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Prostate Age Gap: An MRI Surrogate
Marker of Aging for Prostate Cancer

Detection
Alvaro Fernandez-Quilez, PhD,1,2,3* Tobias Nordström, MD, PhD,3,4

Fredrik Jäderling, MD, PhD,5,6 Svein Reidar Kjosavik, MD, PhD,7 and Martin Eklund, PhD3

Background: Aging is the most important risk factor for prostate cancer (PC). Imaging techniques can be useful to mea-
sure age-related changes associated with the transition to diverse pathological states. However, biomarkers of aging from
prostate magnetic resonance imaging (MRI) remain to be explored.
Purpose: To develop an aging biomarker from prostate MRI and to examine its relationship with clinically significant PC
(csPC, Gleason score ≥7) risk occurrence.
Study Type: Retrospective.
Population: Four hundred and sixty-eight (65.97 � 6.91 years) biopsied males, contributing 7243 prostate MRI slices. A deep
learning (DL) model was trained on 3223 MRI slices from 81 low-grade PC (Gleason score ≤6) and 131 negative patients,
defined as non-csPC. The model was tested on 90 negative, 52 low-grade (142 non-csPC), and 114 csPC patients.
Field Strength/Sequence: 3-T, axial T2-weighted spin sequence.
Assessment: Chronological age was defined as the age of the participant at the time of the visit. Prostate-specific antigen
(PSA), prostate volume, Gleason, and Prostate Imaging-Reporting and Data System (PI-RADS) scores were also obtained.
Manually annotated prostate masks were used to crop the MRI slices, and a DL model was trained with those from non-
csPC patients to estimate the age of the patients. Following, we obtained the prostate age gap (PAG) on previously
unseen csPC and non-csPC cropped MRI exams. PAG was defined as the estimated model age minus the patient’s age.
Finally, the relationship between PAG and csPC risk occurrence was assessed through an adjusted multivariate logistic
regression by PSA levels, age, prostate volume, and PI-RADS ≥ 3 score.
Statistical Tests: T-test, Mann–Whitney U test, permutation test, receiver operating characteristics (ROC), area under the
curve (AUC), and odds ratio (OR). A P value <0.05 was considered statistically significant.
Results: After adjusting, there was a significant difference in the odds of csPC (OR = 3.78, 95% confidence interval [CI]:
2.32–6.16). Further, PAG showed a significantly larger bootstrapped AUC to discriminate between csPC and non-csPC
than that of adjusted PI-RADS ≥ 3 (AUC = 0.981, 95% CI: 0.975–0.987).
Data Conclusion: PAG may be associated with the risk of csPC and could outperform other PC risk factors.
Level of Evidence: 3
Technical Efficacy: Stage 3

J. MAGN. RESON. IMAGING 2023.

Population-based unorganized screening for prostate cancer
(PC) has commonly relied on prostate-specific antigen

(PSA) levels in serum for an initial risk assessment of PC.1,2

Typically, elevated PSA levels are used to refer patients to a
systematic or transrectal ultrasound-guided biopsy and have
been associated with a decrease in PC mortality.3 However,
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no general consensus exists regarding the threshold to define
abnormal PSA levels.3,4 Further, the associations with over-
detection of low-grade PC (Gleason score ≤6) and subsequent
unnecessary testing practices, treatment, and related complica-
tions have resulted in the absence of governmental bodies rec-
ommending organized PC screening solely relying on PSA
testing.4,5

Over the last decade, multi-parametric magnetic reso-
nance imaging (mp-MRI) has emerged as an important com-
ponent for PC detection, staging, treatment planning, and
intervention.6,7 Some studies have highlighted its benefits in
PC screening practices by reducing the number of low-grade
PC patients referred to biopsies.8,9 In most cases, positive
prostate MRI findings are defined on the basis of the Prostate
Imaging-Reporting and Data System (PI-RADS) v2.1 scoring
system.10 PI-RADS ≥ 3 is commonly considered the cut-off
to refer a patient to a biopsy, based on a probable presence of
a clinically significant PC (csPC, Gleason score ≥7).10 Never-
theless, PI-RADS v.2.1 has been reported to suffer from low
levels of interobserver and intraobserver agreements due to
the subjective definition of the different PC lesion
categories.10,11

To overcome PI-RADS v.2.1 limitations in estimating
csPC risk occurrence, different models have been proposed
combining the MRI score with known PC risk factors such as

prostate volume, PSA, PSA density (PSAd), and patient chro-
nological age.10–13 The latest is commonly included under
the assumption that it might be representative of the aging
process of the patient.14,15 However, it has been argued that
chronological age alone is not sufficient to capture the pro-
cess, and that more reliable biomarkers of aging might be
needed.16,17 In that regard, medical imaging can display phe-
notypic changes at the organ level that might be useful to
measure age-related changes associated with transitions into
pathological states.17,18 Although some research has explored
the use of images such as chest radiographies to estimate the
age of the patient with the help of deep learning (DL),19,20

the relationship between aging and prostate MRI has yet to
be explored.

Against this background, we aimed to obtain a surro-
gate biomarker of aging from prostate MRI of “healthy”
participants (low-grade and negative biopsy-confirmed) using
DL. Moreover, we aimed to investigate the relationship
between the proposed aging biomarker and the csPC risk
occurrence in an unseen cohort of patients with biopsy-
confirmed PC diagnosis (csPC, negative, and low-grade).
We hypothesized that our proposed prostate MRI surrogate
biomarker of aging might be associated with an increased
risk of csPC occurrence independently of other PC risk
factors.

FIGURE 1: Patient inclusion criteria.
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Materials and Methods
Institutional review boards (IRBs) of all the centers contributing to
the data used for the purpose of the study waived the need for
informed patient consent, conditioned to a retrospective and scien-
tific use.21

Study Design
The prostate imaging: cancer artificial intelligence (PI-CAI) is a col-
lection of retrospectively collected prostate MRI exams to validate
modern AI algorithms and to estimate radiologists’ csPC detection
and diagnosis performance.21 Patient exams were collected on the
basis of suspected csPC due to elevated PSA levels and, in some
cases, abnormal digital rectal examination (DRE) findings. Patients
included in the study did not have a history of previous treatment or
prior biopsy-confirmed csPC findings.

The main study of PI-CAI consists of 1500 T2-weighted
(T2w) and diffusion-weighted (DW) MRI exams collected from four
different centers and two MRI vendors. Out of the publicly available
sequences, 425 cases have biopsy-confirmed csPC, from which
220 were annotated at the pixel level by one trained investigator or
one radiology resident under the supervision of one expert radiolo-
gist, for the purpose of the publicly available dataset. Annotations
were obtained with the open-source ITK-SNAP v3.80 software
(http://www.itksnap.org/).21 Clinical and demographic variables
including PSA levels (ng/mL), prostate volume (mL), PSAd
(ng/mL2), Gleason scores, PI-RADS scores, and patient

chronological age (years) could be obtained from the available clini-
cal information and patient enrollment process or were provided
together with the sequences when a value was reported during clini-
cal routine.21

Data and Preprocessing
We used axial T2w spin sequences acquired from 2012 to 2021,21

together with their paired prostate whole gland masks. Images were
acquired with either Siemens (Siemens Health Engineers, Erlangen,
Germany) or Philips (Philips & Co, Eindhoven, the Netherlands)
scanners with time to echo (TE) ≤90 msec, repetition time
(TR) ≥3000 msec, and in-plane resolution of 0.5 mm � 0.5 mm
and 3 mm slice thickness and with a surface coil.10,21 The T2w
MRI exams were included in the study on the basis of biopsy-
confirmed (systematic, MRI-guided or a combination of both) csPC,
low-grade, and negative cases. For the remainder of the article and
unless otherwise stated, we consider non-clinically significant PC
(non-csPC) to include both biopsy-confirmed low-risk PC and nega-
tive biopsy-confirmed MRI exams.

Patients with missing clinical, demographic data, human
annotations, or faulty annotations at the time the study was per-
formed were discarded. Further, only baseline visits were considered,
where baseline is defined as the first visit of the patient when multi-
ple visits for the same patient were available. Figure 1 shows the
inclusion criteria of the study. After following the inclusion criteria,

FIGURE 2: Pre-processing including normalization and prostate gland cropping.
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468 participants (221 negative, 133 low-grade, and 114 csPC) were
included in the study.

The multi-center and multi-vendor nature of the data used in
the study led to noticeable visual differences in the sequences. To
palliate them, we normalized the pixel intensity range and applied a
cropping around the prostate gland using the available prostate
masks. To avoid edge cases where parts of the prostate gland could
be omitted due to restrictive mask ranges, we extended the cropping
area 40 pixels in the horizontal and vertical directions.22 Figure 2
depicts an example of an original sequence and the result following
the pre-processing steps.

Deep Learning for Chronological Age Prediction
With the aim of capturing patterns that are manifested as part of a
normal aging process,17,18 we trained a DL model to predict the
chronological age of non-csPC patients. For that purpose, we trained
the DL model with 354 non-csPC (221 negative and 133 low-grade)
patient T2w axial MRI exams out of the original 468 (354 ncsPC
and 114 csPC) exams included in the study. Figure 3 depicts the
development and testing process of the DL model, including data
splitting.

To train the DL model, we started by splitting the 354 non-
csPC (221 negative and 133 low-grade) patient T2w MRI exams
stratifying by PSA levels and non-csPC sub-group (i.e., negative or
low-grade). The splitting was performed at the patient level to avoid
cross-contamination and in a 60%/40%, to obtain the non-csPC
training dataset and non-csPC test dataset. The process resulted in
212 non-csPC (131 negative and 81 low-grade) patient T2w MRI
exams included in the training set and 142 non-csPC in the test set
(90 negatives and 52 low-grade), respectively. Finally, we combined
the 142 non-csPC test patient exams with the 114 csPC patient
exams that were reserved for testing purposes to obtain the final test
set (Fig. 3). Table 1 depicts the baseline characteristics of the non-
csPC training set whilst Table 2 depicts the characteristics of the
testing set including non-csPC and csPC patients.

To maximize the amount of data available for training, we
trained the model at the slice level. That is, we used two-
dimensional (2D) slices from each patient’s T2w exams as inputs of

FIGURE 3: Technical approach to the project.

TABLE 1. Baseline Characteristics of Non-csPC
(Negative and Low-Grade) Biopsy-Confirmed
Participants Used to Train the DL Model

Characteristic Non-csPC (N = 212)

Age (years) 64.78 � 6.67

PAG (years) �2.98 � 0.03

PSA (ng/mL) 11.90 � 17.70

PSA > 3 ng/mL -

Yes 204 (96.22)

No 8 (3.78)

Prostate volume (mL) 60.29 � 30.05

PSAd (ng/mL2) 0.228 � 0.442

PI-RADS ≥ 3 -

Yes 146 (68.37)

No 66 (31.13)

Biopsy type -

Systematic 66 (31.13)

MRI guided 108 (50.94)

MRI (+systematic) 38 (17.93)

Non-csPC = Gleason score ≤6 and negative cases;
PAG = prostate age gap; PSA = prostate-specific antigen;
PSAd = prostate-specific antigen density; PI-RADS = Prostate
Imaging-Reporting and Data System.
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the DL model. The approach resulted in 3223 non-csPC 2D inputs
available during training. We chose a ResNet3423 as the DL model
based on its simplicity and performance in similar tasks.24 Rotation
and flipping data augmentations were used in an online fashion with
probability P = 0.5 at training time.22,25

During testing, we defined prostate age gap (PAG) as the
residual obtained from subtracting the chronological age from
the estimated DL of the patient. We considered PAG to be a
MRI surrogate marker of normal aging of the patients. We work
under the assumption that the model is able to successfully
extract patterns from the non-csPC MRI exams, and that they
are representative of a normal aging process. Hence, during test-
ing, a big residual between the estimated model age and the
chronological patient age (PAG) can be indicative of the pres-
ence of processes captured by the patient’s MRI examination
that are not associated with a normal aging process in the PC
context.

The model was trained with a 5-fold cross validation (CV) for
120 epochs, where we aimed to minimize the mean absolute error
(MAE) between the DL model estimated age and the chronological
patient age. In every fold, the validation loss was closely monitored
and the one reaching the minimum in the 120 epochs was saved
and used to report the MAE at the slice level for the fold under

consideration. Model training and validation was carried out on an
NVIDIA A100-80G GPU (NVIDIA Corporation, Santa Clara,
California, USA).

Evaluation
We evaluated PAG using the independent test dataset including
142 non-csPC (90 negative and 52 low-grade) and 114 csPC patient
MRI examinations. Due to the MRI slice-level design of the DL
model, PAG was obtained for each patient slice. We calculated the
PAG at the patient level by averaging the PAG slice values belonging
to each patient’s MRI exam, resulting in a unique PAG per patient.
Figure 3 depicts the calculation process followed for every patient
MRI exam.

Statistical Analysis
All analyses were performed in Python 3 (https://www.python.org/
downloads/) with the open-sourced statsmodels 0.14.0 module
(https://www.statsmodels.org/stable/index.html). We reported con-
tinuous variables as mean and standard deviation (mean � SD),
whilst categorical variables were reported as number of occurrences
and percentage (N [%]). We performed unpaired t-test, Mann–
Whitney U tests, and permutation tests where appropriate to assess
the statistical significance of the differences between csPC and non-

TABLE 2. Baseline Characteristics of Non-csPC (Low-Grade and Negative) and csPC Biopsy-Confirmed Participants
Used to Evaluate PAG

Characteristic

Group

P ValueNon-csPC (N = 142) csPC (N = 114)

Age (years) 66.86 � 7.39 67.08 � 6.42 0.802

PAG (years) �4.11 � 0.32 4.53 � 2.22 <0.001*

PSA (ng/mL) 11.91 � 12.79 13.96 � 10.11 0.163

PSA > 3 ng/mL - 0.998

Yes 137 (96.47) 111 (97.36)

No 5 (3.53) 3 (2.64)

Prostate volume (mL) 65.78 � 38.26 54.39 � 26.60 0.007*

PSAd (ng/mL2) 0.213 � 0.244 0.303 � 0.239 0.003*

PI-RADS ≥ 3 - 0.003*

Yes 96 (67.60) 96 (84.21)

No 46 (32.39) 18 (15.78)

Biopsy type - 0.740

Systematic 46 (32.39) 18 (15.78)

MRI guided 74 (52.12) 94 (82.46)

MRI (+systematic) 22 (15.49) 2 (1.76)

Non-csPC = low-grade (Gleason score ≤6) and negative cases; csPC = clinically significant (Gleason score ≥7); PAG = prostate age gap;
PSA = prostate-specific antigen; PSAd = prostate-specific antigen density; PI-RADS = Prostate Imaging-Reporting and Data System.
*P values <0.05 were considered statistically significant.
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csPC groups. Multivariate logistic regressions were used to estimate
the odds ratio (OR) and association between PAG and risk of csPC,
and in a discriminative modeling approach to assess the performance
differentiating between csPC and non-csPC groups of PAG.

We started by presenting a descriptive analysis in the test
dataset of the demographic, clinical, and PAG for csPC and non-

csPC groups. Following, we introduced PAG as a continuous vari-
able (years) and considered different scenarios with a univariate anal-
ysis, partially adjusted, and fully adjusted models. In particular, we
presented Model I unadjusted and Model II adjusted by age (years),
volume (mL), and PSA (ng/mL). Model III was adjusted by age
(years), volume (mL), PSA (ng/mL), and PI-RADS ≥ 3. Both Model

FIGURE 4: Prostate age gap (PAG) distributions for the non-csPC (negative and low-grade) and csPC patients in the test set.

TABLE 3. Odds Ratio in Univariate and Multivariate Analysis of PAG and csPC

Model Adjustment

PAG (1-Year Increase)

OR 95% CI P Value

I (unadjusted) - 3.07 [2.15, 4.38] <0.001*

II (adjusted) Age, volume, and PSA 3.77 [2.33, 6.11] <0.001*

III (adjusted) Age, volume, PSA, and PI-RADS 3.78 [2.32, 6.16] <0.001*

IV (adjusted) Age and PSAd 3.61 [2.31, 5.64] <0.001*

V (adjusted) Age, PSAd, and PI-RADS 13.18 [2.88, 60.28] <0.001*

VI (adjusted) Age and PI-RADS 3.15 [2.17, 4.58] <0.001*

PAG = prostate age gap; PSA = prostate-specific antigen; PSAd = prostate-specific antigen density; PI-RADS = Prostate Imaging-
Reporting and Data System.
*P values <0.05 were considered statistically significant.
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II and Model III were intended to provide a hypothetical standard
PC screening scenario accounting for PSA and PI-RADS ≥ 3 along
with the chronological age of the patient. Model IV and Model V
considered a case scenario where PSA (ng/mL) and volume (mL) in
Model II and Model III were replaced with PSAd (ng/mL2). Finally,
Model VI considered a PC-screening scenario based on age and PI-
RADS ≥ 3 as adjusting factors.

We used a multivariate logistic regression to estimate the dis-
criminative value of PAG adjusted by PSA (ng/mL), prostate volume
(mL), and chronological patient age (years). Following, we compared
its discriminative ability with PI-RADS ≥ 3 adjusted by PSA
(ng/mL), prostate volume (mL), and chronological patient age
(years), simulating common screening PC pathways. Predictive per-
formance was measured in terms of area under the curve (AUC) for
the risk of occurrence of csPC. We obtained an estimate of AUC
through bootstrapping of the test set with N = 1000 replicates with-
out repetition. Confusion matrices are presented together with AUC
for specific false positive rates (FPRs) chosen to emulate commonly
reported PC FPRs.21 A P value <0.05 was considered statistically
significant.

Results
A total of 212 non-csPC participants at baseline
(64.78 � 6.67 years) were considered for the DL model

training. Table 1 depicts the baseline characteristics of the
participants. During testing, we considered 114 participants
with biopsy-confirmed csPC (67.08 � 6.42 years) and
142 non-csPC (66.86 � 7.39 years) participants who were
not included in the DL model training. As depicted by the
baseline characteristics in Table 2, both groups of participants
were equally distributed in terms of age. However, csPC
patients were more likely to have a higher PSA level, less
likely to have a larger prostate, and more likely to have a
larger PSAd level. As it can also be seen in Table 2, PAG was
more likely to be substantially larger and positive for csPC
patients. Figure 4 depicts the PAG distributions for csPC and
non-csPC patients in the final test dataset.

Table 3 shows the different univariate and multivariate
logistic regression models adjusted for chronological age
(years), PSA (ng/mL), prostate volume (mL), PSAd (ng/mL2),
and PI-RADS score. As observed in the univariate model
(model I), there was a significant difference in the odds of
csPC (OR = 3.07, 95% confidence interval [CI]:
[2.15, 4.38]).

When partially adjusting Model I by PSA and volume
of the prostate (Model II), there was a significant difference
in the adjusted OR per 1-year increase of PAG of csPC

FIGURE 5: Multivariate logistic regression and discriminative ability of prostate age gap (PAG) and PI-RADS ≥ 3 when adjusted by
PSA, prostate volume, and chronological age.
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(OR = 3.77, 95% CI: [2.33, 6.11]). Therefore, we consid-
ered a fully adjusted model (Model III) accounting for PI-
RADS ≥ 3 and found that the significant difference in the
adjusted OR of csPC was kept (OR = 3.78, 95% CI:
[2.32, 6.16]).

In Model IV, we found that the adjusted OR still
remained associated with csPC risk (OR = 3.61, 95% CI:
[2.31, 5.64]) when adjusting by PSAd (ng/mL2) and chrono-
logical age (years). Finally, in Model V, we found an association
between the adjusted OR per 1-year PAG increase and csPC
risk (OR = 13.18, 95% CI: [2.88, 60.28]) when adjusting by
PI-RADS ≥ 3 and chronological patient age (years).

We compared the discriminative ability of PAG and PI-
RADS ≥ 3 adjusted. Figure 5 depicts the bootstrapped AUC of
both models, with a significant improvement for the PAG-
adjusted model when compared to the PI-RADS model
(AUC = 0.981, 95% CI: [0.975, 0.987]; AUC = 0.704, 95%
CI: [0.652, 0.756]).

As depicted in Fig. 6, we observed a trade-off of a low
FPR at the expense of missing 50% of csPC cases in the case
of adjusted PI-RADS ≥ 3 and when operating under a FPR
of 0.30. In the case of adjusted PAG, we observed that the
model was able to detect all the csPC cases when operating
at a 0.05 FPR. Figure 7 shows the consistently positive values

FIGURE 6: Confusion matrices for multivariate logistic regression and prostate age gap (PAG) when adjusted (FPR @ 0.10), PI-RADS
adjusted (FPR @ 0.30), and PI-RADS unadjusted (FPR @ 0.60).
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in the distribution of PAG for the csPC patients with
PI-RADS ≤ 2 and PI-RADS ≥ 3.

Discussion
In this retrospective study, we proposed PAG as a surrogate
biomarker of patient aging from prostate MRI. Our retrospec-
tive study provides some degree of evidence of the independent
association of 1-year increase in PAG and the odds of csPC
when adjusted by PSA (ng/mL), prostate volume (mL), and
chronological patient age (years). Further, we evaluated the dis-
criminative ability of PAG to distinguish between csPC and
non-csPC (negative and low-grade) biopsy-confirmed exams in
a multivariate logistic regression when adjusting by the same
risk factors. Our results support the hypothesis that PAG is
independently associated with csPC risk even in the presence
of PSA and PI-RADS ≥ 3, two of the most used markers for
PC unorganized population-screening practices.26–28

Previous studies in the literature have tackled the csPC
detection from MRI leveraging DL techniques, yielding
AUCs in the range of 0.82–0.89.22,29–31 Despite not being
directly comparable, our results suggest that the efficacy of
PAG to detect csPC occurrence might fall within the interval
or even surpass that of other DL studies.22,29,30 In contrast to
those studies, our approach might benefit from being less

opaque.17,32 In particular, the concept of aging might be
more relatable and interpretable whilst DL approaches might
suffer from an inherent lack of interpretability and transpar-
ency.22,29,30,32 In that perspective, the hypothetical clinical
deployment and routinely use of a non-interpretable and
non-transparent approach can pose more ethical and practical
challenges than a more transparent and interpretable alterna-
tive.32,33 Further, as reflected by our internal test results and
based on the multi-center and multi-vendor data used to
develop the study, PAG might be a robust marker in the
presence of heterogenous data sources.21

With the increase in interest in MRI as a central com-
ponent of the PC diagnostic pathway,9,27,28 PAG might offer
a reader-independent MRI risk occurrence marker of
csPC.10,11 In that regard, we show that PAG may help to
detect csPC presence even in the event of PI-RADS ≤ 2.11 As
depicted by our multivariate logistic regression analysis, PAG
might be complementary to commonly used risk factors of
csPC such as prostate volume (mL), PI-RADS ≥ 3, PSA
(ng/mL), and PSAd (ng/mL2).10,12,29–31 Our results indicate
that PAG might be suggestive of phenotypical changes in the
prostate MRI that are not associated with a normal patient
aging process and that other PC risk factors might not be able
to capture.16,17

FIGURE 7: Prostate age gap (PAG) distribution for PI-RADS ≤ 2 and PI-RADS ≥ 3 biopsy-confirmed csPC patients.
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Limitations
The study had several limitations. First, our study was limited
by the small sample size and its retrospective nature. Future
studies including external evaluations of the DL algorithm are
required to verify our findings and assess the clinical value.
Additionally, further validation using prospective data would
be desirable to confirm causality. Second, the design of the
best DL algorithm for chronological age estimation was con-
sidered to be out of the scope of this study. Hence, future
studies will tone to improve and validate the algorithm.
Finally, we did not compare our DL model with other bio-
logical age markers (eg, epigenetic clocks) or with DL models
trained on the same data to directly predict Gleason score
from MRI images. Future comparisons might provide addi-
tional insights about our DL model and approach.

Conclusion
In conclusion, we developed a DL model that uses prostate
T2w MRI exams to estimate the age of the patients. We pro-
posed PAG, defined as the difference between the DL model
estimated age and the chronological patient age as a surrogate
biomarker of aging. We found that the PAG of patients with
known csPC was higher than those without it, reflecting that
the DL patient estimated age was higher than the chronologi-
cal patient age. Our DL model could potentially serve as an
indicator of the presence of atypical phenotypical changes in
the prostate that are not associated with a normal aging pro-
cess and could help improve biopsy referral in organized PC
screening initiatives.
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