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Novel methods for coupled 
prediction of extreme wind speeds 
and wave heights
Oleg Gaidai 1, Yihan Xing 2* & Xiaosen Xu 3

Two novel methods are being outlined that, when combined, can be used for spatiotemporal analysis 
of wind speeds and wave heights, thus contributing to global climate studies. First, the authors 
provide a unique reliability approach that is especially suited for multi-dimensional structural and 
environmental dynamic system responses that have been numerically simulated or observed over 
a substantial time range, yielding representative ergodic time series. Next, this work introduces 
a novel deconvolution extrapolation technique applicable to a wide range of environmental and 
engineering applications. Classical reliability approaches cannot cope with dynamic systems with 
high dimensionality and responses with complicated cross-correlation. The combined study of wind 
speed and wave height is notoriously difficult, since they comprise a very complex, multi-dimensional, 
non-linear environmental system. Additionally, global warming is a significant element influencing 
ocean waves throughout the years. Furthermore, the environmental system reliability method is 
crucial for structures working in any particular region of interest and facing actual and often harsh 
weather conditions. This research demonstrates the effectiveness of our approach by applying it to the 
concurrent prediction of wind speeds and wave heights from NOAA buoys in the North Pacific. This 
study aims to evaluate the state-of-the-art approach that extracts essential information about the 
extreme responses from observed time histories.

It is challenging to accurately assess multi-dimensional dynamic system reliability using conventional theoreti-
cal reliability  methods1–4. Estimating the reliability of a complicated dynamic system is easy if sufficient system 
response data are available or if direct Monte Carlo simulations are  performed5. However, experimental or 
computational costs may be expensive for many engineering dynamic systems with complicated dynamics. 
Motivated by this, the authors developed a new reliability method for dynamic systems that require significantly 
less measurement and computing costs.

It has been a challenge to how exactly one predicts the shape and characteristics of waves through wind speed 
variables, even though this has been started and partially solved in the works  of6–11. Our work, however, deals with 
the general approach of extreme value theory in which no physical dynamics of the water waves are expected to 
play a significant role in driving the appearance of rare events, i.e. there is an expected universality of extreme 
events in a variety of different physical and natural  systems12–17. Although beyond the scope of our work, there 
Some successful attempts have been to study extreme events in water waves (often called rogue or freak waves) 
with distributions uniquely determined by the dynamics of the physical system. For  instance18,19, have shown that 
water waves departing from linear theory will modify their distribution from a Rayleigh  type20–22 to a distribu-
tion dependent on the square root of the wave steepness.  Similarly23,24, have shown that a Rayleigh distribution 
modified by a polynomial function of the ratio between height and water depth controls extreme events in Hur-
ricane data. In addition, spectrum bandwidth seems to have different types of effects in extreme wave distribution 
depending on whether they are in  deep25–28 or shallow  water13. Furthermore, ocean processes such as shoaling 
or wave-current systems that drive wave trains out of equilibrium have been  experimentally22,25,29–37 associated 
with increasing the occurrence of extreme waves by order of magnitude. However, it has been recently found 
that no established theoretical distribution to date, neither universal as Gumbel nor based on physical principles, 
can describe extreme wave statistics in a wide range of  conditions6–37.

Note that methods introduced by authors here do not rely on Gumbel (or any other type) distribution type 
assumption, instead, Gumbel-based extrapolation was used just for comparison.
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Method
Consider multi-degree of freedom (MDOF) jointly stationary dynamic environmental system with representative 
response vector process R(t) = (X(t),Y(t),Z(t), . . .) , that has been either measured or simulated over a suffi-
ciently long time span (0,T) . Unidimensional global maxima over entire time span (0,T) is denoted as 
Xmax
T = max

0≤t≤T
X(t) , Ymax

T = max
0≤t≤T

Y(t) , Zmax
T = max

0≤t≤T
Z(t), . . ..

By sufficiently long time span T authors mean large enough value of T with respect to the environmental 
dynamic system auto-correlation time. Let X1, . . . ,XNX be consequent temporal local maxima of the environ-
mental process X(t) at discrete monotonously temporally increasing times tX1 < . . . < tXNX

 within (0,T) . Simi-
lar definition follows for other MDOF environmental response components Y(t),Z(t), . . . with Y1, . . . ,YNY ; 
Z1, . . . ,ZNZ and so on. For simplicity, all R(t) components, maxima are assumed to be non-negative. The target 
now is to accurately estimate environmental system failure probability, namely its probability of exceedance

where P =
∫∫∫ (ηX ,ηY ,ηZ ,...)

(0,0,0,,...) pXmax
T ,Ymax

T ,Zmax
T ,...

(

Xmax
T ,Ymax

T ,Zmax
T , . . .

)

dXmax
T dYmax

NY
dZmax

Nz
. . . being probability 

of non-exceedance for critical values of environmental response components ηX , ηY  , ηZ,…; ∪ denotes logi-
cal unity operation «or»; pXmax

T ,Ymax
T ,Zmax

T ,... being joint probability density of the global maxima over the entire 
time span (0,T).In practice, however, it is not always feasible to estimate directly pXmax

T ,Ymax
T ,Zmax

T ,... joint prob-
ability distribution due to its high dimensionality and limitations of the available data set. The moment when 
either X(t) exceeds ηX , or Y(t) exceeds ηY , or Z(t) exceeds ηZ , and so on, the environmental dynamic system 
being regarded as failed. Fixed failure levels ηX , ηY , ηZ ,… being individual for each unidimensional response 
component of R(t) . Xmax

NX
= max {Xj ; j = 1, . . . ,NX} = Xmax

T  , Ymax
NY

= max {Yj ; j = 1, . . . ,NY } = Ymax
T

,Zmax
Nz

= max {Zj ; j = 1, . . . ,NZ} = Zmax
T  , and so on.

Let sort local maxima time instants 
[

tX1 < . . . < tXNX
; tY1 < . . . < tYNY

; tZ1 < . . . < tZNZ

]

 recorded in tem-
porally non-decreasing order into one single synthetic merged time vector t1 ≤ . . . ≤ tN . Note that then 
tN = max {tXNX

, tYNY
, tZNZ

, . . .} , N = NX + NY + NZ + . . . . In this case tj represents local maxima of one of MDOF 
environmental dynamic structural response components either X(t) or Y(t) , or Z(t) and so on. The latter means 
that having R(t) time record, one only needs simultaneously and continuously screen for the system unidimen-
sional response component local maxima and record its exceedance of MDOF limit vector (ηX , ηY , ηZ , ...) in any 
of dynamic system components X,Y ,Z, . . . Local unidimensional response component maxima then merged 
into one synthetic temporal non-decreasing vector �R = (R1,R2, . . . ,RN ) in accordance with merged time vec-
tor t1 ≤ . . . ≤ tN . That is to say each local maxima Rj is in fact actual encountered local maxima corresponding 
to either X(t) or Y(t) , or Z(t) and so on. Finally the unified limit vector (η1, . . . , ηN ) is introduced with each 
component ηj is either ηX , ηY or ηZ and so on, depending which of X(t) or Y(t) , or Z(t) etc. corresponding to the 
current local maxima with running index j.

Scaling parameter 0 < � ≤ 1 being now introduced to artificially simultaneously decrease limit values for all 
system response components, i.e. new MDOF limit vector 

(

η�X , η
�
Y , η

�
z , ...

)

 with η�X ≡ � · ηX , ≡ � · ηY , η�z ≡ � · ηZ , 
… being introduced. The unified limit vector 

(

η�1 , . . . , η
�
N

)

 being introduced with each component η�j  being equal 
to either η�X , η�Y or η�z and so on The latter automatically defines the target probability P(�) as a function of � , note 
that P ≡ P(1) from Eq. (1). Non-exceedance probability P(�) can be now estimated as follows

In practice the dependence between neighbouring Rj is not always negligible, thus following one-step (will 
be called conditioning level k = 1 ) memory approximation being introduced

for 2 ≤ j ≤ N  (will be called conditioning level k = 2 ). Approximation introduced by Eq. (3) may be further 
expressed as

where 3 ≤ j ≤ N (called here conditioning level k = 3 ), and so  on38. Equation (4) presents series of subsequent 
refinements of statistical independence assumption. The latter type of approximations models statistical depend-
ence effect between neighbouring maxima with an increased accuracy. Since original MDOF dynamic process R(t) 
was assumed ergodic and therefore stationary, probability pk(�) := Prob{Rj > η�j |Rj−1 ≤ η�j−1,Rj−k+1 ≤ η�j−k+1} 
for j ≥ k is independent of j but only dependent on conditioning level k . Thus non-exceedance probability may 
be now approximated

(1)1− P = Prob(Xmax
T > ηX ∪ Ymax

T > ηY ∪ Zmax
T > ηZ ∪ . . .)

(2)

P(�) = Prob
{

RN ≤ η�N , . . . ,R1 ≤ η�1

}

= Prob{RN ≤ η�N |RN−1 ≤ η�N−1, . . . ,R1 ≤ η�1} · Prob
{

RN−1 ≤ η�N−1, . . . ,R1 ≤ η�1

}

=

N
∏

j=2

Prob{Rj ≤ η�j |Rj−1 ≤ η�1j−, . . . ,R1 ≤ η�1} · Prob
(

R1 ≤ η�1

)

(3)Prob{Rj ≤ η�j |Rj−1 ≤ η�j−1, . . . ,R1 ≤ η�1} ≈ Prob{Rj ≤ η�j |Rj−1 ≤ η�j−1}

(4)Prob{Rj ≤ η�j |Rj−1 ≤ η�j−1, . . . ,R1 ≤ η�1} ≈ Prob{Rj ≤ η�j |Rj−1 ≤ η�j−1,Rj−2 ≤ η�j−2}
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Note that Eq. (5) follows from Eq. (1) by neglecting Prob
(

R1 ≤ η�1

)

≈ 1 , as design failure probability must of 
a small order of magnitude, and N>>k. Equation (5) is similar to mean up-crossing rate equation for probability 
of  exceedance39–51. There is convergence with respect to the conditioning parameter k

Note that Eq. (5) for k = 1 turns into classic non-exceedance probability relationship with corresponding 
mean up-crossing rate function

where ν+(�) denotes the mean up-crossing rate of the response level � for the above assembled non-dimensional 
vector R(t) assembled from scaled MDOF system response 

(

X
ηX

, Y
ηY

, Z
ηZ
, . . .

)

 . The mean up-crossing rate is given 
by the Rice’s formula given in Eq. (7) with pRṘ being joint probability density for 

(

R, Ṙ
)

 with Ṙ being the time 
derivative R′(t) 1. Equation (7) relies on the Poisson assumption, that is up-crossing events of high � levels (in 
this paper it is � ≥ 1 ) may be assumed to be independent.

The proposed methodology may be used for nonstationary cases as well. Given environmental scattered 
diagram of m = 1, ..,M sea states, each environmental short-term sea state having probability qm , so that 
M
∑

m=1
qm = 1 . Next, let one introduce the long-term equation

with pk(�,m) being the same function as in Eq. (6), but corresponding to a specific short-term sea state with 
number m . The above introduced pk(�) as functions being often regular in the tail, specifically for values of � 
approaching and exceeding 1 . More specifically, for � ≥ �0 , the probability distribution tail behaves similar to 
exp

{

−(a�+ b)c + d
}

 with a, b, c, d being suitably fitted constants for suitable tail cut-on �0 value. Therefore, 
one can write

By plotting ln
{

ln
(

pk(�)
)

− dk
}

 versus ln(ak�+ bk) , often nearly perfectly linear tail behaviour being 
observed. Optimal values of the parameters ak , bk , ck , pk , qk may be determined using a sequential quadratic 
programming (SQP) method incorporated in the NAG Numerical  Library52.

Let us consider stationary stochastic process X(t) , being either simulated or measured over a certain time 
span 0 ≤ t ≤ T , and which is being represented as a sum of two independent identically distributed stationary 
environmental dynamic processes X1(t) and X2(t) , namely

Denoting probability density function (PDF) of X(t) as pX and PDF of X1(t) and X2(t) as pX1 , following 
convolution equation holds

In order to exemplify the latter idea regarding how to estimate unknown probability distribution robustly pX1 , 
subsequently improving given empirical distribution pX . In the next, authors briefly discuss common knowledge 
regarding the discrete convolution of two vectors. The convolution of two vectors, u and v , representing an area 
of overlap of vector components, as v slides across u . Algebraically, convolution being the same operation as 
multiplying polynomials whose coefficients are the elements of, u and v . Let m = length(u) and n = length(v) . 
Then w being the vector of length m+ n− 1 , with k-th element being

The sum is over all the values of j that lead to legal subscripts for u
(

j
)

 and v
(

k − j + 1
)

 , specifically 
j = max(1, k + 1− n) : 1 : min(k,m) . When m = n , as will be the main case in this study

(5)Pk(�) ≈ exp (−N · pk(�)) , k ≥ 1.

(6)P = lim
k→∞

Pk(1); p(�) = lim
k→∞

pk(�)

(7)P(�) ≈ exp (−ν+(�)T); ν+(�) =
∞
∫
0
ζpRṘ(�, ζ )dζ

(8)pk(�) ≡

M
∑

m=1

pk(�,m)qm

(9)pk(�) ≈ exp
{

−(ak�+ bk)
ck + dk

}

, � ≥ �0

(10)X(t) = X1(t)+ X2(t)

(11)pX = conv
(

pX1 , pX1

)

(12)w(k) =

m
∑

j=1

u
(

j
)

v
(

k − j + 1
)
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From Eq. (12) one can also observe that having found u = v = (u(1), .., u(n)) , one can gradually obtain w
-components w(n+ 1), . . . ,w(2n− 1) , as index increases from n+ 1 to 2n− 1 . The latter clearly would extend 
vector w into support domain that is twice longer than the original distribution support domain, i.e. doubling 
the pX distribution support length (2n− 1) ·�x ≈ 2n ·�x = 2XL , as compared to the original probability dis-
tribution support length n ·�x = XL with �x being constant length of each descrete distribution bin. Note that 
w = (w(1), . . . ,w(n)) being discrete representation of the target empirical distribution pX , and n representing 
length of probability distribution support [0,XL] , for simplicity in this paper one is limited to the case of one-sided 
positive valued random variables, namely X ≥ 0 . As will be further discussed, a simple linear extrapolation of 
self deconvoluted vector (u(1), . . . , u(n)) towards (u(n+ 1), . . . , u(2n− 1)) is suggested, with pX1 having its tail 
linearly extrapolated within the range (XL, 2XL). Using Eq. (11) original vector w will be extended and extrapo-
lated into support domain being twice longer than original distribution support domain, namely doubling pX 
distribution support length (2n− 1) ·�x ≈ 2n ·�x = 2XL , as compared to original probability distribution 
support length n ·�x = XL . To smoothen original distribution pX(x) tail, authors have performed distribu-
tion pX tail interpolation for high tail values x , using Naess-Gaidai (NG) extrapolation  method53. As has been 
discussed above, the proposed deconvolution extrapolation technique has an advantage of not presuming any 
specific extrapolation functional class needed to extrapolate distribution tail.

To validate the above-suggested extrapolation methodology, the «shorter» version of the original data set was 
used for extrapolation to compare with predictions based on a full «longer» data set.

Results
This section aims to demonstrate the efficiency of the previously described methodology by applying the new 
method to the National Oceanic and Atmospheric Administration buoy (NOAA) ten-minute average wind speed 
values and significant wave heights (calculated as the average of the highest one-third of all wave heights during 
the 20-min sampling period) in the North Pacific region near the Hawaiian Islands. For this study, the NOAA 
wind and wave measurement location Station 51003 (LLNR 28005.7)—WESTERN HAWAII—205 NM SW of 
Honolulu was selected, and its measured wind speed and wave height values were set as two environmental 
system components (dimensions) X, Y, thereby serving as an example of a two-dimensional (2D) environmental 
system. Unidimensional extreme response values were chosen as the whole analysed data set maximum wind 
speeds and wave heights respectively during observation period between years 2009–2014 for the chosen buoy 
in situ measurement location.

Figure 1 presents National Oceanic and Atmospheric  Administration54, buoy locations in North Pacific, blue 
circle indicates area of interest. Figure 2 shows data buoy containing sensors used to monitor and collect atmos-
pheric and oceanographic conditions, collected data is then converted into an electronic signal and transmitted 
to shore or logged in the onboard data unit. This 3-m foam buoy has following characteristics:

Site elevation: sea level.
Air temp height: 3.4 m above site elevation.
Anemometer height: 3.8 m above site elevation.
Barometer elevation: 2.4 m above mean sea level.
Sea temp depth: 2 m below water line.
Water depth: 1987 m.

(13)

w(1) = u(1) · v(1)

w(2) = u(1) · v(2)+ u(2) · v(1)

w(3) = u(1) · v(3)+ u(2) · v(2)+ u(3) · v(1)

· · ·

w(n) = u(1) · v(n)+ u(2) · v(n− 1)+ · · · + u(n) · v(1)

· · ·

w(2n− 1) = u(n) · v(n)

Figure 1.  Wind and wave measurements location according to National Oceanic and Atmospheric 
Administration, blue circle indicates measurement station of interest. Figure taken from National Oceanic and 
Atmospheric Administration, https:// www. ndbc. noaa. gov.

https://www.ndbc.noaa.gov
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Watch circle radius: 5004 yards.
In order to unify all two measured time series X,Y  the following scaling was performed:

making all two responses non-dimensional and having the same failure limit equal to 1. Next, all local maxima 
from two measured time series were merged into one single time series by keeping them in time non-decreasing 
order: �R = (max{X1,Y1}, . . . , max{XN ,YN }) with the whole vector �R being sorted in temporally non-decreasing 
order of occurrence of these local maxima.

Figure 3 presents example of non-dimensional assembled vector �R , consisting of assembled local maxima 
of raw daily largest highest daily windcast speed data. The failure probability distribution tail extrapolation was 
performed towards 100 years return period. Synthetic vector �R does not have physical meaning on its own, 
as it assembled of completely different response components. Index j is just a running index of local maxima 
encountered in non-decreasing time sequence. Index j being running index of local maxima encountered in 
non-decreasing time sequence. The «shorter» data record was generated by taking each tenth data point from 
the «longer» data record.

(14)X →
X

ηX
,Y →

Y

ηY

Figure 2.  National Oceanic and Atmospheric Administration  buoy54.

Figure 3.  Scaled non-dimensional assembled 2D vector �R.
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Figure 4 on the left presents the «shorter» data record fX1 tail, obtained by deconvolution as in Eq. (13), and 
subsequently linearly extrapolated in the terminal tail section to cover the X1 range matching the «longer» data 
record. Figure 4 on the right presents final unscaled results of the proposed in this paper technique, namely the 
«shorter» decimal log scale fX tail, extrapolated by deconvolution, along with «longer» data distribution tail and 
NG extrapolation.

It is seen that NG prediction does not agree with deconvolution approach, leading to non-conservative predic-
tion, indicated by star in Fig. 4 on the right. It is seen from Fig. 4 on the right that the proposed method performs 
quite well, being based on the «shorter» data set, and delivering probability distribution close to the one based on 
the «longer» data set. Figure 4 on the right presents extrapolation according to Eq. (9) as well novel deconvolution 
method towards failure state with 100 year return period, which is 1, and somewhat beyond, � = 0.05 cut-on 
value was used. Dotted lines indicate extrapolated 95% confidence interval according to Eq. (10). According to 
Eq. (5) p(�) is directly related to the target failure probability 1− P from Eq. (1). Therefore, in agreement with 
Eq. (5) system failure probability 1− P ≈ 1− Pk(1) may be now estimated. Note that in Eq. (5) N corresponds 
to a total number of local maxima in the unified response vector �R.Conditioning parameter k = 6 was found 
to be sufficient due to occurrence of convergence with respect to k , see Eq. (6). The generalization potential of 
the proposed methods is extension to non-stationary systems with an underlying trend. If the underlying trend 
would be known, which is rarely the case, it may be subtracted to bring measurements to stationary state. Oth-
erwise proper trend analysis would be needed in combination with advocated here methods. The main model 
assumptions subsequent limitation is the system quasi-stationarity as mentioned before.

Conclusions
The key advantage of introduced methodology is its ability to assess reliability of non-linear dynamic systems 
with high dimensionality.

This paper studied wind speeds and wave heights measured by National Oceanic and Atmospheric Adminis-
tration buoys in North Pacific region, during years 2009–2014. Novel environmental reliability method has been 
applied to predict occurrence of extreme waves within time horizon of 100 years. Theoretical reasoning behind 
the proposed method has been given in detail.

Methods introduced in this paper, have been previously validated by application to range of dynamic envi-
ronmental systems, but for only one-dimensional system responses. This study has aimed at further development 
of robust and simple general purpose multi-dimensional reliability method. Both measured and numerically 
simulated time series responses can be analyzed. In case of measured system response, as illustrated in this paper, 
an accurate prediction of environmental system failure probability is possible.

Finally, the suggested methodology can be used in wide range of modern engineering areas of applications. 
The presented environmental example does not limit applicability area of new method by any means.

Data availability
The datasets analyzed during the current study are available on request. Please contact Prof. Yihan Xing, email: 
yihan.xing@uis.no. See  also54.
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