
SHAM YOHANNES BEEMNET
DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

Defect Detection in Industrial Images

Masters - Computer Science - August 2023

I, Sham Yohannes Beemnet, declare that this thesis titled, “Defect De-
tection in Industrial Images” and the work presented in it are my own. I confirm

that:

■ This work was done wholly or mainly while in candidature for a master’s

degree at the University of Stavanger.

■ Where I have consulted the published work of others, this is always clearly

attributed.

■ Where I have quoted from the work of others, the source is always given.

With the exception of such quotations, this thesis is entirely my own work.

■ I have acknowledged all main sources of help.

“You can have data without information, but you cannot
have information without data.”

– Daniel Keys Moran

Abstract

This thesis aims to identify defects in industrial images using Printed Circuit

Board(PCB) images. Defect detection in industrial images is crucial in this era

that we are living in today. There is a rising demand for automated ways to de-

tect and classify defects in the place of labor that are becoming less available and

more expensive. Additionally, this will enhance the output and raise overall prod-

uct quality.

This thesis presents amethod for detecting defects in PCB images utilizing au-

toencoders, variational autoencoders, convolutional neural networks, and classi-

fiers like K-Nearest Neighbours and Random forests. The study’s primary objec-

tive is to feed the classifiers with data from the autoencoder’s latent space before

passing it to the decoder to reconstruct the image and determine the results. Dif-

ferent models with varied hyperparameters and architectures train the different

autoencoders.

The study’s findings indicate that The VAEwith convolutional neural network

performed best from the four methods used in this thesis with 98.5% accuracy.

This result means that using the latent space before the data gets reconstructed in

the decoder to train amodel and classify defects proved better than using autoen-

coders in the conventional sense in the case of the ConvolutionalNeural network.

iii

Acknowledgements

The journey of writing this thesis was made more accessible because of everyone

around me. But a special thanks goes to my supervisor Arian Baloochestani, who

has been available from the beginning to the end of my thesis; I am immensely

grateful for all of the guidance, supervision availability, support, rapid feedback,

and understanding I received from you, Arian; you are a fantastic person to work

with. My special thanks also goes to my lovely wife and three wonderful kids for

their inspiration and encouragement. I’d also like to thank all of the staff and

instructors at the University of Stavanger for their hard work, as well as all of my

co-students, students Imet through group projects, and excellent friends I gained

at this university.

iv

Contents

Abstract iii

Acknowledgements iv

1 Introduction 2

1.1 Background and Motivation . 2

1.2 Objectives . 3

1.3 Outline . 4

2 Background 5

2.1 Introduction . 5

2.2 Existing Approaches/Baselines . 5

2.3 Basic concepts of Image analysis 5

2.3.1 segmentation . 5

2.3.2 Classification . 6

2.3.3 Shape From X . 6

2.4 Methods Used . 7

2.4.1 Autoencoders . 7

2.4.2 Variational Autoencoders 8

2.4.3 Arteficial Neural Networks(ANN) 9

2.4.4 Convolutional Neural Networks(CNN) 10

2.4.5 K Nearest Neighbors (KNN) 10

2.4.6 Random Forests . 11

3 RelatedWork 15

3.1 Introduction . 15

3.2 Defects in PCB images . 15

v

4 Dataset 24

4.1 Dataset in machine learning . 24

4.2 PCB Image datasets . 24

4.3 DEEP PCB . 24

4.4 Dataset Description . 25

4.5 Preprocessing of the PCB image datasets 26

5 Methodology 28

6 Results and Discussion 31

6.1 Structure of the Model . 31

6.2 Autoencoder . 31

6.2.1 The encoder . 31

6.2.2 The decoder . 32

6.2.3 Training . 32

6.3 Structure of the Model . 33

6.4 Variational Autoencoder(VAE) with a KNN classifier 33

6.4.1 Encoder . 34

6.4.2 Latent Space . 34

6.4.3 Decoder . 34

6.4.4 Loss and Compilation . 34

6.4.5 VAE + KNN Image Classification 35

6.5 Structure of the Model . 35

6.6 Random Forest . 35

6.6.1 Training . 35

6.7 Structure of the Model . 36

6.8 Convolutional Neural Network . 36

6.8.1 VAE Encoder . 37

6.8.2 VAE Decoder . 37

6.8.3 Analysis . 37

7 Conclusion 39

A Instructions to Compile and Run System 40

Chapter 1

Introduction

1.1 Background and Motivation

Defect detection has been used in all societies early on, whether in agriculture,

constructionmaterials, textiles, medicine, and somany other fields or disciplines

in this world, to identify the anomalies within the collection of different kinds

of products. People have always spent resources, time, and energy detecting de-

fects. As the product in all sectors, as mentioned earlier, increases with the rise

in the industry, increased complexity of products, and the increase in population,

It gets more tedious and time-consuming to do the job manually. Moreover, de-

fect detection calls for safe ways to detect anomalies or defects in some sectors,

like medicine, as this can mean life and death if it fails to handle competently

or efficiently. We have to deal with it properly and effectively, and we also re-

quire high-speed solutions to accommodate the world’s fast-growing population.

Furthermore, the need for amore effective and technologicalmethod that can sig-

nificantly reduce the use of resources, time, and energy comes here. As a result,

researchers have investigated and researched machine learning strategies to de-

velop viable techniques of discovering industrial defect identification in the hope

of replacing declining human labor and lowering associated labor costs. This led

to the developments we are enjoying so far. As there are so many machine learn-

ing anddeep learning techniques under development nowadays all over the globe.

And with the current rate of advancement, we will undoubtedly see unthinkable

progress in this area in the future. This shows the huge importance of the field in

the time we are living in. Especially the use of Autoencoders as a tool to enhance

2

this development.

The potential that lies within the use of autoencoders in discovering defects

in image datasets can be a way to break through and go far beyond the present

achievement in this field, especially the idea that was motivational in this area is,

instead of using the traditional way where the autoencoder reconstructs the orig-

inal input image and then checks the reconstruction error to decide whether the

image is defective or nondefective, It made more sense to choose to interrupt in

themiddle and try to examine if It can use the data in the compressed latent space

before getting reconstructed and see what the outcome would be by feeding it to

the different classifiers involved here. Therefore, This thesis was started with the

excitement to see what would happen by implementing the method mentioned

earlier.

1.2 Objectives

This thesis aims to research the use of autoencoders in defect identification. The

following are the goals of this work:

• To comprehend and explain the design, operation, and importance of au-

toencoders for defect detection.

• Using a collection of PCB images, both with and without defects, to create

and train an autoencoder model.

• To assess howwell the trainedmodel correctly recognizes defects in various

test images.

• To assess the autoencoder-based methodology’s accuracy and effectiveness

compared to conventional defect detection techniques.

• To examine the existing model’s implications, constraints, and possibilities

for improvement, offering guidance for further research in this area.

• To extract the compressed latent space plot it and see the distribution of the

data.

• To feed this latent space before it gets reconstructed in the autoencoders

decoder, to the classifiers Convolutional neural net models and other clas-

sifiers like K-Nearest Neighbors and Randoms forests and see the result.

1.3 Outline

Below is given an outline of the organization and substance of this thesis. The

first chapter, introduces the historical background, the motivation for defect de-

tection, and how it was always there; with the rise of technology, it has advanced,

and we expect it to improve even more. This chapter also touches on the im-

portance of defect detection back in history and in this time we are living in and

defines the goals of this thesis.

The second chapter, focuses mainly on the background and surveys of the

methods used in this thesis. It briefly defines and illustrates all the theoretical

approaches used one by one.

The third chapter, reviews some related work goes through themethods used,

the challenges they faced and the results they achieved in the different articles and

finally compares the accuracy found using those different methods.

The fourth chapter, Here the dataset used in this thesis is the main topic. In-

troduces The Printed Circuit Board (PCB) images and explains how they are pre-

processed and used in this thesis.

The fifth chapter, themethodology section, provides information on the study’s

methodology, the thesis’s design, and the numerous approaches utilized to detect

defects in the image datasets.

The sixth chapter is the results and discussion chapter. The thesis results will

be presented, evaluated, and compared to earlierworks. The thesis’ shortcomings

are also discussed.

The seventh chapter is the conclusion part and here final thoughts are put to

conclude the work done in this thesis and also suggests possible directions for

future work

Chapter 2

Background

2.1 Introduction

2.2 Existing Approaches/Baselines

2.3 Basic concepts of Image analysis

The subject of image analysis involves using techniques to extract more complex

data from images [Birchfield(2023)].

There are three main issues with image analysis. These are mainly Segmen-

tation, Classification and Shape from X. We will briefly be introduced one by one

as follows.

2.3.1 segmentation

Identifying the pixels that in an image correspond to each other, or which pixels

are reflections of the same item in the scene, is a technique known as segmenta-

tion see figure 2.1 below. Lacking any model of the specific object in the picture

that created the group of pixels, segmentation can also be seen as a bottom-up

method whereby pixels are placed together based on low-level, local features of

the pixels and those around them [Birchfield(2023)].

5

Figure 2.1: Segmentation, Classification and Shape from X
[Birchfield(2023)].

2.3.2 Classification

As opposed to segmentation, the classification challenge entails identifyingwhich

pixels within an image are part of an earlier-created image. An individual trainer

or other system is used to help create the model by which the pixels will ulti-

mately be compared in the top-down classification process. If you’ve ever seen

the outline of everyone’s faces on a digital camera, that is the outcome of clas-

sification [Birchfield(2023)]. Image classification is particularly relevant to the

thesis as images are classified as defective and non defective using the autoen-

coder and other forms of classification methods such as the K-Nearest Neighbors

and Random forests. An example is shown in the figure 2.1

2.3.3 Shape From X

The third challenge, shape from X, see figure 2.1, attempts to reconstruct the

scene’s three-dimensional (3D) structure using any number of different methods

(thus the ”X”), including video, shading, stereo or texture. Image analysis uses

ideas from linear algebra, statistics, geometry(projective), and the optimisation

of functions to address these three categories of issues [Birchfield(2023)]

Figure 2.2: Autoencoder
[OpenCV(2023)].

2.4 Methods Used

In this part I will go over each of the models I’ve used in my thesis, why I chose

to use them, how I put them into practice, and any notable changes I made if

there are any.But first I let me try to introduce them one by one and give some

illustrations to try to clearly explain them. The techniques I used include the

following: Autencoders, Variational autoencoders, Denoising autoencoders, K-

Nearest Neighbors (KNN), and Random Forests.

2.4.1 Autoencoders

Autoencoders are Neural network circuits which try to get an output out of

the given input which in this case is the pcb images without much distor-

tion.Autoencoders were introduced first in the 1980s by Hinton and the PDP

group [Baldi(2012)]. It is a particular kind of neural network that is primarily

made to encode the input into a compact andmeaningful representation and then

decode it so that the reconstructed input is as similar to the original as possi-

ble [Bank et al.(2020)Bank, Koenigstein, and Giryes].

Generally autoencoders consist of an encoder part, a decoder part as neural

networks and a latent space in between. This way they learn iteratively the en-

coding and decoding process.

In the figure 2.2, a simple autoencoder with the encoder, decoder and the

latent space

• Encoder: The input is compressed into a latent-space representation by this

portion of the network. It can be compared to a data compression technique

with data-specific compression.

• Latent Space Or Compressed representation: This section of the network

shows the decoder’s compressed input. In figure 4.3, an example of the

latent space representation from the pcb images data is shown.

• Decoder: The input is rebuilt by this section of the network using the latent

space representation. It can be compared to a data decompression tech-

nique, however the decompression is tailored to the data the network was

trained on.

2.4.2 Variational Autoencoders

According to [Altosaar(2023)]; A variational autoencoder in the language of neu-

ral networks is made up of an encoder, a decoder, and a loss function. Since the

latent space structure is the main source of the autoencoder’s problems, it is not

very effective at producing new pictures. Because of the latent spaces discontinu-

ity, interpolation is difficult. There are enormous gaps between the clusterswhere

encoded vectors are organized into clusters according to various data types. The

decoder frequently produced nonsense output while creating a fresh sample if the

selected point in the latent space was devoid of any data. Therefore came Varia-

tional autoencoder into existence in 2013 [OpenCV(2023)]. The techniques used

in the variational bayesian and graphicalmodels served as inspiration for the vari-

ational autoencoder. The foundation of VAE is Bayesian inference; as a result, it

seeks to model the underlying probability distribution of data in order to sample

fresh data from it [OpenCV(2023)]. In the figure 2.3 a Variational Autoencoder

is shown.

The essential difference between VAE and a regular autoencoder is this fact:

their latent spaces are continuous by design, making random sampling and inter-

polation simple. This trait is what makes VAE so valuable for generative model-

ing [OpenCV(2023)].

In the illustration 2.3, the encoder receives the input picture and produces two

latent variables, Zµ and Zσ, which represent the distribution’s parameters and

are learned during training. In VAE, we have two latent variablesZµ andZσ from

which you sample a latent-vector Z rather than immediately producing a latent-

space Z that is not required to follow any distribution. The sampled latent-vector

Figure 2.3: Variational Autoencoder
[OpenCV(2023)].

Z is also known as a sampling-layer since it draws data from amultivariate Gaus-

sian G(Zµ, Zσ), where Zµ and Zσ stand for mean and variance, respectively. We

get the anticipated picture X̂ by passing the sampled vector Z to the decoder.The

variables Zµ and Zσ must be trained such that they are close to zero and one,

respectively, in order for our latent vector Z to follow a conventional normal dis-

tribution [OpenCV(2023)].

2.4.3 Arteficial Neural Networks(ANN)

Artificial Neural Networks (ANNs) are computational processing systems of

which are heavily inspired by way biological nervous systems (such as the hu-

man brain) operate. ANNs are mainly comprised of a high number of intercon-

nected computational nodes (referred to as neurons), of which work entwine in

a distributed fashion to collectively learn from the input in order to optimise its

final output [O’Shea and Nash(2015)].

2.4.4 Convolutional Neural Networks(CNN)

The Convolutional Neural Network (CNN) is one of themost amazing ANN archi-

tectural types. CNNs are typically employed to tackle challenging image-driven

pattern recognition problems and, thanks to their accurate yet straightforward

architecture, provide a streamlined way to get started with ANNs [O’Shea and

Nash(2015)].

The field of computer vision has been significantly influenced by these

convolutional neural network (CNN) which are neural network architec-

tures [Heaton(2020)].

The learning process of CNNdepends heavily on the arrangement of the input

array’s elements. As opposed to CNNs, many neural networks handle their input

data as an extended vector of values, hence the placement of the input features

within this vector is unimportant. For these kinds of neural networks, after the

network has been trained, the order cannot be changed [Heaton(2020)].

The inputs are organised into a grid by CNN network. Concerning images,

this setup worked effectively since pixels near to one another are essential for

one another. It matters how the pixels are arranged in an image. An appropriate

illustration of this kind of order is the human body. We are used to seeing eyes

close together due to the facial structure [Heaton(2020)].

2.4.5 K Nearest Neighbors (KNN)

If someone has not much information about the distribution of the data, K near-

est neighbor (KNN) classification should be one of the first options considered.

It is one of the most fundamental and basic classification techniques. The ne-

cessity to perform discriminant analysis when accurate parametric estimates of

probability densities are unidentified or difficult to ascertain led to the develop-

ment of K-nearest-neighbor classification [Scholarpedia(2009)]. Fix andHodges

developed a non-parametric technique for pattern categorization in a 1951 study

from theUSAir Force School of AviationMedicine that was never published. This

technique is now known as the k-nearest neighbour rule [Fix andHodges(1989)].

KNN is built on a distance function, which calculates how different or simi-

lar two instances are. The distance function is frequently the conventional Eu-

clidean distance d(x,y) between two instances of x and y, defined as follows [Jiang

et al.(2007)Jiang, Cai, Wang, and Jiang].

Figure 2.4: Is an example of the plot of 200 data points from an oil data set, in
which the red, green, and blue colours represent the ”laminar,” ”annular,” and
”homogeneous” classes, respectively, shows values of x6 plotted against x7. The
K-nearest-neighbor algorithm’s categorization of the input space for various K
values are also displayed.

[Bishop and Nasrabadi(2006)]

d(x, y) =

√√√√ n∑
i=1

(ai(x)− ai(y))2 (2.1)

The Euclidean distance between the sample being tested and the designated

training samples is frequently used as the basis for the k-nearest-neighbor classi-

fier. Let n be the sum of the number of input samples (i = 1, 2, . . . , n) and p be the

entire number of features (j = 1, 2, . . . , p) and let xi be a sample of the input with

p features (xi1, xi2, . . . , xip). The formula for the Euclidean distance of instance

xi and xl (l = 1, 2, . . . , n) is

d(xi, xl) =
√
(xi1 − xl1)2 + (xi2 − xl2)2 + . . .+ (xip − xlp)2 (2.2)

[Scholarpedia(2009)].

2.4.6 Random Forests

Leo Breiman and Adele Cutler are the creators of the widely used machine learn-

ing technique known as random forest, which mixes the outcomes of various de-

cision trees to produce a single outcome. Its widespread use is motivated by its

adaptability and usability because it can solve classification and regression is-

sues [IBM(2023)]. Random forests are made of decision trees. so it makes it

easier to understand if I introduce the decision trees first. Decision trees were

among the first algorithms for statistics to be utilized in computer format fol-

lowing the introduction of electrical circuitry to digital calculations in the latter

decades of the twentieth century, which are universal prediction and classifica-

tion processes [De Ville(2013)]. In simple words, a decision tree creates an as-

sumption, determines if it is accurate or untrue, and then produces a decision.

The most widely used criterion for splitting are ”gini” for the Gini impurity as

well as ”entropy” for the information gain, both of which have mathematical ex-

pressions as: The following formula calculates the entropy considering a dataset

with classes N [Sarker(2021)].

E = −
N∑
i=1

pi log2 pi (2.3)

and the Gini impurity is calculated as as follows: [Ansari(2022)].

Gini(t) = 1−
N∑
i=1

P

(
i

t

)2

(2.4)

The P denotes the class ratio at the ith node. Gini impurity gets an upper limit

of 0.5, indicating the worst case scenario, but a lowest value of 0 indicating the

best case scenario [Ansari(2022)].

Figure 2.5 shows an example of a decision tree. Using prior knowledge from

the training data, Decision Tree is a common classification as well as prediction

technique within supervised machine learning that may be used to label or cate-

gorise the provided data [Patil and Kulkarni(2019)].

Numerous classification trees are grown in Random Forests. Place the given

input vector down each tree in the forest to classify an unfamiliar item using the

input vector. Each tree makes a classification, which we refer to as the class the

tree ”votes” for. Among every trees within the forest, the categorization with the

highest votes is chosen by the forest [Breiman(2015)].

In order to decide on a general classification over the given collection of

inputs, the random forest approach combines numerous random tree classifi-

cations. Each vote cast by a machine learner is typically given equal weight.

Later works by Breiman extended this technique to support both weighted

and unweighted voting. The classification with the most votes is the one the

Marks

Class Fail

Distinction First Class

Marks > 60 Marks < 35

Marks > 66 Marks < 66 && Marks >60

Figure 2.5: An example of a Decision Tree
[Somvanshi et al.(2016)Somvanshi, Chavan, Tambade, and Shinde].

Vote ++

ML 1

ML 2

ML 3

INPUT Classification

X 1

X 1

X 1

Un weighted voting

Figure 2.6: Random Forest Algorithm
.

forest choose [Livingston(2005)]. An illustration of the random forest algo-

rithm(unweighted) may be seen in Figure 2.6

Supposing that we have been given a training sample of random variables that

are independent and spread as an independent prototype pair (X,Y) with the

formula: Sn = {(X1, Y1), . . . , (Xn, Yn)}. The objective is to create an estimate of
the functionmn using the data set Sn and the formulasmn : D → R. In this sense,
the regression function estimatemn is said to be (mean squared error) consistent

if

E {mn(X)−m(X)}2 → 0 as n → ∞ (2.5)

(The expectation is assessed over the sample Sn and the variableX) [Biau and

Scornet(2016)].

Chapter 3

RelatedWork

3.1 Introduction

Defect detection in industrial images is a critical task that helps to ensure product

quality andmaintain efficiency in themanufacturing process. Various techniques

have beenproposed to performdefect detection, including image processing tech-

niques, machine learning techniques, and deep learning techniques.

In this literature review, we focus on deep learning techniques, specifically

autoencoders, viariational autoencoders, denoising autoencoders and genera-

tive adversarial networks (GANNs), for defect detection in industrial images [Bai

et al.(2014)Bai, Fang, Lin, Wang, and Ju].

3.2 Defects in PCB images

A printed circuit board, or PCB, is a crucial component in electrical equipment

as it transports various parts. The quality of the PCB directly affects the perfor-

mance of the equipment. The industry has widely adopted automated optical in-

spection (AOI) based on machine vision to improve efficiency and reduce fatigue

associated with manual detection.

As PCBs become more complex, identifying and categorizing defects has be-

come increasingly challenging [Huang and Wei(2019)].

Machine learning techniques have been now in use for a while to detect

different kinds of defects some have used them to detect defect in fabric [Mei

et al.(2018)Mei, Wang, and Wen], some have used them to detect defects in sur-

15

face images [Bhatt et al.(2021)Bhatt, Malhan, Rajendran, Shah, Thakar, Yoon,

and Gupta], and even some have used them to detect weld defects based on digi-

tised images [Nacereddine et al.(2005)Nacereddine, Zelmat, Belaifa, and Tridi]

and some in crack detection of concretes structures [Islam and Kim(2019)] by us-

ing various deep learningmethods such as transfer learning, convolutional neural

networks, autoencoders and generative adversarial networks.

Some of these papers like [Mei et al.(2018)Mei, Wang, andWen] employ deep

learning methods specifically a multi scale convolutional denoising autoencoder

networkmodel due to the diversity and complexity of the defects in fabric images.

They developed a model to learn the characteristics of defective and non de-

fective fabrics using a data set of fabric images with and without imperfections

and themulti-scale architecture that the CAE network was built with enables it to

learn textrue patterns at many scales and capture more substantial features for

defect detection [Mei et al.(2018)Mei, Wang, and Wen].

In this paper they underwent evaluation using a benchmark dataset and

showed promising accuracy and F1-score results even though they have men-

tioned challenges like there being many distinct textiles, each of which typically

has unique set of properties which makes it hard to create universal algorithms

suitable with different texture types [Mei et al.(2018)Mei, Wang, and Wen].

Another challenge they have mentioned is the variety of categories and traits

associated with the defects in fabric in general. There exist already over 70 types

of fabric defects that have been established by the textile industry.The last chal-

lenge mentioned is the difficulty for businesses to gather significant numbers of

fabric samples, especially some unusual varieties, which cause data imbalances

or outright failures for some classic supervised algorithms [Mei et al.(2018)Mei,

Wang, and Wen].

Another article that used a unique module referred to as group pyramid pool-

ing. which is designed to improve the detection of PCB defects is the the article

by [Tang et al.(2019)Tang, He, Huang, and Yang].

The article creates or collects a new dataset of PCB images with 6 different

categories of defects and annotates those six sorts of typical defects.Then they

apply Max pooling convolutional backbone followed by a novel group pyramid

pooling which they used to effectively incorporate data frommultiple resolutions

and forecast PCB defects at different scales [Tang et al.(2019)Tang, He, Huang,

and Yang].

Finally in-depth tests were performed to asses the suggestedmodel.The [Tang

et al.(2019)Tang, He, Huang, andYang] claim that their approach can accomplish

stat-of-the -art performance while consuming relatively small computing time

and that future research will be made easier by the accessible DeepPCB dataset.

The [Huang and Wei(2019)] is a similar article which presented a generated

PCB dataset that includes 1386 images of defects with 6 different types for use in

detection, classification, and registration tasks.

The ting that motivated them for the creation of generated PCB dataset was

because many researches rarely publish their dataset even though they have sug-

gested several of their methods [Huang and Wei(2019)].

In this article by [Huang andWei(2019)] In order to categorize the flaws, they

presented a reference-based technique of inspection and trained an end-to-end

convolutional neural network.

Their method performs better on their dataset than traditional approaches

that call for pixel-by-pixel processing by first locating the defects and then classi-

fying them using neural networks. according to them these datasets are available

online [Huang and Wei(2019)].

To increase the data´s size they implemented data augmentationmethods and

used dense shortcuts from densenet instead of just stacking convolutional layers

in order to improve learning. having used these they claim that they were able to

attain great precision [Huang and Wei(2019)].

Another PCB defect detection method that uses deep learning methods is the

paper by [Wu et al.(2021)Wu, Ge, Zhang, and Zhang].

This document setts off in order to guarantee high output and reduce labor

costs by using two different types of target detection networks to identify and

categorize pcb defects [Wu et al.(2021)Wu, Ge, Zhang, and Zhang].

The paper utilises two kinds of models which are the SSD and FPNmodels in

two different kinds of PCB images.

According to [Wu et al.(2021)Wu, Ge, Zhang, and Zhang], On these datasets

with various distributions, both of these models have produced positive out-

comes.

According to their findings, the FPN effectively detects the defects on both

PCBdatasets.The value of the f1 score on the PCBdataset using SSD is only 54.4%,

thus the detection effectiveness of SSD is somewhat poorer than that of FPN [Wu

et al.(2021)Wu, Ge, Zhang, and Zhang].

PCB images were also used in a different yet interesting defect detec-

tion method using the denoising convolutional autoencoder by [Khalilian

et al.(2020)Khalilian, Hallaj, Balouchestani, Karshenas, and Mohammadi].

This article attempts to restore the original image from a corrupted one. The

model was created to replace the defective components after being trained on de-

fective PCBs [Khalilian et al.(2020)Khalilian, Hallaj, Balouchestani, Karshenas,

and Mohammadi].

Here they point out that in the past, image processing techniques were used to

automate the visual examination of PCBs, but machine learning approaches, in-

cluding neural networks and convolutional neural networks, have now taken their

place [Khalilian et al.(2020)Khalilian, Hallaj, Balouchestani, Karshenas, andMo-

hammadi].

They alsomention that unsupervised neural networks using autoencoders are

effective at obtaining outputs by extracting features from data sources [Khalilian

et al.(2020)Khalilian, Hallaj, Balouchestani, Karshenas, and Mohammadi].

Here they removed the noise first from the PCB images before the noise-

free images were sent into a deep learning method known as Convolutional Au-

toencoder network for training. Then by reconstructing the input images and

comparing them with the original images to find changes, the trained network

was then utilized to detect defects in newer, untested PCB images [Khalilian

et al.(2020)Khalilian, Hallaj, Balouchestani, Karshenas, and Mohammadi].

This way they were able not only find and located the problems of every de-

scription but also were able to fix them. They identified the defective compo-

nents by deducting the output of the repaired system from the input [Khalilian

et al.(2020)Khalilian, Hallaj, Balouchestani, Karshenas, and Mohammadi].

According to this paper the experimental results show that this approach,

when compared to current state-of-the-art works, obtained high accuracy in the

detection of defective PCBs which is 97% [Khalilian et al.(2020)Khalilian, Hallaj,

Balouchestani, Karshenas, and Mohammadi].

The paper by [Lu et al.(2020)Lu, Mehta, Paradis, Asadizanjani, Tehranipoor,

and Woodard] also presented another interesting work in this field.

According to this paper,they were set to find the solution to the shortage of

publicly available data sets for printed circuit boards (PCB-AVI), within the field

of Automated visual inspection. This due to the reason that there aren’t many

publicly available data-sets of this kind and thus the developments and capabil-

ities within this field aren’t well understood. As a result they suggested a pub-

licly accessible dataset called ”FICS-PCB” in order to support the development of

reliable PCB-AVI algorithms [Lu et al.(2020)Lu, Mehta, Paradis, Asadizanjani,

Tehranipoor, and Woodard].

They also mention that their suggested dataset comprises tough instances

related to illumination, image scale, and image sensor characteristics and in-

cludes 9,912 images of 31 PCB samples and 77,347 annotated components [Lu

et al.(2020)Lu, Mehta, Paradis, Asadizanjani, Tehranipoor, and Woodard].

The dataset contains challenging instances related to three different variables:

illumination, imagine scale, and image sensor. This collection includes 77,347

annotated components and 9,912 images of 31 PCB samples [Lu et al.(2020)Lu,

Mehta, Paradis, Asadizanjani, Tehranipoor, and Woodard].

It is also mentioned that, they used the following methodologies,

• On the suggested dataset,experiments are run to assess performance

changes. They use cutting-edge feature engineering and deep learn-

ing techniques to classify PCB components on the variable subsets [Lu

et al.(2020)Lu, Mehta, Paradis, Asadizanjani, Tehranipoor, andWoodard].

• Since image matching techniques take a lot of time and are sensitive to im-

age changes, they are not used in the research [Lu et al.(2020)Lu, Mehta,

Paradis, Asadizanjani, Tehranipoor, and Woodard].

• RGB color As part of the feature engineering process,the Fourier shape

and fusion of color and edge characteristics were used [Lu et al.(2020)Lu,

Mehta, Paradis, Asadizanjani, Tehranipoor, and Woodard].

• The R,G,and Bcolor channel values are retrieved from a 10 10 pixel square

in the center of the component body and given into a Naive Bayes classi-

fier as RGB color features [Lu et al.(2020)Lu,Mehta, Paradis, Asadizanjani,

Tehranipoor, and Woodard].

• As it was applied,the Fourier descriptor is employed along with Canny edge

detection and watershed segmentation [Lu et al.(2020)Lu, Mehta, Paradis,

Asadizanjani, Tehranipoor, and Woodard].

• The sixth coefficients are used to incorporate enough shape features after

applying the discrete complex Fourier transform to generate the Fourier

coefficients [Lu et al.(2020)Lu,Mehta, Paradis, Asadizanjani, Tehranipoor,

and Woodard].

• The multi-layer perceptron is then fed with these coefficients (MLP) [Lu

et al.(2020)Lu, Mehta, Paradis, Asadizanjani, Tehranipoor, andWoodard].

• It uses feature fusion, which joins feature vectors for color and shape [Lu

et al.(2020)Lu, Mehta, Paradis, Asadizanjani, Tehranipoor, andWoodard].

• The training of an MLP for the identification of PCB components uses

the concatenation of three features [Lu et al.(2020)Lu, Mehta, Paradis,

Asadizanjani, Tehranipoor, and Woodard].

• The potential of applying deep learning for PCB component categorization

was investigated using two deep neural networks, AlexNet and Inception-

v3 [Lu et al.(2020)Lu, Mehta, Paradis, Asadizanjani, Tehranipoor, and

Woodard].

This research also gives the following as some of the challenges faced;

• These widely accessible datasets are sizable in terms of size, but they do not

replicate the broad variation in real-world situations that can present diffi-

culties for PCB inspection performance [Lu et al.(2020)Lu, Mehta, Paradis,

Asadizanjani, Tehranipoor, and Woodard].

• On private datasets, the performance of existing PCB-AVI approaches has

been encouraging [Lu et al.(2020)Lu, Mehta, Paradis, Asadizanjani, Tehra-

nipoor, and Woodard]. and

• The necessity for a new dataset is driven by the text’s emphasis on the dif-

ficulties in creating effective PCB Automatic Visual Inspection techniques

due to the great heterogeneity in PCBelements, surfaces, anddifferent types

of imaging [Lu et al.(2020)Lu, Mehta, Paradis, Asadizanjani, Tehranipoor,

and Woodard].

As results it is mentioned that the Baseline performance is above 97%, Low

accuracy in the Illumination variation(less than 60%), dropped classification ac-

curacy in the scale variation and a drop by 35%was seen in the Image sensor vari-

ation which showed potential for future development [Lu et al.(2020)Lu, Mehta,

Paradis, Asadizanjani, Tehranipoor, and Woodard].

The article by [Liao et al.(2021)Liao, Lv, Li, Luo, Zhu, and Jiang] also presents

a deep learning based detector for the rapid and precise detection of surface de-

fects in printed circuit boards(PCBs).

The YOLOv4 was enhanced in terms of its neck/prediction network’s activa-

tion function and backbone network. The work suggests YOLOv4-MN3 as a low-

cost DL-based detector to address the problems with large parameters and com-

putational expense in existing models [Liao et al.(2021)Liao, Lv, Li, Luo, Zhu,

and Jiang].

The article implemented the following methodologies;

• In general, computer vision and deep learning approaches are employed,

and in this case, the method was developed based on the state-of-the-art

YOLOv4 one-stage detector [Liao et al.(2021)Liao, Lv, Li, Luo, Zhu, and

Jiang].

• It entails three steps: dataset construction, model training, and perfor-

mance assessment [Liao et al.(2021)Liao, Lv, Li, Luo, Zhu, and Jiang].

• A specially created image acquisition device first gathers all of the PCB de-

fect images, and then the augmentation and annotation labeling are carried

out. After that, YOLOv4 is adjusted and trained using a unique dataset.

The effectiveness of the proposed YOLOv4-MN3 and other SOTA detectors

is assessed and compared in the last section [Liao et al.(2021)Liao, Lv, Li,

Luo, Zhu, and Jiang].

• For this study, the lightweight network MobileNetV3 was substituted for

the CSPDarknet53 in YOLOv4 to create the cost-effective detector YOLOv4-

MN3. MobileNetV3 builds featuremappings for each layer using depthwise

separable convolution [Liao et al.(2021)Liao, Lv, Li, Luo, Zhu, and Jiang].

• The squeeze and excitation attentionmodule ofMobileNetV3 is added to the

MobileNetV2 bottleneck in order to increase the detection accuracy [Liao

et al.(2021)Liao, Lv, Li, Luo, Zhu, and Jiang].

• To increase the precision of detection, MobileNetV3 updates the Swish ac-

tivation function [Liao et al.(2021)Liao, Lv, Li, Luo, Zhu, and Jiang].

• Due to its ability to achieve high detection speed and accuracy at the same

time, experimental findings attest to MobileNetV3’s usefulness and superi-

ority [Liao et al.(2021)Liao, Lv, Li, Luo, Zhu, and Jiang].

• To choose the most appropriate activation function based on how well it

performed during training and detection on the specific dataset, multiple

activation functions’ features were examined, and comparison studies be-

tween them were run [Liao et al.(2021)Liao, Lv, Li, Luo, Zhu, and Jiang].

• The activation function for the neck/prediction network is the sole one cho-

sen in this study asMobileNetV3 has optimized its activation function [Liao

et al.(2021)Liao, Lv, Li, Luo, Zhu, and Jiang].

Here, the paper claims that their results showed that when compared to other

models, YOLOv4-MN3 had the greatest detection accuracy, fastest speed, and

lowest Madds [Liao et al.(2021)Liao, Lv, Li, Luo, Zhu, and Jiang].

For usefulDL-basedmodels, however, the complexity anddiversity of genuine

industry backgrounds, defect categories, and morphologies must be constantly

updated [Liao et al.(2021)Liao, Lv, Li, Luo, Zhu, and Jiang].

Furthermore theymention that, YOLOv4-MN3’s extensive use ofmanually la-

beled samples necessitates the investigation of unsupervised or semi-supervised

techniques [Liao et al.(2021)Liao, Lv, Li, Luo, Zhu, and Jiang].

According to the paper The enhanced detector outperformed existing state-of-

the-art (SOTA) detectors when tested using a tailored dataset gathered from PCB

manufacturing, achieving a mean average precision (mAP) of 98.64% at 56.98

frames per second (FPS) [Liao et al.(2021)Liao, Lv, Li, Luo, Zhu, and Jiang].

It was also reported that YOLOv4’s multiply-accumulate operations and pa-

rameter space reduction.It is also clear that MobileNetV3 outperformed all other

backbone networks in terms of mAP [Liao et al.(2021)Liao, Lv, Li, Luo, Zhu, and

Jiang].

The value of mAP obtained by MobileNetV3 is higher than that of VGG16,

Resnet50, Darknet53, CSPDarknet53, andMobileNetV2 by 1.26%, 2.16%, 1.65%,

0.77%, and 2.31%, respectively [Liao et al.(2021)Liao, Lv, Li, Luo, Zhu, and

Jiang].

Within the six backbonenetworks,MobileNetV3had the greatest F1 score, im-

proving above VGG16, Resnet50, Darknet53, CSPDarknet53, and MobileNetV2

by 2.66%, 5.16%, 2.83%, 0.66%, and 4.50%, respectively [Liao et al.(2021)Liao,

Lv, Li, Luo, Zhu, and Jiang].

Table 3.1 shows a summary of the above mentioned important research arti-

cles reviewed in this chapter. AS it can be seen from the table the majority of the

articles used PCB image datasets for their methods in their studies except Mei et

al.(2018) that used Fabric Images.

Author/Article Method Dataset
Used

Accuracy

Mei et al.(2018)] Conv Denoising AE Fabric Im-
ages

80%

Tang et al.(2019) Group pyramid pooling Deep PCB
Huang and
Wei(2019)

end-to-end conv neural
net

PCB 99%

Wu et al.(2021) Convolutional neural
net

PCB

Khalilian et
al.(2020)

Denoising conv AE PCB 97.5%

Lu et al.(2020) Deep neural net FICS-PCB
Liao et al.(2021) YOLOv4-MN3 PCB 98.64%

Table 3.1: A summary of the related work

Chapter 4

Dataset

4.1 Dataset in machine learning

A dataset in machine learning is a set of data which is used to train a model. A

dataset serves as an example for the algorithm used for machine learning to learn

how to generate predictions.

The following are examples of typical data types: video,audio,image,text and

numeric data [Javaid(2023)]. These datasets are mostly used to train or test the

model.

4.2 PCB Image datasets

PCB data sets are collections that have data created especially for testing and re-

fining defect detection algorithms [Tang et al.(2019)Tang, He, Huang, and Yang].

4.3 DEEP PCB

DEEP PCB is A dataset of 1,500 image pairings includes locations of the six most

prevalent PCB defects: open, short, spur, mousebite, pinhole, and spurious cop-

per. Each image pair includes a free of defects template image and an equivalent

testing image [Tang et al.(2019)Tang, He, Huang, and Yang].

24

4.4 Dataset Description

The linear scan CCD used to capture each image in this dataset has a pixel den-

sity of roughly 48 pixels per 1 millimeter. As described above, the non-defective

template images are personally examined and cleaned from the sample pictures.

The templates and the tested image’s original dimensions are roughly 16k by

16k pixels. They are then divided into numerous 640 × 640 pixels sub-images

using a cropping process, then aligned using template matching methods.

The next step is to carefully choose a threshold to use binarization to prevent

lighting disturbance. The pre-processing algorithms can vary depending on the

specific PCB fault detection algorithms. Nevertheless, high-accuracy PCB defect

recognition and classification methods often use picture registration and thresh-

olding approaches [Tang et al.(2019)Tang, He, Huang, and Yang].

Examples of these image datasets are shown in figures 4.1 and 4.2 as defective

images and non defective images respectively below them to give an idea of how

they look like and show their difference.

Figure 4.1: Defective Images

Figure 4.2: Non-Defective Images

0.10 0.05 0.00 0.05 0.10 0.15
X

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20

Y
Latent Space Visualization

z_mean
z_log_var

Figure 4.3: Latent space representation from the PCB images dataset

4.5 Preprocessing of the PCB image datasets

Here these gray scale image datasets have been resized to a reasonable degree to

make it easier for the machine to work on.

Normalisation was also applied to scale the values of the image pixel values,

i.e from [0,255] to the range of [0,1] or [-1,1] to help in the convergence of the

training process.

Data augumentation technique was also used in some cases to expand the

number of the dataset by making different altered copies of the image datasets.

Figure 4.3 shows a scatter plot that visualizes the distributions of latent space

representations learned by an autoencoder.The autoencoder model learns to

compress the information of each image into a lower-dimensional latent repre-

sentation.

The z_mean represents the mean value of the latent variables and is shown

with the blue colour dots in figure 4.3. The z_log_var on the other hand repre-

sents the logarithm of the variances of the latent variables. This is represented by

the points with red color in Figure 4.3.

Chapter 5

Methodology

• A literature review was carried out on the different kinds of defect detection

methods that involved autoencoders.

This was followed by a study of the autoencoders, how they work,

how to construct and implement them along side the use of python in

jupyterLab and different other libraries like Keras, tensorflow, Numpy,

matplotlib,SciKit-Learn and others to work with the loading, reading, re-

sizing, preprocessing, building the model architechture and compiling of

the models.

• Integrates image processing and machine learning methods to detect de-

fects in industrial images.

• Analyses various cutting-edge strategies for detecting defects, including:

– Auto Encoder (AE)

– Variational Auto Encoder (VAE)

– K Nearest Neighbours

– Random Forests

• Applies and evaluates these techniques on different classifiers.

• Primarily uses image datasets from Printed Circuit Boards (PCBs) that in-

clude defective and non defective images.

• Uses these PCB image datasets to train and test various models.

28

Encoder DecoderZx x'

Classifier

Input Output

Predictions

Latent
space

Figure 5.1: A chart that shows the methodology used in this thesis
.

• Extensively trains models using a wide range of hyper-parameters and ar-

chitectures before testing on other datasets.

The Main Methodology implemented in this thesis is the process of Autoen-

coder. But instead of the conventional method where the input data gets com-

pressed in the latent space and then again getting reconstructed to check the er-

ror loss between the original input and the reconstructed image to check whether

the image is defective or non defective.

In themethodologywhichwas applied here, the datawas taken from the latent

space and instead of it getting reconstructed, it is fed to the classifier with the data

and then the classifier checks the defectiveness of the image from the data from

the latent space.

Here Convolutional variational autoencoder, the K-Nearest neighbors classi-

fier and the Random forest classifier are used. This procedure is shown in the

flow chart in the Fig 5.1

The second one which is used here is the conventional method of using au-

toencoders. It can be seen in the Fig 5.2. This method contains the Encoder,

Decoder and Latent space where the encoder extracts the compressed version

from the input image because it learns characteristics from the input image and

has fewer nodes in its output layer than in its input layer. The decoder uses this

compressed representation as input and reconstructs the input image as output.

Each output node represents a specific pattern of geometric shapes.[?]

As with all other neural network techniques, the autoencoder in the above-

mentioned methodologies trains the system using images from the image data

Encoder Decoder

Compressed
representation
(Latent space)

Original
Input

Reconstructed
Output

Figure 5.2: The conventional Autoencoder method
.

utilizing backpropagation techniques.

Each image’s reconstruction error (which is also called loss function) is calcu-

lated; if it is significant, the model sees the image as defective. Else the image is

non-defective. Additionally, a threshold is established above which an image is

considered defective.

Chapter 6

Results and Discussion

The findings and a discussion of the thesis are presented in this chapter. Here, the

findings are summarised, shown in several formats, including graphic and tabular

ones, reviewed, and contrasted with previous works. Starting with the structure

of the autoencoders, this section will explore through the training methods anal-

yse the results of the models and finish with a discussion of the many aspects of

the thesis.

Note: Here accuracy is taken as the main metric for evaluating performance

as the image dataset we are using is fairly balanced between the defective and non

defective images.

6.1 Structure of the Model

6.2 Autoencoder

As was mentioned earlier in chapter 4, the PCB images were resized and called as

D_resized for the defective PCB images and N_resized for the non-defective PCB

images. The images are labeled 1 for the defective and 0 for the non-defective.

They are also normalised to a scale of [0,1] to eliminate data quality prob-

lems,boost data analysis and lessen data duplication for a better training.

6.2.1 The encoder

The input layer of the encoder is initially created to handle gray scale image of di-

mentions (224 x 224). Two convolutional layers, each with 32 and 64 filters, are

31

used by the encoder. Each of those layers have a stride of 2, and batch normali-

sation comes after leaky ReLU activations. The structure then uses dense layers

to generate a latent representation of the dimension latent_dim, which was set to

128. This is done after flattening the spatial data.

6.2.2 The decoder

From the latent space, the decoder recreates the original image.It begins by trans-

forming the data back into a 2D format using a dense layer, and then utilises two

transposed convolutional layers to restore the image back to its original 224 x 224

size. The table 6.1 shows A summary of the Autoencoder structure used.

Layer type Encoder Decoder
Input shape 224x224x1 128(latent_dim)
Conv2D(strides=2) 32 filters
Activation LeakyReLU(alpha=0.2)
BatchNormalization Yes
Conv2D(strides=2) 64 filters
Activation LeakyReLU(alpha=0.2)
BatchNormalization Yes
Flatten/Dense Flatten + 128 nodes Dense+56x56x64
Reshape 56x56x64
Conv2DTranspose 64 filters(strides=2)
Activation LeakyReLU(alpha=0.2)
BatchNormalization Yes
Conv2DTranspose 32 filters(strides=2)
Activation LeakyReLU(alpha=0.2)
Output 128(latent_dim) 224x224x1

Table 6.1: Structure of the Autoencoder

6.2.3 Training

Using a learning rate of 0.001, the RMSprop optimizer was used to train the au-

toencoderwhile taking into account themean square error(MSE) of the initial and

reconstructed images. Using an early stopping mechanism,training was stopped

if no progress was seen for 10 consecutive epochs in the validation loss. Training

was done using a batch size of 32 across 50 epochs.

Figure 6.1: Loss plot for the Autoencoder model
.

Fig 6.1 shows the training and validation loss for the Autoencoder model. The

training configurations of the Autoencoder are given in the table 6.2

Parameter Value
Optimizer RMSprop
Learning Rate 0.0001
Loss Function Mean Square Error(MSE)
Epochs 50
Batch Size 64
Early Stopping Yes(patience=10)

Table 6.2: Training configurations of the AE

6.3 Structure of the Model

6.4 VariationalAutoencoder(VAE)withaKNNclas-

sifier

After labelling the defective images(D_images as 1 and N_images as 0) and nor-

malizing the pixel values to be between 0 and 1, the latent space data is split in to

training and testing sets as this will be applied or fed to the classifier.

6.4.1 Encoder

A 224 by 224 grayscale image is fed into the encoder. Dense layers are ap-

plied next, after which 2D convolutional layers are applied. Then, z_mean and

z_log_var are the output.

6.4.2 Latent Space

The latent representation (z_mean) of the images from the VAE is used to train a

KNN classifier in this model. The images will then be categorised as defective or

non-defective so that the performance of the KNN model may be evaluated.

Table 6.3 shows the latent space Loading and data splitting process

Parameter Input Output Aim
Loading
z_mean
and
z_log_var

output_folder
path

z_mean and z_log_var load pre calcu-
lated latent space
structures

Data Split-
ing

z_mean la-
bels

trainz_mean,testz_mean,-
train_labels,test_labels

divide data in to
training and test-
ing sets

Table 6.3: Latent space loading and data splitting

6.4.3 Decoder

The values from the latent space are sent into the decoder. Utilising dense layers

and transpose convolution layers, it transforms them again into an image.

Here, the model is produced by passing the encoded data in to the decoder

6.4.4 Loss and Compilation

Here, reconstruction loss and KL divergence loss are combined in the VAE loss.

The Adam optimizer along with the unique VAE loss are used to build the

model.

6.4.5 VAE + KNN Image Classification

With the help of the VAE’s encoder, an image is uploaded and its latent represen-

tation is extracted.

The KNN classifier is then applied to decide whether or not this image is de-

fective.

6.5 Structure of the Model

6.6 Random Forest

Random forest has a simple architecture in comparison to Convolutional Neural

net but the combination of multiple decision trees can in some cases give it an

extra strength to perform better.

The following table 6.4 shows the Random Forest Structure

Component Description
Base Model Decision Ttree
Number of Trees n_estimatores = 100
Bootstrap Samples Yes
Max Features Default
Criterion Gini impurity
Tree depth not limited
Min samples split 2
Min samples leaf 1

Table 6.4: Random Forest Structure

6.6.1 Training

TheRandom forest is traied on the latent representation(train_z_mean) in a sim-

ilar fashion to the KNN and the convolutionla neural network classifier. Training

of the VAE and the Neural network classifier which are present along with the

Random Forest classifier is already mentioned in the other sections, so no need

to repeat it here.

6.7 Structure of the Model

6.8 Convolutional Neural Network

Following loading and data preparation, data augmentation is used to artificially

expand the total amount of the data set used for training by altering the dataset’s

existing images. This is accomplished through rotation, width-and-height shift-

ing, shearing, zooming, and horizontal flips.

Layer Type Parameters Activation
Function

Conv2D 32 filters, kernel size 3x3 ReLU
Conv2D 64 filters, kernel size 3x3 ReLU
Maxpooling2D pool size 2x2
Dropout 0.5
Conv2D 128 filters, kernel size 3x3 ReLU
Conv2D 256 filters, kernel size 3x3 ReLU
MaxPooling2D pool size 2x2
Dropout 0.5
Flatten
Dense 128 units ReLU
Dense 64 units ReLU
Dense 1 unit Sigmoid

Table 6.5: CNN classification model with data Augumentation

Table 6.5 shows CNN classification model with data augmentation

Layer Type Parameters Activation
Function

Conv2D 32 filters, kernel size 3x3 ReLU
Conv2D 64 filters, kernel size 3x3 ReLU
Flatten
Dense 64 units
Dense 1 unit ReLU

Table 6.6: CNN classification model without data Augumentation

6.8.1 VAE Encoder

The table 6.7 here, provides the architecture of themodels in terms of their layers,

the parameters of each layer, and the activation functions used.

Multiple convolutional layers in the encoder decrease the spatial dimensions

simultaneously increasing the depth. The data is flattened and fed into dense

layers in this manner until the z_mean and z_log_var are produced.

Layer Type Parameters Activation
Function

Conv2D 32 filters, kernel size 3x3,
stride 2x2

ReLU

Conv2D 64 filters, kernel size 3x3,
stride 2x2

ReLU

Flatten
Dense 16 units ReLU
Dense(z_log_var) latent_dim units
Dense(z_log_var) latent_dim units

Table 6.7: VAE in CNN encoder structure

6.8.2 VAE Decoder

In a similar manner the table 6.8 describe the architecture of the models in terms

of their layers, the parameters of each layer, and the activation functions used.

Inverting what the encoder does is what the decoder does. Dense layers are

used to upsample the data starting from the latent vector. Conv2DTranspose lay-

ers are then used to decrease depth and increase spatial dimensions. After that,

the data is rebuilt in the manner that it originally was obtained.

6.8.3 Analysis

In all the cases,the mean square error (MSE) between the initial and recon-

structed image, which is the reconstruction error in this case was calculated to

check whether the images is defective or non-defective.in the case of the autoen-

coder only, the ninety-five percentile of the reconstruction errors for the vali-

dation set was chosen as the error’s threshold value. In the other cases a fixed

threshold value was given through several trial and error method.

Layer Type Parameters Activation
Function

Dense 56 x 56 x 64 units ReLU
Conv2DTranspose 64 filters, kernel size 3x3,

stride 2x2
ReLU

Conv2DTranspose 32 filters, kernel size 3x3,
stride 2x2

ReLU

Conv2DTranspose 1 filter, kernel size 3x3 Sigmoid

Table 6.8: VAE in CNN Decoder structure

Again in all the cases, the model classifies the image showing a mean square

error(MSE) greater than this threshold as a defective image.

To sum up the results, The VAE using convolutional neural net showed the

highest accuracy in the defect detection of the PCB images which is 98.5%.

Model Accuracy %
Autoencoder 53
KNN(using latent space) 60
RF(using latent space) 49.5
CNN(using latent space) 98.5

Table 6.9: The best achieved accuracy results for the different models

Table 6.9 shows the best achieved accuracy results by the different models.

Different hyper parameter tuningmethodswhere implemented here. Tomention

some, Adjusting the learning rate,data augumentation, changing the optimizer,

modifying regularization(like the L1,L2) and others. Most of them had visible

effect on the VAEwith CNN, but the rest responded poorly. Compared to table 3.1

in chapter 3 The CNN using the latent space in this thesis performed reasonably

well. As with the other models that didn’t perform well in this thesis,there there

is always room for improvement. One of the limitations was the capacity of the

computing device used, which was struggling with the volumes of data used and

taking hours to run.

Chapter 7

Conclusion

This thesis’s main objective was to use PCB images for defect detection to com-

pare the use of autoencoders in a conventional way versus using the latent space

before the data in the latent space gets decoded. Different classification methods

like KNN,RF, andCNNwere fedwith the data to see if their use of the latent space

could help correctly identify defects in PCB images. The results showed that, at

thismoment, the application of the autoencoders by using the latent space to feed

to other classifiers is practical with CNN. Even though the other methods did not

achieve high accuracy in this study in detecting the PCB defects, It is evident that

autoencoders have high potential, and approaching themwith the right tools and

other methods and ideas can prove rewarding in the future. Moreover, in the

future, implementing the principles tried in this thesis with autoencoders in dif-

ferent datasets rather than PCB images can be an acceptable idea, and exploring

other machine learning techniques that can go well along with autoencoders like

Generative Adversarial Networks(GANS) can have satisfactory outcome.

39

Appendix A

Instructions to Compile and

Run System

The relevant Python code for the tasks performed in this thesis is present on

GitHub repository named ”Defect_detection”and can be accessed using this link

https://github.com/SYohannesB/Defect_detection to the repository.

40

Bibliography

[Birchfield(2023)] Stan Birchfield. Image procecssing and analysis. Cengage

Learning, 2023.

[Baldi(2012)] Pierre Baldi. Autoencoders, unsupervised learning, and deep ar-

chitectures. In Proceedings of ICMLworkshop on unsupervised and trans-

fer learning, pages 37–49. JMLR Workshop and Conference Proceedings,

2012.

[Bank et al.(2020)Bank, Koenigstein, and Giryes] Dor Bank, NoamKoenigstein,

and Raja Giryes. Autoencoders. arXiv preprint arXiv:2003.05991, 2020.

[OpenCV(2023)] OpenCV. Variational autoencoder in tensorflow, 2023. URL

https://learnopencv.com/variational-autoencoder-in-tensorflow/.
Accessed: 2023-06-06.

[Altosaar(2023)] Jaan Altosaar. What is a variational autoen-

coder? deep learning, in simple terms, 2023. URL

https://jaan.io/what-is-variational-autoencoder-vae-tutorial/.
Accessed: 2023-06-06.

[O’Shea and Nash(2015)] KeironO’Shea andRyanNash. An introduction to con-

volutional neural networks. arXiv preprint arXiv:1511.08458, 2015.

[Heaton(2020)] Jeff Heaton. Applications of deep neural networks with keras.

arXiv preprint arXiv:2009.05673, 2020.

[Scholarpedia(2009)] Scholarpedia. K-nearest neighbor, 2009. URL

http://scholarpedia.org/article/K-nearestneighbor.[Online; accessed28−
July − 2023].

41

[Fix and Hodges(1989)] Evelyn Fix and Joseph Lawson Hodges. Discriminatory

analysis. nonparametric discrimination: Consistency properties. Interna-

tional Statistical Review/Revue Internationale de Statistique, 57(3):238–

247, 1989.

[Jiang et al.(2007)Jiang, Cai, Wang, and Jiang] Liangxiao Jiang, Zhihua Cai,

Dianhong Wang, and Siwei Jiang. Survey of improving k-nearest-neighbor

for classification. In Fourth International Conference on Fuzzy Systems

and Knowledge Discovery (FSKD 2007), volume 1, pages 679–683, 2007.

doi: 10.1109/FSKD.2007.552.

[Bishop and Nasrabadi(2006)] Christopher M Bishop and Nasser M Nasrabadi.

Pattern recognition and machine learning, volume 4. Springer, 2006.

[IBM(2023)] IBM. Random forest, 2023. URL

https://www.ibm.com/topics/random-forest. [Online; accessed

28-July-2023].

[De Ville(2013)] Barry De Ville. Decision trees. Wiley Interdisciplinary Re-

views: Computational Statistics, 5(6):448–455, 2013.

[Sarker(2021)] Iqbal H Sarker. Machine learning: Algorithms, real-world appli-

cations and research directions. SN computer science, 2(3):160, 2021.

[Ansari(2022)] Waqqas Ansari. Understanding the maths behind

the gini impurity method for decision tree split, 2022. URL

https://analyticsindiamag.com/understanding-the-maths-behind-the-gini-impurity-method-for-decision-tree-split/.
[Online; accessed 7-August-2023].

[Somvanshi et al.(2016)Somvanshi, Chavan, Tambade, and Shinde] Madan

Somvanshi, Pranjali Chavan, Shital Tambade, and S. V. Shinde. A review

of machine learning techniques using decision tree and support vector

machine. In 2016 International Conference on Computing Commu-

nication Control and automation (ICCUBEA), pages 1–7, 2016. doi:

10.1109/ICCUBEA.2016.7860040.

[Patil and Kulkarni(2019)] Siddalingeshwar Patil and Umakant Kulkarni. Ac-

curacy prediction for distributed decision tree using machine learning ap-

proach. In 2019 3rd International Conference on Trends in Electronics and

Informatics (ICOEI), pages 1365–1371. IEEE, 2019.

[Breiman(2015)] Leo Breiman. Random forests leo breiman and adele cutler.

Random Forests-Classification Description, 106, 2015.

[Livingston(2005)] Frederick Livingston. Implementation of breiman’s random

forest machine learning algorithm. ECE591Q Machine Learning Journal

Paper, pages 1–13, 2005.

[Biau and Scornet(2016)] Gérard Biau and Erwan Scornet. A random forest

guided tour. Test, 25:197–227, 2016.

[Bai et al.(2014)Bai, Fang, Lin, Wang, and Ju] Xiaolong Bai, Yuming Fang,

Weisi Lin, Lipo Wang, and Bing-Feng Ju. Saliency-based defect detection

in industrial images by using phase spectrum. IEEE Transactions on

Industrial Informatics, 10(4):2135–2145, 2014.

[Huang and Wei(2019)] Weibo Huang and Peng Wei. A pcb dataset for defects

detection and classification. arXiv preprint arXiv:1901.08204, 2019.

[Mei et al.(2018)Mei, Wang, and Wen] Shuang Mei, Yudan Wang, and Guojun

Wen. Automatic fabric defect detection with a multi-scale convolutional

denoising autoencoder network model. Sensors, 18(4):1064, 2018.

[Bhatt et al.(2021)Bhatt, Malhan, Rajendran, Shah, Thakar, Yoon, and Gupta]

Prahar M Bhatt, Rishi K Malhan, Pradeep Rajendran, Brual C Shah, Shan-

tanu Thakar, Yeo Jung Yoon, and Satyandra K Gupta. Image-based surface

defect detection using deep learning: A review. Journal of Computing and

Information Science in Engineering, 21(4), 2021.

[Nacereddine et al.(2005)Nacereddine, Zelmat, Belaifa, and Tridi] N Nacered-

dine, M Zelmat, Ss S Belaifa, and M Tridi. Weld defect detection in

industrial radiography based digital image processing. Transactions on

Engineering Computing and Technology, 2:145–148, 2005.

[Islam and Kim(2019)] MMManjurul Islam and Jong-Myon Kim. Vision-based

autonomous crack detection of concrete structures using a fully convolu-

tional encoder–decoder network. Sensors, 19(19):4251, 2019.

[Tang et al.(2019)Tang, He, Huang, and Yang] Sanli Tang, Fan He, Xiaolin

Huang, and Jie Yang. Online pcb defect detector on anewpcbdefect dataset.

arXiv preprint arXiv:1902.06197, 2019.

[Wu et al.(2021)Wu, Ge, Zhang, and Zhang] XingWu, Yuxi Ge, Qingfeng Zhang,

and Dali Zhang. Pcb defect detection using deep learning methods. In 2021

IEEE 24th International Conference on Computer Supported Cooperative

Work in Design (CSCWD), pages 873–876. IEEE, 2021.

[Khalilian et al.(2020)Khalilian, Hallaj, Balouchestani, Karshenas, and Mohammadi]

Saeed Khalilian, Yeganeh Hallaj, Arian Balouchestani, Hossein Karshenas,

and Amir Mohammadi. Pcb defect detection using denoising convolutional

autoencoders. In 2020 International Conference on Machine Vision and

Image Processing (MVIP), pages 1–5. IEEE, 2020.

[Lu et al.(2020)Lu, Mehta, Paradis, Asadizanjani, Tehranipoor, and Woodard]

Hangwei Lu, Dhwani Mehta, Olivia Paradis, Navid Asadizanjani, Mark

Tehranipoor, and Damon L Woodard. Fics-pcb: A multi-modal image

dataset for automated printed circuit board visual inspection. Cryptology

ePrint Archive, 2020.

[Liao et al.(2021)Liao, Lv, Li, Luo, Zhu, and Jiang] Xinting Liao, Shengping Lv,

Denghui Li, Yong Luo, Zichun Zhu, and Cheng Jiang. Yolov4-mn3 for pcb

surface defect detection. Applied Sciences, 11(24):11701, 2021.

[Javaid(2023)] Shehmir Javaid. Quick guide to datasets for machine learning in

2023, 2023. URL

