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Abstract: Additive manufacturing has gained significant popularity from a manufacturing perspective
due to its potential for improving production efficiency. However, ensuring consistent product quality
within predetermined equipment, cost, and time constraints remains a persistent challenge. Surface
roughness, a crucial quality parameter, presents difficulties in meeting the required standards, posing
significant challenges in industries such as automotive, aerospace, medical devices, energy, optics, and
electronics manufacturing, where surface quality directly impacts performance and functionality. As a
result, researchers have given great attention to improving the quality of manufactured parts, particularly
by predicting surface roughness using different parameters related to the manufactured parts. Artificial
intelligence (AI) is one of the methods used by researchers to predict the surface quality of additively
fabricated parts. Numerous research studies have developed models utilizing AI methods, including
recent deep learning and machine learning approaches, which are effective in cost reduction and saving
time, and are emerging as a promising technique. This paper presents the recent advancements in
machine learning and AI deep learning techniques employed by researchers. Additionally, the paper
discusses the limitations, challenges, and future directions for applying AI in surface roughness prediction
for additively manufactured components. Through this review paper, it becomes evident that integrating
AI methodologies holds great potential to improve the productivity and competitiveness of the additive
manufacturing process. This integration minimizes the need for re-processing machined components
and ensures compliance with technical specifications. By leveraging AI, the industry can enhance
efficiency and overcome the challenges associated with achieving consistent product quality in additive
manufacturing.

Keywords: surface roughness; roughness prediction; additive manufacturing; machine learning

1. Introduction

Over recent decades, the manufacturing sector has gone through significant changes,
yet it continues to play a critical role in the growth and development of both developed and
developing countries [1]. It is considered the backbone of economies due to its contribution to
economic growth, job creation, and technological advancement [2]. Additive manufacturing
(AM) has gained acceptance among academics and the manufacturing sector as a powerful
manufacturing tool. Recent research shows that it is more efficient than conventional pro-
duction methods [3]. The manufacturing industry uses the term Additive Manufacturing to
describe the process of fabricating physical objects from design data in a digital form by build-
ing them layer-by-layer. AM is a disruptive technology as it is not tied to individual production
steps and does not require specific tools for each component, making it a universal production
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technology [4,5]. Numerous AM processes are currently available for commercial use. Various
researchers have approached the classification of AM methods differently [6–8]. However, a
widely accepted classification stems from the ASTM-F42 committee guidelines, which catego-
rize AM into seven distinct groups [9]. These categories consist of vat photopolymerization
(VP), material jetting (MJ), binder jetting (BJ), material extrusion (ME), sheet lamination (SL),
powder bed fusion (PBF), and directed energy deposition (DED). The concise overview of all
seven categories was presented in the paper [10].

The main advantage of additive manufacturing is that it can fabricate complex shapes
and reduces material waste and production time (for some) [11–14]. Despite its advantages,
additively manufactured products generally have poorer quality compared to those made
with conventional manufacturing systems [15,16], primarily due to limitations in surface
integrity [17]. Research indicates that in all additive manufacturing techniques, the im-
provement of surface roughness is a key objective. For example, vat photopolymerization
(VP) and material jetting (MJ) yield parts with moderate surface roughness [10], whereas
binder jetting (BJ), material extrusion (ME), sheet lamination (SL), powder bed fusion
(PBF), and DED tend to result in parts with relatively poorer surface finishes [10]. Surface
roughness is one of the factors encompassed by the concept of surface integrity. In Table 1,
the surface roughness of most additively manufactured techniques is presented.

Table 1. Surface roughness of most additively manufactured techniques.

Name of AM Process Minimum Layer Thickness Surface Roughness, Ra
Values (mm) Ref. Values (µm) Ref.

Stereolithography (SLA) 0.1 [18] 2–10 [19]
Selective Laser Sintering (SLS) 0.02 [20] 5–25 [21]
Fused Deposition Modeling (FDM) 0.05 [22] 0.5–20 [23]
Laminated Object Manufacturing (LOM) 0.10 [24] 0.8–2.5 [25]
Electron Beam Melting (EBM) 0.05 [26] 1–20 [27,28]
Direct Metal Laser Sintering (DMLS) 0.02 [29] 3–12 [30]
Binder Jetting 0.035 [31] 3–13 [32]
Direct Energy Deposition (DED) 0.25 [33] 5.08–227 [34,35]
Laser powder bed fusion (L-PBF) 0.02 [36] 3.5–13.45 [37]
Selective Laser Melting (SLM) 0.02 [38] 30–60 [39]

The surface quality of additively manufactured components is influenced by a multitude
of factors that interact in intricate ways. These factors include the choice of AM technique,
powder characteristics, layer thickness, scanning strategy, and energy parameters specific to each
technique. For instance, in Vat Photopolymerization (VP), parameters such as layer thickness,
exposure time, and resin properties contribute to surface quality [40,41]. Similarly, in Material
Jetting (MJ), drop size, print speed, and layer thickness impact the surface finish [40,42,43].
In Binder Jetting (BJ), binder saturation and layer thickness play a crucial role in achieving
desired surface characteristics [44–47]. For material extrusion-based methods in fuse deposition
modelling or fused filament fabrication, parameters such as nozzle diameter, layer height, and
extrusion speed influence the surface roughness [48–52]. The terms fused deposition modeling
(FDM) and fused filament fabrication (FFF) are two terms that are often used interchangeably
to describe the same 3D printing process. However, FDM is a trademarked term by Stratasys,
while FFF is a generic term used by the open-source community [53].

Powder Bed Fusion (PBF) [54,55] and Directed Energy Deposition (DED) [56] are also
characterized by their unique process parameters that have direct implications on surface
quality. While the powder bed fusion techniques such as SLS, SLM, DMLS, and L-PBF
(Table 1) are fundamentally identical processes that use a laser to selectively melt or sinter a
bed of powder material to create a 3D object, there exist some differences in the way these
processes work, such as the type of laser used, the power of the laser, and the scanning
strategy used to melt or sinter the powder. These differences can affect the quality of the
printed part, including its surface roughness. In general, thinner layers result in smoother
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surfaces, but can also increase printing time and cost. The optimal layer thickness for a
given process depends on several factors, including the size of the powder particles, the
power of the laser, and the scanning speed used to melt or sinter the powder. Table 2
presents the process parameters of selected additive manufacturing techniques.

Table 2. Process parameters influencing surface quality of AM manufactured components of most
additively manufactured techniques.

AM Technique Key Process Parameters Influencing Surface Quality References

FDM/FFF

Layer thickness, Build Orientation, Raster Angle/Raster Orientation,
Air Gap, Extrusion temperature, Print Speed, Infill pattern, Infill
density/Interior infill, Nozzle diameter, Raster width, Number of
contours, Contour width, Contour to contour Air gap

[51,57]

Powered-based fusion
Layer Thickness, Temperature, Laser Power, Beam Radius, Reflection
Coefficient at Bed Powder Surface, Material Local Density, Velocity,
Conductivity, Dynamic Viscosity

[55,58]

Direct energy deposition Laser power, Scan speed, Powder feed rate, Travel speed, Layer height,
Hatch spacing [33,56,59]

Vat photopolymerization Grayscale, Exposure time, Wavelength, Power source, Layer thickness [60,61]

Binder jetting Spreader speed, Layer height, Print head speed, Saturation level [47,62]

PolyJet by Stratasys or MultiJet Printing
(MJP) by 3D Systems

Print heads, Hardness range, Layer thickness, Material, Part size, Print
resolution [63]

Sheet lamination Laser power, different exposure times [64]

Furthermore, post-build treatments significantly contribute to the final surface quality
of additively manufactured components [65,66]. For example, it can significantly improve
the mechanical properties, i.e., surface roughness of the parts, making them more suitable
for a wide range of applications [67]. Different post-processing techniques have been
used by many researchers, such as shot peening (SP), laser shock peening (LSP), hot
isostatic pressing (HIP), friction stir processing (FSP), and heat treatments (HT), to realize
the better performance of the AM parts [66]. Various treatments, such as heat treatment,
abrasive finishing, and chemical processes, can be applied to refine the surface texture
and eliminate defects [68]. For instance, heat treatment can lead to grain growth and
stress relief, affecting the overall surface roughness [63]. Abrasive finishing techniques,
including sanding and polishing, can mitigate layer lines and irregularities, resulting in
improved surface smoothness [68]. Chemical processes such as etching or electrochemical
polishing can selectively remove material, enhancing surface finish [63]. Understanding the
dependencies of surface roughness on these post-build treatments is crucial for achieving
consistent and desirable surface qualities in additively manufactured components [69].

Surface roughness has been identified as one of the most significant factors affecting
product quality, as stated in previous research [11]. For instance, Chan et al. [70] conducted
a study to investigate the impact of surface roughness on product life and concluded
that surface roughness leads to a reduction in product life expectancy. Moreover, surface
roughness plays a role in the tribological behavior of surfaces [71], with rough surfaces expe-
riencing faster wear compared to smooth surfaces. Therefore, it becomes crucial to predict
and control the surface roughness of additively manufactured parts [64,72]. Additionally,
surface roughness serves as an indicator for directly monitoring the mechanical character-
istics of a workpiece, such as fatigue and surface friction, dimensional accuracy [73], and
fracture resistance [74]. Understanding and managing surface roughness in manufacturing
processes is essential for ensuring optimal product performance and longevity.

The impact of surface roughness on system performance is significant across multiple
industries, such as aerospace [75,76], automotive [77,78], marine [79], semiconductor [80],
chemical, wind energy [81], solar energy [82], food processing [83,84], and medicine [85,86].



Materials 2023, 16, 6266 4 of 33

Therefore, it is crucial to control the surface roughness of manufactured components. Thus,
researchers give attention to predicting the surface roughness of additively manufactured
components before printing/manufacturing the components. Predicting surface roughness
in the manufacturing industry can lead to better quality control, cost savings, improved
performance, and process improvement.

Different methods were used to predict the surface roughness of additively manufactured
components, i.e., Taguchi-based regression models [87,88], statistical regression models [89],
computational modeling (e.g., the FEM and Discrete Element Method (DEM)), [90] and machine
learning methods [91]. There are several limitations of conventional (statistical) methods for
predicting the surface roughness of additively manufactured components. Conventional
methods for predicting the surface roughness of manufactured components often suffer from
various limitations, such as a lack of flexibility, time-consuming nature, high cost, limited
accuracy, limited applicability, inability to account for process parameter interactions, and
limited understanding of underlying mechanisms [17,92].

However, the emergence of Artificial Intelligence (AI) approaches, including both ma-
chine learning and deep learning, has opened avenues to surmount these limitations. These
AI approaches offer the potential to yield more precise and adaptable predictions of surface
roughness. By harnessing these advancements in AI, particularly in machine learning,
we can transcend the confines of traditional methods and attain the capability to design
and fabricate high-quality components with unparalleled precision and efficiency. The
flexibility, accuracy, and capacity to discern intricate patterns inherent in machine learning
techniques empower us to overcome the challenges posed by conventional methods.

Machine learning methods have demonstrated remarkable capabilities in predicting
complex patterns and relationships within diverse datasets [93,94]. Their strength lies in their
ability to capture non-linear interactions among various process parameters—a challenge
that conventional methods often struggle to address. By leveraging extensive datasets and
sophisticated algorithms, machine learning models can unveil subtle correlations that might
otherwise remain hidden. This not only enhances prediction accuracy, but also fosters a
comprehensive understanding of the underlying factors shaping surface roughness. Moreover,
the adaptability of machine learning techniques contributes to their predictive prowess [95].
Unlike rigid regression models, machine learning algorithms can continuously learn from
new data, integrating fresh insights to refine their predictions. This adaptive nature proves
especially advantageous in the realm of additive manufacturing, where process conditions
and material properties can vary substantially. Consequently, machine learning empowers the
development of predictive models that evolve alongside the manufacturing process, ensuring
consistently precise predictions of surface roughness.

Deep learning, a subset of machine learning, adds a layer of sophistication to predic-
tive modeling [96,97]. Neural networks within deep learning architectures automatically
extract hierarchical features from raw data, enabling them to capture intricate patterns with
remarkable precision. This capability proves invaluable when dealing with the complex
structures and intricate relationships intrinsic to additive manufacturing processes. Deep
learning models excel in analyzing intricate spatial and temporal interactions, offering
insights into how diverse process parameters impact surface roughness across various
production stages. The depth and complexity of deep learning models enable them to
unearth nuanced relationships that may evade traditional methodologies. The hierarchical
representation of features empowers deep learning models to untangle the underlying
mechanisms driving surface roughness, contributing to a deeper comprehension of the
manufacturing process itself. Consequently, deep learning not only delivers enhanced
predictive capabilities, but also advances fundamental knowledge within additive manufac-
turing. The confluence of machine learning and deep learning with additive manufacturing
holds tremendous potential to reshape quality assurance and process optimization.

Recently researchers gave great attention to AI for surface roughness prediction. Thus, this
paper presents machine learning models or techniques used to predict the surface roughness
of 3D printed parts. The remainder of the paper is organized as follows: Section 2 provides
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a method used to collect and select published data for the review. Section 3 introduces an
overview of AI-based surface roughness predictions in AM. Section 4 presents a machine
learning algorithm used for surface roughness predictions of AM parts. Section 5 presents a
discussion on the trends, challenges, and future direction of applying AI algorithms for the
surface roughness prediction of AM components. Section 6 provides conclusions and future
work.

2. Methodology

To conduct this review, a rigorous and comprehensive methodology was employed.
This section outlines the key steps undertaken to ensure a systematic and transparent
approach to the review process. The systematic review followed the Preferred Reporting
Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines [98] to ensure
transparent and comprehensive reporting of the review process. The PRISMA flowchart
was used to illustrate the study selection process and the number of studies included and
excluded at each stage.

2.1. Search Strategy

The search strategy was developed to identify relevant studies on the application of
artificial intelligence for surface roughness prediction of additively manufactured compo-
nents. The following databases were searched: PubMed, IEEE Xplore, ScienceDirect, MDPI,
and Google Scholar. The search terms used included variations and combinations of the
following keywords: “artificial intelligence”, “machine learning”, “deep learning”, “surface
roughness”, “prediction”, “additive manufacturing”, and “3D printing”. To consider all
published papers related to the surface roughness prediction of additively manufactured
components, the database search strategy focused on articles, proceedings, and books
published in the journals listed above for the last 10 years.

2.2. Inclusion and Exclusion Criteria

The inclusion criteria used to select studies were defined as follows:

• Published materials in peer-reviewed journals or conference proceedings.
• Studies targeting the application of artificial intelligence techniques for surface rough-

ness prediction in additively manufactured components.
• Studies that provided detailed methodology and results related to surface roughness

prediction using artificial intelligence.
• Studies published in the English language.

The exclusion criteria for selecting studies were defined as follows:

• Studies that did not specifically address surface roughness prediction in additively
manufactured components.

• Studies that focused solely on conventional manufacturing processes.
• Studies that were not available in full-text or were duplicates.
• Studies that were published in another language than English.

2.3. Inclusion and Exclusion Criteria

Two phases were used in the selection process: title/abstract screening and full-text
assessment. The titles and abstracts of the identified studies are based on the inclusion and
exclusion criteria. Any mismatch was resolved through discussion and consensus. In the
full-text assessment phase, the reviewers thoroughly examined the selected articles to find
out their eligibility for inclusion in the review.

2.4. Data Extraction and Analysis

Data extraction was done by the reviewer using a predefined data extraction form.
The following information was extracted from each selected study:

• Objective of the study.
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• Methodology employed (artificial intelligence techniques, algorithms, datasets used).
• Key findings and conclusions related to surface roughness prediction.
• Limitations and future directions identified by the authors.
• The extracted data were then synthesized and analyzed to identify common themes,

trends, and patterns across the reviewed studies.

3. AI-Based Surface Roughness Prediction Overview

In this section, an overview of artificial intelligence and its application in predicting
surface roughness is presented.

3.1. Artificial Intelligence Overview

Artificial intelligence is defined as a subset of IT applications that can capture infor-
mation from its environment, comprehend, learn, interpret, and derive actions based on
their implemented objectives [99]. In its strictest definition, AI stands for the imitation
by computers of the intelligence inherent in humans [100]. AI can be classified into three
categories based on its capabilities: General AI, Narrow AI, and Super AI. General AI
represents a level of intelligence that can undertake any intellectual task with efficiency
comparable to that of a human. This form of AI possesses a broader range of capabilities to
adapt to various tasks [101]. Narrow AI, on the other hand, refers to AI systems that are
designed to perform specific tasks with intelligence. It is the most common and currently
available form of AI in the field. Super AI, also known as Artificial General Intelligence
(AGI), signifies a level of intelligence in AI systems that surpasses human intelligence.
It encompasses the ability to perform tasks more proficiently than humans, along with
cognitive properties. Super AI is considered the outcome or extension of general AI [102].

Machine Learning, a prominent subset of AI, falls under the narrow AI category. It is char-
acterized by its task-specific nature and focuses on a limited range of functionalities. Machine
Learning algorithms are designed to learn from input data and enhance their performance
in specific domains such as image recognition or natural language processing [103]. Machine
Learning (ML) is a subfield of AI that emphasizes the development of algorithms and models
enabling machines to learn from data and make predictions and decisions without explicit pro-
gramming. In other words, ML involves training algorithms on extensive datasets to identify
patterns and relationships, which are then utilized for making predictions or decisions [104].
ML’s primary objective is to analyze and learn from given datasets to perform tasks. It is
classified into three categories: (1) supervised, (2) unsupervised, and (3) reinforcement learning.
Figure 1 provides an overview of common ML approaches. In supervised learning, algorithms
learn from labeled training data to predict outcomes, while unsupervised learning discovers
relationships among features of interest using unlabeled data. Reinforcement learning enables
the model to interact with the environment, learn, and take optimal actions that yield the
highest rewards. ML finds application in regression, classification, and other tasks involving
high-dimensional data, where training is based on learning from previous computations, and
datasets can take various forms including audio signals [105], text [106], or images [107].

Machine learning plays a significant role in additive manufacturing, where it finds
numerous applications. The integration of AI in additive manufacturing has the potential
to revolutionize the field [108]. In a review by Meng et al. [109], various applications of
machine learning in additive manufacturing were explored, such as process parameter
optimization, part property prediction, geometric deviation closed-loop control, defect de-
tection, quality assessment, etc. The review identified several primary areas of application
machine learning for additive manufacturing (as illustrated in Figure 1).
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3.2. Surface Roughness Prediction
3.2.1. Definition of Surface Roughness and Its Measurements Techniques

Additively manufactured surfaces, as depicted in Figure 2, consist of profile, form,
waviness, and roughness components, each with distinct origins and effects on product
appearance and functionality. Waviness exposes machine vibrations, form arises from
manufacturing system limitations, profile relates to layer-by-layer manufacturing, and
roughness stems from printing and material removal errors. Waviness, akin to signal
noise, emerges due to motion system planarity and deformations caused by weight or
residual stress [110]. Process-specific factors, such as defects, thermal distortion, adhesion
issues, support structure inadequacies, and post-processing deformation, also contribute to
waviness [111,112].
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Surface roughness, a crucial texture element, evaluates manufactured item quality
by assessing topographical feature distribution. Diverse metrics are employed across in-
dustries, addressing uncertainty in 3D-printed product surface quality through multiple
metrics for efficiency [113]. For instance, for the area surface roughness evaluation, the
average area roughness (Sa) and area root mean squared height (Sq) are insensitive to mea-
surement parameters [114]. Area height distribution skewness (Ssk) effectively characterizes
surfaces in SLM parts. Surface roughness impacts microstructures with peaks and valleys
of varying heights, which is crucial as components miniaturize [115]. As such, research
focuses on defining and controlling surface roughness during manufacturing.

Surface topography evaluations based on 3D-scanned image data of sample surfaces
are categorized as linear measurements denoted as “R” or aerial surface measurements
denoted as “S”, as per ISO 21920-2 [116] and ISO 25178-2:2021 [117] definitions. The rough-
ness of a surface is often characterized by the area ratio, representing the real surface area
relative to the ideal area of a smooth surface. Common height-based metrics, derived from
Equations (1)–(10) in Table 3, describe surface roughness using linear profiles. Alternatively,
area roughness parameters detailed in Table 4 capture roughness variations across surfaces.

Table 3. Surface roughness metrics based on linear measurement [112,116].

Parameter Description Equation

Ra (roughness average) The arithmetic average of the absolute values of the roughness
profile * Ra =

1
le

∫ le
0 |z(x)dx| Equation (1)

Rq Root Mean Squared of measured microscopic peaks and valleys Rq =
√

1
le

∫ le
0 |z2(x)dx| Equation (2)

Rt (total height of profile) The vertical distance between the maximum profile peak height
and the maximum profile valley depth along the evaluation length Rt = max(z(x)) – min(z(x)) Equation (3)

Rsk (skewness)
Positive skewness indicates that the surface is made up of peaks
and asperities, whereas negative Rsk refers to dominant valleys on
the surface

Rsk = 1
R3

q

1
le

∫ le
0 z3(x)dx Equation (4)

Rku (kurtosis) A measure of the sharpness of profile peaks Rku = 1
R4

q

1
le

∫ le
0 z4(x)dx Equation (5)

RzDIN The average distance of peaks to valleys (German Standard) RzJ IS = 1
s ∑s

I=1 Rti Equation (6)

RzJIS The average distance of peaks to valleys (Japanese Standard) RzJ IS = 1
5 ∑5

I=1 Rti Equation (7)

η Asperity-peak density * η =
m4
m2

6π
√

3
Equation (8)

ρ Asperity-peak radius ρ = 0.375
√

π
m4

Equation (9)

σs The standard deviation of asperity-peak heights * σs =
√

1− 0.8968
α

√
m0 Equation (10)

* X = {x ∈ R, 0 ≤ x ≤ le}, m0 = AVG
(
Z2), m2 = AVG

((
dZ
dx

)2
)

, m4 = AVG(
(

d2Z
dx2

)2
, ∝= mo m4

m2
2

.

Various methods can be employed to measure surface roughness, depending on differ-
ent definitions [11,118]. In additive manufacturing research, the Ra parameter is commonly
used to measure surface roughness due to its simplicity, though it lacks sensitivity to
wavelength variations. As depicted in Figure 3, the shaded area is summed and divided
by the length (L) to determine the surface roughness. Studies by Li et al. [119] show that
the peak-to-valley distance parameter (Rz) outperforms Rq and Ra in correlating with the
tactile and visual assessments of surface roughness. However, relying solely on Rz may
not fully encompass the impact of appearance factors such as texture and color on human
perception and surface quality. Extracting roughness profiles lacks reproducibility due
to instrument dependency and operational factors, as reported in studies [21,120]. While
2D stylus measurements remain popular, non-contact 3D optical profilometry and X-ray
CT scanning (ISO 25178-2:2021 [117]) are gaining traction for providing comprehensive
information without surface damage.
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Table 4. Area roughness parameters [21,112,121].

Parameter Description Equation

Sa
Deviations in the height of the surface points concerning
the Mean Reference Plane of the measurement area (A) Sa = 1

A
s

A|Z(x, y)| Equation (11)

Sz
Sum of the largest peak height value and the largest pit
depth value within the defined area Sz = max(z(x, y)) + min(z(x, y)) Equation (12)

Sq Root mean square surface height Sq =
√

1
A
s

Az2
(x, y)dxdy Equation (13)

Ssk The skewness of the surface Ssk = 1
s3

q

1
A
s

Az3
(x, y)dxdy Equation (14)

Sku The kurtosis of the surface Sku = 1
s4

q

1
A
s

Az4
(x, y)dxdy Equation (15)

RRP The reduction in surface roughness RRP = Si
a−S f

a
Si

a
Equation (16)
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Figure 3. Calculation of surface roughness using surface profile (Ra) [11] (an open-access article
(Sensors, MDPI) distributed under the terms of the Creative Commons CC-BY license).

3.2.2. AI-Based Prediction of Surface Roughness

Figure 4 illustrates the general approach to develop data-driven predictive models
that can be used for surface roughness estimation. It illustrates the presence of input,
which comprises condition monitoring data, along with predictive modeling, ultimately
resulting in the output of surface roughness. These input data, either independently or
in combination, are employed to train machine learning models for predicting surface
roughness in additively manufactured components. It is crucial to emphasize that both
the quality and quantity of the data significantly impact the accuracy and reliability of the
predictions. Therefore, the careful collection and processing of data are vital to prevent any
potential biases or errors.
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The prediction of surface roughness for additively manufactured components is a
fundamental application of machine learning, where data-driven modeling is used to
predict the surface roughness of additively manufactured components [122]. There are
several types of data that can be utilized for this prediction. Commonly used data types
include:

Process parameters: These include data related to the additive manufacturing process.
In LPBF, for example, parameters such as laser power, scan speed, layer thickness, and
hatch spacing [123] have been used for predicting surface roughness. In FDM, parameters
such as the feed rate to flow rate, layer thickness, and extruder temperature have been
utilized [17]. These parameters can directly impact the surface roughness of the final
product.

Material properties: These include data related to the material used in the additive
manufacturing process, such as powder size, particle shape, and chemical composition,
especially in methods such as L-PBF for metal AM. Material properties can also have a
significant impact on surface roughness [124].

Geometrical features: These include data related to the geometry of the final product,
such as the angle and direction of the surface, the size and shape of the features, and the
number of layers. Geometrical features can influence the surface roughness by affecting
the thermal and mechanical properties of the material. For example, in FDM, building
orientation has been employed to predict surface quality [125]. In the case of EBM, on the
other hand, printed components, the sloping angle and surface orientation have been used
to predict surface roughness [126].

Environmental conditions: These include data related to the ambient conditions during
the additive manufacturing process, such as temperature, humidity, and pressure. These
conditions can affect the material properties and, in turn, the surface roughness of the final
product [72].

Surface texture data: These types of data involve measuring the surface roughness of
an additively manufactured component using specialized instruments such as profilometers
or surface roughness testers. The surface texture data can be used as a training dataset
for machine learning models to predict surface roughness based on process parameters,
material properties, geometrical features, and environmental conditions [34,127].

Vibration data: Vibration data play a crucial role in predicting surface roughness
for additively manufactured components. By capturing and analyzing the vibrational
characteristics during the additive manufacturing process, valuable insights can be gained
regarding the quality and surface roughness of the manufactured components. Vibration
data can help identify any anomalies, such as excessive vibrations or oscillations that may
affect the surface roughness. In the FDM-based 3D printing process, for instance, vibration
data were integrated to monitor the vibration of the extruder and the table [67]. Vibration
data can also be integrated into the machine learning models to enhance the accuracy of
surface roughness predictions and further optimize the additive manufacturing process.

4. AI-Based Surface Roughness Prediction Methods for Additively Manufactured Parts

In this section, we explore the literature of traditional and deep learning and machine
learning algorithms. These incredible algorithms have been used to uncover the secrets of
predicting surface roughness in components made through additive manufacturing.

4.1. Traditional Machine Learning Approaches

It should be emphasized that conventional machine learning techniques offer a strong
basis for surface roughness prediction. However, they might face challenges in capturing
intricate non-linear connections or managing data with high dimensions. The application
of deep learning techniques has gained prominence in recent years due to their ability to
handle these challenges more effectively. The common traditional machine learning algo-
rithms that can be applied for the surface roughness prediction of additively manufactured



Materials 2023, 16, 6266 11 of 33

components are Linear Regression, Support Vector Machine, Random Forests, Gradient
Boosting Algorithms, and Artificial Neural Networks.

4.1.1. Support Vector Machines

A surface roughness prediction in the context of additive manufacturing can be
facilitated through various supervised learning algorithms. One such algorithm is SVM,
which aims to find an optimal hyperplane for data classification. SVM is widely used due
to its ability to handle both linear and nonlinear data, as well as its high accuracy [128].

Singh et al. [129] applied SVM techniques to model the Wire Electrical Discharge
Machining (WEDM) process of AA6063 for armor applications. They considered four input
variables: pulse-on-time (Pon), pulse-off-time (Poff), servo-voltage (V S), and peak-current
(IP), with surface roughness as the response parameter. By employing a 3k full factorial de-
sign for the experimental runs, the developed model demonstrated its predictive capability
and suitability for smart manufacturing. The surfaces of the machined components were
further evaluated using SEM analysis.

Joshi et al. [130] explored the applications of supervised learning algorithms, specifi-
cally Support Vector Machines and Random Forests, for the surface roughness prediction of
FDM-printed parts. Support Vector Machines provide high accuracy in data classification
and were used to determine whether the final parts met the desired surface roughness
specifications. Random Forests, an ensemble of decision trees, were employed for classifi-
cation and regression tasks. The study reviewed the implementation of these algorithms
and analyzed their applications in additive manufacturing.

Mishra et al. [131] focused on predicting the surface roughness of FDM-printed poly-
lactic acid (PLA) specimens using various supervised machine learning regression-based
algorithms. The study utilized explainable AI techniques to enhance the interpretability
of the machine learning models. Algorithms such as Support Vector Regression, Random
Forest, XGBoost, AdaBoost, CatBoost, the Decision Tree, the Extra Tree Regressor, the Ex-
plainable Boosting Model (EBM), and the Gradient Boosting Regressor were employed. The
experimental results showed that the XGBoost algorithm achieved the highest coefficient
of the determination value (0.9634), indicating its superior accuracy in predicting surface
roughness compared to other algorithms. The study also provided a comparative analysis
of algorithm performance and insights derived from explainable AI techniques.

4.1.2. Random Forests

Random forests are a type of ensemble model that combines multiple decision trees.
Each tree is trained on a different subset of data and features, and the final prediction is
obtained through a voting or averaging process. The strength of random forests lies in their
ability to handle complex relationships and interactions among input parameters, making
them well-suited for surface roughness prediction [132].

Li et al. [17] utilized a random forest (RF) algorithm as part of an ensemble learning-
based approach for surface roughness prediction in Fused Filament Fabrication (FFF)
processes. The authors incorporated multiple sensors to gather real-time condition moni-
toring data and extracted a set of features from the raw sensor-based signals in both the
time and frequency domains. To enhance computational efficiency and mitigate overfitting,
the researchers employed RF to select a subset of 40 features based on their importance.
The ensemble learning algorithm in this study combined six different machine learning
algorithms, including RF, AdaBoost, CART, SVR, RR, and the RVFL network. The ex-
perimental results demonstrated the predictive models’ capability to accurately predict
the surface roughness of 3D-printed specimens. The ensemble model outperformed the
individual base learners, as evidenced by the lower Root Mean Square Error (RMSE) and
Relative Error (RE). The authors concluded that this ensemble learning-based approach,
incorporating RF as a feature selection method, shows promise for predicting the surface
roughness of additively manufactured components in other processes such as selective
laser sintering and electron beam melting.
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In their article, Wu et al. [72] addressed the need for real-time process monitoring and
predictive modeling in additive manufacturing, with a specific focus on surface roughness
prediction in Fused Deposition Modeling (FDM). While existing research has predom-
inantly emphasized physics-based approaches, this study presents a novel data-driven
approach using random forests for surface roughness prediction. To achieve this, a real-time
monitoring system is developed, integrating multiple sensors to monitor the health condi-
tion of a 3D printer and the FDM processes. The RF algorithm is employed to construct a
predictive model based on the collected sensor data. The experimental results demonstrate
the high accuracy of the predictive model in estimating the surface roughness of printed
parts.

Wu et al. [122] utilized random forests to train a model for predicting the surface
roughness of parts produced by the FDM process. The study employed a feature-level
fusion process to extract features from multiple sensor data, including the temperature
of the table and extruder, vibrations of the table and extruder, etc., and combined them
into a single feature vector. This vector served as the input to the model which used
regression trees to predict the surface roughness value. The study also generated models
with individual sensor inputs; however, sensor fusion proved to be a more accurate method,
achieving the lowest cross-validation error of 5.91%.

Machine learning algorithms, including random forests, support vector regression,
ridge regression (RR), and a least absolute shrinkage and selection operator (LASSO), were
employed by Wu et al. [72] to accurately predict surface roughness in manufacturing parts.

4.1.3. K-Nearest Neighbors

K-nearest neighbors (KNN) is a non-parametric algorithm that utilizes proximity to
the nearest neighbors to classify or predict data points. In the context of surface roughness
prediction, KNN can estimate roughness by identifying the nearest neighbors with similar
input parameter values [133].

Kumar and Jain [34] focused on employing the KNN machine learning algorithm for
surface roughness prediction. The authors generated training data for the KNN algorithm
by depositing multi-layer single-track depositions, resulting in wall-like structures, using
Stellite-6 as the additive manufacturing material in both powder and wire forms. Their
findings revealed that surface roughness increases with a higher power supply to the micro-
plasma and AM material feed rate, while it decreases with an increase in the traverse speed
of the deposition head for both powder and wire forms of the AM material. Additionally,
the surface roughness of the walls produced with the powder form of the AM material
(ranging from 118 to 149 µm) was found to be smaller than that obtained with the wire form
(ranging from 195 to 227 µm). The prediction error of surface roughness using the KNN
algorithm ranged from −6.2% to 2.8% for the powder form and −5.8% to 2.3% for the wire
form of the AM material. These results demonstrate the capability of the KNN algorithm
in accurately predicting surface roughness in the µ-PTAMAM process. Furthermore, the
authors highlighted that increasing the number of training datasets can further reduce the
prediction error of the KNN algorithm.

In the paper [134], the focus is on accurately predicting the surface finish of fused
deposition modeling parts using prediction models. Previous models have successfully
established a mapping relationship between printing parameters and surface roughness,
though they are limited in their ability to handle multi-factor and multi-category pre-
dictions and imbalanced data. To address these challenges, a new prediction method
called APSO-KNN (adaptive particle swarm optimization and K-nearest neighbor) is pro-
posed. The method considers seven input variables: nozzle diameter, layer thickness,
number of perimeters, flow rate, print speed, nozzle temperature, and build orientation.
An L27 Taguchi experimental design is utilized to determine the printing values for each
specimen. The model is trained and validated using experimental data from 27 printed
specimens. The results demonstrate that the proposed method achieves a minimum clas-
sification error of 0.01 after two iterations, with a maximum accuracy of 99.0% and high
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training efficiency. This method successfully meets the requirements for predicting the
surface finish in FDM parts with multiple factors and categories, while also addressing im-
balanced data. The high accuracy attained by the model indicates its potential for predicting
the surface finish and its applicability in actual industrial manufacturing processes.

4.1.4. Artificial Neural Networks (ANN)

ANNs are fascinating machine learning algorithms inspired by the intricate structure
and functionality of the human brain. Composed of interconnected nodes called “neurons”,
ANNs possess the remarkable ability to process and transmit information. These networks
find applications in a wide range of tasks, including pattern recognition, image and speech
recognition, prediction, and classification [135].

One captivating application of ANNs lies in the prediction of surface roughness for
additively manufactured components [136]. Additive manufacturing, a process that builds
3D objects layer by layer using computer models, presents a challenge in controlling the
surface roughness of printed objects—a crucial factor affecting their mechanical properties
and overall performance. To address this challenge, ANNs can be trained on datasets
comprising input variables and corresponding surface roughness measurements. These
input variables encompass factors such as the type of printing material, layer thickness,
printing speed, and printing temperature. As ANNs learn from the data, they identify
patterns and make predictions based on new inputs. Once trained, ANNs can accurately
predict the surface roughness of new additively manufactured components based on their
input parameters. This predictive capability empowers manufacturers to optimize their
printing processes and enhance the quality of their printed parts [137].

ANN have been widely utilized by researchers to predict the surface roughness of
additively manufactured components. In a remarkable study conducted by Wafa and
Abdulshahed [138], they employed an ANN approach to accurately predict the surface
roughness of FDM-printed components. The ANN model, built with a small number of
neurons in the MATLAB environment, exhibited exceptional agreement with the experi-
mental data, achieving an average error value of only 8%. Furthermore, the researchers
compared their proposed ANN model to a regression-based approach and found that the
ANN model outperformed the statistical method in terms of accuracy.

In another intriguing work, Lakshmi and Arumaikkannu [139] suggested a non-contact
method to estimate surface roughness in SLM-customized implants using an ANN. The
developed ANN was trained on scan data from a femur bone and achieved an impressive
prediction accuracy of 97.2%.

Vahabli and Rahmait [140] made significant advancements by developing a robust
model for estimating the surface roughness distribution in FDM parts. They used empirical
data and optimized ANN, incorporating particle swarm optimization (PSO) and imperialist
competitive algorithm (ICA) techniques. The comprehensive validation of their proposed
methodology showcased a superior performance across various conditions and complex
shapes, effectively filling a crucial gap in the literature.

The work of Mahapatra and Sood [141] focused on the relationship between input fac-
tors and surface roughness using ANN. They applied the Levenberg–Marquardt algorithm
to train the neural network, revealing valuable insights regarding the impact of factors
of FDM such as raster angle, raster width, layer thickness, orientation, and air gap on
surface roughness. In another investigation, Vahabli and Rahmati [142] utilized the radial
basis function neural network (RBFNN) to estimate surface roughness. By optimizing the
effective parameters using the imperialist competitive algorithm, they achieved improved
prediction accuracy compared to using RBFNN alone for FDM parts.

Jiang et al. [143] investigated the response of the FDM process and printable bridge
length (PBL) in test specimens. Their study utilized the BP neural network with Bayesian
Regularization as the training algorithm, leading to accurate predictions of a test specimen’s
PBL. Barrios and Romero [144] deployed decision-tree methods, such as J48, random
forest, and random tree, to predict the surface roughness of FDM parts. Through a well-
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designed dataset and utilizing the Taguchi design and response surface methodology, they
successfully screened and optimized surface roughness.

Plaza et al. [145] conducted a study on the effect of build orientation, feed rate, and
layer thickness on the surface roughness of workpieces fabricated from PLA filament. Their
factorial design method revealed that the layer thickness significantly impacted surface
roughness, while the feed rate had no significant effect. They also employed an ANN,
utilizing feedforward BP with the Levenberg–Marquardt training algorithm, to predict the
surface roughness of FDM printed accurately.

Pfleging [146] aimed to predict and optimize the surface roughness and heat-affected
zone depths. The data obtained were utilized to create linear regression and artificial neural
network models for each variable. Subsequently, the models with the best performance
were employed in a multiobjective genetic algorithm optimization to determine optimal
parameter combinations. Through this approach, the research successfully identified an
acceptable range of values for the specified input parameters of LPBF (laser power, focal
offset, axial feed rate, number of repetitions, and scanning speed) that produced satisfactory
values of Ra and HAZ simultaneously. In the pursuit of optimizing the tensile strength,
surface roughness, and build time of fabricated work pieces, Yang et al. [48] employed the
central composite design (CCD) method. Their study emphasized the significant impact of
the nozzle diameter, filling velocity, and layer thickness on surface roughness.

Kandananond [147] utilized the Box–Behnken design to optimize the surface rough-
ness of workpieces fabricated from ABS filament. The study successfully recommended
optimal settings for input factors such as nozzle temperature, bed temperature, and print-
ing speed, effectively minimizing surface roughness. The comparison study between the
response surface method (RSM) and machine learning methods, including ANN and fuzzy
inference system (FIS), provided valuable insights into the relationships between the inputs
and outputs of the FDM system.

Lastly, Ulkir et al. [148] conducted a study to optimize the prediction model for
minimizing surface roughness in FDM samples. They used a combination of a Cascade-
Forward Neural Network (CFNN) and a genetic algorithm to determine the optimal
combination of input parameters, yielding impressive results.

4.1.5. Others Machine Learnings

There are other machine learning algorithms used for surface roughness prediction.
For instance, a machine learning method based on Gaussian Process Regression was pro-
posed to establish a model relating the WAAM process parameters to the top surface
roughness. To measure the top surface roughness of a manufactured part, a 3D laser
measurement system was developed. The experimental datasets were collected and sub-
sequently divided into training and testing datasets. Using the training datasets, a top
surface roughness model was constructed and then verified using the testing datasets. The
experimental results demonstrate that the proposed method achieves a surface roughness
prediction accuracy of less than 50 µm [149].

Li et al. [17] introduced the ensemble learning algorithm to determine predictive
models for surface roughness. Their approach involved training the model using different
learning algorithms, including random forests, AdaBoost, classification and regression
trees (CART), SVR, RR, and random vector functional link (RVFL) networks. The experi-
mental results demonstrated the effectiveness of this ensemble learning-based approach,
particularly in accurately predicting the surface roughness of fused filament fabrication
(FFF)-manufactured components.

Mishra and Jatti [92] conducted a comprehensive comparison of three quantum
algorithms—Quantum Neural Network (QNN), Quantum Forest (Q-Forest), and Vari-
ational Quantum Classifier (VQC)—adapted for regression to predict surface roughness in
additively manufactured components. Through the evaluation of the Mean Squared Error
(MSE), Mean Absolute Error (MAE), and Explained Variance Score (EVS), the study reveals
that the Q-Forest algorithm outperforms the others, achieving an MSE of 56.905, MAE of
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7.479, and an EVS of 0.2957. In contrast, the QNN algorithm exhibits a higher MSE and
MAE, along with a negative EVS, suggesting its limited suitability for surface roughness
prediction. The VQC adapted for regression also demonstrates an inferior performance
compared to the Q-Forest algorithm.

4.2. Deep Learning Approaches

Machine learning techniques are considered a weak AI type, which means they are
not entirely autonomous and require some level of guidance, such as adjusting hyperpa-
rameters. Deep learning (DL) methods were developed to push beyond the limitations of
traditional machine learning, which are also aimed to emulate certain aspects of human
cognition more closely. Consequently, they have proved to have a superior performance in
terms of accuracy and speed compared to other machine learning algorithms, without the
need for significant manual intervention from programmers. Deep learning is a specific sub-
set of machine learning that operates by processing inputs through a biologically inspired
ANN architecture. Over time, it has become evident that neural networks outperform many
other algorithms in accuracy and speed due to their powerful ability to extract relevant
information from vast amounts of data [150].

As can be observed from Figure 5, the main difference between deep learning and tra-
ditional machine learning lies in the architecture and representation of data. In traditional
machine learning, feature engineering is a separate step where domain experts manually
select and engineer relevant features from the raw data. While traditional methods may be
more interpretable, they heavily rely on domain knowledge and might struggle to capture
intricate relationships or patterns in the data without comprehensive feature engineering.
Moreover, the feature engineering process can be time-consuming and subjective. However,
in deep learning, feature extraction and prediction are performed in an end-to-end manner
using neural networks. Raw data are directly fed into the network, and the model auto-
matically learns hierarchical representations and complex features, eliminating the need
for manual feature engineering. The neural network’s layers capture abstract patterns and
relationships within the data, enabling it to predict surface roughness directly from the raw
input, making the process more efficient and accurate with a large amount of labeled data.
However, the black-box nature of deep learning models may limit interpretability [151].
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Deep learning possesses remarkable capabilities for modeling and handling highly intri-
cate non-linear relationships. Numerous variants of deep learning techniques are available,
such as convolutional neural networks (CNNs), recurrent neural networks (RNNs), artificial
neural networks (ANNs), and deep neural networks (DNNs). These neural networks consist
of artificial neurons organized in multiple layers, where each layer communicates only with
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the immediately preceding and following layers (as shown in Figure 6). Information flows
through the neural network from the input layer (which receives external data) to the out-
put layer (which produces results), passing through several hidden layers in between. The
number of hidden layers depends on the complexity of the problem being solved. In each
hidden layer, neurons receive input signals from other neurons, process them by combining
the input with their internal state, and produce output signals. Neurons are interconnected
where the output of one serves as input to another, and each neuron may have multiple input
and output connections. Specific weights are then assigned, forming the overall layer of the
neural network. The learning process involves adjusting the network’s parameters, specifically
the weights of the connections, by minimizing observed errors in the network’s output. Due
to its versatile and self-adapting architecture, deep learning reduces the need for extensive
feature engineering and can effectively identify and address challenges that may be challenging
to detect using other techniques. However, training artificial neural networks demands a
substantial amount of data for accurate learning and is computationally expensive due to the
vast number (millions or more) of parameters that require optimization during the training
process.
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Deep learning methods commonly used for surface roughness prediction of additively
manufactured components include conventional neural networks, deep neural networks,
generative adversarial networks, auto encoders, and deep reinforcement learning. These
methods are briefly explained below.

4.2.1. Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are widely used in image recognition and
classification tasks, particularly in the analysis of surface topography scans and visual rep-
resentations of additively manufactured components. These networks utilize convolutional
layers to extract hierarchical features from input data, allowing them to capture intricate
patterns and textures related to surface roughness. Researchers have recently employed
CNNs for predicting the surface roughness of additively manufactured components [152].

In a recent study [153], a deep learning CNN model was utilized to predict the surface
roughness of additively manufactured components. The study proposed a combined
approach of CNN classification and electrical discharge-assisted post-processing to enhance
the surface quality of these components. By categorizing the surface, the depth and number
of polishing passes were determined. The study revealed that polishing under a low-energy
regime outperformed high-energy regimes, resulting in a significant 74% improvement in
surface finish. Additionally, lower-energy polishing reduced the occurrence of short-circuit
discharges and elemental migration. The CNN model demonstrated 96% accuracy in
predicting the surface condition through a five-fold cross-validation. Furthermore, the
proposed approach substantially improved the surface finish from 97.3 to 12.62 µm.

In another work [154], researchers demonstrated that CNNs could directly predict the
energy required to deform gyroid and octet truss metamaterials using only optical images.
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By exploiting the tiled nature of engineered lattices, the small dataset was augmented by
subdividing the original image into smaller sub-images. During testing, the predictions
from these sub-images were combined to estimate the deformation work of the entire lattice.
This approach provided a rapid and cost-effective screening tool for predicting properties
of 3D-printed lattices, surpassing mere inspection, and accurately estimating performance
metrics, rather than just detecting defects.

In a paper [155], an automated quality grading system for the additive manufacturing
process was proposed, employing a deep CNN model. The CNN model was trained offline
using images of internal and surface defects in the layer-by-layer deposition of materials
and tested online to detect and classify failures in the AM process at different extruder
speeds and temperatures. The model exhibited an accuracy of 94% and specificity of
96%, with an F-score, sensitivity, and precision measures above 75% for classifying the
quality of the printing process into five grades in real-time. The proposed online model
introduced automated, consistent, and non-contact quality control, eliminating the need
for the manual inspection of completed parts. The quality monitoring signal could also
be utilized by the machine to suggest real-time adjustments in parameters and remedial
actions. This predictive model serves as a proof-of-concept for any AM machine, facilitating
the production of reliable parts with fewer quality issues and minimizing wastage of time
and materials.

Machine learning can be leveraged to automate common or time-consuming engineer-
ing tasks using existing data. For example, design repositories can be employed to train
deep learning algorithms to assess component manufacturability. However, methods for
determining the suitability of design repositories for machine learning are lacking [156].
A study investigated this matter by employing “artificial” design repositories to assess
the impact of altering dataset properties on the precision and generalizability of neural
networks trained on the data. A 3D convolutional neural network was employed to esti-
mate manufacturing metrics directly from voxel-based component geometries, focusing on
additive manufacturing as a case study. The study examined three build metrics: part mass,
support material mass, and build time. The results indicated that training on design reposi-
tories with a less standardized orientation and position resulted in more accurate neural
networks. Furthermore, orientation-dependent metrics were more challenging to estimate
than orientation-independent metrics. The convolutional neural network outperformed
the baseline linear regression model for all build metrics.

Furthermore, a machine learning integrated design for the AM framework was pro-
posed, utilizing ML’s ability to learn complex relationships between design and perfor-
mance spaces. A case study demonstrated ML’s effectiveness in designing a customized
ankle brace with a tunable mechanical performance and tailored stiffness [157].

4.2.2. Deep Neural Networks

A deep neural network (DNN) is an ANN having multiple layers between the input
and output layers. A DNN consists of neurons, synapses, biases, weights, and functions.
Deep neural networks have demonstrated discriminative and representative learning
capabilities across various applications in recent years [158,159].

So et al. [11] developed a method to improve the quality of additively manufactured
products by predicting surface roughness using data analysis techniques, including data
pre-processing and DNNs combined with sensor data. The study focused on enhancing the
surface roughness of the stacked wall, which is a crucial quality indicator affecting product
life and structural performance. By applying data pre-processing and DNNs with sensor
data, the study proposed a methodology to predict surface roughness based on process
parameters. The effectiveness of the proposed methodology was validated using field data
from wire + arc additive manufacturing, resulting in a mean absolute percentage error
(MAPE) of 1.93%.

In the prediction of surface roughness for an AlSi10Mg aluminum alloy fabricated
through laser powder bed fusion (LPBF), a deep learning framework was developed [160].
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The framework involved fabricating specimens, measuring surface topography, extracting
and streamlining roughness and LPBF processing data, and developing a deep neural
network model. The inputs to the model were the AM process parameters, and the output
was the surface profile height measurements. The deep learning framework successfully
predicted the surface topography and roughness parameters for all printed specimens,
with measurements well within 5% of experimental error.

In the study on selective laser melting, a deep neural network was applied to classify
melt-pool images based on laser power labels [161]. The neural network demonstrated ef-
fective classification, even with melt-pool images featuring blurred edges. The classification
model showed a failure rate of under 1.1% for 13,200 test images, proving its effectiveness
in monitoring melt-pool images and identifying potential defects.

Post-processing methods, such as shot peening (SP), severe vibratory peening (SVP),
and laser shock peening (LSP), are commonly employed to address surface imperfections
and bulk defects in additive manufactured materials. In a previous study, fracture surfaces
of failed samples were analyzed, and experimental data were elaborated using a machine
learning-based approach [162]. The study developed a six-layer deep neural network
and utilized a stacked auto-encoder (SAE) for pre-training the dataset. The ML-based
model achieved prediction accuracies of over 0.96 and revealed correlations between the
residual stress, hardness, surface roughness, crack initiation site depth, and fatigue life of
the post-treated samples.

4.2.3. Generative Adversarial Networks

Generative Adversarial Networks (GANs) have shown promise in predicting the
surface roughness of additively manufactured components by generating synthetic profiles
that closely resemble real-world data. GANs consist of a generator network and a discrim-
inator network that compete against each other, enabling them to learn the underlying
distribution of surface roughness and aid in prediction tasks [163].

In a recent paper [164], a novel image processing method was proposed to enhance
the quality of thermal images for feature extraction in the Directed Energy Deposition
(DED)-based additive manufacturing process. The method utilized an Improved Enhanced
Generative Adversarial Network (IEGAN) with a modified objective function. A penalty
term was introduced to enhance the contrast ratio of the reconstructed thermal images. The
effectiveness of the proposed IEGAN was demonstrated by comparing the contrast ratio
with that of the original GAN. The IEGAN successfully extracted the shape of the melt
pool, contributing to process monitoring in additive manufacturing.

To address the challenge of controlling porosity in metal additive manufacturing, a
framework combining Generative Adversarial Networks and Mallat Scattering Transform-
based autocorrelation methods was introduced [165]. This framework deconstructed the
generation problem and generated individual pore geometries and surface roughness.
These generated components were then stochastically reconstructed to form realizations
of a porous printed part. Statistical and dimensional metrics were used to compare the
generated parts with existing experimental porosity distributions.

In laser powder bed fusion (L-PBF), predicting the morphology of the melt pool is
crucial for controlling the final build quality. Machine learning techniques were leveraged
to predict both the quantitative attributes (size) and qualitative attributes (shape) of the
melt pool [166]. An LSTM network was used to predict the area of the melt pool with
high accuracy, while a Melt Pool Generative Adversarial Network (MP-GAN) synthesized
images of the melt pool with high structural similarity scores. These predictions enabled
the real-time monitoring and control of the melt pool for consistently better quality in
L-PBF.

A novel method utilizing artificial intelligence was proposed to generate the virtual
surface morphology of Ti-6Al-4V parts based on given process parameters [167]. Condi-
tional generative adversarial networks were optimized to develop a high-resolution surface
morphology image generation system. The virtual surface closely matched experimental
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cases, exhibiting reduced textured microstructural behavior on the surface and decreased
anisotropy in the columnar structure. This AI-guided virtual surface morphology approach
can help obtain high-quality parts more cost-effectively.

In the context of quality assurance in advanced manufacturing processes such as
additive manufacturing, imbalanced training data can hinder the detection of abnormal
states. To address this issue, a data augmentation method based on a Generative Adversar-
ial Network was proposed [168]. By jointly optimizing a standard GAN and a classifier,
high-quality generated samples were used to provide a balanced training set, improving
the performance of abnormal state detection in polymer and metal additive manufacturing
processes.

4.2.4. Autoencoders

Autoencoders are a type of unsupervised learning model used for dimensionality
reduction and feature extraction. They encode and decode input data to learn compact rep-
resentations of surface roughness profiles. These representations can be used in traditional
machine learning models or for visualization purposes [169].

In the context of additive manufacturing, post-processing methods are commonly
employed to address surface imperfections and bulk defects. Previous studies analyzed the
effects of different peening-based treatments on the fatigue performance of laser powder
bed fusion AlSi1Mg samples. The fracture surfaces of failed samples were further analyzed,
and machine learning-based approaches were utilized to identify correlations between the
residual stress, hardness, surface roughness, depth of the crack initiation site, and fatigue
life of the post-treated samples. A deep neural network (DNN) and stacked autoencoder
(SAE) were used to develop a machine learning model, with the SAE providing accurate
predicted results. Parametric analyses and sensitivity analyses were performed to assess
the importance of each input factor. The results showed that enhancing surface hardening,
inducing higher compressive residual stresses, and reducing surface roughness led to
deeper crack initiation sites and improved fatigue life [162].

Additive manufacturing is increasingly used in quality-critical applications, such
as aerospace and healthcare, for fabricating complex geometries with novel materials.
However, the layer-wise surface quality in additive manufacturing can be relatively poor,
affecting the properties and functionality of the products. Surface morphology studies
have demonstrated the significant impact of AM machine parameters on the resulting
surface. Analyzing and correlating morphology features with machine parameters pose
challenges due to the highly nonlinear nature of surface profiles and the presence of out-
liers and missing regions. To address these challenges, a convolutional autoencoder-based
approach is applied in this paper to extract informative features from surface profiles. The
autoencoder model, with regularization, can effectively discover low-dimensional repre-
sentations from high-dimensional surface profile data, even in the presence of corruptions.
Supervised machine learning is then employed to quantify the correlation between surface
morphology and machine parameters. A case study in laser engineered net shaping (LENS)
validates the effectiveness of the proposed method, achieving a classification accuracy of
70%, outperforming benchmark methods. Thus, the developed convolutional autoencoder-
based approach shows promise for extracting surface morphology features in additive
manufacturing [170].

4.2.5. Deep Reinforcement Learning

Deep Reinforcement Learning (DRL) is a combination of deep learning and reinforce-
ment learning techniques. In the context of surface roughness prediction in additive manu-
facturing, DRL has emerged as a promising approach for optimizing the manufacturing
process to achieve desired surface roughness outcomes. By employing DRL agents, which
are intelligent systems, optimal control policies can be learned through interaction with the
manufacturing environment and feedback on surface roughness performance [171].
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This study introduces a DRL framework for deriving a versatile control strategy
aimed at minimizing the occurrence of defects. The control policy generated by the DRL
framework modifies either the velocity or power of the laser during the melting process.
This adjustment ensures the consistency of the melt pool and reduces overheating in
the final product. To train and validate the control policy, efficient simulations of the
temperature distribution within the powder bed layer are conducted under different laser
trajectories [172].

5. Discussion
5.1. Analysis of AI Techniques Used to Predict Surface Roughness

The presented studies demonstrate a diverse range of AI techniques employed for
surface roughness prediction in additively manufactured components. Each study offers
unique insights into the efficacy of different methodologies, shedding light on the advan-
tages and limitations of AI-driven approaches in this domain. Table 5 lists a summary of
some selected works on the data used as the input, the models developed, and the results
obtained from the surface roughness prediction models.
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Table 5. The data used, the model developed, and the results of some selected surface roughness prediction models.

Authors AM Data Used as an Input The Model Used/Developed Remarks/Results

Mishra et al. [131] FDM/FFF

The input parameters of FDM techniques used for the study
were layer height, wall thickness, infill density, infill pattern,
nozzle temperature, bed temperature, print speed, and fan
speed.

Support Vector Regression, Random Forest, XGBoost,
AdaBoost, CatBoost, Decision Tree, the Extra Tree Regressor,
the Explainable Boosting Model (EBM), and the Gradient
Boosting Regressor.

The XGBoost algorithm outperforms the other algorithms
with the highest coefficient of determination value of 0.9634.
This provides the most accurate predictions for surface
roughness compared with other algorithms.

Xia et al. [173] WAAM
Data from the WAAM process parameters, specifically
Welding speed (mm/s), Wire feed speed (m/min), and
Overlap ratio were collected using a full factorial design.

ANFIS, ELM, and SVR machine learning models were
developed to predict the surface roughness.

The comparison results indicate that GA–ANFIS has
superiority in predicting surface roughness. The RMSE, R2,
MAE, and MAPE for GA–ANFIS were 0.0694, 0.93516,
0.0574, and 14.15%, respectively.

Huang et al. [134] FDM
Process parameters of nozzle diameter, layer thickness,
number of perimeters, flow rate, print speed, nozzle
temperature, and build orientation were used.

The model which combines the adaptive particle swarm
optimization and K-nearest neighbor (APSO-KNN)
algorithms was developed.

The results indicate that the proposed method can achieve a
minimum classification error of 0.01 after two iterations,
with a maximum accuracy of 99.0%, and high model
training efficiency.

Saxena et al. [91] FDM
Five parameters that influence layer geometries: layer height,
infill density, printing speed, and nozzle temperature with a
0-degree raster angle were used.

Support vector machine, linear regression, and two
ensemble learning techniques, Xtremegradient boosting and
random forest regressor model, were used for prediction of
surface roughness.

By applying all machine learning algorithms, random forest
regression is the best model, which gives 94.85% accurate
results in datasets with a minimum mean squared error of
approximately 0.1255 and a maximum r2 score of
approximate. 0.9685.

Kandananond [174] FFF Bed temperature (80, 85, and 90 ◦C), printing speed (40, 80,
and 120 mm/s), and layer thickness (0.10, 0.25 and 0.40 mm). Box–Behnken and ANN The application of ANN to accurately predict surface

roughness is also recommended in this study.

Singh et al. [129] WEDM
Four input variables, namely pulse-on-time (Pon),
pulse-off-time (Poff), servo-voltage (VS), and peak-current (IP)
were used as data.

Support Vector Machine Technique

The correlation value of the SVM model was 0.9634. The
maximum value of roughness, i.e., 6.777 µm, was achieved
for Pon = 125 µs, Poff = 60 µs, IP = 30 A, and VS = 40 V;
while, the minimum value of roughness, i.e., 2.381 µm, was
obtained for Pon = 105 µs, Poff = 40 µs, IP = 150 A, and
VS = 60 V. Close to 65% improvement in surface finish value
was achieved owing to a suitable setting of machining
parameters.

Wafa and
Abdulshahed [138] FDM

Nozzle temperature (◦C), layer height (µm), printing speed
(mm/s), Nozzle diameter (mm), and Infill density (%)
considered as input variables were used.

Artificial Neural Networks (ANN)

Results show that the proposed model has high accuracy in
comparison to the statistical approach. Therefore, we can
use the ANN model to predict the part surface roughness
for 3D printing technology. The results obtained with the
proposed ANN model are also superior to the
regression-based model.

Wu et al. [72] FDM

The condition monitoring data include (1) the temperature of
the build plate, (2) the temperature of the extruder, (3) the
vibration of the build plate, (4) the vibration of the extruder,
and (5) the temperature of the deposited material.

The predictive models are trained using random forests
(RFs), support vector regression (SVR), ridge regression
(RR), and least absolute shrinkage and selection operator
(LASSO).

The experimental results have shown that the predictive
models trained by the machine learning algorithms on the
condition monitoring data predict the surface roughness of
additive manufacturing parts with very high accuracy.

Li et al. [17] FFF
Various types of sensors, such as thermocouples, infrared
temperature sensors, and accelerometers, are employed to
gather data on temperature and vibration.

The ensemble learning algorithm combined six different
machine learning algorithms, including RF, AdaBoost,
CART, SVR, RR, and RVFL network, were used.

The experimental results have shown that the predictive
models are capable of predicting the surface roughness of
the 3D-printed specimens. The performance of the
ensemble outperforms the individual base learners based
on RMSE and RE.
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Table 5. Cont.

Authors AM Data Used as an Input The Model Used/Developed Remarks/Results

So et al. [11] (GMAW)-CMT WAAM Dynamic process parameters (travel speed, feed rate), Point
clouds of bead shape. Deep Neural Networks (DNN).

Proposed DNN model achieves 98% prediction accuracy,
outperforming regression and SVR models. Uses dynamic
parameters and bead shape for surface roughness
prediction.

Koo et al. [175] Powder Bed Fusion with
Laser Beam (PBF-LB)

Laser power, Scanning speed, Hatching distance, Overhang
angle.

Support Vector Regression (SVR), Random Forest (RF),
Multilayer Perceptron (MLP).

Machine learning algorithms (SVR, RF, MLP) applied to
predict downskin surface roughness in PBF-LB process.
Input variables include process parameters and overhang
angle. RF model demonstrated most promising results.
Average deviations for SVR, RF, and MLP were 13.7%, 4.3%,
and 22.5%, respectively, compared to actual measured
roughness. RF showed highest prediction accuracy without
using sensors.

Kumar and Jain [34]

µ-PTAMAM
(Micro-Plasma Transfer

Arc Metal Additive
Manufacturing)

Power supply, AM material feed rate, Traverse speed. K-nearest neighbors (KNN).

KNN predicts surface roughness in µ-PTAMAM. Training
data from Stellite-6 in powder and wire forms. Powder form
has lower roughness (118–149 µm) than wire (195–227 µm).
KNN error: −6.2% to 2.8% (powder), −5.8% to 2.3% (wire).
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5.1.1. Data Input Variability

The variety of input data used across these studies highlights the adaptability of AI
techniques to different additive manufacturing processes. Mishra et al. [131] utilized a
comprehensive set of FDM parameters, while Xia et al. [173] focused on process parameters
specific to the WAAM process. The success of these studies underscores the potential for AI
models to handle various input types, capturing intricate relationships between parameters
and surface roughness.

5.1.2. Model Performance and Accuracy

The performance metrics across the studies, such as R2, RMSE, and MAE, reflect
the success of AI models in capturing complex patterns and providing accurate surface
roughness predictions. The notable performance of the XGBoost algorithm in the study by
Mishra et al. [131] highlights its suitability for handling a multitude of FDM parameters,
showcasing its ability to learn and model complex interactions. Similarly, the GA–ANFIS
model introduced by Xia et al. [173] exhibited a superior predictive performance. The use
of genetic algorithms to optimize ANFIS parameters contributed to accurate predictions,
showcasing the power of hybrid models in enhancing accuracy.

5.1.3. Interpretability vs. Black Box Models

While deep learning techniques, such as ANNs and XGBoost (https://xgboost.ai/),
consistently demonstrated high accuracy, they often sacrifice interpretability. In contrast,
ensemble methods such as the Random Forest Regressor, as seen in Saxena et al. [91],
and the GA–ANFIS model in Xia et al. [173], offer a balance between accuracy and inter-
pretability. This trade-off is significant, particularly in industries, where understanding the
underlying factors influencing predictions is crucial for process optimization and decision
making.

5.1.4. Application to Diverse Manufacturing Processes

The versatility of AI models is evident in their application to various additive man-
ufacturing processes. Studies such as Huang et al. [134] demonstrate the feasibility of
AI techniques in predicting surface roughness for FDM, while Singh et al. [129] applied
Support Vector Machine (SVM) techniques to the domain of WEDM. This showcases the
potential for AI models to be tailored to different manufacturing processes, enabling their
wide-ranging adoption.

5.1.5. Optimizing Manufacturing Processes

The studies collectively underline the potential of AI techniques in optimizing additive
manufacturing processes. These models have the capability to predict surface roughness
accurately, guiding engineers to adjust parameters for desired outcomes without extensive
trial and error. This optimization potential can lead to enhanced manufacturing efficiency,
reduced material waste, and improved product quality.

5.1.6. Weakness and Strength of each Developed Model

Each developed model possesses unique strengths and limitations when predicting
the surface roughness of additively manufactured components. Considering the diversity
of data types, a comparative analysis of the strengths and weaknesses was conducted for
both machine learning models and deep learning models employed in surface roughness
prediction. The strengths and weaknesses of the machine learning models were presented
in Table 6, while those of the deep learning models were outlined in Table 7.

5.2. Challenges and Limitations

The literature on the application of AI techniques for surface roughness prediction
in additive manufacturing highlights various limitations and challenges that must be
addressed to advance this field.

https://xgboost.ai/
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Table 6. The strengths and weaknesses of each machine learning algorithm used for surface roughness
prediction of additively manufactured components.

Technique Strengths Weaknesses

Support Vector Machines (SVM)
- Effective in high-dimensional spaces
- Handles non-linearity through kernels
- Robust to outliers

- Computationally intensive for large datasets
- Hyperparameter selection required
- Sensitive to noisy or overlapping data

Random Forests
- Handles non-linearity and interactions
- Robust to noisy data and outliers
- Feature importance

- Prone to overfitting with complex models
- Limited performance on sparse data
- Harder to interpret with deep forests

K-Nearest Neighbors (KNN)
- Simple and intuitive
- Captures complex relationships
- Robust to noise and outliers

- Sensitive to choice of neighbors (K)
- Computationally expensive prediction
- Poor performance with high dimensions

Artificial Neural Networks (ANN)
- Captures complex non-linear relationships
- Handles various input types
- Suitable for large data

- Requires careful hyperparameter tuning
- Prone to overfitting with limited data
- Lack of transparency

Ridge Regression
- Handles multicollinearity through

regularization
- Stable and less prone to overfitting

- Requires tuning of regularization parameter
- May not perform well with non-linear relationships
- No feature selection

Table 7. The strengths and weaknesses of each deep learning algorithm used for surface roughness
prediction of additively manufactured components.

Technique Strengths Weaknesses

Convolutional Neural Networks
- Effective for image data
- Captures local patterns and features
- Robust to data variations

- Requires large labelled datasets
- Limited applicability to non-visual input data

Deep Neural Networks
- Versatile for various data types
- Captures complex relationships
- Handles structured/unstructured data

- Prone to overfitting
- Requires extensive hyperparameter tuning

Generative Adversarial Networks
- Generates synthetic data
- Data augmentation potential
- Captures intricate patterns

- Challenging and unstable training
- Mode collapse potential

Autoencoders
- Captures latent representations
- Dimensionality reduction
- Data reconstruction

- Struggles with complex non-linear
relationships

- Interpretability challenges

Deep Reinforcement Learning
- Sequential decision making
- Adaptive learning
- Optimal strategy discovery

- Computationally intensive training
- Reward function design challenges
- Training instability and variance

One significant limitation is the scarcity of publicly available datasets containing
comprehensive surface roughness measurements. Many studies rely on proprietary or
limited experimental data, making it challenging to develop and evaluate AI models. The
lack of standardized datasets hampers the ability to compare and benchmark different
approaches. Additionally, the limited availability of diverse data restricts the training of
AI models in a wide range of additive manufacturing scenarios, limiting their ability to
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generalize. This scarcity of high-quality datasets poses a challenge in achieving accurate
predictions of surface roughness using AI models. Indeed, the scientific community is mak-
ing continuous efforts to tackle the surface roughness issue in additive manufacturing. For
instance, researchers are actively exploring methods such as supervised machine learning
regression-based algorithms to predict the surface roughness of additive-manufactured
polylactic acid specimens [131]. Additionally, data-driven predictive modeling approaches
are being developed to enhance surface roughness prediction in additive manufacturing
processes. These research endeavors aim to improve the understanding and control of
surface roughness in the context of additive manufacturing, ultimately leading to the better
quality and performance of the manufactured parts.

Another challenge lies in feature selection and extraction. While some studies have
explored manual feature engineering techniques, these processes can be time-consuming
and subjective. Furthermore, relevant feature selection depends heavily on the specific
additive manufacturing process and material. Although automated feature learning using
deep learning models has gained attention, determining the most informative features from
complex datasets remains a challenge. Further research is necessary to develop robust and
automated feature selection methods tailored specifically for surface roughness prediction
in additive manufacturing.

The generalization of AI models across different additive manufacturing processes and
materials poses another significant challenge. Each combination of process and material
exhibits unique characteristics that influence surface roughness. AI models trained on
specific process–material combinations may not effectively transfer to other scenarios,
limiting their applicability. Developing transferable models capable of handling variations
in process parameters, material properties, and surface characteristics is crucial for the
broader adoption of AI techniques in predicting surface roughness. Additionally, the
complexity and variability of additive manufacturing processes make it difficult to develop
models that accurately predict surface roughness across different materials and printing
parameters. Capturing the complex and nonlinear relationship between process parameters
and the resulting surface roughness is crucial. A data-driven predictive modeling approach
that utilizes multiple sensors to collect temperature and vibration data has been introduced
to improve the surface integrity of additively manufactured parts.

Furthermore, the interpretability and explainability of AI models present challenges
in this domain. Many AI models, especially deep learning models, are often perceived as
black boxes, making it difficult to understand the reasoning behind their predictions. This
lack of interpretability hampers insights into the factors contributing to surface roughness.
Research efforts should focus on developing explainable AI models that shed light on
the relationships between process parameters, material properties, and surface roughness.
Ensuring the transparency and interpretability of these models is crucial for their successful
integration into real-world manufacturing processes.

In addition to the aforementioned challenges, training challenges and computational
costs also play a significant role. Training AI models for accurate surface roughness
prediction demands substantial computational resources and time. The complexity of
the underlying data, along with the need for large and diverse datasets, often results in
prolonged training periods. Furthermore, finding an optimal balance between model
complexity and generalization capacity is a challenge. Models that are overly complex
might overfit to training data and perform poorly on unseen data, while overly simplified
models might lack the ability to capture intricate relationships in the data.

Considering computational costs is paramount, especially in real-time applications
where quick predictions are required. Complex AI models, such as deep neural networks,
can demand substantial computational power for both training and inference phases. This
can lead to challenges in deployment, especially in resource-constrained environments.
Optimization techniques and hardware acceleration solutions are being explored to mitigate
these computational challenges.
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Data quality and preprocessing complexity present further challenges. Acquiring
precise and dependable measurements of surface roughness can be complex due to factors
such as measurement equipment accuracy, noise, and variations in measurement techniques.
Ensuring consistent data quality across diverse sources is essential for training reliable AI
models. Additionally, the process of preprocessing raw data to eliminate outliers, address
missing values, and standardize data for training can introduce its own intricacies and
potential sources of error.

Moreover, integrating AI techniques into existing manufacturing processes and sys-
tems presents implementation challenges. Incorporating AI-based surface roughness
prediction models into real-time control systems requires considerations such as computa-
tional efficiency, real-time data acquisition, and compatibility with existing manufacturing
infrastructure. Addressing the implementation and deployment of AI models in practical
manufacturing environments is vital to ensure seamless integration and practical utility.

In conclusion, while AI techniques hold promise for surface roughness prediction
in additive manufacturing, several limitations and challenges must be overcome. These
include the scarcity of comprehensive and standardized datasets, challenges in feature
selection and extraction, limitations in model generalization, a lack of interpretability, and
implementation challenges. Addressing these limitations and challenges will pave the way
for more accurate, robust, and practical AI-based surface roughness predictions in additive
manufacturing.

5.3. Future Direction

The existing literature on the application of AI techniques for surface roughness
predictions in additive manufacturing suggests several promising future directions that
can further advance this field. These directions address the limitations and challenges
identified and aim to enhance the accuracy, applicability, and practicality of AI-based
surface roughness predictions.

One crucial future direction is the integration of AI techniques with process opti-
mization algorithms. By combining predictive models with closed-loop control systems,
real-time adjustments can be made to process parameters during additive manufacturing.
This integration enables the dynamic control of surface roughness, leading to improved
surface quality control. The optimization algorithms can utilize the predicted surface
roughness values to adjust process parameters, ensuring the desired surface roughness is
achieved. This integration holds the potential to optimize additive manufacturing processes
and improve overall manufacturing efficiency.

The utilization of generative AI models, such as generative adversarial networks
(GANs), is another promising future direction. GANs can be employed to generate synthetic
surface roughness patterns that resemble real-world variations. These generative models
can augment limited datasets, simulate different surface roughness scenarios, and enhance
the robustness of AI models. By generating synthetic data, GANs can alleviate the data
scarcity issue and improve the generalization capabilities of AI models.

The development of explainable AI models is also critical for the future of surface
roughness predictions in additive manufacturing. Explainability is essential for users and
stakeholders to understand and trust the predictions made by AI models. Methods for
explaining the decision-making process of AI models need to be explored and implemented.
This can provide insights into the factors influencing surface roughness predictions and
enable users to identify opportunities for process optimization and improvement. Explain-
able AI models can enhance transparency, trust, and acceptance of AI techniques in the
additive manufacturing industry.

Currently, the majority of studies in surface roughness prediction for additively manu-
factured components primarily concentrate on process parameters. Only a limited number
of papers explore alternative data sources such as vibration data, material properties, en-
vironmental conditions, and geometric features for predictive modeling. Future research



Materials 2023, 16, 6266 27 of 33

endeavors should explore and integrate these underutilized data types to enhance the
accuracy and robustness of surface roughness predictions in additive manufacturing.

Additionally, future research should focus on exploring advanced feature selection
techniques specifically tailored for surface roughness prediction in additive manufacturing.
The development of automated feature extraction methods that can effectively capture the
underlying factors influencing surface roughness would enhance the predictive perfor-
mance of AI models. Advanced feature selection techniques, such as deep feature learning
or genetic algorithms, can help identify the most relevant and informative features from
complex datasets.

6. Conclusions

This review paper has explored the application of AI for surface roughness predictions
of additively manufactured components. The literature review has provided an overview
of the recent advancements in machine learning and AI deep learning techniques employed
by researchers in this field. The findings demonstrate that AI-based methods have shown
promising results in predicting surface roughness, offering benefits such as cost reduction
and time savings. However, certain limitations and challenges, including the availability of
quality data and model interpretability, need to be addressed. Future research should focus
on addressing these challenges, developing more accurate and robust models, and integrat-
ing AI methodologies into the additive manufacturing process. Overall, leveraging AI for
surface roughness predictions holds great potential for improving the productivity, compet-
itiveness, and consistent product quality of additively manufactured components. Future
research should focus on addressing the challenges and refining AI-based approaches to
enhance surface quality control in additive manufacturing processes.
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