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A B S T R A C T   

Given the complexity of Parkinson's disease (PD), achieving acceptable diagnostic and prognostic accuracy will 
require the support of a panel of diverse biomarkers. We used Proximity extension assays to measure a panel of 
92 proteins in CSF of 120 newly diagnosed PD patients and 45 control subjects without neurological disease. 
From 75 proteins detectable in the CSF of >90% of the subjects, regularized regression analysis identified four 
proteins (β-NGF, CD38, tau and NCAN) as downregulated in newly diagnosed PD patients (age at diagnosis 67.2 
± 9.4 years) compared to controls (age 65.4 ± 10.9 years). Higher tau (β − 0.82 transformed MMSE points/year, 
95% CI − 1.37 to − 0.27, P = 0.005) was also linked to faster cognitive decline over the first ten years after PD 
diagnosis. These findings provide insights into multiple aspects of PD pathophysiology and may serve as the 
foundation for identifying new biomarkers and therapeutic targets.   

1. Introduction 

Parkinson's disease (PD) is a common, progressive, and disabling 
neurodegenerative movement disorder characterized by cardinal motor 
symptoms and a combination of secondary motor symptoms and non- 
motor symptoms (de Lau and Breteler, 2006; Jankovic, 2008). Patho
logically, the disorder is defined by degeneration of the substantia nigra 
and the presence of Lewy bodies, which contain abundant amounts of 
α-synuclein. 

The diagnosis of PD is mainly based on the clinical findings of resting 
tremors, bradykinesia and rigidity, and the exclusion of other disorders. 
Accurate diagnosis is challenging, especially early in the disease course 
when the clinical picture has not yet developed fully. Accordingly, 
although clinical diagnosis after several years of follow-up correlates 
highly with neuropathological diagnosis upon post-mortem examina
tion, the accuracy of the initial diagnosis can vary greatly (Adler et al., 
2014; Rizzo et al., 2016). Correct, early diagnosis is crucial for patient 
care and for meaningful research studies and clinical trials, and the 

current diagnostic precision emphasizes the need for new biomarkers to 
improve early diagnosis. 

Given the complexity of PD, it is unlikely that a single biomarker can 
provide sufficient accuracy to diagnose PD and a combination of bio
markers will be required to improve diagnostic and prognostic accuracy. 
In this study, we aimed to identify novel diagnostic protein biomarkers 
of PD using multiplex proximity extension assay (PEA) technology to 
analyse a panel of 92 candidate neurological biomarkers. PEA multiplex 
immunoassays are based on a dual-recognition approach using matched 
pairs of antibodies labeled with complementary DNA oligonucleotide 
tags for quantitative real-time PCR-based measurement. Further, we 
explored the value of the candidate biomarkers as prognostic markers of 
PD progression. 
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2. Methods and data availability 

2.1. Study participants and clinical assessments 

Patients were from the Norwegian ParkWest study that recruited 
participants from 2004 to 2006 to investigate the incidence, neurobi
ology and prognosis of PD (Alves et al., 2009). The PD group consisted of 
121 newly diagnosed, mostly drug-naïve patients (n = 120). PD was 
diagnosed according to the UK brain bank criteria (Daniel and Lees, 
1993), omitting the family history criterion. Study data up to the 9-year 
visit was available. The mean follow-up period was 7.9 ± 2.3 years 
(Supplementary Fig. 1). Before the last clinical visit, 28 (23.3%) par
ticipants died and 3 (2.5%) were lost to follow-up. The control group 
was a set of 45 participants without known brain disease who underwent 
elective neurological examination or orthopaedic surgery at Stavanger 
University Hospital. 

General medical and neurological examinations and semi-structured 
interviews were performed at baseline to obtain medical, drug and 
family history. For this study, we included the Hoehn and Yahr (H&Y) 
scale for disease staging (Goetz et al., 2004), the Unified PD Rating Scale 
(UPDRS) for assessment of ADL (part II) and motor function (part III) 
(Fahn and Elton, 1987), and the Mini-Mental State Examination (MMSE) 
(Folstein et al., 1975) for assessment of global cognition. MMSE was also 
available for the control subjects. H&Y and UPDRS were assessed at 
baseline (BL) and every year thereafter; MMSE was assessed at BL and 
the visits at year 1, 3, 5, 7 and 9. 

The Western Norway Regional Committee for Medical and Health 
Research Ethics approved the studies. All participants signed written 
informed consent. 

2.2. CSF sampling and processing 

Lumbar puncture and CSF collection was conducted according to 
standardized procedures after overnight fasting. Briefly, the freshly 
drawn CSF samples were centrifuged at 2000g for 10 min at 4 ◦C, and 
frozen in polypropylene tubes at − 80 ◦C. prior to analysis, the samples 
were subjected to two freeze–thaw events for aliquotation purposes. The 
median time from clinical diagnosis to lumbar puncture was 38 days 
(IQR 20.5–57.5). 

2.3. Neurology-related protein biomarker measurement 

The CSF samples were analysed blindly as one project at Olink 
Bioscience (Uppsala, Sweden) using Multiplex Proximity extension 
assay (PEA) technology (Assarsson et al., 2014; Lundberg et al., 2011). 
The Proseek Multiplex Neurology panel targets 92 biomarkers (Sup
plementary Table 1). Validation data are available online (www.olink. 
com/data-you-can-trust/validation). The data were pre-processed by 
Olink using the NPX Manager software and are expressed as normalized 
protein expression (NPX) values. NPX values are an arbitrary unit on a 
Log2 scale that can be used for relative quantification of the same 
protein. 

One sample failed quality control, leaving 120 PD samples and 45 
control samples. Assays with >10% values below the lower limit of 
detection (LLOD) were excluded from the analysis (n = 17 out of 92 
proteins; See Supplementary Table 1). For the remaining assays, all 
values including those below the LLOD were included. Also, a threshold 
was set for exclusion of individual participants with >10% of assays 
below the LLOD; applying this criterion, no subjects were excluded. 

2.4. Statistical analyses 

Group comparisons were performed using two-tailed independent 
samples t-tests (continuous, normally distributed data), Mann-Whitney 
U tests (continuous, not normally distributed data), and χ2-tests (cate
gorical data). Normality of the data was established using the 

Kolmogorov-Smirnov test. Regularized logistic regression with elastic 
net (EN) penalization was used to identify baseline PEA biomarkers 
associated with each disease group (Lange et al., 2014; Wei et al., 2013). 
EN analyses were performed in R version 4.2.1, using the glmnet- 
package version 4.1–6 (Friedman et al., 2010). The level of regulariza
tion parameter λ was chosen as the minimal λ that yielded prediction 
error estimated by leave-one-out cross-validation within one standard 
error from its minimal value. In the glmnet, the parameter α decides the 
balance between L1 and L2 regularizations, of which the former is the 
regularization used in Lasso regression and the latter is used in Ridge 
regression. The EN was repeated for all α from 0 to 1, with 0.01 in
crements. Non-zero estimated coefficients (β-values) throughout the 
entire range of α support the associations between relevant PEA bio
markers and disease status; the markers whose estimated β-values were 
non-zero across all α range were selected into the panel of candidates. 

Further analyses were performed using logistic regression models 
with AUC (area under the receiver operating characteristic (ROC) curve) 
and optimism-adjusted AUC measuring model's diagnostic accuracy. 
First, we evaluated the strength of each candidate biomarker using lo
gistic regression with the disease diagnosis as the outcome and the 
biomarker expression level, age, and sex as predictors. Second, we 
assessed the multicollinearity of the data in the selected panel using the 
variance inflation factor (VIF) and excluded the candidate with VIF > 5. 
A multiple logistic regression model was then evaluated with the disease 
diagnosis as outcome and all the remaining candidates as predictors, 
controlling for age and sex. ROC curves were constructed using R 
package pROC version 1.18.0 (Robin et al., 2011). Optimism-adjusted 
AUCs were calculated using the bootstrapping method with 2000 rep
lications to compensate overfitting of the models using the R package 
boot version 1.3–28 (Davison, 1997). The 95% confidence interval for 
optimism-adjusted AUC were obtained using Harrell's bias correction 
method with 2000 bootstrap samples (Harrell Jr et al., 1996; Noma 
et al., 2021). 

Linear mixed effects analyses performed in R package lme4 version 
1.1–31 (Bates et al., 2015) were used to study the relationships between 
the two outcome variables (UPDRS part III and MMSE score) and each of 
the candidate biomarkers, one at a time. The MMSE scores were trans
formed as described (Philipps et al., 2014). All models included the NPX 
value for each biomarker, time in years, the interaction between the NPX 
value and time, age, and sex as fixed effects. Models including MMSE 
also had education in years as a fixed effect. The random effects were the 
patient-specific intercepts and time slopes. The NPX value for each 
biomarker is in Log2 scale, meaning that a 1 NPX difference corresponds 
to a doubling of protein concentration. Analyses were corrected for 
multiple comparisons (n = 4 biomarkers) using the Benjamini–Hochberg 
false discovery rate (FDR) method at FDR < 0.05. For visualisation of the 
predicted slopes, patients were stratified into high and low biomarker 
level groups based on a cut off using the mean NPX value. 

Table 1 
Study characteristics.   

Controls PD P 

N 45 120  
Male, n (%) 22 (48.9) 77 (64.2) 0.074a 

Age at sampling, mean (SD) 65.4 (10.9) 67.2 (9.4) 0.317b 

Education, years, mean (SD) 11.0 (3.6) 11.2 (3.1) 0.743b 

H&Y score, median (IQR)  2.0 (0.5)  
UPDRS II, median (IQR)  8.0 (6.0)  
UPDRS III, median (IQR)  20.0 (14.0)  
MMSE, median (IQR) 29.0 (2.0) 28.5 (2.0) 0.011c 

Abbreviations: UPDRS III: Unified Parkinson's Disease Rating Scale part III; 
MMSE: Minimal-Mental State Examinations. 

a χ2-test 
b independent samples t-test. 
c Mann-Whitney U test. 
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3. Results 

3.1. Identification of PEA biomarkers associated with PD 

A total of 120 PD cases and 45 controls were included in the primary 
analysis (Table 1). The average age at diagnosis for the PD patients was 
67.2 ± 9.4 (s.d.) years. There were no significant intergroup differences 
regarding age at sampling, sex, or years of education between the two 

groups. Total MMSE score was as expected slightly lower in PD 
compared to the control group (P = 0.011). 

CSF samples from all participants were analysed using PEA for 92 
proteins from the predesigned Neurology panel. Seventy-five proteins 
that were detectable in the CSF of >90% of the subjects (Supplementary 
Table S1) were included in the analysis, and four of these were shown to 
be associated with PD across all levels of α in the EN analysis (Fig. 1). 
Specifically, lower levels of β-NGF, CD38, tau, and NCAN were each 

Fig. 1. Results of regularized regression with elastic 
net penalization for α-values between 0 and 1. 
Variables are ordered by strength of association from 
those negatively associated with PD (i.e., decreases 
risk) highlighted in blue to those positively associated 
with PD (i.e., increases risk) highlighted with yellow. 
The intensity of colour corresponds to the standard
ized coefficient value and reflects the strength of as
sociation. PEA biomarkers not associated with PD are 
white. The selected PEA biomarkers demonstrate a 
significant association across all levels of α.   
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associated with PD (Supplementary Fig. 2). The biological functions of 
the significant PEA markers are summarised in Supplementary Table 2. 
β-NGF was excluded from the full model for VIF >5 with tau, and the 
remaining 3-biomarker panel found to yield an optimism-adjusted AUC 
of 0.78 (Table 2). 

3.2. Association of PEA biomarkers with disease progression and cognitive 
decline in PD 

The association of the four candidate biomarkers for PD with disease 
progression and cognitive decline was analysed using linear mixed 
models to predict the impact of a 1 unit increase in biomarker level on 
annual changes in scores of motor and cognitive impairments over the 
first ten years of PD. Tau was associated with faster annual decline in 
cognitive function (β − 0.82 transformed MMSE points/year, 95% CI 
-1.37 to − 0.27, P = 0.005). NCAN was initially associated with faster 
annual decline in motor function (β 2.60 UPDRS III points/year, 95% CI 
0.31 to 4.89, P = 0.028), although this association was not significant 
after adjustment for multiple testing. No other significant associations 
were observed between repeated measures of clinical scores and the 
candidate biomarkers (Table 3). 

To further explore the changes in clinical scores linked to tau, pa
tients were stratified into two groups based on low or else high 
biomarker level using the mean NPX value as the cut-off value. The 
group with higher levels of tau (≥2.58 NPX) were predicted to experi
ence a larger annual decrease in MMSE scores (β − 1.4 transformed 
MMSE points/year, 95% CI -2.50 to − 0.32, P = 0.013; Fig. 2) compared 
to patients in the low level group. The estimated drop in MMSE score 
over 10 years from diagnosis was from around 29 to 28 points for pa
tients in the low tau group and from 29 to 25 points for those in the high 
level group. 

We further explored the association of the CSF tau biomarker with 

selected variables that have been linked to an increased risk of a 
cognitive dominant subtype of PD (Sauerbier et al., 2016; Williams-Gray 
et al., 2009). Higher levels of tau were associated with older age at 
diagnosis (≥72 years; p < 0.001), UPDRS part III score ≥ 25 (P = 0.046), 
and poor performance on the semantic fluency test (<20 words in 90 s; 
P = 0.006), but not with a lower pentagon copying score (p > 0.05) or 
with the non-tremor dominant (non-TD) motor phenotype, which was 
conversely associated with a lower level of tau compared to the TD 
group (P = 0.007; Supplementary Fig. 3). 

4. Discussion 

In this PEA study, we analysed a large set of prospectively followed, 
newly diagnosed PD patients and controls and identified a panel of four 
neurology-related proteins as candidate biomarkers of PD. Further, we 
identified tau (microtubule-associated protein tau) as a candidate 
prognostic marker of cognitive decline in PD. Together, these findings 
provide insights into biological processes implicated in PD and may 
serve as the foundation for the identification of diagnostic and prog
nostic biomarkers to improve patient care. 

Few studies have utilized PEA for PD (Jabbari et al., 2019; Santaella 
et al., 2020; Whelan et al., 2019). Earlier studies have included CSF but 
otherwise had notable differences in study design, including inclusion of 
PD patients from a specialized clinical setting (Santaella et al., 2020) or 

Table 2 
Association between PD diagnosis and a clinical/biomarker model.     

Full model,a PD vs NC 

Predictors OR 
(95% CI) 

P* AUC (95% CI) Optimism-adjusted AUC 
(95% CI) 

Age 1.07 (1.02; 
1.12) 

0.009 

0.81 (0.74 to 
0.88) 0.78 (0.72 to 0.87) 

Female 0.32 (0.13; 
0.74) 

0.008 

CD38 
0.59 (0.40; 
0.82) 0.003 

tau 
0.59 (0.34; 
0.99) 0.049 

NCAN 0.01 (0.00; 
0.25) 

0.013 

Abbreviations. PD: Parkinson's disease; NC: Normal control; OR: Odds ratio; CI: 
Confidence interval; AUC: Area under the curve. 

a ROC curves were constructed using the covariates (age and sex) and the 
biomarkers. 

Table 3 
Relationship between candidate biomarkers and predicted annual change in scores of motor and cognitive scales.   

UPDRS part III a MMSE a 

Scores Main effecta β (95% CI) P Interaction with timea β (95% CI) P b Main effecta β (95% CI) P Interaction with timea β (95% CI) P b 

Beta-NGF 0.22 (− 5.07 to 5.5) 0.934 − 0.04 (− 1.39 to 1.3) 0.950 0.49 (− 7.36 to 8.33) 0.904 − 1.65 (− 3.5 to 0.25) 0.091 
CD38 0.63 (− 0.57 to 1.83) 0.306 − 0.10 (− 0.40 to 0.20) 0.527 1.08 (− 0.71 to 2.88) 0.239 − 0.26 (− 0.68 to 0.17) 0.241 
NCAN − 8.95 (− 18.26 to 0.36) 0.062 2.60 (0.31 to 4.89) 0.028 − 6.94 (− 20.75 to 6.86) 0.326 − 2.97 (− 6.2 to 0.29) 0.077 
tau − 0.71 (− 2.340 to 0.92) 0.394 0.35 (− 0.05 to 0.75) 0.088 − 0.46 (− 2.88 to 1.96) 0.710 − 0.82 (− 1.37–0.27) 0.005 

Abbreviation: CI, confidence interval; MMSE, Minimal-Mental State Examinations; UPDRS III, Unified Parkinson's Disease Rating Scale part III. 
a Models adjusted for sex and age (UPDRS) and sex, age and years of education at baseline (MMSE). The main effect indicates the effect of a 1 unit increase in 

biomarker level on the intercept and the interaction with time indicates the effect of a 1 unit increase in biomarker level on the slope (change in value per year) of the 
model. 

b significant p values at p < 0.05 after BH correction are highlighted in bold. 

Fig. 2. Prediction of changes in Mini–Mental State Examination (MMSE) scores 
over time. 
Patients were grouped by biomarker level (low tau <2.58 NPX; else high). 
MMSE scores were transformed before plotting as described in the Methods. 
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only amyloid-negative PD patients (Whelan et al., 2019), markedly 
smaller cohorts (<50 PD) (Jabbari et al., 2019; Santaella et al., 2020), 
and the choice of different PEA panels. Finally, all previous studies 
recruited cross-sectional patients from different disease stages, making 
comparison of the results with our newly diagnosed cohort difficult. Our 
analysis identified four proteins that were differentially expressed be
tween newly diagnosed PD cases and controls. Of these, β-NGF has also 
been observed to be lower in PD in a study of 34 amyloid negative 
healthy controls compared to 119 amyloid negative PD patients (Whelan 
et al., 2019), and in a study comparing 44 PD and 25 controls (Santaella 
et al., 2020), although in the latter case the difference was not 
significant. 

We found that higher levels of CSF tau at the time of PD diagnosis 
were linked to a faster annual decline in global cognitive function. 
Several studies have explored the association between the levels of 
different CSF tau species and cognitive impairments in PD: Meta- 
analysis of cross-sectional studies has shown that CSF total tau (T-tau) 
and phosphorylated tau (P-tau) are elevated in PD patients with cogni
tive impairment compared with those without (Hu et al., 2017). Further, 
higher P-tau was associated with faster decline in some cognitive tasks in 
patients after levodopa treatment was initiated (Liu et al., 2015), whilst 
an increase in P-tau (Hall et al., 2016) or both T-tau and P-tau (Baek 
et al., 2021) has been linked to worsening or worse cognitive impair
ment, respectively. We further found that higher tau levels were linked 
to clinical and demographic factors associated with a cognitive domi
nant subtype of PD (Sauerbier et al., 2016; Williams-Gray et al., 2009), 
indicating that CSF tau may be a molecular biomarker to support sub
typing in PD. 

The tau protein is more commonly linked to other neurodegenerative 
diseases, most notably Alzheimer's disease (AD), in which increased CSF 
T-tau and P-tau along with decreased amyloid-β are well-established as 
biomarkers to support AD diagnosis (Jack Jr et al., 2018). Additionally, 
CSF T-tau levels rise in conditions marked by rapid neurodegeneration 
without tau or amyloid pathology, like Creutzfeldt-Jakob disease. They 
also increase in acute conditions such as stroke and brain trauma, 
correlating with the injury's severity and potentially serving as an in
dicator of neuronal damage. (Blennow and Zetterberg, 2018). Notably, 
as we observed in this study but distinctly different from AD, CSF tau is 
reported to be lower in patients with PD compared to healthy controls 
(Baek et al., 2021; Kang et al., 2013; Shi et al., 2011), suggesting 
different roles in the context of disease diagnosis and cognitive decline. 
One proposal is that an interaction between tau proteins and α-synuclein 
may limit the release of tau proteins into CSF (Baek et al., 2021; Parnetti 
et al., 2014). The complexity of the relationship between concomitant 
pathologies in PD is further illustrated by observations from the PPMI 
study: at baseline, PD patients had lower CSF tau levels compared to 
controls, however, tau levels were projected to increase at a faster rate in 
the PD patient group, particularly among those with cognitive impair
ment or low amyloid β levels (Baek et al., 2021). 

The new proteins identified in this study reflect broader biology than 
do those biomarkers classically studied in PD, such as α-synuclein, and 
can give new insights into the processes and pathways underlying 
neurodegeneration in early PD. The biological processes identified in 
this study were diverse (Supplementary Table 2), including neuronal 
adhesion and migration, insulin regulation and signal transduction. 
Importantly, some of these same pathways have been shown to be 
affected in PD and PD models in studies of genetic and gene expression 
data (Edwards et al., 2011; Jia et al., 2020; Kia et al., 2021; Lesnick 
et al., 2007; Yao et al., 2021), and three of these studies include NCAN 
and CD38 among their candidate genes (Jia et al., 2020; Kia et al., 2021; 
Yao et al., 2021), supporting the significance of our findings using PEA. 

The study has notable strengths. First, we included a well-defined 
prospective cohort of PD, diagnosed using accepted clinical criteria, 
and continued follow up ensured that patients did not subsequently 
develop signs suggestive of an alternative diagnosis. Further, the sam
ples were analysed in a blinded fashion and the PEA technology is very 

sensitive, permitting the measurement of small changes in proteins in 
biofluids. Given that our study was conducted in newly diagnosed pa
tients, this opens the possibility to detect small changes at the earliest 
clinical stages and the candidate biomarkers identified here may be 
promising prodromal biomarkers. Still, the study has some weaknesses. 
First, we did not have access to a validation cohort. Further, the control 
subjects were not followed longitudinally and so we were unable to 
analyse the association of the candidate biomarkers with cognitive 
function over time in this group. Finally, the MoCA is an alternative 
measure for assessing cognitive function with higher sensitivity to detect 
subtle cognitive deficits in PD patients than MMSE. However, when the 
ParkWest study began, the MoCA had not yet been validated (Dalrym
ple-Alford et al., 2010; Nasreddine et al., 2005). Consequently, the 
MMSE was initially included and later retained for consistency in follow- 
up visits. 

5. Conclusion 

In this work we identified a panel of PEA biomarkers that were 
different between patients with newly-diagnosed PD and controls. A 
combination of multiple CSF biomarkers reflecting multiple aspects of 
PD pathophysiology might enable earlier diagnosis and more accurate 
prognostic assessment in PD and have the potential to expand our un
derstanding of PD heterogeneity and staging. 
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