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Abstract
Surface complexation models (SCMs) based on Gouy-Chapman theory are often used to describe adsorption of ions onto
mineral surfaces. To compensate for the buildup of charge at a solid surface, the composition of the electric diffuse layer next
to the surface must balance the surface charge. To calculate the diffuse layer composition, several nonlinear equations and
integrals must be solved, usually with an iterative approach. Before convergence, charge balance is typically not fulfilled. One
numerical difficulty is that, because of these charge balance errors, the iterative solver may attempt to take the square root of
a negative number. Herein, we show that for electrolytes containing only monovalent or divalent ions (i.e., most electrolytes
encountered in practice), we can greatly simplify the integrals and eliminate the appearance of complex-valued integrands; it is
even possible to derive explicit analytical formulas. Furthermore, using the new method prevents converging to non-physical
roots of the Grahame equation, which links surface potential to surface charge. To the best of our knowledge, the presented
formulation has not been implemented in geochemical modelling software before, although similar mathematical expressions
have been presented in the literature. In Gouy-Chapman theory, ions can only be distinguished by their charges, but this is
not consistent with all experimental findings. We present a model that allows for the preferential accumulation of ions in the
diffuse layer. The model, which is implemented mathematically by including ion exchange sites with a variable exchange
capacity, is flexible and more numerically tractable than the standard models for the diffuse layer.

Keywords Geochemical modelling · Surface chemistry · Surface complexation · Diffuse layer · Ion exchange

1 Introduction

Most surface complexation models (SCMs) are based on
some variant of Gouy-Chapman theory [1, 2]. In the Gouy-
Chapman theory, ions are treated as point charges, and ion
concentrations near a charged surface are assumed to follow
Boltzmann statistics. From the Poisson equation, one then
obtains a mathematical relationship between surface poten-
tial and surface charge, the Grahame equation [3–5].

Depending on the problem at hand, one may need to solve
theGrahameequation togetherwith a set of other (non-linear)
equations, e.g., chemical species mass balance equations.
The most common formulation of the Grahame equation has
two solutions, only one of which is physical; see equation
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(18). To avoid finding the wrong solution, many numerical
simulation codes implement a special case instead, for exam-
ple, by assuming a monovalent electrolyte [6, 7]. However,
solving an approximate version of theGrahame equationwill
generally produce physically inconsistent results.

In addition to respecting theGrahame equation, numerical
solvers should correct the mass balance equations to account
for accumulation and depletion of ions in the electric diffuse
layer next to the charged surface [8]. Borkovec and West-
all [9] presented an approach for calculating diffuse layer
concentrations. Their suggested method requires the compu-
tation of several integrals which may be difficult to resolve
numerically, especially when the diffuse layer calculations
are needed as a part of solving a larger set of non-linear
equations, e.g., during reactive transport simulations. Specif-
ically, when solving the system with an iterative solver such
as Newton-Raphson’s method, the necessary constraint of
charge balance in the bulk solution is not guaranteed to hold
until convergence. As a consequence, integrands which are

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10596-023-10239-w&domain=pdf
http://orcid.org/0000-0003-4517-6002


Computational Geosciences

not well-defined mathematically may appear during solver
iterations.

In this paper we present a simple and robust mathematical
approach that works both when we solve the Grahame equa-
tion without considering the composition of the counter and
co-ions in the diffuse layer, as well as when we do. The idea
is to eliminate the total concentration of charge -1 species
by assuming charge balance. As long as all charged species
are either monovalent or divalent (not a severe limitation, it
covers most situations encountered in practice), we can then
greatly simplify the surface charge equations. The relevant
equations have been implemented in an in-house simulator,
IORCoreSim [10, 11],which is capable of both reactive trans-
port and pure equilibrium calculations.

During the writing of this paper, it came to our attention
that the same mathematical idea was presented by Oldham
[12]. However, the paper by Oldham has mostly been over-
looked in the literature. To the best of our knowledge, no other
reactive transport simulators have implemented the approach.

The rest of the paper is organized as follows. We start by
providing an overview of the geochemical model, including
a review of how the Grahame equation can be derived from
the Poisson-Boltzmann equation. Next, we present the new
method. We illustrate how it improves both solver robust-
ness and numerical accuracy in cases where the Grahame
equation is solved without accounting for the diffuse layer
composition. Subsequently, the samemethod is applied to the
diffuse layer integration procedure of Borkovec and Westall
[9]. Finally, we propose a new model for carbonate minerals
that allows for selecting a specific composition of counter
ions in the diffuse layer. The model, which is an extension of
ion exchange models for cation exchange on clay minerals
[6], is capable of describing both anion and cation exchange,
depending on the surface charge. We briefly link the model
to experimental findings from chalk.

For completeness, we have chosen to include many equa-
tions and derivations which are well-known in the literature,
but we highlight the novel parts. We also include appendices
containing mathematical and numerical details that would
disturb the flow of the main text.

2 Geochemical model

2.1 Aqueous chemistry

To calculate aqueous chemistry, IORCoreSim is based on
the standard, textbook approach of dividing the aqueous
species into basis and secondary species [13, 14]. Equilib-
rium constants are computed by the simulator as a function
of temperature and pressure from the Helgeson-Kirkham-
Flowers (HKF) equation of state [15, 16], coupled with the
SUPCRT thermodynamic database [17].

2.2 Surface complexationmodel for carbonates

Throughout the paper, we will use a SCM developed for
calcite surfaces [18, 19]:

>CaCO−
3 � >CaH2O

+ + HCO−
3 − H+ − H2O . (1)

>CaOH0 � >CaH2O
+ − H+ . (2)

>CaHCO0
3 � >CaH2O

+ + HCO−
3 − H2O . (3)

>CO3H
0 � >CO−

3 + H+ . (4)

>CO3Ca
+ � >CO−

3 + Ca2+ . (5)

>CaSO−
4 � >CaH2O

+ + SO2−
4 . (6)

>CO3Mg+ � >CO−
3 + Mg2+ . (7)

The symbol > is used to distinguish surface complexes
from aqueous complexes. In some cases, wewill also assume
that the solution is in equilibrium with calcite and gaseous
CO2:

calcite � Ca2+ + HCO−
3 − H+

CO2(g) � HCO−
3 + H+ − H2O. (8)

For the above model, we can calculate the surface charge

SA
F σ =[>CaH2O

+] + [>CO3Ca
+] + [>CO3Mg+]

− [>CO−
3 ] − [>CaCO−

3 ] − [>CaSO−
4 ] , (9)

whereσ [C/m2] is the net surface chargedensity,F=96484.56
C/mol is the Faraday constant, SA is the specific surface area
in units of square meters per litre of water, and the brackets
denote molar concentrations of the surface complexes. Each
surface complex reaction has a corresponding law of mass
action expression; seeTable 1 for the log K values used in this
study; notice that reactions at themineral surface are assumed
to behave in the same way as the corresponding reactions in
the bulk aqueous phase. [19]. Mathematically, the only dif-
ference compared to reactions in the aqueous phase is that
activities at the surface are corrected to account for elec-
trostatic effects [20]: If the surface is negatively charged,
positive ions will have a higher surface activity compared to
negative ions, while the opposite is true for a positive surface.
As an example, applying the law of mass action to equation
(6) yields:

log10 K = log10[>CaH2O
+] + log10 aSO2−

4

− log10[>CaSO−
4 ] + 2

Fψ0

ln 10 R T
︸ ︷︷ ︸

log10 E0

, (10)

For aqueous complexes, the symbol a denotes the ther-
modynamic activity; herein, computed from Debye-Hückel
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theory [21]. We have also introduced E0 as a shorthand for
exp(Fψ0/(RT )), and more generally we define E(x) =
exp(Fψ(x)/(RT )). This is not merely a notational con-
venience: As we will come back to later, E0 is used as
an additional, “fictive chemical species”, to represent the
unknown surface potential, ψ0 = ψ(0). This allows us
to write the surface complexation reactions in exactly the
same mathematical form as chemical reactions in the aque-
ous phase.

The carbonate SCM given by Eqs. (1)-(9) is capable of
reproducing experimental results; for an example, see Fig. 1.
Unless otherwise noted, all simulation results presented in
this paper were generatedwith the carbonate SCM, assuming
a specific surface area of 3000 m2/L, and a site density of
4.95 sites/nm2 for both calcium (>CaH2O+) and carbonate
(>CO−

3 ) sites [22]. Irrespective of the choice of model, all
simulations presented in this work were conducted at T =
25◦C .

2.3 Poisson-Boltzmannmodel for interactions
between ions and a charged surface

Except for differences in notation,we follow thedevelopment
of Borkovec and Westall [9]. The electric potential, ψ[V],
is assumed to satisfy the Poisson-Boltzmann equation for a
planar surface:

d2ψ

dx2
(x) = − F

εε0

∑

i

Zi ρi (x)

= − F
εε0

∑

i

Zi ρ
B
i exp

(

− ZiFψ(x)

RT

)

, (11)

Fig. 1 Comparison between predicted surface potentials from the
carbonate SCM and experimentally measured ζ -potentials. The experi-
ments, presented in Fig.4 of [23], were performed at room temperature,
using a 5 mM NaCl or NaHCO3 solution. In the simulations, equi-
librium with calcite and a fixed partial pressure of CO2 was assumed
[19]

δDL

diffuse layer

x

Bρ

ρ(x)

bulk solution

surface excess

Fig. 2 Ion distribution, ρ(x), near a charged surface

where ε0 = 8.854 · 10−12 C/V/m is the vacuum permittiv-
ity, ε denotes the relative permittivity (dielectric constant)
of water, R = 8.314 J/K/mol is the ideal gas constant, T
is the absolute temperature, ρi (x)[mol/m3] is the local con-
centration of aqueous species i having charge Zi Fig. 2, and
the superscript, B, indicates the bulk concentration far away
from the surface (x → ∞). In the second equality, it has been
assumed that the local ion concentrations follow Boltzmann
statistics.

From Eq. (11), the charge density in the diffuse layer can
be calculated by integrating from x = 0 (the surface) to
infinity, in units of C/m2:

σDL = F
∫ ∞

0

∑

i

Ziρi (x) dx

= −εε0

∫ ∞

0
dx

d2ψ

dx2
= εε0

dψ

dx

∣

∣

∣

∣

x=0
. (12)

Note that Eq. (11) is non-linear inψ , which violates the phys-
ical principle of superposition. As discussed by Hunter [8],
ψ is related to the mean force required to bring an ion from
infinity (zero force) close to the charged surface.

2.4 The Grahame equation

It is further assumed that the bulk aqueous solution is charge
balanced,

∑

i

Ziρ
B
i = 0, (13)

which implies that both the potential and its derivative van-
ishes as x → ∞. By differentiating (dψ/dx)2 according to
the chain rule and inserting Eq. (11), the resulting expression
can be integrated from infinity to x to yield [9]:

[

dψ

dx

]2

= 2RT

εε0

∑

i

ρB
i

[

E(x)−Zi − 1
]

. (14)
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By combining Eqs. (12) and (14), we find:

σDL
2 = 2 R T εε0

∑

i

ρB
i (E−Zi

0 − 1) . (15)

By switching to using molar units, nB
i = 103ρB

i , we can
reformulate the last equation into

σDL
2 = κs ·

∑

i

nB
i (E−Zi

0 − 1) , (16)

where we have defined:

κs ≡ 2 · 103 · ε ε0 R T . (17)

To balance the charge in the diffuse layer with the surface
charge, we require σDL = −σ . By squaring both sides, and
inserting (16), we see that one way to ensure this is to solve
the Grahame equation, TGrahame = 0, where

TGrahame = κs ·
∑

i

nB
i

(

E−Zi
0 − 1

)

− σ 2 . (18)

Clearly, this equation has two solutions, but only one of them
is physical: the solution where the surface charge and surface
potential has the same sign. Note that it is possible to avoid
two solutions by reformulating Eq. (18) as

T ′
Grahame =sgn(E0 − 1)

√
κs

·
√

∑

i

nB
i

(

E−Zi
0 − 1

)

− σ . (19)

However, thismay introduce numerical difficulties as the sum
under the square root symbol is only guaranteed to be non-
negativewhen charge balance is fulfilled, and this need not be
the case during the non-linear solver iterations. Another rea-
son to prefer Eq. (18) is that the sgn function is discontinuous
at E0 = 1.

3 The Grahame equation without computing
surface excesses of individual ions

In this section, we compare and contrast several variants of
theGrahameequation in the situationwherewedonot correct
the mass balance equations for accumulation or depletion of
ions in the diffuse layer. In this case a charge imbalance will
build up in the solution canceling the surface charge, which is
physically incorrect. However, this case is the default option
in PHREEQC [24] and it is therefore useful to consider it in
some detail. In the next section we will return to the general
case.

3.1 New solutionmethod for themono- or divalent
case

The proposed method is valid for an arbitrary combination
of monovalent and divalent ions. To derive the necessary
equations, we start by introducing a new set of variables,
to denote the sum of concentrations of all aqueous species
having a given electric charge:

n�
Z ≡

∑

i,Zi=Z

nB
i . (20)

Assuming there are no trivalent ions (ions of valence four
or higher are practically non-existent), we can reformulate
the Grahame equation by replacing the individual ion con-
centrations with n�

1 , n
�−1, n

�
2 , and n�−2. For species having

charges +1, +2, or -2, Eq. (20) is applied directly, by inserting
concentrations proposed by the numerical simulator on the
right-hand side. On the other hand, the total concentration of
charge -1 species is calculated, by assuming charge balance:

n�−1 = n�
1 + 2(n�

2 − n�−2) . (21)

In other words, the concentrations of OH−, Cl−, etc. are
ignored for the purpose of solving the Grahame equation:
Instead, n�−1 is eliminated fromEq. (18) by insertingEq. (21).
After somealgebra,we endupwith an expressionhavingonly
the physical root:

T±1,±2
Grahame = 2

√

κsId sinh
(Fψ0

2RT

)

− σ . (22)

Here, we have defined:

Id ≡ n�
1 + n�

2 (2 + 1

E0
) + n�−2E0 . (23)

3.1.1 Recovering the special case of a symmetrical
electrolyte

Let I denote the ionic strength of the solution in molar units.
After eliminating n�−1 by enforcing charge balance, we get

I = n�
1 + 3n�

2 + n�−2 , (24)

for a general mix of mono- and divalent ions. For a sym-
metrical electrolyte of valence Z , electroneutrality implies
that

I = Z2n�
Z = Z2n�−Z . (25)
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Thus, we immediately deduce that for a monovalent elec-
trolyte, Id = I. Similarly, for a divalent electrolyte:

Id = I
4

(E0 + 1)2

E0
= I cosh2

(Fψ0

2RT

)

. (26)

In both cases, Eq. (22) reduces to

σ = −σ DL = 2

√
κsI
Z

· sinh
(

ZFψ0

2RT

)

, (27)

wherewehaveused the trigonometric identity cosh(x/2) sinh
(x/2) = sinh(x)/2.

Equation (27) can also be derived directly from Eq. (18),
by noting that

∑

i

nB
i (E−Zi − 1) = I

Z2

(

EZ + E−Z − 2
)

= 4
I

Z2 sinh2
(

ZFψ

2RT

)

. (28)

Thus, Eq. (27) is valid for the (theoretical) case Z ≥ 3 as
well.

3.1.2 The Grahame equation in other numerical simulators

In the numerical simulation literature, Eq. (27) with Z = 1 is
frequently referred to as the Gouy-Chapman equation [6, 7].
This formula is sometimes used regardless of the ionic com-
position, presumably to avoid the appearance of unphysical
roots.

Some authors also report using a variant of Eq. (27), in
which Z > 1 appears in the argument to the hyperbolic sine,
but Z = 1 in the constant prefactor outside [7, 25]. For the
divalent case, this leads to an extra factor 2 in front of the
hyperbolic term, compared to the “true solution”. On the
other hand, if the equation is rewritten in terms of the total
concentration of cations / anions, rather than ionic strength,
the constant prefactor becomes the same for all values of Z
[6, 26].

3.2 Example: Unphysical solutions (sea water +
calcite)

As a first example, we considered the equilibration of sea
water with calcite. Regardless of whether we solved Eq. (27)
with Z = 1, Eq. (27) with Z = 2, or Eq. (22), the pre-
dicted surface charge and surface potential was the same
in all cases, almost zero but slightly negative (ψ0 = −0.7
mV, σ = −0.001 C/m2). We remark that experimentally
reported ζ -potentials for the calcite-sea water interface have
been reported as slightly more negative, though results vary
[27–29].

On the other hand, the calculated surface charge had the
opposite sign as the surface potential whenEq. (18)was used,
an unphysical result. For a visual illustration of the same fact,
we implemented a variant of the geochemical solver in which
the Grahame equation was solved as a 1D problem; that is,
it was handled separately from all the other equations in the
system by fixing the value of ψ0 during Newton iterations.
Figure 3 clearly demonstrates that when solving Eq. (18), the
numerical solution will be sensitive to the initial guess. This
problem is avoided when using Eq. (22), as illustrated by the
red, straight line in the figure.

3.3 The Grahame equation at low values
of the surface potential

In the previous example, we got virtually identical values for
σ andψ0, independent of whether we assumed a monovalent
electrolyte, a divalent electrolyte, or amixed electrolyte. This
was due to |ψ0| being small: Indeed, a quick comparison of
Eqs. (23) and (24) reveals that in the limitψ0 → 0 (E0 → 1,
hence also σ → 0):

Id → n�
1 + 3n�

2 + n�−2 = I ,

proving that (22) becomes the same as Eq. (27) with Z = 1.
Similarly, we can linearize the hyperbolic sine term in the
formula for symmetrical electrolytes,

sinh

(

ZFψ0

2RT

)

≈ ZFψ0

2RT
. (29)

Fig. 3 Equilibration of sea water with calcite: Example calculations in
which ψ0 was kept fixed when solving the multidimensional system of
chemical equations. The figure was generated by systematically vary-
ing the value of ψ0. For each value of ψ0, the other equations were
solved, after which the Grahame equation was evaluated. Note that the
logarithm of E0 is plotted on the x-axis, rather than ψ0, because this is
the unknown used by the simulator. Black, solid line: Using equation
(18). Red, solid line: Using equation (22)
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As expected, the expressions for the divalent andmonovalent
cases agree at low surface potentials (the Z -terms cancel).

3.4 Example: Fixed surface charge

To study the behavior of the Grahame equation in isolation,
we temporarily abandoned the carbonate SCM, and consid-
ered a much simpler model without any mineral dissolution
/ precipitation or surface complexation, hence the surface
chargewas constant.Chemical reactions in the aqueous phase
were also largely or fully ignored.

To focus on the different behavior of monovalent versus
divalent ions, we replaced the sea water brine with a much
simpler 2:1-electrolyte, Na2SO4. Figure 4 shows calculated
spatial profiles of the potential, when a surface with charge
± 0.05 C/m2 was placed into contact with a 24 mMNa2SO4

solution. It is clear from the figure that using an approximate
version of the Grahame equation leads to incorrect results.
The error of assuming a symmetrical electrolyte depends
on the sign of the surface charge. For a negatively charged
surface, the counter ions that accumulates near the surface
are Na+ ions, hence the formulas valid for monovalent elec-
trolytes provide a decent approximation. On the other hand,
when σ > 0 it is mainly SO2−

4 ions that have a high surface
concentration, thus it is better to use the divalent electrolyte
approximation.

To summarize, for a brinewith onlymono- and/or divalent
ions:

• The specialization of the Grahame equation to symmet-
rical electrolytes, Eq. (27), is only valid at low surface
potentials.

• If one insists on using Eq. (27) at higher potentials, the
error will be reduced by choosing Z to be the valence
of the dominating counter ion(s). However, it may be
difficult to implement code logic to do this consistently,
especially for large, complex reactive transport simula-
tions.

• Equation (27) should generally not be used to calculate
the composition of the diffuse layer.

• Using Eq. (22) avoids having to consider this source of
numerical error, and is therefore recommended.

4 Diffuse layer model with surface excess
calculations

So far, we have not corrected the mass balance equations to
account for accumulation and depletion of ions in the diffuse
layer. These corrections are usually very small, but there are
situationswhere theymatter, e.g., in certain reactive transport
simulations where we have to ensure that the bulk solution
of each grid block is electrically neutral following transport
calculations (see Fig. 5). Especially in simulationswithmany
grid blocks, small charge imbalances sometimes accumulate
to create a noticeable impact on, e.g., predicted pH.

For carbonates, the effect of diffuse layers could be sig-
nificant. For example, in one set of coreflooding experiments
it was found that by adding sulfate to the injection brine,
the effective cation exchange capacity of chalks could be
increased by a factor of two [30, 32]. The interpretation was
that adsorption of sulfate created a negative surface charge,
due to the reaction in Eq. (6), and as a consequence, more
cations were removed from the flowing solution. These stud-
ies, as well as many others in the literature, have furthermore

Fig. 4 Spatial profiles of the potential for a 24 mM Na2SO4 brine,
assuming a constant surface charge. Only the value of ψ0 was calcu-
lated by the numerical simulator; ψ(x) for x > 0 was computed based
on ψ0 in a separate script. The aqueous complexes NaSO−

4 , NaOH
0,

and HSO−
4 were removed from the HKF geochemical database before

conducting any simulations. Left: σ = −0.05C/m2. Right: σ = +0.05
C/m2
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Fig. 5 Experimental results when a Na2SO4 solution flooded through
a chalk core [30], SEM image adopted from [31]. (Top) Conceptual
picture of the ion distribution near a negatively charged surface. (Bot-
tom) An illustration of one method to maintain charge balance during
numerical transport calculations (here, only advection): First, flowing

concentrations are updated by treating the ions in the diffuse layer as
immobile. Next, ions are redistributed between the solution and the sur-
face. The size of the diffuse layer has been exaggerated for visualization
purposes

stressed the importance of ion-specific effects, but the Gouy-
Chapman theory is only able to distinguish between ions
in the diffuse layer based on their charges. It has been sug-
gested that the affinity of a cation for the mineral surface also
depends on the size of the cation. For clayminerals in particu-
lar, it has been observed that when two cations have the same
charge, the one with the larger non-hydrated radius tends to
be preferred [33]. This trend is opposite to what one would
expect from a naive application of Coulomb’s law, according
to which the electrostatic attraction between a cation and the
surface should decrease with increasing ionic radius.

A typical resolution of this seeming paradox is that larger
cations attract fewerwatermolecules, hence these ions have a
smaller hydrated radius and can therefore come closer to the
mineral surface [33]. All else being equal, K+ should there-
fore be more strongly retained than Na+, and Ca2+ more so
than Mg2+ [34]. Consistent findings have not always been
found, however, e.g., the degree of cation selectivity seems to
depend on the clay mineral type [35, 36]. Moreover, ions of
similar hydrated radius have been observed to behave differ-
ently, e.g., Cs+ and Rb+ [37]. To explain such data, mineral
heterogeneity has sometimes been invoked [38]. It has also
been pointed out that since weakly hydrated cations are eas-
ily dehydrated, they can adsorb more strongly than cations
with larger solvation shells [39, 40].

Regardless of the fundamental explanation, it makes sense
to develop a model for carbonates that allows for a selective
uptake in the diffuse layer. To this end, we will present an ion

exchange model for carbonates where it is possible to distin-
guish between ions of the same charge in the diffuse layer.
However, we will first present the general mass conservation
equations used, and discuss how Gouy-Chapman theory, as
described by Borkovec andWestall [9], allows us to calculate
the diffuse layer composition when ions of the same charge
are treated equally.

4.1 Mass conservation in the presence of a diffuse
layer

The diffuse layer contains both negative and positive ions, as
illustrated in Fig. 5. The number of moles of an arbitrary ion
i in the diffuse layer is (see Fig. 2)

NDL,i = A
∫ δDL

0
ρi (x)dx , (30)

where A [m2] is the pore surface area, and δDL [m] is the
size of the diffuse layer (for simplicity, assumed constant).
We can expand this as:

NDL,i = A
∫ δDL

0
(ρi (x) − ρB

i )dx + A
∫ δDL

0
ρB
i dx,

= A
∫ δDL

0
(ρi (x) − ρB

i )dx + AδDLρB
i . (31)
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At the edge of the diffuse layer ρi (x) 
 ρB
i , thus we replace

the upper integration limit by ∞1. After also changing units
from m3 → L, we find:

NDL,i 
 VwgZi n
B
i + VDLn

B
i = Vwn

B
i (gZi + fDL) , (32)

where Vw [L] is the total volume of water in the pore, fDL =
VDL/Vw is the volume fraction occupied by the diffuse layer,
and the dimensionless factor gZi is:

gZi = 103 · SA
nB
i

∫ ∞

0

(

ni (x) − nB
i

)

dx

= 103 · SA
nB
i

∫ ∞

0
nB
i

(

E(x)−Zi − 1
)

dx . (33)

Let Ni denote the total number of moles of ion i . In addi-
tion to the diffuse layer part, the total includes the number
of moles in the bulk solution, NB,i = VBnB

i where VB [L]
= Vw −VDL is the volume of the bulk aqueous phase, as well
as the number of moles adsorbed at the surface in the form
of either a surface complex or an ion exchange complex:

Ni = VwgZi n
B
i + VDLn

B
i + VBn

B
i + Vw(nSi + nI Ei )

= Vw

(

gZi n
B
i + nB

i + nSi + nI Ei

)

, (34)

where the surface concentrations nSi and nI Ei are given in
units of molarity.

By dividing by Vw, we can reformulate the mass conser-
vation equation in terms of concentrations rather than moles:

nToti ≡ Ni

Vw

= nB
i (1 + gZi ) + nSi + nI Ei . (35)

4.2 Mass balances in terms of basis and secondary
species

For completeness, we explain how the system of chemical
species mass balance2 equations is formulated in IOR-
CoreSim. The simulator uses the approach described by [14,
17], wherein the set of geochemical species are partitioned
into two subsets: basis species and secondary species. The
choice of basis species is not unique, but for a given choice of
basis, concentrations of secondary species can be expressed
uniquely as functions of the basis species concentrations. As
a result, only the basis species concentrations are treated as
unknowns when solving the system.

1 This is equivalent to assuming that ψ(δDL) = 0. Alternatively, we
could keep the integration limit, but then the value of the surface poten-
tial should be known at the edge of the diffuse layer.
2 Strictly speaking by “mass balance” we mean conservation of chem-
ical elements, but it is common in the geochemical literature to use the
term mass balance.

As mentioned previously, surface complexes are treated
mathematically in the same way as aqueous complexes,
which is possible by adding the fictive species E0 to the
list of basis species. Some of the surface complexes are also
included in the basis set.

In the rest of this subsection, we employ a slightly dif-
ferent notation than in the rest of the paper. Let mi denote
the molar concentration an arbitrary basis specie, relative to
the total water volume, and let ni be the concentration of
an arbitrary secondary specie. Let mTot

i be the total concen-
tration corresponding to basis specie i , that is, the sum of
mi and the concentrations of all secondary species that react
with basis specie i in an equilibrium reaction. According to
Eq. (35), we then have

mTot
i = (1 + gZi )mi +

∑

μ j i (1 + gZ j )n
aq,scomp
j , (36)

where μ j i is the stoichiometric matrix which describes how
secondary species are formed from basis species. The super-
script has been added to emphasize that secondary species
include both aqueous and surface species, with the under-
standing that the gZi -terms are zero for surface species. From
Eq. (32), we see that the contribution to (36) from the diffuse
layer is:

mTot
DL,i ≡

NDL,i +
∑

μ j i NDL, j

Vw

= ( fDL + gZi )mi +
∑

μ j i ( fDL + gZi )n
aq
j . (37)

Note that gZi may be negative and it is important that fDL is
not too small to avoid negative concentrations in the diffuse
layer.

For evenmore details onhowwe solve the carbonateSCM,
see the example in Section 4.6.

4.3 Reformulating the relationship between� and
Ã0

In the rest of the paper, we shall once again ignore the dis-
tinction between basis and secondary species. To calculate
the accumulation / depletion of charged species in the diffuse
layer,we follow the development ofBorkovec andWestall [9]
and introduce the surface excess of an ion in the diffuse layer,
in units of moles per litre:

n

i ≡ 103 · SA

∫ ∞

0

(

ni (x) − nB
i

)

dx . (38)

Bydefinition, the previously introduced gZi -factor is the ratio
between the surface excess and bulk concentration:

n

i = gZi · nB

i . (39)
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Equation (12) can be used to derive an alternative expression
for the diffuse layer charge density:

σDL = F
SA

∑

i

Zi n


i = F

SA

∑

i

Zi gZi n
B
i , (40)

where once again charge-balance of the bulk solution has
been invoked,

∑

ZinB
i = 0. Thus, instead of solvingEq. (22)

or any of its symmetrical variants, we can solve T DL
σ = 0,

where

T DL
σ = SA

F (σDL + σ)

=
∑

i

Zi gi n
B
i +

∑

i

Zsci n
S
i . (41)

Given that diffuse layer concentrations are calculated and
included in the mass balance, and that the bulk solution is
electrically neutral, a solution to T DL

σ = 0 should automati-
cally satisfy Eq. (18) as well. An advantage of using Eq. (41)
is that we explicitly enforce the charge balance between the
surface and the diffuse layer with one equation.

As a side note, we remark that when run in default
mode, the popular simulation program PHREEQC does not
compute the composition of the diffuse layer. Instead, the
monovalent approximation to the Grahame equation is used,
Eq. (27) with Z = 1 [24]. As we have seen, this will pro-
duce physically inconsistent results for arbitrary brines. On
the other hand, if the diffuse_layer-flag is added to the input
file, PHREEQC attempts to use the integration procedure of
[9], in which case an equation akin to (41) is solved. At con-
vergence, the solution should also satisfy Eq. (18), however
Eq. (18) is not implemented directly, as has been suggested
[7].

4.4 Calculating surface excesses in the diffuse layer

A formula for the dimensionless gZ -factors can be derived
from Eq. (14) by performing the variable substitution x →
E :

gZ = SA
√

κs

2F (42)

·
∫ E0

1

(

E−Z − 1
)

dE

sgn (E0 − 1)
[

E2
∑

j n
B
j (E

−Z j − 1)
]1/2 .

Except in special cases (see Appendix A), the integrals
(42) must be computed numerically. A practical challenge is
that the integrands may not always have physically meaning-
ful values. This is because there is no guarantee that the bulk
solution will be electrically neutral until after convergence.
During the non-linear solver iterations, if the charge balance
error is sufficiently large, the term under the square root in

the denominator can become negative [9]. Unless explicitly
handled, this will cause the solver to crash.

4.5 Newmethod for calculating diffuse layer
concentrations

As with Eq. (18), we can greatly simplify the integrals if
we assume that 1) there are only ±1 and ±2 charges, and
2) charge-balance is satisfied. First, if we use Eq. (21) to
eliminate n�−1 from the denominator, we get:

E2
∑

j

nB
j (E

−Z j − 1) = E(E − 1)2Id . (43)

The integrals (42) then become:

gZ = SA
√

κs

2F
∫ E0

1

E−Z − 1

(E − 1)
√
EId

dE . (44)

After inserting (23), we find:

g1 = − SA
√

κs

2F
∫ E0

1

E−3/2

I1/2
d

dE . (45)

g2 = − SA
√

κs

2F
∫ E0

1

E−5/2(E + 1)

I1/2
d

dE . (46)

g−1 = SA
√

κs

2F
∫ E0

1

E−1/2

I1/2
d

dE . (47)

g−2 = SA
√

κs

2F
∫ E0

1

E−1/2(E + 1)

I1/2
d

dE . (48)

SinceId > 0 (there are always someH+ ions), the integrands
will never take on complex values, hence all four integrals
are easily evaluated.

4.6 Example: 0.024MNa2SO4 brine in equilibrium
with calcite and CO2

In the example, seven aqueous basis species are used: Ca2+,
Cl−, H+, H2O, HCO

−
3 , Na

+, and SO2−
4 . Including surface

chemistry introduces three more basis species: >CaH2O+,
>CO−

3 , and E0, the latter representing surface charge. The
secondary species are listed in Table 1, along with the equi-
librium reactions for how they dissociate into basis species.

In principle, we therefore need ten independent equations
to determine the equilibrium chemistry. However, the activ-
ity of water is assumed to be unity, thus water need not be
included as an unknown. Further simplifications can bemade
by considering the law of mass action equations for calcite
and CO2 equilibria, i.e., the last two equations in Table 1.
Solving these equations allows us to express the calcium and
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bicarbonate activities as a function of the H+activity, effec-
tively removing Ca2+, and HCO−

3 as independent variables
and further reducing the number of unknowns to seven. A
more general treatment of how to handle mineral equilibria
is to use the basis swapping method described in [14].

Next, there are four mass balance equations for Na+,
SO2−

4 ,>CaH2O+, and>CO−
3 , see Eq. (36). To solve for H

+,
we include an equation for the charge balance of the solution,
Eq. (13). Finally, there is one equation for the charge balance
between the diffuse layer and the surface, Eq. (41), and one
equation to determine the surface charge, Eq. (9).

When the Newton-Raphson iterations start, the activities
of >CaH2O+, >CO−

3 , Na
+, and SO2−

4 are set equal to the
corresponding total concentrations. The initial guess for the
surface potential and charge are zero, and the activity of H+is
set equal to neutral pH. The ionic strength and activity coef-
ficients are updated in-between of each Newton-Raphson
iteration, i.e., we follow the “soft formulation” described in
[14]. The numerical integrals are calculated using a 10 point
Gauss-Legendre quadrature. We also tried to implement the
analytical results described in Appendix A, but found that
it was faster to estimate the surface excess integrals using
numerical integration of Eq. (45)-(48).

The input total concentrations and computed final concen-
trations are listed in Table 3. The estimated concentration of
H+ in the water phase is negative, but this is an artifact due to
the fact that we have not accounted for the concentration of
water (which contains a lot of hydrogen). Observe also that
the surface excess for sodium is positive, while it is negative
for sulfate.

In the cases we have considered so far, the calculations
converged fast. Typically, only 5-10 Newton-Raphson itera-
tions were required to reach the desired accuracy.

5 Alternative ion exchangemodel for
carbonate rocks

From Eq. (33) it is clear that the diffuse layer model does
not treat ions individually; all that distinguishes two ions
is their charges and concentrations. We would also like to
test models with a selective uptake of ions in the diffuse
layer, e.g. exclude tracer molecules from the diffuse layer.
There are also indications from core floods that some ions
are preferred, e.g. K+ over Ca2+[30, 32]. However, the exact
reason for this observation requires in-depth analysis that is
beyond the scope of this paper.

We want a model that...

1. ...conserves charge in the diffuse layer, and
2. ...can account for the preferential adsorption of divalent

ions over monovalent ions, yet

3. ...is also capable of selecting certain ions of the same
charge over others; e.g., excluding tracers from the diffuse
layer.

As an alternativemodel for carbonate rocks,we suggest intro-
ducing a set of ion exchange reactions. This is often done to
model adsorption onto clay minerals, however for clays it is
usually assumed that the rock has a fixed negative exchange
capacity which stems from charge imbalances in the crystal
structure. In contrast, we want to allow for both positive and
negative ions in the diffuse layer, hence we need positive and
negative exchange sites.

Let Y−
DL denote the total exchange capacity for positive

ions in the diffuse layer, in units of equivalents per litre or
water. Similarly, let Y+

DL be the total exchange capacity for
negative ions. Each exchanger (Y±

DL) has opposite sign as the
ions it attracts, hence:

Y−
DL ≡

∑

Zi>0

Zin
B
i

[

gZi + fDL
]

, (49)

Y+
DL ≡ −

∑

Zi<0

Zin
B
i

[

gZi + fDL
]

. (50)

Because of the valence terms in the above expressions, diva-
lent ions will occupy two sites on the exchangers. The net
charge of the ion exchangers has to balance the net charge in
the diffuse layer:

Y−
DL − Y+

DL =
∑

i

Zi n
B
i

[

gZi + fDL
]

=
∑

i

Zi gZi n
B
i

= SA
F σDL . (51)

Next, we want to reshuffle ions, e.g., exchange calcium for
sodium in the diffuse layer, or exclude certain ions. Mathe-
matically,we define half-reactions [41] for all ions of interest:

Na − YDL � Na+ + YDL
− . (52)

H − YDL � H+ + YDL
− . (53)

Ca − YDL2 � Ca2+ + 2YDL
− . (54)

HCO3 − YDL � HCO−
3 + YDL

+ (55)

SO4 − YDL2 � SO2−
4 + 2YDL

+ . (56)

More generally, for any ion i :

i − YDL |Zi | � i Zi + |Zi |YDL
−sign(Zi ) . (57)

When applying the law of mass action to Eq. (57), we define
the activity of an ion exchange complex according to the
Gaines-Thomas convention [6, 42].
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By manipulating the log K values for the exchange reac-
tions, we can alter the distribution of ions in the diffuse layer.
The log K values must be determined from experiments.
However, in this paper we will only illustrate the behaviour
of the model by picking a few hypothetical scenarios.

5.1 Simplification: Only counter ions

The ion exchange reactions are easily implemented by adding
YDL

± to the list of basis species, and by treating the exchange
species as secondary species. The difficult part is how to
calculate the variable exchange capacity. This is because the
total number of exchange sites in Eqs. (49) and (50) depend
on the complicated gZi -factors. To avoid having to evaluate
these factors, we make the simplifying assumption that it is
only the counter ions that balance the surface charge, i.e., ions
with the opposite charge as the surface. Then, the exchange
capacity of the counter ions can be related directly to the
surface charge, via Eq. (22). For simplicity, we shall assume
that the surface charge is negative (the case with σ > 0 is
entirely similar), in which case:

YDL
− = − SA

F σ + fDL

∑

Zi=1,2

Zini

= − 2SA
F
√

κsId sinh
(Fψ0

2RT

)

+ fDL

∑

Zi=1,2

Zini . (58)

YDL
+ = − fDL

∑

Zi=−1,−2

Zini . (59)

From these expressions, it is possible to calculate the
composition of the diffuse layerwithout calculating any time-

consuming integrals. Note that (51) still holds. The algorithm
is as follows:

1. Define additional basis species YDL
± with corresponding

half-reactions, e.g., Eqs. (52)-(56).
2. Set ψ = 0, and compute the total concentration of the

exchange species from Eq. (59).
3. Solve Eq. (36) for each basis specie (including the

exchange species YDL
±) together with Eq. (22) to obtain

preliminary activities and concentrations of all basis
species, hence also ψ and σ . When equilibrium phases
are included in the calculation, we use the basis-swapping
technique described by Bethke [14].

4. Use the estimated values of ψ and σ to update the
exchange capacities, then go to 3.

It would be possible to solve all equations inside each
Newton-Raphson iteration, but so far we have found that
simply updating the exchanger concentrations in an external
loop works well. Such a loop is used anyway by the solver,
to update activity coefficients and the ionic strength.

5.2 Ion exchangemodel: 0.024MNa2SO4 brine in
equilibriumwith calcite and CO2

As before, when calcite and CO2 is used as equilibrium
phases, the Ca2+ and HCO−

3 concentrations are determined
from the equilibrium reactions, and the pH is determined by
requiring charge balance. The computed solution chemistry
is shown in Table 4; observe that YDL

− − YDL
+ = SAF σ , as

should be the case.
By modifying the log K values for the half-reactions,

we obtain a selective uptake of ions on the exchanger:
Table 5 lists someexample cases. The calculateddiffuse layer

Fig. 6 Composition of the
diffuse layer obtained with five
different models. Left: Diffuse
layer model with calculation of
surface excess. Column 2-5: ion
exchange model with log K
values as listed in Table 5
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concentrations are presented in Table 6 and plotted in Fig. 6
as percentages of the total. Observe that for the case where all
log K values are equal (case 1), the results are quite similar
as for the previous model without the exchange reactions.

6 Conclusion

There are at least two numerical challenges when imple-
menting SCMs: (i) the Grahame equation, Eq. (18), has two
solutions of which only one is physically relevant, and (ii)
the numerical method for calculating concentrations in the
diffuse layer can fail, due to the appearance of integrands
with complex values during Newton-Raphson iterations. We
have presented a solution approach which circumvents both
problems. Our method is valid for the case when all ions
are either mono- or divalent. Usually, this is not a severe
restriction, because concentration of ions with valence three
or higher tend to be very low.

We have also investigated the impact of replacing the
Grahame equation with a special case valid for symmetrical
electrolytes. We have demonstrated that the surface potential
obtained from such a model should not be used to calcu-
late the diffuse layer composition, because the charge in the
diffuse layer will not be correctly balanced by the surface
charge.

Regardless of which model is used to calculate surface
charge, the conventional Poisson-Boltzmann equation treats
ions of the same valence equally: It is not possible to describe
selective adsorption of ions in the diffuse layer. However, this
may be needed to describe experimental results, e.g., from
carbonates. As an alternative, we have presented a model
in which the diffuse layer is treated like an ion exchanger
with a variable number of exchange sites. The model has yet
to be tested against experimental data, which is needed to
determine reasonable log K values.

Appendix A Analytical calculation of diffuse
layer integrals

When there are only ±1 and ±2 species, it is possible to
find explicit formulas for the diffuse layer concentrations.
By substituting ν ≡ 1 − 1/E , Eq. (42) becomes

gZ = SA
2F

√

κs

I
∫ ν0

0

(1 − ν)Z − 1

ν
√

qν2 − pν + 1
dν , (A1)

for ν0 = 1 − 1/E0 = (E0 − 1)/E0, and where:

p ≡ n�
1 + 4n�

2

I . (A2)

q ≡ n�
2

I . (A3)

The ionic strength is given by Eq. (24). Note that we always
have ν < 1, because ν = 1 would imply an infinite surface
potential.

Symmetrical electrolyte

For a symmetrical electrolyte of valence Z , it is straightfor-
ward to show [9]:

g±Z = SA
F

√

κs

I
[

(1 − ν0)
±Z − 1

]

. (A4)

Mix of mono- and divalent ions

When all charge types are present, surface excesses of mono-
valent ions can be computed from [12]:

g1 = SA
F

√

κs

I
1

2
√
q

[

cosh−1

(

p − 2qν
√

p2 − 4q

)]ν0

0

. (A5)

g−1 = SA
F

√

κs

I
1

2
√
q − p + 1

·
[

cosh−1

(

2 − p − ν(p − 2q)

(1 − ν)
√

p2 − 4q

)]ν0

0

. (A6)

When n�
2 = 0 and n�−2 > 0, the first formula is no longer

valid but can be replaced with:

g1 = SA
F

√

κs

I
1

p
(
√

1 − pν0 − 1) . (A7)

Similarly, Eq. (A6) is not valid when n�−2 = 0 and n�
2 > 0,

but can then be replaced with:

g−1 = SA
F

√

κs

I

[√

q(ν2 − 1) + p(1 − ν)

2 q(ν − 1) + p(1 − ν)

]ν0

0

(A8)

To calculate surface excesses of divalent ions, [12] pointed
out that we can reuse the values found for the monovalent
ions. First, the Grahame equation can be rewritten as:

σ = ν0

1 − ν0
·√κsI ·

√

qν20 − pν0 + 1 . (A9)

After inserting n�−1 ≡ n�
1 + 2(n�

2 − n�−2) (charge balance)
into this equation, and further making use of Eqs. (24), (A2),
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and (A3) to express n�−2 = (q − p + 1)I, we end up with:

g2 =
SAF
(

σ(1−ν0)
ν0

− √
κsI

)

− n�
1 g1

2n�
2

. (A10)

g−2 =
SAF
(

σ
ν0

− √
κsI

)

− n�−1g−1

2n�−2

. (A11)

1:2-electrolyte

For a 1:2-electrolyte (e.g., Na2SO4), we have

I = 3

2
· n�

1 . (A12)

p = 2

3
. (A13)

Thus, Eq. (A7) reduces to

g1 = SA
F

√

κs

I ·
√

3

2

[√

3

2
− ν0 −

√

3

2

]

. (A14)

Similarly, Eqs. (A9) and (A11) together yield:

g−2 = SA
F

√

κs

I ·
√

3

2

⎡

⎣

√

3
2 − ν0

1 − ν0
−
√

3

2

⎤

⎦ . (A15)

The above two equations follow directly from equations (35)
and (36) in [4].

2:1-electrolyte

For a 2:1-electrolyte (e.g., CaCl2 or MgCl2), we have

I = 3 · n�
2 . (A16)

p = 4

3
. (A17)

q = 1

3
. (A18)

Combining Eqs. (A9) and (A10) leads to:

g2 = SA
F

√

κs

I
3

2

(

1√
3

√

(3 − ν0)(1 − ν0) − 1

)

(A19)

After some algebra, Eq. (A8) reduces to

g−1 = SA
F

√

κs

I
3

2

(

1√
3

√

3 − ν0

1 − ν0
− 1

)

. (A20)

These two equations could also be derived from equations
(45) and (46) in [4].

Appendix B Tables

Table 1 Table of computed log K values for surface- and aqueous com-
plexes in the carbonate SCM

Complex (secondary specie) Basis species logK @ 25◦C

CaOH+ �Ca2++ H2O - H+ 12.83

CO2(aq) �H++ HCO−
3 - H2O -6.34

CO2−
3 �HCO−

3 - H
+ 10.33

CaCO0
3 �Ca2++ HCO−

3 - H
+ 7.00

CaHCO+
3 �Ca2++ HCO−

3 -1.05

CaSO0
4 �Ca2++ SO2−

4 -2.11

HSO−
4 �H++ SO2−

4 -1.98

NaOH0 �Na++ H2O - H+ 14.20

OH− �H2O - H+ 14.00

NaSO−
4 �Na++ SO2−

4 -0.70

>CaSO−
4 �>CaH2O++ SO2−

4 -2.11

>CaCO−
3 �>CaH2O++ HCO−

3 - H
+7.00

>CaOH0 �>CaH2O++ H2O - H+ 12.83

>CaHCO0
3 �>CaH2O++ H2O -1.05

>CO3H0 �>CO−
3 + H+ -4.88

>CO3Ca+ �>CO−
3 + Ca2+ -1.74

>CO3Mg+ �>CO−
3 + Mg2+ -1.04

calcite �Ca2++HCO−
3 -H

+ 1.85

CO2(g) �HCO−
3 +H

+-H2O -7.81

Table 2 Solution chemistry for seawater in equilibrium with calcite
without calculation of surface excess ( fDL = 1) (SA = 3000.0 m2/L),
pH= 7.4, σ = −0.00125 C/m2, ψ0 = −0.705 mV

Basis specie ntoti naqi nsurfacei

Ca2+ 1.30E-02 1.29E-02 3.06E-03

Cl− 5.25E-01 5.25E-01 0.00E+00

H+ 7.39E-05 6.09E-05 1.30E-05

H2O 1.00E+00 1.00E+00 6.85E-08

HCO−
3 2.00E-03 1.94E-03 2.55E-04

K+ 1.00E-02 1.00E-02 0.00E+00

Mg2+ 4.45E-02 4.45E-02 2.43E-03

Na+ 4.50E-01 4.50E-01 0.00E+00

SO2−
4 2.40E-02 2.40E-02 5.39E-03

>CO−
3 2.47E-02 0.00E+00 2.47E-02

>CaH2O+ 2.47E-02 0.00E+00 2.47E-02

E0 9.73E-01 0 9.73E-01
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Table 3 Solution chemistry for
a 0.024 M Na2SO4 solution in
equilibrium with calcite and
CO2 when using the full diffuse
layer model including surface
excess. The partial pressure of
CO2 was set to PCO2 = 10−3.4,
and the size of the diffuse layer
was 10.0 nm, which gave
fDL = 0.03 (SA = 3000.0
m2/L). pH= 8.6, σ = −0.020
C/m2, ψ0 = −35.0 mV

Basis specie ntoti naqi nsurfacei n

i nDL,i

H+ -2.21e-4 -1.02e-04 -1.17e-04 6.30e-07 -2.44e-06

Ca+2 1.79e-3 2.65e-04 1.51e-03 4.27e-06 1.22e-05

HCO−
3 3.43e-3 3.07e-03 2.88e-04 -1.16e-05 8.06e-05

Na+ 4.80e-02 4.77e-02 0 3.35e-04 1.76e-03

SO−2
4 2.40e-02 2.25e-02 1.62e-03 -1.28e-04 5.47e-04

>CaH2O+ 2.47e-02 0 2.47e-02 0 0

>CO−
3 2.47e-02 0 2.47e-02 0 0

E0 2.56e-01 0 2.56e-01 0 0

Table 4 Solution chemistry for
a 0.024 M brine in equilibrium
with calcite and CO2
(PCO2 = 10−3.4), when using
the proposed ion exchange
model with log K = 0 for all ion
exchange half-reactions: The
size of the diffuse layer was set
to 10.0 nm, which gave
fDL = 0.03 (SA = 3000.0
m2/L). pH= 8.6, σ = −0.019
C/m2, ψ0 = −35.0 mV

Basis specie ntoti naqi nsurfacei nDL,i

H+ -2.23e-4 -1.03e-04 -1.20e-04 1.27e-10

Ca+2 1.82e-3 2.57e-04 1.49e-03 7.30e-05

HCO−
3 3.41e-3 3.09e-03 2.92e-04 2.91e-05

Na+ 4.80e-02 4.61e-02 0 1.85e-03

SO−2
4 2.40e-02 2.17e-02 1.58e-03 6.84e-04

>CaH2O+ 2.47e-02 0 2.47e-02 0

>CO−
3 2.47e-02 0 2.47e-02 0

E0 2.56e-01 0 2.56e-01 0

YDL− 2.00e-03 0 0 2.00e-03

YDL+ 1.40e-03 0 0 1.40e-03

Table 5 Ion exchange model for
the diffuse layer: log K values
used in four example cases

Ion exchange half-reaction Case 1 Case 2 Case 3 Case 4

Na − YDL � Na+ + YDL
− 0 0 -6 0

H − YDL � H+ + YDL
− 0 -7 0 0

Ca − YDL 2 � Ca2+ + 2YDL
− 0 -0.8 0 -6

HCO3 − YDL � HCO−
3 + YDL

+ 0 -2 -6 0

SO4 − YDL 2 � SO2−
4 + 2YDL

+ 0 0 0 -6

Table 6 Total concentrations in
the diffuse layer when using the
full diffuse layer model
including surface excess and the
exchange model; log K values
are listed in Table 5. Note that in
the EDL approach, secondary
complexes like NaSO−

4 are
included in the total. For the
exchange model, only free ions
can adsorb

TOTNa+ TOTH+ TOTCa+2 TOTHCO−
3 TOTSO−2

4

EDL 1.76e-03 -2.44e-06 1.22e-05 8.06e-05 5.47e-04

Case 1 1.85e-03 1.27e-10 7.30e-05 2.91e-05 6.84e-04

Case 2 1.02e-03 7.15e-04 1.44e-04 1.18e-03 1.21e-04

Case 3 1.96e-03 1.64e-16 1.24e-16 1.40e-03 2.36e-12

Case 4 9.74e-06 4.96e-13 1.05e-03 3.92e-08 7.22e-04
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