
Identification of Nonlinear Conservation
Laws Using Symbolic Neural Networks

by

Qing Li

Thesis submitted in fulfillment of
the requirements for the degree of

PHILOSOPHIAE DOCTOR
(PhD)

Faculty of Science and Technology
Department of Energy and Petroleum Engineering

2023

University of Stavanger
N-4036 Stavanger
NORWAY
www.uis.no

© Qing Li, 2023
All rights reserved.

ISBN 978-82-8439-199-1
ISSN 1890-1387

PhD Thesis UiS no. 731

www.uis.no

Preface

This thesis is submitted in partial fulfillment of the requirements for the degree of
Philosophiae Doctor at the University of Stavanger, Norway. The doctoral research
was funded by the Norwegian Ministry of Education and Research. The research lasted
from January 2021 until fall 2023 and was conducted at the Department of Energy and
Petroleum Engineering at the University of Stavanger, excluding a visit to Shanghai Jiao-
tong University from May 2023 until July 2023. My main supervisor was Professor Steinar
Evje.

The outcome of this research has been given through four published papers and two
manuscripts submitted during spring 2023.

Qing Li, November 2023

iii

iv

Abstract

Nonlinear dynamical systems are omnipresent in nature, commonly seen in many disciplines
such as physics, biology, chemistry, climate science, and engineering. In this thesis, we
introduce several new ideas by integrating machine learning and numerical methods, effec-
tively tackling challenging forward and inverse problems of physical systems. According
to [1], research approaches in this field can be broadly categorized based on the synergy
between deep learning and domain knowledge into three groups: Supervised Methods,
Physics-informed Methods, and Interleaved Methods. Supervised Methods are the classic
learning approaches where a physical system produces the data, but no further interaction
exists between this physical system and deep learning. In Physics-informed Methods, the
physical dynamics are encoded in the loss function, typically in the form of differentiable
operations. Interleaved Methods tightly integrate the physical system with the learning
process, merging full simulations with deep neural network outputs. Whether addressing
Ordinary Differential Equations (ODEs) or Partial Differential Equations (PDEs) in this
thesis, the core of our approaches intricately unites Symbolic Neural Networks with ODE
& PDE solvers, categorizing our techniques as Interleaved Methods.

We start with a slightly simpler task of trying to identify unknown ODEs with parameters
from trajectory data in Paper I. Instead of directly learning ODEs using an Ordinary
Neural Network (O-Net) [2], we present a novel strategy by combining Symbolic Neural
Network (S-Net)—endowed with the capacity to grasp analytical expressions—with an
ODE Solver to predict the dynamical system. Our numerical experiments demonstrate
that our approach outperforms O-Net when applied to the Lotka-Volterra and Lorenz
equations. This discovery concerning the realm of ODEs also imparts valuable insights for
our future endeavors in tackling PDEs-related challenges.

Graph Neural Networks (GNNs) belonging to Supervised Methods have gained significant
attention in recent years due to their ability to process and analyze data structured as
graphs. By discretizing continuous spatial domains into grids or meshes, individual grid
points or mesh elements can be regarded as nodes within a graph. The connections between
nodes can represent the spatial relationships between these points or elements. GNNs have
been widely used to solve spatially-dependent PDEs with smooth solutions. In paper II,
we explore the application of GNNs to solve conservation laws with non-smooth solutions.
Experimental results show that the model can predict accurately when parameters are
within a specific range. However, when parameters deviate too much from that used for
the training model, the model’s predictive power is significantly reduced.

The achievements of the S-Net and ODE Solver in tackling ODEs, coupled with the
limitations of GNNs in extending to conservation law challenges, reinforce the need to first
learn the expressions of the unknown flux functions of the involved conservation law. From

v

this foundation, we can proceed to forecast subsequent states of the nonlinear dynamical
system with greater assurance. In Paper III, we introduce ConsLaw-Net, a combination of
S-Net and an entropy-satisfying discretization scheme. This work addresses the problems
of one-dimensional conservation law without parameters, and empirical outcomes robustly
affirm the effectiveness of our approach. However, the case with conservation laws that
involve a parameter, requires that the role of the parameter must also be learned. We
propose an appropriate extending to deal robustly with this situation. A two-step learning
method, i.e., combining Conslaw-Net and Linear Regression Neural Network (LRNN),
is proposed in Paper IV. We test it on two different systems and achieve good results.
Furthermore, in paper V, we train the enhanced ConsLaw-Net through a combination of
joint and alternating equation strategies, effectively addressing intricate two-dimensional
conservation law scenarios demanding high precision despite limited informative data.
Conclusively, in Paper VI, we unveil an upgraded ConsLaw-Net tailored for deducing the
functional expressions of both flux and diffusion functions within the setting of degenerate
convection-diffusion models, accommodating diverse observation modalities.

Taken together, the methodologies outlined in this thesis provide new and hopefully
useful tools in the search for hidden nonlinear conservation laws behind a given set of
observation data. If we should formulate the main findings of this thesis in a few sentences,
it might be as follows: To uncover a possible unknown nonlinear scalar conservation law
from synthetic observation data seems attainable by combining appropriate regularity
imposed on the unknown function(s), as expressed by the Symbolic Neural Networks, with
a "suitable" set of observation data. The meaning of "suitable" here is that small amounts
of data might not be sufficient to identify the unknown flux function(s). However, by
adding more observation data the proposed method is more and more likely to find the
ground truth flux function.

vi

Acknowledgements

I am profoundly grateful to have reached this milestone in my academic journey, and I
owe my success to the unwavering support and guidance of numerous individuals and
institutions.

First and foremost, I am greatly grateful to my supervisor, Professor Steinar Evje, for his
constant support and encouragement during the last three years. Thank you for spending
so much time patiently explaining numerical methods I was unfamiliar with and answering
every question I had, even if they were naive. Every piece of advice you’ve given me has
been carefully thought out by you and is very specific and doable. In my first year as a
Ph.D. candidate, I tried many methods, but none of them worked. You still respected every
idea of mine and gave me enough freedom to explore further. You are always enthusiastic
about learning new methods, and this has influenced me so that I hope I can carry with
me this attitude in the future.

I would like to thank Professor Zhi-Qin John Xu and his team at Shanghai Jiaotong
University for affording me the privilege of visiting. This experience not only granted
me insights into cutting-edge research on large language models but also significantly
broadened the horizons of my own scholarly pursuits.

I’m deeply grateful to my roommates—Reyhaneh Banihabib, Benjamin Baroulliet, and
Jie Cao—for cultivating a productive work environment. My appreciation also goes to
the staff of the Faculty of Science and Technology and the Department of Energy and
Petroleum, especially Øystein Arild and Norbert Puttkamer, whose pivotal role as an
unsung hero in every doctoral student’s journey cannot be overstated.

In addition, thanks to my friends, Prachi Vinod Wadatkar, Christin Kreutz, Arian
Baloochestani Asl, Ahmad Mohammad Ahmad Faza, Saul Fuster Navarro, Luca Tomasetti,
Neel Kanwal, Yao Zhang, and many others. I vividly recall my initial days in Norway when
you hosted a heartwarming Chinese New Year gathering to ease my homesickness. Engaging
in hiking, workouts, meaningful information exchange, and joint birthday celebrations,
I believe these enduring memories will continue to foster a sense of warmth within each of us.

Undoubtedly, I’d like to express my deepest gratitude to my family. To my parents, I
am indebted for instilling kindness, courage, and diligence within me. These fundamental
virtues continue to guide me today and beyond. To my husband, Jiahui Geng, your kind
and tender character, dedication to friendship, and enthusiasm for work infuse our lives
with warmth, love, and fascination. The prospect of embarking on life’s journey and
exploring the world together with you fills me with genuine excitement.

vii

Finally, I want to say thank you to myself. Thank you for following your heart and being
courageous in the face of uncertainty. During my Ph.D., I did everything that I could do
in every year, every month, every day, every minute, every second. So I have no regrets.
No matter when you start, it is important that you do not stop after starting. No matter
when you end, it is more important that you do not regret it after ended.

Qing Li, November 2023

viii

List of publications

The main part of this dissertation is made up of the following published scientific papers:

• Paper I

Learning Parameterized ODEs from Data
Qing Li, Steinar Evje, Jiahui Geng
IEEE Access 11 (2023): 54897 - 54909
doi = https://ieeexplore.ieee.org/document/10143183

• Paper II

Solving Nonlinear Conservation Laws of Partial Differential Equations
Using Graph Neural Networks
Qing Li, Jiahui Geng, Steinar Evje, Chunming Rong
Proceedings of the Northern Lights Deep Learning Workshop 4 (2023)
doi = https://doi.org/10.7557/18.6808

• Paper III

Learning the Nonlinear Flux Function of a Hidden Scalar Conservation
Law from Data
Qing Li, Steinar Evje
Networks and Heterogeneous Media 18.1 (2023): 48-79
doi = http://www.aimspress.com/article/doi/10.3934/nhm.2023003

• Paper IV

Identification of the Flux Function of Nonlinear Conservation Laws with
Variable Parameters
Qing Li, Jiahui Geng, Steinar Evje
Physica D: Nonlinear Phenomena 451 (2023): 133773
doi = https://doi.org/10.1016/j.physd.2023.133773

• Paper V

An Alternating Flux Learning Method for Multidimensional Nonlinear
Conservation Laws
Qing Li, Steinar Evje
Under Review in SIAM Journal on Scientific Computing

ix

https://ieeexplore.ieee.org/document/10143183
https://doi.org/10.7557/18.6808
http://www.aimspress.com/article/doi/10.3934/nhm.2023003
https://doi.org/10.1016/j.physd.2023.133773

• Paper VI

Learning the Flux and Diffusion Function for Degenerate Convection-
Diffusion Equations Using Different Types of Observations
Qing Li, Steinar Evje
Under Review in BIT Numerical Mathematics

x

Contents

Preface iii

Abstract v

Acknowledgements vii

List of publications ix

1 Introduction 1
1.1 Research Background and Challenges . 1
1.2 The Parameterized ODEs . 2
1.3 The Conservation Law . 2

1.3.1 The One-Dimensional Scalar Conservation Law 3
1.3.2 The One-Dimensional Scalar Conservation Law with Variable Pa-

rameters . 3
1.3.3 The Two-Dimensional Scalar Conservation Law 4
1.3.4 The One-Dimensional Scalar Conservation Law with Diffusion Term 4

2 Literature Review 5
2.1 Research Methods for Non-Machine Learning 5
2.2 Research Methods for Machine Learning . 5

2.2.1 Supervised Methods . 5
2.2.2 Physics-informed Methods . 6
2.2.3 Interleaved Methods . 7

3 Methodology 9
3.1 ConsLaw-Net . 9

3.1.1 Symbolic Neural Networks . 9
3.1.2 Entropy Consistent Discrete Numerical Scheme (ECDNS) 11

3.2 GNNs . 13

4 Research Contributions 17
4.1 Learning Parameterized ODEs from Data 18
4.2 Solving Nonlinear Conservation Laws of Partial Differential Equations Using

Graph Neural Networks . 19
4.3 Learning the nonlinear flux function of a hidden scalar conservation law

from data . 19
4.4 Identification of the flux function of nonlinear conservation laws with variable

parameters . 20
4.5 An alternating flux learning method for multidimensional nonlinear conser-

vation laws . 21

xi

4.6 Learning the flux and diffusion function for degenerate convection-diffusion
equations using different types of observations 22

5 Conclusion and Future Work 25

Bibliography 27

Paper I:
Learning Parameterized ODEs from Data 33

Paper II:
Solving Nonlinear Conservation Laws of Partial Differential Equations
Using Graph Neural Networks 49

Paper III:
Learning the Nonlinear Flux Function of a Hidden Scalar Conservation
Law from Data 61

Paper IV:
Identification of the Flux Function of Nonlinear Conservation Laws
with Variable Parameters 95

Paper V:
An Alternating Flux Learning Method for Multidimensional Nonlinear
Conservation Laws 115

Paper VI:
Learning the Flux and Diffusion Function for Degenerate Convection-
Diffusion Equations Using Different Types of Observations 143

xii

Chapter 1

Introduction

1.1 Research Background and Challenges

We model physical phenomena in science and engineering using ODEs or PDEs. These
equations are derived conventionally from rigorous first principles under ideal conditions
like conservation laws or knowledge-based phenomenological derivations. Our primary
objective is to extract explicit expressions for these equations, including specific components
like flux or diffusion functions within dynamics, from observational data. Subsequently, we
employ the learned functions to predict dynamic states at a later time. One might question
why we don’t simply forecast the solutions of equations directly without mastering the
explicit forms. Our experiments elucidated in [3] reveal that unearthing the most fitting
differential equations to depict these dynamics through sensed or measured data offers
greater value to scientists seeking to comprehend the intricacies of mathematical models
or dynamical systems. This approach not only enhances our understanding of behavioral
patterns but also leads to more precise predictions.

Figure 1.1: Left: Example of nonlinear flux function f(u) = u2

u2+(1−u)2 (blue curve). Upper concave
envelope (brown curve) and lower convex envelope (green curve) are also included. Right: The solution of
(1.1) at time T = 0.5 is shown (red solid curve) together with its initial data u0(x) (red dashed line).

However, obtaining the analytical form of these equations proves to be a formidable
task due to the inherent challenges. The scarcity and noise often present in practical
observations compound this complexity. Consider the example of a general scalar nonlinear

1

1. Introduction

conservation law. Here, we focus on the one-dimensional scenario given by:

ut + f(u)x = 0 (1.1)

where u = u(x, t) is the main variable and f(u) is the unknown flux function. It is well
known that (1.1) will generate shock wave solutions u(x, t) in finite time despite the fact
that initial data u0(x) is smooth [4, 5]. As jumps arise and disappear in the solution over
the time period, the data may lack information about the flux function f(u) that we want to
identify. An illustration of this situation is given in Fig. 1.1. At time t = 0, the initial data
u0(x) involves one jump at x = 0 and another jump at x = 1. The initial jump at x = 0 is
instantly transformed into a solution that is a combination of a continuous wave solution
and a discontinuous wave (uL, uR) ≈ (0.3, 1.0), as dictated by the lower convex envelope
shown in the left panel (green curve). Similarly, the initial jump at x = 1 is transformed
into a solution that is a combination of a continuous wave solution and a discontinuous
wave (uL, uR) ≈ (0.7, 0), in accordance with the upper concave envelope illustrated in the
left panel (brown curve). In addition, the concise and complete mathematical expressions
describing numerous intricate real-world systems continue to be elusive or only partially
understood.

Over the past decade, significant advancements in machine learning, data science, and
computational power have ushered in an innovative approach to unveiling underlying
equations from data: the data-driven discovery of governing equations for nonlinear
dynamics. In their study [1], Thuerey and colleagues meticulously categorized these
techniques into three clear groups: Supervised Methods, Physics-informed Methods, and
Interleaved Methods. These classifications are dictated by how deep learning techniques
intertwine with domain expertise, often taking shape as model equations expressed through
ODEs or PDEs. Nevertheless, most of the work has been on equations whose solutions do
not contain discontinuities. In this thesis, after a first brief visit exploring how to identify
unknown functions involved in ODEs, we focus on the problems of conservation law, which
is complicated by the lack of data due to the presence of discontinuous solutions.

1.2 The Parameterized ODEs

Parameterized ODEs can be expressed by

du(t;µ)
dt

= f(u(t;µ), t;µ), (1.2)

with a parameterized initial condition u0(µ), where u(t;µ) is a time-continuous representa-
tion of a hidden state, µ =

[
µ1, ...,µnµ

] ∈ Rnµ denotes problem-specific input parameters,
f is a parameterized velocity function that defines the dynamics of hidden states over time.
Inspired by the concept of parameterized ODEs, this ODE system has multiple latent
trajectories that depend on the input parameters.

1.3 The Conservation Law

Nonlinear conservation laws find extensive application across fluid mechanics, biology,
physics, and chemical engineering. These laws come in various forms based on factors such
as dimensional space, the presence of parameters, and the inclusion of diffusive flux.

2

1. Introduction

1.3.1 The One-Dimensional Scalar Conservation Law

The expression of the one-dimensional scalar conservation law is as follows

ut + f(u)x = 0, x ∈ (0, L)
ux|x=0 = ux|x=L = 0,
u|t=0 = u0(x),

(1.3)

where u as the main variable, f(u) is the nonlinear flux function and u0(x) is the initial
state.

It is well known that conservation laws of the form (1.3) do not, in general, possess
classical solutions. Instead, one must consider weak solutions in the sense that the following
integral equality holds [4, 6, 7]

∫

Ωx

∫ T

0

[
uϕt + f(u)ϕx

]
dx dt+

∫

Ωx

u0(x)ϕ(x, t = 0) dx = 0 (1.4)

for all ϕ ∈ C1 such that ϕ(x, t) : Ωx × (0, T) → R and which is compactly supported, i.e., ϕ
vanishes at x → Ωx and t → T . It follows that if a discontinuity occurs in the solution, i.e.,
a left state uL and a right state uR, then it must propagate with the speed s given by [4, 7]

s = f(uL) − f(uR)
uL − uR

. (1.5)

However, direct calculations show that there are several weak solutions for one and the
same initial data [6]. To overcome this issue of the non-uniqueness of weak solutions,
this has led to the class of entropy solutions, which amounts to introducing an additional
constraint that ensures that the unique physically relevant one is found among all the
possible weak solutions.

There are different ways to express the entropy condition for scalar nonlinear conservation
laws. One variant is by introducing an entropy pair (η, q) where η : R → R is any strictly
convex function and q : R → R is constructed as [7, 8]

q(v) =
∫ v

0
f ′(s)η′(s) ds (1.6)

for any v. This implies that q′ = f ′η′. Then, u is an entropy solution of (1.3) if (i) u is a
weak solution in the sense of (1.4); (ii) u satisfies in a weak sense η(u)t + q(u)x ≤ 0 for any
pair (η, q). This condition can also be formulated as the following characterization of a
discontinuity (uL, uR) [7, 9]: For all numbers v between uL and uR,

f(v) − f(uL)
v − uL

≥ s ≥ f(v) − f(uR)
v − uR

(1.7)

where s is given by (1.5).

1.3.2 The One-Dimensional Scalar Conservation Law with Variable Pa-
rameters

The one-dimensional case is given by

ut + f(u, β)x = 0, x ∈ (0, L)
u|t=0 = u0(x),
ux|x=0 = ux|x=L = 0,

(1.8)

3

1. Introduction

where u = u(x, t) is the main variable and β is a parameter, typically, related to different
forces that drive the process under consideration. Note that this extension to include
dependence on a parameter β is highly relevant for many situations where different physical
parameters naturally vary over certain intervals. Displacement of several fluids is one
classical example where quantities like fluid viscosity and density may strongly influence
the displacement behavior and their roles are expressed in a β-like parameter [10, 11]. In
our research scenario, we seek the analytical expression of f(u, β) that includes both the
variable u and the parameter β, given a set of observations {u(xj , ti)} at various time
points ti and at different values of β over an interval of interest.

1.3.3 The Two-Dimensional Scalar Conservation Law

The two-dimensional scalar conservation law is expressed by

ut + f(u)x + g(u)y = 0, (x, y) ∈ Ω = (0, L) × (0, L)
u|t=0 = u0(x, y),
ux|x=0 = ux|x=L = 0,
uy|y=0 = uy|y=L = 0.

(1.9)

where u is defined as the main variable of space and time, and f(u) and g(u) are flux
functions. The objective, in this case, is to find analytical expressions for both f(u) and
g(u), based on a set of observations u(xi, yj , tl) at various time points tl.

1.3.4 The One-Dimensional Scalar Conservation Law with Diffusion
Term

The scalar nonlinear convection-diffusion PDEs flow in the following form

ut + f(u)x = αA(u)xx, A(u) =
∫ u

0
a(v)dv, a(v) ≥ 0

u|t=0 = u0(x),
ux|x=0 = ux|x=L = 0,

(1.10)

where x ∈ [0, L] arise in different applications such as sedimentation of particles in liquid
and various traffic flow types of problems. Here u = u(x, t) is the main variable which
depends on the position x and time t. The flux function f(u) represents the convective
transport whereas the diffusion function, denoted by A(u) =

∫ u
0 a(v)dv, is a function of u

that describes the diffusive transport. For a typical situation, we have a priori information
about the magnitude of the scaling factor α > 0 but not precise information about the
functional form of neither A(u) nor f(u). Our goal is to determine analytical expressions
for both f(u) and A(u) using observational data of different types.

4

Chapter 2

Literature Review

2.1 Research Methods for Non-Machine Learning

There are several examples of non-machine approaches to nonlinear dynamics discovery
from sparse data, especially for learning the flux function of a nonlinear conservation
law. James and Sepúlveda formulated the inverse problem of flux identification as that
of minimizing a suitable cost function [12]. Relying on the viscous approximation, it
was shown that the perturbed problem converged to the original hyperbolic problem [12]
by letting the viscous term vanish. Holden et al. used the front-tracking algorithm to
reconstruct the flux function from observed solutions to problems with suitable initial
data [13]. Several recent studies have addressed the reconstruction of the flux function for
sedimentation problems that involve the separation of a flocculated suspension into a clear
fluid and a concentrated sediment [14, 15]. In particular, Bürger and Diehl showed that the
inverse problem of identifying the batch flux density function has a unique solution, and
derived an explicit formula for the flux function [16]. This method was recently extended
to construct almost the entire flux function [17] by using a cone-shaped separator. For
another interesting example of the challenge of identification of the unknown flux function
f(u), we refer to [18]. The author explored a direct inversion method based on using linear
combinations of finite element hat functions to represent unknown nonlinear function f .

2.2 Research Methods for Machine Learning

Thuerey et al. in their work [1] categorized physics-based deep learning methods into three
groups based on the degree of interaction between DL techniques and domain knowledge,
for example, in the sense of the generic form of the underlying PDE model.

2.2.1 Supervised Methods

Supervised methods exhibit minimal interaction with domain knowledge and align with
the conventional machine learning paradigm. In these methods, data is generated by
a physical system without any subsequent interaction. The advancement of machine
learning, data science, and computing power has enhanced data-driven nonlinear dynamics
discovery. Both [19] and [20] used Genetic Programming (GP) based Symbolic Regressors
[21, 22] to deduce the differential equations representing underlying physical laws using
combinations of mathematical operators. Later, this type of method inspired a series of
endeavors [23–29]. Brunton et al. [30] approached dynamical system discovery through

5

2. Literature Review

sparse regression to prevent overfitting of GP. Specifically, they introduced a method called
Sparse Identification of Nonlinear Dynamics (SINDy) that uses a sequential threshold
ridge regression algorithm to iteratively find a sparse solution from a predefined basis
function library until convergence. SINDy quickly emerged as one of the leading methods
in this field of study, igniting significant interest [31–35]. Recently, more and more GNNs
methods are being used to solve PDE problems. Gao et al. presented a novel discrete
PINN framework based on Graph Convolutional Networks (GCNs) and the variational
structure of PDEs in [36]. This framework could solve forward and inverse PDEs in a
unified manner. Zhao et al. used GNNs in conjunction with autodecoder style priors to
tackle PDE-constrained inverse problems [37]. In [38], authors build PDE solvers based
on GNNs using the data generated by some classical numerical methods, such as finite
differences, finite volumes, and WENO schemes. They experimentally proved that this
method has fast, stable, and accurate performance across different domain topologies on
various fluid-related flow problems. However, these current works mainly use GNNs on some
typical equations with regular solutions. Several complex equations with discontinuous
solutions still need to be researched.

Supervised Methods usually involve optimizing some criterion like the squares error to
find the best parameters for the model that best fits the observed data. These methods are
well-established, and there are a variety of techniques available. However, these methods
require a substantial amount of labeled data. They might not capture the underlying
physics of the system, especially if the data is noisy or sparse.

2.2.2 Physics-informed Methods

In the physics-informed methods, the physical dynamics are encoded in the loss function,
typically in the form of differentiable operations. The learning process can repeatedly
evaluate the loss and usually receives gradients from a PDE-based formulation. Raissi et
al. [39] introduced physics-informed neural networks (PINN) using deep learning. They
embedded the PDE residual into the loss function of fully-connected neural networks as a
regularizer, facilitating training in small data scenarios. The weakly supervised approach
has been utilized to solve various PDEs using limited training data in scientific domains like
subsurface flows [40], vortex-induced vibrations [41], turbulent flows [42, 43], cardiovascular
systems [44–47], metamaterial design [48–50], geostatistical modeling [51], and more [52–
54]. To address sparse, noisy data and measure aleatoric uncertainty from noise, Sun
and Wang [47] introduced a Bayesian formulation of physics-constrained learning using
variational inference. Yang et al. [55] further explored Bayesian PINN, comparing both
variational inference and Hamiltonian Monte Carlo approaches. While the aforementioned
works need a moderate amount of training data, enforcing proper initial and boundary
conditions can eliminate the data requirement altogether. The effectiveness of the data-free
fully-connected neural networks based PDE solution algorithm has been demonstrated on
a number of canonical PDEs [56, 57] and stochastic PDEs [58–60]. However, the neural
network methods struggle in learning the nonlinear hyperbolic PDE that governs two-phase
transport in porous media [11]. They experimentally indicate that this shortcoming of
PINN for hyperbolic PDEs is not related to the specific architecture or to the choice of
the hyperparameters but is related to the lack of regularity in the solution. The works
based on the PINN approaches mentioned above rely on imposing the structure of the
underlying PDE model by including an error term in the loss function. Due to the lack of
regularity in the solution as illustrated in Section 1.1, it seems unclear how to implement
our problems in a PINN framework.

6

2. Literature Review

Physics-informed Methods employ techniques like PINNs, where the network is trained
not only to fit the data but also to satisfy known physical laws. By leveraging known physics,
these methods can often produce more accurate and generalizable models, especially when
data might be sparse or noisy. However, they require a prior understanding of the physical
principles governing the system. Implementing them can also be more complex than
Supervised Methods.

2.2.3 Interleaved Methods

Interleaved techniques integrate the full physical model with an output from a deep neural
network. In our methods proposed in this thesis, the full physical model refers to the
numerical scheme, while the deep neural network output represents the learned unknown
functions. The physical simulation process is iterative step by step over time. During
each step, the output of the neural network is involved. In Supervised Methods, data
is first generated by the physical simulation and then used to train the neural network.
This data generation is separate from the network’s training, with no new data produced
during training. In Physics-informed Methods, the physical dynamics are encoded in the
loss function for the neural network training. Each update of the network parameters
incorporates the dynamics once. However, in Interleaved Methods, each update of the
neural network parameters encompasses multiple time-step iterations of the physical
simulation, showcasing the tightest integration between the physical system and learning.
These differentiable physics interleaving strategies are particularly crucial for temporal
evolutions, enabling predictions of future dynamic behaviors. Chen et al. proposed the
Symplectic Recurrent Neural Network (SRNN) that captures the dynamics of physical
systems from regularly observed data [2]. This method works for Hamiltonian functions as
it requires the variables of the ODE system to be separable. Long et al. [61, 62] proposed
a combination of numerical approximation of differential operators by convolutions and
a symbolic multi-layer neural network for model recovery. They used convolutions to
approximate differential operators with properly constrained filters and to approximate the
nonlinear response by deep neural networks. However, an essential difference between the
problem studied in [61, 62] and the conservation law (1.1) is that the flux function f(u)x

cannot be expressed by f ′(u)ux as f(u) is not, in general, a differentiable function in our
problems.

Interleaved Methods involve alternating between data-driven identification (like Super-
vised Methods) and model-driven identification (like Physics-informed Methods). These
methods are designed to be adaptable to varying types of data and system knowledge.
For instance, one could leverage labeled data where it’s available and fill in gaps with
model-driven insights where data might be sparse. In addition, Interleaved Methods can
incorporate the case where the system dynamics are less understood and governed by
unknown physics. The significant challenges with Interleaved Methods are the increased
complexity in implementation and more computational resources. Moreover, the balance
between different methodologies needs to be well-managed to avoid pitfalls from either
side.

ConsLaw-Net, introduced in this thesis, merges Symbolic Neural Networks with the
numerical scheme, incorporating these networks into each iteration. Thus, ConsLaw-Net
classifies as an Interleaved Method. Compared to non-machine learning, the primary
objective of machine learning methods, including ConsLaw-Net, is to generalize from
data, i.e., to learn patterns from data that can be applied to unseen data, for solving
inverse problems. The focus of non-machine techniques is on finding the best solution

7

2. Literature Review

or parameter set that minimizes an objective function, often without an inherent goal of
generalization. For instance, machine learning stops early to avoid overfitting and helps
the model generalize better to unseen data. In terms of solution uniqueness, the traditional
approach to solving convex optimization problems has a unique global minimum, ensuring
solution consistency. However, multiple local minima might exist in machine learning, and
the final model parameters can vary depending on initialization and training dynamics.
The difference between machine learning methods and traditional optimization methods
is also reflected in the training process, the dependence on data, and so on. The choice
between the two should be based on the problem’s nature, the available data, and the
specific objectives and constraints of the task.

8

Chapter 3

Methodology

We primarily studied methods like the Interleaved Methods represented by ConsLaw-Net
and the Supervised Methods typified by Graph Neural Networks (GNNs).

3.1 ConsLaw-Net

Our core method, ConsLaw-Net, primarily comprises two vital components: Symbolic
Neural Networks and the Entropy Consistent Discrete Numerical Scheme.

3.1.1 Symbolic Neural Networks

We aim to decipher the analytical expression of unknown functions rather than merely
fitting observations with black-box neural networks. To accomplish this, we employ an
enhanced symbolic neural network, S-Net, tailored to reveal these functions.

S-Net-M and S-Net-D

In the S-Net setting, we design two network structures based on the function form we
pursue: S-Net-M for multiplicative forms and S-Net-D for fractional forms, as depicted in
Fig. 3.1 (top) and (bottom), respectively. Take a three layers S-Net which can learn the
expression of a function f possessing a multiplication form as an example. As shown in
Fig. 3.1 (top), the identity directly maps u from the input layer to the first hidden layer.
The linear combination map uses parameters w1 and b1 to choose two elements from u
and are denoted by α1 and β1

(α1, β1)T = w1 · (u) + b1,w1 ∈ R2×1,b1 ∈ R2×1. (3.1)

These two elements of α1 and β1 are multiplied in the PDE system

f1 = α1β1. (3.2)

Apart from u gotten by the identity map, f1 also is input to the second hidden layer

(α2, β2)T = w2 · (u, f1)T + b2,w2 ∈ R2×2,b2 ∈ R2×1. (3.3)

Similar to the first hidden layer, we get another combination f2(α2, β2)

f2 = α2β2. (3.4)

9

3. Methodology

Then we obtain α3 and β3 by means of w3 and b3 from u, f1 and f2

(α3, β3)T = w3 · (u, f1, f2)T + b3,w3 ∈ R2×3,b3 ∈ R2×1. (3.5)

f3, which is the product of α3 and β3 is put into the third hidden layer

f3 = α3β3. (3.6)

Finally, we arrive at the analytic expression of the function f

f = w4 · (u, f1, f2, f3)T + b4,w4 ∈ R1×4,b4 ∈ R. (3.7)

The difference between S-Net-M and S-Net-D is that in the third hidden layer. we obtain
the numerator part f3 and the denominator part f4 of the flux function f(u) based on w3,
b3 and w4, b4, respectively.

f3 = w3 · (u, f1, f2)T + b3,w3 ∈ R1×3,b3 ∈ R. (3.8)
f4 = w4 · (u, f1, f2)T + b4,w4 ∈ R1×3,b4 ∈ R. (3.9)

The analytic expression of the flux function f is the combination of f3 and f4.

f = f3
f4
. (3.10)

The Rational Reasons for Employing S-Net

Besides S-Net, other classical methods explicitly represent functions, such as the piecewise
affine functions method described in [18] and the finite polynomial expansion method. In
the piecewise affine functions method, divide the u-axis into n equidistant intervals: let
umax be the largest value of the data and set uk = kumax/n for k = −1, ..., n+ 1. Assume
that

f(u) =
n∑

k=0
fkψk(u) (3.11)

where fk is n+ 1 parameters to be determined, and the hat functions are defined by

ψk(u)=





u−uk−1
uk−uk−1

, uk−1 < u ≤ uk

uk+1−u
uk+1−uk

, uk < u ≤ uk+1

0, Otherwise

(3.12)

where k = 0, ..., n. The polynomial expression with respect to u is given by:

f(u) = c0 + c1u+ c2u2 + c3u3 + ...+ cnu
n1

d0 + d1u+ d2u2 + d3u3 + ...+ dnun2
(3.13)

We acquire the coefficients {ci}n1
i=0 and {di}n2

i=0 of (3.13) by using the observation data set.
From the various methods available, we have decided to implement the S-Net approach for
the following reasons:

• Experimental performance: In our work [63], we do a comparison of S-Net, the
piecewise affine function representation, and the finite polynomial expansion method.
It is observed that the performance of S-Net is clearly better than these two other
methods for our test cases.

10

3. Methodology

Figure 3.1: Top. The framework of S-Net-M for multiplicative function. Bottom. The framework of
S-Net-D for division function.

• Robustness: S-Net demonstrates a high capacity to handle noisy and incomplete
data [64].

• Flexibility: S-Net is flexible and powerful. Expanding functions with more variables is
easier with S-Net, as it can automatically detect nonlinear relationships between input
variables. However, the finite polynomial expansion method requires the manual
listing of all possible combinations, which becomes an exhaustive task as the number
of variables increases, potentially leading to an exponential growth in the number of
combinations. Furthermore, incorporating nonlinearities such as sine and cosine into
S-Net is straightforward, enabling it to learn combinations of variables that act on
sine or cosine, such as sin(u2v).

3.1.2 Entropy Consistent Discrete Numerical Scheme (ECDNS)

ECDNS for (1.3)

We consider a discretization of the spatial domain [0, L] in terms of {xi}Nx−1
i=0 where

xi = (1/2 + i)∆x for i = 0, . . . , Nx − 1 with ∆x = L/Nx. Furthermore, we consider time
lines {tn}Nt

n=0 such that Nt∆t = T . We base our discrete version of (1.3) on the Rusanov

11

3. Methodology

scheme [4] which takes the form

un+1
j = un

j − λ(Fn
j+1/2 − Fn

j−1/2), λ = ∆t
∆x,

un+1
1 = un+1

2 , un+1
Nx

= un+1
Nx−1,

(3.14)

with j = 2, . . . , Nx − 1 and where the Rusanov flux takes the form

Fn
j+1/2 =

f(un
j) + f(un

j+1)
2 − Mj+1/2

2 (un
j+1 − un

j), (3.15)

where Mj+1/2 = max{|f ′(un
j)|, |f ′(un

j+1)|}. The CFL condition [4] determines the magni-
tude of ∆t for a given ∆x through the relation

CFL := ∆t
∆xM ≤ 1,M ∼ max

u
|f ′(u)|. (3.16)

ECDNS for (1.8)

We investigate a discretization of the spatial domain [0, L] in terms of {xi}Nx−1
i=0 where

xi = (1/2 + i)∆x for i = 0, . . . , Nx − 1 with ∆x = L/Nx. Furthermore, we consider time
lines {tn}Nt

n=0 with Nt∆t = T . Our discrete version of (1.8) is based on the Rusanov scheme
[4] which takes the form

un+1
j = un

j − λ(Fn
j+1/2 − Fn

j−1/2), λ = ∆t
∆x,

un+1
1 = un+1

2 , un+1
Nx

= un+1
Nx−1,

(3.17)

with j = 2, . . . , Nx − 1 and where the Rusanov flux takes the form

Fn
j+1/2 =

f(un
j ;β) + f(un

j+1;β)
2 −

Mn
j+1/2
2 (un

j+1 − un
j), (3.18)

where Mn
j+1/2 = max{|fu(un

j ;β)|, |fu(un
j+1;β)|}.The CFL condition determines the magni-

tude of ∆t for a given ∆x through the constraint

CFL := ∆t
∆xM ≤ 1, M = max

u
|fu(u;β)|. (3.19)

ECDNS for (1.9)

We consider a discretization of the spatial domain [0, L] × [0, L] in terms of {xi}Nx−1
i=0 and

{yj}Ny−1
j=0 where xi = (1/2 + i)∆x for i = 0, . . . , Nx − 1 with ∆x = L/Nx, yj = (1/2 + j)∆y

for j = 0, . . . , Ny − 1 with ∆y = L/Ny. We use the same grid number in the X and Y
directions, i.e., Nx = Ny, denoted as Nxy, so ∆x = ∆y = ∆xy. Additionally, we consider
time lines {tn}Nt

n=0 with Nt∆t = T . Our discrete version of (1.9) is based on the Rusanov
scheme [4], which takes the form

un+1(xi, yj) = un(xi, yj) − λx(F x,n
i+1/2,j − F x,n

i−1/2,j)
− λy(Gy,n

i,j+1/2 −Gy,n
i,j−1/2),

un(x1, :) = un(x2, :), un(xNxy , :) = un(xNxy−1, :),
un(:, y1) = un(:, y2), un(:, yNxy) = un(:, yNxy−1),

(3.20)

12

3. Methodology

with λx = λy = ∆t
∆xy and where i, j = 2, . . . , Nxy − 1 and the Rusanov fluxes take the form

F x,n
i+1/2,j = f(un(xi, yj)) + f(un(xi+1, yj))

2

−
Mn

i+1/2,j

2 (un(xi+1, yj) − un(xi, yj)),

Gy,n
i,j+1/2 = g(un(xi, yj)) + g(un(xi, yj+1)

2

−
Mn

i,j+1/2
2 (un(xi, yj+1) − un(xi, yj)).

(3.21)

We adopt a local estimation by using Mn
i+1/2,j = max{|f ′(un

i,j)|, |f ′(un
i+1,j)|} and Mn

i,j+1/2 =
max{|g′(un

i,j)|, |g′(un
i,j+1)|}. The CFL condition determines the magnitude of ∆t for a given

∆x, ∆y through the constraint

CFL := ∆t
min{∆x,∆y}(Mx +My) ≤ 1,

Mx = max
u

|fu(u)|, My = max
u

|gu(u)|.
(3.22)

ECDNS for (1.10)

We discretize the spatial domain [0, L] into Nx points {xi}Nx−1
i=0 , where xi = (1/2+ i)∆x for

i = 0, . . . , Nx − 1, and ∆x = L/Nx. Additionally, we consider a set of time steps {tn}Nt
n=0

with Nt∆t = T . To discretize (1.10), we use the Rusanov scheme [4], which can be written
as follows:

un+1
j = un

j − λ(Fn
j+1/2 − Fn

j−1/2) + λ(D+A
n
j+1/2 −D+A

n
j−1/2),

λ = ∆t
∆xu

n+1
1 = un+1

2 , un+1
Nx

= un+1
Nx−1,

(3.23)

with j = 2, . . . , Nx − 1 and Fn
j+1/2 and D+An

j+1/2 take the forms

Fn
j+1/2 =

f(un
j) + f(un

j+1)
2 −

Mn
j+1/2
2 (un

j+1 − un
j), (3.24)

and

D+A
n
j+1/2 =

A(un
j+1) −A(un

j)
∆x =

∫ un
j+1

0 a(z)dz − ∫ un
j

0 a(z)dz
∆x . (3.25)

We adopt a local estimation by using Mn
j+1/2 = max{|f ′(un

j)|, |f ′(un
j+1)|}. The CFL

condition determines the magnitude of ∆t for a given ∆x,

CFL := ∆t
∆x(M + 2K

∆x) ≤ 1, M = max
u

|f ′(u)|, K = max
u

a(u). (3.26)

3.2 GNNs

Recently, GNNs with encoder processor decoder architectures have emerged as fast and
precise alternatives to principled solvers for standard equations with regular solutions. In
this thesis, we test the performance of GNNs on conservation law problems. Herein, We

13

3. Methodology

use (3.27) as an example to demonstrate how to use GNNs to predict the solutions of
PDEs based on the observation data and parameters,

ut + βux = g(u), (3.27)

where x ∈ X, t ∈ [0, T]. We discretize the region X into equally spaced points {xi}Nx
i=0

and the time T into {tk}Nt
k=0. The node ci corresponding to the position xi contains

the solution u(xi, tk) at the time tk. The edge lij between neighboring nodes xi and
xj carries the information to update u(xi), u(xj) for subsequent times. GNNs output
a new vector di = (d1

i ,d
2
i , ...d

K
i) based on the last K solution values of node ci, i.e.,

(u(xi, tk−K+1), u(xi, tk−K+2), ...u(xi, tk)).
Encoder, denoted as ϵ, is multilayer perceptrons (MLPs), computing node embed-

ding. The node ci at the moment tk can be characterized by the last K solution values
(u(xi, tk−K+1), ..., u(xi, tk−1), u(xi, tk)), node position xi, current time tk, and parameters
βP DE . Herein, βP DE = (β) in (3.27). As shown in Fig. 3.2, the Encoder maps these
features into node embedding vector, i.e.,

fi = ϵ([u(xi, tk−K+1), ..., u(xi, tk−1), u(xi, tk), xi, tk,βP DE]). (3.28)

Figure 3.2: Encoder.

Processor performs the message passing
Processor performs the message passing by updating the information mij on the edge

lij and the embedding vector fi of node ci using ϕ and ψ, respectively. Processor contains
M layers with intermediate graphs Gm, m = 1, 2, ...,M . The messaging process is shown
in Fig. 3.3.

Figure 3.3: Processor.

14

3. Methodology

• edge cj → ci message:

mij = ϕ(fi,fj , u(xi, tk−K+1) − u(xj , tk−K+1)
, ..., u(xi, tk) − u(xj , tk), xi − xj ,βP DE).

(3.29)

• node ci update:
fi = ψ(fi,

∑

j∈N(i)
mij ,βP DE), (3.30)

where N(i) holds the neighbors of node ci and ϕ and ψ are MLPs.
Decoder uses a shallow 1D convolutional network to output the K next timesteps

information increment di = (d(xi, tk+1), d(xi, tk+2), ..., d(xi, tk+K)) at grid node ci, as
shown in Fig. 3.4.

Figure 3.4: Decoder.

After getting the vector di from GNNs, we use it to update the next K solution values
of node ci as

u(xi, tk+l) = u(xi, tk) + (tk+l − tk)d(xi, tk+l) (3.31)

where 1 ≤ l ≤ K.

15

3. Methodology

16

Chapter 4

Research Contributions

The main contribution of this work is six articles where four of which have been published
whereas two of them are currently under review. In Paper I, we successfully addressed
the parameterized ODE problem using a combination of S-Net and Euler Methods. In
Paper II, we explored using GNNs—a subset of supervised methods—for conservation
law problems with discontinuous solutions but found the generalization performance of
GNNs is lacking. To enhance performance, in Paper III, we introduce ConsLaw-Net as
a core method for the one-dimensional scalar conservation law problem. Building on
ConsLaw-Net, Papers IV, V, and VI employ LRNN, Joint & Alternating equation training
strategies, and multiple S-Nets to address the one-dimensional scalar conservation law with
parameters, the two-dimensional version, and the one-dimensional variant with a diffusion
term, respectively. Fig. 4.1 shows the relationship between the various works and the
methods used.

Figure 4.1: The relationship between the various works and the methods used.

17

4. Research Contributions

4.1 Learning Parameterized ODEs from Data

In contemporary research, neural networks are being used to derive ODEs from observations.
Assume that ODEs take the following generic form, which is usually used to describe
some physical dynamics with different functions f(s, p, r, α, β, γ), g(s, p, r, α, β, γ) and
h(s, p, r, α, β, γ),





ds
dt = f(s, p, r, α, β, γ),
dp
dt = g(s, p, r, α, β, γ),
dr
dt = h(s, p, r, α, β, γ).

(4.1)

Here, s, p, and r are independent variables and α, β, and γ are parameters. In the scenario of
parameterized ODEs, we want to predict the system based on the new values of parameters.
However, parameterized ODEs pose a more significant challenge than non-parameterized
ODEs since the networks are required to understand the roles of the parameters, i.e., the
structure of the equations. We proposed a novel approach by combining S-Net with ODE
Solver to solve this issue. First, S-Net learns the structure of the parameterized ODEs
and then predicts the dynamics based on the new parameters with the new initial states.
Fig. 4.2 illustrates the time series generation process. Due to the ODE Solver, the system
state transitions from the previous time point to the subsequent one. In our approach,
S-Net serves as the ANN. To assess its performance, we compare our approach with a
widely used Ordinary Neural Network (O-Net) that directly learns and predicts ODEs. Our
numerical experiments demonstrate that our approach outperforms O-Net when applied to
the Lotka-Volterra and Lorenz equations.

Figure 4.2: Schematic diagram of the framework. Initial states s0, p0, r0 and parameters α, β, γ are fed
into the ANN model to predict the derivatives of s, p, and r with respect to time. These derivatives
combined with initial states s0, p0, r0 will be further fed into the ODE Solver to obtain the next state
s1, p1, r1, and so on. Finally we will get the trajectories of S = {s0, s1, . . . sT }, P = {p0, p1, . . . , pT } and
R = {r0, r1, . . . , rT }.

18

4. Research Contributions

4.2 Solving Nonlinear Conservation Laws of Partial Differ-
ential Equations Using Graph Neural Networks

Graph Neural Networks (GNNs) have recently been established as fast and accurate
alternatives for principled solvers when applied to standard equations with regular solutions.
There have been few investigations on GNNs implemented for complex PDEs with nonlinear
conservation laws. Herein, we explore GNNs to solve the following problem

ut + f(u, β)x = 0 (4.2)

where f(u, β) is the nonlinear flux function of the scalar conservation law, u is the main
variable, and β is the physical parameter. The main challenge of nonlinear conservation
laws is that solutions typically create shocks. We leverage GNNs with encoder processor
decoder structure to learn a fast-forward model that predicts solutions of PDEs. An
overview of the approach that we use is shown in Fig. 4.3. Our experiments demonstrate

Figure 4.3: The pipeline of the approach. For each node ci, at time point tk, the last K solutions
(u(xi, tk−K+1), ..., u(xi, tk−1), u(xi, tk)), position xi, current time tk, and equation parameters βP DE are
fed into GNNs. After the operators of Encoder, P rocessor and Decoder, we get the information increment
of this node ci at the next K time points: (d(xi, tk+1), d(xi, tk+2), ..., d(xi, tk+K)). Finally, we get solutions
of the next K time points by u(xi, tk+l) = u(xi, tk) + (tk+l − tk)d(xi, tk+l), 1 ≤ l ≤ K.

that the GNN models can predict accurately when the parameter β is within a specific
range. However, when the parameter deviates far from the value for training, the model’s
predictive performance drops sharply. Furthermore, the model is not very good at predicting
the discontinuity of the solutions. There will be numerous small fluctuations around the
discontinuity.

4.3 Learning the nonlinear flux function of a hidden scalar
conservation law from data

Nonlinear conservation laws are widely used in fluid mechanics, biology, physics, and
chemical engineering. However, deriving the nonlinear, unknown flux function f(u) of the

19

4. Research Contributions

following scalar conservation law is a significant and challenging problem,
ut + f(u)x = 0, x ∈ (0, L)

ux|x=0 = ux|x=L = 0,
u|t=0 = u0(x),

(4.3)

with u as the main variable. This identification is based on using observation data u(xj , ti)
on a spatial grid xj , j = 1, . . . , Nx at specified times ti, i = 1, . . . , Nobs. A main challenge
with (4.3) is that the solution typically creates shocks, i.e., one or several jumps of the
form (uL, uR) with uL ̸= uR moving in space and possibly changing over time such that
information about f(u) in the interval associated with this jump is sparse or not at all
present in the observation data. Secondly, the lack of regularity in the solution of (4.3)
and the nonlinear form of f(u) hamper the use of previous proposed PINN methods
where the underlying form of the sought differential equation is accounted for in the loss
function. The overall architecture of the method is shown in Fig. 4.4. There are two
parts involved, the generation of observed data based on the true flux function f(u) and
learning of the unknown flux function fθ(u) which is assigned the S-Net structure. We
proposed the method called ConsLaw-Net to circumvent this obstacle by approximating
the unknown conservation law (4.3) by an entropy satisfying discrete scheme where f(u) is
represented through a symbolic multi-layer neural network. Numerical experiments show
that the proposed method has the ability to uncover the hidden conservation law for a
wide variety of different nonlinear flux functions, ranging from pure concave/convex to
highly non-convex shapes. This is achieved by relying on a relatively sparse amount of
observation data obtained in combination with a selection of different initial data.

Figure 4.4: Schematic diagram of the framework.

4.4 Identification of the flux function of nonlinear conserva-
tion laws with variable parameters

The purpose of this work is to propose a method to identify the nonlinear flux function
f(u, β) with variable parameters of an unknown scalar conservation law

ut + f(u, β)x = 0, x ∈ (0, L)
u|t=0 = u0(x),
ux|x=0 = ux|x=L = 0,

(4.4)

20

4. Research Contributions

with u as the dependent variable and β as the parameter. Learning the flux function
with variable parameters, marked as f(u, β), is more challenging than identifying f(u;β)
for various fixed β since it requires an understanding of the relationship between the
variable u and parameter β as well. In this work, we couple the updated ConsLaw-Net to
LRNN to learn the functional form of the two variable function f(u, β). The framework
for our approach is shown in Fig. 4.5. We experimentally demonstrate that the upgraded
ConsLaw-Net integrated with LRNN is well-suited for learning tasks, achieving more
accurate identification than existing learning approaches when applied to problems that
involve general classes of flux functions f(u, β). In addition, We compare our method
with the GNNs method proposed in [65]. Experiments show that our method generates
relatively accurate predictions whereas this GNN does not seem to have a built-in capacity
to handle the problem (4.4) well.

Figure 4.5: Pipeline for our approach. There are two steps: 1⃝ using the improved ConsLaw-Net to learn
f(u; β) where β ∈ {β∗

0 , β∗
1 , ..., β∗

Nβ
}. We use the symbol β∗ to distinguish the values of β used in the first

step. The learned expression f(u; β∗
i) in each subproblem i is referring to an equation with u as variable

but not β∗
i . 2⃝ Given the results of the first step, we first construct a collection of candidate models of

the two variable function f(u, β), and then use LRNN to obtain the coefficients of the selected candidate
model. If this candidate model can satisfy the error criterion, we will apply it to compute the solutions of
(4.4). Otherwise, we reselect the candidate model and repeat the process in the second step.

4.5 An alternating flux learning method for multidimen-
sional nonlinear conservation laws

In this work, we focus on the problem of learning the unknown nonlinear flux functions
from observations of the solution u of the two-dimensional scalar conservation law

ut + f(u)x + g(u)y = 0, (x, y) ∈ Ω = (0, L) × (0, L)
u|t=0 = u0(x, y),
ux|x=0 = ux|x=L = 0,
uy|y=0 = uy|y=L = 0.

(4.5)

Given by (4.5), u is defined as the main variable of space and time, and the goal is to find
analytical expressions for both f(u) and g(u), based on a set of observations u(xi, yj , tl) at
various time points tl. In addition to the lack of observational data due to the existence of
some discontinuous points in the solution of the studied problem, the problem is further
complicated by the need for high accuracy and the sparsity of useful information as the
dimension increases. Therefore, we find that a straightforward extension of the method
from the 1D to the 2D problem results in poor learning of the unknown f(u) and g(u).

21

4. Research Contributions

Relying on ideas from joint and alternating equations training, we design learning strategies
that enable accurate identification of the flux functions, even when 2D observations are
sparse. As is shown in Fig. 4.6, it involves an alternating flux learning approach where a
first set of candidate flux functions obtained from joint training is improved through an
alternating direction-dependent learning strategy. Numerical investigations demonstrate
that the method can effectively identify the true underlying flux functions f and g in the
general case when they are non-convex and unequal.

Figure 4.6: The framework based on Joint and Alternating Equations Training steps to learn our model.

4.6 Learning the flux and diffusion function for degenerate
convection-diffusion equations using different types of
observations

In this study, we investigate the identification of an unknown flux function and diffusion
function in a one-dimensional convection-diffusion equation,

ut + f(u)x = αA(u)xx, A(u) =
∫ u

0
a(v)dv, a(v) ≥ 0

u|t=0 = u0(x)
ux|x=0 = ux|x=L = 0

(4.6)

where x ∈ [0, L] arises in different applications such as sedimentation of particles in liquid
and various traffic flow types of problems. Here u = u(x, t) is the main variable which
depends on the position x and time t. The flux function f(u) represents the convective
transport whereas the diffusion function, denoted by A(u) =

∫ u
0 a(v)dv, is a function of u

that describes the diffusive transport. For a typical situation, we have a priori information
about the magnitude of the scaling factor α > 0 but not precise information about the
functional form of neither A(u) nor f(u). Our goal is to determine analytical expressions

22

4. Research Contributions

for both f(u) and A(u) using observational data of different types. We introduce an
updated ConsLaw-Net for learning the functional forms of both the flux function f(u)
and diffusion function A(u) in the degenerate convection-diffusion model (4.6). Going
beyond the reliance on the equation’s solution in terms of u(xj , ti) as observational data, we
investigate the same physical system from a distinct perspective. Specifically, we consider
a scenario where the system is made up of particles that follow the flow field as described
by u(x, t) governed by (4.6). That is, particle zj(t) is governed by

żj(t) = w(u(zj(t), t)), zj(t = 0) = x0
j

for a given function w(v). Using particle-based observational data, the proposed method
generates quite remarkable outcomes despite the fact that the number of observation data
points is much lower than the observations of u(x, t). In addition, we conduct a comparative
experiment using the piecewise affine functions method described in [18] replacing the
S-Net. The experimental results demonstrate the clear advantage of neural networks in
terms of effective and robust identification of the unknown functions f and A.

23

4. Research Contributions

24

Chapter 5

Conclusion and Future Work

In this thesis, we introduce some new ideas for addressing complex physics problems. We
present a unique framework merging the S-Net with an ODE Solver for identifying param-
eterized ODEs. The experiments validate the combined efficacy of the neural network and
numerical scheme in determining equations in unknown dynamic systems, leading to precise
state predictions. Additionally, we use the popular GNN approach, typically employed for
standard equations with regular solutions, to test the conservation law problem. Jump
points in these solutions create significant challenges due to incomplete information about
the unknown function. However, the GNN’s generalization performance fell short of our
expectations. The core part of this thesis is the introduction of ConsLaw-Net, integrating
the S-Net with an entropy-satisfying discrete scheme to address PDEs governed by the
scalar conservation law. We later devise a framework combining the updated ConsLaw-Net
with Linear Regression Neural Network to identify the conservation law’s functional form
with parameters. Understanding the flux function with variable parameters poses greater
challenges than without, as it demands insight into the relationship between the variable
and parameter. Additionally, we use joint and alternating equation strategies to train the
advanced ConsLaw-Net for two-dimensional conservation law issues, which demand high
accuracy amidst sparse valuable information. Finally, we present an enhanced ConsLaw-
Net to learn the flux function and diffusion function at the same time in the degenerate
convection-diffusion model, grounded on different types of observation data.

Physical discovery is a very ambitious and important field, and the approach of this
thesis is a preliminary study of some of the fundamental issues. As far as the proposed
method is concerned, there are still many areas that need to be further investigated:

a) There is a need for further testing on real-life data to what extent the proposed
framework can be used to identify underlying conservation laws. The research in
this thesis is based solely on synthetic data. Another interesting topic for further
research is how different types of observation data (depending on the experimental
system under consideration) might effect the learning. A first step in that direction
is taken in Paper VI where we explore the use of particle paths that are governed by
the solution of the hidden conservation law.

b) Find more flexible and less human-influenced components to replace S-Net. The
parsimony of the S-Net outcome is primarily built on empirical pruning of the net-
work weights, thus exhibiting sensitivity to user-defined network layers or even initial

25

5. Conclusion and Future Work

parameters. Monte Carlo tree search (MCTS) agent has been used to identify the
arithmetic expression of underlying physics in some studies [28, 29, 66]. It enables the
flexible representation of search space with customized computational grammars to
guide the search tree expansion. However, current work on MCTS mainly examines
the ODE problems. Can we attempt to apply the MCTS algorithm as an alternative
to S-Net for symbolic regression in ConsLaw-Net? Compared to S-Net, MCTS is able
to reduce the influence of human factors on the model results, but how to encode the
physical information into the selection policy to reduce the complexity of the tree
search is also a challenge.

c) Theoretical insights into the field of discovery for dynamic systems are essential for
future model designs. We verified experimentally that ConsLaw-Net succeeds in our
scenario while GNNs don’t. However, we haven’t identified the model features causing
this disparity. One direction of future work is to compare the difference between
ConsLaw-Net and GNNs from the training process and loss landscape. In addition,
the Frequency Principle proposed in [67] may be a useful tool for recognizing what
kind of information GNNs can capture.

d) Most current research focuses on solving equations in low-dimensional spaces (under
three dimensions). However, the solution manifold of parametric PDEs is frequently
high-dimensional. One of the challenges in studying problems in high-dimensional
space is the computational complexity. While deep learning can be used in this
manifold, to do so effectively, an adequately expressive basis is essential to capture its
features. A future research direction involves using more efficient learning strategies
to train existing models. In paper V, we explore the Joint and Alternating equations
training methods for problems in two-dimensional space.

26

Bibliography

[1] Nils Thuerey, Philipp Holl, Maximilian Mueller, Patrick Schnell, Felix Trost, and Kiwon Um.
Physics-based deep learning. arXiv preprint arXiv:2109.05237, 2021.

[2] Zhengdao Chen, Jianyu Zhang, Martín Arjovsky, and Léon Bottou. Symplectic Recurrent
Neural Networks. In Proc. 8th Int. Conf. Learn. Represent. (ICLR), Addis Ababa, Ethiopia,
pages 1–23, Apr. 2020.

[3] Qing Li, Steinar Evje, and Jiahui Geng. Learning parameterized odes from data. IEEE Access,
2023.

[4] R.J. LeVeque. Finite volume methods for hyperbolic problems. Cambridge Texts in Applied
Mathematics, 2007.

[5] H. Holden and N.H. Risebro. Front tracking for hyperbolic conservation laws. Springer, Berlin,
2011.

[6] J.W. Thomas. Numerical partial differential equations. conservation laws and elliptic equations.
Texts in Applied Mathematics 33, 1999.

[7] J.S. Hesthaven. Numerical methods for conservation laws. from analysis to algorithms. SIAM.
Computational Science & Engineering, 2017.

[8] D. Kröener. Numerical schemes for conservation laws. Wiley-Teubner Series Advances in
Numerical Mathematics, 1997.

[9] M. Mishra, U.S. Fjordholm, and R. Abgrall. Numerical methods for conservation laws and
related equations. Lecture Notes, University in Oslo.

[10] Hans Joakim Skadsem and Steinar Kragset. A numerical study of density-unstable reverse
circulation displacement for primary cementing. Journal of Energy Resources Technology,
144(12):123008, 2022.

[11] Olga Fuks and Hamdi A Tchelepi. Limitations of physics informed machine learning for
nonlinear two-phase transport in porous media. Journal of Machine Learning for Modeling
and Computing, 1(1), 2020.

[12] F. James and M. Sepúlveda. Convergence results for the flux identification in a scalar
conservation law. SIAM J. Control Optim., 37(3):869–891, 1999.

[13] H. Holden, F.S. Priuli, and N.H. Risebro. On an inverse problem for scalar conservation laws.
Inverse Problems, 30:035015, 2014.

[14] M. C. Bustos, F. Concha, R. Bürger, and E.M. Tory. Sedimentation and thickening - Phe-
nomenological Foundation and Mathematical Theory. Kluwer Academic Publishers, 1999.

[15] S. Diehl. Estimation of the batch-settling flux function for an ideal suspension from only two
experiments. Chemical Engineering Science, 62:4589–4601, 2007.

27

[16] R. Bürger and S. Diehl. Convexity-preserving flux identification for scalar conservation laws
modelling sedimentation. Inverse Problems, 29:045008, 2013.

[17] R. Bürger, J. Careaga, and S. Diehl. Flux identification of scalar conservation laws from
sedimentation in a cone. IMA Journal of Applied Mathematics, 83:526–552, 2018.

[18] Stefan Diehl. Numerical identification of constitutive functions in scalar nonlinear convection–
diffusion equations with application to batch sedimentation. Applied Numerical Mathematics,
95:154–172, 2015.

[19] J. Bongard and H. Lipson. Automated reverse engineering of nonlinear dynamical systems.
Proceedings of the National Academy of Sciences, 104(24):9943–9948, 2007.

[20] M. Schmidt and H. Lipson. Distilling free-form natural laws from experimental data. Science,
324(5923):81–85, 2009.

[21] JRGP Koza. On the programming of computers by means of natural selection. Genetic
programming, 1992.

[22] Lynne Billard and Edwin Diday. From the statistics of data to the statistics of knowledge:
symbolic data analysis. Journal of the American Statistical Association, 98(462):470–487, 2003.

[23] Theodore Cornforth and Hod Lipson. Symbolic regression of multiple-time-scale dynamical
systems. In Proceedings of the 14th annual conference on Genetic and evolutionary computation,
pages 735–742, 2012.

[24] Sébastien Gaucel, Maarten Keijzer, Evelyne Lutton, and Alberto Tonda. Learning dynamical
systems using standard symbolic regression. In Genetic Programming: 17th European Confer-
ence, EuroGP 2014, Granada, Spain, April 23-25, 2014, Revised Selected Papers 17, pages
25–36. Springer, 2014.

[25] Daniel L Ly and Hod Lipson. Learning symbolic representations of hybrid dynamical systems.
The Journal of Machine Learning Research, 13(1):3585–3618, 2012.

[26] Markus Quade, Markus Abel, Kamran Shafi, Robert K Niven, and Bernd R Noack. Prediction
of dynamical systems by symbolic regression. Physical Review E, 94(1):012214, 2016.

[27] Harsha Vaddireddy, Adil Rasheed, Anne E Staples, and Omer San. Feature engineering and
symbolic regression methods for detecting hidden physics from sparse sensor observation data.
Physics of Fluids, 32(1), 2020.

[28] T Nathan Mundhenk, Mikel Landajuela, Ruben Glatt, Claudio P Santiago, Daniel M Fais-
sol, and Brenden K Petersen. Symbolic regression via neural-guided genetic programming
population seeding. arXiv preprint arXiv:2111.00053, 2021.

[29] Brenden K Petersen, Mikel Landajuela, T Nathan Mundhenk, Claudio P Santiago, Soo K Kim,
and Joanne T Kim. Deep symbolic regression: Recovering mathematical expressions from data
via risk-seeking policy gradients. arXiv preprint arXiv:1912.04871, 2019.

[30] Steven L Brunton, Joshua L Proctor, and J Nathan Kutz. Discovering governing equations
from data by sparse identification of nonlinear dynamical systems. Proceedings of the national
academy of sciences, 113(15):3932–3937, 2016.

[31] Hayden Schaeffer. Learning partial differential equations via data discovery and sparse
optimization. Proc. Roy. Soc. Ser. A, 473, 2017.

[32] M. Dam, M. Brøns, J. Juul Rasmussen, V. Naulin, and J. S. Hesthaven. Sparse identification
of a predator-prey system from simulation data of a convection model. Physics of Plasmas,
24(2):022310, 2017.

28

[33] A. Narasingam and J. S. I. Kwon. Data-driven identification of interpretable reduced-order
models using sparse regression. Computers & Chemical Engineering, 119:101–111, 2018.

[34] K. Champion, B. Lusch, J. N. Kutz, and S. L. Brunton. Data-driven discovery of coordinates
and governing equations. Proceedings of the National Academy of Sciences, 116(45):22445–
22451, 2019.

[35] Z. Chen, Y. Liu, and H. Sun. Physics-informed learning of governing equations from scarce
data. Nature communications, 12(1):6136, 2021.

[36] H. Gao, M. J. Zahr, and J. X. Wang. Physics-informed graph neural galerkin networks: A
unified framework for solving pde-governed forward and inverse problems. Computer Methods
in Applied Mechanics and Engineering, 390:114502, 2022.

[37] Q. Zhao, D. B. Lindell, and G. Wetzstein. Learning to solve pde-constrained inverse problems
with graph networks. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvári,
Gang Niu, and Sivan Sabato, editors, International Conference on Machine Learning, ICML
2022, 17-23 July 2022, Baltimore, Maryland, USA, volume 162 of Proceedings of Machine
Learning Research, pages 26895–26910. PMLR, 2022.

[38] Johannes Brandstetter, Daniel E. Worrall, and Max Welling. Message passing neural PDE
solvers. In The Tenth International Conference on Learning Representations, ICLR 2022,
Virtual Event, April 25-29, 2022. OpenReview.net, 2022.

[39] Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks:
A deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational physics, 378:686–707, 2019.

[40] Nanzhe Wang, Dongxiao Zhang, Haibin Chang, and Heng Li. Deep learning of subsurface flow
via theory-guided neural network. Journal of Hydrology, 584:124700, 2020.

[41] Maziar Raissi, Zhicheng Wang, Michael S Triantafyllou, and George Em Karniadakis. Deep
learning of vortex-induced vibrations. Journal of Fluid Mechanics, 861:119–137, 2019.

[42] Xiaowei Jin, Shengze Cai, Hui Li, and George Em Karniadakis. Nsfnets (navier-stokes flow
nets): Physics-informed neural networks for the incompressible navier-stokes equations. Journal
of Computational Physics, 426:109951, 2021.

[43] Maziar Raissi, Hessam Babaee, and Peyman Givi. Deep learning of turbulent scalar mixing.
Physical Review Fluids, 4(12):124501, 2019.

[44] Georgios Kissas, Yibo Yang, Eileen Hwuang, Walter R Witschey, John A Detre, and Paris
Perdikaris. Machine learning in cardiovascular flows modeling: Predicting arterial blood
pressure from non-invasive 4d flow mri data using physics-informed neural networks. Computer
Methods in Applied Mechanics and Engineering, 358:112623, 2020.

[45] Maziar Raissi, Alireza Yazdani, and George Em Karniadakis. Hidden fluid mechanics: Learning
velocity and pressure fields from flow visualizations. Science, 367(6481):1026–1030, 2020.

[46] Francisco Sahli Costabal, Yibo Yang, Paris Perdikaris, Daniel E Hurtado, and Ellen Kuhl.
Physics-informed neural networks for cardiac activation mapping. Frontiers in Physics, 8:42,
2020.

[47] Luning Sun and Jian-Xun Wang. Physics-constrained bayesian neural network for fluid
flow reconstruction with sparse and noisy data. Theoretical and Applied Mechanics Letters,
10(3):161–169, 2020.

[48] Yuyao Chen, Lu Lu, George Em Karniadakis, and Luca Dal Negro. Physics-informed neural
networks for inverse problems in nano-optics and metamaterials. Optics express, 28(8):11618–
11633, 2020.

29

[49] Zhiwei Fang and Justin Zhan. Deep physical informed neural networks for metamaterial design.
Ieee Access, 8:24506–24513, 2019.

[50] Dehao Liu and Yan Wang. Multi-fidelity physics-constrained neural network and its application
in materials modeling. Journal of Mechanical Design, 141(12):121403, 2019.

[51] Qiang Zheng, Lingzao Zeng, and George Em Karniadakis. Physics-informed semantic inpainting:
Application to geostatistical modeling. Journal of Computational Physics, 419:109676, 2020.

[52] Xiaoli Chen, Jinqiao Duan, and George Em Karniadakis. Learning and meta-learning of
stochastic advection–diffusion–reaction systems from sparse measurements. European Journal
of Applied Mathematics, 32(3):397–420, 2021.

[53] Zhiping Mao, Ameya D Jagtap, and George Em Karniadakis. Physics-informed neural networks
for high-speed flows. Computer Methods in Applied Mechanics and Engineering, 360:112789,
2020.

[54] Reda Snaiki and Teng Wu. Knowledge-enhanced deep learning for simulation of tropical
cyclone boundary-layer winds. Journal of Wind Engineering and Industrial Aerodynamics,
194:103983, 2019.

[55] Liu Yang, Xuhui Meng, and George Em Karniadakis. B-pinns: Bayesian physics-informed
neural networks for forward and inverse pde problems with noisy data. Journal of Computational
Physics, 425:109913, 2021.

[56] Jens Berg and Kaj Nyström. A unified deep artificial neural network approach to partial
differential equations in complex geometries. Neurocomputing, 317:28–41, 2018.

[57] Lu Lu, Xuhui Meng, Zhiping Mao, and George Em Karniadakis. Deepxde: A deep learning
library for solving differential equations. SIAM review, 63(1):208–228, 2021.

[58] Jiequn Han, Arnulf Jentzen, and Weinan E. Solving high-dimensional partial differential
equations using deep learning. Proceedings of the National Academy of Sciences, 115(34):8505–
8510, 2018.

[59] Justin Sirignano and Konstantinos Spiliopoulos. Dgm: A deep learning algorithm for solving
partial differential equations. Journal of computational physics, 375:1339–1364, 2018.

[60] Liu Yang, Dongkun Zhang, and George Em Karniadakis. Physics-informed generative adver-
sarial networks for stochastic differential equations. SIAM Journal on Scientific Computing,
42(1):A292–A317, 2020.

[61] Zichao Long, Yiping Lu, Xianzhong Ma, and Bin Dong. Pde-net: Learning PDEs from data.
In International Conference on Machine Learning, pages 3208–3216. PMLR, 2018.

[62] Zichao Long, Yiping Lu, and Bin Dong. PDE-Net 2.0: Learning PDEs from data with a
numeric-symbolic hybrid deep network. Journal of Computational Physics, 399:108925, 2019.

[63] Qing Li, Jiahui Geng, and Steinar Evje. Identification of the flux function of nonlinear
conservation laws with variable parameters. Physica D: Nonlinear Phenomena, 451:133773,
2023.

[64] Qing Li and Steinar Evje. Learning the nonlinear flux function of a hidden scalar conservation
law from data. Network Heterogeneous Media, 18:48–79, 2023.

[65] V. Iakovlev, M. Heinonen, and H. Lähdesmäki. Learning continuous-time pdes from sparse
data with graph neural networks. In 9th International Conference on Learning Representations,
ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021.

[66] Fangzheng Sun, Yang Liu, Jian-Xun Wang, and Hao Sun. Symbolic physics learner: Discovering
governing equations via monte carlo tree search. arXiv preprint arXiv:2205.13134, 2022.

30

[67] Zhi-Qin John Xu, Yaoyu Zhang, and Tao Luo. Overview frequency principle/spectral bias in
deep learning. arXiv preprint arXiv:2201.07395, 2022.

31

32

Paper I:
Learning Parameterized ODEs
from Data

Qing Li, Steinar Evje, Jiahui Geng

IEEE Access 11 (2023): 54897 - 54909
doi = https://ieeexplore.ieee.org/document/10143183

33

https://ieeexplore.ieee.org/document/10143183

Received 18 April 2023, accepted 27 May 2023, date of publication 2 June 2023, date of current version 7 June 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3282435

Learning Parameterized ODEs From Data
QING LI 1, STEINAR EVJE1, AND JIAHUI GENG 2, (Graduate Student Member, IEEE)
1Department of Energy and Petroleum Engineering, University of Stavanger, 4021 Stavanger, Norway
2Department of Electrical Engineering and Computer Science, University of Stavanger, 4021 Stavanger, Norway

Corresponding author: Qing Li (qing.li@uis.no)

This work was supported by the Department of Energy and Petroleum Engineering at the University of Stavanger, under Grant IN-12570.

ABSTRACT In contemporary research, neural networks are being used to derive Ordinary Differential
Equations (ODEs) from observations. However, parameterized ODEs pose a more significant challenge
than non-parameterized ODEs since the networks are required to understand the roles of the parameters,
i.e., the structure of the equations. This paper proposes a novel approach by combining Symbolic Neural
Network (S-Net) with ODE Solver to solve this issue. First, S-Net learns the structure of the parameterized
ODEs and then predicts the dynamics based on the new parameters with the new initial states. To assess its
performance, we compare our approach with a widely used Ordinary Neural Network (O-Net) that directly
learns and predicts ODEs. Our numerical experiments demonstrate that our approach outperforms O-Net
when applied to the Lotka-Volterra and Lorenz equations.

INDEX TERMS Parameterized ordinary differential equations, neural networks, ODE solver.

I. INTRODUCTION
The combination of deep learning and differential equations
is a highly promising research direction. Deep learning can
help uncover the underlying differential equations governing
the behavior of many systems, such as electromagnetism,
aerodynamics, weather prediction, and geophysics. Dif-
ferential equation-guided network design can significantly
improve model interpretability and generalization perfor-
mance. The potential impact of this approach on scientific
discovery and innovation is immense.

Chen et al. [1] introduced Neural Ordinary Differential
Equations (NODEs), a new family of deep networks. They
used a neural network to parameterize the derivative of the
hidden state, serialized the neural network layers and param-
eters, and used the adjoint ODEmethod to optimize the neural
network instead of back-propagation, which saved memory.
Their work inspired research on variants of NODE meth-
ods, such as [2] and [3]. Other studies have also explored
the potential of neural networks to learn and solve differ-
ential equations. For example, Chen et al. [4] proposed the
Symplectic Recurrent Neural Network (SRNN) to capture
the dynamics of physical systems from regularly observed
data. Raissi et al. [5] introduced physics-informed neural net-

The associate editor coordinating the review of this manuscript and

approving it for publication was Derek Abbott .

works (PINNs) to solve data-driven solutions and data-driven
discovery problems of partial differential equations (PDEs).
Long et al. [6], [7] proposed PDE-Net, a feed-forward deep
network that predicts the dynamics of complex systems
and uncovers the underlying hidden PDE models. PDE-Net
implemented Symbolic Neural Network (S-Net) to learn the
structure of PDEs and demonstrated powerful learning abil-
ity. Similarly, [8], [9] also proved the competitive general-
ization capability of S-Net. These works show the potential
of deep learning in solving PDEs and discovering hidden
models.

Parameterized ODEs are a class of ODEs with solutions
that vary with parameters, representing multiple dynamics
specified by input parameter instances. They have been
extensively studied in computational science and engineering
domains, such as fluid dynamics and the ideal pendulum sys-
tem. In critical situations, computing high-fidelity solutions
of parameterized ODEs is necessary, either for numerous
input parameter instances or initial states. Data-driven meth-
ods have been used in recent years to estimate the evolution
of dynamical systems over time, including different initial
conditions [10] and system parameters [11]. To learn the
latent dynamics of complex dynamical processes in computa-
tional physics, Lee and Parish [11] proposed encoder-decoder
parameterized NODEs (PNODEs). Shimizu and Parish
[12] presented the windowed space-time least-squares

VOLUME 11, 2023 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 54897

35

Q. Li et al.: Learning Parameterized ODEs From Data

Petrov-Galerkin method (WST-LSPG) for model reduction
of nonlinear parameterized dynamical systems. WST-LSPG
divides the time simulation into several windows and sequen-
tially minimizes the discrete-in-time residual within its own
unique low-dimensional space-time subspace. Lee and Trask
[13] introduced POUNODEs, a new variant of NODEs with
evolving model parameters. They modeled the evolution
using partition-of-unity networks, allowing for greater flex-
ibility in capturing the dynamics of complex systems.

To the best of our knowledge, the majority of existing
approaches for solving parameterized ODEs rely on black-
box methods, which employ neural networks directly to
simulate its behavior and make predictions. Our proposed
approach, on the other hand, aims to gain a deeper under-
standing of the underlying mechanics of the dynamic system
by first learning the structure of the ODEs. This understand-
ing enables us to predict the behavior of the dynamical system
more accurately and efficiently for new parameters and initial
states compared to black-box methods. The contributions of
this work are summarized as follows:

• Our proposed framework combines S-Net with an
ODE solver to learn parameterized ODEs. This novel
approach enables accurate and efficient modeling of the
dynamics of complex systems, even when the properties
of the governing equations vary across multiple input
parameters.

• To evaluate our approach, we compare its performance
with that of a baseline model, O-Net, which represents
a black-box approach. We empirically demonstrate the
advantages of our proposed framework in terms of both
accuracy and interpretability.

The remainder of this paper is organized as follows:
Section II presents related works. The considered parameter-
ized ODEs problem and the ODE Solver are briefly intro-
duced in Section III. Section IV illustrates the proposed
approach. We evaluate the performance of our method on two
case studies: the Lotka-Volterra Equation in Section V and
the Lorenz Lotka-Volterra Equation in Section VI. Finally,
in Section VII, we summarize our findings and discuss
potential avenues for future research.

II. RELATED WORK
Several studies have explored the use of Gaussian process
regression to develop tailored functional representations for
a given linear operator [14], [15], [16]. However, the local
linearization of nonlinear terms in time and prior assump-
tions of Gaussian process regression limit the representation
capacity of the model. Sparse regression, discussed in [17],
[18], [19], and [20], overcomes this limitation by developing
a dictionary of basic functions and partial derivatives that can
accurately represent the data using sparsity-promoting tech-
niques. However, the predictive and expressive capabilities
of the dictionary are restricted since the sparse regression
method necessitates predefining specific numerical approx-
imations for spatial differentiation.

Mesh-based simulations have recently shown significant
progress [21], [22], surpassing grid-based convolutional neu-
ral networks (CNNs) in terms of runtime and exhibiting
greater adaptivity to the simulation domain. While sev-
eral methods, such as AntisymmetricRNN [23] and the
continuous-time Gated Recurrent Unit with a Bayesian
update network [24], have leveraged the stability of underly-
ing differential equations to capture long-term dependencies,
they did not address the challenge of learning the expres-
sion of the equation to gain a deeper understanding of the
underlying mechanism behind the observed data. In another
work [25], the authors learned the unknown parameters of
the ODE system by constructing certain time-related features,
but this method did not address the expressiveness of the
equation.

III. KNOWLEDGE
In this section, we’ll define parameterized ODEs and dif-
ferentiate them from non-parameterized ODEs. Additionally,
we’ll introduce the ODE Solver, a crucial component in our
approach.

A. NON-PARAMETERIZED AND PARAMETERIZED ODES
Assume that ODEs take the following generic form, which
is usually used to describe some physical dynamics with
different functions f (s, p, r, α, β, γ), g(s, p, r, α, β, γ) and
h(s, p, r, α, β, γ),





ds
dt

= f (s, p, r, α, β, γ),
dp
dt

= g(s, p, r, α, β, γ),
dr
dt

= h(s, p, r, α, β, γ).

(1)

Here, we consider the nonlinear ODE system with indepen-
dent variables s, p, and r , and initial states s0, p0, and r0 at time
t0. The system also involves parameters α, β, and γ, where
t ∈ (0,T] represents the time interval of interest.

In non-parameterized ODEs, parameters such as α, β, and
γ remain fixed during both model training and prediction,
whether they are known or unknown. Thus, we assume that
α = α1, β = β1, and γ = γ1, and denote the observations as:

Zfixed
=

{(
s(ti; s

j
0, p

j
0, r

j
0, α1, β1, γ1), p(ti; s

j
0, p

j
0, r

j
0, α1, β1,

× γ1), r(ti; s
j
0, p

j
0, r

j
0, α1, β1, γ1)

)∣∣∣∣i = 1, . . . ,Nobs,

× j = 1, . . . ,M} . (2)

The observations are denoted by a set of Nobs > 0 time
points, and the number of initial states is denoted by
M > 0. If (s∗0, p

∗

0, r
∗

0) ∈ {(sj0, p
j
0, r

j
0)|j = 1, . . .M},

we predict
(
s(t∗; s∗0, p

∗

0, r
∗

0 , α1, β1, γ1), p(t∗; s∗0, p
∗

0, r
∗

0 , α1,

β1, γ1), r(t∗; s∗0, p
∗

0, r
∗

0 , α1, β1, γ1)
)

at t∗ > tNobs . Other-
wise, we predict the dynamics at t∗ ∈ (0,T]. The
non-parameterized ODEs problem has been widely studied
in [2], [3], and [4].

54898 VOLUME 11, 2023

36

Q. Li et al.: Learning Parameterized ODEs From Data

FIGURE 1. Schematic diagram of the framework. Initial states s0, p0, r0 and parameters α, β, γ are fed into
the ANN model to predict the derivatives of s, p, and r with respect to time. These derivatives combined
with initial states s0, p0, r0 will be further fed into the ODE Solver to obtain the next state s1, p1, r1, and so
on. Finally we will get the trajectories of S = {s0, s1, . . . sT }, P = {p0, p1, . . . , pT } and R = {r0, r1, . . . , rT }.

Concerning the parameterized ODEs problem, the obser-
vation data

Zvariable
=

{(
s(ti; s

j
0, p

j
0, r

j
0, αk , βk , γk), p(ti; s

j
0, p

j
0, r

j
0,

× αk , βk , γk), r(ti; s
j
0, p

j
0, r

j
0, αk , βk , γk)

)∣∣∣∣i = 1,

× . . . ,Nobs, j = 1, . . . ,M , k = 1, . . . ,K } ,

(3)

is generated by different parameters (αk , βk , γk) at some
specified time ti on different initial states (sj0, p

j
0, r

j
0). Here,

we define K > 0 as the number of parameters, Nobs > 0 as
the number of observation time points, and M > 0 as the
number of initial states.

In the scenario of parameterized ODEs, if (s∗0, p
∗

0, r
∗

0) ∈

{(sj0, p
j
0, r

j
0)|j = 1, . . .M} and (α∗, β∗, γ∗) ∈ {(αk , βk , γk)|

k = 1, . . .K }, we predict
(
s(t∗; s∗0, p

∗

0, r
∗

0 , α∗, β∗, γ∗), p(t∗;
s∗0, p

∗

0, r
∗

0 , α∗, β∗, γ∗), r(t∗; s∗0, p
∗

0, r
∗

0 , α∗, β∗, γ∗)
)
at t∗ >

tNobs . Otherwise, we predict the dynamics at t∗ ∈ (0,T].
Parameterized ODEs find applications in various scenar-

ios. For instance, in [26], different parameters associated with
the ODEs represent distinct strategies for regulating cancer
tumor progression behavior. Given patient data describing the
evolution of a tumor, it would be advantageous to obtain the
functional form of the ODE system underlying this complex
system, both for the state variables and parameters. Subse-
quently, once we have constructed the functional form of the
ODE system using a neural network, we can directly compute
solutions of the ODE for new initial states and parameter sets.
Traffic flow problems represent another common application.
Changes in traffic flow over time at two specific locations x1,

x2 in a city can be modeled as




ds
dt

= f (s, p,w),
dp
dt

= g(s, p,w).
(4)

In this context, the number of cars at positions x1 and x2 are
represented by s and p, respectively, and the traffic flow
changes over time at these locations are modeled using func-
tions f and g. Here, t ∈ (0, 24] denotes a day for a cycle,
and the vector w represents external factors that influence
traffic conditions, such as weather, temperature, and so on.
We assume that the external factors w change daily, but the
expressions for f and g remain constant as the mechanism by
which each factor affects traffic flow remains the same. Once
we obtain the correct analytical formulas, we can accurately
predict the system.

This approach is effective for discrete chaotic maps,
using the Logistic map as an example. The Logistic map is
a straightforward, one-dimensional discrete-time dynamical
system characterized by the following equation:

xn+1 = γxn(1 − xn). (5)

Here, x is the state variable at time step n, and γ is a parameter.
We can employ the proposed method to learn the expression
on the right side of (5), which means that the input of the
S-Net consists of both γ and x.

B. ODE SOLVER
The ODE Solver, also known as a numerical integrator,
iterates a numerical scheme to obtain improved approxima-
tions of the solution. There exist works dedicated to design-
ing numerical integrators that produce more accurate solu-
tions [27], [28]. Typically, the ODE Solver is employed to

VOLUME 11, 2023 54899

37

Q. Li et al.: Learning Parameterized ODEs From Data

approximate the true solution of the form dz
dt = F(z, t)

based on the initial state z0, where F(z, t) is a vector func-
tion. Considering the parameters are variable, parameters
α, β, and γ can not be embedded in F in our problem.
So F can be expressed in the form of F(z, t, α, β, γ) =

(f (z, t, α, β, γ), g(z, t, α, β, γ), h(z, t, α, β, γ)) and z(t; z0,
α, β, γ) ={s(t; z0, α, β, γ), p(t; z0, α, β, γ), r(t; z0, α, β,γ)}.

In this paper, we begin with Euler integrator [29], a popular
choice due to its simplicity, as demonstrated in previous
works [1], [2], [13]. Euler method also facilitates a fair com-
parison with black-box methods. Given the state zn at time
point tn = t0 + n1t , the state at the next time point can be
computed using the following formula:

zn+1 = zn + 1tF(zn, tn, α, β, γ). (6)

The time step size, denoted by 1t , is a crucial parameter
in numerical methods for solving ODEs. Specifically, Euler
method can generate unstable solutions for stiff ODE sys-
tems unless a very small 1t is employed, as noted in [30].
To maintain solution stability in our experiments, we metic-
ulously select an appropriate value for 1t . In Appendix A,
we present a rigorous proof of the convergence of Euler
method, which is essential for understanding the accuracy
of numerical solutions. Our approach can also be adapted
to learn unknown functions using semi-implicit solvers with
appropriate modifications. In Appendix B, we provide a brief
explanation of how to make the necessary adjustments to fit
semi-implicit solvers.

IV. OUR APPROACH
A. PIPELINE
We use initial states Z0 =

{
zj0|j = 1, . . . ,M

}
and parameters

W = {(αk , βk , γk)|k = 1, . . . ,K } for the training process.
Following the work [1], we let the right side of ODEs be a
parametric function Fθ (z, α, β, γ), where z = (s, p, r) and θ

is the vector of parameters of the neural network. After train-

ing, trajectories Ẑ =

{
ẑθ (ti; z

j
0, αk , βk , γk)

}Nobs

i=1
are generated

based on initial state zj0 ∈ Z0, parameters (αk , βk , γk) ∈ W
and θ , i.e.,

ẑθ (ti; z
j
0, αk , βk , γk) = ẑθ (ti−1; z

j
0, αk , βk , γk)

+ 1tFθ

(
ẑθ (ti−1; z

j
0, αk , βk , γk),

× αk , βk , γk) , (7)

where i = 1, . . . ,Nobs.
Given a series of observationsZ =

{
z(ti; z

j
0, αk , βk , γk)|i ∈

{1, . . . ,Nobs}, j ∈ {1, . . . ,M}, k ∈ {1, . . . ,K }}, we esti-
mate the parameter θ by minimizing the error between the
observed trajectories Z and predicted trajectories Ẑ , denoted
as

Ldata =

Nobs∑

i=1

M∑

j=1

K∑

k=1

∥ẑθ (ti; z
j
0, αk , βk , γk)}

Algorithm 1 Algorithm for Solving the Parameter-
ized ODEs Problem
Input: Nobs: the number of observation time points;

Integrator: ODE Solver; Z0: initial state set; W :
parameter set; Fθ (s, p, r, α, β, γ): neural network;
θ0: initial parameters of neural network; Z : observed
trajectories of initial state Z0 and parameters W ;
nepochs: the number of epoch; 1t: time step; L: loss
function

Output: Ẑ : estimated trajectories of initial state Z0 and
parameters W ; Fθ∗ : the trained neural network

θ = θ0
for i = 1, . . . , nepochs do

Ẑ = []
for j = 1, . . . ,M do

Select one element (sj0, p
j
0, r

j
0) from Z0

for k = 1, . . . ,K do
Select one element (αk , βk , γk) from W
for i = 1, . . . ,Nobs do

(dsdt ,
dp
dt ,

dr
dt) =

Fθ (s
j
i−1, p

j
i−1, r

j
i−1, αk , βk , γk)

sji = integrator(sji−1, 1t,
ds
dt)

pji = integrator(pji−1, 1t,
dp
dt)

r ji = integrator(r ji−1, 1t,
dr
dt)

Add (sji, p
j
i, r

j
i) to Ẑ .

end
end

end
Loss = L(Ẑ ,Z)
Update parameters θ based on Loss

end

− z(ti; z
j
0, αk , βk , γk)}∥2. (8)

Inspired by [7], we also add the regularization term LS-Net to
the loss function to avoid overfitting and enhance the gener-
alization capability of the model. LS-Net is defined as (9),

LS-Net =

∑

p∈θLS-Net

ls1(p), (9)

where ls1(x) =





|x| −
s
2
, if |x| > s

1
2s
x2, otherwise

and s = 0.001.

Ldata and LS-Net constitute the loss function L, that is

L = Ldata + LS-Net. (10)

Figure 1 provides a detailed illustration of how to generate
a trajectory based on the initial state z0 = (s0, p0, r0) ∈

Z0 and parameters (α, β, γ) ∈ W . Herein, we denote
si = s(ti; z0, α, β, γ), pi = p(ti; z0, α, β, γ) and ri =

r(ti; z0, α, β, γ) to represent the states of s, p and r at time
ti. Algorithm 1 illustrates the pipeline for solving the param-
eterized ODE problem. We back-propagate the loss and use
it to update the parameter θ , which allows us to obtain the
best θ∗. This value represents the ODE system and enables
us to predict the dynamics based on new initial states and
parameters.

54900 VOLUME 11, 2023

38

Q. Li et al.: Learning Parameterized ODEs From Data

FIGURE 2. Schematic diagram of the O-Net. States of s, p, and r and
parameters of α, β,γ are the input vector. The input vector goes through a
four-layer network structure. Each layer has 512 units and a relu function.
There are three parts for ds

dt , dp
dt and dr

dt respectively after four layers. Each
part has two layers: the first layer has 512 units with the tanh activation
function, and the second layer outputs the derivatives of ds

dt , dp
dt and dr

dt .

Algorithm 2 O-Net
Input: s, p, r, α, β, γ ∈ R
Output: dsdt ,

dp
dt ,

dr
dt

y1 = relu(wT1 (s, p, r, α, β, γ)T + b1),
w1 ∈ R6×512, b1 ∈ R512×1;
y2 = relu(wT2 y1 + b2),
w2 ∈ R512×512, b2 ∈ R512×1

;

y3 = relu(wT3 y2 + b3),
w3 ∈ R512×512, b3 ∈ R512×1

;

y4 = relu(wT4 y3 + b4),
w4 ∈ R512×512, b4 ∈ R512×1

;

y51 = tanh(wT51y4 + b51),
w51 ∈ R512×512, b51 ∈ R512×1

;

y52 = tanh(wT52y4 + b52),
w52 ∈ R512×512, b52 ∈ R512×1

;

y53 = tanh(wT53y4 + b53),
w53 ∈ R512×512, b53 ∈ R512×1

;
ds
dt = wT61y51 + b61,w61 ∈ R512×1, b61 ∈ R;
dp
dt = wT62y52 + b62,w62 ∈ R512×1, b62 ∈ R;
dr
dt = wT63y53 + b63,w63 ∈ R512×1, b63 ∈ R;

B. ARTIFICIAL NEURAL NETWORKS:O-NET AND S-NET
In Algorithm 1, we can use any form of the neural net-
work, but we adopt the O-Net as our baseline, which is
commonly used for regression tasks without exploring the
underlying mechanism connecting inputs and outputs. How-
ever, to learn the combinations of different variables and
parameters, we design S-Net, inspired by [6], [7], [8], and
[9]. Unlike O-Net, S-Net first learns the analytic expression
of ODEs and then predicts the dynamics. Notably, S-Net has
no activation functions, and the most significant difference
between O-Net and S-Net is the mapping between units in
the layers.

1) O-NET
O-Net uses fully connected layers to learn the mapping from
low to high-dimensional space and uses activation functions
to learn the nonlinear relationship. Consider an O-Net with

four shared layers and two unique layers for ds
dt ,

dp
dt and

dr
dt , as illustrated in Figure 2. To better understand O-Net,
which is usually used for regression, we present a mathe-
matical description in Algorithm 2 showing how O-Net is
constructed.

O-Net is ineffective in solving variable parameters ODEs
problems as it fails to capture the role of parameters.
Although both parameters and variables are treated as input
features, they behave differently. Specifically, at each time
point, the input vector is (z, α, β, γ), where z changes over
time while (α, β, γ) do not. As a result, it is challenging for
α, β, γ to find appropriate weights in a fully connected neural
network, making it difficult for O-Net to effectively learn the
underlying dynamics of the system.

2) S-NET
S-Net possesses the ability to learn analytical expressions
that can generalize to new domains effectively. The primary
distinction between O-Net and S-Net lies in their layer-unit
mapping, where S-Net is designed to capture the interaction
between various variables and parameters efficiently. This is
accomplished through two types of transformations: identity
and linear combination maps, which enable S-Net to learn the
underlying dynamics of the system accurately.

As an example, consider a two-layer S-Net that aims to
learn the function f ∈ F in (1), as illustrated in Figure 3.
With the appropriate number of layers, S-Net can represent all
polynomials of the variables (s, p, r, α, β, γ). Herein, we only
use addition and multiplication operators in S-Net. If neces-
sary, we can add more operations to the S-Net to increase
the capacity of the network. To better understand S-Net,
we present an example in Algorithm 3 showing how S-Net
is constructed. Particularly, we illustrate the learning process
of αs− βr using S-Net in (11), (12), (13), (14) , and (15).

(δ1, ε1)T = w1 ×
[
s, p, r, α, β, γ

]T

=

[
1 0 0 0 0 0
0 0 0 1 0 0

]
×




s
p
r
α

β

γ




, (11)

f1 = δ1ε1 = αs, (12)

(δ2, ε2)T = w2 ×
[
s, p, r, α, β, γ, αs

]T

=

[
0 0 1 0 0 0 0
0 0 0 0 1 0 0

]
×




s
p
r
α

β

γ
αs




,

(13)

f2 = δ2ε2 = βr, (14)

w3 ×
[
s, p, r, α, β, γ, αs, βr

]T

VOLUME 11, 2023 54901

39

Q. Li et al.: Learning Parameterized ODEs From Data

FIGURE 3. Schematic diagram of the S-Net. The identity map directly
transfers s, p, r , α, β, γ from input layer to the first hidden layer. The
linear combination chooses two elements remarked by δ1 and ε1 from
the input vector using w1 and b1. The expressions f1 = δ1ε1and f1 =

δ1
ε1

correspond to the multiplication and division of two elements,
respectively. We only implement the multiplication operation in this
work. Apart from s, p, r , α, β and γ gotten by the identity map, f1 will also
be input to the second hidden layer. Similar to the first hidden layer,
we get the further combination f2 = δ2ε2 by w2 and b2. Finally, we obtain
the analytic expression of function f . It is necessary to enforce the
sparsity of S-Net since it helps reduce overfitting and enables more
robust predictions.

=
[
0 0 0 0 0 0 1 −1

]
×




s
p
r
α

β

γ
αs
βr




= αs− βr . (15)

Our analysis of αs − βr reveals that the sparsity of S-Net
is a critical factor. Therefore, we introduced a regularization
term into the loss function to promote model sparsity, as dis-
cussed in section IV-A.

V. NUMERICAL STUDIES: LOTKA-VOLTERRA EQUATION
The Lotka-Volterra model is frequently used to describe the
dynamics of ecological systems where two species inter-
act. [31] shows that cannibalism has both positive and nega-
tive effects on the stability of the Lotka-Volterra predator-prey
model. It depends on the dynamic behaviors of the original
system.

In this section, we consider Lotka-Volterra Equation (16),
where different ecological systems have different parameters
of α, β, δ and γ and initial states of x0 and y0,





dx
dt

= αx − βxy,
dy
dt

= −δy+ γxy.
(16)

The Euler integrator simulates ground truth trajectories in
both training and testing stages with the time step 1t = 0.1,
which empirically meets the stability requirements. The train-
ing and testing data consist of 150 and 33 trajectories, respec-
tively, each of which starts from random initial state (x0, y0)
in the interval [0.6, 1.4] and parameters of (α, β, δ, γ) in the
interval ([1.0, 2.0], [0.5, 1.5], [2.5, 3.5], [0.5, 1.5]) respec-
tively. There is no overlap between the training and test data.

Algorithm 3 S-Net
Input: s, p, r, α, β, γ ∈ R
Output: F

(δ1, ε1)T = w1(s, p, r, α, β, γ)T + b1,
w1 ∈ R2×6, b1 ∈ R2×1;
f1 = δ1ε1;
(δ2, ε2)T = w2(s, p, r, α, β, γ, f1)T + b2,
w2 ∈ R2×7, b2 ∈ R2×1;
f2 = δ2ε2;
F = w3(s, p, r, α, β, γ, f1, f2)T + b3,
w3 ∈ R1×8, b3 ∈ R;

The performance of O-Net and S-Net could get improved
with a reasonable increase in the number of time points, i.e.,
Nobs, in the training data. We set four group experiments on
training data with Nobs = 10, 15, 20, and 25. If the number
of observation points is too large, it will also hurt the effec-
tiveness of the model. Once there are too many observations,
the accumulated error will be too large for one trajectory,
which is not conducive to model training. We train S-Net
with the L-BFGS optimizer [32] and use maximum iterations
of 30000, a batch size of 150. We train O-Net with ADAM
optimizer [33] for 5000 epochs using a batch size of 50, and a
learning rate of 5e-3. We predict trajectories based on various
initial states and parameters on t ∈ (0, 10].

A. RESULTS AND DISCUSSIONS
Our study shows that S-Net is able to effectively recover
the ODEs for the unknown variables of x and y, as well as
the parameters α, β, δ, and γ. We use the notation MNobs

to represent the model trained on training data with Nobs
time points. The results, summarized in Table 1, demonstrate
that we are able to accurately recover the terms of (16).
We observe that increasing the number of time points within a
specific range results in higher model accuracy. Specifically,
we find that when MNobs = 25, the coefficients of αx, βxy,
δy, and γxy match those of the true equation. Additionally,
we find that the terms not included in (16) have relatively
small coefficients.

To evaluate the ability of the models to generate
correct trajectories for new initial states and parame-
ters, we feed 33 testing trajectories into the well-trained
models and obtained predicted trajectories. Figure 4
shows the results of S-Net and O-Net with Nobs =

10, 15, 20, 25 for a specific test example (x0, y0, α, β, δ, γ) =

(0.71468, 1.01860, 1.10023, 1.17939, 2.78173, 1.18328).
We find that S-Net can accurately predict the trajectory in
the period of t ∈ [0, 801t] = (0, 8], but its accuracy
decreases when t ∈ (8, 10]. However, we observe that
increasing the number of time points used in the training
process improves the prediction of the S-Net of long-time
dynamics. Specifically, S-Net trained onMNobs = 25 predicts
with higher accuracy for t ∈ (8, 10] than S-Net trained on
MNobs = 10. On the other hand, O-Net performs poorly in all
four cases, even though it performs well in the early stages

54902 VOLUME 11, 2023

40

Q. Li et al.: Learning Parameterized ODEs From Data

FIGURE 4. Lotka-Volterra: Testing results on (x0, y0, α, β, δ,γ) = (0.71468, 1.01860, 1.10023, 1.17939, 2.78173, 1.18328) by S-Net and
O-Net with time points 10, 15, 20 and 25 for the x-component (left) and y-component (right). In each plot, the horizontal axis indicates
the time of prediction in the interval (0, 1001t] = (0, 10], and the vertical axis shows the values. The solid red line is the ground truth.
The blue and orange dashed lines show the O-Net and S-Net results, respectively.

FIGURE 5. Lotka-Volterra: Prediction errors of the O-Net(orange) and S-Net(green) with different training
time points 20 and 25. In each plot, the horizontal axis indicates the time of prediction in the interval
(0, 1001t] = (0, 10], and the vertical axis shows the errors. The banded curves indicate the 25% − 100%
percentile of the relative errors among 33 test samples. The dark regions indicate the 25% − 75%
percentile of the relative error, which shows that S-Net performs significantly better than O-Net. The
upper row is for variable x and the bottom low is for variable y .

for a short period, its predictions often deviate significantly
from the actual trajectory. In some cases, O-Net even predicts
trends that are opposite to the actual situation. Therefore,
we conclude that S-Net has a stronger generalization ability
than O-Net.

We define the error between observations Z and predic-

tions Ẑ as ϵ =

√
||Z − Ẑ ||2. The error plots are shown in

Figure 5 for two different time points, 20 and 25. In both
cases, the error of O-Net is significantly larger than that of
S-Net. For example, in Figure 5(c), we can observe that the
error of O-Net sharply increases over time and soon reaches
500. In contrast, the error of S-Net increases at a relatively
slower rate and reaches a maximum of approximately 100.
Specifically, Table 2 shows the error of S-Net and O-Net for
different models. The error of O-Net can be five or six times

VOLUME 11, 2023 54903

41

Q. Li et al.: Learning Parameterized ODEs From Data

TABLE 1. Lotka-Volterra identification with different time points.

TABLE 2. MSE of S-Net and O-Net for equations of different models.

that of S-Net when MNobs is 10 or 25, respectively. Clearly,
S-Net performs significantly better than O-Net, suggesting
that proper discretization is crucial when the ODE structure
is unknown. Appendix C presents the findings of three other
cases using different models obtained byMNobs = 10, 15, 20,
and 25, respectively.

VI. NUMERICAL STUDIES: LORENZ EQUATION
In this section, we consider Lorenz Equations (17) where
different ecological systems have different parameters σ , ρ

and β and initial states x0, y0 and z0.




dx
dt

= σ (y− x),
dy
dt

= x(ρ − z) − y,
dz
dt

= xy− βz.

(17)

Both the training and testing data consist of 150 and 60 tra-
jectories, respectively, simulated by the Euler integrator with
a time step of 1t = 0.01. The initial states and parameters
are randomly selected from the intervals [0.8, 1.2], [0, 0.2],
[0, 0.3], [5, 15], [23, 33], and [2, 3], respectively, without
any overlap between the two sets. We conduct four group
experiments on the training data with different numbers of
time points: 4, 6, 10, and 20. For training S-Net, we use the

TABLE 3. Lorenz identification with different models.

L-BFGS optimizer with a maximum of 50,000 iterations and
a batch size of 150. For training O-Net, we use the ADAM
optimizer with a learning rate of 5e-3, a batch size of 100,
and 5,000 epochs. We predict trajectories for various initial
states and parameters on the time interval t ∈ (0, 1].

A. RESULTS AND DISCUSSIONS
Table 3 presents the capability of the trained S-Net to identify
the underlying ODE model, showing the top five terms of
coefficient weights recovered by S-Net with certain accuracy.
Notably, when MNobs = 20, the coefficients of σy, σx, and
xρ match those of the true equation with high precision.
The coefficients of the remaining four terms, namely xz, y,
xy, and βz, deviate only slightly from the true values, with
a maximum difference of 0.01. These results demonstrate
the effectiveness of S-Net in recovering the underlying ODE
model.

We evaluate the predictive performance of S-Net and
O-Net on (17) using 60 testing trajectories and obtain
corresponding predictions from the trained models. Fig-
ure 6 shows the results of S-Net and O-Net with Nobs =

4, 6, 10, 20 for a specific test example (x0, y0, z0, σ, ρ, β) =

(0.82841, 0.14785, 0.17099, 12.39551, 32.03720, 2.67205).
We predict the trajectories of x, y and z on t ∈ (0, 1001t] =

(0, 1] using the learned models. When MNobs = 4, both
O-Net and S-Net predictions are very poor. As the number

54904 VOLUME 11, 2023

42

Q. Li et al.: Learning Parameterized ODEs From Data

FIGURE 6. Lorenz: Testing results on (x0, y0, z0, σ, ρ, β) = (0.82841, 0.14785, 0.17099, 12.39551, 32.03720, 2.67205) by S-Net and O-Net with time
points 4, 6, 10 and 20 for the x-component (left), y-component (middle) and z-component (right). In each plot, the horizontal axis indicates the time
of prediction in the interval (0, 1001t] = (0, 1], and the vertical axis shows the values. The solid red line is the ground truth. The blue and orange
dashed lines show the O-Net and S-Net results, respectively.

FIGURE 7. Lorenz: Prediction errors of the O-Net(orange) and S-Net(green) with different training time points 4, 6, 10, and 20. In each
plot, the horizontal axis indicates the time of prediction in the interval (0, 1001t] = (0, 1], and the vertical axis shows the errors. The
banded curves indicate the 25% − 100% percentile of the relative errors among 60 test samples and the dark regions indicate the
25% − 75% percentile of the relative error.

of time points increased, the performance of S-Net improve
significantly, but the performance of O-Net remain almost
unchanged, as shown in Figures 6(b), 6(c), and 6(d). Even
in the initial stages of each subfigure, O-Net was unable to
perform well.

The error plots for four different time points (4, 6, 10, and
20) are presented in Figure 7. In each case, O-Net exhibits

significantly larger errors than S-Net. For instance, consider
Figure 7(l). The error of O-Net increases sharply with time
and soon reaches 1400, while the error of S-Net increases
relatively slowly with time and reaches a maximum of about
100. Table 2 shows the errors of S-Net and O-Net of various
time points. The error of O-Net can be up to a thousand
times larger than that of S-Net. Clearly, S-Net outperforms

VOLUME 11, 2023 54905

43

Q. Li et al.: Learning Parameterized ODEs From Data

FIGURE 8. Testing results on (x0, y0, α, β, δ,γ) ∈ {(1.03591, 0.71055, 1.64399, 0.73789, 2.63207, 0.58110), (1.34048, 1.08388, 1.29828, 1.44437,

3.24866, 0.58960), (1.39070, 1.15958, 1.20000, 1.01820, 3.32212, 0.93040)} by S-Net and O-Net with time points 10, 15, 20 and 25 for the x-component
(left) and y-component (right).

O-Net significantly. We provide the findings of two other
cases using different models obtained byNobs = 4, 6, 10, and
20, respectively, in Appendix D.

VII. CONCLUSION
Exploring parameterized ODEs is a broad area in computa-
tional science and engineering. Parameterized ODEs prob-
lems are particularly challenging to solve because the solu-
tions to these problems can vary with the parameters used.
Black-box methods offer some insights, but their general-
ization performance is often subpar due to a limited under-
standing of underlying mechanisms. To address this issue,
we propose a novel framework that combines the S-Net
with an ODE Solver to learn parameterized ODEs. Unlike
the black-box O-Net method that simply fits the observed
data, S-Net learns the expressions of the equations based on
the observed data. We use the Euler method as the ODE
Solver due to its simplicity. Experiments show the S-Net
framework surpasses the O-Net method in learning parame-
terized ODEs, evidenced by superior efficiency and accuracy
in tests involving the Lotka-Volterra and Lorenz Equations.

The proposed framework marks a significant advancement in
studying parameterized ODEs in computational science and
engineering.

However, there are several limitations to address in future
research. Firstly, the current version of S-Net only supports
basic operators such as addition, subtraction, and multi-
plication, which limits its application to complex systems.
To broaden its applicability, it is necessary to incorporate
more advanced operators such as division, trigonometric
functions, powers, and fractional calculation operators. Sec-
ond, enhancing simulation accuracy requires implementing
other ODE Solvers. Thirdly, the present approach is not
applicable to arbitrary order systems, which present a more
complex challenge. The combinatorial relationship between
variables and parameters must be known, and the observa-
tions are supplied based on the information on variables.
An additional step may be required to predict the number of
variables or parameters based on the current method. Finally,
while S-Net has proven resilient against noisy data in [9],
testing with real data is necessary to establish its applicability
to diverse domains.

54906 VOLUME 11, 2023

44

Q. Li et al.: Learning Parameterized ODEs From Data

FIGURE 9. Testing results on (x0, y0, z0, σ, ρ, β) ∈ {(0.84731, 0.11332, 0.24186, 5.24679, 29.69917, 2.26212), (0.92617, 0.04462, 0.21900,

14.47371, 27.97391, 2.57754)} by S-Net and O-Net with time points 4, 6, 10 and 20 for the x-component (left), y-component (middle) and
z-component (right).

APPENDIX A
CONVERGENCE OF THE EULER METHOD
Our subsequent analysis establishes the convergence of the
Euler method when solving the initial-value problem of a
first-order differential equation, as stated in (18)





dy
dx

= f (x, y), x > x0,

y(x0) = y0.
(18)

Here, the unknown function is denoted by y(x), the known
function by f (x, y), and the initial data by y0.

Theorem 1: Assume the following one-step method cor-
responding to the initial value problem (18) be the p-order
accuracy

yn+1 = yn + hφ(xn, yn, h)

and the function φ satisfies the Lipschitz condition for y, i.e.,
∃L > 0,

|φ(x, y1, h) − φ(x, y2, h)| ≤ L|y1 − y2|, ∀y1, y2

and y0 = y(x0), then the one-step method is convergent and
y(xn) − yn = O(hp).

VOLUME 11, 2023 54907

45

Q. Li et al.: Learning Parameterized ODEs From Data

Proof: Let en = y(xn) − yn, then

y(xn+1) = y(xn) + hφ(xn, y(xn), h) + Tn+1,

i.e.,

en+1 = en + h[φ(xn, y(xn), h) − φ(xn, yn, h)] + Tn+1.

Since the one-step method is the p-order accuracy, then
∃h0, 0 < h ≤ h0, satisfy |Tn+1| ≤ Chp+1 where C is a
constant. That is

|en+1| ≤ |en| + hL|en| + Chp+1
= α|en| + β,

where α = 1 + hL, β = Chp+1. So we can get

|en| ≤ α|en−1| + β ≤ α2
|en−2| + αβ + β

≤ α3
|en−3| + β(1 + α + α2) ≤ . . . ≤ . (19)

From the known conditions, we get

|en| ≤ exp (L(xn − x0))|e0| + ChpL−1(exp (L(xn − x0)) − 1)

= ChpL−1(exp (L(xn − x0)) − 1). (20)

From (20), we know when h → 0, then |en| → 0.

APPENDIX B
THE SEMI-IMPLICIT SOLVERS
Our approach can be adapted to learn unknown functions
utilizing semi-implicit solvers with suitable modifications.
For instance, consider the semi-implicit Euler method, which
can be employed for a pair of differential equations with the
form

dx
dt

= f (t, y),

dy
dt

= g(t, x), (21)

where f and g are unknown functions that we want to learn.
The semi-implicit Euler method produces an approximateÂ
discreteÂ solution by iterating

yn+1 = yn + g(tn, xn)1t,

xn+1 = xn + f (tn, yn+1)1t, (22)

where 1t is the time step. The difference with the standard
Euler method is that the semi-implicit Euler method uses yn+1
in the equation for xn+1, while the standard Euler method uses
yn. Given that the expressions for f and g are represented
by S-Nets, S-Netf and S-Netg, it is necessary to provide
them with known information. In the semi-implicit Euler
method, we use a positive time step to compute xn+1 from
yn+1 generated by S-Netg based on starting points x0, y0, that
is

xn+1 = xn + S-Netf (tn,S-Netg(tn, xn)1t). (23)

In this context, y is not utilized as an observable variable;
instead, it serves as a component to generate the observable
variable x. With this approach, as the expression for gmust be
learned through the x variable, we require additional observa-
tions on the x variable and no longer need observations on the
y variable.

APPENDIX C
LOTKA-VOLTERRA
In Figure 8, we present the outcomes of three distinct models
obtained by utilizing Nobs = 10, 15, 20, and 25, respec-
tively. The rows indicate the prediction results of the dif-
ferent models for three test samples. The first two columns
in each row demonstrate the evolution of the two vari-
ables x and y for the first test sample (x0, y0, α, β, δ, γ) =

(1.03591, 0.71055, 1.64399, 0.73789, 2.63207, 0.58110).
The center two columns illustrate the changes in the variables
x and y over time for the second test sample (x0, y0, α, β, δ, γ)
= (1.34048, 1.08388, 1.29828, 1.44437, 3.24866, 0.58960).
Finally, the last two columns show how the variables x and y
varied over time for the third test sample (x0, y0, α, β, δ, γ) =

(1.39070, 1.15958, 1.20000, 1.01820, 3.32212, 0.93040).
Each subplot displays the time of prediction on the horizontal
axis within the interval (0, 1001t] = (0, 10], while the ver-
tical axis indicates the corresponding values. The solid red
line represents the ground truth, while the orange and blue
dashed lines show the O-Net and S-Net prediction results,
respectively. Notably, within a specific range, the prediction
accuracy of the model increases with a higher number of
observation points used to train the model.

APPENDIX D
LORENZ
In Figure 9, we present the outcomes of two examples
utilizing distinct models derived from Nobs = 4, 6, 10, and
20, respectively. Each row represents the prediction results of
different models on two test samples. The first three columns
of each row demonstrate the progression of the three variables
x, y, and z for the first test sample (x0, y0, z0, σ, ρ, β) =

(0.84731, 0.11332, 0.24186, 5.24679, 29.69917, 2.26212),
while the last three columns depict how the three vari-
ables x, y, and z evolve over time for the third test
sample (x0, y0, z0, σ, ρ, β) = (0.92617, 0.04462, 0.21900,
14.47371, 27.97391, 2.57754). Each plot shows the predic-
tion time in the interval (0, 1001t] = (0, 1] on the horizontal
axis and the corresponding values on the vertical axis. The
solid red line in each subplot represents the actual ground
truth, while the orange and blue dashed lines show the
O-Net and S-Net prediction results, respectively. Notably, the
prediction accuracy of the model improves with an increase
in the number of observation points used to train the model.

REFERENCES
[1] R. T. Q. Chen, Y. Rubanova, J. Bettencourt, and D. K. Duvenaud, ‘‘Neural

ordinary differential equations,’’ in Proc. Adv. Neural Inf. Process. Syst.,
vol. 31, Dec. 2018, pp. 6572–6583.

[2] Y. Rubanova, R. T. Chen, and D. K. Duvenaud, ‘‘Latent ordinary differ-
ential equations for irregularly-sampled time series,’’ in Proc. Adv. Neural
Inf. Process. Syst., vol. 32, Dec. 2019, pp. 5321–5331.

[3] C. Herrera, F. Krach, and J. Teichmann, ‘‘Neural jump ordinary differ-
ential equations: Consistent continuous-time prediction and filtering,’’ in
Proc. Int. Conf. Learn. Represent. (ICLR), Austria, May 2021, pp. 1–44.
[Online]. Available: https://openreview.net/forum?id=JFKR3WqwyXR

[4] Z. Chen, J. Zhang, M. Arjovsky, and L. Bottou, ‘‘Symplectic recur-
rent neural networks,’’ in Proc. 8th Int. Conf. Learn. Represent.
(ICLR), Addis Ababa, Ethiopia, Apr. 2020, pp. 1–23. [Online]. Available:
https://openreview.net/forum?id=BkgYPREtPr

54908 VOLUME 11, 2023

46

Q. Li et al.: Learning Parameterized ODEs From Data

[5] M. Raissi, P. Perdikaris, and G. E. Karniadakis, ‘‘Physics-informed neural
networks: A deep learning framework for solving forward and inverse
problems involving nonlinear partial differential equations,’’ J. Comput.
Phys., vol. 378, pp. 686–707, Feb. 2019.

[6] Z. Long, Y. Lu, X. Ma, and B. Dong, ‘‘PDE-Net: Learning PDEs from
data,’’ in Proc. Mach. Learn. Res., Jul. 2018, pp. 3208–3216.

[7] Z. Long, Y. Lu, and B. Dong, ‘‘PDE-Net 2.0: Learning PDEs from data
with a numeric-symbolic hybrid deep network,’’ J. Comput. Phys., vol. 399,
Dec. 2019, Art. no. 108925.

[8] S. Sahoo, C. Lampert, and G. Martius, ‘‘Learning equations for extrapola-
tion and control,’’ in Int. Conf. Mach. Learn., Jul. 2018, pp. 4442–4450.

[9] Q. Li and S. Evje, ‘‘Learning the nonlinear flux function of a hidden scalar
conservation law from data,’’ Netw. Heterogeneous Media, vol. 18, no. 1,
pp. 48–79, 2022.

[10] R. Maulik, K. Fukami, N. Ramachandra, K. Fukagata, and K. Taira,
‘‘Probabilistic neural networks for fluid flow surrogate modeling and data
recovery,’’ Phys. Rev. Fluids, vol. 5, no. 10, Oct. 2020, Art. no. 104401.

[11] K. Lee and E. J. Parish, ‘‘Parameterized neural ordinary differential equa-
tions: Applications to computational physics problems,’’ Proc. Roy. Soc. A,
Math., Phys. Eng. Sci., vol. 477, no. 2253, Sep. 2021, Art. no. 20210162.

[12] Y. S. Shimizu and E. J. Parish, ‘‘Windowed space–time least-squares
Petrov–Galerkin model order reduction for nonlinear dynamical systems,’’
Comput. Methods Appl. Mech. Eng., vol. 386, Dec. 2021, Art. no. 114050.

[13] K. Lee and N. Trask, ‘‘Parameter-varying neural ordinary differential
equations with partition-of-unity networks,’’ 2022, arXiv:2210.00368.

[14] H. Owhadi, ‘‘Bayesian numerical homogenization,’’ Multiscale Model.
Simul., vol. 13, no. 3, pp. 812–828, Jan. 2015.

[15] M. Raissi, P. Perdikaris, and G. E. Karniadakis, ‘‘Inferring solutions of
differential equations using noisy multi-fidelity data,’’ J. Comput. Phys.,
vol. 335, pp. 736–746, Apr. 2017.

[16] M. Raissi, P. Perdikaris, and G. E. Karniadakis, ‘‘Machine learning of
linear differential equations using Gaussian processes,’’ J. Comput. Phys.,
vol. 348, pp. 683–693, Nov. 2017.

[17] S. L. Brunton, J. L. Proctor, and J. N. Kutz, ‘‘Discovering governing equa-
tions from data by sparse identification of nonlinear dynamical systems,’’
Proc. Nat. Acad. Sci. USA, vol. 113, no. 15, pp. 3932–3937, Mar. 2016.

[18] H. Schaeffer, ‘‘Learning partial differential equations via data discovery
and sparse optimization,’’ Proc. Roy. Soc. A, Math., Phys. Eng. Sci.,
vol. 473, no. 2197, Jan. 2017, Art. no. 20160446.

[19] S. H. Rudy, S. L. Brunton, J. L. Proctor, and J. N. Kutz, ‘‘Data-driven dis-
covery of partial differential equations,’’ Sci. Adv., vol. 3, no. 4, Apr. 2017,
Art. no. e1602614.

[20] Z. Wu and R. Zhang, ‘‘Learning physics by data for the motion of a sphere
falling in a non-Newtonian fluid,’’Commun. Nonlinear Sci. Numer. Simul.,
vol. 67, pp. 577–593, Feb. 2019.

[21] V. Iakovlev,M. Heinonen, and H. Lähdesmäki, ‘‘Learning continuous-time
PDEs from sparse data with graph neural networks,’’ in Proc. Int. Conf.
Learn. Represent. (ICLR), Austria, May 2021, pp. 1–15.

[22] T. Pfaff, M. Fortunato, A. Sanchez-Gonzalez, and P. W. Battaglia, ‘‘Learn-
ingmesh-based simulationwith graph networks,’’ inProc. Int. Conf. Learn.
Represent. (ICLR), Austria, May 2021, pp. 1–18.

[23] B. Chang, M. Chen, E. Haber, and E. H. Chi, ‘‘AntisymmetricRNN: A
dynamical system view on recurrent neural networks,’’ in Proc. Int. Conf.
Learn. Represent. (ICLR), New Orleans, LA, USA, May 2019, pp. 1–15.

[24] E. D. Brouwer, J. Simm, A. Arany, and Y. Moreau, ‘‘GRU-ODE-Bayes:
Continuous modeling of sporadically-observed time series,’’ in Proc.
Adv. Neural Inf. Process. Syst., Vancouver, BC, Canada, Dec. 2019,
pp. 7377–7388.

[25] A. Yazdani, L. Lu, M. Raissi, and G. E. Karniadakis, ‘‘Systems biology
informed deep learning for inferring parameters and hidden dynamics,’’
PLOS Comput. Biol., vol. 16, no. 11, Nov. 2020, Art. no. e1007575.

[26] C. K. Buhler, R. S. Terry, K. G. Link, and F. R. Adler, ‘‘Do mecha-
nisms matter? Comparing cancer treatment strategies across mathemati-
cal models and outcome objectives,’’ Math. Biosci. Eng., vol. 18, no. 5,
pp. 6305–6327, 2021.

[27] K. Ohta and H. Ishida, ‘‘Comparison among several numerical integration
methods for Kramers–Kronig transformation,’’ Appl. Spectrosc., vol. 42,
no. 6, pp. 952–957, Aug. 1988.

[28] G. R. W. Quispel and D. I. McLaren, ‘‘A new class of energy-preserving
numerical integration methods,’’ J. Phys. A, Math. Theor., vol. 41, no. 4,
Feb. 2008, Art. no. 045206.

[29] K. Atkinson, An Introduction to Numerical Analysis. Hoboken, NJ, USA:
Wiley, 2008.

[30] J. D. Lambert, Numerical Methods for Ordinary Differential Systems,
vol. 146. New York, NY, USA: Wiley, 1991.

[31] H. Deng, F. Chen, Z. Zhu, and Z. Li, ‘‘Dynamic behaviors of
Lotka–Volterra predator–prey model incorporating predator cannibalism,’’
Adv. Difference Equ., vol. 2019, no. 1, pp. 1–17, Dec. 2019.

[32] D. C. Liu and J. Nocedal, ‘‘On the limited memory BFGS method for
large scale optimization,’’Math. Program., vol. 45, nos. 1–3, pp. 503–528,
Aug. 1989.

[33] D. P. Kingma and J. Ba, ‘‘Adam: A method for stochastic optimization,’’
2014, arXiv:1412.6980.

QING LI received the B.S. degree in applied math-
ematics from Qingdao University, China, in 2015,
with a focus on solid foundation in mathemat-
ical theory and its practical applications, and
the M.S. degree in mathematics from the South
China University of Technology, China, with a
focus on advanced mathematical concepts and
numerical methods. She is currently pursuing the
Ph.D. degree with the Department of Energy and
Petroleum Technology, University of Stavanger,

Norway, with a focus on developing novel machine learning algorithms that
leverage her expertise in differential equations, both ordinary and partial,
and numerical calculation. Her research interests include the intersection of
these fields, with a particular emphasis on developing innovative solutions
to complex problems in energy and petroleum technology.

STEINAR EVJE received the M.S. and Ph.D.
degrees in applied mathematics from the Univer-
sity of Bergen, in 1992 and 1998, respectively.
He is currently a Professor in applied and com-
putational mathematics with the Department of
Energy and Petroleum Engineering, University of
Stavanger. With more than two decades of experi-
ence in the field, he has developed a keen interest
in the development of mathematical models that
can be used to gain insight into fundamental mech-

anisms for various multiphase transport and reaction processes within fluid
mechanics and medical engineering. In addition to his work on mathemat-
ical modeling, he has also focused on leveraging the power of data-driven
modeling, including machine learning methods to solve problems related to
partial differential equations. He has published numerous papers and articles
that have helped advance the state of the art in both machine learning and
mathematical modeling.

JIAHUI GENG (Graduate StudentMember, IEEE)
received the B.S. degree from the School of
Automation, Southeast University, China, in 2015,
and the M.S. degree from the Department of
Computer Science, RWTH Aachen University,
Germany, in 2018. He is currently pursuing the
Ph.D. degree with the Department of Computer
Science and Computer Engineering, University of
Stavanger, Norway. His research interests include
robustness, privacy, and security, as well as the

development of blockchain systems and the application of dynamic systems
inmachine learning.With a passion for exploring the cutting edge of his field,
he is committed to making meaningful contributions to the development of
robust, secure, and privacy-preserving machine learning systems that can
be used to drive innovation and progress in a wide range of industries and
applications.

VOLUME 11, 2023 54909

47

48

Paper II:
Solving Nonlinear Conservation
Laws of Partial Differential
Equations Using Graph Neural
Networks

Qing Li, Jiahui Geng, Steinar Evje, Chunming Rong

Proceedings of the Northern Lights Deep Learning Workshop 4 (2023)
doi = https://doi.org/10.7557/18.6808

49

https://doi.org/10.7557/18.6808

Solving Nonlinear Conservation Laws of Partial Differential

Equations Using Graph Neural Networks

Qing Li §∗1, Jiahui Geng §2, Steinar Evje1, and Chunming Rong2

1University of Stavanger, Department of Energy and Petroleum, Group of
Computational Engineering, Stavanger, Norway

2University of Stavanger, Department of Electrical Engineering and Computer Science,
Stavanger, Norway

Abstract

Nonlinear Conservation Laws of Partial Differen-
tial Equations (PDEs) are widely used in differ-
ent domains. Solving these types of equations is
a significant and challenging task. Graph Neural
Networks (GNNs) have recently been established as
fast and accurate alternatives for principled solvers
when applied to standard equations with regular
solutions. There have been few investigations on
GNNs implemented for complex PDEs with non-
linear conservation laws. Herein, we explore GNNs
to solve the following problem

ut + f(u, β)x = 0 (∗)

where f(u, β) is the nonlinear flux function of the
scalar conservation law, u is the main variable, and
β is the physical parameter. The main challenge of
nonlinear conservation laws is that solutions typi-
cally create shocks. That is, one or several jumps
in the form (uL, uR) with uL ̸= uR moving in space
and probably changing over time such that infor-
mation about f(u) in the interval associated with
this jump is not present in the observation data.
We demonstrate that GNNs could achieve accurate
estimates of PDEs solutions based on new initial
conditions and physical parameters within a spe-
cific parameter range.

∗Corresponding Author: qing.li@uis.no
§The authors contributed equally to this work.

1 Introduction

Machine learning methods have been widely used
to solve PDEs in science and engineering, for exam-
ple, aerodynamics [16, 3], electromagnetism [13],
geophysics [17] and weather prediction [1], etc.
According to [18, 7, 14, 10], GNNs have re-
cently been introduced and made much progress
in this area, offering faster runtimes than princi-
pled solvers. Compared to grid-based convolutional
neural networks(CNNs) [20, 21], GNNs demon-
strated better adaptivity in the simulation scenar-
ios [22, 2, 5]. However, most currently published
papers use GNNs to resolve PDEs with regular so-
lutions, such as the Wave equation, the Poisson’s
equation, and the Navier-Stokes equations. These
tests have demonstrated that GNNs can resolve
these partial differential equations with high effi-
ciency and precision. How would GNNs perform if
we try to use it in the context of nonlinear conser-
vation laws?

In this paper, we implement GNN variants to
solve PDEs with nonlinear flux function f(u, β)
that is involved in general scalar nonlinear con-
servation laws. We restrict to the one-dimensional
case given by

ut + f(u, β)x = 0 (1)

where u = u(x, t) is the main variable and β is
a parameter of a physical phenomenon. We train
GNNs based on observation data u(xj , ti, βk) on a
spatial grid xj , j = 1, . . . , Nx at specified times
ti, i = 1, . . . , Nobs with some specific parameters
βk, k = 1, . . . , Nβ . Using learned GNNs, we pre-

https://doi.org/10.7557/18.6808

© The author(s). Licensee Septentrio Academic Publishing, Tromsø, Norway. This is an open access article distributed
under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/4.0/).

1

51

dict the solutions of Eq. (1) given new values of
parameter β and initial state u0.

Figure 1: Left: Example of nonlinear flux func-

tion f(u) = u2

u2+(1−u)2 (blue curve). Upper concave

envelope (brown curve) and lower convex envelope
(green curve) are also included. Right: The so-
lution of Eq. (1) at time T = 0.5 is shown (red
solid curve) together with its initial data u0(x) (red
dashed line).

Compared to equations with regular solutions,
Eq. (1) has some characteristics that make it more
challenging to solve. Typically, Eq. (1) generates
shock wave solutions u(x, t) in finite time, i.e., so-
lutions that contain one or more discontinuities ex-
pressed as a jump (uL, uR) with uL ̸= uR, though
the initial value u0(x) is smooth [8, 6]. In par-
ticular, the specific form of f(u) in the interval
[min(uL, uR),max(uL, uR)] is not used in the con-
struction of the entropy solution, only the slope

s = f(uL)−f(uR)
uL−uR

. As jumps arise and disappear
in the solution over the period for which observa-
tion data is collected, the data may lack informa-
tion about f(u). This situation is illustrated in
Fig. 1. In the left panel, we plot the flux function
f(u) = u2/(u2 + (1 − u)2). In the right panel, the
entropy solution is shown after a time T = 0.5. At
the time t = 0, the initial data u0(x) involves one
jump at x = 0 and another at x = 1. The initial
jump at x = 0 is instantly transformed into a solu-
tion that is a combination of a continuous wave so-
lution (rarefaction wave) and a discontinuous wave
(uL, uR) ≈ (0.3, 1.0), as dictated by the lower con-
vex envelope shown in the left panel (green curve)
[8]. Similarly, the initial jump at x = 1 is trans-
formed into a solution that is a combination of a
continuous wave solution (rarefaction wave) and a
discontinuous wave (uL, uR) ≈ (0.7, 0), by the up-
per concave envelope illustrated in the left panel

(brown curve) [8]. From this example, we see that
we have no observation data that directly can re-
veal the shape of f(u) in the interval u ∈ [0.3, 0.7]
(approximately).

2 Related Works

Several machine learning approaches are proposed
to solve the PDEs. Raissi et al. [15] introduced
the physics informed neural networks (PINNs) for
solving solutions of PDEs and learning the param-
eters in PDEs. However, the neural network meth-
ods struggle to learn the nonlinear hyperbolic PDE
that governs two-phase transport in porous me-
dia [4]. They experimentally indicated that this
shortcoming of PINNs for hyperbolic PDEs is not
due to the specific architecture or to the choice of
the hyperparameters, but rather to the lack of reg-
ularity in the solution. Long et al. [11, 12] pro-
posed a PDE-Net that combines numerical approx-
imations of differential operators and a symbolic
multi-layer neural network. They employed convo-
lutions to approximate differential operators and
deep networks to approximate the nonlinear re-
sponse. However, in our case, f(u)x can not be
written by f ′(u)ux as f(u) is not in general a dif-
ferentiable function in our problem. Recently, more
and more GNNs methods are being used to solve
PDE problems. Gao et al. presented a novel dis-
crete PINN framework based on Graph Convolu-
tional Networks (GCNs) and the variational struc-
ture of PDEs in [5]. This framework could solve for-
ward and inverse PDEs in a unified manner. Zhao
et al. used GNNs in conjunction with autodecoder
style priors to tackle PDE-constrained inverse prob-
lems [22]. In [2], authors combined GNNs with
some classical numerical methods, such as finite
differences, finite volumes, and WENO schemes to
solve PDEs problems. They experimentally proved
that this method has fast, stable, and accurate per-
formance across different domain topologies on var-
ious fluid-related flow problems. However, these
current works mainly use GNNs on some typical
equations with regular solutions. Several complex
equations with discontinuous solutions still need to
be researched. In a recent work [9], we intro-
duced a framework coined ConsLaw-Net that com-
bines a symbolic multi-layer neural network and an
entropy-satisfying discrete scheme to learn the non-

2

52

Figure 2: The pipeline of the approach. For
each node ci, at time point tk, the last K solu-
tions (u(xi, tk−K+1), ..., u(xi, tk−1), u(xi, tk)), posi-
tion xi, current time tk, and equation parameters
βPDE are fed into GNNs. After the operators of
Encoder, Processor andDecoder, we get the infor-
mation increment of this node ci at the nextK time
points: (d(xi, tk+1), d(xi, tk+2), ..., d(xi, tk+K)). Fi-
nally, we get solutions of the next K time points by
u(xi, tk+l) = u(xi, tk) + (tk+l − tk)d(xi, tk+l), 1 ≤
l ≤ K.

linear, unknown flux function f(u) without param-
eter β.

3 Method

3.1 Graph Neural Networks (GNNs)

In this paper, we leverage GNNs with encoder pro-
cessor decoder structure to learn a fast-forward
model that predicts solutions of PDEs. We model
the domain X as a graph G = (V, E) with node
ci ∈ V, edges lij ∈ E . The features of node ci are
remarked by fi ∈ Rc and the edges lij define local
neighborhoods. An overview of the approach that
we use is shown in Fig. 2.

Encoder Encoder computes node embed-
dings. For each node ci, the operator of
Encoder maps the last K solution values
(u(xi, tk−K+1), ..., u(xi, tk−1), u(xi, tk)), node posi-
tion xi, current time tk, and equation parameters

βPDE to node embedding vector

fi =ϵ([u(xi, tk−K+1), ..., u(xi, tk−1), u(xi, tk)

, xi, tk,βPDE])
(2)

where ϵ representing the operator of Encoder.
Processor Processor contains M layers with

intermediate graphs Gm, m = 1, 2, ...,M . Eq. (3)
and Eq. (4) is the messaging of edges and the
information update of node ci, respectively.

• edge cj → ci message:

mm
ij = ϕ(fm

i ,fm
j , u(xi, tk−K+1)− u(xj , tk−K+1)

, ..., u(xi, tk)− u(xj , tk), xi − xj ,βPDE)

(3)

• node ci update:

fm+1
i = ψ


fm

i ,
∑

j∈N(i)

mm
ij ,βPDE


 (4)

where N(i) holds the neighbors of node ci, and ϕ
and ψ are multilayer perceptrons (MLPs). Using
relative positions xi − xj can be justified by the
translational symmetry of the PDEs we consider.
Solution differences ui−uj make sense by thinking
of the message passing as a local difference opera-
tor, like a numerical derivative operator.
Decoder After Processor, we use a shal-

low convolutional network to output the K next
timesteps information increment at grid point
xi ∈ X. The result is a new vector di =
(d(xi, tk+1), d(xi, tk+2), ..., d(xi, tk+K)) with each
element d(xi, tk+l), 1 ≤ l ≤ K corresponding to
different time point tk+l.
Readout After GNNs with the structure of en-

coder processor decoder, we get solutions of the
next K time points by

u(xi, tk+l) = u(xi, tk) + (tk+l − tk)d(xi, tk+l) (5)

where 1 ≤ l ≤ K.

3.2 Data Generator

We investigate a discretization of the spatial do-
main [0, L] in terms of {xi}Nx−1

i=0 where xi = (1/2+
i)∆x for i = 0, . . . , Nx − 1 with ∆x = L/Nx.

3

53

Algorithm 1: CFL

Input: L: length of the spatial domain; Nx:
the number of spatial grid cells;
f(u): the nonlinear flux function; T :
computational time period;

Output: ∆t: local time interval

Function CFL(L,Nx, f(u), T):
∆x = L/Nx

M = max
u

|f ′(u)|
dt = (34∆x)/(M + 0.0001)
n time = ⌊T/dt⌋
∆t = T/n time
return ∆t;

End Function

Furthermore, we consider time lines {tn}Nt
n=0 with

Nt∆t = T . The discretization of Eq. (1) is based
on the Rusanov scheme [8] which is expressed as

un+1
j = un

j − λ(Fn
j+1/2 − Fn

j−1/2), λ =
∆t

∆x
,

un+1
1 = un+1

2 , un+1
Nx

= un+1
Nx−1

(6)

with j = 2, . . . , Nx − 1 and the Rusanov flux takes
the form

Fn
j+1/2 =

f(un
j) + f(un

j+1)

2

−
max{|f ′(un

j)|, |f ′(un
j+1)|}

2
(un

j+1 − un
j).

The Courant–Friedrichs–Lewy(CFL) condition [8]
determines the magnitude of ∆t for a given ∆x.
We detail the CFL condition in Algorithm 1. We
illustrate how to learn the solution U = {u(xj , t

n)}
of the discrete conservation law Eq. (6) in Algo-
rithm 2.

4 Experiments

Experiment Setup
In this section, we study a class of nonlinear con-
servation laws that are naturally from the prob-
lems where one fluid is displaced by another fluid
in a vertical domain. The displacement process
involves a balance between buoyancy and viscous

Algorithm 2: DataGenerator

Input: T : computational time period; Nx:
the number of spatial grid cells; L:
length of the spatial domain;
u0 = {u0(xj)}Nx

j=1: initial state set of
dimension Nx; f(u): the flux
function;

Output: U = {un
j }: the solution based on

initial state u0;

∆t = CFL(L, Nx, f(u), T)
∆x = L/Nx

U [0] = u0

ũ = u0

for n = 1,...,T/∆t do
for j = 1,...,Nx - 1 do

Fj+1/2 = 1
2 (f(ũj) + f(ũj+1))−

max{|f ′(ũj)|,|f ′(ũj+1)|}
2 (ũj+1 − ũj)

end
for j = 2,...,Nx - 1 do

uj = ũj − ∆t
∆x

(
Fj+1/2 − Fj−1/2

)

end
u1 = u2

uNx = uNx−1

ũ = u
U [i] = u

end

Figure 3: Flux function Eq. (7).

forces. Depending on the properties of the used flu-
ids, there could be various displacement processes.
One can derive a family of flux functions f(u, β) in

4

54

0 2 4 6 8 10
x

0.0

0.1

0.2

0.3

0.4

0.5

u(
x)

t = 0.8

0 2 4 6 8 10
x

0.0

0.1

0.2

0.3

0.4

0.5

0.6

u(
x)

t = 1.2

0 2 4 6 8 10
x

0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

u(
x)

t = 1.6

0 2 4 6 8 10
x

0.1

0.0

0.1

0.2

0.3

0.4

0.5

u(
x)

t = 2.0
exact
prediction

(a) β = −252 in flux function (7). Solutions of (1) based on initial state u0 =

{
0.5, if x ∈ [2.575, 4.3]

0.0, otherwise
.

0 2 4 6 8 10
x

0.0

0.2

0.4

0.6

0.8

u(
x)

t = 0.8

0 2 4 6 8 10
x

0.0

0.1

0.2

0.3

0.4

0.5

u(
x)

t = 1.2

0 2 4 6 8 10
x

0.0

0.1

0.2

0.3

0.4

u(
x)

t = 1.6

0 2 4 6 8 10
x

0.0

0.1

0.2

0.3

0.4

u(
x)

t = 2.0
exact
prediction

(b) β = 264 in flux function (7). Solutions of (1) based on initial state u0 =

{
0.88, if x ∈ [4.675, 6.4]

0.0, otherwise
.

0 2 4 6 8 10
x

0.0

0.1

0.2

0.3

0.4

0.5

u(
x)

t = 0.8

0 2 4 6 8 10
x

0.0

0.1

0.2

0.3

0.4

u(
x)

t = 1.2

0 2 4 6 8 10
x

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

u(
x)

t = 1.6

0 2 4 6 8 10
x

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

u(
x)

t = 2.0
exact
prediction

(c) β = 360 in flux function (7). Solutions of (1) based on initial state u0 =

{
0.86, if x ∈ [2.675, 4.4]

0.0, otherwise
.

Figure 4: Solutions of (1) based on different initial states and values of β at time point t = 0.8, 1.2, 1.6
and 2.0, respectively. In each subplot, the solid red line is the true solution obtained by Algorithm 2,
and the blue dashed line is the solution predicted by the trained GNNs.

Eq. (1) which takes the form [19]

f(u, β) =
1

2
u(3−u2)+

β

12
u2

(
3

4
− 2u+

3

2
u2 − 1

4
u4

)
,

(7)

where the parameter β ∈ (−400, 400) represents
the balance between gravity (bouyancy) and vis-
cous forces. We study the solution of Eq. (1) at
t ∈ [0, 2] in x ∈ [0, 10]. As shown in Fig. 3, dif-
ferent values of β result in different types of flux

5

55

X

T

exact u(x, t)

X

T

prediction u(x, t)

X

T

error u(x, t)

0.0

0.2

0.4

0.6

0.8

0.0

0.2

0.4

0.6

0.8

0.4

0.2

0.0

0.2

0.4

0.6

(a) β = −172 in flux function (7). Solutions of (1) based on initial state u0 =

{
0.88, if x ∈ [4.675, 6.4]

0.0, otherwise
.

X

T

exact u(x, t)

X

T

prediction u(x, t)

X

T

error u(x, t)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.2

0.0

0.2

0.4

0.6

(b) β = 192 in flux function (7). Solutions of (1) based on initial state u0 =

{
0.74, if x ∈ [3.55, 5.275]

0.0, otherwise
.

X

T

exact u(x, t)

X

T

prediction u(x, t)

X

T

error u(x, t)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.2

0.0

0.2

0.4

0.6

(c) β = 336 in flux function (7). Solutions of (1) based on initial state u0 =

{
0.76, if x ∈ [2.475, 4.2]

0.0, otherwise
.

Figure 5: Solutions of (1) based on different initial states and values of β at time t ∈ [0.0, 2.0]. The left
subplot is the real solutions of Eq. (1). The middle subplot is the solutions generated by GNNs, and the
right subplot is the error of real and predicted u(x, t).

6

56

functions.
We use Algorithm 2 to generate 500 samples with

different values of β and initial states. The values
of β are randomly selected from (0, 300) and initial
states are from [0.0, 1.0]. We consider the obser-
vation in terms of x-dependent data at fixed times
{t∗i }Nobs

i=1 extracted from the solution U as follows:

Usub =
{
u(xj , t

∗
1), u(xj , t

∗
2), . . . , u(xj , t

∗
Nobs

)
}

(8)

where j = 1, . . . , Nx, Nx = 400 with ∆x = 0.025
and Nobs = 250 with ∆tobs = 0.008.

For training, we split Usub into five parts of
length 50 in terms of time. Values of u(x) for the
first 25 time points are used to predict u(x) for the
following 25 time points, i.e., K = 25 in Eq. (5). In
the testing, we use the first stage, which contains 25
time points of u(x) to predict the solutions of the
second stage, and then predict u(x) at the third
phase based on the predicted value of the second
stage. This process is repeated until T = 2.

Results and discussions

The total number of trainable parameters is
0.28M. We set epoch = 30 and divide the 100 test
samples into three groups according to β, (i)G1:
50 examples with β ∈ (−400, 0), (ii)G2: 30 exam-
ples with β ∈ (0, 300),(iii)G3: 20 examples with
β ∈ (300, 400).

We randomly select one sample β =
−252, 264, 360 from each group. Fig. 4 displays the
exact and predicted u(x, t) of these selected exam-
ples with x ∈ [0, 10] at time t = 0.8, 1.2, 1.6, 2.0.
All the examples show that the error between exact
and predicted values of u(x) increases with time.
Notably, the model cannot predict the underlying
trend at t = 1.6 and t = 2.0 on the case selected
from G1. While, it performs very well on G2 and
G3. The result is also reflected in Table 1 that
counts MSE of G1, G2, G3. The MSE of G1 is 10
times higher than the MSE of G2 and G3.

Fig. 5 shows another set of samples from G1, G2,
G3 with x ∈ [0, 10) and t ∈ [0.4, 2.0]. When the
solution fluctuates, the model is prone to large pre-
diction errors. This phenomenon is also reflected
in Fig. 4. This phenomenon is probably related to
the discontinuity of the solutions of 1.

Experimental results show that the model can
predict more accurately when β is within a specific

Group G1 G2 G3

MSE 0.0268 0.004 0.0015

Table 1: The value of MSE for each group. We
calculate MSE of the true and predicted u(x, t) of
all samples with x ∈ [0, 10] and t ∈ [0.4, 2.0]in each
group.

range. However, when β deviates too much from
that used for the training model, the model’s pre-
dictive power is significantly reduced.

5 Conclusion

In this work, we apply GNNs to solve PDEs, which
are unique since their solutions usually contain
shocks. Our experiments demonstrate that the
GNN models can predict accurately when the pa-
rameter β is within a specific range. However,
when the parameter deviates far from the value
for training, the model’s predictive performance
drops sharply. Furthermore, the model is not very
good at predicting the discontinuity of the solu-
tions. There will be numerous small fluctuations
around the discontinuity. One of our future work
directions is to explore how to improve GNN’s be-
havior when handling discontinuous solutions or de-
velop new methods to deal with PDEs containing
shocks.

References

[1] P. Bauer, A. Thorpe, and G. Brunet. The
quiet revolution of numerical weather predic-
tion. Nature, 525(7567):47–55, 2015. doi:
https://doi.org/10.1038/nature14956.

[2] J. Brandstetter, D. E. Worrall, and
M. Welling. Message passing neural
PDE solvers. In The Tenth International
Conference on Learning Representations,
ICLR 2022, Virtual Event, April 25-
29, 2022. OpenReview.net, 2022. doi:
https://doi.org/10.48550/arXiv.2202.03376.
URL https://openreview.net/forum?id=

vSix3HPYKSU.

[3] T. D. Economon, F. Palacios, S. R. Copeland,
T. W. Lukaczyk, and J. J. Alonso. Su2:

7

57

An open-source suite for multiphysics simula-
tion and design. Aiaa Journal, 54(3):828–846,
2016. doi: https://doi.org/10.2514/1.J053813.

[4] O. Fuks and H. A. Tchelepi. Limitations of
physics informed machine learning for non-
linear two-phase transport in porous media.
Journal of Machine Learning for Modeling
and Computing, 1(1), 2020. doi: 10.1615/
JMachLearnModelComput.2020033905.

[5] H. Gao, M. J. Zahr, and J.-X. Wang. Physics-
informed graph neural galerkin networks: A
unified framework for solving pde-governed
forward and inverse problems. Computer
Methods in Applied Mechanics and Engineer-
ing, 390:114502, 2022. doi: https://doi.org/
10.1016/j.cma.2021.114502.

[6] H. Holden and N. Risebro. Front tracking
for hyperbolic conservation laws. Springer,
Berlin, 2011.

[7] V. Iakovlev, M. Heinonen, and H. Lähdesmäki.
Learning continuous-time pdes from sparse
data with graph neural networks. In 9th
International Conference on Learning Rep-
resentations, ICLR 2021, Virtual Event,
Austria, May 3-7, 2021. OpenReview.net,
2021. doi: https://doi.org/10.48550/arXiv.
2006.08956. URL https://openreview.net/

forum?id=aUX5Plaq7Oy.

[8] R. LeVeque. Finite volume methods for hyper-
bolic problems. Cambridge Texts in Applied
Mathematics, 2007. doi: https://doi.org/10.
1017/CBO9780511791253.

[9] Q. Li and S. Evje. Learning the nonlinear flux
function of a hidden scalar conservation law
from data. Network Heterogeneous Media, 18,
2023. doi: 10.3934/nhm.2023003.

[10] Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu,
K. Bhattacharya, A. Stuart, and A. Anand-
kumar. Neural operator: Graph kernel net-
work for partial differential equations. arXiv
preprint arXiv:2003.03485, 2020.

[11] Z. Long, Y. Lu, X. Ma, and B. Dong. Pde-net:
Learning PDEs from data. In International

Conference on Machine Learning, pages 3208–
3216. PMLR, 2018. doi: https://doi.org/10.
48550/arXiv.1710.09668.

[12] Z. Long, Y. Lu, and B. Dong. PDE-Net 2.0:
Learning PDEs from data with a numeric-
symbolic hybrid deep network. Journal of
Computational Physics, 399:108925, 2019. doi:
https://doi.org/10.1016/j.jcp.2019.108925.

[13] D. Pardo, L. Demkowicz, C. Torres-Verdin,
and M. Paszynski. A self-adaptive goal-
oriented hp-finite element method with elec-
tromagnetic applications. part ii: Electro-
dynamics. Computer methods in applied
mechanics and engineering, 196(37-40):3585–
3597, 2007. doi: https://doi.org/10.1016/j.
cma.2006.10.016.

[14] T. Pfaff, M. Fortunato, A. Sanchez-Gonzalez,
and P. W. Battaglia. Learning mesh-based
simulation with graph networks. arXiv
preprint arXiv:2010.03409, 2020. doi: https:
//doi.org/10.48550/arXiv.2010.03409.

[15] M. Raissi, P. Perdikaris, and G. E. Karni-
adakis. Physics-informed neural networks: A
deep learning framework for solving forward
and inverse prvoblems involving nonlinear par-
tial differential equations. Journal of Com-
putational Physics, 378:686–707, 2019. doi:
https://doi.org/10.1016/j.jcp.2018.10.045.

[16] R. Ramamurti and W. Sandberg. Simulation
of flow about flapping airfoils using finite ele-
ment incompressible flow solver. AIAA jour-
nal, 39(2):253–260, 2001. doi: https://doi.org/
10.2514/2.1320.

[17] C. Schwarzbach, R.-U. Börner, and
K. Spitzer. Three-dimensional adaptive
higher order finite element simulation
for geo-electromagnetics—a marine csem
example. Geophysical Journal Interna-
tional, 187(1):63–74, 2011. doi: https:
//doi.org/10.1111/j.1365-246X.2011.05127.x.

[18] S. Seo, C. Meng, and Y. Liu. Physics-
aware difference graph networks for sparsely-
observed dynamics. In International Confer-
ence on Learning Representations, 2019.

8

58

[19] H. Skadsem and S. Kragset. A numerical
study of density-unstable reverse circulation
displacement for primary cementing. J. En-
ergy Resour. Technol, 144, 2022. doi: https:
//doi.org/10.1115/1.4054367.

[20] N. Thuerey, K. Weißenow, L. Prantl, and
X. Hu. Deep learning methods for reynolds-
averaged navier–stokes simulations of airfoil
flows. AIAA Journal, 58(1):25–36, 2020. doi:
https://doi.org/10.2514/1.j058291.

[21] N. Wandel, M. Weinmann, and R. Klein.
Learning incompressible fluid dynamics from
scratch - towards fast, differentiable fluid mod-
els that generalize. In 9th International Con-
ference on Learning Representations, ICLR
2021, Virtual Event, Austria, May 3-7, 2021.
OpenReview.net, 2021. doi: https://doi.org/
10.48550/arXiv.2006.08762. URL https://

openreview.net/forum?id=KUDUoRsEphu.

[22] Q. Zhao, D. B. Lindell, and G. Wetzstein.
Learning to solve pde-constrained inverse
problems with graph networks. In K. Chaud-
huri, S. Jegelka, L. Song, C. Szepesvári,
G. Niu, and S. Sabato, editors, International
Conference on Machine Learning, ICML 2022,
17-23 July 2022, Baltimore, Maryland, USA,
volume 162 of Proceedings of Machine Learn-
ing Research, pages 26895–26910. PMLR,
2022. doi: https://doi.org/10.48550/arXiv.
2206.00711. URL https://proceedings.

mlr.press/v162/zhao22d.html.

9

59

60

Paper III:
Learning the Nonlinear Flux
Function of a Hidden Scalar
Conservation Law from Data

Qing Li, Steinar Evje

Networks and Heterogeneous Media 18.1 (2023): 48-79
doi = http://www.aimspress.com/article/doi/10.3934/nhm.2023003

61

http://www.aimspress.com/article/doi/10.3934/nhm.2023003

http://www.aimspress.com/journal/nhm

NHM, 18(1): 48–79.
DOI: 10.3934/nhm.2023003
Received: 8 July 2022
Revised: 24 August 2022
Accepted: 31 August 2022
Published: 20 October 2022

Research article

Learning the nonlinear flux function of a hidden scalar conservation law
from data

Qing Li and Steinar Evje∗

University of Stavanger, Department of Energy and Petroleum, Group of Computational Engineering,
Stavanger, Norway

* Correspondence: Email: steinar.evje@uis.no.

Abstract: Nonlinear conservation laws are widely used in fluid mechanics, biology, physics, and
chemical engineering. However, deriving such nonlinear conservation laws is a significant and
challenging problem. A possible attractive approach is to extract conservation laws more directly
from observation data by use of machine learning methods. We propose a framework that combines
a symbolic multi-layer neural network and a discrete scheme to learn the nonlinear, unknown flux
function f (u) of the scalar conservation law

ut + f (u)x = 0 (∗)

with u as the main variable. This identification is based on using observation data u(x j, ti) on a spatial
grid x j, j = 1, . . . ,Nx at specified times ti, i = 1, . . . ,Nobs. A main challenge with Eq (∗) is that the
solution typically creates shocks, i.e., one or several jumps of the form (uL, uR) with uL , uR moving in
space and possibly changing over time such that information about f (u) in the interval associated with
this jump is sparse or not at all present in the observation data. Secondly, the lack of regularity in the
solution of (∗) and the nonlinear form of f (u) hamper use of previous proposed physics informed neural
network (PINN) methods where the underlying form of the sought differential equation is accounted
for in the loss function. We circumvent this obstacle by approximating the unknown conservation law
(∗) by an entropy satisfying discrete scheme where f (u) is represented through a symbolic multi-layer
neural network. Numerical experiments show that the proposed method has the ability to uncover
the hidden conservation law for a wide variety of different nonlinear flux functions, ranging from pure
concave/convex to highly non-convex shapes. This is achieved by relying on a relatively sparse amount
of observation data obtained in combination with a selection of different initial data.

Keywords: nonlinear conservation law; flux function; machine learning method; discrete scheme;
entropy condition

63

49

1. Introduction

1.1. Background

Inspired by the vigorous development of AI and big data technology in recent decades, researchers
currently pay much attention to deriving partial differential equations (PDEs) based on neural
networks combined with observation data. Earlier attempts on data-driven discovery of hidden
physical laws include [1] and [2]. They used symbolic regression to learn multiple models from basic
operators and operands to explain observed behavior and then chose the best model from candidate
models by the advantage of new sets of initial conditions. In the more recent studies of [3–5], authors
employed Gaussian process regression [6] to devise functional representations that are tailored to a
given linear differential operator. They were able to accurately infer solutions and provide uncertainty
estimates for several prototype problems in mathematical physics. However, local linearization of any
nonlinear term in time and certain prior assumptions of the Bayesian nature of Gaussian process
regression limit the representation capacity of the model. Other researchers represented by [7–10]
have proposed an approach using sparse regression. They constructed a dictionary of simple functions
and partial derivatives that were likely to appear in the unknown governing equations. Then, they took
advantage of sparsity promoting techniques to select candidates that most accurately represent the
data. Raissi et al., [11] introduced physics informed neural network (PINN) for solving two main
classes of problems: data-driven solution and data-driven discovery of partial differential equations.
They suggested that if the considered PDE is well-posed and its solution is unique, then the PINN
method is capable of achieving good predictive accuracy given a sufficiently expressive neural
network architecture and a sufficient number of collocation points. The method was explored for
Schrödinger equation, Allen-Cahn equation, and Korteweg-de Vries (KdV) in one dimension (1D)
and Navier-Stokes in two dimensions (2D). However, the neural network methods struggle in learning
the nonlinear hyperbolic PDE that governs two-phase transport in porous media [12]. They
experimentally indicate that this shortcoming of PINN for hyperbolic PDEs is not related to the
specific architecture or to the choice of the hyperparameters but is related to the lack of regularity in
the solution. Long et al., [13, 14] proposed a combination of numerical approximation of differential
operators by convolutions and a symbolic multi-layer neural network for model recovery. They used
convolutions to approximate differential operators with properly constrained filters and to
approximate the nonlinear response by deep neural networks. Models that are explored include
Burgers equation

ut + λ1u · ∇u = λ2∆u (1.1)

where the constant parameters λ1 and λ2 must be learned. Moreover, the advection-diffusion equation

ut + k(x) · ∇u = λ2∆u (1.2)

was also considered. Herein, the parameter λ2 is known whereas k(x) = (a(x), b(x))> is the unknown
space-dependent coefficient to be learned. Furthermore, the diffusion-reaction problem given by Eq
(1.3),

ut = λ2∆u + g(u) (1.3)

where g(u) is unknown and must be found by means of the observation data, was also successfully
demonstrated.

Networks and Heterogeneous Media Volume 18, Issue 1, 48–79.

64

50

In this work we focus on the problem of learning the unknown nonlinear flux function f (u) that is
involved in the general scalar nonlinear conservation law, here restricted to the one-dimensional case,
given by Eq (1.4)

ut + f (u)x = 0 (1.4)

where u = u(x, t) is the main variable. Burgers equation (1.1) amounts to the case with flux function
f (u) = λ1

2 u2 in Eq (1.4). Hence, the main challenge in Eq (1.4) is that the flux function f (u), which
is a nonlinear function of u, itself is unknown and there is no viscous term in the form uxx that can
regularize the solution.

1.2. Problem statement and novelty

The learning of the nonlinear flux function f (u) in Eq (1.4) involves several new aspects as
compared to the other PDE models Eqs (1.1)–(1.3).

(i) Lack of observation data. It is well known that Eq (1.4) will generate shock wave solutions
u(x, t) in finite time, i.e., solutions that contain one or sevel discontinuities expressed as a jump
(uL, uR) with uL , uR, despite the fact that initial data u0(x) is smooth [15, 16]. In particular, the
specific form of f (u) in the interval [min(uL, uR),max(uL, uR)] is not used in the construction of
the entropy solution, only the slope s =

f (uL)− f (uR)
uL−uR

. As jumps arise and disappear in the solution
over the time period for which observation data is collected, the data may lack information about
f (u). An illustration of this situation is given in Figure 1. In the left panel we plot the flux
function f (u) = u2/(u2 + (1 − u)2). In the right panel the entropy solution after a time T = 0.5
is shown. At time t = 0, the initial data u0(x) involves one jump at x = 0 and another jump at
x = 1. The initial jump at x = 0 is instantly transformed into a solution that is a combination
of a continuous wave solution (rarefaction wave) and a discontinuous wave (uL, uR) ≈ (0.3, 1.0),
as dictated by the lower convex envelope shown in the left panel (green curve) [15]. Similarly,
the initial jump at x = 1 is transformed into a solution that is a combination of a continuous
wave solution (rarefaction wave) and a discontinuous wave (uL, uR) ≈ (0.7, 0), in accordance with
the upper concave envelope illustrated in left panel (brown curve) [15]. From this example, we
see that we have no observation data that directly can reveal the shape of f (u) in the interval
u ∈ [0.3, 0.7] (approximately).

(ii) Lack of regularity. Previous work based on the PINN approaches mentioned above relies on
imposing the structure of the underlying PDE model by including an error term in the loss
function. This would amount to computing the left-hand-side of Eq (1.4). Due to the lack of
regularity in the solution as illustrated by the example in Figure 1 (right panel), it seems not clear
how to implement this in a PINN framework. We refer to [12] for investigations related to this
point which found that it was necessary to consider the viscous approximation ut + f (u)x = εuxx

with a small value ε > 0 to learn the forward solution.

1.3. Our approach

Our aim is to learn the unknown nonlinear function f (u) from observation data in terms of solution
behavior collected at different points (x j, ti) in space and time. The approach we explore in this work
relies on the two following building blocks: (i) We represent the unknown function f (u) by a symbolic

Networks and Heterogeneous Media Volume 18, Issue 1, 48–79.

65

51

Figure 1. Left: Example of nonlinear flux function f (u) = u2

u2+(1−u)2 (blue curve). Upper
concave envelope (brown curve) and lower convex envelope (green curve) are also included.
Right: The solution of Eq (1.4) at time T = 0.5 is shown (red solid curve) together with its
initial data u0(x) (red dashed line).

multi-layer neural network; (ii) Instead of including the form of the conservation law Eq (1.4) explicitly
in the loss function as in PINN, we use a standard simple entropy-satifying discrete scheme associated
with Eq (1.4) to account for this information during the learning process. The numerical scheme allows
us to evolve the given initial data over the relevant time interval and collect predicted data which is
accounted for in the loss function.

Regarding point (i), inspired by the symbolic neural network that is used in [17,18], we can learn an
analytic expression that has a derivative similar to the true f ′(u). The reason why it is attractive to learn
the analytic expression is that, unlike black box learning, system identification has explanatory value.
That is, once we have extracted an analytical expression of the hidden flux function f (u), e.g., based
on data from a more or less complex system, the shape of the flux function provides precise insight
into finer wave propagation mechanisms involved in the system under consideration. In particular,
predictions can then be made for any other initial state. Our approach bears similarity to the underlying
idea employed in the recent work [13, 14]. However, an essential difference is that the flux function
f (u)x cannot be expressed by f ′(u)ux as f (u) is not in general a differentiable function in our problem.
Therefore, we rely on using an entropy satifying discrete scheme, which is guaranteed to converge
to the entropy solution of Eq (1.4) [15], to identify an analytical expression of the flux function f (u)
which is present in the numerical scheme in the form of a symbolic neural network.

1.4. Related work

James and Sepúlveda formulated the inverse problem of flux identification as that of minimizing
a suitable cost function [19]. Relying on the viscous approximation, it was shown that the perturbed
problem converged to the original hyperbolic problem [19] by letting the viscous term vanish. Holden
et al used the front-tracking algorithm to reconstruct the flux function from observed solutions to
problems with suitable initial data [20]. Several recent studies have addressed the reconstruction of
the flux function for sedimentation problems that involve the separation of a flocculated suspension
into a clear fluid and a concentrated sediment [21, 22]. In particular, Bürger and Diehl showed that

Networks and Heterogeneous Media Volume 18, Issue 1, 48–79.

66

52

the inverse problem of identifying the batch flux density function has a unique solution, and derived
an explicit formula for the flux function [23]. This method was recently extended to construct almost
the entire flux function [24] by using a cone-shaped separator. For another interesting example of the
challenge of identification of the unknown flux function f (u), we refer to [25]. The author explored a
direct inversion method based on using linear combinations of finite element hat functions to represent
unknown nonlinear function f . Finally, for an example with neural networks used in combination with
discrete schemes to optimize computations of a nonlinear conservation law, see [26].

The remainder of this paper is organized as follows: Section 2 gives a presentation of the approach
that we explore. In Section 3 and Section 4 we conduct numerical studies where synthetic data has
been generated from a general class of flux functions ranging from purely concave to highly non-
convex functions. Concluding thoughts are given in Section 5.

2. Framework

2.1. Nonlinear conservation laws and entropy satisfying solutions

It is well known that conservation laws of the form Eq (1.4) do not in generall possess classical
solutions. Instead one must consider weak solutions in the sense that the following integral equality
holds [15, 27, 28] ∫

Ωx

∫ T

0

[
uφt + f (u)φx

]
dx dt +

∫

Ωx

u0(x)φ(x, t = 0) dx = 0 (2.1)

for all φ ∈ C1 such that φ(x, t) : Ωx × (0,T) → R and which is compactly supported, i.e., φ vanishes
at x → Ωx and t → T . It follows that if a discontinuity occurs in the solution, i.e., a left state uL and a
right state uR, then it must propagate with the speed s given by [15, 28]

s =
f (uL) − f (uR)

uL − uR
. (2.2)

This follows from mass conservation and, thus, must be satified across any discontinuity [15, 28].
However, direct calculations show that there are several weak solutions for one and the same initial
data [27]. To overcome this issue of non-uniqueness of weak solutions, we need criteria to determine
whether a proposed weak solution is admissible or not. This has led to the class of entropy solutions,
which amounts to introducing an additional constraint which ensures that the unique physically relevant
one is found among all the possible weak solutions.

There are different ways to express the entropy condition for scalar nonlinear conservation laws.
One variant is by introducing an entropy pair (η, q) where η : R → R is any strictly convex function
and q : R→ R is constructed as [28, 29]

q(v) =

∫ v

0
f ′(s)η′(s) ds (2.3)

for any v. This implies that q′ = f ′η′. Then, u is an entropy solution of Eq (1.4) if (i) u is a weak
solution in the sense of Eq (2.1); (ii) u satisfies in a weak sense η(u)t +q(u)x ≤ 0 for any pair (η, q). This
condition can also be formulated as the following characterization of a discontinuity (uL, uR) [28, 30]:
For all numbers v between uL and uR,

f (v) − f (uL)
v − uL

≥ s ≥ f (v) − f (uR)
v − uR

(2.4)

Networks and Heterogeneous Media Volume 18, Issue 1, 48–79.

67

53

where s is given by Eq (2.2). This entropy condition can naturally be accounted for by introducing the
upper concave envelope and lower convex envelope, as indicated in Figure 1 (left panel) [15, 30]. In
particular, it gives a tool for constructing exact solutions.

From this characterization of the physically relevant solution of Eq (1.4), it is clear that there are
special challenges pertaining to identification of the unknown flux function f (u) from observation data.
Firstly, it is a challenge with the more indirect characterization of the correct weak solution since it
involves formulations like Eq (2.1) and Eq (2.4). This may hamper the use of PINN-based approaches.
The approach we take in this work is to rely on a discrete scheme that represents an approximation to
the entropy solution described above. A convenient feature of an entropy-consistent numerical scheme
is that the entropy condition is automatically built into the scheme. I.e., as the grid is refined, the
numerical solution converges to the admissible solution [15, 28, 29]. Secondly, it follows from the
entropy condition Eq (2.4) that observation data that involves one or several discontinuities, may not
contain information about the unknown flux function f (u) in intervals that correpond to discontinuities
in u. The example shown in Figure 1 shows an approximation to the entropy solution and obeys the
entropy condition Eq (2.4). As mentioned above, the example indicates that we lack information about
f (u) in the interval ≈ [0.3, 0.7].

In this work we explore how we can deal with this situation by a proper combination of two different
aspects: (i) we add a priori regularity to the unknown flux function f (u) by representing it as a symbolic
multi-layer neural network; (ii) we collect observation data by considering a set of different initial data
that can help detecting the finer details of f (u).

2.2. Entropy consistent discrete numerical scheme

Based on the given observation data, our aim is to identify a conservation law Eq (1.4) for (x, t) ∈
[0, L] × [0,T], written in the form Eq (2.5),

ut + f (u)x = 0
ux|x=0 = ux|x=L = 0

u|t=0 = u0(x)
(2.5)

where f (u) is the unknown, possible nonlinear flux function and u0(x) is the initial state which is
assumed known.

We consider a discretization of the spatial domain [0, L] in terms of {xi}Nx
i=1 where xi = (1/2 + i)∆x

for i = 0, . . . ,Nx − 1 with ∆x = L/Nx. Furthermore, we consider time lines {tn}Nt
n=0 such that Nt∆t = T .

We base our discrete version of Eq (1.4) on the Rusanov scheme [15] which takes the form Eq (2.6),

Un+1
j = Un

j − λ(Fn
j+1/2 − Fn

j−1/2), λ =
∆t
∆x

,

Un+1
1 = Un+1

2 , Un+1
Nx

= Un+1
Nx−1

(2.6)

with j = 2, . . . ,Nx − 1 and where the Rusanov flux takes the form Eq (2.7),

Fn
j+1/2 =

f (Un
j) + f (Un

j+1)

2
− M

2
(Un

j+1 − Un
j), M ∼ max

u
| f ′(u)|. (2.7)

We use a slightly modified version of the Rusanov flux by relying on a global estimate of | f ′(u)| instead
of a local estimate of M in terms of M j+1/2 = max{| f ′(Un

j)|, | f ′(Un
j+1)|} [15]. The CFL condition [15] determines

Networks and Heterogeneous Media Volume 18, Issue 1, 48–79.

68

54

the magnitude of ∆t for a given ∆x through the relation Eq (2.8),

CFL :=
∆t
∆x

M ≤ 1. (2.8)

We have used ∆t
∆x M = CFL ≤ 3

4 < 1 when we compute solutions involved in the learning process.
The training process involves repeated use of the discrete scheme Eq (2.6) for different flux functions
f (u). This requires repeated estimation of the parameters ∆t and M that will be used for calculation of
predicted data based on Eq (2.6), according to the CFL condition Eq (2.8). Finally, we note that the
Rusanov flux falls within the class of monotone schemes and therefore is guaranteed to converge to the
entropy solution [28–30].

2.3. Observation data set

We consider observation data in terms of x-dependent data at fixed times {t∗i }Nobs
i=1 extracted from the

solution U(x j, tn) = Un
j as follows:

Usub =
{
U(x j, t∗1),U(x j, t∗2), . . . ,U(x j, t∗Nobs

)
}
, j = 1, . . . ,Nx. (2.9)

We consider a domain of length L and consider simulations over the time period [0,T]. We apply a
numerical grid composed of Nx grid cells when we compute numerical solutions of Eq (2.5) based
on the numerical scheme Eq (2.6) and Eq (2.7). This is used both for obtaining the true solution and
corresponding synthetic observation data (which we denote by Usub) as well as when we compute
predictions based on the ensemble of flux functions brought forth through training (which we denote
by Ûsub). We specify times for collecting the time dependent data

Tobs = {t∗i = i∆tobs : i = 1, . . . ,Nobs}. (2.10)

We typically use Nobs = 9, with T = 1 i.e., ∆tobs = 0.1. In particular, the number Nobs of collected
spatial-dependent data is relatively sparse. Also the number of local time steps (of length ∆t) we need
to compute numerical solutions through the discrete scheme Eq (2.6) and Eq (2.7) is much higher
than the number of observation data, i.e., ∆t << ∆tobs. Since ∆t is dictated by the CFL condition for
the given choice of the flux function f (which will vary during the training), we do not known that
∆tKi = t∗i for i = 1, . . . ,Nx for some integer Ki. In that case, we choose the one that is closest to t∗i .

2.4. Main algorithms

Specifically, we use Algorithm 1 to calculate the parameters ∆t and M which are needed as input
to Algorithm 2. Then, we use Algorithm 2 to extract the solution U(x j, tn) = Un

j of the discrete
conservation law Eq (2.6). Finally, from {Un

j } we extract the observation data set Usub according to Eq
(2.9).

2.5. Symbolic Multi-layer Neural Network to represent f (u)

We want to learn the analytical expression of the flux function f (u), not just fit observations using
neural networks as a black box. For that purpose we suggest to use the symbolic neural network
(called S-Net) proposed in [17] and [18] to learn the unknown function f (u) instead of fully connected

Networks and Heterogeneous Media Volume 18, Issue 1, 48–79.

69

55

Algorithm 1: CFL Algorithm
Input: L: length of the spatial domain; Nx: the number of spatial grid cells; f (u): the nonlinear

flux function; T : computational time period;
Output: ∆t: local time interval used in Eq (2.6); M: upper limit of | f ′(u)|
∆x = L/N
d f du = grad(α f , u)
max f prime = max |d f du|
dt = (3

4∆x)/(max f prime + 0.0001)
n time = round(T/dt, 0)
∆t = T/n time
M = max f prime

Algorithm 2: DataGenerator
Input: T : computational time period; Nx: the number of spatial grid cells; L: length of the

spatial domain; u0 = {u0(x j)}Nx
j=1: initial state vector of dimension Nx; f (u): the flux

function;
Output: U = {Un

j }: the solution based on initial state u0;

(∆t,M) = CFL Algorithm(L, Nx, f (u), T)
time steps = T/∆t
∆x = L/Nx

u old = u0

U = []
U.append(u old)
for n = 1,...,time steps do

for j = 1,...,Nx - 1 do
f = f (u old)
F hal f [j] = 1

2

(
f [j] + f [j + 1]

)
− M

2

(
u old[j + 1] − u old[j]

)

end
for j = 2,...,Nx - 1 do

u[j] = u old[j] − ∆t
∆x

(
F hal f [j] − F hal f [j − 1]

)

end
u[1] = u[2]
u[Nx] = u[Nx − 1]
u old = u
U.append(u old)

end

neural networks that have been used in, e.g., [11]. We also tested a graph neural network (GNN)
method proposed in [31] to learn the hidden conservation law. The GNN method is based on using
an evolution scheme of the form Un+1

j = Un
j + ∆t(∆U)n

j where (∆U)n
j must be learned at each grid

point. The authors of [31] employed GNN in the context of learning convection-diffusion equations.

Networks and Heterogeneous Media Volume 18, Issue 1, 48–79.

70

56

However, this approach did not work well for the problem Eq (2.5). The reason may be related to the
fact that, in our case, the solutions of the hyperbolic conservation law become discontinuous, whereas
the PDE models studied in [31] have regular solutions.

Figure 2. Top. The framework of S-Net-M for multiplicative function. Bottom. The
framework of S-Net-D for division function.

In the S-Net setting, depending on whether we seek a function that takes a multiplicative form
or a fractional form, we design two types of network structures illustrated, respectively, in Figure 2
(top) and Figure 2 (bottom). Take a three layers S-Net which can learn the expression of a function f
possessing a multiplication form as an example. As shown in Figure 2 (top), the identity directly maps
u from input layer to the first hidden layer. The linear combination map uses parameters w1 and b1 to
choose two elements from u and are denoted by α1 and β1.

(α1, β1)T = w1 · (u) + b1,w1 ∈ R2×1,b1 ∈ R2×1 (2.11)

These two elements of α1 and β1 are multiplied in the PDE system.

f1 = α1β1 (2.12)

Apart from u gotten by the identity map, f1 also is input to the second hidden layer.

(α2, β2)T = w2 · (u, f1)T + b2,w2 ∈ R2×2,b2 ∈ R2×1 (2.13)

Networks and Heterogeneous Media Volume 18, Issue 1, 48–79.

71

57

Similarly with the first hidden layer, we get another combination f2(α2, β2).

f2 = α2β2 (2.14)

Then we obtain α3 and β3 by means of w3 and b3 from u, f1 and f2.

(α3, β3)T = w3 · (u, f1, f2)T + b3,w3 ∈ R2×3,b3 ∈ R2×1 (2.15)

f3, which is the product of α3 and β3 is put into the third hidden layer.

f3 = α3β3 (2.16)

Finally, we arrive at the analytic expression of the function f .

f = w4 · (u, f1, f2, f3)T + b4,w4 ∈ R1×4,b4 ∈ R (2.17)

The difference between S-Net for multiplicative function (denoted S-Net-M) and S-Net for
division function (denoted S-Net-D) is that in the third hidden layer in Figure 2 (bottom), we obtain
the numerator part f3 and the denominator part f4 of the flux function f (u) based on w3, b3 and w4, b4,
respectively.

f3 = w3 · (u, f1, f2)T + b3,w3 ∈ R1×3,b3 ∈ R (2.18)
f4 = w4 · (u, f1, f2)T + b4,w4 ∈ R1×3,b4 ∈ R (2.19)

The analytic expression of the flux function f is the combination of f3 and f4.

f =
f3

f4
(2.20)

The parameters involved in the network described above is denoted by θ and the resulting function
according to Eq (2.17) or Eq (2.20) is denoted by fθ(u). Herein, for the case above the ensemble of
parameters used in the multi-layer symbolic neural network is given by

θS-Net = {w1,w2,w3,w4,b1,b2,b3,b4}. (2.21)

2.6. General architecture

The overall architecture of the method is shown in Figure 3. There are two parts involved, the
generation of observed data based on the true flux function f (u) and learning of the unknown flux
function fθ(u) which is assigned the S-Net structure. For the synthetic observation data, we use
Algorithm 2 to obtain the approximate solution U of Eq (2.5) based on the exact flux function f (u)
combined with the scheme Eq (2.6). We select data Usub at times as given by Eq (2.9). Concerning the
learning process, firstly, we use S-Net to represent the function fθ(u). fθ(u), together with T,Nx, L, u0

are fed into the DataGenerator to get the predicted solution Û. We also choose data Ûsub at the same
time points Eq (2.9). The difference between Usub and Ûsub is denoted as loss, and we use the
second-order quasi-Newton method, L-BFGS-B ([32, 33]), to update the parameters θ of the S-Net
involved in fθ(u). This updating process iterates until we reach the number of epoch that we set or the
process can’t be optimized anymore. The learning process is shown in Algorithm 3 which we denote
as ConsLaw-Net. Finally, we get the best flux function fθ∗(u) and use it to represent the learned
conservation law for further predictions.

Networks and Heterogeneous Media Volume 18, Issue 1, 48–79.

72

58

Figure 3. Schematic diagram of the framework.

Algorithm 3: ConsLaw-Net
Input: T : computational time period; Nx: the number of spatial grid cells; L: length of the

spatial domain; u0: initial state vector of dimension Nx; f(u): true flux function; θ0: initial
parameters of S-Net; θ: parameters of S-Net; fθ(u): flux function generated by S-Net;
T obs: observation time points Eq (2.10); mse: mean squared error Eq (2.23); epoch: the
number of epochs; DataGenerator: Algorithm 2

Output: fθ∗(u): the best flux function generated by the S-Net based on parameter vector θ∗;

U = DataGenerator(T,Nx, L, u0, f (u))
U sub = {u ∈ U |t ∈ T obs}
θ = θ0

for i = 1,...,epoch do
Û = DataGenerator(T,Nx, L, u0, fθ(u))
Û sub = {u ∈ Û |t ∈ T obs}
loss = mse(U sub, Û sub)
Updating θ by optimizer L-BFGS-B and loss;

end
θ∗ = θ

2.6.1. Loss Function

We adopt the following loss function for the training of the S-Net function:

L = Ldata (2.22)

where data approximation Ldata is obtained as follows: Assume that we have K different initial states
used for the training process, and each predicted solution is described on a grid of N = Nx grid cells and
at I = Nobs different times, as given by Eq (2.10). Through Algorithm 3 (ConsLaw-Net) the observation
data set is first obtained, which is denoted by {Usub,k(x j, t∗i) : 1 ≤ k ≤ K; 1 ≤ j ≤ N; 1 ≤ i ≤ I}.
Then, through an iterative loop in Algorithm 3, the predicted data is generated and is denoted by
{Ûsub,k(x j, t∗i) : 1 ≤ k ≤ K; 1 ≤ j ≤ N; 1 ≤ i ≤ I}. So we define the data approximation term Ldata as:

Networks and Heterogeneous Media Volume 18, Issue 1, 48–79.

73

59

Ldata =
1

NKI

K∑

k=1

N∑

j=1

I∑

i=1

∥∥∥Usub,k(x j, t∗i) − Ûsub,k(x j, t∗i)
∥∥∥2

(2.23)

3. Learning of nonlinear flux functions f (u; β) involved in complex fluid displacement

In this section, we consider a class of nonlinear conservation laws that naturally arise from the
problem of studying displacement of one fluid by another fluid in a vertical domain. The resulting
displacement process involves a balance between buoyancy and viscous forces. Depending on the
property of the fluids that are used, there is room for a whole range of different type of displacement
processes. This is expressed by the fact that one can derive a family of flux functions f (u; β) which
takes the form [34]

f (u; β) =
1
2

u(3 − u2) +
β

12
u2

(
3
4
− 2u +

3
2

u2 − 1
4

u4
)
. (3.1)

The parameter β represents the balance between gravity (bouyancy) and viscous forces and, typically,
β ∈ [−200, 300]. Different values of β result in different types of flux functions. As shown in Figure 4,
the shape of f (u; β) varies over a broad spectrum with β ∈ {−200,−100, 10, 100, 120, 200, 300}. In
particular, we see that f (u; β) can be purely concave (β = 0), but also have both one and two inflection
points where the sign of f ′′ changes.

0.0 0.2 0.4 0.6 0.8 1.0
u

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

f(u
)

beta=-200
beta=-100
beta=10
beta=100
beta=120
beta=200
beta=300

Figure 4. f (u) with different values of β. Green, red, orange, yellow, cyan, blue and magenta
line are generated by β = −200, β = −100, β = 10, β = 100, β = 120, β = 200, and β = 300,
respectively.

In the following we generate synthetic data by specifying β and a class of initial data u0(x). We
consider a spatial domain L = 10 such that x ∈ [0, 10] and consider solutions in the time interval [0,T]
with T = 2. We collect observation data in the form Eq (2.9). The aim is to identify the unknown f (u)
for u ∈ [0, 1]. Since the solution of Eq (1.4) is TVD (total variation diminishing) [16, 29], we know
that the solution u(x, t) at any time t > 0 does not contain any new maxima or minima as compared to
the initial data u0(x), i.e.,

min u0(x) ≤ u(x, t) ≤ max u0(x).

This feature is inherited by the discrete scheme Eq (2.6) we use [29, 30]. In order to learn f (u) for
u ∈ [0, 1], we therfore consider a set of initial data {uk

0}Kk=1 such that 0 ≤ uk
0(x) ≤ 1. As the solution

Networks and Heterogeneous Media Volume 18, Issue 1, 48–79.

74

60

u(x, t) evolves over time, and corresponding observation data are collected in the form Eq (2.9), we
hopefully can extract data which is sufficient to learn a reliable approximation to the true flux function.

As initial data we choose box-like states that give rise to Riemann problems, one at each initial
discontinuity. Some of the questions we are interested in are:

(a) How much data do we need for learning the unknown flux function f (u)?

(b) How is the result of the learning of f (u) sensitive to noise in the observation data?

(c) How is the question in (a) and (b) sensitive to different flux functions, i.e., to different
β ∈ [−200, 300] in light of Eq (3.1)?

(d) What is the role of using S-Net-M versus S-Net-D when we seek to identify the unknown flux
function?

In the following we apply a numerical grid composed of Nx = 200 grid cells. We test effect of using
finer grid in Section 4. We consider observation data Eq (2.9) with

{t∗i } = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. (3.2)

3.1. Example with concave flux f ′′ < 0 corresponding to β = 10 in Eq (3.1)

We use the S-Net-M given by Eq (2.17) to represent the unknown flux function fθ(u). We use three
hidden layers, and the total number of trainable parameters is then 23. (Note that we obtain the same
type of result by choosing S-Net-D since this is a special case of S-Net-M.)

3.1.1. The case with noise-free observations and one initial state

(a) Simulated observation data

We use Algorithm 2 to generate the (synthetic) observations which are sampled at times Eq (3.2)
based on the following initial state:

u0(x) =


1.0, if x ∈ [0, 3]
0, otherwise

(3.3)

The distribution of observation data is shown in Figure 5 (top) where right plot is a zoomed in version
of the left plot. This plot shows that essentially the whole interval u ∈ [0, 1] is represented in the data
suggesting that a good learning of f (u) in this interval is possible.

(b) Training and testing

By applying Algorithm 3 (ConsLaw-Net), we obtain after training a flux function which we denote
by fθ∗(u). The analytical expression of it is given in Table 1. Apparently, fθ∗(u) differs from the
true one. However, we recall that what matters is the derivative f ′θ∗(u). In order to compare with
the true flux function, we plot the translated function fθ∗(u) − fθ∗(0) (revised) in Figure 5 (bottom).
Clearly, ConsLaw-Net has the ability to identify the true flux function with good accuracy for the flux
f (u; β = 10). This may not be a surprise since the nonlinearity is somewhat “weak” for this case.

Networks and Heterogeneous Media Volume 18, Issue 1, 48–79.

75

61

0.0 0.2 0.4 0.6 0.8 1.0
u

0

200

400

600

800

1000

1200

pr
op

or
tio

n

0.0 0.2 0.4 0.6 0.8 1.0
u

0

25

50

75

100

125

150

175

200

pr
op

or
tio

n

0.0 0.2 0.4 0.6 0.8 1.0
u

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

f(u
)

exact
prediction
revised prediction

Figure 5. Top. The distribution of noise-free observations generated from combining
f (u; β = 10) with initial state Eq (3.3). Left: The distribution of all observation data. Right:
The distribution between 0 and 200 (number of times values occur in the data). Bottom. The
flux function f (u; β = 10) (red solid line), fθ∗(u) generated by ConsLaw-Net (orange solid
line), and the translated function fθ∗(u) − fθ∗(0) (orange dashed line).

Table 1. The identification of flux function f (u; β = 10).

Correct f (u) f (u) = 1
2u(3 − u2) + 10

12u2
(

3
4 − 2u + 3

2u2 − 1
4u4

)

fθ∗(u) generated by Algorithm 3
fθ∗(u) = (1.5727)u + (−0.8902)u3 + (0.4633) + (0.2512)u4

+ (0.0779)u2 + (−0.0085)u5 + (0.0001)u6

3.1.2. What is the effect of adding noise to observation data?

(a) Simulated noisy observation data

To test the robustness of ConsLaw-Net, we add 5% noise on the data U generated by the initial state
Eq (3.3) based on sampling times Eq (3.2). That is, we replace U by U+ε, where ε ∈ [−0.05,+0.05] and
ε is generated from a uniform distribution. Since U varies within [0, 1] we refer to this as 5% noise.
The distribution of observations is similar to the one shown in Figure 5 (not shown). Specifically,
Figure 6 shows a comparison of noise-free and noisy data at three time points: 0.3, 0.6 and 0.9.

Networks and Heterogeneous Media Volume 18, Issue 1, 48–79.

76

62

0 2 4 6 8 10
x

0.0

0.2

0.4

0.6

0.8

1.0

u(
x)

clean
noise

0 2 4 6 8 10
x

0.0

0.2

0.4

0.6

0.8

1.0

u(
x)

clean
noise

0 2 4 6 8 10
x

0.0

0.2

0.4

0.6

0.8

1.0

u(
x)

clean
noise

Figure 6. Noise-free and noisy data generated by the initial state (3.3) combined with the
flux function f (u; β = 10) at three time points: 0.3 (left), 0.6 (middle) and 0.9 (right).

0.0 0.2 0.4 0.6 0.8 1.0
u

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

f(u
)

exact
prediction
revised prediction

0 2 4 6 8 10
x

0.0

0.2

0.4

0.6

0.8

1.0

u(
x)

exact
prediction
noise

(a) t = 1.0

0 2 4 6 8 10
x

0.0

0.2

0.4

0.6

0.8

1.0

u(
x)

exact
prediction
noise

(b) t = 2.0

Figure 7. Top. The true flux function f (u; β = 10) (red solid line), fθ∗(u) generated by
ConsLaw-Net based on noisy data (orange solid line), and the revised function fθ∗(u)− fθ∗(0)
(orange dashed line). Bottom. Predicted solution u(x, t) by using Algorithm 2 based on,
respectively, true f (u; β = 10) (red solid line) and the learned fθ∗(u) with noisy data (blude
dashed line). (a) Solutions at t = 1.0. (b) Solutions at t = 2.0.

(b) Training and testing

In Figure 7 (top), we show the learned function fθ∗(u) generated by ConsLaw-Net as well at the
translated fθ∗(u) − fθ∗(0) (revised). Comparison with the true f (u; β = 10) reveals that the noisy data
has made the identification slightly less accurate. Figure 7 (bottom) presents a comparison of the

Networks and Heterogeneous Media Volume 18, Issue 1, 48–79.

77

63

solution based on f (u; β = 10) and the predicted solution at later times t = 1.0, t = 2.0 by using
Algorithm 2 combined with fθ∗(u). Noise has been added to the initial data Eq (3.3) and then used with
the learned fθ∗(u) as input to Algorithm 2. This gives rise to the blue dashed line which contains some
smaller oscillations due to noisy initial data. From Figure 7 we see that the noisy data combined with
just one initial state Eq (3.3) leads to some loss of the predictive ability of ConsLaw-Net. Next, we
test how the learning can be improved for the case with noisy data by adding more initial data, thereby,
more observation data.

3.1.3. Can we improve the learning when observations are noisy by using 3 initial states?

(a) Simulated noisy observation data

We use Algorithm 2 to generate observations based on the 3 initial states given in Table 2. We
have no preferences other than that we want to generate observation data over a broader spectrum by
selecting box-functions of different heights as initial states. We consider observation data at times Eq
(3.2) and add 5% noise. The distribution of the resulting observation data is shown in Figure 8 (top).
Compared to the distribution corresponding to initial data Eq (3.3) and shown in Figure 5, we see that
all values of u in [0, 1] are to a larger extent represented.

Table 2. Three initial states used for case with f (u; β = 10).

u0
β=10 =


1.0, if x ∈ [2, 6]
0, otherwise

u1
β=10 =


0.6, if x ∈ [3, 6]
0, otherwise

u2
β=10 =


0.25, if x ∈ [2.5, 5.5]
0, otherwise

(b) Training and testing

Table 3 shows the analytical expression of the trained fθ∗(u) obtained by ConsLaw-Net. In Figure 8
(bottom) we see from the plot of fθ∗(u)− fθ∗(0) (revised) that the increased observation data set resolves
the problem with loss of accuracy due to noisy data.

Table 3. Identification of f (u; β = 10) based on noisy data from set of inital data in Table 2.

Correct f (u) f (u) = 1
2u(3 − u2) + 10

12u2
(

3
4 − 2u + 3

2u2 − 1
4u4

)

fθ∗(u) generated by Algorithm 3
f (u) = (1.5457)u + (−0.9621)u3 + (0.3557) + (0.24967)u4

+ (0.1620)u2 + (−0.0049)u5 + (3.2293e − 05)u6

3.2. Example with β = 120 in Eq (3.1)

We consider now the situation when synthetic data is generated from Eq (3.1) with β = 120. From
Figure 4 it is clear that the shape is more complex. We use the same S-Net-M as for the previous
example to represent fθ(u), i.e., three hidden layers and 23 trainable parameters.

Networks and Heterogeneous Media Volume 18, Issue 1, 48–79.

78

64

0.0 0.2 0.4 0.6 0.8 1.0
u

0

200

400

600

800

pr
op

or
tio

n

0.0 0.2 0.4 0.6 0.8 1.0
u

0

25

50

75

100

125

150

175

200

pr
op

or
tio

n

0.0 0.2 0.4 0.6 0.8 1.0
u

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

f(u
)

exact
prediction
revised prediction

Figure 8. Top. The distribution of noisy observations generated by combining f (u; β = 10)
with initial states given in Table 3. Left: all observation data. Right: The distribution between
0 and 200. Bottom. True flux function f (u; β = 10) (red solid line), fθ∗(u) generated from
ConsLaw-Net based on noisy data (orange solid line) and revised function fθ∗(u) − fθ∗(0)
(orange dashed line).

3.2.1. Noise-free observation data and one initial state

(a) Simulated observation data
We use Algorithm 2 to generate observations based on the following initial state

u0(x) =


1.0, if x ∈ [2, 4]
0, otherwise

(3.4)

Observations are extracted at times Eq (3.2). The distribution of observations is shown in Figure 9.

0.0 0.2 0.4 0.6 0.8 1.0
u

0

50

100

150

200

250

300

350

400

pr
op

or
tio

n

0.0 0.2 0.4 0.6 0.8 1.0
u

0

25

50

75

100

125

150

175

200

pr
op

or
tio

n

Figure 9. The distribution of clean observations generated from combining f (u; β = 120)
with initial state Eq (3.4). Left: The distribution of all observation data. Right: The
distribution between 0 and 200.

Networks and Heterogeneous Media Volume 18, Issue 1, 48–79.

79

65

(b) Training and testing

In Figure 10 (top, left), the function fθ∗(u) obtained from application of ConsLaw-Net and its
translated version fθ∗(u) − fθ∗(0) is shown and compared to the true f (u; β = 120). Interestingly, we
see that fθ∗(u) is essentially a good approximation of the upper concave envelope of f (u; β = 120),
which is the function involved in the construction of the entropy solution associated with the initial
discontinuity of Eq (3.4) located at x = 4 [15, 30]. The initial jump at x = 2, on the other hand, relies
on the lower convex envelope which amounts to the straight line which connects (0, 0) and (1, 1) and
reveals no information about f (u) for u ∈ (0, 1).

0.0 0.2 0.4 0.6 0.8 1.0
u

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

f(u
)

exact
prediction
revised prediction

0 2 4 6 8 10
x

0.0

0.2

0.4

0.6

0.8

1.0

u(
x)

exact
prediction

(a) t = 1.0

0 2 4 6 8 10
x

0.0

0.1

0.2

0.3

0.4

0.5

0.6

u(
x)

exact
prediction

(b) t = 2.0

Figure 10. Top. Left. Noise-free observations are generated from f (u; β = 120) (red solid
line) combined with the initial Eq (3.4). The learned flux fθ∗(u) generated from ConsLaw-
Net (orange solid line) and the revised function (orange dashed line). Right. Loss function
behavior shows that error goes to zero. Bottom. Comparison of prediced behavior based on,
respectively, true f (u; β = 120) and learned fθ∗(u), at times t = 1.0 (a), t = 2.0 (b).

In Figure 10 (top, right), we show that the loss function tends to zero, which reflects that the
(wrongly) identified flux function fθ∗(u) is largely consistent with the observation data. This brings to
the surface a main challenge with learning the unknown flux function, namely, the lack of one-to-one
correspondence between observation data and nonlinear flux function, as expressed by the entropy
condition Eq (2.4). The consequence of this poor approximation to the true f (u; β = 120) is illustrated
in Figure 10 (bottom), which presents a comparison of the exact analytical solution and the solution
predicted by fθ∗(u) at times t = 1.0, t = 2.0 based on the initial state Eq (3.4). From Figure 9 we see

Networks and Heterogeneous Media Volume 18, Issue 1, 48–79.

80

66

that the observation data is sparse for u ∈ (0.0, 0.2) and for u centered around 0.8. So we may try to
collect more data from these intervals by adding another type of initidal data.

3.2.2. Can learning of f (u; β = 120) be improved by using 2 initial states?

(a) Simulated observation data

We use Algorithm 2 to generate new observations based on the two initial states given in Table 4.

Table 4. Two initial states for case with f (u; β = 120).

u0
β=120 =


1.0, if x ∈ [2, 4]
0, otherwise

u1
β=120 =


0.9, if x ∈ [3.5, 6.5]
0, otherwise

The distribution of the resulting observation data is shown in Figure 11 (top). Clearly, the part of
the interval (0, 1) which was poorly represented with only one initial state, is now present to a larger
extent.

0.0 0.2 0.4 0.6 0.8 1.0
u

0

100

200

300

400

500

600

700

800

pr
op

or
tio

n

0.0 0.2 0.4 0.6 0.8 1.0
u

0

25

50

75

100

125

150

175

200

pr
op

or
tio

n

0.0 0.2 0.4 0.6 0.8 1.0
u

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

f(u
)

exact
prediction
revised prediction

Figure 11. Top. The distribution of noise-free observations generated from combining
f (u; β = 120) with initial state given in Table 4. Left: The distribution of all observation
data. Right: The distribution between 0 and 200. Bottom. The flux function f (u; β = 120)
where noise-free observations have been generated from initial data given in Table 4. The
exact flux function f (u; β = 120) (red solid line), fθ∗(u) generated from ConsLaw-Net (orange
solid line), and fθ∗(u) − fθ∗(0) (orange dashed line).

Networks and Heterogeneous Media Volume 18, Issue 1, 48–79.

81

67

(b) Training and testing

The analytical expression of the trained flux function fθ∗(u) is given in Table 5. From the
visualization in Figure 11 (bottom), we see that the learned fθ∗(u) is largely consistent with the exact
f (u; β = 120) with only a small inaccuracy seen in the interval u ∈ [0.6, 0.8].

Table 5. The identification of f (u; β = 120) based on noise-free data generated by initial
data in Table 4.

Correct f (u) f (u) = 1
2u(3 − u2) + 120

12 u2
(

3
4 − 2u + 3

2u2 − 1
4u4

)

fθ∗(u) generated by ConsLaw-Net

f (u) = (21.7963)u4 + (−21.1055)u3 + (−10.3012)u5

+ (6.7875)u2 + (2.4417)u6 + (1.6638)u + (0.4427)
+ (−0.2827)u7 + (0.0127)u8

Finally, we also want to test the effect of noisy data for this case. We add 5% noise on data generated
by the initial state in Table 4. Table 6 shows the analytic expression of fθ∗(u) obtained by ConsLaw-
Net. The corresponding visualization in Figure 12 reflects that the noise hides for the shape of the true
flux function, similarly as for the case with less observation data seen in Figure 10.

Table 6. Identification of f (u; β = 120) based on noisy data generated from initial state in
Table 4.

Correct f (u) f (u) = 1
2u(3 − u2) + 120

12 u2
(

3
4 − 2u + 3

2u2 − 1
4u4

)

f (u) generated by ConsLaw-Net

f (u) = (−4.9213)u3 + (2.3761)u + (1.7820)u4 + (1.0587)u2

+ (0.6508)u5 + (0.5101) + (0.0653)u6 + (0.0027)u7

+ (3.8506e − 05)u8

0.0 0.2 0.4 0.6 0.8 1.0
u

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

f(u
)

exact
prediction
revised prediction

Figure 12. The flux function f (u; β = 120) where noisy observations have been generated
from initial data given in Table 4. The exact flux function f (u; β = 120) (red solid line), fθ∗(u)
generated from ConsLaw-Net (orange solid line), and fθ∗(u) − fθ∗(0) (orange dashed line).

A natural remedy is to collect more observations by adding a wider spectrum of initial states, as
shown in Table 7.

Networks and Heterogeneous Media Volume 18, Issue 1, 48–79.

82

68

Table 7. Initial states for the case with f (u; β = 120) and noisy data

u0
β=120 =


1.0, if x ∈ [2, 4]
0, otherwise

u1
β=120 =


0.9, if x ∈ [3.5, 6.5]
0, otherwise

u2
β=120 =


0.8, if x ∈ [3, 6]
0, otherwise

u3
β=120 =


0.7, if x ∈ [1, 4]
0, otherwise

The corresponding histogram showing the distribution of different values of u ∈ (0, 1) is found in
Figure 13 (top). Clearly, the additional initial states has increased the involvement of u values in the
whole interval (0, 1), suggesting that a better learning can be expected.

0.0 0.2 0.4 0.6 0.8 1.0
u

0

200

400

600

800

1000

1200

pr
op

or
tio

n

0.0 0.2 0.4 0.6 0.8 1.0
u

0

25

50

75

100

125

150

175

200

pr
op

or
tio

n

0.0 0.2 0.4 0.6 0.8 1.0
u

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

f(u
)

exact
prediction
revised prediction

Figure 13. Top. The distribution of noisy observations generated by the four initial states
in Table 7 by using f (u; β = 120). Bottom. The flux function f (u; β = 120) where noisy
observations are generated based on initial data given in Table 7. The exact flux function
f (u; β = 120) (red solid line), fθ∗(u) generated from ConsLaw-Net (orange solid line), and
fθ∗(u) − fθ∗(0) (orange dashed line).

Table 8. The identification of f (u; β = 120) based on noisy data and set of initial states given
in Table 7.

Correct f (u) f (u) = 1
2u(3 − u2) + 120

12 u2
(

3
4 − 2u + 3

2u2 − 1
4u4

)

f (u) generated by ConsLaw-Net

f = (24.6292)u4 + (−23.4251)u3 + (−12.1104)u5

+ (7.7098)u2 + (3.0216)u6 + (1.5297)u + (0.4520)
+ (−0.3702)u7 + (0.0177)u8

Networks and Heterogeneous Media Volume 18, Issue 1, 48–79.

83

69

Table 8 shows the analytic expression of fθ∗(u) obtained from ConsLaw-Net. Figure 13 (bottom)
confirms that the learning of the true f (u; β = 120) is quite effective now despite noisy data.

3.3. Example with f (u; β = 200) and f (u; β = 300) defined by Eq (3.1)

We consider the situation when synthetic data is generated from Eq (3.1) with β = 200. From
Figure 4 it is clear that the shape involves two inflection points. First a convex region for small u,
followed by a concave for intermediate u, and then a convex region again for large u. We use the
same S-Net-M as for the previous example to represent fθ(u), i.e., three hidden layers and 23 trainable
parameters. Also the times for observation data is given by Eq (3.2).

3.3.1. Noise-free observations and two initial states

(a) Simulated observation data, training and testing

We use Algorithm 2 to generate the observations based on two initial states as specified in Table 9.
The corresponding histogram is shown in Figure 14 (top) and suggests a fair chance to achieve good
learning result. The result of the learning is illustrated in Figure 14 (bottom). We see that to a large
extent the learned fθ∗(u) fits well with the true f (u; θ = 200) with room for improvements in the
intervals (0.4, 0.6) and (0.8, 1.0).

0.0 0.2 0.4 0.6 0.8 1.0
u

0

500

1000

1500

2000

2500

pr
op

or
tio

n

0.0 0.2 0.4 0.6 0.8 1.0
u

0

25

50

75

100

125

150

175

200

pr
op

or
tio

n

0.0 0.2 0.4 0.6 0.8 1.0
u

0.0

0.2

0.4

0.6

0.8

1.0

1.2

f(u
)

exact
prediction
revised prediction

Figure 14. Top. The distribution of noise-free observations generated for the case with
f (u; β = 200) and initial data as in Table 9. Left. Distribution of all data. Right. Distribution
of the quantity between 0 and 200. Bottom. The flux function f (u; β = 200) where noise-
free observations are generated based on initial data given in Table 9. The exact flux function
f (u; β = 200) (red solid line), fθ∗(u) generated from ConsLaw-Net (orange solid line), and
fθ∗(u) − fθ∗(0) (orange dashed line).

Networks and Heterogeneous Media Volume 18, Issue 1, 48–79.

84

70

Table 9. Two initial states used for the case with f (u; β = 200).

u0
β=200 =


1.0, if x ∈ [2, 4]
0, otherwise

u0
β=200 =


0.9, if x ∈ [3.5, 6.5]
0, otherwise

Now we focus on the case with true flux function f (u; β = 300). As seen from Figure 4, the shape
bears clear similarity to the case with f (u; β = 200). However, the convex and concave regions are
more pronounced. Hence, in light of the result for f (u; β = 200) we may expect that more observation
data is required. Therefore, we consider six initial data as given in Table 10.

Table 10. Six initial states with β = 300.

u0
β=300 =


1.0, if x ∈ [0, 3]
0, otherwise

u1
β=300 =


0.8, if x ∈ [3, 6]
0, otherwise

u2
β=300 =


0.6, if x ∈ [4, 7]
0, otherwise

u3
β=300 =


0.4, if x ∈ [0, 3]
0, otherwise

u4
β=300 =


0.3, if x ∈ [3, 6]
0, otherwise

u5
β=300 =


0.7, if x ∈ [1, 4]
0, otherwise

0.0 0.2 0.4 0.6 0.8 1.0
u

0

1000

2000

3000

4000

5000

6000

7000

pr
op

or
tio

n

0.0 0.2 0.4 0.6 0.8 1.0
u

0

25

50

75

100

125

150

175

200

pr
op

or
tio

n

0.0 0.2 0.4 0.6 0.8 1.0
u

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

f(u
)

exact
prediction
revised prediction

Figure 15. Top. The distribution of noise-free observations generated for the case with
f (u; β = 300) and initial data as in Table 10. Left. Distribution of all data. Right. Distribution
of the quantity between 0 and 200. Bottom. The flux function f (u; β = 300) where noise-free
observations are generated based on initial data given in Table 10. The exact flux function
f (u; β = 300) (red solid line), fθ∗(u) generated from ConsLaw-Net (orange solid line), and
fθ∗(u) − fθ∗(0) (orange dashed line).

Networks and Heterogeneous Media Volume 18, Issue 1, 48–79.

85

71

The distribution of observation data is shown in Figure 15 (top). It reflects a good distribution apart
from a somewhat low representation for u ∈ (0.8, 1.0). The analytical expression of fθ∗(u) generated by
ConsLaw-Net is given in Table 11. The visualization in Figure 15 (bottom) shows that the learned fθ∗(u)
largely captures the variations of the true flux function f (u; β = 300), with a small loss of accuracy in
the interval with sparse observation data (u ∈ (0.8, 1.0)).

Table 11. Identification of f (u; β = 300) based on clean data generated by 6 initial states
(Table 10).

Correct f (u) f (u) = 1
2u(3 − u2) + 300

12 u2
(

3
4 − 2u + 3

2u2 − 1
4u4

)

f (u) generated by ConsLaw-Net

f (u) = (64.5698)u4 + (−59.0164)u3 + (−32.7687)u5

+ (19.2141)u2 + (8.4140)u6 + (1.6037)u + (−1.0640)u7

+ (0.2655) + (0.05272)u8

3.4. Example with β = −200 in Eq (3.1)

In this example we explore how ConsLaw-Net can learn the flux function f (u; β = −200). As
seen from Figure 4 this flux function also has two inflection points. The order of the convex and
concave regions is interchanged, as compared to the case with f (u; β = 300), where a convex region
for intermediate u-values now is surrounded by a concave region for small u and large u. As before,
we use S-Net-M to represent fθ(u), however, we use four hidden layers which amounts to 34 trainable
parameters.

3.4.1. Noise-free observation data and two initial states

(a) Simulated observation data

We use Algorithm 2 to generate the observations based on the two initial states given in Table 12.
We generate observation data at times given by Eq (3.2), in addition to the times 1.0 and 1.1. This
gives rise to the distribution of observation data as shown in Figure 16 (top). Clearly, the observation
data covers the whole interval (0, 1) well.

Table 12. Two initial states for the case with f (u; β = −200).

u0
β=−200 =


1.0, if x ∈ [2, 4]
0, otherwise

u1
β=−200 =


0.9, if x ∈ [3.5, 6.5]
0, otherwise

(b) Training and testing

From Figure 16 (bottom), we see that the learned flux fθ∗(u) essentially captures the lower convex
envelope of the true f (u; β = −200). In particular, there is a lack of information about the true flux for
u ∈ [0.0, 0.3] and u ∈ [0.6, 1.0]. This can be understood in light of the fact that the decreasing initial
discontinuity located at x = 4 and x = 6.5, respectively, depends on the upper concave evelope, which

Networks and Heterogeneous Media Volume 18, Issue 1, 48–79.

86

72

essentially is the straight line which connects (0, 0) and (0.9, f (0.9)). Hence, precise information about
the shape of f (u; β = −200) is difficult to reveal. As a result, the initial increasing jumps at x = 2 and
x = 3.5, respectively, then imply that ConsLaw-Net generates a function fθ∗(u) which coincides with
the lower convex envelope of f (u; β = −200), as shown in Figure 16 (bottom).

0.0 0.2 0.4 0.6 0.8 1.0
u

0

500

1000

1500

2000

2500

3000

pr
op

or
tio

n

0.0 0.2 0.4 0.6 0.8 1.0
u

0

25

50

75

100

125

150

175

200

pr
op

or
tio

n

0.0 0.2 0.4 0.6 0.8 1.0
u

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

f(u
)

exact
prediction
revised prediction

Figure 16. Top. The distribution of noise-free observations generated for the case with
f (u; β = −200) and initial data as in Table 12. Left. Distribution of all data. Right.
Distribution of the quantity between 0 and 200. Bottom. The flux function f (u; β = −200)
where noise-free observations are generated based on initial data given in Table 12. The exact
flux function f (u; β = −200) (red solid line), fθ∗(u) generated from ConsLaw-Net (orange
solid line), and fθ∗(u) − fθ∗(0) (orange dashed line).

3.4.2. Improving the learning of f (u; β = −200) by using six initial states

(a) Simulated observation data

We increase the number of initial data from two to six, as shown in Table 13. We use Algorithm 2 to
generate the observations based on initial data in Table 13. The corresponding histogram of observation
data is shown in Figure 17 (top).

(b) Training and testing

We first illustrate in Table 14 the analytical expression of the learned flux function fθ∗(u) obtained
through ConsLaw-Net. From Figure 17 (bottom) we see that fθ∗(u) is consistent with the exact f (u; β =

−200) with respect to u in most intervals, except for the interval u ∈ [0.8, 1.0]. Combined with the

Networks and Heterogeneous Media Volume 18, Issue 1, 48–79.

87

73

Table 13. Six initial states used in combination with f (u; β = −200).

u0
β=−200 =


1.0, if x ∈ [0, 3]
0, otherwise

u1
β=−200 =


0.8, if x ∈ [3, 6]
0, otherwise

u2
β=−200 =


0.6, if x ∈ [4, 7]
0, otherwise

u3
β=−200 =


0.4, if x ∈ [0, 3]
0, otherwise

u4
β=−200 =


0.3, if x ∈ [3, 6]
0, otherwise

u5
β=−200 =


0.7, if x ∈ [1, 4]
0, otherwise

0.0 0.2 0.4 0.6 0.8 1.0
u

0

1000

2000

3000

4000

5000

6000

7000

8000

pr
op

or
tio

n

0.0 0.2 0.4 0.6 0.8 1.0
u

0

25

50

75

100

125

150

175

200

pr
op

or
tio

n

0.0 0.2 0.4 0.6 0.8 1.0
u

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

f(u
)

exact
prediction
revised prediction

Figure 17. Top. The distribution of noise-free observations generated for the case with
f (u; β = −200) and initial data as in Table 13. Left. Distribution of all data. Right.
Distribution of the quantity between 0 and 200. Bottom. The flux function f (u; β = −200)
where noise-free observations are generated based on initial data given in Table 13. The exact
flux function f (u; β = −200) (red solid line), fθ∗(u) generated from ConsLaw-Net (orange
solid line), and fθ∗(u) − fθ∗(0) (orange dashed line).

observation distribution in Figure 17 (top), we see that there are relatively few observations in this
interval, which most likely is the reason for this loss in accurate learning.

4. Learning of fractional flux functions

In this section, we consider a flux function in the following fractional form Eq (4.1)

f (u) =
u2

u2 + β(1 − u)2 . (4.1)

Networks and Heterogeneous Media Volume 18, Issue 1, 48–79.

88

74

Table 14. Identification of f (u; β = −200) based on clean data generated by initial states in
Table 13.

Correct f (u) f (u) = 1
2u(3 − u2) + −200

12 u2
(

3
4 − 2u + 3

2u2 − 1
4u4

)

f (u) generated by ConsLaw-Net

f (u) = (10.8706)u3 − 10.7580u5 − 6.3577u2 + (5.9855)u4

− 4.9812u6 + (4.0332)u7 + (0.8962)u + (0.8686)u8

− 0.6212 + (0.5814)u10 − 0.4223u9 + (0.3570)u11

− 0.0937u12 − 0.0094u15 + (0.0082)u13 + (0.0067)u14

− 0.0021u16

This nonlinear flux function appears in the context of creeping two-phase porous media flow [15] and
accounts for a large range of nonlinear two-phase behavior. We consider the same spatial domain as
before (L = 10) and explore solution behavior in the time period t ∈ [0,T] with T = 2. We set β = 0.5
in Eq (4.1) when we generate synthetic data for further testing of ConsLaw-Net for this class of flux
functions. We use a grid of Nx = 400 cells and consider observation data Eq (2.9) at times Eq (3.2).

Figure 18. Left. Loss function based on S-Net-M. Right. Loss function based on S-Net-D.

4.1. Example with β = 1/2 in Eq (4.1)

We first try to use S-Net-M with three hidden layers and 23 trainable parameters, based on
previous experience from Section 3. However, we find that the loss function does not converge to
zero, see Figure 18 (left). Therefore, we replace it by S-Net-D (2.20) with two hidden layers and 18
trainable parameters which gives significantly better behavior in terms of convergence behavior of the
loss function, see Figure 18 (right).

4.1.1. What is the effect of noisy observations?

(a) Simulation of observation data, training, and testing

We use Algorithm 2 to generate the observations based on initial state in Table 15. Then, 3% noise
is added to the observations. The distribution of the resulting observation data is shown in Figure 19

Networks and Heterogeneous Media Volume 18, Issue 1, 48–79.

89

75

(top). Specifically, Figure 20 shows clean and noisy data corresponding to the first initial data in
Table 15 at three time points: 0.3, 0.6 and 0.9.

Table 15. Two initial states with β = 0.5 in the flux function Eq (4.1).

u0
β=0.5 =


1.0, if x ∈ [4, 6]
0, otherwise

u1
β=0.5 =


0.8, if x ∈ [4, 6]
0, otherwise

0.0 0.2 0.4 0.6 0.8 1.0
u

0

250

500

750

1000

1250

1500

1750

2000

pr
op

or
tio

n

0.0 0.2 0.4 0.6 0.8 1.0
u

0

25

50

75

100

125

150

175

200

pr
op

or
tio

n

0.0 0.2 0.4 0.6 0.8 1.0
u

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

f(u
)

exact
prediction
revised prediction

Figure 19. Top. The distribution of noisy observations generated for the flux function given
by Eq (4.1) with β = 1/2 and initial data as in Table 15. Left. Distribution of all data. Right.
Distribution of the quantity between 0 and 200. Bottom. The true flux function Eq (4.1) with
β = 1/2 where noisy observations are generated based on initial data given in Table 15. The
exact flux function (red solid line), fθ∗(u) generated from ConsLaw-Net (orange solid line),
and fθ∗(u) − fθ∗(0) (orange dashed line).

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
x

0.0

0.2

0.4

0.6

0.8

1.0

u(
x)

clean
noise

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
x

0.0

0.2

0.4

0.6

0.8

1.0

u(
x)

clean
noise

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
x

0.0

0.2

0.4

0.6

0.8

1.0

u(
x)

clean
noise

Figure 20. Clean and noisy data generated by the first initial data in Table 15 with Nx = 400
at three time points: 0.3 (left), 0.6 (middle) and 0.9 (right).

Table 16 shows the analytic expression of the identified fθ∗(u). In Figure 19 (bottom), we see
a comparison of the learned flux function under noisy data and the true flux function. Clearly, the

Networks and Heterogeneous Media Volume 18, Issue 1, 48–79.

90

76

learning has been effective for this flux function under noisy data based on ConsLaw-Net combined
with the neural network S-Net-D to represent the unknown flux function.

Table 16. The identification of f (u) with β = 1/2 based on noisy data generated by initial
data as given in Table 15.

Correct f (u) f (u) = u2

u2+0.5(1−u)2

f (u) learned from ConsLaw-Net f (u) =
−1.224u + 0.639 − 0.233u2 − 0.013u3 − 6.0e − 05u4

−2.696u2 + 1.870u − 1.022 − 0.323u3 − 0.002u4

5. Conclusion

Compared with advanced methods that have been used to learn PDE problems from data [11,13,14],
our method can deal with scalar conservation laws and identification of the unknown nonlinear flux
function. In this paper, we designed a framework denoted ConsLaw-Net that combines a deep feed-
forward network and an entropy satisfying discrete scheme to learn the unknown flux function. We
have found that by including observation data from a sufficient number of initial states, the correct
nonlinear flux function can be recovered. This is true both for data with and without noise. Using
symbolic multilayer neural networks (S-Net-M or S-Net-D) to represent the unknown flux function
fθ(u) in an entropy satsifying scheme, represents the key components. It has been demonstrated that
the additional regularity imposed on the flux function through fθ(u) helps to identify the correct form
of it. Moreover, the identified flux function fθ∗(u) has the ability to discover the unknown nonlinear
conservation law model from a relatively sparse amount of observation data, e.g., typically sampled at
10 different times. Interesting findings are:

(1) Depending on the complexity of the hidden flux function f (u) we seek to identify, i.e., the non-
linear shape, we may need observation data corresponding to a set of different initial states u0(x).
This is necessary in order to collect information that can reflect the nonlinear form of f (u) for
all values of u in the interval for which we seek to learn the flux function. We also explore the
impact of noise in the observation data and find that the correct flux function to a large extent can
be identified from noisy data by including 4–6 different initial states.

(2) We find that the method can learn the relevant flux function for a whole family of different flux
functions ranging from pure convex/concave to strongly non-convex functions. The role of
observation data as a result of different sets of initial states, is highlighted.

(3) In this work we apply a variant of the Rusanov scheme [15] which relies on an estimate of the
maximum value of f ′(u). The simplicity of the numerical scheme is exploited in the learning
process. Other numerical schemes may require suitable modifications in the definition of
ConsLaw-Net.

The current version of ConsLaw-Net is restricted to a scalar conservation law in one dimension.
Possible further extensions can be: (i) What is the role of the specific discrete scheme that approximates
the entropy solution? Does the method work for any entropy-satisfying scheme? (ii) Is it possible to
also learn the role played by parameters like β in Eq (3.1) and Eq (4.1) from the observation data? In
orther words, identify the functional form of f with respect to both u and β. (iii) Explore the proposed

Networks and Heterogeneous Media Volume 18, Issue 1, 48–79.

91

77

method in a setting where experimental data is available. This may lead to considering other type of
observation data than we have used in this work.

Acknowledgments

The authors acknowledge the University of Stavanger to support this research with funds coming
from the project Computations of PDEs systems and use of machine learning techniques (IN-12570).

Conflict of interest

The authors declare there is no conflict of interest.

References

1. J. Bongard, H. Lipson, Automated reverse engineering of nonlinear dynamical systems. Proc.
Natl. Acad. Sci. , 104 (2007), 9943–9948. https://doi.org/10.1073/pnas.0609476104

2. M. Schmidt, H. Lipson, Distilling free-form natural laws from experimental data, Science, 324
(2009), 81–85 . https://doi.org/10.1126/science.1165893

3. H. Owhadi, Bayesian numerical homogenization, Multiscale. Model. Sim., 13 (2015), 812–828.
https://doi.org/10.1137/140974596

4. M. Raissi, P. Perdikaris,, G.E. Karniadakis, Inferring solutions of differential
equations using noisy multi-fidelity data, J. Comput. Phys., 335 (2017), 736–746.
https://doi.org/10.1016/j.jcp.2017.07.050

5. M. Raissi, P. Perdikaris, G.E. Karniadakis, Machine learning of linear differential
equations using Gaussian processes, J. Comput. Phys., 348 (2017), 683–693.
https://doi.org/10.1016/j.jcp.2017.07.050

6. C.E. Rasmussen, C.K. Williams, Gaussian processes for machine learning, Cambridge: MIT
press, 2006.

7. S.L. Brunton, J.L. Proctor, J.N. Kutz, Discovering governing equations from data by sparse
identification of nonlinear dynamical systems, Proc. Natl. Acad. Sci., 113 (2016), 3932–3937.
https://doi.org/10.1073/pnas.1517384113

8. H Schaeffer, Learning partial differential equations via data discovery and sparse optimization,
Proc. Math. Phys. Eng. Sci, 473 (2017), 20160446. https://doi.org/10.1098/rspa.2016.0446

9. S.H. Rudy, S.L. Brunton, J.L. Proctor, J.N. Kutz, Data-driven discovery of partial differential
equations, Sci. Adv., 3 (2017), e1602614. https://doi.org/10.1126/sciadv.1602614

10. Z. Wu, R. Zhang, Learning physics by data for the motion of a sphere falling in
a non-Newtonian fluid, Commun Nonlinear Sci Numer Simul, 67 (2019), 577–593.
https://doi.org/10.1016/j.cnsns.2018.05.007

11. M. Raissi, P. Perdikaris, G.E. Karniadakis, Physics-informed neural networks: A deep learning
framework for solving forward and inverse problems involving nonlinear partial differential
equations, J. Comput. Phys., 378 (2019), 686–707. https://doi.org/10.1016/j.jcp.2018.10.045

Networks and Heterogeneous Media Volume 18, Issue 1, 48–79.

92

78

12. O Fuks, H.A. Tchelepi, Limitations of physics informed machine learning for nonlinear
two-phase transport in porous media, J. Mach. Learn. Model. Comput., 1 (2020), 19–37.
https://doi.org/10.1615/JMachLearnModelComput.2020033905

13. Z. Long, Y. Lu, X. Ma, B. Dong, PDE-net: Learning PDEs from data, Proceedings of the 35th
International Conference on Machine Learning, 80 (2018), 3208–3216.

14. Z. Long, Y. Lu, B. Dong, PDE-Net 2.0: Learning PDEs from data with a numeric-symbolic hybrid
deep network, J. Comput. Phys., 399 (2019), 108925. https://doi.org/10.1016/j.jcp.2019.108925

15. R.J. LeVeque, Finite volume methods for hyperbolic problems, Cambridge: Cambridge Texts in
Applied Mathematics, 2007.

16. H. Holden, N.H. Risebro, Front tracking for hyperbolic conservation laws, Berlin: Springer, 2011.

17. G. Martius, C.H. Lampert, Extrapolation and learning equations, arXiv: 1610.02995, [Preprint],
(2016) [cited 2022 Oct 18]. Available form: https://arxiv.53yu.com/abs/1610.02995

18. S. Sahoo, C. Lampert, G. Martius, Learning equations for extrapolation and control, Proceedings
of the 35th International Conference on Machine Learning, 80 (2018), 4442–4450.

19. F. James, M. Sepúlveda, Convergence results for the flux identification in a scalar conservation
law, SIAM J. Control. Optim., 37 (1999), 869–891. https://doi.org/10.1137/S0363012996272722

20. H. Holden, F.S. Priuli, N.H. Risebro, On an inverse problem for scalar conservation laws, Inverse
Probl, 30 (2014), 035015. https://doi.org/10.1088/0266-5611/30/3/035015

21. M. C. Bustos, F. Concha, R. Bürger, E.M. Tory, Sedimentation and thickening–Phenomenological
Foundation and Mathematical Theory. Dordrecht: Kluwer Academic Publishers, 1999.

22. S. Diehl, Estimation of the batch-settling flux function for an ideal suspension from only two
experiments, Chem. Eng. Sci., 62 (2007), 4589–4601. https://doi.org/10.1016/j.ces.2007.05.025

23. R. Bürger, S. Diehl, Convexity-preserving flux identification for scalar conservation laws
modelling sedimentation, Inverse Probl, 29 (2013), 045008. https://doi.org/10.1088/0266-
5611/29/4/045008

24. R. Bürger, J. Careaga, S. Diehl, Flux identification of scalar conservation laws from sedimentation
in a cone, IMA J Appl Math, 83 (2018), 526–552. https://doi.org/10.1093/imamat/hxy018

25. S. Diehl, Numerical identification of constitutive functions in scalar nonlinear convection–
diffusion equations with application to batch sedimentation, Appl Numer Math, 95 (2015), 154–
172. https://doi.org/10.1016/j.apnum.2014.04.002

26. M. Mishra, Machine learning framework for data driven acceleration of computations of
differential equations, Math. eng., 1 (2018), 118–146. https://doi.org/10.3934/Mine.2018.1.118

27. J.W. Thomas, Numerical partial differential equations–Conservation laws and elliptic equations,
Texts in Applied Mathematics, New York: Springer, 1999.

28. J.S. Hesthaven, Numerical methods for conservation laws. from analysis to algorithms,
Philadelphia: Society for Industrial and Applied Mathematics, 2017.

29. D. Kröener, Numerical schemes for conservation laws, New York: John Wiley & Sons, 1997.

30. M. Mishra, U.S. Fjordholm, R. Abgrall, Numerical methods for conservation laws and related
equations. Lecture notes for Numerical Methods for Partial Differential Equations 57 (2019), 58.

Networks and Heterogeneous Media Volume 18, Issue 1, 48–79.

93

79

31. Valerii Iakovlev, Markus Heinonen, Harri Lähdesmäki, Learning continuous-time pdes from
sparse data with graph neural networks, arXiv: 2006.08956, [Preprint], (2020) [cited 2022 Oct
18]. Available form: https://arxiv.53yu.com/abs/2006.08956

32. C. Zhu, R.H. Byrd, P. Lu, J. Nocedal, Algorithm 778: L-BFGS-B: Fortran subroutines
for large-scale bound-constrained optimization, Acm T math software, 23 (1997), 550–560.
https://doi.org/10.1145/279232.279236

33. Sebastian R, An overview of gradient descent optimization algorithms, arXiv: 1609.04747,
[Preprint], (2016) [cited 2022 Oct 18]. Available form: https://arxiv.org/abs/1609.04747

34. H.J. Skadsem, S. Kragset, A numerical study of density-unstable reverse circulation
displacement for primary cementing, J. Energy. Resour. Technol., 144 (2022), 123008.
https://doi.org/10.1115/1.4054367

c© 2023 licensee AIMS Press. This is an
open access article distributed under the terms
of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

Networks and Heterogeneous Media Volume 18, Issue 1, 48–79.

94

Paper IV:
Identification of the Flux Function
of Nonlinear Conservation Laws
with Variable Parameters

Qing Li, Jiahui Geng, Steinar Evje

Physica D: Nonlinear Phenomena 451 (2023): 133773
doi = https://doi.org/10.1016/j.physd.2023.133773

95

https://doi.org/10.1016/j.physd.2023.133773

Physica D 451 (2023) 133773

Contents lists available at ScienceDirect

Physica D

journal homepage: www.elsevier.com/locate/physd

Identification of the flux function of nonlinear conservation lawswith
variable parameters
Qing Li a, Jiahui Geng b, Steinar Evje a,∗

a University of Stavanger, Department of Energy and Petroleum, Group of Computational Engineering, Norway
b University of Stavanger, Department of Electrical Engineering and Computer Science, Stavanger, Norway

a r t i c l e i n f o

Article history:
Received 8 November 2022
Received in revised form 21 March 2023
Accepted 28 April 2023
Available online 9 May 2023
Communicated by R. Kuske

Keywords:
Nonlinear conservation law
Variable parameter flux function
Machine learning method
Entropy condition
Linear Regression Neural Network
Symbolic neural network

a b s t r a c t

Machine learning methods have in various ways emerged as a useful tool for modeling the dynamics
of physical systems in the context of partial differential equations (PDEs). Nonlinear conservation laws
(NCLs) of the form ut+f (u)x = 0 play a vital role within the family of PDEs. A main challenge with NCLs
is that solutions contain discontinuities. That is, one or several jumps of the form (uL(t), uR(t)) with
uL ̸= uR may move in space and time such that information about f (u) in the interval associated with
this jump is not present in the observation data. Moreover, the lack of regularity in the solution u(x, t)
prevents use of physics informed neural network (PINN) and similar methods. The purpose of this
work is to propose a method to identify the nonlinear flux function f (u, β) with variable parameters
of an unknown scalar conservation law

ut + f (u, β)x = 0 (∗)

with u as the dependent variable and β as the parameter. In a recent work we introduced a framework
coined ConsLaw-Net that combines a symbolic multi-layer neural network and an entropy-satisfying
discrete scheme to learn the nonlinear, unknown flux function f (u;β) for various fixed β . Learning
the flux function with variable parameters, marked as f (u, β), is more challenging since it requires an
understanding of the relationship between the variable u and parameter β as well. In this work we
demonstrate how to couple ConsLaw-Net to the Linear Regression Neural Network (LRNN) to learn
the functional form of the two variable function f (u, β). In addition, ConsLaw-Net is here further
developed and made more generic by using a refined discrete scheme combined with a more general
symbolic neural network (S-Net). We experimentally demonstrate that the upgraded ConsLaw-Net
integrated with LRNN is well-suited for learning tasks, achieving more accurate identification than
existing learning approaches when applied to problems that involve general classes of flux functions
f (u, β). The investigations of this work are restricted to the class of polynomial, rational functions.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

1.1. Background

Machine learning methods for solving partial differential equa-
tion problems have been widely used in science and engineering,
for example, electromagnetism [1], aerodynamics [2,3], weather
prediction [4], and geophysics [5]. Raissi et al. [6] introduced
the physics informed neural networks (PINNs) for solving partial
differential equations (PDEs) and learning parameters in PDEs.
Long et al. [7,8] proposed PDE-Net that combines numerical ap-
proximation of differential operators and symbolic multi-layer

∗ Corresponding author.
E-mail addresses: quing.li@uis.no (Q. Li), jiahui.geng@uis.no (J. Geng),

steinar.evje@uis.no (S. Evje).

neural networks. The authors reported that PDE-Net has the
most flexible and expressive power by learning both differential
operators and the nonlinear response function of the underlying
PDE model. In this work, we focus on the problem of learning the
unknown nonlinear flux function f (u, β) that is involved in the
general scalar nonlinear conservation law. Here we are restricted
to the one-dimensional case, given by

ut + f (u, β)x = 0, x ∈ (0, L)
u|t=0 = u0(x)
ux|x=0 = ux|x=L = 0

(1)

where u = u(x, t) is the main variable and β is a parameter,
typically, related to different forces that drive the process under
consideration. Note that this extension to include dependence on
a parameter β is highly relevant for many situations where dif-
ferent physical parameters naturally vary over certain intervals.

https://doi.org/10.1016/j.physd.2023.133773
0167-2789/© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

97

Q. Li, J. Geng and S. Evje Physica D 451 (2023) 133773

Displacement of several fluids is one classical example where
quantities like fluid viscosity and density may strongly influences
the displacement behavior and their roles are expressed in a β-
like parameter [9,10]. In the context of learning f (u;β) for a fixed
β , we identify f (u;β) with u as the only variable based on a series
of observations {u(xj, ti)} at specific time points {ti} described on
a spatial grid {xj}. However, when learning f (u, β), we seek the
analytical expression of f (u, β) that includes both the variable
u and the parameter β , given a set of observations {u(xj, ti)} at
various time points ti and at different values of β over an interval
of interest.

There are special challenges in identifying f (u, β) in (1) as
compared to previous PDE models as studied in, e.g., [6–8]. Firstly,
in our scenario, the term f (u, β)x in (1) cannot be expressed
by fu(u, β)ux since u generally is not a differentiable function.
Consequently, we cannot approximate differential operators us-
ing convolutions, as done in [7,8]. In our earlier work [11], we
demonstrated that the proposed ConsLaw-Net for solving f (u;β)
for a fixed β can handle this problem. Secondly, variable u and
parameter β are completely distinct. How to learn the functional
relation between u and β? A natural idea is to try to discover
their relationship by treating both as variables. I.e., feed u and
β into the ConsLaw-Net at the same time. However, it seems
difficult to control and minimize the error associated with both
u and β simultaneously. The discrete scheme we use to rep-
resent the entropy solution of (1) would produce a cumulative
error in the ConsLaw-Net, especially when the number of itera-
tions is large. Incorporating learning of an unknown parameter
into the ConsLaw-Net significantly increases the complexity of
the calculations involved in minimizing the loss function. To
overcome this, we introduce a Linear Regression Neural Net-
work(LRNN) to distill the structure of f (u, β) learned by relying
on the ConsLaw-Net for a few selected values of β .

At this stage, it seems appropriate to highlight some essential
features of the entropy solution associated with (1). It is well
known that conservation laws of the form (1)1,2 (Cauchy prob-
lem) do not in general possess classical solutions. Instead, one
must consider weak solutions in the sense that the following
integral equality holds [12–14]∫
Ωx

∫ T

0

[
uφt + f (u, β)φx

]
dx dt +

∫
Ωx

u0(x)φ(x, t = 0) dx = 0 (2)

for all φ ∈ C1 such that φ(x, t) : Ωx × (0, T) → R and which is
compactly supported, i.e., φ vanishes at x → Ωx and t → T .
It follows that if a discontinuity occurs in the solution, i.e., a
left state uL and a right state uR, then the speed s satisfies the
Rankine–Hugoniot jump condition [12,14], i.e.,

s =
f (uL, β) − f (uR, β)

uL − uR
. (3)

However, direct calculations show that there are several weak
solutions for one and the same initial data [13]. To overcome
this issue of non-uniqueness of weak solutions, we need criteria
to determine whether a proposed weak solution is admissible or
not. This has led to the class of entropy solutions, which amounts
to introducing an additional constraint which ensures that the
unique physically relevant one is found among all the possible
weak solutions. There are different ways to express the entropy
condition for scalar nonlinear conservation laws. One variant is
by introducing an entropy pair (η, q) where η : R → R is any
strictly convex function and q : R → R is constructed as [14,15]
(where f ′(s) represents derivative with respect to s since β is a
passive parameter)

q(v, β) =

∫ v

0
f ′(s, β)η′(s) ds (4)

for any v. This implies that q′
= f ′η′. Then, u is an entropy

solution of (1)1,2 if (i) u is a weak solution in the sense of (2);
(ii) u satisfies in a weak sense η(u)t + q(u, β)x ≤ 0 for any pair
(η, q). This condition can also be formulated as the following char-
acterization of a discontinuity (uL, uR) [14,16]: For all numbers v
between uL and uR,
f (v, β) − f (uL, β)

v − uL
≥ s ≥

f (v, β) − f (uR, β)
v − uR

(5)

where s is given by (3). In particular, it gives a tool for construct-
ing unique solutions of nonlinear scalar conservations laws as
given by (1).

The ConsLaw-Net framework introduced in [11] relies on dif-
ferent symbolic neural networks, S-Net-M for multiplicative func-
tion and S-Net-D for division function to represent the flux func-
tion, and are combined with an entropy consistent discrete nu-
merical scheme (ECDNS) to identify f (u;β) for a fixed β . How-
ever, this ConsLaw-Net has two shortcomings: Firstly, the en-
tropy consistent numerical scheme relies on a global estimate
of |fu(u;β)| through M = maxu |fu(u;β)|. This facilitates the
symbolic neural network to find the optimal solution quickly.
However, it is also known to corrupt data accuracy. In this work
we explore whether the flux function can be correctly learned
when the symbolic neural network is coupled with a numerical
scheme that relies on a local estimate of the form Mj+1/2 =

max{|fu(un
j ;β)|, |fu(u

n
j+1;β)|} where un

j and un
j+1 refer to u at spa-

tial grid points xj and xj+1, to improve the overall accuracy of
the method. Secondly, there are two different symbolic neural
networks involved, S-Net-M and S-Net-D for multiplicative and
division functions, respectively. We must decide which type of
symbolic neural network to use by comparing the final losses of S-
Net-M and S-Net-D, which obviously increases the computational
burden.

1.2. Purpose of this work

In particular, our main contribution by this work includes:

• Provide a method for learning of the functional form of the
nonlinear two-variable function f (u, β) where u is the main
variable and β is a parameter. To our knowledge, this repre-
sents the first approach to learn the unknown nonlinear flux
function involved in a scalar conservation law, with respect
to both its dependent variable u as well as the parameter β .

• We update the ConsLaw-Net proposed in [11] regarding the
following two aspects:

– We use a local rather than global estimate of the wave
speed for the Rusanov scheme. Specifically, we use a
local estimate Mj+1/2 = max{|fu(un

j ;β)|, |fu(u
n
j+1;β)|}

instead of a global estimate of M = maxu |fu(u;β)|.
This updated ECDNS provides a more accurate descrip-
tion of observation data versus the underlying flux
function, but also increases the computational time for
model optimization (i.e., identification of the unknown
flux function). The success of applying the improved
numerical scheme demonstrates that the methodology
can be extended to a wider variety, i.e., the ConsLaw-
Net model has some robustness;

– We employ a unified Symbolic Multi-layer Neural Net-
work (S-Net) to learn f (u;β), regardless of whether
it is a division or a multiplication function that is
involved in the unknown underlying conservation law
(1).

Hence, the updated ConsLaw-Net is a refinement and a
generalization as compared to its first version presented

2

98

Q. Li, J. Geng and S. Evje Physica D 451 (2023) 133773

Fig. 1. Pipeline for our approach. There are two steps: 1⃝ using the improved ConsLaw-Net to learn f (u;β) where β ∈ {β∗

0 , β
∗

1 , . . . , β
∗

Nβ
}. We use the symbol β∗

to distinguish the values of β used in the first step. The learned expression f (u;β∗

i) in each subproblem i is referring to an equation with u as variable but not
β∗

i . 2⃝ Given the results of the first step, we first construct a collection of candidate models of the two variable function f (u, β), and then use LRNN to obtain the
coefficients of the selected candidate model. If this candidate model can satisfy the error criterion, we will apply it to compute the solutions of (1). Otherwise, we
reselect the candidate model and repeat the process in the second step.

in [11]. However, this comes with an additional challenge
related to the optimization of (1). To handle this, we design
a new loss function.

• Learned graph neural networks (GNNs) have recently been
established as fast and accurate methods when applied to
PDEs with regular solutions, such as the Wave equation,
Poisson, or Navier–Stokes equations [17–19]. We compare
our method with the GNNs method proposed in [17]. Ex-
periments show that our method generates relative accurate
predictions whereas this GNN does not seem to have a
built-in capacity to handle the problem (1) well.

The proposed approach is summarized in Fig. 1. This method
consists of two steps. The first step is to use the optimized
ConsLaw-Net to learn f (u;β) for a few values of β , whereas
the second step is to use LRNN to learn f (u, β) relying on the
results of the first step. The challenge with lack of uniqueness,
i.e., the fact that many different flux functions can give rise to
the same observation data, is dealt with by using a combination
of two different components: (i) we collect observation data
corresponding to a set of different initial states; (ii) regularity in-
formation pertaining to the class of flux functions f (u, β) we seek,
is incorporated through the use of symbolic neural networks, as
mentioned above.

1.3. Related work

Learning the flux function of a nonlinear conservation law
from sparse data has important applications in industry. There are
several examples of non-machine approaches to deal with this
problem. Holden et al. used the front-tracking algorithm to re-
construct the flux function from observed solutions with suitable
initial data [20] for a traffic flow relevant model. Recent stud-
ies on the reconstruction of the flux function for sedimentation
problems involved the separation of a flocculated suspension into
a clear fluid and a concentrated sediment [21,22]. In particular,
Bürger and Diehl revealed that the inverse problem of identifying
the batch flux density function has a unique solution, and derived
an explicit formula for the flux function [23]. This method was re-
cently extended to construct almost the entire flux function [24]
using a cone-shaped separator. Diehl explored a direct inversion
method using linear combinations of finite element hat functions
to represent the unknown nonlinear function [25].

With the development of deep AI, more and more neural
network methods are used to solve forward and inverse problems

of PDEs and ODEs. These problems frequently involve recovering
solutions to PDEs [6] or physical quantities, such as the density,
viscosity, or other material parameters [26–28], from a sparse set
of measurements. We refer to [29,30] for examples of methods
based on assuming that the governing PDE is linear combina-
tion of a few differential terms in a prescribed dictionary, and
the objective is to find the correct coefficients. Raissi et al. [6]
introduced the physics informed neural networks (PINNs) for
solving two types of problems: data-driven solutions and data-
driven discovery of partial differential equations. Except for a
few scalar learnable parameters, the explicit form of the PDEs
is assumed to be known in the second problem. Therefore, the
structure of the equation is used as part of the loss function to
guide the optimization. However, PINNs seem not able to learn
the nonlinear hyperbolic PDE that governs two-phase transport
in porous media [10]. It was suggested that this shortcoming of
PINNs for hyperbolic PDEs is due to the lack of regularity in the
solution. Mesh-based simulations have recently made significant
progress [17,18], enabling faster runtimes than principled solvers,
and higher adaptivity to the simulation domain compared to the
grid-based convolutional neural network (CNNs) [31,32]. Neu-
ral networks have been used also in combination with discrete
schemes to accelerate computations of PDEs [33].

The rest of this paper is organized as follows: In Section 2
the updated version of the ConsLaw-Net proposed in [11] is
described. In particular, it is described how LRNN is used to
learn the two variable flux function f (u, β). In Sections 3 and 4
we present different experimental results on identifying f (u, β)
using our method by exploring performance, respectively, for two
different families of flux functions. In Section 5, we close with a
discussion and outlook.

2. Method

2.1. The first step: using an improved ConsLaw-net to learn the fixed
parameter problem f (u;β), with β ∈ {β∗

0 , β
∗

1 , . . . , β
∗

Nβ
}.

2.1.1. Entropy consistent discrete numerical scheme (ECDNS)
We investigate a discretization of the spatial domain [0, L] in

terms of {xi}
Nx−1
i=0 where xi = (1/2+i)∆x for i = 0, . . . ,Nx−1 with

∆x = L/Nx. Furthermore, we consider time lines {tn}Nt
n=0 with

Nt∆t = T . Our discrete version of (1) is based on the Rusanov
scheme [12] which takes the form

un+1
j = un

j − λ(F n
j+1/2 − F n

j−1/2), λ =
∆t
∆x
,

3

99

Q. Li, J. Geng and S. Evje Physica D 451 (2023) 133773

Fig. 2. The structure of S-Net with three hidden layers.

un+1
1 = un+1

2 , un+1
Nx

= un+1
Nx−1 (6)

with j = 2, . . . ,Nx−1 and where the Rusanov flux takes the form

F n
j+1/2 =

f (un
j ;β) + f (un

j+1;β)

2
−

Mn
j+1/2

2
(un

j+1 − un
j).

We adopt a local estimation by using Mn
j+1/2 =

max{|fu(un
j ;β)|, |fu(u

n
j+1;β)|} instead of a global approximation

through Mn
j+1/2 = maxu |fu(u;β)|, as used in [11]. The local

estimation is beneficial to simulation accuracy but harmful to
the optimization of the model. The CFL condition determines the
magnitude of ∆t for a given ∆x through the constraint [12]

CFL :=
∆t
∆x

M ≤ 1, M = max
u

|fu(u;β)|.

We invoke the CFL condition in Algorithm 1. Algorithm 2 presents
how to learn the solution Un

=
{
u(xj, tn)

}Nx
j=1 of the discrete

conservation law (6). The local estimation Mn
j+1/2 is used to define

the interface flux Fj+ 1
2

in Algorithm 2. Note that we for sim-
plicity ignore the explicit dependence on β in Algorithm 1 and
Algorithm 2 since they are applied for f (u;β) with a fixed choice
of β .

Algorithm 1: CFL
Input: L: length of the spatial domain; Nx: the number of

spatial grid cells; f (u): the nonlinear flux function;
T : computational time period;

Output: ∆t: local time interval

∆x = L/Nx
M = max

u
|f ′(u)|

dt = (34∆x)/(M + 0.0001)
n_time = ⌊T/dt⌋
∆t = T/n_time

2.1.2. S-net
Inspired by [34,35], we use the S-Net to represent the un-

known function f (u;β) because S-Net can learn the analytical
expression of the flux function f (u;β). In this work we no longer
distinguish between S-Net-M and S-Net-D, but instead use S-Net-
D as S-Net to learn all functions. Fig. 2 depicts the building of

Algorithm 2: DataGenerator
Input: T : computational time period; Nx: the number of

spatial grid cells; L: length of the spatial domain;
u0 = {u0(xj)}

Nx
j=1: initial state set of dimension Nx;

f (u): the flux function;
Output: U = {un

j }: the solution based on initial state u0;

∆t = CFL(L, Nx, f (u), T)
∆x = L/Nx
U[0] = u0
ũ = u0
for n = 1,...,T/∆t do

for j = 1,...,Nx - 1 do
Fj+1/2 =

1
2

(
f (ũj) + f (ũj+1)

)
−

max{|f ′(ũj)|,|f ′(ũj+1)|}
2

(
ũj+1 − ũj

)
end
for j = 2,...,Nx - 1 do

uj = ũj −
∆t
∆x

(
Fj+1/2 − Fj−1/2

)
end
u1 = u2
uNx = uNx−1
ũ = u
U[i] = u

end

S-Net in the form of f = g/h with three hidden layers. As shown
in Fig. 2, the identity directly maps u from input layer to the first
hidden layer. The linear combination map uses parameters w1
and b1 to choose two elements from u and are denoted by α1
and β1.

(α1, β1)T = w1 · (u) + b1,w1 ∈ R2×1, b1 ∈ R2×1 (7)

These two elements of α1 and β1 are multiplied which give

f1 = α1β1 (8)

Apart from u gotten by the identity map, f1 also is input to the
second hidden layer

(α2, β2)T = w2 · (u, f1)T + b2,w2 ∈ R2×2, b2 ∈ R2×1. (9)

4

100

Q. Li, J. Geng and S. Evje Physica D 451 (2023) 133773

Similarly with the first hidden layer, we get another combinat-
ion f2

f2 = α2β2 (10)

Then we obtain the numerator part g and the denominator part h
of the flux function f (u) based on w3, b3 and w4, b4, respectively.

g = w3 · (u, f1, f2)T + b3,w3 ∈ R1×3, b3 ∈ R (11)

h = w4 · (u, f1, f2)T + b4,w4 ∈ R1×3, b4 ∈ R (12)

The analytic expression of the flux function f is the combination
of g and h, i.e.,

f =
g
h
. (13)

The parameters involved in the network described above is de-
noted by θ and the resulting function according to (13) is denoted
by fθ(u). More information about S-Net can be found in [11].

2.1.3. The ConsLaw-net
The ConsLaw-Net combines ECDNS and S-Net to learn f (u;β)

with β ∈ {β∗

0 , β
∗

1 , . . . , β
∗

Nβ
}. We consider observation data in

terms of x-dependent data at fixed times {t∗i }
Nobs
i=1 extracted from

the solution U as follows:

Usub =

{
u(xj, t∗1), u(xj, t

∗

2), . . . , u(xj, t
∗

Nobs
)
}
, j = 1, . . . ,Nx. (14)

Eq. (14) is utilized to select synthetic observation data denoted by
Usub as well as predictions based on the learned fθ(u;β) written
as Ûsub. We specify times for collecting the time dependent data

Tobs = {t∗i = i∆tobs : i = 1, . . . ,Nobs}. (15)

Typically, we set Nobs = 9 with ∆tobs = 0.1. For clarity, we use
fθ(u;β) to denote the function learned by S-Net. During S-Net
training, fθ(u;β) is fed into Algorithm 2 to obtain the predicted
solution Û . Similar with Usub, choose predicted solutions Ûsub
according to (15). The difference between Usub and Ûsub, denoted
as Ldata, is involved in the optimization of the model. In addition
to Ldata, we also introduce Ldenominator

γ and Lnumerator
γ in the loss

function to limit the search space of the flux function. Detailed in-
formation on the loss functions is given in Section 2.3. Herein, we
use the second-order quasi-Newton method, L-BFGS-B [36,37], to
update the parameter vector θ. Finally, we get the best flux func-
tion fθ∗ (u;β) and use it to represent the learned conservation law
for the selected β . The learning process is depicted in Algorithm
3.

Overall, learning the fixed parameter problem f (u;β) can be
formalized as a nonlinear optimization problem as follows:

min
f (u)

Loss(Usub, Ûsub),

s.t. f (u) ∈ R(u)
(16)

where f (u) is the flux function to be learned and R(u) is the set of
rational functions. Usub and Ûsub are extracted from the solution
of Eq. (1) with fixed parameter β based on the true flux function
and learned flux function, respectively. Loss is the operator that
measures the difference between Usub and Ûsub and Loss(Usub, Ûsub)
is the objective function.

2.1.4. Why use S-net instead of the piecewise affine functions
method or the finite polynomial expansion method?

A wide range of methods exists to solve nonlinear optimiza-
tion problems, including traditional approaches like gradient-
based and Quasi-Newton methods, as well as contemporary
methods such as machine learning techniques. James and
Sepúlveda [38,39] minimized Loss(Usub, Ûsub) by means of gra-
dient methods. Since Loss(Usub, Ûsub) may not be differentiable

Algorithm 3: ConsLaw-Net
Input: T : computational time period; Nx: the number of

spatial grid cells; L: length of the spatial domain;
u0: initial state vector of dimension Nx; f (u;β):
true flux function with fixed parameters β; θ0:
initial parameters of S-Net; θ: parameters of S-Net;
fθ(u;β): flux function generated by S-Net; T_obs:
observation time points Eq. (15); Loss: loss
function; epoch: the number of epoch;
DataGenerator: Algorithm 2

Output: fθ∗ (u;β): the best flux function generated by the
S-Net based on parameter vector θ∗;

U =DataGenerator(T ,Nx, L, u0, f (u;β))
U_sub = {u ∈ U |t ∈ T_obs}
θ = θ0
for i = 1,...,epoch do

Û = DataGenerator(T ,Nx, L, u0, fθ (u;β))

Û_sub = {u ∈ Û |t ∈ T_obs}
loss = Loss(U_sub, Û_sub)
Updating θ and loss by optimizer L-BFGS-B;

end
θ∗

= θ

with respect to the parameters of f (u;β) and the dependence
of objective function on these parameters occurs via the PDE
solution, additional assumptions have to be made, and the formal
gradient is obtained by means of an adjoint equation. Already for
a hyperbolic scalar conservation law in one dimension, the prob-
lem of identifying a nonlinear flux f (u;β) is generally ill-posed
in the sense that f (u;β) is not uniquely determined by observed
data. For example, the same discontinuity in a solution may arise
from different flux functions. Recently, Diehl in [25] formulated a
general flux identification method based on expanding the flux
function in terms of piecewise affine functions with unknown
weights and obtained the least squares solution to the integrated
form of the conservation equation which could also contain a
diffusion term.

To solve the nonlinear optimization problem (16), we have
opted for machine learning methods, which offer greater ro-
bustness and flexibility. In particular, we are using S-Net, as
employed in [7,8,34,35], to learn the unknown function. Besides
S-Net, other classical methods explicitly represent functions, such
as the piecewise affine functions method described in [25] and
the finite polynomial expansion method. In the piecewise affine
functions method, divide the u-axis into n equidistant intervals:
let umax be the largest value of the data and set uk = kumax/n for
k = −1, . . . , n + 1. Assume that

f (u) =

n∑
k=0

fkψk(u) (17)

where fk is n + 1 parameters to be determined, and the affine
functions are defined by

ψk(u)=

⎧⎪⎨⎪⎩
u−uk−1
uk−uk−1

, uk−1 < u ≤ uk
uk+1−u
uk+1−uk

, uk < u ≤ uk+1

0, Otherwise
(18)

where k = 0, . . . , n. The polynomial expression with respect to u
is given by:

f (u;β) =
c0 + c1u + c2u2

+ c3u3
+ · · · + cnun1

d0 + d1u + d2u2 + d3u3 + · · · + dnun2
(19)

We acquire the coefficients {fk}nk=0 of (17) and {ci}
n1
i=0 and {di}

n2
i=0

of Eq. (19), respectively, by using the observation data set. From

5

101

Q. Li, J. Geng and S. Evje Physica D 451 (2023) 133773

the various methods available, we have decided to implement the
S-Net approach for the following reasons:

• Experimental performance: In Section 3.1.2 we do a compar-
ison of S-Net, the piecewise affine function representation,
and the finite polynomial expansion method. It is observed
that the performance of S-Net is clearly better than these
two other methods for our test cases.

• Robustness: S-Net demonstrates a high capacity to handle
noisy and incomplete data [11]. In our problem, the number
of local time steps (of length ∆t) we need to compute nu-
merical solutions through ECDNS is higher than the number
of observation data, i.e., ∆t ≪ ∆tobs. Since ∆t is dictated by
the CFL condition for the given choice of the flux function f
(which will vary during the training), we do not know that
∆tKi = t∗i for i = 1, . . . ,Nx for some integer Ki. In that case,
we choose the one closest to t∗i . Given that the observations
are derived from approximate data, we have opted for S-Net
due to its robustness.

• Flexibility: S-Net is flexible and powerful. Expanding func-
tions with more variables is easy with S-Net, as it can
automatically detect nonlinear relationships between input
variables. The finite polynomial expansion method requires
the manual listing of all possible combinations, which be-
comes an exhaustive task as the number of variables in-
creases, potentially leading to an exponential growth in
the number of combinations. Furthermore, incorporating
nonlinearities such as sine and cosine into S-Net is straight-
forward, enabling it to learn combinations of variables that
act on sine or cosine.

2.2. The second step: using LRNN to learn f (u, β)

From the first step, we have learned the fixed parameter
problems fθ∗ (u;β), β ∈ {β∗

0 , β
∗

1 , . . . , β
∗

Nβ
}. Based on the above

results, we learn f (u, β) using LRNN in the following section.

2.2.1. Generate observation data Y
We have learned the analytical expressions of fθ∗ (u;β) with

some fixed β in the first step, denoted as

Y′
=

{
fθ∗ (u;β)

⏐⏐⏐ u ∈ [min(u0),max(u0)], β ∈ {β∗

0 , β
∗

1 , . . . , β
∗

Nβ }

}
.

Since the solution of (1) is TVD (total variation diminishing) [15,
40], we know that the solution u(x, t) at any time t > 0 does
not contain any new maxima or minima as compared to the
initial data u0(x), i.e., min u0(x) ≤ u(x, t) ≤ max u0(x). In the
following we tactically assume that 0 ≤ u0(x) ≤ 1, therefore
0 ≤ u(x, t) ≤ 1,∀t ∈ [0, T]. Consider a discretization of u ∈ [0, 1],
denoted as

UUU =

{
u
⏐⏐⏐ ui = i∆u, i = 0, 1, 2, . . . ,Nu,∆u = 1/Nu

}
. (20)

Therefore, a discrete version of Y ′ is obtained by

Y =

{
fθ∗ (ui;β)

⏐⏐⏐ ui ∈ U , β ∈ {β∗

0 , β
∗

1 , . . . , β
∗

Nβ }

}
. (21)

Typically, Nu = 400. Y will be used as the observation data to
train LRNN.

2.2.2. Construct the candidate models for f (u, β) based on Linear
Regression Neural Network (LRNN)

Next, we create the candidate models of f (u, β) that contain
multiplication function form (22) and division function form (23):

f (u, β) =

K∑
i=0

Ji∑
j=0

(
aijβ iuj) (22)

f (u, β) =

∑K
i=0

∑Ji
j=0

(
aijβ iuj

)∑P
i=0

∑Qi
j=0

(
bijβ iuj

) (23)

where K , Ji, P,Qi ∈ N, and P =
{
aij|i = 0, . . . , K ; j = 0 · · · Ji

}
∪{

bij|i = 0, . . . , P; j = 1, . . . ,Qi
}

⊂ R, β i denotes the i-th power
of β , uj represents the j-th power of u. The largest power of u,
i.e., Ji, Qi, can in principle be any positive integer. The use of (22)
and (23) implies that the flux function f (u) we seek to identify is
restricted to be a polynomial, rational function or one that can
be well approximated within this class. We can appropriately
limit the candidate models by using the learned expressions of
f (u;β∗) obtained from the first step. Generally speaking, the
biggest power of u in the true function will not be greater than the
largest power in the learned expressions. P is the vector of the
parameters we want to learn in the second phase. According to
the Occam’s razor principle, the preferred formula is singled out
by being the simplest one that still predicts well. Therefore, we
test the candidate model based on the principle from simplicity
to complexity. That is, from multiplication to division models, and
from lower to higher powers. If the simple model can meet the
error requirements in the validation set, we use this simple model
instead of the complex model.

Specifically, to begin with a straightforward approach, we set
K = 1 and J0 = J1 = 1 in (22), which yields a simple model,

f (u, β) = a00 + a01u1
+ a10β + a11βu1. (24)

There are four unknown parameters, namely a00, a01, a10, a11, in
(24). These parameters can be optimized based on the results
obtained in the first step described in Section 2.1, denoted as
a∗

00, a
∗

01, a
∗

10, a
∗

11. The learning process is explained in detail in
Sections 2.2.3 and 2.2.4. The resulting equation can be denoted
as

f (u, β) = a∗

00 + a∗

01u
1
+ a∗

10β + a∗

11βu
1. (25)

To evaluate the ability of (25) in representing the true flux func-
tion, we must validate it using a separate dataset. This valida-
tion dataset, denoted as Uvalidsub , comprises the solutions extracted
from Eq. (1) for specific time points (15), generated using β that
was not used in the first step. We can then solve for Eq. (1) with
the learned flux function (25) using the same β as the validation
dataset, resulting in the estimated solutions Ûvalidsub . If the errors
between Uvalidsub and Ûvalidsub satisfy the specific error requirement ∆,
we consider the learned equations to be a suitable representation
of the true flux function. In this case, we do not conduct further
validation of the other candidate models. However, if the errors
do not meet the requirements, we move to a more complex
model. For instance, we may set K = 1 and J0 = J1 = 2 in (22).
We gradually increase the complexity of the candidate models
until we find one that satisfies the error requirements.

2.2.3. Establish the input X
After choosing the possible expression of f (u, β), we have to

establish the features of the expression in order to learn the
coefficients aij, bij in (22) or (23). For each item aij(bij)β iuj in
(22) and (23), we can build features according to β iuj. Take the
possible expression (26) as an example.

f (u, β) = a00 + a01u1
+ a02u2

+ β(a10 + a11u1
+ a12u2). (26)

For every β ∈ {β∗

0 , β
∗

1 , . . . , β
∗

Nβ
} and ui ∈ U , we can create a set

of features

Xi,β = {1, u1
i , u

2
i , β, βu

1
i , βu

2
i }.

Denote the features of the potential formulation of f (u, β) as

X =

{
Xi,β

⏐⏐⏐ ui ∈ U , β ∈ {β∗

0 , β
∗

1 , . . . , β
∗

Nβ }

}
. (27)

6

102

Q. Li, J. Geng and S. Evje Physica D 451 (2023) 133773

Fig. 3. Pipeline for the second step of our approach: Choose one possible expression f (u, β) from candidate models. Build the observation data Y (21) and features
of f (u, β) (27), and get the coefficients aij(bij) by LRNN. Test the learned f (u, β) on the validation data. If the error criteria is met, stop; otherwise, continue with
the operation.

2.2.4. Train the model
Assume the parameter vector of LRNN is W, so

Y = WTX. (28)

Using the neural network, we can easily getWwhich is the vector
of coefficients of the possible expression of f (u, β).

2.2.5. Test on the validation dataset
After obtaining the trained model, it is tested on the validation

set. If the error condition is satisfied, the model behavior can be
predicted using the new parameter β and initial state u0. Fig. 3
depicts the pipeline for the second step of our approach.

2.3. Loss functions

2.3.1. Loss function used in the first step
Optimizations of the ConsLaw-Net, including using a local es-

timate Mj+1/2 = max{|fu(un
j , β)|, |fu(u

n
j+1, β)|} instead of a global

estimate M = maxu |fu(u, β)| and employing a unified S-Net to
learn f (u;β), place high demands on our loss functions. To obtain
the solutions of (1), we need to estimate the quantity M , that
decides the local time interval ∆t used in Algorithm 2. If M is
too large, it will cause ∆t too small according to ∆t =

3
4∆x

M+0.0001
in Algorithm 1. In this case, the numerical scheme needs to be
iterated tens of thousands of times to obtain the solutions of
(1), which takes an inordinate amount of time. As a result, we
estimate an upper bound on M , denoted as α. In our experiments,
α = 100. When M < α, we compare the difference between
Usub and Ûsub to guide optimization, written as Ldata and defined
in (30). S-Net has two sub-neural networks, g(u) and h(u), to learn
the numerator and the denominator, respectively.

There are two cases where the M value is too large caused by
g(u) and h(u). One is when the denominator h(u) is very close to 0,
and the other is when the value of the denominator is reasonable,
but the numerator g(u) is vast. The above situations inevitably
occur during the optimization of the model. To deal with these
two cases, we introduce Ldenominator

γ and Lnumerator
γ to optimize the

model. Therefore, the loss function used in Algorithm 3 can be

expressed as

Loss=

⎧⎨⎩
Ldata M<α
Ldenominator
γ M≥α, Ldenominator

γ ̸=0
Lnumerator
γ M≥α, Ldenominator

γ =0
(29)

where Ldata, Ldenominator
γ , and Lnumerator

γ are defined as follows:
Ldata

: Assume we have Kini different initial states used for the
training process, and solutions are described on a grid of Nx grid
cells and at Nobs different times. The true observation data set
denoted by {Usub,k(xj, t∗i) : 1 ≤ k ≤ Kini; 1 ≤ j ≤ Nx; 1 ≤

i ≤ Nobs} is obtained using Algorithm 2. The predicted data is
created by an iterative loop in Algorithm 3, and is denoted by
{Ûsub,k(xj, t∗i) : 1 ≤ k ≤ Kini; 1 ≤ j ≤ Nx; 1 ≤ i ≤ Nobs}. So we
define the data approximation term Ldata as:

Ldata =
1

KiniNxNobs

Kini∑
k=1

Nx∑
j=1

Nobs∑
i=1

(
Usub,k(xj, t∗i) − Ûsub,k(xj, t∗i)

)2
. (30)

Ldenominator
γ : To steer the network away from small values

of the denominator, we add a penalty term to our objective
(29), denoted by Ldenominator

γ . Compute the values of the subneural
network h(u) on U (20), written as

H = {h(ui)|i = 0, 1, 2, . . . ,Nu} .

If there are elements in H smaller than γ , it can cause M to be too
large (i.e., M ≥ α). In our experiment, we set γ = 0.001 and let
Ldenominator
γ be associated with the net effect of these small values
of H

Ldenominator
γ =

Nu∑
0

|h(ui)| I(h(ui) < γ),

I(h(ui) < γ) =

{
1, if h(ui) < γ

0, otherwise
(31)

Note that 0 < Ldenominator
γ < (Nu + 1)γ .

Lnumerator
γ : When the value of the denominator h is greater

than γ , i.e., h(ui) ≥ γ for all i ∈ U implying that Ldenominator
γ = 0,

and the value of the numerator g is too large, M can also be too

7

103

Q. Li, J. Geng and S. Evje Physica D 451 (2023) 133773

Fig. 4. (a) Flux function (34); (b) Flux function (39).

Fig. 5. The graphical results of identification of flux function fθ∗ (u;β) on β = 10, 130, 200, 300. In each subplot, the solid red line is the true function, and the
orange dashed line is the learned function.

big (i.e., M ≥ α). In this situation, we compute the approximate
derivative of f (u) with respect to u ∈ [0, 1]. For that purpose we
introduce

U ′
= U ∪ {1 +∆u} = {ui|i = 0, 1, 2, . . . ,Nu+1} .

We compute the discrete derivative of f (u) on U ′, denoted by

Df (u) =

{
f (ui+1) − f (ui)

∆u

⏐⏐⏐i = 0, 1, 2, . . . ,Nu

}
where Lnumerator

γ is set to be

Lnumerator
γ = max(|Df (u)|) − α. (32)

The purpose of Ldenominator
γ and Lnumerator

γ is to steer the loss function
(29) in a direction such that Loss = Ldata is the dominating
term, which allows to identify the unknown flux function. As u
is bounded by [0, 1], Ldata in the case of M < α is much smaller

than Ldenominator
γ or Lnumerator

γ which are at work in the case of
M ≥ α. During the optimization process of the neural network,
the parameters are updated in the direction that minimizes the
loss function (29), i.e., the situation where loss is governed by
Ldenominator
γ or Lnumerator

γ will be avoided. In this sense, the presence
of Ldenominator

γ and Lnumerator
γ steers the loss function (29) in a direc-

tion such that Loss = Ldata is the governing term, which allows to
identify the unknown flux function.

2.3.2. Loss function used in the second step
We optimize models using the Adam optimizer [41] for 5000

epochs and minimize MSE between observation data (21) and
predicted values YW =

{
fW (ui, β)

⏐⏐⏐ui ∈ U , β ∈ {β∗

0 , β
∗

1 , . . . , β
∗

Nβ
}

}
generated by LRNN where W represents the parameter vector,
see (28). One of the primary reasons for selecting Adam is its
ability to automatically adjust the learning rate, which ensures

8

104

Q. Li, J. Geng and S. Evje Physica D 451 (2023) 133773

the accuracy of learning. For clarity, we denote the trained LRNN
function as fW∗ (u, β). The loss function is written as

Loss =
1

(Nu + 1)(Nβ + 1)

Nu∑
i=0

Nβ∑
j=0

(
fθ∗ (ui;β

∗

j) − fW (ui, β
∗

j)
)2 (33)

3. Learning a general class of nonlinear flux functions f (u, β)

In this section, we consider a class of nonlinear conservation
laws that naturally arise from studying displacement of one fluid
by another fluid in a vertical domain. The resulting displacement
process involves a balance between buoyancy and viscous forces.
Depending on the properties of the fluids used, there is room for
various types of displacement behavior. This is expressed by the
fact that one can derive a family of flux functions f (u, β) which
takes the following form as illustrated in [9]

f (u, β)=
1
2
u(3 − u2) +

β

12
u2

(
3
4

−2u+
3
2
u2

−
1
4
u4

)
. (34)

The parameter β represents the balance between gravity
(buoyancy) and viscous forces. In this work, β ∈ [−400, 500].
Different values of β result in different types of flux functions.
Fig. 4(a) shows the shape of f (u, β).

In the following, we generate synthetic data with a few dif-
ferent values of β and a class of initial data u0(x). As mentioned
in the introduction, observation data of the entropy solution
leaves room for many possible flux functions to be candidates to
explain the observations. However, as demonstrated in [11], the
combination of using a few initial data combined with additional
regularity by representing the unknown flux function through
symbolic multilayer neural networks, enables identification of the
relevant flux function quite effectively. In other words, as more
initial data is added (with corresponding observation data), more
details of the physically relevant flux function are revealed.

We consider a spatial domain L = 10 such that x ∈ [0, 10] and
a time interval [0, T] with T = 2. We collect observation data in
the form (14) with Nobs = 9. The aim is to identify the unknown
flux function f (u, β) for u ∈ [0, 1].

3.1. The first step: using the improved ConsLaw-net to learn f (u;β)
where β = {10, 130, 200, 300}

3.1.1. The results of using S-net to represent f (u;β)
In order to learn f (u;β) for u ∈ [0, 1], we consider a set

of initial data {uk
0}

K
k=1 such that 0 ≤ uk

0(x) ≤ 1. We choose
box-like states that give rise to Riemann problems, one at each
initial discontinuity. In the following, we apply a numerical grid
composed of Nx = 400 grid cells and choose observation data
(14) with time points

{t∗i } = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. (35)

S-Net is used to represent the unknown flux function f (u;β)
where β ∈ {10, 130, 200, 300}. Set three hidden layers in S-Net,
and the total number of trainable parameters in every subprob-
lem is 28. Choose the observations from the solutions U gener-
ated by Algorithm 2 based on initial states shown in Table 7 in
Appendix A.1. Finally, we obtain after training the S-Net denoted
by fθ∗ (u;β) by applying Algorithm 3. The resulting analytical ex-
pressions are given in Table 1. fθ∗ (u;β) differs from the true one.
However, we recall that what matters is the derivative f ′

θ∗ (u;β).
To visualize the learning effect, we plot the translated function
fθ∗ (u;β) − f (u = 0;β) in Fig. 5. Clearly, the improved ConsLaw-
Net has the ability to identify the true flux function with quite
good accuracy for the flux fθ∗ (u;β) with β ∈ {10, 130, 200, 300}.

3.1.2. Comparison of S-net versus the piecewise affine functions and
the finite polynomial expansion methods.

In addition to utilizing S-Net to represent the flux function, we
also investigated the piecewise affine functions method (17) and
(18) and the finite polynomial expansion method (19). Figs. 6(a)
and 6(b) demonstrate the learned flux function f (u;β) for β =

200 and β = 300, respectively, using the piecewise affine func-
tions method with n = 10 in (17). Lower values of n gave
better results with less oscillatory behavior. Figs. 6(c) and 6(d)
demonstrate the learned flux function f (u;β) for β = 200 and
β = 300, respectively, using the finite polynomial expansion
method (19) with n1 = 8 (β = 200) and n1 = 7 (β = 300). Upon
comparing these figures with Figs. 5(c) and 5(d), it is evident that
the flux function learned by S-Net is clearly better than the results
obtained by these two methods.

3.2. The second step: using LRNN to learn the flux function (34)

In this section, we distill the analytical expression correspond-
ing to (34) from the results of the four subproblems where β =

10, 130, 200, 300. We build candidate models in the form of (22)
and (23) with different values of K , Ji, P,Qi. For example, setting
K = 1 and Ji = 6 in (22), we obtain

fW (u, β)

= a00 + a01u + a02u2
+ a03u3

+ a04u4
+ a05u5

+ a06u6

+ β(a10 + a11u + a12u2
+ a13u3

+ a14u4
+ a15u5

+ a16u6).

(36)

The learning details using LLNN on (36) are shown in the follow-
ing. Herein,

{
aij|i = 0, 1; j = 0, 1, 2, . . . , 6

}
is the set of parame-

ters that we will learn in the second step. Discretize u ∈ [0, 1]
into 401 points: {ui}

i=400
i=0 , and use the following 14 features at

each point ui ∈ {ui}
i=400
i=0 :

Xi,β = [1, ui, u2
i , u

3
i , u

4
i , u

5
i , u

6
i , β, βui, βu2

i , βu
3
i , βu

4
i , βu

5
i , βu

6
i].

Feed features X =
{
Xi,β |i = 0, 1, 2...400;β = 10, 130, 200, 300

}
into LRNN, and finally we acquire the learned parameters of
{aij|i = 0, 1; j = 0, 1, 2, . . . , 6} by using Adam optimizer to train
the LRNN. The learned analytical expression of (36) is denoted by

fW∗ (u, β)

= 0.15651u6
− 0.018213u5

− 0.39308u4
− 0.33295u3

+ 0.19598u2
+ 1.3823u + 0.008492

+ β(− 0.037291u6
+ 0.051649u5

+ 0.059704u4

− 0.12439u3
+ 0.048243u2

+ 0.0020499u
− 1.7243e − 5).

(37)

Is the identified two variable function fW∗ (u, β) in (37) capable to
represent (34) for different β in the whole interval [−400, 500]?
We test on the validation set where β = −50 and β = 350
(which is well outside the β values used for training). Table 2
shows the test results of (37) where K = 1 and Ji = 6. Obviously,
for both cases β = −50 and β = 350, the error is relatively small,
and meets the criteria we set, ∆ = 0.0001. We also test other
candidate models on the validation set. The results are shown in
Table 3. These models may perform better in one case, but worse
in another, such as K = 1 and Ji = 4. Or even worse in both cases,
such as K = 1 and Ji = 2. It is obvious that when K = 1 and
Ji = 6, the candidate model has the best performance. Therefore,
we choose (37) as the preferred learned model and use it to test
for new initial states and parameters.

9

105

Q. Li, J. Geng and S. Evje Physica D 451 (2023) 133773

Table 1
The expression results of identification of flux function fθ∗ (u;β) with specific β .
β The identification of flux function fθ∗ (u;β)

β1 = 10 fθ∗ (u;β1) =
−0.0005u8+0.0029u7−0.0036u6−0.0030u5+0.3214u4−0.9641u3−0.0198u2+1.7007u−1.6453
0.0002u8−0.0014u7+0.0018u6+0.0015u5−0.0013u4+0.0025u3+0.0431u2−0.0663u+1.0205

β2 = 130 fθ∗ (u;β2) =
0.0171u8−0.0451u7−0.0553u6+0.1688u5+0.6588u4−0.9677u3−1.2969u2+1.2216u−0.5410
0.0058u8−0.0153u7−0.0188u6+0.0573u5−0.4797u4+0.5975u3+0.9857u2−0.3791u+0.3038

β3 = 200 fθ∗ (u;β3) =
−3.004e−6u8+0.0001u7−0.0005u6−0.0144u5−0.0181u4−0.3600u3−2.2609u2+1.7718u−0.6950
9.4576e−6u8−0.0004u7+0.0015u6+0.0453u5+0.1119u4+0.0464u3+0.7181u2−0.4093u+0.2220

β4 = 300 fθ∗ (u;β4) =
2.001e−5u7−0.0071u6−0.0981u5−0.2864u4−0.1568u3−3.1849u2+2.6000u−0.9848

−1.1929e−5u7+0.0042u6+0.0585u5+0.1709u4−0.0887u3+0.6433u2−0.4293u+0.2083

Fig. 6. The graphical results of identification of flux function fθ∗ (u;β) using the piecewise affine functions method (17) and (18) (upper row) and the finite polynomial
expansion method (19) on β = 200, 300 (lower row). In each subplot, the solid red line is the true function, and the orange dashed line is the learned function.

Fig. 7. (a) Learned flux function (37). (b) The difference between the true flux function (34) and learned (37).

3.3. Results and discussions

In Fig. 7(a) we first visualize the learned flux function fW∗ (u, β)
given by (37) whereas Fig. 7(b) visualizes the error between

learned flux function and the true flux function f (u, β) given by
(34) for β ∈ [−200, 500] and u ∈ [0, 1]. The absolute error of the
two functions is less than 0.038 over the entire domain. Specifi-
cally, we set β = −400,−300,−200, 100, 400, 500 separately to

10

106

Q. Li, J. Geng and S. Evje Physica D 451 (2023) 133773

Fig. 8. The generalization ability of (37) tested for β = −400,−300,−200, 100, 400, 500. In each subplot, the solid red line is the true function, and the orange
dashed line is the learned function.

Table 2
The results of (37) applied on the test data β = −50 and β = 350. The value of Error is the MSE between true
and predicted solutions of (1) at times (35). We also plot the solution at time point t = 0.3, 0.6, 0.9 respectively.
In each subplot, the solid red line is the true solution, and the blue dashed line is the solution generated by

(37) based on initial state u0 =

{
1.0, if x ∈ [4.5, 6]
0.0, otherwise

.

β Error t = 0.3 t = 0.6 t = 0.9

β = −50 7.5443e−05

β = 350 0.0001

Table 3
The results of different candidate models on the validation set. The value is the MSE between true and predicted solutions of (1)

at times (35) for four different initial states u0
β=−50,350 =

{
1.0, if x ∈ [4.5, 6]
0.0, otherwise

, u1
β=−50,350 =

{
0.9, if x ∈ [3.5, 5]
0.0, otherwise

, u2
β=−50,350 ={

0.8, if x ∈ [5, 6.5]
0.0, otherwise

and u3
β=−50,350 =

{
0.7, if x ∈ [3, 6]
0.0, otherwise

, respectively.

β K = 1,
Ji = 1

K = 1,
Ji = 2

K = 1,
Ji = 3

K = 1,
Ji = 4

K = 1,
Ji = 5

K = 1,
Ji = 7

K = 1,
Ji = 8

β = −50 0.0013 0.0011 0.0006 0.0002 0.0002 0.0002 0.0003

β = 350 0.0515 0.0046 0.0083 0.0019 0.0028 0.0002 0.0012

β k = 2,
Ji = 1

K = 2,
Ji = 2

K = 2,
Ji = 3

K = 2,
Ji = 4

K = 1,
Ji = 3,
P = 1,
Qi = 3

K = 1,
Ji = 4,
P = 1,
Qi = 4

K = 1,
Ji = 5,
P = 1,
Qi = 5

β = −50 0.0018 0.0056 0.0177 0.0095 0.0004 0.0002 0.0001

β = 350 0.0522 0.0049 0.0977 0.0221 0.0004 0.0005 0.0004

test the generalization ability of fW∗ (u, β) (37). In Fig. 8, we show
the true and the learned function with different values of β . It
seems clear that (37) has relatively strong generalization ability.

In addition, we compare the modified graph neural networks
(GNNs) used in [17] with our approach. The GNNs method offers
faster runtimes than other solvers like PINNs and grid-based
CNNS [31,32] and better adaptivity to the simulation domain [17–
19]. One major difference between our method and the GNNs
method is that our method first learns the expression of f (u, β)
and then uses the learned model to compute solutions of (1)

based on new initial states and parameters. In contrast, the GNNs
method directly predicts the solution of (1). This type of GNNs
is called message passing neural networks (MPNNs) [42], and is
given in the form
du(xi, t)

dt
= F̂θ (xN(i) − xi, ui, uN(i), βi) (38)

where xi is the coordinate of the node i, N(i) is the neighborhood
of node i, θ denote parameters of the MPNNs and βi is the physical
parameter in the flux function. We use Rprop optimizer [43] to
minimize the loss function with learning rate set to lr = 10−6

11

107

Q. Li, J. Geng and S. Evje Physica D 451 (2023) 133773

Fig. 9. The compared results of our method and the GNNs method. We compare the two methods at β = −200 (top row) and β = 400 (bottom row) based on

initial state u0 =

{
1.0, if x ∈ [4.5, 6]
0.0, otherwise

. Left: True solutions of (1). Middle: Solutions generated by our method. Right: Solution generated by the GNNs method.

for 5000 iterations and batch size set to 4. To be fair, the GNNs
method and our method use the same observational data. The
trained model is used to predict based on new initial states and
parameter β .

Fig. 9 shows the solutions of (1) with β = 400 and β =

−200 using the two different methods. Our method performs
better than the GNNs model. The ConsLaw-Net method is based
on a discrete scheme which is entropy consistent and therefore
can deal with formation of discontinuities in the solutions. The
above simulation result for GNN suggests that it has not a built-in
capacity to deal with discontinuous solutions.

4. Learning the flux function f (u, β) =
u2

(
1−β(1−u)4

)
u2+0.5(1−u)4

In this section, we consider a class of nonlinear conservation
laws that appears in the context of two-phase flow in porous
media [10]. Displacement of two fluids in an inclined reservoir
gives rise to a family of flux functions in the form

f (u, β) =
u2

u2 + 0.5(1 − u)4
(
1 − β(1 − u)4

)
. (39)

The parameter β represents the gravity effect. Herein, we study
β ∈ [−10, 10]. Fig. 4(b) shows the shape of f (u, β). In the
following, we generate synthetic data with different values of β
and a class of initial data u0(x). Consider a spatial domain L = 10
such that x ∈ [0, 10] and a time interval [0, T] with T = 2.

4.1. The first step: using the improved ConsLaw-net to learn f (u;β)
where β ∈ {−1, 1, 3, 5, 7}

Set a numerical grid composed of Nx = 400 grid cells, and
consider observation data (14) with

{t∗i } = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. (40)

S-Net with three hidden layers is used to represent the unknown
flux function f (u;β), where β ∈ {−1, 1, 3, 5, 7}. The total number
of trainable parameters in every subproblem is 28. Choose the ob-
servations from the solutions U generated by Algorithm 2 based
on initial states shown in Table 8 in Appendix A.2. Finally, we

obtain after training the S-Net denoted by fθ∗ (u;β) by applying
Algorithm 3. The resulting analytical expressions are given in
Table 4. We plot the translated function fθ∗ (u;β) − f (u = 0;β)
in Fig. 10. Clearly, the improved ConsLaw-Net has the ability to
identify the true flux function in most ranges except for some lack
of accuracy for u ∈ {0, 0.2}.

4.2. The second step: using LRNN to learn Eq. (39)

In this section, we distill the analytical expression that can
approximate the true function (39) from the five subproblems
where β = −1, 1, 3, 5, 7. We build candidate models in the form
of (22) and (23) with different values of K , Ji, P,Qi. For example,
setting K = 1, Ji = 5, P = 1 and Qi = 5 in (23), then we get Eq.
(41) (see Box I) where W =

{
aij, bij|i = 0, 1; j = 0, 1, 2, . . . , 5

}
is the set of parameters that we will learn in the second step.
Discretize u ∈ [0, 1] into 401 points: {ui}

i=400
i=0 , and build the

following 12 features at each point ui ∈ {ui}
i=400
i=0 :

Xi,β =[1, ui, u2
i , u

3
i , u

4
i , u

5
i , β, βui, βu2

i , βu
3
i , βu

4
i , βu

5
i].

Put features X =
{
Xi,β |i = 0, 1, 2...400;β = −1, 1, 3, 5, 7

}
into

LRNN, and finally we acquire the learned parameters of{
aij, bij|i = 0, 1; j = 0, 1, 2, . . . , 5

}
by using Adam optimizer. The

learned analytical expression of f (u, β), in terms of g and h, then
becomes

gW∗ (u, β) = β(0.099u5
+ 0.078u4

+ 0.261u3
− 0.184u2

− 0.021u − 0.00012)

+ 1.920u5
+ 0.380u4

− 0.113u3
+ 0.852u2

− 0.060u + 0.0003

hW∗ (u, β) = β(0.126u5
+ 0.183u4

+ 0.0645u3
− 0.186u2

+ 0.048u − 0.0016)

+ 1.710u5
+ 0.400u4

+ 0.509u3
+ 0.487u2

− 0.3112u + 0.17557

(42)

Hence, the learned expression of f (u, β) is given by

fW∗ (u, β) =
gW∗ (u, β)
hW∗ (u, β)

. (43)

12

108

Q. Li, J. Geng and S. Evje Physica D 451 (2023) 133773

Table 4
The results of identification of flux function fθ∗ (u;β) with specific β .
β The identification of flux function fθ∗ (u;β)

β1 = −1 fθ∗ (u;β1) =
−0.0808u8+0.2555u7−0.0379u6−0.4234u5+3.2486u4−4.6848u3−3.2596u2+3.6620u−1.2970
0.3590u8−1.1358u7+0.1685u6+1.8822u5−2.9914u4+2.7129u3+2.6686u2−1.7852u+0.6337

β2 = 1 fθ∗ (u;β2) =
−0.9589u8+4.7491u7−6.1089u6−0.2182u5+7.73097u4−13.0489u3+0.7633u2+4.3662u−2.3523

1.4639u8−7.2501u7+9.3260u6+0.3332u5−7.0604u4+8.1785u3+1.9316u2−2.5813u+1.2348

β3 = 3 fθ∗ (u;β3) =
0.0002u8+0.0091u7+0.1226u6+0.7346u5+2.5724u4+6.5190u3+7.1617u2−1.9897u−0.0680
0.0003u8+0.0121u7+0.1630u6+0.9770u5+3.3709u4+7.7091u3+5.9935u2−5.3643u+2.4714

β4 = 5 fθ∗ (u;β4) =
1.1340u8+5.2921u7+8.9497u6+6.3207u5+2.1223u4+1.8374u3+1.4766u2−0.3334u−0.5300

1.7459u8+8.1478u7+13.7791u6+9.7314u5+3.8413u4+4.16754u3+1.1539u2−2.7925u+1.4449

β5 = 7 fθ∗ (u;β5) =
7.2266e−5u8+0.0031u7+0.0486u6+0.3395u5+0.8249u4−0.1620u3+2.3615u2−0.6630u−0.1760
7.7078e−5u8+0.0033u7+0.0518u6+0.3621u5+0.8955u4+0.1576u3+4.0315u2−3.2001u+0.9126

Fig. 10. The graphical results of identification of flux function fθ∗ (u;β) for β = −1, 1, 3, 5, 7. In each subplot, the solid red line is the true function, and the orange
dashed line is the learned function.

fW (u, β) =

a00 + a01u + a02u2
+ a03u3

+ a04u4
+ a05u5

+ β(a10 + a11u + a12u2
+ a13u3

+ a14u4
+ a15u5)

b00 + b01u + b02u2 + b03u3 + b04u4 + b05u5 + β(b10 + b11u + b12u2 + b13u3 + b14u4 + b15u5)

(41)

Box I.

Next, we verify that (43) is a model that can represent well the
true family of flux functions (39). We test (43) on the validation
set where β = −3 and β = 9. Table 5 shows the results.
Obviously, whether it is for β = −3 or for β = 9, the error
is relatively small, and meets the criteria we set ∆ = 0.0007.
We also test other candidate models on the validation set. The
results are shown in Table 6. It is obvious that when K = 1,
Ji = 5, P = 1 and Qi = 5 the candidate model has the best
performance. Therefore, we choose (42) and (43) as the preferred
learned model and use it to test new initial states and parameters.

4.3. Results and discussions

In Fig. 11 we first show the learned flux function (43) (panel
a) and the error between true flux function (39) and the learned
(43) (panel b) with β ∈ [−10, 10] and u ∈ [0, 1]. The absolute
error of the two functions is less than 0.118 over the entire
domain. Specifically, we set β = −10,−7,−5, 8, 9, 10 separately

to test the generalization ability of (43). In Fig. 12, we show the
true and the learned function with different values of β . The
model performs well for most parameter choice of β in [−10, 10],
however, conduct worse when β < −8 although still within our
acceptable range ∆ = 0.13.

Finally, we compare the GNNs method with our approach.
We use Rprop optimizer [43] to minimize the loss function with
learning rate set to lr = 10−6 for 5000 iterations and batch size
set to 5. Fig. 13 shows the solutions of (1) with β = −7 and
β = 9 using the two different methods. The proposed method
enables quite a nice approximation of the true predicted behavior
whereas the GNNs fail to capture it, most likely, since it has not
been constructed to handle discontinuous behavior.

5. Conclusion

In this paper we have developed a framework that combines
the recently proposed ConsLaw-Net with LRNN to learn the func-
tional form of the two variable function f (u, β) involved in the

13

109

Q. Li, J. Geng and S. Evje Physica D 451 (2023) 133773

Fig. 11. (a) Flux function (43). (b) The difference between the flux function (39) and (43).

Fig. 12. The generalization ability of the model (43) for β = −10,−7,−5, 8, 9, 10. In each subplot, the red solid line is the true function, and the orange dashed
line is the learned function.

Fig. 13. The compared results of our method and the GNNs method. We compare the two methods at β = −7(top row) and β = 9(bottom row) based on initial

state u0 =

{
1.0, if x ∈ [4.5, 6]
0.0, otherwise

. Left: True solutions of (1). Middle: Solutions generated by our method. Right: Solutions generated by the GNNs method.

14

110

Q. Li, J. Geng and S. Evje Physica D 451 (2023) 133773

Table 5
The results of (43) on the validation data β = −3 and β = 9. The value of Error is the MSE
between true and generated solutions of (1) at times (40). We also plot the solution at time point
t = 0.3, 0.6, 0.9 respectively. In each subplot, the solid red line is the true solution, and the blue

dashed line is the solution generated by (43) based on initial state u0 =

{
1.0, if x ∈ [4.5, 6]
0.0, otherwise

.

β Error t = 0.3 t = 0.6 t = 0.9

β = −3 0.0002

β = 9 0.0006

Table 6
The results of other candidate models on the validation set. The value is the MSE between true and predicted

solutions of (1) at times (40) for four different initial states given by u0
β=−3,9 =

{
1.0, if x ∈ [4.5, 6]
0.0, otherwise

,

u1
β=−3,9 =

{
0.9, if x ∈ [3.5, 5]
0.0, otherwise

, u2
β=−3,9 =

{
0.8, if x ∈ [5, 6.5]
0.0, otherwise

and u3
β=−3,9 =

{
0.7, if x ∈ [3, 6]
0.0, otherwise

,

respectively.
β K = 1,

Ji = 6
K = 1,
Ji = 7

K = 1,
Ji = 8

K = 1,
Ji = 3,
P = 1,
Qi = 3

K = 1,
Ji = 4,
P = 1,
Qi = 4

β = −3 0.0014 0.0005 0.0005 0.0210 0.0003

β = 9 0.0038 0.0036 0.0026 0.0146 0.0008

conservation law (1). More precisely, the method is composed
of the following two steps: (i) learn f (u;βi) for a few selected
βi in an interval of interest; (ii) Combine the obtained f (u;βi)
with LRNN to learn the full two-variable function f (u, β). As a
by product of this method we have improved the ConsLaw-Net
by employing an entropy consistent numerical scheme which
relies on local information (relatively the discrete spatial grid)
about the unknown flux function f (u, β). This makes the resulting
ConsLaw-Net more generic and useful for challenging real-world
data. The well-known challenge with identification of a nonlinear
flux function from data due to appearance of discontinuities and
lack of uniqueness (i.e., many different flux functions can fit with
the observation data), is dealt with by relying on an entropy
consistent numerical scheme in combination with a small set
of more or less randomly selected initial data. We experimen-
tally demonstrate the effectiveness of our method when applied
to synthetic data generated from two different families of flux
functions f (u, β) given by (34) and (39), respectively.

Our method is sensitive to the selection of the initial states,
as initial states affect the distribution of the observed data. If the
data is not sufficiently evenly distributed, it may lead to failure
in the first step of the learning process. The optimization of the
second step is heavily dependent on the results of the first step,
and a small error in the first step may amplify this error in the
second step. However, in a setting where the observation data
comes from measurements of experimental data our approach
gives a systematic way to try to learn an underlying conserva-
tion law that can explain the observation data. Before using the
learned conservation law for prediction one must be aware that
enough variation in initial data has been provided.

Overall, our approach based on ConsLaw-Net and LRNN has
shown a good ability learn the unknown flux function with vari-
able parameters f (u, β). Possible further extensions can be to
explore the method in higher dimensional spaces and consider

other types of observation data than we have used in this work.
An interesting direction for further investigations is to see if there
is room for including in the loss function some explicit character-
istics of the entropy solution that will make the identification of
the flux function more efficient.

CRediT authorship contribution statement

Qing Li: Methodology, Coding, Investigation, Writing, Visu-
alization. Jiahui Geng: Software, Writing – review & editing.
Steinar Evje: Coding, Writing – review & editing, Supervision.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Data availability

Data will be made available on request.

Appendix

A.1. The initial states used to train f (u;β) in Section 3.1

See Table 7.

A.2. The initial states used to train f (u;β) in Section 4.1

See Table 8.

15

111

Q. Li, J. Geng and S. Evje Physica D 451 (2023) 133773

Table 7
The initial states used to train f (u;β) in Section 3.1.

u0
β=10 =

{
1.0, if x ∈ [0, 3]
0, otherwise

u0
β=130 =

{
1.0, if x ∈ [4.5, 6]
0.3, otherwise

u1
β=130 =

{
0.8, if x ∈ [5, 6.5]
0.2, otherwise

u2
β=130 =

{
0.85, if x ∈ [4, 7]
0, otherwise

u3
β=130 =

{
0.95, if x ∈ [0, 3]
0, otherwise

u4
β=130 =

{
0.7, if x ∈ [3, 6]
0, otherwise

u5
β=130 =

{
0.9, if x ∈ [3.5, 5]
0, otherwise

u0
β=200 =

{
1.0, if x ∈ [4.5, 6]
0.3, otherwise

u1
β=200 =

{
0.8, if x ∈ [5, 6.5]
0.2, otherwise

u2
β=200 =

{
0.85, if x ∈ [4, 7]
0, otherwise

u3
β=200 =

{
0.95, if x ∈ [0, 3]
0, otherwise

u4
β=200 =

{
0.7, if x ∈ [3, 6]
0, otherwise

u5
β=200 =

{
0.9, if x ∈ [3.5, 5]
0, otherwise

u0
β=300 =

{
1.0, if x ∈ [4.5, 6]
0.3, otherwise

u1
β=300 =

{
0.8, if x ∈ [5, 6.5]
0.2, otherwise

u2
β=300 =

{
0.85, if x ∈ [4, 7]
0, otherwise

u3
β=300 =

{
0.95, if x ∈ [0, 3]
0, otherwise

u4
β=300 =

{
0.7, if x ∈ [3, 6]
0, otherwise

u5
β=300 =

{
0.9, if x ∈ [3.5, 5]
0, otherwise

u6
β=300 =

{
0.6, if x ∈ [3.5, 5]
0, otherwise

u7
β=300 =

{
0.4, if x ∈ [3.5, 5]
0, otherwise

u8
β=300 =

{
0.35, if x ∈ [3.5, 5]
0, otherwise

Table 8
The initial states used to train f (u;β) in Section 4.1.

u0
β=−1 =

{
0.8, if x ∈ [4, 6]
0, otherwise

u1
β=−1 =

{
1.0, if x ∈ [4, 6]
0, otherwise

u2
β=−1 =

{
0.9, if x ∈ [3, 5]
0, otherwise

u3
β=−1 =

{
0.95, if x ∈ [2.5, 4.5]
0.3, otherwise

u4
β=−1 =

{
0.85, if x ∈ [2.5, 4.5]
0.3, otherwise

u0
β=1 =

{
0.8, if x ∈ [4, 6]
0, otherwise

u1
β=1 =

{
1.0, if x ∈ [4, 6]
0, otherwise

u2
β=1 =

{
0.9, if x ∈ [3, 5]
0, otherwise

u3
β=1 =

{
0.7, if x ∈ [2.5, 4.5]
0.2, otherwise

u4
β=1 =

{
0.6, if x ∈ [2.5, 4.5]
0.2, otherwise

u5
β=1 =

{
0.5, if x ∈ [2.5, 4.5]
0.2, otherwise

u0
β=3 =

{
0.8, if x ∈ [4, 6]
0, otherwise

u1
β=3 =

{
1.0, if x ∈ [4, 6]
0, otherwise

u2
β=3 =

{
0.9, if x ∈ [3, 5]
0, otherwise

u3
β=3 =

{
0.95, if x ∈ [2.5, 4.5]
0.3, otherwise

u4
β=3 =

{
0.85, if x ∈ [2.5, 4.5]
0.3, otherwise

u5
β=3 =

{
1.0, if x ∈ [2.5, 4.5]
0.2, otherwise

u6
β=3 =

{
0.9, if x ∈ [2.5, 4.5]
0.2, otherwise

u0
β=5 =

{
0.8, if x ∈ [4, 6]
0, otherwise

u1
β=5 =

{
1.0, if x ∈ [4, 6]
0, otherwise

u2
β=5 =

{
0.9, if x ∈ [3, 5]
0, otherwise

u3
β=5 =

{
0.95, if x ∈ [2.5, 4.5]
0.3, otherwise

u4
β=5 =

{
0.85, if x ∈ [2.5, 4.5]
0.3, otherwise

u0
β=7 =

{
0.8, if x ∈ [4, 6]
0, otherwise

u1
β=7 =

{
1.0, if x ∈ [4, 6]
0, otherwise

u2
β=7 =

{
0.9, if x ∈ [3, 5]
0, otherwise

u3
β=7 =

{
0.95, if x ∈ [2.5, 4.5]
0.3, otherwise

u4
β=7 =

{
0.85, if x ∈ [2.5, 4.5]
0.3, otherwise

References

[1] D. Pardo, L. Demkowicz, C. Torres-Verdin, M. Paszynski, A self-adaptive
goal-oriented hp-finite element method with electromagnetic applications.
Part II: Electrodynamics, Comput. Methods Appl. Mech. Engrg. 196 (37–40)
(2007) 3585–3597.

[2] Thomas D Economon, Francisco Palacios, Sean R Copeland, Trent W
Lukaczyk, Juan J Alonso, SU2: An open-source suite for multiphysics
simulation and design, AIAA J. 54 (3) (2016) 828–846.

[3] Ravi Ramamurti, William Sandberg, Simulation of flow about flapping
airfoils using finite element incompressible flow solver, AIAA J. 39 (2)
(2001) 253–260.

[4] Peter Bauer, Alan Thorpe, Gilbert Brunet, The quiet revolution of numerical
weather prediction, Nature 525 (7567) (2015) 47–55.

[5] Christoph Schwarzbach, Ralph-Uwe Börner, Klaus Spitzer, Three-
dimensional adaptive higher order finite element simulation for
geo-electromagnetics—a marine CSEM example, Geophys. J. Int. 187
(1) (2011) 63–74.

[6] Maziar Raissi, Paris Perdikaris, George E. Karniadakis, Physics-informed
neural networks: A deep learning framework for solving forward and
inverse problems involving nonlinear partial differential equations, J.
Comput. Phys. 378 (2019) 686–707.

[7] Zichao Long, Yiping Lu, Xianzhong Ma, Bin Dong, Pde-net: Learning PDEs
from data, in: International Conference on Machine Learning, PMLR, 2018,
pp. 3208–3216.

[8] Zichao Long, Yiping Lu, Bin Dong, PDE-Net 2.0: Learning PDEs from data
with a numeric-symbolic hybrid deep network, J. Comput. Phys. 399 (2019)
108925.

[9] Hans Joakim Skadsem, Steinar Kragset, A numerical study of density-
unstable reverse circulation displacement for primary cementing, . Energy
Resour. Technol. 144 (12) (2022) 123008.

[10] Olga Fuks, Hamdi A. Tchelepi, Limitations of physics informed machine
learning for nonlinear two-phase transport in porous media, J. Mach. Learn.
Model. Comput. 1 (1) (2020).

[11] Qing Li, Steinar Evje, Learning the nonlinear flux function of a hidden scalar
conservation law from data, Netw. Heterog. Media 18 (2023).

[12] R.J. LeVeque, Finite volume methods for hyperbolic problems, in:
Cambridge Texts in Applied Mathematics, 2007.

[13] J.W. Thomas, Numerical partial differential equations. conservation laws
and elliptic equations, in: Texts in Applied Mathematics 33, 1999.

[14] J.S. Hesthaven, Numerical methods for conservation laws. From analysis to
algorithms, SIAM. Comput. Sci. Eng. (2017).

[15] D. Kröener, Numerical schemes for conservation laws, in: Wiley-Teubner
Series Advances in Numerical Mathematics, 1997.

[16] Siddhartha Mishra, U. Fjordholm, R. Abgrall, Numerical methods for con-
servation laws and related equations, in: Lecture Notes for Numerical
Methods for Partial Differential Equations, ETH, vol. 57, 2019, p. 58.

[17] Valerii Iakovlev, Markus Heinonen, Harri Lähdesmäki, Learning continuous-
time PDEs from sparse data with graph neural networks, in: 9th
International Conference on Learning Representations, ICLR 2021, Virtual
Event, Austria, May 3-7, 2021, OpenReview.net, 2021.

[18] Tobias Pfaff, Meire Fortunato, Alvaro Sanchez-Gonzalez, Peter W. Battaglia,
Learning mesh-based simulation with graph networks, in: 9th International
Conference on Learning Representations, ICLR 2021, Virtual Event, Austria,
May 3-7, 2021, OpenReview.net, 2021.

[19] Qingqing Zhao, David B. Lindell, Gordon Wetzstein, Learning to solve
PDE-constrained inverse problems with graph networks, in: Kamalika
Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvári, Gang Niu, Sivan
Sabato (Eds.), International Conference on Machine Learning, ICML 2022,
17-23 July 2022, Baltimore, Maryland, USA, in: Proceedings of Machine
Learning Research, vol. 162, PMLR, 2022, pp. 26895–26910.

16

112

Q. Li, J. Geng and S. Evje Physica D 451 (2023) 133773

[20] Helge Holden, Fabio Simone Priuli, Nils Henrik Risebro, On an inverse
problem for scalar conservation laws, Inverse Problems 30 (3) (2014)
035015.

[21] María Cristina Bustos, EM Tory, Raimund Bürger, F Concha, Sedimentation
and thickening: Phenomenological foundation and mathematical theory,
Vol. 8, Springer Science & Business Media, 1999.

[22] Stefan Diehl, Estimation of the batch-settling flux function for an ideal
suspension from only two experiments, Chem. Eng. Sci. 62 (17) (2007)
4589–4601.

[23] Raimund Bürger, Stefan Diehl, Convexity-preserving flux identification for
scalar conservation laws modelling sedimentation, Inverse Problems 29 (4)
(2013) 045008.

[24] Raimund Bürger, Julio Careaga, Stefan Diehl, Flux identification of scalar
conservation laws from sedimentation in a cone, IMA J. Appl. Math. 83 (3)
(2018) 526–552.

[25] Stefan Diehl, Numerical identification of constitutive functions in scalar
nonlinear convection–diffusion equations with application to batch
sedimentation, Appl. Numer. Math. 95 (2015) 154–172.

[26] Lukas Mosser, Olivier Dubrule, Martin J. Blunt, Stochastic seismic waveform
inversion using generative adversarial networks as a geological prior, Math.
Geosci. 52 (1) (2020) 53–79.

[27] Qinglong He, Yanfei Wang, Reparameterized full-waveform inversion using
deep neural networks, Geophysics 86 (1) (2021) V1–V13.

[28] Tiffany Fan, Kailai Xu, Jay Pathak, Eric Darve, Solving inverse problems
in steady-state navier-stokes equations using deep neural networks, 2020,
arXiv preprint arXiv:2008.13074.

[29] Hayden Schaeffer, Learning partial differential equations via data discovery
and sparse optimization, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 473
(2197) (2017) 20160446.

[30] Sung Ha Kang, Wenjing Liao, Yingjie Liu, Ident: Identifying differential
equations with numerical time evolution, J. Sci. Comput. 87 (2021) 1–27.

[31] Nils Thuerey, Konstantin Weißenow, Lukas Prantl, Xiangyu Hu, Deep
learning methods for Reynolds-averaged Navier–Stokes simulations of
airfoil flows, AIAA J. 58 (1) (2020) 25–36.

[32] Nils Wandel, Michael Weinmann, Reinhard Klein, Learning incompressible
fluid dynamics from scratch - towards fast, differentiable fluid models that
generalize, in: 9th International Conference on Learning Representations,
ICLR 2021, Virtual Event, Austria, May 3-7, 2021, OpenReview.net, 2021.

[33] Siddhartha Mishra, A machine learning framework for data driven ac-
celeration of computations of differential equations, Mathematics in
Engineering 1 (2019) 118–146.

[34] Georg Martius, Christoph H. Lampert, Extrapolation and learning equa-
tions, in: 5th International Conference on Learning Representations, ICLR
2017, Toulon, France, April 24-26, 2017, Workshop Track Proceedings,
OpenReview.net, 2017.

[35] Subham Sahoo, Christoph Lampert, Georg Martius, Learning equations
for extrapolation and control, in: International Conference on Machine
Learning, PMLR, 2018, pp. 4442–4450.

[36] Ciyou Zhu, Richard H. Byrd, Peihuang Lu, Jorge Nocedal, Algorithm
778: L-BFGS-B: Fortran subroutines for large-scale bound-constrained
optimization, ACM Trans. Math. Softw. 23 (4) (1997) 550–560.

[37] Sebastian Ruder, An overview of gradient descent optimization algorithms,
2016, arXiv preprint arXiv:1609.04747.

[38] François James, M. Sepúlveda, Parameter identification for a model of
chromatographic column, Inverse Problems 10 (6) (1994) 1299.

[39] François James, Mauricio Sepúlveda, Convergence results for the flux
identification in a scalar conservation law, SIAM J. Control Optim. 37 (3)
(1999) 869–891.

[40] Helge Holden, Nils Henrik Risebro, Front Tracking for Hyperbolic
Conservation Laws, Vol. 152, Springer, 2015.

[41] Ilya Loshchilov, Frank Hutter, Decoupled weight decay regularization, in:
7th International Conference on Learning Representations, ICLR 2019, New
Orleans, la, USA, May 6-9, 2019, OpenReview.net, 2019.

[42] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, George E
Dahl, Neural message passing for quantum chemistry, in: International
Conference on Machine Learning, PMLR, 2017, pp. 1263–1272.

[43] Martin Riedmiller, Heinrich Braun, Rprop-a fast adaptive learning
algorithm, in: Proc. of ISCIS VII, Universitat, Citeseer, 1992.

17

113

114

Paper V:
An Alternating Flux Learning
Method for Multidimensional
Nonlinear Conservation Laws

Qing Li, Steinar Evje

Under Review in SIAM Journal on Scientific Computing

This paper is not included in the repository because it's still under review.

115

Paper VI:
Learning the Flux and Diffusion
Function for Degenerate
Convection-Diffusion Equations
Using Different Types of
Observations

Qing Li, Steinar Evje

Under Review in BIT Numerical Mathematics

This paper is not included in the repository because it's still under review.

143

	Preface
	Abstract
	Acknowledgements
	List of publications
	Introduction
	Research Background and Challenges
	The Parameterized ODEs
	The Conservation Law
	The One-Dimensional Scalar Conservation Law
	The One-Dimensional Scalar Conservation Law with Variable Parameters
	The Two-Dimensional Scalar Conservation Law
	The One-Dimensional Scalar Conservation Law with Diffusion Term

	Literature Review
	Research Methods for Non-Machine Learning
	Research Methods for Machine Learning
	Supervised Methods
	Physics-informed Methods
	Interleaved Methods

	Methodology
	ConsLaw-Net
	Symbolic Neural Networks
	Entropy Consistent Discrete Numerical Scheme (ECDNS)

	GNNs

	Research Contributions
	Learning Parameterized ODEs from Data
	Solving Nonlinear Conservation Laws of Partial Differential Equations Using Graph Neural Networks
	Learning the nonlinear flux function of a hidden scalar conservation law from data
	Identification of the flux function of nonlinear conservation laws with variable parameters
	An alternating flux learning method for multidimensional nonlinear conservation laws
	Learning the flux and diffusion function for degenerate convection-diffusion equations using different types of observations

	Conclusion and Future Work
	Bibliography
	Paper I: Learning Parameterized ODEs from Data
	Paper II: Solving Nonlinear Conservation Laws of Partial Differential Equations Using Graph Neural Networks
	Paper III: Learning the Nonlinear Flux Function of a Hidden Scalar Conservation Law from Data
	Paper IV: Identification of the Flux Function of Nonlinear Conservation Laws with Variable Parameters
	Paper V: An Alternating Flux Learning Method for Multidimensional Nonlinear Conservation Laws
	Paper VI: Learning the Flux and Diffusion Function for Degenerate Convection-Diffusion Equations Using Different Types of Observations

