)

5. Torque (kN. meter) and Makeup Torque vs MD (meter)

6. Drag Force (kN) vs MD (meter)

All these graphs will be shown with case studies in Chapter 4.

3.5 System Architecture

The system is coded in python programming language, and it contains a total of six

files. The names of the files along with their short description are given in Table 3.4.

Some of the coded files are also given in Appendix.

38

In the development of this Python code, several open-source Python packages were

utilized, providing a solid foundation of functionality and capabilities. These packages

served as powerful tools for implementing optimization algorithms, data manipulation,

visualization, and other essential functionalities. The following list highlights some of

the key Python packages that were employed:

1. NumPy: A fundamental package for scientific computing in Python, offering

powerful numerical operations and array manipulation capabilities [22].

2. SciPy: A comprehensive library for scientific and technical computing, providing

a wide range of optimization algorithms, statistical functions, and numerical

tools [23].

3. Pandas: A versatile data manipulation and analysis library, enabling efficient

data handling, transformation, and exploration [24].

4. Plotly: An interactive data visualization library that allows the creation of

interactive plots, charts, and dashboards [25].

5. Well_profile: A Python package specifically designed for wellbore trajectory

analysis and visualization, providing tools for trajectory calculation, plotting, and

analysis.

6. Torque_drag: A Python library for torque and drag analysis in drilling

operations, enabling the calculation of torque, drag, and related forces. This

library was modified according to our requirements before implementation.

7. scikit-optimize (sko): A library for sequential model-based optimization, offering

various optimization algorithms and tools for hyperparameter tuning and global

optimization.

These open-source Python packages played a crucial role in the development of this

code, offering reliable and efficient solutions to various computational tasks. By

leveraging the capabilities of these packages, it was possible to focus on the specific

implementation of optimization algorithms to solve the challenge at hand.

39

Table 3.4 Description of System Files Coded in Python.

File Name Short Description

main.py Main file where input parameters and optimization

parameters are defined. All other functions are

called through this file.

kop_optimization.py This is a modified version of main.py especially for

KOP optimization.

gn_bezier_fit.py The function in this file generates control points

based on multiple cubic Bezier spline equations.

pascal.py A function that generates coefficients for the Bezier

equation based on pascal’s triangle.

bezier_eval3.py This function evaluates the Bezier curve described

by control points. It returns coordinates, inclination,

azimuth, curvature, and MD of the complete

trajectory.

evaluate_bezier_struct3.py This function populates the structure of piecewise

Bezier splines.

Optimization_problem.py Here objective functions and cost functions are

defined for optimization problems. The function for

plotting the final solution is also defined here.

40

Chapter 4

4Case Studies and Results
In this chapter, a case study is presented to demonstrate the application and

effectiveness of the autonomous trajectory design system developed in this thesis.

One of the primaries focus of this section is to showcase how our algorithm can be

implemented in real-world scenarios with tangible benefits. We will examine how it can

automate well-planning processes, optimizing the Kick-Off Point, surface points, and

subsurface points. By automating these processes, we can enhance efficiency and

overall operational success.

The first case study focuses on an extended reach well scenario, where the objective

is to drill a wellbore that reaches a target point located at a significant horizontal

distance from the drilling rig. The results obtained from the case study provide valuable

insights into the capabilities of the autonomous trajectory design system in generating

optimized well trajectories that adhere to user-defined constraints.

The second case study focuses on the optimization of KOP. The objective of this case

study is to optimize the KOP location to achieve user-defined trajectory targets like

DLS and torque limits while connecting drilling targets in an optimized way.

4.1 Case Study on Extended Reach Well

4.1.1 Extended Reach Wells

Extended reach wells are a specialized type of well designed to access remote or

challenging reservoirs from a single drilling location. These wells are characterized by

their extended lateral length, which presents unique challenges in terms of trajectory

design and T&D limitations. ERWs offer numerous advantages such as increased

reservoir contact, reduced environmental impact, and improved cost-effectiveness.

41

One of the key challenges in ERW drilling is wellbore friction. Optimizing the well path

design is an effective means of reducing torque and drag [26]. As the lateral length

increases, maintaining the desired wellbore path becomes more complex. The

trajectory must be carefully planned to navigate through multiple geological targets

while considering technical constraints such as T&D, hydraulics, and wellbore stability

[27].

To address these challenges, advanced drilling technologies have been developed

specifically for ERW operations. Rotary steerable systems are one of the tools that are

often used in directional drilling these days as they offer greater control and precision

in wellbore steering, enabling operators to navigate complex trajectories more

effectively. Planning complex trajectories and optimizing them is still an area of active

research [28] [29].

4.1.2 Getting ERWs Data from ProWellPlan

Access to the required data for the case study was facilitated through the ProWellPlan

platform, which serves as a comprehensive repository of historical well data. The

platform offers a user-friendly interface that allows users to search and retrieve data

using various filtering parameters. In this study, the historical database available with

ProWellPlan was utilized. By using a combination of filters such as Measured Depth

greater than 7500 meters, and True Vertical Depth less than 2000 meters, extended

reach wells for the case study were identified. 13 numbers of wells were identified

throughout the database. The platform's advanced search capabilities enable precise

data retrieval, ensuring that wells meeting the specified criteria are obtained.

42

Figure 4.1 Screenshot of ProWellPlan Filtering Feature

Once the data has been filtered and the desired wells have been identified, the

ProWellPlan platform provides visualization tools for a comprehensive analysis of the

wells' characteristics and properties. These visualization features allow users to gain

insights into the well trajectories, geological formations, and other relevant information.

Furthermore, the platform enables users to download the selected well data for further

research and analysis, ensuring seamless integration with the case study workflow.

Figure 4.2 Filtered Trajectories for ERWs using ProWellPlan

One of the trajectories is selected for our case study. The survey points for this well

are given in Table 4.1

43

Table 4.1. Survey Points for Extended Reach Well

MD(m) TVD(m) Inclination (°) Azimuth (°) Northing(m) Easting(m) DLS(°/30m)

0 0 0 0 0 0 0

200 200 0 0 0 0 0

400 400 0.3 135 0.02 0.13 1.5

600 599.43 9 33.1 8.51 6.36 3

800 790.39 23.4 24.2 58.77 33.83 0.6

1000 976.56 15.3 38.1 125.1 62.17 2.4

1200 1170.18 17.9 102.5 138.98 107.01 2.4

1400 1349.55 34.9 125.1 100.97 184.56 3.5

1600 1489.08 55.6 131.3 11.5 294.38 3.2

1800 1573.47 74.9 122.4 94.55 439.86 3

2000 1592.44 90.1 116.5 194.72 610.94 1.5

2200 1592.72 89.9 114 278.6 792.48 0

2400 1592.44 90.3 124.4 372.95 968.19 2.1

2600 1589.32 89.8 119.6 477.18 1138.74 0

2800 1585.88 93.1 125.5 583.48 1307.94 3

3000 1583.29 90.1 134.5 717.85 1455.52 1.5

3200 1585.68 88.2 134.5 857.23 1598.89 1.5

3400 1588.13 90.1 135.7 996.86 1742.02 3

3600 1587.91 90 131.1 1136.17 1885.4 1.5

3800 1583.68 89.9 127.1 1261.31 2041.28 1.5

4000 1586.35 87 124.2 1378.68 2203.1 1.5

4200 1586.56 92.4 117.5 1485.48 2372 3.4

4400 1583.88 89.3 117.9 1574 2551.23 1.5

4600 1585.77 89.3 139.4 1697.46 2706.91 2.1

4800 1585.49 89.7 145.9 1858.75 2825 2.1

5000 1585.09 89.8 148.8 2029.57 2928.95 1.5

5200 1584.5 90.8 150.4 2200.06 3033.5 2.1

5400 1584.82 89.6 147.4 2370.96 3137.3 1.5

5600 1584.35 90.1 134.4 2527.62 3260.91 2.1

5800 1583.89 89.7 125.9 2648.38 3419.92 4.2

6000 1584.18 90 129.9 2775.25 3574.4 1.5

6200 1583.07 90 151.2 2927.63 3702 4.5

6400 1582.51 90.6 159.6 3112.5 3777.86 0

6600 1580.78 90.4 158.4 3294.63 3860 1.5

6800 1579.8 90.5 146.2 3472.04 3951.19 1.5

7000 1579.62 90.6 151.6 3645.47 4050.68 0

7200 1579.43 89 138.6 3809.99 4163.42 1.5

7400 1580.83 89.7 147.2 3967.48 4286.38 2.1

7600 1581.23 90 153.7 4143.93 4380.23 0

7800 1579.43 89.8 151.2 4320.26 4474.46 2.1

8000 1579.66 90.1 152.8 4496.07 4569.77 1.5

8032 1579.5 90 153.1 4524.58 4584.3 0

44

By leveraging the data access and visualization capabilities of the ProWellPlan

platform, this study benefits from its reliable and efficient data retrieval process,

ensuring the availability of accurate and relevant information for the case study

analysis. Figure 4.3 depicts the graph of ERW from ProWellPlan.

Figure 4.3 Screenshot of ERW from ProWellPlan

Some of the survey points are assumed to be target points in our case study. These

target points are then used in our system to check and compare the results. In between

KOP and the first target point, an optimization point is given to the system so that it

can optimize the trajectory there.

Table 4.2 Target Points for Extended Reach Wells

 North (m) East (m) TVD (m)

Surface Point 0 0 0

KOP Point 0 0 400

Optimization
Point

X1 X2 X3

Target Point 717.85 1455.52 1583.29

Target Point 1378.68 2203.1 1586.35

Target Point 2029.57 2928.95 1585.09

45

Target Point 2775.25 3574.4 1584.18

Target Point 3645.47 4050.68 1579.62

Target Point 4320.26 4474.46 1579.43

Target Point 4524.58 4584.3 1579.5

4.1.3 Other Input Parameters

In addition to target points, the following properties of pipe and hole are included in

the system for calculations as shown in Table 4.3.

Table 4.3 Hole and Pipe Properties for ERW Case Study

Value unit

Pipe OD 5.5 inch

Pipe ID 5 inch

Hole Size 8.5 inch

friction factor 0.24

WOB 50 kN

torque on Bit 15 kN x m

mud weight 1.3 sg

Makeup Torque 53 kN x m

Note that we are only using a single drill pipe for calculations. It is also possible to

generate the results for a more complex drill string that includes all the components

like Drill Collars, Heavy Weight Drill Pipes, Rotary Steerable System, and Stabilizers.

Also, it is possible to give different friction factors against each MD in the form of an

array. For testing, we are only using a simplified case. More testing can be done in

case of all data availability.

Optimization parameters used for the genetic algorithm before running it are depicted

in Table 4.4. Note that we use maximum iteration of only 100 to reduce optimization

time. It was successful because we defined the upper and lower boundary for search

in between the coordinates of previous and next point. Due to this search space was

considerably reduced and large number of iterations were not required.

46

Table 4.4 Optimization Parameters

Value unit

Max DLS 2.5 °/30m

Max iteration 100

Population size 100

Constraints Max DLS, Max Makeup Torque

4.1.4 Results

The case study analysis yielded promising results, demonstrating the effectiveness of

the autonomous trajectory design system in generating well trajectories that adhere to

user-defined constraints. The focus of the study was to achieve trajectory design by

fulfilling user-defined Dog Leg Severity value and makeup torque while connecting the

target points.

Figure 4.4 visualizes the generated trajectory with the definition of KOP, optimized

point, and target points. The same trajectory is represented with the top view in Figure

4.5 whereas Figure 4.6 represents a 3D view of generated trajectory.

Figure 4.4 Optimized Trajectory Design Through Target Points

Optimized Point

KOP Point

Target Points

47

Figure 4.5 Top View of Generated Optimized Trajectory

Figure 4.6 3D View of Generated Optimized Trajectory

The system successfully generated trajectories with DLS and makeup torque values

within the specified limits.

Comparison of generated trajectory with original survey reveals that there is

positive difference in properties of trajectory where optimization is allowed. For the

trajectory section where all the points were given, the difference in results are minimal.

The original survey in Table 4.1 shows that the maximum DLS is 3.5 (°/30m) whereas,

48

the optimized trajectory has 2.4 (°/30m) which is under the defined constraint of 2.5

(°/30m). The system also ensures that the trajectory follows a smooth and controlled

path. Additionally, the algorithm calculated and plotted the necessary parameters such

as azimuth, inclination, DLS, Torque, and Drag which are visualized in Figure 4.7,

Figure 4.8, and Figure 4.9 respectively

Figure 4.7 Azimuth, Inclination, and DLS Graph for Generated Trajectory

The generated trajectory is analyzed to assess three types of drag forces: tripping in,

tripping out, and rotating off the bottom. These drag forces are significant factors that

impact the drilling operation and must be carefully considered during well planning.

During the tripping process, when the drill string is being lowered into the wellbore,

drag forces act in the opposite direction, opposing the downward movement of the

string. Similarly, during the tripping-out process, when the drill string is removed from

the wellbore, drag forces act in the direction of the upward movement. In addition to

these forces, the system also evaluates the rotating off-bottom drag forces. These

forces occur when the drill string is rotating while it is at the bottom but not in contact

with the bottom of the wellbore. These forces are influenced by factors of trajectory,

wellbore geometry, mud properties, and contact friction.

49

Drag forces are limited by the buckling limit of the drill string. To calculate and analyze

the buckling limit, effective force is required to be calculated. Currently, this is not

included in our system, and it will be included in under next development phase with

the help of the ProWellPlan. This information empowers drilling engineers to make

informed decisions, optimize drilling parameters, and enhance overall drilling

performance.

Figure 4.8 Drag Force Graph for Generated Trajectory.

Similarly, the generated trajectory is analyzed to evaluate the torque forces

experienced during drilling operations. Torque refers to the rotational force exerted on

the drill string while drilling. It is crucial to monitor and control torque to ensure the

efficient and safe operation of the drilling equipment.

The system provides a comprehensive torque graph that depicts the variations in

torque along the trajectory. Importantly, the torque values generated by the system

are compared against the makeup torque limit. The makeup torque limit represents

the maximum torque that the drill string can withstand without exceeding its

operational limits. By ensuring that the torque values remain within the makeup torque

limit, the system helps prevent potential issues such as drill string failures or excessive

wear and tear.

50

The system's ability to generate torque values that are within the makeup torque limit

assures the drilling equipment's integrity and reliability. This information allows drilling

engineers to make informed decisions and optimize drilling parameters to ensure safe

and efficient drilling operations.

Figure 4.9 Torque Graph for Generated Trajectory

The results obtained from the case study showcase the capabilities of the autonomous

trajectory design system in generating trajectories that meet the defined limitations.

The system's ability to optimize the trajectory while considering torque and drag

constraints ensures the safe and efficient drilling of extended-reach wells.

Furthermore, the integration of the system with the torque and drag calculations allows

for a comprehensive analysis of the drilling operation, ensuring the feasibility and

viability of the generated trajectories.

4.1.5 Discussion

This case is just one of the simplest examples of the system’s capability. Only one

optimization point between KOP and the first target point is used. Similarly, the

process can be extended to multiple optimization points within each target point, or

the optimization of target points itself. More engineering constraints can be added as

well for complex autonomous trajectory design. The whole system is designed in such

Makeup torque limit

51

a way that it is very easy to integrate more engineering models, like hydraulics, casing

plans, and geological formations in it.

With more complex optimization problems, the computational power required would

also be increased. But it can be solved by placing the system on the cloud-connected

to powerful computers to be accessed by users.

4.2 Case Study on Optimization of KOP

In this case study, the focus is on optimizing the kick-off point of the well trajectory.

The kick-off point refers to the location where the wellbore deviates from the vertical

path and starts to build inclination. By strategically selecting the KOP, it is possible to

achieve specific objectives such as reaching target formations, achieving minimum

DLS, and generating a more benign trajectory under specified constraints.

Using the autonomous trajectory design system developed in this research, an

additional algorithm is implemented with some changes to the previous one to

iteratively modify the well trajectory and calculate the optimal KOP. The algorithm

considers the multi objectives constraints, and optimization criteria to determine the

most suitable KOP.

KOP optimization algorithm makes sure that the optimized point is always on origin

with the possibility to move in the TVD direction. The objectives include minimizing

MD, Torque, and Drag forces. The constraints were put on DLS and makeup torque.

4.2.1 Getting Survey Data from ProWellPlan

In ProWellPlan, wellbores were searched where KOP values were higher than 400

meters. One of the well named 33/9-A-15 CT4 was selected to work with. Survey data

was downloaded, and target points were extracted out of it. Well trajectory for this well

is shown in Figure 4.10

52

Figure 4.10 Well Trajectory for 33/9-A-15 CT4 from ProWellPlan

Survey data for this well is shown in Table 4.5

Table 4.5 Survey Points for 33/9-A-15 CT4 from ProWellPlan

MD(m) TVD(m) Inclination (°) Azimuth (°) Northing(m) Easting(m) DLS(°/30m)

0 0 0 0 0 0 0

200 199.94 1.4 27.65 3.66 2.75 0

400 399.49 5.07 240.77 8.67 -3.95 1.61

600 598.13 7.55 320.19 15.69 -24.35 3.55

800 791.88 19.03 351.81 61.96 -32.47 0.37

1000 980.6 19 350.08 127.25 -43.57 0.78

1200 1170.38 17.76 349.96 189.37 -54.54 0.42

1400 1362.46 15.62 355.32 244.75 -60.41 1.22

1600 1554.54 17.53 355.58 300.23 -64.84 1.26

1800 1743.19 24.13 357.77 366.2 -70.05 3.71

2000 1915.63 35.65 15.42 466.05 -59.69 2.87

2200 2055.33 53.23 26.53 595.98 -3.6 1.23

2400 2166.53 60.64 63.95 710.79 111.42 4.2

2600 2244.01 78.8 83.77 758.04 287.76 4.77

2800 2263.85 85.54 92.57 769 486.26 3.44

3000 2281.09 84.39 101.42 735.26 682.41 0.43

3200 2300.89 86.05 100.98 700.35 878.32 0.92

53

3400 2313.65 85.6 101.27 660.82 1073.95 0.31

3600 2331.61 83.99 100.3 622.98 1269.51 0.7

3800 2353.33 83.33 98.65 594.36 1466.23 0.79

4000 2374.15 81.64 102.72 557.46 1661.63 1.68

4200 2430.18 65.89 110.01 506.96 1846.01 2.73

4400 2529.28 57.63 117.92 432.8 2002.68 0.09

4600 2638.38 53.5 115.89 357.07 2152.14 1.83

4800 2775.49 38.99 116.79 292.73 2281.79 1.28

4945.28 2891.43 36.12 113.4 256.87 2361.6 0.47

Target points extracted from the well survey are shown in Table 4.6. KOP is defined

as a variable and is selected for optimization.

Table 4.6 Target Points for KOP Optimization Case Study

 Northing Easting TVD

Surface
Point

0 0 0

KOP Point X1 X2 X3

Target Point 15.69 -24.35 598.13

Target Point 127.25 -43.57 980.6

Target Point 244.75 -60.41 1362.46

Target Point 366.2 -70.05 1743.19

Target Point 595.98 -3.6 2055.33

Target Point 758.04 287.76 2244.01

Target Point 735.26 682.41 2281.09

Target Point 660.82 1073.95 2313.65

Target Point 594.36 1466.23 2353.33

Target Point 506.96 1846.01 2430.18

Target Point 357.07 2152.14 2638.38

Target Point 256.87 2361.6 2891.43

Values for KOP are determined after running the KOP optimization algorithm on the

developed code.

4.2.2 Other Input Parameters

The same T&D and optimization parameters were used as in the previous case study

for simplicity. Hole and Pipe properties are shown in Table 4.3. Other optimization

parameters are shown in Table 4.4

54

4.2.3 Results

The results of the case study on the optimization of the kick-off point are presented

through graphical representations, showcasing the trajectory properties and the

impact of the optimization process. One of the key results is the graph displaying the

trajectory with the optimized kick-off point in Figure 4.11.

The graph visually illustrates the well trajectory, in which the second point is KOP. Its

coordinates in Northing, Easting, and TVD from after optimization are [0, 0, 304.33]

In addition to the graphical representation of the optimized trajectory, other graphs

present the trajectory properties such as azimuth, inclination, DLS, torque, and drag

in Figure 4.12, Figure 4.13, and Figure 4.14. These properties are crucial indicators of

the wellbore's direction, angle, and curvature, which directly impact drilling operations.

By integrating the trajectory design and optimization process, the system provides a

comprehensive approach to determining the optimal KOP. It takes into account the

complex interplay between the well path, subsurface targets, and engineering

constraints. The system evaluates multiple scenarios, iteratively adjusting the KOP

and trajectory parameters to identify the configuration that best meets the defined

objectives.

55

Figure 4.11. 3D-Generated Trajectory with Optimized KOP

The autonomous system successfully generates the coordinates of the Kick-Off Point

for the trajectory as [0, 0, 304.33].

Comparison of generated trajectory with original survey reveals that the original

KOP at 400 meters in the survey data has corresponding maximum Dogleg Severity

value of 3.5 degrees/30 meters. However, as per the defined constraints, the DLS for

the generated trajectory through our autonomous system is under 2 degrees/30

meters which is clear from Figure 4.12. All the other results through the target points

which were not put for optimization show equivalent results to the original one.

Optimized KOP Point

56

By adhering to the specified DLS constraint, the autonomous system ensures that the

trajectory maintains a smoother and more gradual change in direction. This can have

significant implications for well planning and operational challenges in drilling.

Figure 4.12 KOP-Optimized Trajectory properties

In Figure 4.12, DLS values at MD of almost 2000 meters to 3000 meters vary between

3 and 4 (deg/30m). This is because we did not allow any optimization beyond KOP.

So, these values are similar to the original values in the survey.

57

Figure 4.13. Force Values for KOP-Optimized Trajectory

The torque and drag forces generated for the trajectory are depicted in Figure 4.13

and Figure 4.14. These figures illustrate the magnitudes and variations of torque and

drag forces along the wellbore.

The torque values start from 15 kN.m at the bottom as per torque at bit value defined

initially and increase upwards towards the surface. Torque values are higher while

tripping out. This upward motion creates an additional resistance due to which more

torque is required to overcome this friction and rotate the drill string during tripping out.

On the other hand, while tripping in, the drill string is being lowered into the wellbore.

The downward motion helps reduce the friction between the drill string and the

wellbore walls. With less friction to overcome, the torque required to rotate the drill

string during tripping is comparatively smaller.

Also, torque values are under the defined torque limit. The same technique can be

implemented for more than one point optimization problem. More optimization points

will enable the system to generate trajectory within more space.

58

Figure 4.14. Torque Values for KOP-Optimized Trajectory

The results obtained from the case study demonstrate the successful optimization of

the kick-off point. These results validate the effectiveness of the methodology in

optimizing well trajectories.

4.2.4 Discussion

It is important to note that the results presented in the case study are obtained by

assuming a simplified scenario where the drill string consists solely of drill pipes with

the bit at the bottom. This simplification is made to focus specifically on the

optimization problem and getting trajectory within the constraints of DLS and torque

values.

It is essential to consider that in real drilling scenarios, the drill string composition may

include additional components such as collars, stabilizers, or other BHA elements. The

inclusion of these components can be done in our code with simple modifications.

Moreover, the single averaged friction factor is used in our case study, but for more

complex cases where open holes and cased holes are clearly defined, friction factors

can be put in the form of arrays with varying MD against each section.

Makeup torque limit

59

The approach described in case studies can be extended to address multiple-point

optimization problems in the form of a series of optimization and target points as

shown in Table 4.7. By optimizing multiple points, the system can generate trajectories

that cover a larger spatial area, allowing for improved well placement and drilling

efficiency.

Table 4.7 Multi Point Optimization Problem

Point # Coordinates (m) Type

0 [0, 0, 0] Given

1 [X1, X2, X3] Require Optimization

2 [15.69, -24.35, 598.13] Given

3 [X4, X5, X6] Require Optimization

4 [X7, X8, X9] Require Optimization

5 [758.04, 287.76, 2244.01] Given

6 [660.82, 1073.95, 2313.65] Given

60

Chapter 5

5Conclusion and Future Work
In this chapter, we discuss the applications along with the limitations of our work in

addition to potential future research areas. We explore the various areas where this

system can be applied, with its limitations and potential areas for improvement, and

finally provide a comprehensive conclusion.

5.1 Conclusion

In conclusion, this thesis has presented an automated 3D trajectory design system

that incorporates engineering calculations, specifically focusing on torque and drag

analysis. The system addresses the limitations of traditional trajectory design

processes by streamlining the optimization of drilling trajectories and considering

critical constraints.

Through the development and implementation of the system, several key findings and

outcomes have been achieved. Firstly, the automated trajectory design system

successfully generates trajectories that adhere to user-defined constraints. It utilizes

GA to efficiently search for the optimal trajectory within the defined constraints.

The system also integrates torque and drag calculations, providing valuable insights

into the forces exerted on the drill string during drilling operations. By considering

torque and drag constraints, the system ensures the drill string's ability to withstand

these forces, reducing the risk of failures and improving overall drilling efficiency.

Furthermore, the case studies conducted in this research have demonstrated the

effectiveness and applicability of the automated trajectory design system. The results

show that the system successfully generates trajectories with torque and drag forces

that are under the limits of the drill string.

61

While this research has made significant progress in automating trajectory design and

incorporating torque and drag analysis, there are still areas for further exploration and

improvement. The outcomes of this research contribute to the ongoing efforts of

industry to enhance operational efficiency, reduce costs, and minimize risks.

5.2 Limitations

It is important to recognize that every system, no matter how advanced or

sophisticated, has its limitations. This autonomous trajectory design system is no

exception. While we have made significant strides in optimizing well trajectories and

addressing torque and drag considerations, it is crucial to acknowledge the limitations

within which our system operates. By understanding these limitations, we can better

appreciate the system's strengths and areas where further development and

refinement may be needed. Below are some of the limitations that are inherent to this

system:

1. Torque and Drag Model Assumptions: The system relies on certain assumptions

and simplifications to calculate torque and drag forces. One of them is assuming

the soft string model for torque and drag forces. These assumptions might

introduce minor errors between the simulated results and actual field conditions.

2. Computational Constraints: The optimization algorithms employed in the system

have computational limitations, such as convergence speed and computational

resources. Large-scale multiple optimization problems may require substantial

computational resources and time.

3. Sequence optimization of target points: This system does not cater to the capability

to optimize the sequence of the target points. It relies only on the sequence defined

by the user. If the user-defined the position of the far-off target point is located

before the near one, then trajectory will be generated through the far-off target point

first. However, in an ideal drilling scenario, it should be able to detect and optimize

the sequence of target points as well. This can be easily developed in future

modifications.

62

4. Practical Validation: The system's performance and reliability should be validated

against actual use in the industry to verify the various complex conditions. While

simulations and case studies provide valuable insights, practical validation is

necessary to ensure the system's accuracy and effectiveness in real-world drilling

operations.

5.3 Future Work

The code developed can be used in multiple industry applications, revolutionizing well

planning. By discussing these potential applications, we aim to demonstrate the

versatility and practicality of our algorithm in addressing key industry challenges.

This system implemented the concept of automation in one of the foremost and

primary tasks in well planning. Trajectory design with engineering calculations can be

connected to offset data, cost calculation models, and risk analysis for comprehensive

auto well plan generation. This system will be developed further with ProWellPlan to

be implemented into the software by connecting it to other modules.

5.3.1 Integration of Other Models

To further enhance the trajectory design system and its applicability in drilling

operations, the integration of additional engineering models and geological

considerations holds great potential. One key area for future work is the integration of

hydraulics models into the trajectory design process. By incorporating hydraulics

calculations, the system can optimize drilling parameters such as mud flow rates and

pressures, ensuring efficient cuttings transport and wellbore stability. This integration

would enable engineers to generate trajectory designs that not only meet engineering

constraints but also optimize drilling performance from a hydraulic perspective.

Another important aspect to consider is the integration of casing design plans into the

trajectory design system. By incorporating casing design calculations, the system can

recommend optimal casing sizes and placement along the wellbore trajectory,

ensuring the integrity and stability of the wellbore. This integration would provide a

63

comprehensive approach to well planning, considering both drilling and casing

considerations.

Furthermore, the incorporation of geological formation models would greatly enhance

the accuracy and reliability of the trajectory design system. By integrating geological

data, such as formation properties and boundaries, the system can generate

trajectories that optimize wellbore placement within the target formations. This

integration would allow for improved reservoir access and resource recovery, leading

to more efficient drilling operations.

5.3.2 Recommendation of Drill String

The potential of the algorithm to reverse calculate and recommend the drill string

properties and hole properties are also possible with some code modification. By

connecting the algorithm with relevant data and optimization techniques, it can provide

valuable insights into the selection and optimization of drilling equipment, leading to

improved performance and cost-efficiency.

5.3.3 Recommendation of Operational Parameters

The algorithm developed in this study has the potential to provide recommendations

for drilling operational parameters. By analyzing the data and applying optimization

techniques, the algorithm can suggest optimal values for parameters such as weight

on bit, rotary speed, drilling fluid properties, and other operational variables. These

recommendations can help improve drilling efficiency and minimize the risk of

operational issues. Implementing the algorithm's recommendations can lead to

improved performance and cost-effectiveness in drilling operations. However, further

research and refinement of the algorithm are necessary to ensure its accuracy and

effectiveness in real-world drilling scenarios.

5.3.4 Relief Well Design

The relief well design is a critical aspect of well control operations, aimed at mitigating

the impact of well blowouts or uncontrolled releases of fluids from a well. This algorithm

can play a significant role in optimizing relief well design and improving the overall

effectiveness of well control efforts.

64

By leveraging the capabilities of the algorithm, engineers can simulate various

scenarios and analyze different relief well designs. The system can assist in

determining the optimal trajectory for the relief well, considering constraints and

objectives related to torque, drag, measured depth, and DLS.

Integration of geological data, hydraulics calculation, and other parameters will enable

this algorithm to calculate and optimize the relief well trajectory more effectively.

Engineers can incorporate advanced well control methodologies, computational fluid

dynamics simulations, or dynamic kill modeling to enhance the accuracy and

effectiveness of relief well designs. The algorithm serves as a platform for integrating

additional models and updating the existing ones.

5.3.5 Live Trajectory Correction

This system can be modified for auto trajectory correctness considering limitations to

torque and drag while using RSS. It can incorporate RSS live data to continuously

monitor and correct the trajectory of the wellbore during drilling operations. This helps

maintain the desired wellbore path and improves drilling efficiency.

The algorithm can be modified to incorporate real-time survey data instead of target

points from monitoring systems to generate trajectories. These can be used along with

original target points to generate newer drilling paths in 3D space. By continuously

updating and adjusting the trajectory based on actual well conditions, the system

enables real-time decision-making and adaptation to change circumstances. This

dynamic approach helps navigate the bit from the optimized path.

65

6References

[1] M. . Payne og F. . Abbassian, «Advanced Torque and Drag Considerations in

Extended-Reach Wells,» Distributed Computing, vol. , nr. , p. , 1996.

[2] H. G. Suryadi, H. Li, L. Jiang og Q. Liu, «Automating Trajectory Design in a

Cloud-Based Planning Solution,» 2022.

[3] J. Bourgoyne, K. K. Millheim, M. E. Chenevert og J. Young, Applied Drilling

Engineering, Society of Petroleum Engineers.

[4] H. L. Taylor og M. C. Mason, «A Systematic Approach to Well Surveying

Calculations,» Society of Petroleum Engineers Journal, vol. 12, pp. 474-488,

December 1972.

[5] S. J. Sawaryn og J. L. Thorogood, «A Compendium of Directional Calculations

Based on the Minimum Curvature Method,» SPE Drilling & Completion, vol. 20,

pp. 24-36, March 2005.

[6] G. J. Wilson, «Radius Of Curvature Method For Computing Directional Surveys,»

1968.

[7] M. Gang, W. Xie, H. Luo, S. Chen, Y. Cui, Y. Su og R. Wang, «Simulation of

directional well trajectory using tension spline,» Journal of Physics: Conference

Series, vol. 1074, p. 012013, September 2018.

[8] J. H. B. Sampaio, «Designing Three-Dimensional Directional Well Trajectories

Using Bézier Curves,» Journal of Energy Resources Technology-transactions of

The Asme, vol. 139, nr. 3, p. 032901, 2017.

[9] R. Samuel, «A Compelling Case: Time to Change Minimum Curvature Survey

Method for Well Engineering Calculations,» 2021.

[10] «Compass - Landmark Solution - E&P software,» Haliburton, [Internett].

Available: https://www.landmark.solutions/COMPASS-Directional-Well-Path-

Planning. [Funnet June 2023].

[11] A. K. Sharma, G. . Yadava og S. . Deshmukh, «A literature review and future

perspectives on maintenance optimization,» Journal of Quality in Maintenance

Engineering, vol. 17, nr. 1, pp. 5-25, 2011.

66

[12] Y. . Jin og B. . Sendhoff, «A systems approach to evolutionary multiobjective

structural optimization and beyond,» IEEE Computational Intelligence Magazine,

vol. 4, nr. 3, pp. 62-76, 2009.

[13] H. . Parvin, B. . Minaei og S. . Ghatei, «A new particle swarm optimization for

dynamic environments,» , 2011. [Internett]. Available:

https://link.springer.com/chapter/10.1007/978-3-642-21323-6_37. [Funnet 13 6

2023].

[14] Z. . Beheshti og S. M. Shamsuddin, «CAPSO: Centripetal accelerated particle

swarm optimization,» Information Sciences, vol. 258, nr. , pp. 54-79, 2014.

[15] D. . Goldberg, Genetic Algorithms in Search, Optimization and Machine

Learning, red., vol. , , : Addison-Wesley Professional, 1989, p. 41.

[16] G. . Li, K.-H. . Lee og K.-S. . Leung, «Genetic algorithm based on independent

component analysis for global optimization,» Lecture Notes in Computer

Science, vol. , nr. , pp. 172-181, 2006.

[17] A. . Konak, D. W. Coit og A. E. Smith, «Multi-objective optimization using genetic

algorithms: A tutorial,» Reliability Engineering & System Safety, vol. 91, nr. 9, pp.

992-1007, 2006.

[18] J. Cao og D. Sui, «Well Path Design and Optimization Using Composite Cubic

Bezier Curves,» SPE Journal, vol. 27, pp. 3254-3270, December 2022.

[19] C. A. Johancsik, D. B. Friesen og R. Dawson, «Torque and Drag in Directional

Wells-Prediction and Measurement,» Journal of Petroleum Technology, vol. 36,

pp. 987-992, June 1984.

[20] R. F. Mitchell og R. Samuel, «How Good Is the Torque/Drag Model?,» SPE

Drilling & Completion, vol. 24, pp. 62-71, March 2009.

[21] T. . Sherratt, «Sketching with Python and Plotly,» , 2014. [Internett]. Available:

http://discontents.com.au/sketching-with-python-and-plotly. [Funnet 13 6 2023].

[22] «NumPy Homepage,» , . [Internett]. Available: http://www.numpy.org/. [Funnet

13 6 2023].

[23] «SciPy Stack,» , . [Internett]. Available: http://www.scipy.org/install.html. [Funnet

13 6 2023].

67

[24] «Python Data Analysis Library – pandas: Python Data Analysis Library,» , .

[Internett]. Available: https://pandas.pydata.org/. [Funnet 13 6 2023].

[25] «Dash by Plotly,» , . [Internett]. Available: https://plot.ly/products/dash/. [Funnet

13 6 2023].

[26] X. Liu og R. Samuel, «Catenary Well Profiles for Extended and Ultra-Extended

Reach Wells,» 2009.

[27] T. . Aarrestad og H. . Blikra, «Torque and Drag-Two Factors in Extended-Reach

Drilling,» Journal of Petroleum Technology, vol. 46, nr. 09, pp. 800-803, 1994.

[28] G. . Guild, T. . Hill og . . Summers, «Designing and drilling extended reach wells.

Part 1,» Petroleum engineer international, vol. , nr. , p. , 1994.

[29] B. . Isa og I. . Handono, «Extended Reach Drilling Experience at Ujung Pangkah

Field,» , 2014. [Internett]. Available:

http://archives.datapages.com/data/ipa_pdf/2014/ipa14-e-104.pdf. [Funnet 13 6

2023].

[30] A. H. Strømhaug, «Directional Drilling - Advanced Trajectory Modelling,» , 2014.

[Internett]. Available: http://diva-portal.org/smash/record.jsf?pid=diva2:746157.

[Funnet 12 6 2023].

68

7Appendix

main.py
from Optimization_problem import OptimizationProblem
import numpy as np
from gn_bezier_fit import GnBezierFit
from evaluate_bezier_struct3 import EvaluateBezierStruct3
from sko.GA import GA

Input parameters

P = np.array([[0, 0, 0],
 [0, 0, 400],
 [0, 0, 0],
 [717.85, 1455.52, 1583.29],
 [1378.68, 2203.1, 1586.35],
 [2029.57, 2928.95, 1585.09],
 [2775.25, 3574.4, 1584.18],
 [3645.47, 4050.68, 1579.62],
 [4320.26, 4474.46, 1579.43],
 [4524.58, 4584.3, 1579.5]])

DLS_max = 2

nt = 100
dimensions = {'pipe': {'od': 5.5, 'id': 5, 'bottom':
EvaluateBezierStruct3(GnBezierFit(P.T, 2, 1), nt)[-1]['Lt'][-1][-1],
'makeup_torque': 53}, 'odAnn': 8.5}
wob = 50
tbit = 15
fric = 0.24
densities = {'rhof': 1.3, 'rhod': 7.8} # rhof = fluid density, rhod = drill
string density

optimize_this_point = 2 # starting from 0

Optimized Trajectory Plot

lb = P[optimize_this_point - 1, :]
ub = P[optimize_this_point + 1, :]

problem = OptimizationProblem(P, nt, optimize_this_point, DLS_max,
dimensions, wob, tbit, fric, densities)
constrain_DLS = {'type': 'ineq', 'fun': problem.constrain_DLS}
ga = GA(func=problem.combined_objective, n_dim=3, size_pop=100, lb=lb,
ub=ub, max_iter=100,
 constraint_eq=[problem.constrain_DLS,
problem.constrain_makeup_torque])
best_x, best_y = ga.run()
print('coordinates of optimized point', best_x, '\n', 'value of combined
function of T&D and MD:', best_y)
problem.plot_bezier(best_x)

69

kop_optimization.py
from Optimization_problem import OptimizationProblem
import numpy as np
from gn_bezier_fit import GnBezierFit
from evaluate_bezier_struct3 import EvaluateBezierStruct3
from sko.GA import GA

Input parameters

P = np.array([[0, 0, 0],
 [8.67, -3.95, 399.49],
 [15.69, -24.35, 598.13],
 [127.25, -43.57, 980.6],
 [244.75, -60.41, 1362.46],
 [366.2, -70.05, 1743.19],
 [595.98, -3.6, 2055.33],
 [758.04, 287.76, 2244.01],
 [735.26, 682.41, 2281.09],
 [660.82, 1073.95, 2313.65],
 [594.36, 1466.23, 2353.33],
 [506.96, 1846.01, 2430.18],
 [357.07, 2152.14, 2638.38],
 [256.87, 2361.6, 2891.43]
])

DLS_max = 3

nt = 100
dimensions = {
 'pipe': {'od': 5.5, 'id': 5, 'bottom':
EvaluateBezierStruct3(GnBezierFit(P.T, 2, 1), nt)[-1]['Lt'][-1][-1],
 'makeup_torque': 53}, 'odAnn': 8.5}
wob = 50
tbit = 15
fric = 0.24
densities = {'rhof': 1.3, 'rhod': 7.8} # rhof = fluid density, rhod =
drill string density

optimize_this_point = 1 # starting from 0

Optimized Trajectory Plot

lb = [0, 0, P[optimize_this_point-1, 2]]
ub = [1, 1, P[optimize_this_point + 1, 2]]

problem = OptimizationProblem(P, nt, optimize_this_point, DLS_max,
dimensions, wob, tbit, fric, densities)
constrain_DLS = {'type': 'ineq', 'fun': problem.constrain_DLS}
ga = GA(func=problem.combined_objective, n_dim=3, size_pop=100, lb=lb,
ub=ub, max_iter=100,
 constraint_eq=[problem.constrain_DLS,
problem.constrain_makeup_torque])
best_x, best_y = ga.run()
best_x = [0, 0, best_x[2]]
print('coordinates of optimized point', best_x, '\n', 'value of combined
function of T&D and MD:', best_y)
problem.plot_bezier(best_x)

70

gn_bezier_fit.py
Contact author for accessing this file.

pascal.py
Contact author for accessing this file.

bezier_eval3.py
Contact author for accessing this file.

evaluate_bezier_struct3.py

import numpy as np
from bezier_eval3 import BezierEval3

def EvaluateBezierStruct3(Bez, nt):

 for ii in range(len(Bez)):

 Q = Bez[ii]['Q']
 if 'w' in Bez[ii]:
 w = Bez[ii]['w']
 else:
 w = np.ones((1, Q.shape[1]))

 # define 'time' vectors for each segment
 t = np.linspace(0, 1, nt)
 X, theta, alpha, curvature, L = BezierEval3(Q, t)
 Bez[ii]['n'] = t
 Bez[ii]['X'] = X # curve values for segment
 Bez[ii]['theta'] = theta
 Bez[ii]['C'] = curvature
 Bez[ii]['L'] = L
 Bez[ii]['alpha'] = alpha
 if ii == 0:
 Bez[ii]['Lt'] = L
 else:
 Bez[ii]['Lt'] = L + Bez[ii-1]['Lt'][0, -1]

 return Bez

Optimization_problem.py
import numpy as np
from gn_bezier_fit import GnBezierFit, GnBezierFit1
from evaluate_bezier_struct3 import EvaluateBezierStruct3
import plotly.graph_objs as go
from plotly.subplots import make_subplots
import pandas as pd
import well_profile as wp

71

import torque_drag as td

class OptimizationProblem:
 def __init__(self, P, nt, optimize_this_point, DLS_max, dimensions,
wob, tbit, fric, densities):

 self.DLS_max = DLS_max
 self.optimize_this_point = optimize_this_point
 self.P = P
 self.nt = nt
 self.dimensions = dimensions
 self.wob = wob
 self.tbit = tbit
 self.fric = fric
 self.densities = densities

 def combined_objective(self, x):
 P = self.P
 optimize_this_point = self.optimize_this_point
 P[optimize_this_point, :] = x

 CBZ = GnBezierFit(P.T, 2, 1)
 CBZ = EvaluateBezierStruct3(CBZ, self.nt)

 # Calculate objective MD
 MD_t = np.zeros((self.nt, len(CBZ)))
 for i in range(len(CBZ)):
 MD_t[:, i] = CBZ[i]['Lt']
 MD = MD_t[-1, -1]

 # Calculate objective T and D

 inclination = [] # Theta values
 azimuth = [] # Alpha values
 md = []

 for i in range(len(CBZ)):
 for inc in range(len(CBZ[i]['theta'][0]) - 1):
 if CBZ[i]['theta'][0][inc] * 180 / np.pi < 360:
 inclination.append(CBZ[i]['theta'][0][inc] * 180 /
np.pi)
 else:
 inclination.append(CBZ[i]['theta'][0][inc] * 180 /
np.pi - 360)

 for azi in range(len(CBZ[i]['alpha'][0]) - 1):
 azimuth.append(CBZ[i]['alpha'][0][azi] * 180 / np.pi)

 for depths in range(len(CBZ[i]['Lt'][0]) - 1):
 md.append(CBZ[i]['Lt'][0][depths])

 data_dict = {
 'md': md,
 'inc': inclination,
 'azi': azimuth

 }

 data = pd.DataFrame(data_dict)
 # data.to_excel('output.xlsx', index=False)

72

 well = wp.load(data)

 result = td.calc(well.trajectory, dimensions=self.dimensions,
densities=self.densities, case='all', fric=self.fric, torque_calc=True,
wob=self.wob, tbit=self.tbit)
 T = result.torque['hoisting'][0]
 D = result.force['hoisting'][0]

 combined_objective = 0.3 * T + 0.3 * D + 0.4 * MD
 return combined_objective

 def constrain_DLS(self, x):
 P = self.P
 optimize_this_point = self.optimize_this_point

 P[optimize_this_point, :] = x

 CBZ = GnBezierFit(P.T, 2, 1)
 CBZ = EvaluateBezierStruct3(CBZ, self.nt)
 Curv = np.zeros((self.nt, len(CBZ)))
 DLS = np.zeros(len(CBZ))
 for i in range(len(CBZ)):
 Curv[:, i] = CBZ[i]['C']
 DLS[i] = np.max(Curv[:, i] * 30 * 180 / np.pi)
 DLS = np.max(DLS)
 DLS = np.abs(self.DLS_max - DLS)
 return DLS

 def constrain_makeup_torque(self, x):
 P = self.P
 optimize_this_point = self.optimize_this_point

 P[optimize_this_point, :] = x

 CBZ = GnBezierFit(P.T, 2, 1)
 CBZ = EvaluateBezierStruct3(CBZ, self.nt)

 inclination = [] # Theta values
 azimuth = [] # Alpha values
 md = []

 for i in range(len(CBZ)):
 for inc in range(len(CBZ[i]['theta'][0]) - 1):
 if CBZ[i]['theta'][0][inc] * 180 / np.pi < 360:
 inclination.append(CBZ[i]['theta'][0][inc] * 180 /
np.pi)
 else:
 inclination.append(CBZ[i]['theta'][0][inc] * 180 /
np.pi - 360)

 for azi in range(len(CBZ[i]['alpha'][0]) - 1):
 azimuth.append(CBZ[i]['alpha'][0][azi] * 180 / np.pi)

 for depths in range(len(CBZ[i]['Lt'][0]) - 1):
 md.append(CBZ[i]['Lt'][0][depths])

 data_dict = {
 'md': md,
 'inc': inclination,
 'azi': azimuth

73

 }

 data = pd.DataFrame(data_dict)
 # data.to_excel('output.xlsx', index=False)
 well = wp.load(data)

 result = td.calc(well.trajectory, densities=self.densities,
dimensions=self.dimensions, case='all', fric=self.fric, torque_calc=True,
wob=self.wob, tbit=self.tbit)
 T = result.torque['hoisting'][0]
 T = T - result.torque['makeup_torque'][0]
 return T

 def plot_bezier(self, x):
 P = self.P
 optimize_this_point = self.optimize_this_point

 P[optimize_this_point, :] = x

 CBZ = GnBezierFit1(P.T, 2, 1)
 CBZ = EvaluateBezierStruct3(CBZ, self.nt)
 m = len(CBZ)
 PC = np.zeros((3, 4, m))
 Coord = np.zeros((3, self.nt, m))
 Theta = np.zeros((self.nt, m))
 Alpha = np.zeros((self.nt, m))
 MD_t = np.zeros((self.nt, m))
 Curv = np.zeros((self.nt, m))
 for i in range(m):
 PC[:, :, i] = CBZ[i]['Q']
 Coord[:, :, i] = CBZ[i]['X']
 Theta[:, i] = CBZ[i]['theta']
 Alpha[:, i] = CBZ[i]['alpha']
 MD_t[:, i] = CBZ[i]['Lt']
 Curv[:, i] = CBZ[i]['C']
 DLS = np.abs(Curv) * 30 * 180 / np.pi

 # Plotting code goes here
 # Define the layout of the 3D scatter plot with a reversed Z-axis
 layout = go.Layout(scene=dict(xaxis=dict(title='East, m'),
 yaxis=dict(title='North, m'),
 zaxis=dict(title='Vertical Depth, m',
autorange='reversed')),
 margin=dict(l=0, r=0, b=0, t=0))

 # Create the traces for the curve and the scatter plot
 traces = []
 for i in range(m):
 trace = go.Scatter3d(x=Coord[0, :, i], y=Coord[1, :, i],
z=Coord[2, :, i], mode='lines', line=dict(width=2))
 traces.append(trace)

 scatter_trace = go.Scatter3d(x=P[:, 0], y=P[:, 1], z=P[:, 2],
mode='markers', marker=dict(color='black'))

 # Create the figure with the layout and the traces
 fig = go.Figure(layout=layout, data=traces + [scatter_trace])

 # Show the figure
 fig.show()

74

 # Define the layout of the first 2D scatter plot (North and East)
 layout1 = go.Layout(xaxis=dict(title='East, m'),
 yaxis=dict(title='North, m'),
 margin=dict(l=0, r=0, b=0, t=0))

 # Define the layout of the second 2D scatter plot (East and TVD)
 layout2 = go.Layout(xaxis=dict(title='East, m'),
 yaxis=dict(title='Vertical Depth, m',
autorange='reversed'),
 margin=dict(l=0, r=0, b=0, t=0))

 # Create the traces for the first 2D scatter plot (North and East)
 traces1 = []
 for i in range(m):
 trace = go.Scatter(x=Coord[0, :, i], y=Coord[1, :, i],
mode='lines', line=dict(width=2))
 traces1.append(trace)

 scatter_trace1 = go.Scatter(x=P[:, 0], y=P[:, 1], mode='markers',
marker=dict(color='black'))

 # Create the figure with the first layout and the first set of
traces
 fig1 = go.Figure(layout=layout1, data=traces1 + [scatter_trace1])

 # Create the traces for the second 2D scatter plot (East and TVD)
 traces2 = []
 for i in range(m):
 trace = go.Scatter(x=Coord[0, :, i], y=Coord[2, :, i],
mode='lines', line=dict(width=2))
 traces2.append(trace)

 scatter_trace2 = go.Scatter(x=P[:, 0], y=P[:, 2], mode='markers',
marker=dict(color='black'))

 # Create the figure with the second layout and the second set of
traces
 fig2 = go.Figure(layout=layout2, data=traces2 + [scatter_trace2])

 # Show the figures
 fig1.show()
 fig2.show()

 # Convert alpha to degree
 Alpha = Alpha * 180 / np.pi
 Alpha[Alpha > 360] = Alpha[Alpha > 360] - 360

 fig = make_subplots(rows=1, cols=3, shared_yaxes=True)

 # Create subplot 1 with reversed y-axis and azimuth on x-axis at
top
 for i in range(0, m):
 fig.add_trace(
 go.Scatter(x=np.abs(Alpha[:, i]), y=MD_t[:, i], name='Curve
1', mode='lines', line=dict(width=2)),
 row=1, col=1)
 fig.update_layout(xaxis_title='Azimuth, degree',
yaxis_title='Measured depth, m', xaxis=dict(range=[0, 360]),
 yaxis=dict(autorange='reversed'),
xaxis_side='top', boxmode='overlay')

75

 # Create subplot 2
 for i in range(0, m):
 fig.add_trace(
 go.Scatter(y=MD_t[:, i], x=Theta[:, i] * 180 / np.pi,
name=f'Curve {i + 1}', mode='lines',
 line=dict(width=2)),
 row=1, col=2)
 fig.update_layout(yaxis_title='Measured depth, m',
xaxis=dict(autorange=True), yaxis=dict(autorange='reversed'),
 boxmode='overlay')
 fig.update_xaxes(title_text='Inclination, degree', row=1, col=2,
side='top')

 # Create subplot 3
 for i in range(0, m):
 fig.add_trace(
 go.Scatter(y=MD_t[:, i], x=DLS[:, i], name=f'Curve {i +
1}', mode='lines', line=dict(width=2)),
 row=1, col=3)
 fig.update_layout(yaxis_title='Measured depth, m',
xaxis=dict(autorange=True), yaxis=dict(autorange='reversed'),
 boxmode='overlay')
 fig.update_xaxes(title_text='DLS, degree/30m', row=1, col=3,
side='top')

 fig.show()

 inclination = [] # Theta values
 azimuth = [] # Alpha values
 md = []

 for i in range(m):
 for inc in range(len(CBZ[i]['theta'][0]) - 1):
 if CBZ[i]['theta'][0][inc] * 180 / np.pi < 360:
 inclination.append(CBZ[i]['theta'][0][inc] * 180 /
np.pi)
 else:
 inclination.append(CBZ[i]['theta'][0][inc] * 180 /
np.pi - 360)

 for azi in range(len(CBZ[i]['alpha'][0]) - 1):
 azimuth.append(CBZ[i]['alpha'][0][azi] * 180 / np.pi)

 for depths in range(len(CBZ[i]['Lt'][0]) - 1):
 md.append(CBZ[i]['Lt'][0][depths])

 data_dict = {
 'md': md,
 'inc': inclination,
 'azi': azimuth

 }

 data = pd.DataFrame(data_dict)
 # data.to_excel('output.xlsx', index=False)
 well = wp.load(data)

 result = td.calc(well.trajectory, dimensions=self.dimensions,
densities=self.densities, case='all', fric=self.fric, torque_calc=True,
wob=self.wob, tbit=self.tbit)

76

 result.plot(plot_case='Force').show()
 result.plot(plot_case='Torque').show()

Modified Torque and Drag Package

main.py
from math import pi, sin, cos, radians

def calc(trajectory, dimensions, densities=None, case="all", fric=None,
wob=0, tbit=0, torque_calc=False):
 """
 Function to generate the torque and drag profiles. Model Source: SPE-
11380-PA

 Arguments:
 trajectory: a trajectory object from well_profile library
 dimensions: dict for dimensions {'pipe': {'od', 'id', 'length',
'bottom', 'makeup_torque'},
 'odAnn'} # Makeup torque in kN*m
 densities: dict for densities {'rhof': 1.3, 'rhod': 7.8} # density
of fluid and density of drill string
 case: "lowering", "static", "hoisting" or "all"
 fric: num or list. sliding friction coefficient between DP-
wellbore. default: 0.24
 tbit: torque on bit, kN*m
 wob: weight on bit, kN
 torque_calc: boolean, include torque calculation

 Returns:
 object with drag force and torque in kN and kN*m
 """

 well = set_conditions(trajectory, dimensions, densities, wob, tbit)

 unit_pipe_weight = well.rhod * 9.81 * pi * (well.pipe_or ** 2 -
well.pipe_ir ** 2)
 area_a = pi * ((well.ann_or ** 2) - (well.pipe_or ** 2)) # annular
area in m2
 area_ds = pi * (well.pipe_ir ** 2) # drill string inner area in
m2

 for point in well.trajectory:
 point['buoyancy'] = 1 - ((point['rhof'] * area_a) - (point['rhof']
* area_ds)) / (well.rhod * (area_a-area_ds))
 point['weight'] = unit_pipe_weight * point['delta']['md'] *
point['buoyancy']
 point['makeup_torque'] = well.makeup_torque

 if type(fric) is not list:
 for point in well.trajectory:
 point['fric'] = 0.24
 else:
 for idx, point in enumerate(well.trajectory):
 point['fric'] = fric[idx]

77

 well.trajectory[-1]['force'] = {'lowering': well.wob,
 'static': well.wob,
 'hoisting': well.wob}
 well.trajectory[-1]['torque'] = {'lowering': None,
 'static': None,
 'hoisting': None,
 'makeup_torque': None}

 if torque_calc:
 well.trajectory[-1]['torque'] = {'lowering': well.tbit,
 'static': well.tbit,
 'hoisting': well.tbit,
 'makeup_torque':
well.makeup_torque}

 for idx, point in reversed(list(enumerate(well.trajectory[:-1]))):
 point['incAvg'] = radians((point['inc'] + well.trajectory[idx-
1]['inc']) / 2)
 delta_azi = -radians(well.trajectory[idx+1]['delta']['azi'])
 delta_inc = -radians(well.trajectory[idx+1]['delta']['inc'])
 point['force'] = {}
 point['torque'] = {}
 # DRAG FORCE CALCULATIONS
 if (case == "lowering") or (case == "all"):
 # Drag force
 fn_1 = ((well.trajectory[idx+1]['force']['lowering'] *
delta_azi * sin(point['incAvg'])) ** 2 +
 (well.trajectory[idx+1]['force']['lowering'] *
delta_inc + point['weight'] *
 sin(point['incAvg'])) ** 2) ** 0.5

 delta_ft_1 = point['weight'] * cos(point['incAvg']) -
point['fric'] * fn_1
 point['force']['lowering'] =
well.trajectory[idx+1]['force']['lowering'] + delta_ft_1

 if torque_calc:
 # Torque calculation
 delta_torque_1 = point['fric'] * fn_1 * well.pipe_or
 point['torque']['lowering'] =
well.trajectory[idx+1]['torque']['lowering'] + delta_torque_1

 if (case == "static") or (case == "all"):

 # Drag force
 fn_2 = ((well.trajectory[idx+1]['force']['static'] * delta_azi
* sin(point['incAvg'])) ** 2 +
 (well.trajectory[idx+1]['force']['static'] * delta_inc
+ point['weight'] *
 sin(point['incAvg'])) ** 2) ** 0.5

 delta_ft_2 = point['weight'] * cos(point['incAvg'])
 point['force']['static'] =
well.trajectory[idx+1]['force']['static'] + delta_ft_2

 if torque_calc:
 # Torque calculation
 delta_torque_2 = point['fric'] * fn_2 * well.pipe_or
 point['torque']['static'] =
well.trajectory[idx+1]['torque']['static'] + delta_torque_2

78

 if (case == "hoisting") or (case == "all"):

 # Drag force
 fn_3 = ((well.trajectory[idx+1]['force']['hoisting'] *
delta_azi * sin(point['incAvg'])) ** 2 +
 (well.trajectory[idx+1]['force']['hoisting'] *
delta_inc + point['weight'] *
 sin(point['incAvg'])) ** 2) ** 0.5

 delta_ft_3 = point['weight'] * cos(point['incAvg']) +
point['fric'] * fn_3
 point['force']['hoisting'] =
well.trajectory[idx+1]['force']['hoisting'] + delta_ft_3

 if torque_calc:
 # Torque calculation
 delta_torque_3 = point['fric'] * fn_3 * well.pipe_or
 point['torque']['hoisting'] =
well.trajectory[idx+1]['torque']['hoisting'] + delta_torque_3

 class TaD(object):
 def __init__(self):
 self.force = {
 "lowering": [],
 "static": [],
 "hoisting": []
 }
 self.torque = {
 "lowering": [],
 "static": [],
 "hoisting": [],
 "makeup_torque": []
 }
 self.depth = []
 self.trajectory = well.trajectory
 self.makeup_torque = well.makeup_torque

 for point in well.trajectory:
 self.depth.append(point['md'])
 if (case == "lowering") or (case == "all"):

self.force['lowering'].append(point['force']['lowering'] / 1000)
 if torque_calc:

self.torque['lowering'].append(point['torque']['lowering'] / 1000)

self.torque['makeup_torque'].append(point['torque'].get('makeup_torque',
well.makeup_torque) / 1000)

 if (case == "static") or (case == "all"):
 self.force['static'].append(point['force']['static'] /
1000)
 if torque_calc:

self.torque['static'].append(point['torque']['static'] / 1000)

self.torque['makeup_torque'].append(point['torque'].get('makeup_torque',
well.makeup_torque) / 1000)
 if (case == "hoisting") or (case == "all"):

79

self.force['hoisting'].append(point['force']['hoisting'] / 1000)
 if torque_calc:

self.torque['hoisting'].append(point['torque']['hoisting'] / 1000)

self.torque['makeup_torque'].append(point['torque'].get('makeup_torque',
well.makeup_torque) / 1000)

 def plot(self, plot_case='Force'):
 from .plot import tnd
 fig = tnd(self, plot_case)

 return fig

 return TaD()

def set_conditions(trajectory, dimensions, densities=None, wob=0, tbit=0):

 wob *= 1000
 tbit *= 1000

 if densities is None:
 densities = {'rhof': 1.3, 'rhod': 7.8}

 class NewWell(object):
 def __init__(self):
 self.bottom = dimensions['pipe']['bottom']
 self.makeup_torque = dimensions['pipe']['makeup_torque'] * 1000
convert to Nm
 self.pipe_length = dimensions['pipe'].get('length',
self.bottom)
 self.top = self.bottom - self.pipe_length
 self.trajectory = [x for x in trajectory if self.top <= x['md']
<= self.bottom]
 self.pipe_ir = dimensions['pipe']['id'] / 2 / 39.37
 self.pipe_or = dimensions['pipe']['od'] / 2 / 39.37
 self.ann_or = dimensions['odAnn'] / 2 / 39.37
 self.rhod = densities['rhod'] * 1000

 if type(densities['rhof']) is not list:
 for point in self.trajectory:
 point['rhof'] = densities['rhof'] * 1000 # in kg/m3
 else:
 for idx, point in enumerate(self.trajectory):
 point['rhof'] = densities['rhof'][idx] * 1000 # in
kg/m3

 self.wob = wob # in N
 self.tbit = tbit # in Nm

 return NewWell()

plot.py
import plotly.graph_objects as go

80

def tnd(tq_n_dg, plot_case='Force'):

 if plot_case == 'Force':
 fig = plot_sequence(tq_n_dg.force, tq_n_dg.depth, case='Force')

 else:
 fig = plot_sequence(tq_n_dg.torque, tq_n_dg.depth, case='Torque')

 return fig

def plot_sequence(data, depth, case='Force'):

 if case == 'Force':
 case_units = 'kN'
 else:
 case_units = 'kN*m'

 fig = go.Figure()

 values = []
 if len(data["lowering"]) > 0:
 fig.add_trace(go.Scatter(x=data["lowering"], y=depth,
 mode='lines',
 name='Tripping In'))
 values += [min(data["lowering"]), max(data["lowering"])]
 if len(data["static"]) > 0:
 fig.add_trace(go.Scatter(x=data["static"], y=depth,
 mode='lines',
 name='Rotating Off Bottom'))
 values += [min(data["static"]), max(data["static"])]
 if len(data["hoisting"]) > 0:
 fig.add_trace(go.Scatter(x=data["hoisting"], y=depth,
 mode='lines',
 name='Tripping Out'))
 values += [min(data["hoisting"]), max(data["hoisting"])]
 fig.update_yaxes(autorange="reversed")
 fig.update_layout(
 xaxis_title=case + ', ' + case_units,
 yaxis_title='Measured Depth, m')
 if 'makeup_torque' in data and len(data['makeup_torque']) > 0:
 fig.add_trace(go.Scatter(x=data["makeup_torque"], y=depth,
 mode='lines',
 name='makeup_torque'))
 values += [min(data["makeup_torque"]), max(data["makeup_torque"])]

 return fig

