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Abstract— Digital-to-analog conversion is essential in digital
signal processing applications, including closed-loop control
schemes. Noise and distortion in digital-to-analog converters
result in reduced performance for high-precision mechatronics
such as nano-positioning. Glitches are common in practical
switched systems such as digital-to-analog converters; ob-
served as an output disturbance. Due to the wide-bandwidth,
impulse-like behavior, control law bandwidth is generally too
low to provide adequate attenuation; deteriorating open and
closed-loop performance. This article demonstrates how large-
amplitude high-frequency periodic dither mitigates the effect
of glitches in a nano-positioning system under closed-loop
control. Simulations are performed using a model that includes
significant non-linearities with a response fitted to an off-
the-shelf commercial device, as well as using standard linear
time-invariant models for other system components fitted to
the responses of common, commercially available devices. The
results highlight the significance of reconstruction filter design
when applying dithering in this setting.

I. INTRODUCTION

A number of non-ideal effects arise in digital-to-analog
converters (DACs). Fundamentally they introduce error due
to repeated spectra and quantisation caused by time and
value discretisation inherent to digital signal processing [1,2].
Non-ideal effects include element mismatch, thermal and
semiconductor noise, and slew-rate limitations. Timing mis-
matches for transistor switching generate disturbances in
the form of glitches [3]–[10]. Glitches can typically be
seen when a DAC switches between two output levels.
The combination of these effects deteriorates the quality
of reconstructed actuation signals and reduces the tracking
performance in both open and closed-loop. Many of the
effects, such as element mismatch, which is a static non-
linearity, will effectively be mitigated when operating in
closed-loop. Glitches, however, will not be mitigated. This
is due to their wide-bandwidth, impulse-like behavior, where
most of the power in the disturbance is outside the bandwidth
of the control law. Given the widespread use of DACs as
an interfacing component for modern control schemes, it
is desirable to minimise the errors introduced by common,
commercially available DACs. In [11,12], dither-based ap-
proaches to improve the effective linearity of DACs were
proposed, but only included static effects. Dynamic glitch
modeling and model properties were investigated in [13].
By introducing a dither signal and averaging using a low-
pass filter, it was shown that the glitch short-duration, large-
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amplitude impulse-like behavior could be converted to a
long-duration, small-amplitude step-like disturbance. This
indicates a reduction of the effective bandwidth of the
disturbance, and hence that it may be possible to mitigate
the residual disturbance using closed-loop control.

Dither is a well-known method for mitigation of static
effects in DACs, including quantisation [14,15] and element
mismatch [12]. Dynamic effects are also known to be mit-
igated in a similar fashion [16], and this effect has been
demonstrated for glitches [13]. Dither is a high-frequency
periodic or stochastic signal introduced into a system to
modify its non-linear characteristics [17]–[20]. If sufficient
averaging (low-pass filtering) is present on the output of the
non-linear element, there is a smoothing effect on the non-
linearity, typically making it less pronounced. An advantage
of this method is that no specific knowledge of the non-
linearity is needed in order to obtain improved performance.
Specifically, dithering can easily be retrofitted to existing
devices such as DACs with little effort.

A. Contribution

This paper demonstrates the effect of dithering a glitch
non-linearity on a nano-positioning system and shows how
large-amplitude, high-frequency periodic dither can achieve
significant improvement in reference tracking performance.
Previous investigations into the effect of dithering in closed-
loop nano-positioning applications [11] only included static
effects, such as quantisation and element mismatch [12]. This
work extends the investigation to include dynamic effects,
by utilising a DAC model that includes all significant, ob-
served non-linearities, with parameters fitted to the measured
response of an off-the-shelf commercial device. The DAC
model corresponds closely to the actual physical device,
including glitches, as validated in [13]. Linear time-invariant
models for other system components are used, fitted to the
measured frequency responses of common, commercially
available devices. Here, the work suggests that proper tuning
of dither amplitude in closed-loop in combination with the
design of an output feedback control law can achieve further
glitch mitigation improvement over what is reported in [13].
It is demonstrated that complete glitch mitigation is possible,
i.e. the averaged glitch response appears as a constant offset
that subsequently can be removed by integral action.

II. SYSTEM DESCRIPTION AND MODELING

A diagram of the modeled system is shown in Fig. 1. It
consists of the standard devices necessary for implementing
a digital control law: Reconstruction filter, amplifier, sensor,
anti-aliasing filter, digital-to-analog converter (DAC), and
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Fig. 1. System block diagram - r: reference position, e: tracking error,
x: controlled state, p: periodic dither, w: DAC input, ỹ: DAC output, ua:
actuation signal, yd: plant displacement.

analog-to-digital converter (ADC). The ADC is assumed to
be ideal. The objective is to achieve high-performance track-
ing control for the displacement yd of a nano-positioning
stage with piezoelectric actuators [21].

A. Modeling the DAC
1) Uniform quantisation: A DAC has 2B levels, where B

is the word size (bits). The quantisation step-size is

δ =
∆

2B − 1
, (1)

where ∆ is the physical output range of the DAC. A
mid-tread uniform quantiser is defined using the truncation
operator T (w)

k = T (w) =

⌊
w

δ
+

1

2

⌋
, (2)

where ⌊·⌋ denotes the floor operator and w the input which
typically is dependent on time t, that is, w = w(t). The
truncation operator is a discontinuous function. The output
y of the quantiser given an input w is

y = Q(w) = δT (w) = δk . (3)

The quantisation error q(w) is defined as the function

q(w) ≜ y − w = Q(w)− w . (4)

The output of the DAC can then be modeled as:

y = w + q(w) . (5)

2) Modelling glitches: Glitches are transients generated
when a digital-to-analog converter switches between two
output levels. A glitch occurs when the analog signal value
corresponding to a given digital code appears before or after
the signal value of the previous code disappears at the DAC
output. The glitch properties of a DAC are often specified by
the net area of the glitch impulse response [22] or sometimes
by the area at the worst-case code transition [23]. The
glitch model proposed in [13], constructs glitches as short,
symmetric or asymmetric rectangular pulses with unit areas
driving a linear time-invariant (LTI) filter. The pulse response
of the LTI filter can be designed to approximate any glitch
shape. Symmetric glitches, ngs , have an input-dependent
polarity; where glitch polarity is determined by how the DAC
input signal crosses threshold values where glitch transitions
occur (i.e. rising or falling) while glitch amplitudes remain
symmetric in both directions. For asymmetric glitches, ngs̃ ,
both the glitch polarity and amplitude depend on whether

the DAC input is falling or rising (i.e. rising glitched transi-
tions may have different polarity and amplitude than falling
glitched transitions). A symmetric glitch is modeled as

ngs(w(t)) ≜
NTs∑
i=1

(gi ∗∆yi) (t) , (6)

where ∗ denotes convolution, NTs
is the number of transition

glitches, gi is a LTI filter determining the shape of glitch i
and

∆yi(t) =
1

τ
(H(Q(w(t))− Ti)−H(Q(w(t− τi))− Ti))

with H(·) the Heaviside step-function, Ti a threshold value
where a glitch is triggered and Ti = Tj only when i = j.
A set time-delay τi > 0 defines the glitch width and height
(here τi is chosen such that τ = τi = τj for all i, j; which
means unit-area rectangular pulses). For the more general
asymmetric glitch model ngs̃ , see [13].

As the time-delay τ → 0, the glitch response converges to
the impulse response. This in turn, allows for the net glitch
area Ai to be determined solely by the DC-gain of the LTI
filters gi as

Ai = lim
s→0

s
1

s

1

τi

1− e−τis

s
L(gi)(s) = L(gi)(0) , (7)

where L denotes the Laplace operator.
The model parameters are fitted to the measured response

of a 16-bit Texas Instruments DAC8544 DAC. The number of
symmetric glitch transitions for this DAC was set to NTs =
216 − 1, as there is a minor glitch at every least-significant
bit (LSB). The DAC also exhibits major, asymmetric glitches
at code intervals of 4096, then the number of asymmetric
glitched transitions is therefore NTs̃ = 16.

3) Complete non-linear DAC model: Element mismatch
nem is modeled as an additive static non-linearity given by

nem = δ INL(w) , (8)

where the static non-linear function INL(w) is called the
integral non-linearity [9,12] defined by

INL(w) ≜
ỹ(w)− δT (w)

δ
, (9)

where ỹ(w) are measured DAC output values corresponding
to an input value w obtained to reflect DAC output devi-
ation from the ideal quantisation value (3) due to element
mismatch (without accounting for glitches). From (9) we
therefore get the following DAC output model

ỹ(w) = y(w) + δ INL(w) . (10)

To incorporate the effect of glitches into the non-linear DAC
model, the dynamic non-linearity ng is introduced. Let ng ≜
ngs +ngs̃ denote the effect of the symmetric and asymmetric
glitches [13,24], the DAC output (10) can then be modified
by postulating the following DAC output model

ỹ(w(t)) = y(w(t)) + nem(w(t)) + ng(w(t)) . (11)

The model of the non-linear quantiser is shown in Fig. 2.
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Fig. 2. Non-linear DAC model.
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Fig. 3. Nano-positioning stage frequency response.

B. Anti-Aliasing and Reconstruction Filters

The reconstruction and anti-aliasing filters, Wr(s) and
Wa(s), are second-order Butterworth filters. They are taken
to be identical, Wr(s) = Wa(s). The reconstruction filter
reduces repeated spectra due to sampling, and tends to reduce
quantisation error. Similarly, the anti-aliasing filter reduces
signal content above the Nyquist-frequency before sampling.
These filters are usually designed with the objective of
sufficiently attenuating frequency content above the Nyquist-
frequency. However, here the control scheme in [25] is
utilised, where these filters are included in the synthesis of
the control law. In the event the cut-off frequency is found to
be significantly lower than the Nyquist-frequency these filters
not only form a part of the control law, but contribute to
attenuating disturbances and averaging the dithered response
as well. The filters have a transfer function of the form

Wa(s) = Wr(s) =
ωc

2

s2 +
√
2ωcs+ ωc

2
, (12)

where ωc is the cut-off frequency, chosen to be a control law
synthesis parameter as detailed in Sec. IV-A.

C. Nanopositioning Stage

Common positioning stage designs suffer the presence of
lightly damped resonances in their response [21,25]. The
dominant dynamics can be represented by a single mass-
spring-damper system when operated in piston mode [21];
but here the stage frequency response model, Gd(s), is
a seventh-order model fitted to experimentally measured
data. It captures lightly-damped resonances corresponding
to various vibrational modes of the stage geometry and
design [21]. This is shown in Fig. 3, where the lightly-
damped resonances occur at 1.7, 3.5, 6.0 kHz, and the model
response plateaus at −45 dB for higher frequencies.

D. Additional Instrumentation

1) Amplifier: The piezoelectric actuator driver modeled is
a Piezodrive PDL200 voltage amplifier with a gain of 20 V/V.
The amplifier has a first-order frequency response

WA(s) =
ωA

s+ ωA
, (13)

where the cut-off frequency is equal to ωA = 1/(24Ca)
and Ca is the load capacitance. Since the actuator has
a capacitance of Ca = 293 nF, the cut-off frequency is
therefore at ωA = 2π 22.8 krad/s.

2) Displacement Sensor: The displacement feedback sen-
sor modeled is the SIOS LSV 120NG laser interferometric
displacement sensor. It is a homodyne Michelson design
counting discrete fractions of the laser wavelength in order
to measure displacement; hence it inherently quantises the
measurement and is equivalent to an ADC. Laser interfer-
ometers are the fundamental measuring technique for length
and all dimensional quantities in nanometrology [26]. The
sensor has a first-order frequency response as in (13), with a
cut-off frequency ωS = 2π 5 Mrad/s. The sensor bandwidth
is much larger than the sampling rate of the simulation and
therefore operates as a gain stage with unity sensitivity for
the entire operational system bandwidth (i.e. WS ≈ 1 V/m).

III. DITHERING

By a (periodic) dither we understand any bounded, peri-
odic, and sufficiently regular function p : [0,∞) → R, e.g.
a sinusoidal, square-wave, or saw-tooth signal. In this paper,
p is a periodic high-frequency (HF) signal. Now let n(w)
denote any function of bounded variation (e.g. Q(w) in (3)),
then using a τ -periodic dither signal p we may define the
smoothed non-linearity N(x) as

N(x) ≜
∫
R
n(x+ v)dFp(v) , (14)

where Fp(v) is the amplitude distribution function of p given
by Fp(v) =

1
τ µ{t ∈ [0, τ) | p(t) ≤ v} with µ the Lebesgue

measure, see [18]–[20] for a detailed mathematical treatment
of dither signals. The Lebesgue-Stieltjes integral in (14) is
equivalent to the time-average over one period τ of the
periodic dither, where x is assumed to be constant for the
duration of the period [20]:∫

R
n(x+ v)dFp(v) =

1

τ

∫ τ

0

n (x+ p(t)) dt . (15)

The error due to the assumption of x being piece-wise
constant with duration τ , goes to zero as τ → 0. Given that
Fp is an absolutely continuous distribution, the averaging
effect of the dither p on the non-linearity n(w) is generally
found by evaluating the Lebesgue-Stieltjes integral of the
form: ∫

R
n(x+ v)dFp(v) =

∫
R
n(x+ v)fp(v)dv , (16)

where fp(v) is the amplitude density function, defined as:

fp(v) ≜
d

dv
Fp(v) . (17)



The smoothed non-linearity N(x) can be found as the
convolution of the function n(w) and the amplitude density
function of the dither. A signal with uniform amplitude
density

fp(v) =
1

2A
rect

( v

2A

)
=

{
1
2A |v| ≤ A
0 |v| > A

, (18)

where A is the periodic dither amplitude, is an example of a
signal with an absolutely continuous amplitude distribution
function Fp(v). One realisation of such a signal is the
triangle-wave, which is the dither used in the simulations.
Considerations regarding dither frequency choice include
the guarantee for dither-induced disturbances to be filtered
out at the system output by the control law. For example,
a certain dither frequency choice may excite higher-order
resonance modes of the positioning stage. However, this
does not exclude the choice validity as long as the control
law design is able to attenuate consequent disturbances
sufficiently, as detailed in Sec. IV-B. Essentially, if a dither
is to be generated through the DAC, the sampling rate should
be at least 5-10 times higher than the dither frequency for
the discrepancy between the continuous and discrete-time
description to be small [27]. If the ratio between the sampling
frequency and dither frequency becomes too small, discrete-
time effects dominate. Hence, the dither frequency should
be chosen as high as possible to minimise the approximation
error from the piece-wise assumption on x in (15), but at least
5-10 times below the sampling rate to avoid discrete-time
artefacts. Accordingly, the chosen dither frequency at 49 kHz
has an adequate margin for hardware operation, similar to
the implementation described in [12]. In Sec. V-B, dither
amplitude is increased progressively to minimise the peak-
to-peak residual error in reference tracking.

IV. CONTROL LAW

A. Synthesis Design

Nanopositioning devices are used for motion control, and
the control objective is to track a reference signal. Ideal
tracking performance is achieved when

yd = r ⇒ T (s) = 1 ,

where yd(s)/r(s) = T (s) is the complementary sensitivity
function of the system, yd is the plant displacement, and r
is the reference signal, as seen in Fig. 1. Hence, a typical
performance criterion for a motion control system is the
flatness of |T (jω)|.

The measurement to be used for trajectory tracking is the
displacement of the sample platform. Accordingly, a control
scheme for the system should use output feedback. Several
output-feedback control schemes exist that can achieve good
tracking performance [28]. Here, the damping integral (DI)
control scheme [25] is chosen. The scheme is advantageous
since it requires only an integrator and an all-pole low-pass
filter. The control law parameters are the integral gain and
the filter cut-off frequency. As there are already low-pass
filters in the control loop due to the need for an anti-aliasing
filter Wa and reconstruction filter Wr, these can be used as

ydGpC

F

r
dup

Fig. 4. Control law structure; here up is the plant input and d is the plant
input disturbance.

a part of the control law, and then it is only necessary to
implement an integrator in addition.

Consequently, we consider two cases: In the first case both
the low-pass filter and integrator are implemented without
regard to the existing anti-aliasing Wa and reconstruction
Wr filters. Here, the cut-off frequency for Wa and Wr is
set to the nominal design cut-off frequency based on the
Nyquist criterion (half the sampling rate) with an added
margin to ensure sufficient suppression of repeated spectra
due to sampling. In the second case, the filters Wr,Wa are
incorporated in the control law synthesis, and there is only
a need to implement an integrator in addition. The cut-off
frequency for Wr,Wa found when using this configuration is
typically much lower than what would nominally be chosen
(by the Nyquist criterion). This is beneficial for a system with
digital control implementation as the attenuation of aliasing
and quantisation error effects from the DAC is improved.

A general control law is specified using the feed-forward
filter C(s), the feedback filter F (s), and is applied to
the plant Gp(s) as shown in Fig. 4. The complementary
sensitivity function is then found to be

yd
r
(s) = T (s) =

Gp(s)C(s)

1 + F (s)Gp(s)C(s)
. (19)

The configuration for the nominal case is then

Ci(s) =
ωc

2

s2 +
√
2ωcs+ ωc

2

ki
s
, (20)

where ki is the integral gain, ωc is the cut-off frequency
for the filter. The parameters ki and ωc are tunable, but the
filters Wr(s) = Wa(s) are set to a fixed cut-off frequency at
250 kHz (keeping a margin of 50% the Nyquist-frequency
when the sampling rate is 1 MHz).

The configuration in the second case, DI-incorporated, is

Ci(s) =
ki
s

, (21)

where ki is the integral gain. In the synthesis, C(s) is com-
bined with the filters Wr(s) = Wa(s), and the parameters ki
and ωc are tunable; therefore, ωc is now the cut-off frequency
for Wr(s) and Wa(s).

The feed-forward filter, feedback filter, and plant are then:

C(s) = Ci(s) ,

F (s) = Wa(s)WS(s) = Wa ,

Gp(s) = −Wr(s)WA(s)Gd(s) .

There are two tunable control law parameters θc =
[ωc ki]

T, the filter cut-off frequency ωc and the integral con-
trol law gain ki. The damping integral control scheme uses
the cost-function J(θc) = ∥1− |T (jω; θc)|∥2 to achieve the



-125

-100

-75

-50

-25

0
10

101 102 103 104 105
-1080

-720

-360

0

360

Fig. 5. Transfer function from plant input disturbance d to plant output
yd (nominal vs. DI control law).

flattest response of the complementary sensitivity function.
The optimal control law parameters are found by solving
θc

∗ = arg minθc J(θc) subject to Re{λi} ∈ R− where
{λi} is the set of eigenvalues for the closed-loop system.
The solution for the first (nominal) filter configuration (with
Ci(s) from (20)) is found to be: ωc = 2π 1230 rad/s, and
ki = 7.58 × 103. Whereas, in the second (DI-incorporated)
case where Wr,Wa is incorporated in the control law syn-
thesis (with Ci(s) from (21)), the solution is: ωc = 2π 2050
rad/s, and ki = 6.60× 103.

B. Performance Measure
Closed-loop analysis shows that both control synthesis

choices are stable with comparable bandwidths lower than
the dither frequency. The nominal design has a bandwidth
of (BWNom = 2π 1740 rad/s) while the DI-incorporated
design has a bandwidth of (BWDI = 2π 1828 rad/s). The
performance measure adopted in [25] is used to evaluate the
disturbance rejection ability of both synthesis designs from
Sec. IV-A. The accumulated disturbances due to DAC non-
linearities are viewed as an effective disturbance d added to
the plant input up as in Fig. 4. The effect of d over up is
investigated by breaking the loop at up; the loop transfer
function is

L(s) = C(s)F (s)Gp(s) .

This yields the sensitivity S(s) of plant input up to a
disturbance d:

up = (1 + L(s))−1d = S(s)d .

Accordingly, the transfer function D(s) from a disturbance
d to the plant displacement yd is given as:

yd = Gp(s)S(s)d = D(s)d . (22)

Fig. 5 reflects the enhanced disturbance rejection perfor-
mance of the DI-incorporated synthesis choice over the
nominal one. Both designs show very good attenuation
at low frequencies up to the system bandwidth. However,
the DI-incorporated design exhibits superior performance
attenuating disturbances at dither frequency prior to the plant
input up.
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Fig. 6. Glitched DAC response to dither in open-loop: Excerpt showing
an averaged (filtered) dithered glitch at various peak-to-peak dither values.
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Fig. 7. Glitched disturbance rejection performance in closed-loop: residual
error due to DAC non-linearities in response to dither pk-pk variation
(nominal vs. DI control law).

V. RESULTS

A. Simulations

The reference signal driving the filtered DAC output in
Fig. 6 and being tracked in Figs. 8 and 9, is a 9 Hz triangle-
wave with an amplitude of 0.05% of the DAC full range
(10 V) and no DC offset. The periodic dither signal was set
to be a 49 kHz triangle-wave. Glitch properties are chosen to
present an accurate model fitted to the hardware device glitch
measurements and sampling rate limitations as addressed in
[13]. Therefore, the glitch duration in the model was set
to τ = 1 µs (matching a single sample period since the
simulation is run at 1 MHz sampling rate). The area for the
major (asymmetric) glitches was set to −60.6 nVs for the
rising input, and 51.9 nVs for the falling input. The area of
the minor (symmetric) glitches was set to ±2.40 nVs. Where
for a given glitch of area Ai, the resultant glitch height is
Ai/τ .
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B. Results and Discussion

Fig. 6 captures the essence of the averaging effect due
to dithering and filtering. That is to transform a glitch
from a large-amplitude disturbance with a short duration
(impulse-like), to a smaller amplitude disturbance with a
longer duration (step-like).

In general, a control law is bandwidth limited, and will
therefore attenuate a step-like disturbance more effectively.
In the case of a 289 LSB pk-pk dither shown in Fig. 6, it can
be seen that if the dither is sufficiently large, the duration of
the step-like response is so long that it appears to be a DC
offset at the DAC output when compared to ideal DAC op-
eration. The exact definition of sufficient dither amplitude to
achieve complete glitch mitigation is non-linearly dependent
on relative values of both the input and glitched transition
levels, e.g. the same input with non-zero DC offset may
require a different dither amplitude to be mitigated. Hence
achieving such sufficiently large dither in closed-loop can be
utilised to completely mitigate the disturbance since high-
frequency transients can be completely suppressed by the
subsequent filtering stage. Evidently, tracking a ramped input
using an integral law exhibits an inherent finite time delay
and steady-state error between the reference and controlled
position [25,27]. Consequently, even with an ideal DAC,
the tracking error is expected to have a pulse-train-shaped
component. This error is referred to as ebenchmark, which
has no component due to DAC non-linearities. It is therefore
crucial to assess the glitch mitigation performance for a
non-linear DAC due to dither injection and filtering in
isolation of reference tracking error typical of the integral law
implemented. To obtain ebenchmark and isolate it, the system
in Fig. 1 is simulated with the DAC bypassed (i.e. ỹ = x).
Now, it is possible to determine the residual tracking error
component due to DAC non-linearities er when operating
the system in Fig. 1 with the non-linear DAC operated in
the closed-loop as er = e− ebenchmark. Hence, an adequate
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Fig. 9. Illustrative time-traces of residual error progression due to dither
amplitude variation.

performance metric to be minimised by sweeping dither
amplitude is the peak-to-peak residual error er. Accordingly,
dither amplitude is increased gradually as simulated in Fig. 7
to determine a sufficiently large dither minimising the peak-
to-peak residual error due to DAC non-linearities. The lowest
dither amplitude to do so is recorded to be 289 LSB;
where the peak-to-peak residual error is 3.83% its value at
0 LSB (i.e. no dither) for the DI-incorporated case. Such
reduction entails that er ≈ 0, indicating almost complete
glitch mitigation. In addition to the significance of dither
amplitude choice, complementary attention should be given
to the low-pass filtering action. Since filtering works in
tandem with dither injection to achieve adequate averaging
and disposal of the unwanted high-frequency dither content
at the output stage. To showcase the significance of low-pass
filtering design choice as raised in Sec. IV, Fig. 8 illustrates
a time trace of the overall tracking error e depicting the
superior performance of the DI-incorporated filter design
approach to the nominal one as Fig. 7 confirms. Even though



the glitch has been averaged for both designs and stability is
guaranteed. The enhanced ability of the DI-incorporated de-
sign to suppress high-frequency dithered-induced disturbance
content prior to the nano-positioning actuation stage, reduces
the overall error e(t) as indicated in Fig. 5. The dithered DI-
incorporated approach exhibits a typical response of a DI
control law with the glitch completely rejected. Fig. 9, illus-
trates dither role in glitch rejection when operated in closed-
loop. Note the fundamental effect of introducing dither even
at 1 LSB as seen at the DAC output ỹ; it invokes glitches with
both polarities to occur at each glitched transition level (as
opposed to no dither, Fig. 9-A). This is due to the fact that
the input trend (rising/falling) is alternated by the injected
dither. The worse performance in Fig. 9-B (as compared to
Fig. 9-A) is due to the controller speed to reach steady-state.
Larger dither amplitudes cause wider sectors of the input
to excite major glitches (i.e. reason for transformation into
longer-duration step-like disturbances after filtering). This is
in correspondence with the filtered DAC output operated in
open-loop from Fig. 6. Moreover, larger dither amplitudes
cause multiple minor glitches to occur at the dither frequency
(i.e. ramped portion of the DAC output becomes thicker)
and, therefore to be filtered out at the output. Hence, smaller
tracking error is achieved even when no major glitches are
excited. Fig. 6 explains the opposing polarity of the transients
in the error signal across the edges of said sectors apparent
the most in Fig. 9-C. Tracing the error evolution across
time, the first transient is an attempt to compensate for an
“upward” stepped disturbance. The tracking settles back as
it reaches steady-state, then tries to compensate for a “down-
ward” stepped disturbance at the second transient, and so on.
Furthermore, it is observed that complete dither rejection
is achieved when the dither modulates the occurrence of
glitches at a frequency well-attenuated by complementary
filtering. Fig. 9-D, depicts a DAC performance comparable
to ideal operation with complete glitch mitigation.

VI. CONCLUSIONS
A method for glitch mitigation for a non-linear DAC used

in closed-loop applications was demonstrated. The glitches
pose a resolution limit in precision digital control systems. A
simulation model of a closed-loop nano-positioning system
with a non-linear DAC was presented. The simulation results
demonstrated significant mitigation of the glitches; achieved
by utilising large-amplitude high-frequency dither and low-
pass filtering. The dithering and averaging of the glitch
responses effectively converted the short-duration, large-
amplitude impulse-like behaviour to a long-duration, small-
amplitude step-like disturbance, which made it possible to
attenuate the disturbance using an integral control law. This
translated to a smaller tracking error and hence better overall
performance.
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