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A B S T R A C T   

Decarbonizing offshore oil and gas fields is crucial in the global fight against climate change. To achieve this 
objective, the offshore oil and gas industry has embraced innovative energy systems, including microgrids that 
seamlessly integrate renewable energy sources like floating wind turbines. This study presents a comprehensive 
investigation into an integrated energy management system for an offshore microgrid, encompassing three 
platforms and a floating wind farm, along with green hydrogen production and storage facilities. 

The operational decision-making process for such a complex microgrid, involving numerous assets, presents 
notable challenges. To address this, a sophisticated smart management system is employed, enabling efficient 
optimization with advanced forecasting capabilities to identify the most cost-effective and environmentally 
friendly version of the microgrid’s operation. To overcome the intricacies of optimization and computational 
constraints, a novel hybrid optimization approach, with a platform-centric strategy, is utilized. Leveraging real- 
world operational data, the study harnesses an innovative online optimization method fortified with state-of-the- 
art AI algorithms. 

The results of the optimization are benchmarked against a rule-based operation, wherein no formal optimi
zation occurs, but the most economically viable decisions are made. The findings underscore the effectiveness of 
the developed optimization method, leading to a significant 16% reduction in operational costs and carbon-based 
emissions compared to the rule-based approach. 

This study effectively demonstrates the real-world applicability of the developed method by applying and 
testing the smart management system on an actual offshore platform with minimal simplifications. The inves
tigation provides valuable evidence of the method’s adaptability to complex operational scenarios, highlighting 
its potential for practical implementation in the offshore oil and gas industry.   

1. Introduction 

The extraction and processing of fossil fuels significantly impact the 
release of greenhouse gases (GHGs), highlighting the urgency to find 
effective strategies for minimizing these emissions and achieving a 
carbon-neutral society. Offshore facilities rely heavily on gas turbines 
(GTs) for power generation, using natural gas or diesel oil as fuels, 
thereby being the primary sources of CO2 and NOx emissions. According 
to a report, in 2022, GTs accounted for 81% of CO2 emissions generated 
by petroleum activities in the Norwegian Continental Shelf (NCS) 
(Norwegian Petroleum Directorate, 2023). The power required on oil 
and gas (O&G) platforms ranges from 10 MW to several hundreds of 

MW, depending on factors like temperature, pressure, and field prop
erties (Polleux et al., 2022). To meet this demand GTs coupled with 
electric generators operate by burning natural gas or diesel oil (Zhang 
et al., 2018). 

Dependence on GTs for power generation in offshore O&G facilities 
significantly amplifies environmental consequences. The continuous 
release of CO2 intensifies the global issue of climate change (Hachem 
et al., 2022), setting off a series of effects. These include the gradual 
increase in global temperatures, rising sea levels, and disruptions to 
ecosystems. The long-term consequences of GHG emissions not only 
affect the local marine environments around offshore installations but 
also contribute to broader climate shifts (Grasso, 2019), underscoring 

* Corresponding author. 
E-mail addresses: Reyhaneh.Banihabib@uis.no (R. Banihabib), Mohsen.Assadi@uis.no (M. Assadi).  

Contents lists available at ScienceDirect 

Journal of Cleaner Production 

journal homepage: www.elsevier.com/locate/jclepro 

https://doi.org/10.1016/j.jclepro.2023.138742 
Received 16 June 2023; Received in revised form 27 August 2023; Accepted 7 September 2023   

mailto:Reyhaneh.Banihabib@uis.no
mailto:Mohsen.Assadi@uis.no
www.sciencedirect.com/science/journal/09596526
https://www.elsevier.com/locate/jclepro
https://doi.org/10.1016/j.jclepro.2023.138742
https://doi.org/10.1016/j.jclepro.2023.138742
https://doi.org/10.1016/j.jclepro.2023.138742
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jclepro.2023.138742&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Journal of Cleaner Production 423 (2023) 138742

2

the need for a comprehensive and globally oriented response (Interna
tional Energy Agency, 2020). In response to environmental concerns, 
the offshore O&G industry is experiencing a transformative shift driven 
by evolving regulations, societal pressures, and a growing recognition of 
its environmental footprint. International efforts like the Paris Agree
ment illustrate the joint commitment to reducing emissions and con
trolling global warming (Haszeldine et al., 2018). The International 
Maritime Organization and its Energy Efficiency Existing Ship Index 
regulations demonstrate global initiatives to limit emissions in the 
maritime sector, which also influence offshore operations (Watson, 
2020). 

Norway has been a pioneer in promoting environmental awareness 
and reducing GHG from the O&G sector. In 1991, Norway introduced a 
CO2 tax of approximately 40 €/ton. Over time, the implementation of 
this policy has resulted in operators on the NCS now facing a combined 
CO2 tax of 52 €/ton, which is expected to increase to more than 70 €/ton 
by 2040 due to the tightening of regulatory frameworks in Europe 
(Oliveira-Pinto et al., 2019). The European Union Trading System (ETS), 
created in 2005, has also significantly promoted environmental aware
ness, with current ETS prices around 5 €/ton of CO2 (Oliveira-Pinto 
et al., 2019). As a result, the increasing emissions of GHGs not only pose 
environmental concerns but also result in significant financial penalties. 
Therefore, improving the energy management of offshore facilities is 
becoming an economic driver for the industry (Oliveira-Pinto et al., 
2019). Particularly in Norway, where the cost of CO2 emissions stem
ming from natural gas utilization in petroleum fields is notably high at 
approximately 2400 NOK/ton of natural gas (equivalent to about 214 
€/ton) under the 2023 regulatory framework (“Tax rates in Norway), 
field operators have shown keen interest in exploring solutions to reduce 
O&G platform emissions. 

One of the strategies embraced by O&G facilities in Norway to attain 
sustainability and decrease emissions is adopting onshore power sour
ces. Given that a substantial portion of onshore power in Norway is 
derived from renewable sources (International Energy Agency, 2022), 
this approach is gaining momentum. Currently, 16 fields have either 
already implemented or are planning to use this technology (Norwegian 
Petroleum Directorate Professor Olav Hanssens and vei, 2020), which is 
projected to account for around 45% of total O&G production on the 
continental shelf (Norwegian Petroleum Directorate Professor Olav 
Hanssens and vei, 2020). This shift towards power from land solutions is 
expected to significantly reduce petroleum-related emissions in Norway, 
avoiding approximately 3.2 million tons of CO2 emissions 
annually-equivalent to a quarter of the total emissions from the petro
leum sector in 2019 (Norwegian Petroleum Directorate Professor Olav 
Hanssens and vei, 2020). 

Another avenue showing promise in mitigating emissions within the 
offshore sector is CO2 capture and storage (CCS) from turbine exhaust. 
Despite its potential, the practical implementation of this method on 
platforms presents intricate logistical challenges that necessitate careful 
consideration. The need for substantial infrastructure in proximity to the 
gas turbine, combined with spatial constraints on these platforms, 
complicates the approach (Roussanaly et al., 2019). Consequently, 
exploring innovative solutions characterized by compactness and 
reduced weight becomes essential, bypassing the hurdles posed by 
spatial limitations and heavy equipment installation (Anekwe et al., 
2023). Despite the challenges, significant progress has been achieved in 
implementing CO2 capture from turbine exhaust on offshore platforms, 
exemplified by the United Kingdom and Norway (“Carbon capture and 
storage, 2023). This uptake validates the technology’s feasibility in the 
offshore environment. Other than Europe, the initiatives in offshore 
carbon dioxide storage in regions such as the United States, Japan, and 
Australia, underscore a commitment to safe and environmentally 
responsible storage, complemented by their respective regulations and 
policies (Luo et al., 2023). 

The integration of renewable energy sources and alternative power 
supply methods is another avenue to address the challenges of 

sustainable offshore operations. This approach offers a multifaceted 
solution to the challenges of sustainable offshore operations. Renewable 
energy sources, including wind, solar, and wave energy, have gained 
traction as effective tools to reduce the carbon footprint of offshore O&G 
platforms (de Souza et al., 2022). Wind turbines, in particular, stand out 
due to their suitability for offshore high wind speeds. Developing hybrid 
energy systems that combine renewable sources with conventional gas 
turbines aims to enhance offshore platform efficiency and sustainability, 
ensuring a consistent power supply to meet operational demands. This 
integration leads to substantial contributions to energy demand through 
renewables, resulting in emissions reduction and notable cost savings 
(Watson, 2020). While the shift to renewable energy sources may entail 
upfront expenses, the reduction in operational costs and avoidance of 
emissions-related taxes can lead to significant economic benefits (In
ternational Renewable Energy Agency (IRENA), 2019). Government 
incentives and regulatory support play a pivotal role in shaping the 
economic landscape of this transition (International Renewable Energy 
Agency (IRENA), 2019). 

Insights into the growth of offshore wind in the Asia Pacific region 
and the policies implemented by various governments to promote this 
sector are provided in (Cheng and Hughes, 2023). The operation of a 4 
× 5 MW offshore wind farm operating in parallel with GTs was studied 
by Korpås et al. (2012). The findings highlight the potential for signif
icant cost savings and emissions reductions, validating the viability of 
offshore wind integration for sustainable and efficient power supply to 
O&G field centers. Zhang et al. (2021) explored the integration of wind 
power into offshore O&G field energy systems, assessing its economic 
and environmental performance. According to the authors (Zhang et al., 
2021), introducing wind energy reduced carbon emissions by approxi
mately 39.91% and lowered the total annual cost by about 2.57% 
(Zhang et al., 2021).Additionally, Panda et al. investigated an 
XAI-driven net-zero carbon roadmap for the petrochemical industry, 
considering stochastic scenarios of offshore wind energy, which 
demonstrated the potential for further advancements in cost reductions 
and emissions mitigation through the integration of renewable energy 
sources (Panda and Das, 2021). 

Although the benefits of integrating renewable energy sources, 
particularly wind power, are evident, its intermittent nature introduces 
technical challenges causing system instability, potentially requiring a 
reliable backup power source (Al-Shetwi, 2022). To that end, the 
incorporation of energy storage and energy management systems be
comes imperative in the integrated system. Notably, the offshore wind 
sector is undergoing rapid global expansion since it holds the dual 
promise of decarbonizing electricity and serving as a platform for 
hydrogen production, thus addressing energy storage needs (Durakovic 
et al., 2023). This concept involves generating green hydrogen through 
electrolysis technology by converting water into hydrogen using surplus 
renewable energy. The stored hydrogen can then serve as carbon-free 
fuel for gas turbine units. The utilization of hydrogen and 
hydrogen-based fuels has gained attention for gas turbines in recent 
decades and many original equipment manufacturers have shared in
formation regarding the hydrogen compatibility of their engines (Amin 
and Fors, 2020), (Goldmeer, 2019). 

Researchers have investigated the feasibility of producing and uti
lizing green hydrogen on offshore platforms by harnessing available 
wind power to run an electrolyzer, converting water, readily abundant 
in offshore fields, into hydrogen (Dokhani et al., 2023), (Riboldi et al., 
2020). In (Kumar et al., 2023), the authors offered valuable insights into 
the symbiotic relationship between the green hydrogen sector and 
offshore industries. Their analysis of integrating offshore renewable 
energy systems with O&G sectors revealed the advantages, contribu
tions, and safety considerations of green hydrogen in decarbonizing 
offshore industries (Kumar et al., 2023). Giampieri et al. (Giampieri 
et al., 2023) show that producing green hydrogen from offshore wind 
could achieve significant cost reduction by 2030 and 2050, making it 
competitive against grey and blue hydrogen. According to their study, 
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compressed hydrogen production offshore is the most cost-effective 
scenario for projects starting in 2025, while alternative strategies like 
liquefied hydrogen or methylcyclohexane may become more 
cost-effective for projects beginning in 2050 (Giampieri et al., 2023). 
Riboldi et al. compared three offshore energy supply models: standard 
gas turbines, a hybrid GT-wind turbine setup, and a hybrid energy sys
tem for offshore integrating GTs, WTs, and hydrogen storage (Riboldi 
et al., 2020). Results reveal the third approach’s potential to notably cut 
CO2 emissions (up to 40%) compared to conventional setups, supported 
by an optimization framework for sustainable offshore energy solutions 
(Riboldi et al., 2020). 

To power offshore rigs sustainably, a hybrid energy system that 
combines offshore wind power, on-site gas turbines, and power-to-gas 
storing electrolyzers becomes a necessary solution. Integrating these 
diverse energy sources and technologies is imperative to transform 
various offshore drilling and production platforms into integrated en
ergy microgrids (IEMs) that can interact effectively with offshore power 
plants (Li et al., 2022). The criteria for a microgrid include having a 
well-defined electrical boundary, a control system for resource man
agement, and a generation capacity exceeding critical load to allow the 
microgrid to operate independently from the main grid (Li et al., 2020). 
Implementing smart IME can optimize the use of diverse energy sources, 
minimize waste, and improve system reliability for the sustainable 
development of offshore O&G platforms. These advanced energy man
agement systems facilitate decarbonization efforts, enable remote 
monitoring, reduce human intervention, and enhance overall safety. 

The offshore microgrid concept has been extensively studied 
(Grainger et al., 2021; Adrian, 2022; Peters et al., 2020; Ventrelli, 2022), 
with most research concentrating on evaluating the feasibility and 
analyzing renewable integration in O&G fields. Some studies targeted 
power balancing for IEM systems and addressed the challenges of as
suring power demand satisfaction (Anglani et al., 2020; Yu et al., 2020; 
Zare et al., 2023; Jing et al., 2022). The literature also addresses the 
significance of operational strategies and system integration involving 
offshore wind farms and gas turbines on platforms for achieving emis
sion reductions (Svendsen et al., 2022). 

This study goes beyond ensuring power demand and production 
balance, by introducing a smart energy management system that opti
mizes asset operation in the microgrid to reduce costs and emissions. 
Furthermore, the development of an online platform with highly accu
rate models for optimizing offshore microgrid operation is a novel 
practice, yet to be conducted as per the authors’ knowledge. Addition
ally, while the concept of offshore microgrids in a theoretical context has 
been covered in the literature (Panda and Das, 2021), (Zare et al., 2023), 
(Li et al., 2023) this study delves into a real-world scenario, analyzing an 
actual case with verifiable data. In line with the challenges posed by 
hybrid integrated energy systems, the incorporation of advanced opti
mization techniques and control strategies, as highlighted in (Shezan 
et al., 2023), could potentially enhance the effectiveness of the proposed 
smart energy management system. 

The paper is organized as follows: first, a description of the offshore 
platform under study is presented, followed by the methodology for 
operating the platform conventionally versus using smart management 
tools. Lastly, the results of the operation in both scenarios are presented 
for a week of operation, demonstrating the value of using smart man
agement systems for offshore IEMs. 

2. Case study description 

2.1. Gullfaks platforms and Hywind Tampen 

The Gullfaks O&G field is situated in the Norwegian sector of the 
North Sea, at a latitude of 61.21 and a longitude of 2.27. The field 
comprises three platforms - Gullfaks A (GFA), Gullfaks B (GFB), and 
Gullfaks C (GFC) - all of which were constructed in the 1980s. These 
platforms serve the dual purpose of drilling and production, as well as 

accommodating personnel. Originally, these platforms were designed to 
operate using gas turbines; however, in line with the goal of reducing 
carbon emissions, Equinor, the field operator, has initiated a project to 
source a portion of the power needed for the platforms from a floating 
wind farm. Hywind Tampen is the first offshore wind farm that provides 
renewable energy to the offshore O&G field (Tampen - Equinor). The 
farm is designed to operate at a 125 km distance from the shore. 

The floating wind farm consists of a total of 11 wind turbines, each of 
8 MW capacity. Out of these 11 turbines, five are specifically allocated to 
generate power for the Gullfaks field, while the rest are intended to serve 
the Snorre field, another O&G field in the Norwegian sector of the North 
Sea (Norwegian Petroleum Directorate Professor Olav Hanssens and vei, 
2020). The field operator has provided a visual representation, depicted 
in Fig. 1, to illustrate the positioning of the Hywind Tampen, Gullfaks, 
and Snorre fields. The field operator is currently exploring the feasibility 
of expanding the farm’s capacity to 94.6 MW by upgrading the wind 
turbines. 

Through the utilization of this floating wind farm to supply power to 
the Gullfaks and Snorre fields, it is projected that around 200,000 tons of 
CO2 emissions and 1000 tons of NOx emissions can be omitted (Tampen 
- Equinor). Notably, the wind turbines will directly deliver electricity to 
the offshore oil platforms, without relying on any connections to the 
land. It is expected that these turbines will meet approximately 30–35% 
of the total energy demand across the five platforms (Adrian, 2022). 

Hywind’s design is based on a spar buoy, with a heavy sub-structure 
and a lighter upper structure to maintain stability. The Siemens SQT 
8.0–154 turbine model has been chosen for the farm, featuring a hub 
height of 95 m, 3 blades with a diameter of 154 m, a nacelle weight of 
480 tons, and a floater weight of 10,000 tons. Since Siemens has not 
disclosed the power curve for this specific model, the power curve for 
Vestas’ V164–8.0 MW turbine was utilized. The relevant data for both 
Siemens and Vestas turbines are presented in Table 1 below. The simi
larity between the configuration and the operational parameters of these 
two models enables the use of operational data of V165–8.0 (available in 
(Desmond et al., 2016)) as a close estimation of SWT 8.0–154. 

All the platforms are equipped with General Electric’s LM2500 en
gines, which is an aero-derivative gas turbine with a power capacity of 
22 MW. The GFA platform has four of these gas turbines installed, while 
the GFC platform has three. Each turbine, except one, on both platforms 
is equipped with a waste heat recovery unit (WHRU). GFB platform 
doesn’t house any gas turbines and instead receives its required power 
from GFA through two sea cables, capable of transferring a maximum of 
20 MW of power. GFA and GFC are also connected via a cable with the 
same power transmission limit. To supply power to the Gullfaks field 
using wind energy, there is a cable that connects the Hywind facility to 
GFA. Fig. 2 provides a visual representation of the fields and their 
interconnections. 

The energy demand on the platforms encompasses essential needs 
such as lighting, heating for the accommodation spaces, accommodating 
2–300 personnel, as well as computer and control systems responsible 
for platform management and communication. However, the primary 
power consumer is the O&G production process itself. Around 70% of 
the total onboard electrical power is dedicated to fulfilling the energy 
requirements of the production process consumers (Tangerås and 
Tveiten, 2018). 

2.2. Adding storage system 

Assuming the installed wind turbines cover 35% of the total demands 
on the platform, it is expected to reduce the emissions more with further 
installation of the wind turbines. However, a platform that could solely 
operate on wind farms is not feasible due to the intermittency of power 
generation from the wind. Adding a storage system, suitable to the 
condition and the environment, could mitigate problem. A microgrid 
serving as an integration of wind turbines, storage systems, and gas 
turbines could manage the demands of the field with the minimum 
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emissions possible. The end goal is to reduce the operation of gas tur
bines with fossil fuel gas. 

Various studies have extensively explored the feasibility and techno- 
economic aspects of green hydrogen production and local storage, spe
cifically focusing on harnessing seawater and wind power (Dokhani 
et al., 2023), (Adrian, 2022). These investigations highlight the low cost 
associated with water desalination (Dokhani et al., 2023) and empha
sized the economic viability of subsea storage of compressed hydrogen 
as a means to effectively store surplus wind power (Adrian, 2022). 

To establish the necessary infrastructure for hydrogen production 
and storage, key components such as a saltwater desalination facility, 
feed water storage, electrolyzer, hydrogen compressor, hydrogen stor
age tanks, and the requisite transmission elements (including pipes and 
connections) between these components are essential (GREENSTAT). It 
is envisioned that a platform or floater will be required to accommodate 
the hydrogen production line, with the storage tanks positioned subsea. 
At present, the commercial availability of subsea hydrogen storage re
mains limited. However, ongoing initiatives led by Norwegian com
panies indicate promising developments in this field, with a focus on 
pressurized hydrogen tanks supported by a rigid structure capable of 
storing up to 12 tons of compressed hydrogen (“Hydrogen). 

Given the existing connection of GFA with the wind turbines and the 
two other platforms (GFB and GFC), GFA serves as a pivotal junction in 
the microgrid setup. Consequently, it is proposed that the platform or 
floater be constructed in close proximity to GFA, housing the subsea 
hydrogen storage tanks. For the planned system, a stack comprising 15 
proton exchange membrane electrolyzers, each boasting 6 MW capacity 
is considered. Relevant data relating to the electrolyzers can be found in 
(Kopp et al., 2017), while Fig. 3 provides the performance curve for each 
electrolyzer. 

Regarding hydrogen storage, a capacity of 100 tons is deemed 
economically viable and reliable, as demonstrated by (Adrian, 2022). 
Occupying approximately 580 m3 of space on the seabed, the pressur
ized hydrogen storage will be connected to GFA, facilitating an alter
native fuel source for the gas turbines. While all the gas turbines on the 
platform are of the same model, this study assumes that only one of the 
turbines will be modified to operate on hydrogen-blended fuel, and the 
remaining turbines will continue to utilize natural gas as their conven
tional fuel source. 

3. Microgrid operation management 

For the operation of the Gullfaks field with power productions from 
Hywind farm, the seven gas turbines installed on GFA and GFC platforms 
and the electrolyzer and hydrogen storage are considered within a 
microgrid operation, running in island mode. The wind farm is assumed 
to increase its capacity to cover 100% of the field’s operation and the 
storage system and gas turbines will help with mismatches of production 
and demand. Fig. 4 illustrates the Gullfaks microgrid’s layout. A 
comprehensive control system oversees all microgrid components and 
manages their operation. The gas turbines’ power output, the electro
lyzer’s power supply, and the hydrogen consumption are determined by 
the control system, with one of the gas turbines assumed to run with a 
hydrogen blend. The controller has to assure the balance of the demand 
and production (both power and heat) at each time step of the operation. 

The management system ensures that the combined power output 
from the gas- and wind turbines adequately meets the power demand of 

Fig. 1. The Hywind Tampen project and its connection to Gullfaks and Snorre fields (“Hywind Tampen approved by Norwegian), (“Views from the industry).  

Table 1 
Comparison of wind turbine models (Tangerås and Tveiten, 2018).  

Parameter Siemens SWT 8.0–154 Vestas V164–8.0 

Diameter [m] 154 164 
Area [m2] 18627 21124 
No. of blades [-] 3 3 
Cut-in wind speed [m/s] 3~5 4 
Cut-out wind speed [m/s] 25 25 
Nominal wind speed [m/s] 13~15 13 
Nominal power [MW] 8 8  

Fig. 2. Schematic view of Gullfaks platforms and Hywind wind farm with their 
connections. 

Fig. 3. The efficiency of hydrogen production as a function of the total power 
consumption of the electrolyzer (Kopp et al., 2017). 
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each platform while also supplying power to the electrolyzer, in case of a 
surplus. The platforms require power and heat for essential operations 
and for running accommodations for personnel. The heating re
quirements of the facilities can be partially met by gas turbines equipped 
with WHRUs. Additionally, circulating water passes through an elec
trical heater to further warm it when the heating capacity of the gas 
turbines is insufficient or unavailable. For instance, on the GFB platform, 
which lacks a gas turbine, both the power and heat demands are fulfilled 
by GFA and transferred via a cable, since the heating demand on the GFB 
platform is addressed by an installed electrical heater. 

At each time step, the operation decision made for the controllable 
units has to satisfy certain constraints regarding the conservation of 
power, heat, and hydrogen content. To write the energy balance for each 
platform, GFB could be conducted first as it has minimum connections to 
other platforms and has no energy production unit on it. The conser
vation of energy for platform GFB is shown in Eq. (1) to Eq. (3). All of the 
heat demand of GFB is provided by the electrical heater (Eq. (1)) and the 
power required to run it is calculated based on its efficiency (Eq. (2)), 
which is 85%. The power received from platform A should be equal to 
the demanded power and the power consumed by the electrical heater 
(Eq. (3)). 

QELH GFB − Qdem GFB = 0 (1)  

PELH GFB =QELH GFB
/

ηELH GFB (2)  

PGFA GFB − Pdem GFB− PELH GFB = 0 (3) 

The GFC platform also has a connection to GFA for which the power 
and heat conservation is written as below, in Eq. (4) to Eq. (6). The heat 
demands on GFC are met by the two gas turbines with WHRU, along 
with the utilization of an additional electrical heater on GFC (Eq. (4)). 
The electrical heater’s power is calculated based on its efficiency (Eq. 
(5)). Finally the power balance of GFC is calculated, balancing the power 
generated by the gas turbines, the demanded power, the electrical 
heater’s power, and the power transferred between GFA and GFC (Eq. 
(6)). 

QGFC GT1 +QGFC GT2 + QELH GFC − Qdem GFC = 0 (4)  

PELH GFC =QELH GFC
/

ηELH GFC (5)  

PGFC GT1 +PGFC GT2 + PGFC GT3 + PGFA GFC − Pdem GFC− PELH GFC = 0 (6) 

Lastly, the heat and power balance for GFA is analyzed by Eq. (7) to 
Eq. (9). The required heat demand is met by the implementation of three 
gas turbines equipped with WHRU, accompanied by an additional 
electric heater (Eq. (7)). The power consumption of the electrical heater 
is computed based on its efficiency (Eq. (8)), which is then integrated 
into the power balance equation (Eq. (9)). The power balance for GFA 
encompasses the generated power from the four gas turbines, the power 
supplied from the wind farm, and the consuming elements, including the 
electrolyzer’s consumption, power transfers to GFB and GFC, as well as 
the power demand and electrical heater’s consumption on the GFA 

platform (Eq. (9)). 

QGFA GT1 +QGFA GT2 + QGFA GT3 + QELH GFA − Qdem GFA = 0 (7)  

PELH GFA =QELH GFA
/

ηELH GFA (8)  

PGFA GT1 + PGFA GT2 + PGFA GT3 + PGFA GT4 + PWT − PGFA ELZ − PGFA GFB

− PGFA GFC − Pdem GFA− PELH GFA

= 0
(9) 

The power allocated to the electrolysis process (PGFA_ELZ) serves 
multiple purposes, including water desalination, electrolysis operations, 
and pressurizing the stored hydrogen (Eq. (10)). To fulfill the desali
nation requirement of seawater, an energy input of 3.86 kJ per kilogram 
of seawater is considered (Lim et al., 2021). Additionally, with an 
adiabatic compression process and a compressor efficiency of 70%, the 
power consumed by the compressor amounts to 60 kJ per kilogram of 
hydrogen. Therefore, the complete process necessitates approximately 
90 kJ of power for the production of 1 kg of hydrogen, which is obtained 
from 9 kg of seawater. 

PGFA ELZ = PELZ + Pds + Pcomp (10) 

An important aspect to consider is that the power transmission be
tween GFA and GFC (PGFA GFC) is prone to power waste, due to the 
approximately 6 km distance between the platforms. While transmission 
in both directions is possible, around 0.11 MW are considered to be 
wasted for every megawatt of power leaving the platform. Therefore, 
when modeling and exploring different operation scenarios, special 
attention must be given to the direction of power transferred between 
GFA and GFC, as well as the value of the power term involved in the 
power balance of each platform. The power transferred from GFA to GFB 
(PGFA GFB), is also prone to 5.4% of waste due to the approximately 3 km 
distance between them. However, this power transfers in one direction, 
making it simpler to implement in the equations. 

In addition to power and heat conservation, hydrogen conservation 
is also a critical consideration. Ensuring an adequate fuel supply for the 
gas turbines at the beginning of each time step is essential. Specifically, 
for GFA-GT1, the availability of hydrogen in the tank is crucial. Thus, 
the hydrogen required for consumption at each time step, denoted as ti, 
must be less than the tank value accumulated from the initial condition 
to time step ti. This constraint is represented by Eq. (11). 

(
mH2 ,GFA− GT1

)

ti
<
(
MHyT

)

t0
+
∑ti

to

MH2 ,produced − MH2 ,consumed (11) 

Ensuring heat and power conservation on each platform within the 
field is a constant requirement that must be met. However, variables 
such as the power output of gas turbines, the levels of hydrogen pro
duction and consumption, and the power transmission between plat
forms can fluctuate. These operational choices inherently lead to 
varying costs and emissions. There are two approaches to managing the 
operation: 

Fig. 4. Schematic diagram of the offshore microgrid and the smart management system.  
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- To follow certain rules which assure the balance of demand and 
production. This approach is called “condition-based”. At each time 
step, the demands (power and heat on each of the three platforms) 
are declared and the wind power is determined. According to the 
condition, a decision is made to control the microgrid’s operation.  

- To predict the demands and renewable production ahead of time, 
and optimize the microgrid operation based on the forecasts. This 
approach is called “optimization”, which searches for the best 
operational solution with minimum costs and emissions while as
suring the demands are met. 

In this study, both operation scenarios are thoroughly investigated 
and discussed. It is important to note that the condition-based operation 
does not involve optimization or forecasting tools; yet, decisions are 
based on a set of rules which aims to minimize costs as much as possible. 
This aspect is crucial to ensure a fair comparison with the optimizer’s 
performance, as it would be unfair to compare it with an operator that 
does not make the best economical decision at each time step. The 
research demonstrates how the intelligent management system, i.e., the 
optimizer operation, can further enhance the overall operation 
compared to the already economical condition-based operation. 

3.1. Scenario 1: condition-based operation 

In this scenario, the Gullfaks microgrid follows a set of predefined 
rules to manage the assets. These rules provide immediate guidelines for 
operation based on real-time demand and the power generated by the 
wind turbine. The rules are designed with the following principles in 
mind:  

- Platforms equipped with gas turbines (GFA and GFC) prioritize local 
power production over receiving power from connecting platforms. 
This approach minimizes unnecessary power transportation, which 
can lead to transmission losses.  

- Each platform aims to minimize the number of gas turbines operating 
simultaneously. If the power demand of a platform can be met by two 

gas turbines instead of three, the two engines will operate at a higher 
load. This decision is driven by the fact that higher loads result in 
increased engine efficiency (Brenntrø, 2016). 

- When multiple engines are required to meet the demand of a plat
form, the load is distributed equally among them to ensure balanced 
operation.  

- The heat demand of the platforms is primarily fulfilled by the heat 
generated by the gas turbines. Utilizing the excess heat from gas 
turbines is more economical than using additional power for elec
trical heaters. In cases where the heating capacity is insufficient, an 
electrical heater is utilized to supplement the heat supply.  

- The electrolyzer is only supplied with power if the power generated 
by the wind turbine exceeds the combined demand of platforms GFA 
and GFB. This ensures that excess renewable power is utilized for 
hydrogen production.  

- If hydrogen is available, its consumption takes priority, limited to the 
availability of hydrogen reserves. 

According to these principles, the condition-based operation will be 
pursued by calculating the power required to be delivered to platform 
GFB (Eq. (1) to Eq. (3)). Afterwards, calculations for GFC are considered 
by following the flowchart (a) in Fig. 5. From GFC’s operation, the 
power output of each GFC gas turbine is determined, as well as the value 
of power transfer between GFC and GFA. Lastly, the decision for the GFA 
platform’s gas turbine power and the power allocated for the electro
lyzer is determined according to the flowchart (b) in Fig. 5. 

The flowcharts are strategically designed to adhere to economic ef
ficiency rules. The number of gas turbines involved is determined by 
both the heat demand (NGTQ) and the power demand (NGTP). The elec
trical heater is utilized only if the gas turbines cannot meet the re
quirements adequately. Referring to diagram (a) in Fig. 5, GFC requests 
power from GFA only when all gas turbines are unable to fulfill the 
demands. Similarly, the same principles are applied to GFA (diagram (b) 
in Fig. 5), with an additional condition involving the electrolyzers’ 
power, which is determined by comparing wind power to the aggregated 
demand on GFA. 

Fig. 5. Condition-based operation flowchart, (a) GFC operation, (b) GFA operation.  
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3.2. Scenario 2: optimization 

While the condition-based operation excels in providing the best 
economically efficient decisions at each time step, leveraging optimi
zation offers significant untapped potential in making energy manage
ment decisions over an extended time span. By incorporating an 
optimization code, the microgrid gains predictive capabilities, allowing 
it to anticipate future conditions, such as wind availability, and strate
gically plan its energy usage. For instance, the optimization code can 
intelligently choose to store excess energy during periods of high wind 
generation, ensuring a reserve for times when wind resources may be 
limited. This proactive approach optimizes energy storage and utiliza
tion, maximizing the utilization of renewable resources and minimizing 
reliance on conventional energy sources during adverse conditions. 
Consequently, the integration of predictive optimization empowers the 
microgrid to make well-informed, forward-looking decisions, resulting 
in enhanced overall performance and economic efficiency. 

Another compelling advantage of the optimizer lies in its ability to 
manage the entire microgrid integration comprehensively. While the 
condition-based approach is confined to managing each platform sepa
rately according to predefined rules, the optimizer can holistically 
consider all assets, resources, and demands within the system. This 
increased freedom allows the optimizer to explore a wide range of 
possibilities and optimize the complex interplay of various components. 
However, this versatility also adds to the complexity of the optimization 
problem. 

The optimization process involves testing numerous options and 
scenarios for running the microgrid over the given time span. Each 
scenario satisfies the energy balance requirements, but different costs 
and emissions are associated with each alternative. The iterative nature 
of the procedure enables the optimizer to continuously refine its 
approach, and ultimately identify the best solution that optimizes cost, 
efficiency, and emissions. 

3.2.1. Digital twin of the microgrid 
The optimizer relies on both precise predictions and high-speed 

processing to explore different scenarios effectively. To achieve this, 
the implementation of Artificial Intelligence (AI) techniques is essential 
in creating robust forecasting modules that anticipate changes in wind 
availability, demand patterns, and other dynamic factors. Moreover, the 
optimizer requires fast-responding models or “digital twins” of micro
grid subsystems, and in the case of subsystems with nonlinear behavior, 
such as gas turbines and wind turbines, Artificial Neural Networks 
(ANNs) are utilized. 

The use of ANN models allows for processing data, predicting system 
behavior, and capturing complex patterns through hidden layers, 
enabling accurate representations of the subsystems’ dynamics. A 
Bayesian technique is utilized to tune the hyperparameters of the ANN 
models, employing Gaussian process models (Wu et al., 2019). The 
training of ANNs for gas turbines and wind turbines is conducted using 
the backpropagation algorithm, with 80% of the data allocated for 
cross-validation and the remaining 20% for testing. Detailed informa
tion on the hyperparameters and models’ inputs and outputs can be 
found in Table 2 and Table 3, respectively. Additionally, for the elec
trolyzer, a polynomial regression is applied to fit the efficiency curve 
shown in Fig. 3, while the hydrogen flow rate is calculated using Eq. 
(12). 

ṁH2 = ηELZ ×
PELZ

LHVH2

(12) 

The gas turbine models used in this study were developed based on 
real data, obtained from operating the LM2500 gas turbine with natural 
gas on an offshore platform. To create a model capable of predicting gas 
turbine operation with blends of natural gas and hydrogen, the models 
were fine-tuned and adjusted slightly using insights from the results 
presented in (Stuen, 2021), which investigated the impact of hydrogen 
fuel on LM2500 engines. 

The accuracy of the models is evaluated by calculating maximum 
absolute error (mAE), mean absolute error (MAE), and mean absolute 
percentage error (MAPE) as defined in Eqs. (13) and (14). In the equa
tions, Xact and Xpred are the actual values and predicted values from the 
model and n is the number of data in the test set. The errors are reported 
in Table 4. 

MAE=
1
n
∑n

i=1

⃒
⃒Xpred − Xact

⃒
⃒ (13)  

MAPE=
1
n
∑n

i=1

⃒
⃒
⃒
⃒
Xpred − Xact

Xact

⃒
⃒
⃒
⃒ (14) 

The gas turbine and wind turbine’s model prediction in comparison 
to real operation data is visualized in Fig. 6. The model takes into careful 
consideration the NOx emissions of the gas turbines. 

3.3. Optimization parameters and objective function 

In addressing the current challenge, the optimization process must 
accomplish multiple tasks, including identifying power set-points for all 
gas turbines, determining the hydrogen/natural gas blend for GFA-GT1, 
and deciding on the power input to the electrolyzer. To optimize the 
microgrid’s operation, a day of operation is considered to be the opti
mization window, and the smart management system must conduct the 
optimization ahead of this time span. The management system operates 
at a time step of 1 h, necessitating it to make decisions for the dis
patchable units (gas turbines and electrolyzer) every hour, summing up 
to a total of 216 parameters (9 × 24 h). These parameters must be 
carefully established to optimize the microgrid’s performance. Each 
parameter is bound by defined upper and lower limits based on its 
specific physical characteristics. 

The gas turbines’ power setpoint is constrained within the range of 
9–22 MW, as defined in Eq. (15). Additionally, the hydrogen/natural gas 
blend for the GFA-GT1 engine is subject to a limitation, considering that 
the LM2500 gas turbine can tolerate a maximum hydrogen volume of 
75%. These bounds are incorporated into the model through the fuel 
heating value ratio (FHR), defined in Eq. (16). With a lower heating 
value of 12.7 MJ/m3 for hydrogen and 40.6 MJ/m3 for methane, the 
engine’s acceptable minimum FHR is determined to be 0.516 (Eq. (17)). 
Furthermore, the power allocated to the electrolyzer is restricted by its 
capacity to ensure it does not exceed its operational limit (90 MW), as 
outlined in Eq. (18). 

PGT =
[
PGT,1,PGT,2,…,PGT,24

]
,PGT,min < PGT,i <PGT,max (15)  

FHRGT =(ṁNG ×LHVNG) / (ṁNG ×LHVNG + ṁH2 ×LHVH2 ) (16)  

FHRGT =
[
FHRGT,1,FHRGT,2,…,FHRGT,24

]
, 0.516 < FHRGT,i < 1 (17)  

PGFA to ELZ =
[
PGFAtoELZ,1

, PGFAtoELZ,2
,…,PGFAtoELZ,24

]
, 0

< PGFA to ELZ,i <PGFA to ELZ,max (18) 

The primary objective of the optimization process is to minimize the 
total cost of operation, which encompasses various factors (Eq. (19)). 
These factors include the cost of purchasing natural gas (CNG), the taxes 

Table 2 
Subsystem models inputs and output.  

Subsystem Input parameters Output parameters 

Gas turbine PMGT,dem,FR,Tamb ṁf 

Wind turbine Tamb ,pamb ,SW,DW PWT 

Electrolyzer PELZ ṁH2  

R. Banihabib and M. Assadi                                                                                                                                                                                                                  



Journal of Cleaner Production 423 (2023) 138742

8

associated with CO2 and NOx emissions (CNG,tax and CNOx,tax), as well as 
the maintenance costs related to the gas turbines and electrolyzation 
components (CMGT and CELZ). 

Ctotal =CNG + CNG,tax + CNOx,tax + CMGT + CELZ (19) 

The first two terms of the total cost equation (Eq. (19)) are deter
mined based on the total amount of natural gas consumed by all 7 gas 
turbines throughout the optimization day. The cost of purchasing nat
ural gas (CNG) is calculated using the daily fuel price. The term CNG,tax 

represents the specific tax imposed by the Norwegian government on 
natural gas to regulate CO2 emissions. For the petroleum industry, the 
tax value in 2022 amounted to 1.65 NOK (about 0.16 EUR) per standard 
cubic meter of natural gas consumed (“Tax rates in Norway). 

The tax for NOx emissions (CNOx,tax) is computed based on the NOx 
emitted from the engines, which is calculated using the power output of 
each engine at each time step. A correlation between NOx emissions and 
power output is established, fitted to real data presented in Fig. 7, 
derived from measurements obtained from the actual engine and re
ported in (Sundsbø Alne, 2007). The value of tax for NOx emissions was 
23.79 NOK (about 2.36 EUR) per kilogram of emission in 2022 (“Tax 
rates in Norway). Additionally, the maintenance cost of the gas turbines, 
electrolyzer, compressor, and water desalination system is computed 
using the values reported in (Tilocca et al., 2023). 

The optimization process primarily aims to reduce the calculated 
cost, but an additional factor must be considered in the objective func
tion and that is the preservation of hydrogen in the tank. Focusing solely 
on cost reduction would lead the optimization algorithm to prioritize 
immediate hydrogen consumption, disregarding its potential future 
value when wind power is limited. To address this issue, it becomes 
crucial to incentivize the preservation of hydrogen at the end of each 
day. 

Optimizing for a limited time span means that the optimizer’s vision 
is confined to that specific window, and it cannot anticipate future needs 
beyond that period. Consequently, it may use the stored hydrogen at 
early time steps, potentially missing the opportunity to benefit from it in 
subsequent optimization windows. To counteract this, it is essential to 
encourage the preservation of hydrogen for future utilization. 

This incentive is essential irrespective of the optimization window’s 
duration, as it accounts for an unpredictable future following any finite 
period of optimization. To calculate this incentive, an estimation of the 
saved hydrogen’s value for the next day is necessary, as it can offset 
natural gas costs, including both price and tax. The incentive for pre
serving hydrogen is determined using Eq. (20). 

IncHyT =mHyT ×
LHVH2

LHVNG
×
(
CNG +CNG,tax

)
(20) 

Consequently, the objective value to be reduced by the optimizer will 
become as stated in Eq. (21): 

OV=Ctotal − IncHyT (21)  

3.3.1. Hybrid optimization approach 
Optimizing the power setpoints for each gas turbine and the elec

trolyzer can lead to significantly long computational times due to a large 
number of optimization parameters (9 × 24 parameters for each day). 
Additionally, the consideration of constraints (Eq. (1) to Eq. (11)) 
further adds to the duration of optimization. Notably, the hydrogen fuel 
conservation constraint (Eq. (11)) introduces complexity to the problem 
due to its nature. 

This constraint ensures that the hydrogen consumption at each time 
step “i” (dependent on PGFA− GT1,i and FHRi) must not exceed the amount 
available in the tank. However, the tank’s content is influenced by both 
the hydrogen produced (dependent on PGFA− to− ELZ)) up to that time step 
and the hydrogen consumed (dependent on PGFA− GT1 and FHR) up to 

Table 3 
ANN models optimized configuration.  

Subsystem No. of neurons, layer 1 No. of neurons, layer 2 No. of neurons, layer 3 AF, layer 1 AF, layer 2 AF, layer 3 LR 

Gas turbine 42 17 – sigmoid ReLU – 0.72 
Wind turbine 45 100 22 SELU ReLU linear 0.57  

Table 4 
Models prediction error.  

Subsystem mAE MAE MAPE 

Gas turbine 0.017 [kg/s] 0.004 [kg/s] 0.21% 
Wind turbine 0.801 [MW] 0.152 [MW] 0.61% 
Electrolyzer 1.6e-5 [kg/s] 1.2e-5 [kg/s] 0.05%  

Fig. 6. Visualization of ANN models’ accuracy, (a) gas turbine, (b) wind turbine.  

Fig. 7. NOx production at different power outputs of LM2500 (Sundsbø 
Alne, 2007). 
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that time step. These quantities are also optimization parameters, 
making the constraint interrelated with the optimization parameters, 
resulting in intricacies within the optimization process. The constraint is 
shown in Eq. (22) below: 

for 1≤ i ≤ 24:  

ψ
(
FHR1, FHR2,…,FHRi, PGFA− GT1,1,PGFA− GT1,2,…,PGFA− GT1,i, PGFA− to− ELZ,1

,PGFA− to− ELZ,2,…,PGFA− to− ELZ,i− 1
)
≤ 0

(22) 

To overcome the complications of the optimization, a novel hybrid 
approach is proposed to enhance the optimization process while 
ensuring compliance with constraints. The approach involves priori
tizing the optimization of power balance for each platform, rather than 
focusing solely on optimizing individual components such as gas tur
bines and the electrolyzer. The optimizer first determines the most 
favorable power transfer values between GFA and GFC, as well as be
tween GFA and ELZ, to achieve an optimized power balance across the 
system. Subsequently, the optimal operation of gas turbines on each 
platform is determined in the next step. This decision for each platform 
is based on the power balance requirements derived from the platform’s 
demand and the power transfers identified in the preceding step. 

Therefore, the optimization algorithm is structured into two levels: 
the field optimization level (outer optimization loop) and the platform 
optimization level (inner loop). At the field optimization level, the focus 
is on searching for the optimum power transfer values. Once these 
values are set, the platform optimization level takes over to optimize the 
operation of the gas turbines based on the power balance requirements. 

By breaking down the optimization process into two levels, the 
number of optimization parameters is reduced. This reduction mitigates 
the challenges associated with the curse of dimensionality. Additionally, 
the constraints of power balance are imposed between the two optimi
zation levels, ensuring a stable and reliable system operation. 

The outer loop optimization, which plays a critical role in the 

process, utilizes Genetic Algorithm (GA) for efficient decision-making. 
For platform optimization (the inner loop), a simplified approach is 
employed to reduce computational costs. Prior to optimization, a 
comprehensive database of platform operations is prepared, encom
passing all possible combinations of engine operation within the plat
form. The platform optimizer’s task is to search through this database 
and identify combinations that meet the power and heat demand re
quirements. From these combinations, the optimizer selects the one with 
the lowest cost among the available choices. The optimization process 
flowchart is depicted in Fig. 8, providing an overview of the optimizer’s 
operation. As it is depicted, within the GA optimization loop, the opti
mizer determines the power flow of transmission cables and the fuel 
heating value ratio of GT1 on GFA. 

In the next step, the net power imposed on each platform is calcu
lated based on the demand of the platform and the transferred values 
defined by the level 1 optimizer. Subsequently, the optimization of 
platforms A and C is carried out based on the net power and heat de
mand of the platform. The optimizer selects rows from the database that 
closely align with the boundary conditions for heat and power output. 
From these rows, the optimizer chooses the solution with the minimum 
cost. 

The proposed hybrid optimization approach results in a much faster 
optimization process. The platform optimization (inner loop, level 2) is a 
table look-up and filtering process, which consumes minimal time. Most 
of the optimization duration is attributed to field optimization, which 
involves only 72 (3 × 24) parameters. By reducing the number of 
optimizing parameters, the method significantly increases the speed of 
optimization. Within just 1 h of running the optimization, the proposed 
approach provides the optimized answer. This reduction in computa
tional time allows for more rapid decision-making and real-time ad
justments to achieve optimal power balance and platform operations in 
the offshore microgrid. 

Fig. 8. The new optimization approach; the outer loop is responsible for power flow in connection cables and fuel ratio, and the inner loop optimizes the plat
forms’ operation. 

R. Banihabib and M. Assadi                                                                                                                                                                                                                  



Journal of Cleaner Production 423 (2023) 138742

10

4. Results and discussion 

The integrated microgrid of Gullfaks field and Hywind Tampen, 
along with the electrolyzer, is simulated to evaluate its operation for a 
week-long period from 24/01/2022 to 30/01/2022. The simulation 
includes both condition-based and optimization approaches to assess the 
benefits of employing an optimizer in the process. While the condition- 
based approach provides immediate decisions for each time step during 
operation, the optimizer requires pre-planning and provides decisions in 
advance within a designated optimization window. In this study, the 
optimization window spans a day, and the time step is set at 1 h, 
allowing for hourly variations in operational decisions. 

The utilization of the optimizer necessitates the use of forecast data 
instead of actual data prior to the operation. Weather data plays a 
critical role in estimating the power output from wind farms and serves 
as an input for the gas turbine model. In this study, weather forecasts 
were obtained from the Norwegian Meteorological Institute (Norwegian 
Meteorological Institute, 2022), which provides updates every 6 h. 
Specifically, the forecast data utilized in this research was collected from 
the 6 p.m. update the day before. Both the forecast data employed for 
optimization and the actual weather data used in the condition-based 
operation are depicted in Fig. 9. Fig. 10 illustrates the wind power 
calculated by the wind turbine model based on both the actual weather 
data and the forecasted data. 

To optimize the microgrid, accurate knowledge of the platforms’ 
demand patterns is crucial. However, due to the unavailability of 
detailed demand data and historical records for the Gullfaks platforms, 
only average values and common variations are accessible (Tangerås 
and Tveiten, 2018). As a result, constructing a demand model and 
providing precise forecasts based on historical data and weather infor
mation becomes infeasible. Nevertheless, previous studies in demand 
prediction have shown promising results, achieving a mean absolute 
error of less than 5% (Tan et al., 2019). In this study, the demand pat
terns are generated based on the available information from (Tangerås 
and Tveiten, 2018), utilizing random distributions. Fig. 11 presents the 
demand profiles for the three platforms. The power demand distribution 
is generated using a random distribution, incorporating specific values 
for the average, minimum, and maximum values collected from (Tan
gerås and Tveiten, 2018). A similar approach is applied for the heat 
distribution, but with a sequential pattern that aligns more closely with 
the platform’s heating demands. The criteria employed for demand data 
generation are reported in Table 5. 

The forecasted demand is adjusted using randomly distributed error 
values, with a maximum deviation of 7% and a mean of 5%. It is 
important to note that the literature suggests achieving demand pre
dictions with a maximum error of 5% for O&G platforms (Tan et al., 
2019). However, in this work, a deliberately higher error margin is 
considered to ensure a conservative approach. 

Over the course of the week, the combined power demand from the 

three platforms amounts to 59,203 GJ, while the total heat demand is 
11,969 GJ. The power generated by the wind farm during this period is 
55,373 GJ, resulting in a shortfall of 3830 GJ to meet the power demand 
or 15,799 GJ when considering both heat and power requirements. The 
deviation of wind power from the total power demand is visualized in 
Fig. 12. Notably, there are three distinct time periods with low wind 
power generation, indicating a need for increased participation of gas 
turbines in the operation during those intervals. For the remaining 
duration of the week, the wind power aligns relatively closely with the 
total power demand, although occasional surpluses and deficiencies are 
observed. 

The simulation started with an empty hydrogen tank at the begin
ning of the week. In the condition-based approach, each time step (1 h) 
throughout the week was analyzed hence the flowcharts shown in Fig. 5 
were conducted 7 × 24 times. The optimization process, on the other 
hand, was run seven times, with each run taking approximately 1 h to 
complete. The condition-based operation was carried out using actual 
data at each hour, while the optimizer was employed one day ahead of 
the actual day of operation, utilizing forecasted data. A visual compar
ison of these two approaches is provided in Fig. 13. 

It is important to highlight that although the optimizer in this study 
utilized forecast data to conduct the optimization process, the evalua
tion of its performance is conducted based on real data to mirror real-life 
applications. In practical use, the optimizer relies on forecasts to 
generate an efficient schedule, but its true value lies in how well this 
schedule performs on the actual day when the real wind power or de
mands arises. Therefore, accurate forecasts and models are crucial to 
achieve optimal performance from the optimizer. Otherwise, the devi
ation between forecasted and real data may significantly impact the 
optimizer’s efficiency. In the current study, the optimized schedule 
resulted in low costs, which slightly increased when real values were 
employed on real data which was due to forecast errors when compared 
to actual data. 

The total power generated by all the gas turbines is presented in 
Fig. 14. As depicted, the optimizer successfully managed to operate the 
gas turbines with considerably less power compared to the condition- 
based approach. However, there were three time spans where the 
power production of the gas turbines was nearly the same for both 
scenarios. These time spans coincided with periods of wind power de
ficiencies (Fig. 12). 

Figs. 15 and 16 provide the total power produced by each platform. 
The analysis of Figs. 15 and 16 highlights interesting observations 
regarding the gas turbine performance in the optimized and condition- 
based scenarios. Notably, GFA demonstrates slightly higher power 
output from the gas turbines in the optimized scenario compared to the 
condition-based scenario, while the opposite trend is observed for GFC. 

In both scenarios, the gas turbine production in GFA remains below 
the total demand, primarily because wind power contributes to fulfilling 
a portion of the demand. This relationship is supported by the three 

Fig. 9. Weather data and forecasts compared to real data, (a) ambient pressure, (b) ambient temperature, (c) wind speed, and (d) wind direction. The data is 
downloaded from (Norwegian Meteorological Institute, 2022). 
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instances of increased gas turbine production shown in Fig. 15, where 
the production of gas turbines reaches the demand values during periods 
of low wind power. 

Conversely, in GFC, the gas turbines’ production closely matches the 
demand in the condition-based scenario, but the optimized operation 
falls short of meeting the demand (Fig. 16). Examining Fig. 17 reveals 
that the optimizer opted to direct power from GFA to GFC in order to 
compensate for the shortfall. In other words, the optimizer decided to 
compensate for the GFC demand partly from its gas turbines, and partly 

by getting power from GFA. On GFA however, the power produced by 
gas turbines was more or less similar in the condition-based and opti
mization scenario. Therefore the power transmitted to GFC from GFA 
was not attributed to GFA gas turbines, but might be from the wind 
power. Fig. 17 can reveal the source of the power transmitted from GFA 
to GFC. This allocation pattern aligns with the variations in wind power, 
indicating that a portion of the wind power delivered to GFA is redir
ected to GFC in the optimized scenario. It could be seen that the power 
transmission from GFA to GFC during times of low wind power in the 
optimized scenario has been decreased in comparison to other times. 

As mentioned earlier, power transmission between GFA and GFC is 
possible in both directions. The occurrences of power transfer from GFC 
to GFA seldom times, as indicated in Fig. 18, align with the times of 
deficiency in wind power production, which is expected. 

Notably, for the condition-based operation, the power transmission 
option is used only if the gas turbines on the platform are incapable of 
meeting the demand (flowchart in Fig. 5), which is not the case in this 
study and therefore zero power transmissions for condition-based 
operation is shown in Figs. 17 and 18. However, the optimizer 

Fig. 10. Wind farm power production is calculated based on actual weather data as well as weather forecasts.  

Fig. 11. Demand patterns and predictions for Gullfaks platforms, (a) demand power on GFA, (b) demand heat on GFA, (c) demand power on GFB, (d) demand heat 
on GFB, (e) demand power on GFC, and (f) demand heat on GFC. 

Table 5 
Models prediction error.   

Power Heat 

Platform max 
[MW] 

mean 
[MW] 

min 
[MW] 

max 
[MW] 

mean 
[MW] 

min 
[MW] 

GFA 60 36 30 21 15 0 
GFB 9 5.4 4 5 2 0 
GFC 60 36 30 14 10 0  

Fig. 12. Total power demand from three Gullfaks platforms vs. the power generated by the wind farm.  
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discovers that it is more efficient to transfer power from other platforms 
rather than running the gas turbines on its own platform, as demon
strated in the optimized scenario in these figures. 

In the optimized scenario, it was observed that the gas turbines 
produced less power compared to the condition-based operation. 
Instead, the optimized scenario utilized a greater proportion of wind 
power to meet the demands of the platforms. This naturally raises the 
question of what happens to the surplus power generated in the 

condition-based operation. The only plausible explanation is that it is 
stored through the allocation of power to water electrolysis and 
hydrogen production. The rates of hydrogen production and consump
tion for both scenarios are illustrated in Figs. 19 and 20, respectively, 
and the amount of hydrogen available in the tank is shown in Fig. 21. 
The data clearly indicates that the condition-based operation achieves 
greater energy savings, whereas the optimizer primarily utilizes energy 
during the optimization window. 

Fig. 13. The process of control and management of the microgrid and the data transfer; (a) condition-based and (b) optimization.  

Fig. 14. The total power produced by the seven gas turbines on the three Gullfaks platforms.  

Fig. 15. The total power produced by the four gas turbines on the GFA platform.  

Fig. 16. The total power produced by the three gas turbines on the GFC platform.  
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Fig. 17. The power received by GFC from GFA.  

Fig. 18. The power received by GFA from GFC.  

Fig. 19. The rate of hydrogen production.  

Fig. 20. The rate of hydrogen consumption.  

Fig. 21. Hydrogen fuel availability over the week.  
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Examining the consumption pattern in Fig. 20 reveals distinct dif
ferences between the condition-based and optimized operations. The 
condition-based scenario exhibits a consistent pattern of hydrogen 
consumption, with mostly constant values, but higher consumption 
during periods of wind deficiency. On the contrary, the optimized sce
nario shows more variability in hydrogen usage. Understanding the 
optimizer’s decision-making process for hydrogen usage is challenging, 
as it depends not only on the tank’s available quantity but also considers 
its impact on the cost of the current and subsequent optimization win
dows, as previously discussed and implemented through the hydrogen 
saving incentive (Eq. (20)). Never the less, it is evident from Fig. 21 that 
the rate of filling the hydrogen tank in condition-based operation is 
considerably higher than the optimization. 

An overview of the total hydrogen balance for both scenarios is 
presented in Table 6. The relative difference reported in the tables is 
calculated according to Eq. (23). 

Xrel diff =
(
Xoptimized − Xcondition − based

) /
Xcondition − based × 100

(23) 

Although conducting a direct hourly comparison between the 
condition-based operation and the optimized scenario is complex, 
certain observations have become evident. The condition-based 
approach prioritizes saving more energy and transferring less between 
platforms, while the optimized scenario takes the opposite approach. It 
should be noted, as depicted in Fig. 3, that the maximum energy-saving 
efficiency cannot exceed 70%. However, when power is transmitted 
between GFA and GFC, only 11% of the energy is wasted. Consequently, 
the optimizer takes advantage of this option and efficiently manages the 
platforms through an integrated approach. In contrast, the condition- 
based operation adopts a more localized approach, with power trans
mission between platforms occurring only when necessary. An overview 
of the costs, emissions, and fuel consumption for both scenarios is re
ported in Table 7. 

The optimizer’s operation throughout the week exhibits a cost 
reduction of 16.32% compared to the condition-based approach. How
ever, it is important to consider the impact of the disparity in the amount 
of hydrogen remaining in the tank. After all, the hydrogen in the tank is a 
source of power that will not entail the costs associated with natural gas 
(CNG and CNG,tax in Eq. (19)). To assess this, the cost savings attributed to 
the hydrogen quantity are calculated by comparing the costs of using 
natural gas with an equivalent heat value, as detailed in Table 7 under 
the column “H2 res. cost red.”. The findings reveal that despite the 
condition-based scenario having a higher quantity of saved hydrogen in 
the tank, the optimizer still manages to achieve approximately a 12.44% 
cost reduction. It should be noted that the gap in hydrogen availability 
rates will eventually stabilize once the tank reaches full capacity. At that 
point, it is expected that the optimizer will consume less hydrogen, as 
observed during this case study. Consequently, the cost reduction 
prospects will continue to favor the optimized operation. 

The optimized operation demonstrates a notable decrease of 16.42% 
in the total consumption of natural gas compared to the condition-based 
approach, reflecting a similar relative difference in carbon-based emis
sions. However, it is important to note that the optimized operation 
experienced a slight increase of 0.9% in NOx emissions compared to the 
condition-based operation. This outcome can be attributed to the gas 
turbine’s high NOx emissions at low power outputs, as illustrated in 
Fig. 7. Despite the optimized operation’s reduced reliance on gas 

turbines, the emission levels were slightly higher. 
It is worth mentioning that the objective function solely focuses on 

operational costs (as shown in Eq. (19)). Therefore, the motivation to 
reduce NOx emissions primarily stems from the NOx tax. If there is a 
greater emphasis on minimizing NOx emissions, one can introduce an 
increasing coefficient (a value greater than 1) before the term CNOx,tax in 
Eq. (19) to guide the optimizer towards more effective NOx reduction 
strategies. 

The optimization operations discussed in this paper were primarily 
conducted within a 24-h window. However, the authors also explored 
the effects of shorter and longer optimization windows, yielding similar 
results. Interestingly, as the optimization window lengthened, the per
formance of the optimization process exhibited only marginal im
provements. Nevertheless, extending the optimization window 
significantly increased the duration of the optimization process due to 
the larger number of parameters to optimize. 

One advantage of utilizing a shorter optimization window is the 
enhanced accuracy of weather and demand data forecasts. For instance, 
if a 6-h window is employed, the optimizer can utilize more precise 
weather forecast values during the final hours of the same day. In 
contrast, a 24-h window necessitates relying on weather forecast values 
from the following day. Similar improvements in accuracy can be 
observed in demand forecasts when shorter prediction periods are uti
lized. However, it should be noted that as the optimization window 
decreases in duration, the performance of the optimizer diminishes. For 
example, in the examined 6-h version, the relative total cost reduction 
was − 16.27% (instead of 16.32%). Thus, a trade-off between the opti
mizer’s performance and the duration of optimization must be carefully 
considered. 

5. Conclusion 

This work introduced an integrated energy management system for 
an offshore microgrid comprising three petroleum platforms, a floating 
wind farm, and a setup for green hydrogen production and storage. Two 
of the platforms housed seven aero-derivative gas turbines, providing 
power and heat. A management tool was developed by integrating 
highly accurate, fast-response models of all components, representing a 
digital twin of the system. Actual component data were utilized with an 
AI approach to develop the digital twin. The study explored two oper
ation approaches: “condition-based” with predefined economic rules for 
demand and production balance, and “optimization” which forecasted 
demands and renewable production to determine the efficient, low-cost, 
and low-emission solution. 

The study presented a novel hybrid optimization approach for 
enhancing energy management efficiency. The algorithm involved two 
levels: field optimization with Genetic Algorithm, and platform opti
mization using a rapid database searching process. This approach ach
ieved optimized solutions within 1 h, enabling real-time adjustments 
and fast decision-making in the offshore microgrid. 

The research demonstrated that the intelligent management system, 
i.e., the optimizer operation, significantly enhances overall perfor
mance, compared to the already economical condition-based approach. 
Over a week of operation, the optimized scenario resulted in a 16% of 
cost reduction (c.a. 185,000 €) and a 16% reduction in natural gas 

Table 6 
Comparison of hydrogen balance after a week of operation by different 
scenarios.   

H2 prod. H2 cons. H2 res. 

Condition-based 124.98 [t] 73.40 [kg] 51.58 [t] 
Optimized 72.89 [t] 65.79 [kg] 7.10 [t] 
Relative difference − 41.68% − 10.37% − 86.23%  

Table 7 
Overview of cost balance after a week of operation by different scenarios.   

NG cons. NOx 
prod. 

Total Cost H2 res. cost 
red. 

Total Cost - 
mod 

Condition- 
based 

2684.30 
[t] 

4.40 [t] 1136109 
[€] 

59657 [€] 1076452 
[€] 

Optimized 2243.65 
[t] 

4.44 [t] 950741 
[€] 

8213 [€] 942529 [€] 

Relative 
difference 

− 16.42% 0.90% − 16.32% − 86.23% − 12.44%  
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consumption and carbon-based emissions. The study’s optimized sce
nario effectively determined the best operation schedule by considering 
the entire field and integrating units’ operations. This success resulted 
from overcoming the limitations of the condition-based approach, which 
relied on a “platform approach” and predefined rules, lacking the ability 
to fully utilize all microgrid assets. In contrast, the optimization prob
lem’s complexity necessitated exploring different combinations of as
sets’ operations to achieve cost efficiency; a task accomplished using 
demand and production forecasts. 

The significance of this work can be summarized as follows:  

• The study provided a real case study of an offshore petroleum field 
with minimal simplification, moving beyond conceptual microgrids 
typically studied in related literature and presenting a more realistic 
assessment with complex power connections between platforms. 

• Unlike many microgrid studies, this work considered demand bal
ance with respect to both power and heat. The inclusion of gas tur
bines equipped with waste heat recovery units enabled the 
management systems (condition-based and optimized) to address 
heat balance efficiently and also enhanced the realism of the study.  

• The introduction of a hybrid optimization approach, utilizing both 
genetic algorithms and a database search, significantly reduced the 
computational time required for microgrid optimization. This 
allowed for the optimization of a day’s operation within hourly 
schedules for all microgrid units.  

• The use of the Python language and execution on a standard personal 
laptop underscored the efficiency and scalability of the proposed 
hybrid optimization method. This makes the approach practical and 
accessible for real-world offshore microgrid systems without the 
need for extensive computing resources. 

While the advantages of the introduced method are highlighted, a 
few points must be considered:  

• Model accuracy is crucial for the system’s performance. Since all of 
the models are data-driven, access to operational data from the gas 
turbines, wind turbines, and electrolyzer is essential for developing 
highly accurate models.  

• Data access readiness over time is also important for maintaining 
model accuracy as the microgrid components age. Periodic retrain
ing of models with new data ensures the maintaining accuracy of the 
models.  

• The accuracy of the demand forecast model is dependent on the 
quality and reliability of the weather forecasts, which are provided 
by meteorological institutions. It is essential to carefully select a 
trustworthy source of weather forecasts to ensure the performance of 
the developed structure.  

• The two-level optimization approach improves efficiency but has 
limitations. Optimal results depend on database quality and the ge
netic algorithm’s exploration of the outer loop. Enhancements in 
microgrid performance are possible with improved complexity and 
database accuracy. 

In conclusion, this study introduced a smart integrated microgrid 
management system with low development costs, achieving significant 
cost and emission reduction in petroleum operations. These findings 
contribute to a more sustainable energy future in the offshore O&G in
dustry, emphasizing the potential of advanced energy management 
techniques in addressing climate change and promoting environmental 
responsibility. 
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Nomenclature 

AI Artificial Intelligence 
ANN Artificial Neural Network 
C Cost 
dem Demand 
ELZ Electrolyzer 
ETS European Union Trading System 
FHR Fuel heating value ratio 
GFA Gullfaks A 
GFB Gullfaks B 
GFC Gullfaks C 
GHG Greenhouse gases 
GT Gas turbine 
hr Hour 
HyT Hydrogen tank 
IEM Integrated energy microgrids 
Inc Incentive 
LHV Lower heating value 
LNG Liquefied Natural Gas 
M Mass (stored) 
m Mass (consumption) 
MAE Mean absolute error 
MAPE Mean absolute percentage error 
NCS Norwegian Continental Shelf 
O&G Oil and gas 
ov Objective value 
P Power 
N Number of gas turbines 
NG Natural gas 
Q Heat 
red Reduction 
res Reserved 
R&D Research and Development 
WHRU Waste heat recovery unit 
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