
IEEE JOURNAL OF . . . , VOL. XXXX, NO. XXXX, MONTH 20XX 1

A low-cost Wireless Body Area Network for
Human Activity Recognition in Healthy Life and

Medical Applications
Florenc Demrozi, Member, IEEE, Cristian Turetta, Member, IEEE, Philipp H. Kindt, Fabio Chiarani,
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Abstract—Moved by the necessity, also related to the ongoing COVID-19 pandemic, of the design of innovative solutions in the context
of digital health, and digital medicine, Wireless Body Area Networks (WBANs) are more and more emerging as a central system for the
implementation of solutions for well-being and healthcare. In fact, by elaborating the data collected by a WBAN, advanced classification
models can accurately extract health-related parameters, thus allowing, as examples, the implementations of applications for fitness
tracking, monitoring of vital signs, diagnosis, and analysis of the evolution of diseases, and, in general, monitoring of human activities
and behaviours. Unfortunately, commercially available WBANs present some technological and economic drawbacks from the point of
view, respectively, of data fusion and labelling, and cost of the adopted devices. To overcome existing issues, in this paper, we present
the architecture of a low-cost WBAN, which is built upon accessible off-the-shelf wearable devices and an Android application. Then,
we report its technical evaluation concerning resource consumption. Finally, we demonstrate its versatility and accuracy in both
medical and well-being application scenarios.

Index Terms—Wireless Body Area Network (WBAN), Human Activity Recognition (HAR), Sensors.
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1 INTRODUCTION

Wireless communication technologies have become ubiq-
uitous in our social and personal life, and the Internet of
Things (IoT) plays a key role in this context. In particular,
well-being and healthcare are emerging among the major
application fields that largely benefit from advances in the
IoT [1], [2], [3], [4]. A central part in such IoT-based scenarios
is played by Wireless Body Area Networks (WBANs), i.e.,
networks of sensors that work together to collect human
activity-related data [5], [6], [7], [8]. In particular, nowadays,
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WBANs are more and more emerging as the central system
for the implementation of new solutions in the context of
telemedicine and telehealth, moved by the necessity, also
related to the ongoing COVID-19 pandemic, of design-
ing approaches where clinical data are moved instead of
patients and physicians. In addition, WBAN benefits are
strongly linked to the emerging advent of new fields of
innovative medicine such as, for example, digital health
and digital therapeutics, where monitoring instruments in
controlled (i.e., healthcare structures) and uncontrolled (i.e.,
home environments) environments are required for the
long-term and in-depth monitoring and support of patients
[9].

A WBAN integrates various sensors or devices, called
nodes, depending on the purpose of the target system.
These nodes can be both heterogeneous or homogeneous,
depending on the type of data to collect, and they are
typically connected via short-range wireless technologies,
e.g., Bluetooth Low Energy (BLE), WiFi, or ZigBee [10], [1],
[11]. A central node, termed data aggregator or data collector,
acts as a gateway. It is usually realized by a computer,
smartphone, tablet, or a dedicated electronic device. The
primary function of the data aggregator is to coordinate the
other nodes and to forward data to a remote online server
for storage, processing, and analysis. Besides, it can also per-
form complex operations (e.g., executing pattern recognition
algorithms, providing stimulation, and performing feature
extraction) based on the WBAN configuration [8], [12].

The IEEE 802.15.6 standard categorizes WBANs into
medical and non-medical applications [12], [13], where the
first imply continuous data collection of the vital parameters
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(e.g., blood pressure, heart rate, movement, etc.) of a pa-
tient [13]. WBANs can be further categorized into wearable-
based (e.g., Shimmer, BioSensing, G-Walk1), and hybrid (i.e.,
wearables and camera-based, e.g., Vicon Nexus2) [14] sys-
tems. Despite these classifications, WBANs have a relevant
role in the Human Activity Recognition (HAR) research
field, since they can capture the physical and physiological
parameters of people and recognize their status in real-time.
Therefore, HAR-based algorithms can be used to realize
major personal and social benefits, especially in real-life
applications such as healthcare, elderly care, gaming and
sports [15], [16]. For example, thanks to their continuous
monitoring activity, WBANs integrated with HAR appli-
cations can act in real-time to prevent and avoid risky
situations, like falls of elderly [17], or freezing of gait (FoG)
in people with Parkinson’s disease [18], [19].

Most algorithms used for HAR rely on machine learning
methods that intrinsically need to be trained by using anno-
tated data, i.e., data collected from sensors that are labeled
with the information related to the activity/event of interest
performed/exhibited by the monitored subject.

Unfortunately, commercially available WBAN solutions,
as those cited above, are confined to collect and wirelessly
forward sensor data without providing any support for
assigning labels. In these cases, the expert (e.g., physician,
physiotherapist, neurologist) typically performs the data
annotation offline, by looking at the video recording of the
observed subject while he/she was wearing the system and
performing the activities of interest. A specific label is then
manually assigned to each time frame of the video. As the
video is captured by an external camera, the main problem
with this methodology is the lack of time synchronization
between the video stream and the data sensed by the
wearable system. The synchronization is, in fact, usually
performed manually by recording specific synchronization
movements of the subject, which can be identified both in
the perceived data and in the video. However, this is often
imprecise and prone to errors, leaving to discrepancies in
the annotated data that may negatively affect the training
of HAR algorithms. As a further drawbacks, additional
proprietary, cost-intensive software needs to be used for
data analysis, which further increases the cost of the entire
system.

Generally, multiple nodes are necessary for the im-
plementation of a WBAN. Consequently, the cost of the
hardware components can already become substantial. For
example, the cost of a single commercial WBAN node, such
as G-Walk, Shimmer, or BioSensing ranges from $ 300 to
$ 1000. In addition, a higher cost comes from the annual
subscription fee to the software suite, which the producers
offer to enable the analysis of the data collected by the
nodes. At this point, the overall cost of hybrid systems
that combine sensor data and synchronous video, like, for
example, Vicon Nexus, ranges from $ 4000 to $ 50000. These
costs often already exceed the budget of many studies,
especially when they are not driven by any commercial
interest. To elude them, researchers often attempt to de-
velop their own WBANs independently, instead of buying a

1. btsbioengineering.com, shimmersensing.com, biosensics.com
2. www.vicon.com

commercial one. However, designing a WBAN from scratch
is time-consuming and cumbersome. It requires in-depth
knowledge from different fields, such as electronics (e.g.,
computational modules, sensors, antennas), communication
technologies (e.g., BLE, WiFi, ZigBee), and software engi-
neering (e.g., C, Java, Python) [6], [20], [21]. Finally, such
“self-made” WBANs often suffer from poor performance,
e.g., in terms of battery lifetime, data quality, physical node
dimensions, and communication range.

To address the above issues, this work proposes a generic
and versatile WBAN that can be easily realized by ev-
erybody with low effort and at low cost. It is based on
a smartphone and widely-available, low-cost off-the-shelf
electronic devices. As we will demonstrate in four different
case studies in Section 5, the proposed WBAN achieves a
high performance, which is sufficient for professional needs.
Nevertheless, the proposed WBAN can be used in various
HAR scenarios beyond the ones considered in our studies.
The main characteristics of our WBAN can be categorized
into structural and computational properties. Concerning
the structural ones, the WBAN comes with the following
features:

• It is a low-cost solution (≈ $ 250 for an entire setup);
• It works for a long period of time (≈ 4 days) without the

need of recharging the battery of the wearable devices;
• It supports a practical communication range (≈ 30-50

meters);
• It has a negligible data-loss rate;
• It integrates both inertial and environmental sensors.

In terms of computational properties, the WBAN is charac-
terized by:

• Visual, audio and tactile stimulation capabilities;
• Edge computing of a rotation matrix, quaternion, pitch,

roll, and yaw;
• Support for preliminary run-time data annotation of the

examined human activities;
• Synchronized video recordings of the performed activ-

ities for offline data annotation refinement;
• No need for a continuous Internet connection, since the

WBAN can store the data and transmit them once the
connection is available.

Our WBAN has been extensively tested using different
configurations (i.e., number of standalone nodes, type
of the data aggregators, and sampling frequencies), and
used in different application scenarios, viz., i) post-stroke
rehabilitation, ii) postural evaluation, iii) Parkinson’s
disease, and iv) recognition of daily life motor tasks. In this
paper, we will provide an overview of all these application
scenarios, evaluating the WBAN performance in recognition
of daily life motor tasks in detail. The software architecture
of our WBAN is open-source and freely available for
scientific purposes, such that other researchers can create
their WBANs with low effort.

Paper Organization: The rest of the paper is organized
as follows. Section 2 details the proposed WBAN and its
integration in the context of a HAR framework. Section 3
presents an experimental evaluation of the WBAN, both
from a technical point of view, i.e., performance analysis, as
well as in terms of versatility and applicability to different
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Fig. 1. Overview of the HAR framework we set up for the experimental evaluation of the proposed WBAN as reported in Section 3. It is composed
of two layers: one for the data collection and one for the data analysis. The WBAN, in particular, implements the data collection layer.

scenarios in well-being and medical contexts. Section 4
reports the review of the state-of-the-art concerning existing
WBANs to highlight pros and cons with respect to our
proposal. Finally, concluding remarks are given in Section 5.

2 WBAN ARCHITECTURE

Our WBAN is integrated into a comprehensive HAR frame-
work, as depicted in Figure 1, which we adopted for the
experimental evaluation reported in Section 3. The frame-
work is composed of two main layers, the data collection layer
and the data analysis layer, communicating with each other
by using the IEE 802.11 (WiFi) protocol. The WBAN imple-
ments the data collection layer. While a detailed description
of the data analysis layer, is out of the scope of this paper,
we decided to present the WBAN integrated in the HAR
framework to better clarify its role and capabilities.

2.1 Data collection layer
The data collection layer, which corresponds to the pro-
posed WBAN, integrates four types of different nodes that
communicate through the BLE protocol:

1) A set of (wearable) standalone nodes, which perform data
collection, user stimulation through visual and audio
feedback, and edge computing;

2) A data annotation node, represented by an Android
smartphone;

3) A data aggregator node, also represented by an Android
smartphone, and

4) A smartwatch node to provide the user with tactile feed-
back stimulation.

2.1.1 Standalone node
The standalone node is based on the nRF52832 System
on Chip (SoC)3, the most advanced Nordic Semiconductor

3. nRF52832 web page.

nRF52 Series family member. The nRF52832 is a fully multi-
protocol SoC supporting Bluetooth 5, Bluetooth mesh, BLE,
Thread, Zigbee, 802.15.4, ANT, and 2.4 GHz proprietary
stacks. Furthermore, it uses a sophisticated on-chip adap-
tive power management system, achieving an exceptionally
low energy consumption. This SoC interfaces with various
electronic devices for perceiving different measurements of
the real environment. In our setup, the nRF52832 defines
the core of each WBAN standalone node. In particular,
we use the Nordic Thingy 52 IoT Sensors kit (based on
the nRF52832 SoC) shown in Figure 2, which integrates a
custom-developed firmware.

Besides the data directly measured by the integrated
sensors (i.e., accelerometer, gyroscope, compass, magne-
tometer, and gravity vector), the standalone nodes internally
computes the following motion-related information:

• Quaternion (Q);
• Rotation matrix (RM);
• Pitch, roll, yaw (P);
• Step counter (SC);
• Euler angles (EA).
A comprehensive view of the data collected and inter-

nally computed by the standalone node, with a sampling
frequency varying in the range 5 Hz–200 Hz, is shown in
Table 1. These data are transmitted through BLE to the
data aggregator node. Nevertheless, the standalone node
is also used to apply audio and visual stimuli to the user,
which are emitted, respectively, by the integrated LED and
audio device. This feature is of interest for implementing
coaching systems in medical applications and healthy sce-
narios, where the user must be alerted when some situations
happen (e.g., pill reminds for elderly, rhythmic stimulation
for mitigating the freezing of the gait in people with Parkin-
son’s disease, alarms for notifying correct/wrong posture in
rehabilitation, etc.).

Finally, to further extend the functionality of the WBAN,
we also integrated, as standalone node, a pair of smart
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TABLE 1
Overview of the data collected by the standalone nodes.

Node1 Nodei Noden max(n)=11 Data
Timestamp SC EA GV CH A[x,y,z] G[x,y,z] Q[a,b,c,d] P[p,r,y] . . . . . . label

12:10:11.015 2 35 -10.2 48 [1.2,3.2,0.4] [5.2,7.2,2.5] [1.1,2.2,3.3,4.4] [21,12, 8] . . . . . . walking
12:10:11.030 3 35 -10.2 49 [3.2,4.1,0.4] [7.3,8.1,3.4] [6.2,3.4,2.4,6.1] [ 1, 2, 5] . . . . . . stairs down

. . . . . . . . . . . . . . . . . .
19:10:23.000 623 22 -10.2 40 [5.3,8.1,0.4] [1.2,3.2,0.4] [5.3,3.2,7.1,8.2] [ 2,32,12] . . . . . . sitting

SC: Step counter EA: Euler angles GV : Gravity vector CH : Compass heading
A[x,y,z]: Accelerometer G[x,y,z]: Gyroscope RM[3×3]: Rotation Matrix Q[a,b,c,d]: Quaternion P[p,r,y]: Pitch, Roll, and Yaw

Fig. 2. Standalone node, Nordic Thingy 52 (5cm x 5cm x 1.5cm, 47 g).

glasses 4, which, in addition to the stimulation provided by
the Thingy 52, allow to add additional features in terms of
assisted reality for implementing coaching actions through
video stimulation.

2.1.2 Data annotation node
The data annotation node is represented by a smartphone
that runs an Android mobile application. It primarily al-
lows an external observer (e.g., physician, caregiver, family
member) to generate a dynamic list of activity labels (e.g.,
sitting, walking, standing still, climbing/descending stairs)
based on the application scenario to be associated with the
data sensed by the standalone devices. This node is also time
synchronized with the data aggregator node, whose camera
records the video of the subject while he/she performs the
required activity or exhibits the event of interest. Then, the
data aggregator synchronizes the video with the data col-
lected by the wearable sensors (i.e., the standalone nodes).
In this way, through a user-friendly application, the data
annotation node allows the external observer pre-assigning
labels, at run time, to the synchronized stream composed
of the video recording and the sensor data. Labels are then
directly sent to the data analysis layer and associated with
the data collected by the standalone nodes (see Column
Data Label in Table 1). This reduces the effort required
to manually annotate the data offline. However, being as-
signed manually, the preliminary labels may be not precisely
aligned in time with the observed human activity/event,
given that a small delay is reasonable between the moment
when the action of interest is performed by the monitored
subject and the moment when the label is assigned by the
external observer. Hence, the application of the data anno-
tation node allows the expert refining offline the times at
which every specific activity/event begins and ends, when
necessary. The need of this refinement phase depends on the

4. Wagooar webpage.

monitored activity/event. For example, if the monitoring
concerns daily life activities, such as walking, sitting, stairs
up, etc., the run time annotation is sufficient for the design
of accurate recognition models, since the annotation error
is negligible with respect to the duration of the action.
On the contrary, when FoG episodes in Parkinsonians are
investigated, a precise frame-by-frame data annotation is
required to avoid ineffective training of HAR algorithms.

Finally, the smartphone can be used to send, at real-time,
commands to the standalone nodes and the smartwatch
for activating, respectively, audio/visual and tactile/visual
stimulation for the target user. The appropriate repetition
frequency and duration of the stimulation can be adjusted.

2.1.3 Smartwatch node

The smartwatch node implements the role of a virtual
coach for helping the user in his/her “well-being/healthcare
path”. It runs an application that communicates with the
data aggregator and annotation nodes. The coaching ac-
tions are provided to the user by means of tactile and
visual stimulation, when the application realised a desired
situation occurs. Coaching actions can be customized and
configured by the external observer through his/her data
annotation node. For example, the external observer can
use the data annotation node to send a command that
activates the tactile stimulation on the smartwatch during a
rehabilitation session, to guide the patient. Complementary,
the smartwatch can start the stimulation on the basis of the
decision autonomously taken by the data analysis layer, ac-
cording to the automatic recognition of a risky or unwanted
behavior/situation.

Our WBAN is compatible with any smartwatch
running the WearOS operating system. During the WBAN
evaluation, as shown in Section 3, the following models of
smartwatches were tested: Ticwatch E2, S2, Pro, and Pro 25.

2.1.4 Data aggregator node

The data aggregator node is represented by a BLE-compliant
computing unit, like for example a smartphone, which runs
an application that behaves as a gateway between the data
collection layer and the data analysis layer. It uses the BLE
technology to communicate with the standalone nodes and
IEEE 802.11 (WiFi) to communicate with the data analysis
layer.

5. Ticwatch web page.
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TABLE 2
WBAN data aggregators profiling using Android Studio 4.1.2.

Honor 7S Galaxy S7 Edge Galaxy S9 Edge LG X Power 2 One Plus 6 RealMe 7 Pro Average
Frequency (Hz) 50 100 200 50 100 200 50 100 200 50 100 200 50 100 200 50 100 200 50 100 200
RAM (MB/h) 93 93 92 115 90 100 127 132 140 100 100 110 130 135 170 110 125 150 113 113 127

Storage (MB/h) 50 100 196 48 62 64 48 99 198 104 127 219 74 141 295 48 95 186 62 104 193
CPU (%) 35 46 55 27 32 38 19 21 23 40 50 50 10 16 25 10 10 15 23 29 34

Battery (mAh) 1150 1208 1389 432 432 432 360 360 390 225 450 630 320 322 322 250 315 450 456 515 602
Data loss (%) 0 0 0 0 44 67 0 0 0 0 0 0 0 0 0 0 0 0 0 7 11

Figure 3 shows an overview of the data aggregator appli-
cation running on an Android smartphone6. The application
provides complete control over the functionalities of the
standalone nodes and allows configuring them in terms of
the sampling frequency of each sensor and the type of data
to be acquired (i.e., inertial, environmental, or computed
on the edge). In addition, the application allows the user
recording a video synchronized with the data collected by
the standalone nodes. Therefore, the synchronized video can
be used later, by an experienced data annotator, during a
supervised data annotation process. Each data collection
session is identified by Subject ID, Session ID, and Task
ID (Figure 3(d)). The data aggregator itself is uniquely
identified by an ID that can be decided in the settings page
of the mobile app.

Figure 4 presents the communication dataflow between
the data aggregator and the rest of the nodes. Initially,
standalone, data annotator and smartwatch nodes establish
a synchronized connection with the data aggregator. The
standalone nodes perceive and transmit the data to the
data aggregator by using the BLE protocol. Meanwhile, the
external observer can assign labels to the collected data and
send stimulation commands to the user through the data
annotator node. Finally, the data aggregator periodically
forwards the received data to an external cloud database
where they can be elaborated by the data analysis layer.
If the communication with the cloud server is temporary
missing, the WBAN keeps going to perform its activity
and stores the collected data in the data aggregator node.
As soon as the communication is restored, all data are
transmitted to the data analysis layer.

In the current version of the WBAN, the data aggregator
can simultaneously connect up to 11 nodes, i.e., typically, 9
standalone nodes, 1 smartwatch node, and 1 data annotator
node; they became 9 for devices running an Android version
older than v11. Android has been chosen as the reference
platform for the data aggregator due to its low cost, ex-
tended community, and compatibility with several pattern
recognition libraries (e.g., Keras, Tensorflow, or Weka) that
allow the implementation of on-device HAR algorithms.

2.2 Data analysis layer

The data collected by the WBAN are transmitted over the
Internet to a remote cloud server as shown in Figures 1
and 4. On the server side, the data, in JSON format, are
saved into a NoSQL database for further processing. By
accessing to such a database, any kind of data analysis
workflow can be implemented, by integrating sophisticated

6. The data aggregator Android application can be obtained by filling
in the form at this link.

machine learning and deep learning-based approaches.
While the description of the data analysis layer is out of
the scope of this paper, for evaluating the versatility and
performances of our WBAN, we integrated the workflow
described in [22], and we made it open source and freely
available to the research community. It implements an
HAR framework composed of various sub-processing
steps (i.e., noise removal, segmentation, features extraction,
and normalization) and several classification models to
recognize human activities by exploiting the data collected
by the WBAN.

3 WBAN EVALUATION

This section, initially, presents the technical evaluation of the
WBAN concerning performance aspects such as data loss,
battery durability, RAM consumption, required storage, and
CPU usage, on different types of data aggregator nodes.
Then, the section elaborates on the WBAN versatility by
showing its actual use in various medical and non medical
application scenarios.

3.1 WBAN performance analysis
The characteristics of the data aggregator nodes used in our
experimental analysis are reported in Table 3. In particular,
we tested our WBAN with six distinct smartphone models
with different HW/SW and cost attributes.

For each model, Table 2 shows the RAM and storage
memory demand, the CPU usage, the battery usage, and
the data loss of the data aggregator over three test sessions 4
hours long, by using four standalone nodes with increasing
communication frequencies (50, 100 and 200 Hz).

During the experiments, the data aggregator node was
positioned on a tripod for smartphones at a height of 137
cm, with screen brightness of 50% and video-recording in
Full HD. Users wore the standalone nodes on their arms
and legs, and they performed activities of daily life (ADLs)
without any restrictions. The distance between the data
aggregator node and the standalone nodes varied between
2 and 27 meters in an indoor environment. Moreover, the
WBAN was tested up to a distance of 50 meters in an
outdoor environment, verifying that the connection was
never interrupted.

As shown, on average, at the maximum sampling fre-
quency (200 Hz), the RAM usage per hour is about 127
MB/h (max 170MB/h for the One Plus 6 at 200Hz), the
storage memory usage is about 193 MB/h (max 295 MB/h
for the One Plus 6 at 200Hz), the battery usage is about
602 mAh (it becomes 449 mAh by excluding the result of
Honor 7S, which is definitely underperforming), and the
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Fig. 3. Data aggregator mobile application: (a) Google playstore view (upon request), (b) scan for BLE devices, (c) discovered devices, (d) data
collection page, (e) collected data, and (f) settings page. More readable screen shoots of the application are visible at this link.
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TABLE 3
Characteristics of the tested data aggregator nodes.

Model RAM
(GB)

Storage
(GB)

Battery
(mAh)

Weight
(g)

Price
(€)

Android
version

Honor 7S 2 16 3020 142 78 8.1
LG X Power 2 2 16 4500 164 89 8.1

Galaxy S7 Edge 4 32 3600 157 179 8.0
RealMe 7 Pro 8 128 4500 182 240 11.0

Galaxy S9 4 64 3000 163 262 10.0
One Plus 6 8 128 3300 177 375 10.0

CPU usage is 34%. Finally, the data loss is 0% for the most
of the cases, with the exception of the Samsung Galaxy S7
Edge, which generated a high data loss rate due to the
Samsung Experience and Android version. To verify this,
we tested three different Samsung S7 Edge devices with
identical android versions but different Samsung Experience
versions and noticed that the latest (v9) Samsung experience
version presented a high data loss.

In more extended data collection sessions, we verified
that, on average, all the tested data aggregators could collect
data for at least 9 consecutive hours before exhausting the
battery charge. As indicated by the Android Studio Profiler
4.1.2, the battery consumption was mainly due to the screen
brightness (26%) and the BLE communication (38%).

Concerning the number of data collection nodes that the
data aggregator is able to manage concurrently, the tested
devices with Android versions older than v11 could connect

with up to 7 devices. Instead, smartphones running Android
v11 connected simultaneously with 11 devices.

Finally, we tested the energy consumption of the stan-
dalone nodes (i.e., the Nordic Thingy 52) sampling at the
maximum frequency (i.e., 200 Hz). They could efficiently
operate for more than three days without the need of
recharging the battery. The test was repeated 5 times, always
achieving the same results. The adoption of a lower sam-
pling frequency extended their battery lifetime consistently.

In summary, we can conclude that our WBAN performs
well with different data aggregator nodes, and it can op-
erate for a significant amount of time without requiring to
recharge the standalone nodes worn by the user.

3.2 WBAN versatility and easiness of use
A deep analysis concerning the wearability and usability of
the proposed WBAN requires it to be tested in a statistically-
relevant pilot study. The same is true concerning evaluating
the effectiveness and accuracy of machine/deep learning
algorithms fed by the data sensed through the WBAN
for well-being and healthcare applications. These kinds of
analyses are out of the scope of this manuscript and part
of our ongoing research. On the other hand, this section is
primarily intended to show the WBAN’s versatility in dif-
ferent scenarios. In addition, a preliminary understanding
of WBAN’s easiness of use, from the point of view of the
professional staff in the considered scenarios, is reported at
the end.

The versatility of the WBAN has been evaluated on the
healthy living and medical application scenarios reported
in Figure 5, in cooperation with neurologists, physiatrists,
kinesiologists, and computer engineers. Examples of its
application are detailed in the following paragraphs.

3.2.1 Healthy living
In the context of healthy living, we studied the application
of the WBAN for the analysis of motor activities and
postural evaluation.

Motor activities
The most popular motor activities addressed by the HAR
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Fig. 5. Example of application scenarios a) recognition of motor activity, b) postural evaluation, c) nose-finger, d) range-of-motion, e) FoG detection.

research field are standing, sitting, walking, running, going
up and down stairs. These activities are the primary motor
components of more complex instrumental or basic ADLs,
such as working, bathing, eating, sleeping, dressing, and
others. In these contexts, identifying the best performing
WBAN configuration (i.e., number of nodes, sampling fre-
quency, type, position, and orientation of the sensors) aims
to increase the reliability of the recognition task. Thus, we
tested our WBAN with several configurations, where the
standalone nodes were mounted on various locations of
the subject body to acquire different types of data. For
example, Figure 5(a) shows the position of standalone nodes
for recognizing traditional daily life motor activities, i.e.,
sitting, standing, walking, going up and down stairs and
opening doors. Figure 6(a) plots the accelerometer raw data
collected by the WBAN with this configuration, where it is
possible to clearly distinguish the patterns corresponding to
the aforementioned actions.

To further test this scenario, in addition to the accelerom-
eter row data, we extended the analysis by collecting a
dataset including also the values of the x, y, z axis for the
gyroscope and the compass embedded into the standalone
nodes. In particular, five standalone nodes were placed as
follows: a) one for each ankle, b) one for each leg (approxi-
mately 15cm up with respect to the knee), and c) one on the
low-back. The executed tasks were: 1) sitting, 2) standing
without moving the lower limbs, 3) lying down, 4) walking,
5) jumping, 6) going upstairs, and 7) going downstairs,
collected from 12 different subjects (5 females and 7 males).

A Convolutional Neural Network (CNN) model and
four conventional machine learning models, i.e., k-Nearest
Neighbour (k-NN), Decision Tree (DT), Random Forest (RF),
and Linear Discriminant Analysis (LDA) were fed on such
data obtaining the results shown in Table 4. The perfor-
mances are presented (w.r.t., inter- intra- train/test split
approach) in terms of specificity, precision, recall, and F1-
score. The models were tested by using two different time
window dimensions: 1 second and 2 seconds.

CNN and RF models produced the most accurate
results. However, the CNN has demonstrated to have less
computational overhead than the RF and it was simpler
to set up for on-device computing on the data aggregator
node. The RF model needs longer training time than the
CNN model, since it must test and compare a large number
of configurations before determining the optimal. Overall,
the performances achieved by all the tested models clearly

TABLE 4
Average specificity (spec), precision (prec), recall (rec) and F1-score

(F1-sc) results on the HAR classification models.

1 second 2 seconds
Model Spec Prec Rec F1-sc Spec Prec Rec F1-sc
CNN 89 87 90 90 98 89 89 89
k-NN 96 80 80 80 96 83 83 83

DT 95 75 75 75 96 78 79 79
RF 98 90 90 90 98 89 89 89

LDA 97 89 88 88 97 84 84 83

show that the data collected through the WBAN provide
qualitative information concerning the seven studied
activities.

Postural evaluation
Postural evaluation is an essential part of gait and posture
correction in sport science, and physical and rehabilitation
medicine. Different laboratory devices and instruments for
quantifying postural stability are part of the state-of-the-
art. However, these systems present many limitations re-
lated to availability, accessibility, cost, size, intrusiveness,
and usability. In addition, they may suffer from a time-
consuming set-up process. In this application scenario, we
have used our WBAN to study the anticipatory movements
that are not visible by external observers. The aim is to dis-
tinguish among different postural indicators to identify the
minimum requirements that the low-cost wearable system
must possess and the optimal position of the sensors on the
human body.

Figure 5(b) shows the application of the experimental
setup we created to simultaneously use the state-of-the-art
Vicon Motion Capture system7 and our WBAN (standalone
nodes are indicated by the white circles on the body). The
WBAN has been used to measure the postural and gait sta-
bility of human subjects and to provide them with feedback
for improving posture and gait in sport performance for
athletes, motor activity for elderly, and also rehabilitation
for people affected by neurological diseases. The goal was
to compare the results obtained by analyzing data collected
through the Vicon system and the data collected by the
WBAN. For such purpose, the data streams of the WBAN
and Vicon were synchronized through a synchronization
movement recorded on video.

For this study, we have collected data from 14 different

7. Vicon web page.
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subjects. Figure 6(b) shows how the row accelerometer data,
sampled by the WBAN, allowed us to distinguish among
the initial position, the anticipatory signal, the movement,
and the return to the recovery position, by using a classifi-
cation model implemented in the data analysis layer.

3.2.2 Medical applications

In the context of medical applications we evaluated the
WBAN for post-stroke rehabilitation and for mitigating the
freezing of the gait in people with the Parkinson’s disease.

sitting, walking, stairs down,
stairs up, standing, ◦ opening door

(a) recognition of ADL’s

initial position, recover,
anticipatory movement, movement

(b) postural evaluation

initial position, approaching nose,
back to initial position, ◦ touching nose

(c) nose-finger

initial position, ◦ max height,
acceleration, deceleration

(d) range-of-motion

standing, walking, FoG

(e) FoG detection

Fig. 6. Example of raw signal, x-axis acceleration value (m/s2) and y-
axis time (sec), patterns for a) recognition of motor activity, b) postural
evaluation, c) nose-finger, d) range-of-motion, and e) FoG detection.

Post-stroke rehabilitation
Stroke is one of the leading causes of death and disability for
adults worldwide. On survived persons, it can significantly
impact mobility, perception, cognitive functions and quality
of life. Above all, upper limb dysfunction, characterized
by disturbances like muscle weakness, sensorimotor control
deficits, and changes in the muscle tone, is one of the
most relevant determinants of disability in stroke survivors.
In these case, rehabilitation plays a crucial role in post-
stroke recovery to help patients relearning fundamental
skills to improve their quality of life. During rehabilitation,
quantifying sensorimotor deficits is essential for designing
appropriate and effective rehabilitation interventions for
stroke patients.

To assess upper limb movement abnormalities in stroke
subjects, velocity and acceleration patterns along with
spatial errors allow for objectively identifying dysmetria,
tremor, and motor planning impairment. Here, our WBAN
has demonstrated to be very beneficial on two aspects.
First, the analysis performed with the WBAN has helped
to identify the subclinical sensorimotor impairment stage,
yielding more sensitivity than a clinical observation. Second,
it has provided the physicians with objective data to be
used for monitoring patient improvements and planning
personalized and more effective rehabilitation treatments.

Figures 5 (c) and (d) show the application of the WBAN
configured with a single standalone node, mounted on the
wrist of the subject, to analyze the kinematics and muscular
activity during, respectively, the index-to-nose task and
the range-of-motion task. Correspondingly, Figures 6(c)
and (d) show the characterization of the data collected by
the WBAN. It is evident the distinction among (i) initial
position, approaching the nose, touching the nose, and
going back to the initial position, for the nose-finger task,
and (ii) initial position, acceleration (going-up), max height,
and deceleration (going-down) for the range-of-motion
task. For this study, we have collected data from 10 different
subjects.

FoG in Parkinson’s disease
The Parkinson’s disease (PD) is the second most common
neurodegenerative disorder, affecting approximately 10 mil-
lion people worldwide. PD patients experience a broad
range of disabling motor and non-motor symptoms during
the disease course. Falls are among the most dangerous
complications, and FoG increases the risk of falling. FoG
is an episodic gait arrest characterized by a range of mo-
tor phenomena that span from sudden complete akinesia
and short shuffling steps to milder “trembling-legs” phe-
nomenons during gait starting. FoG is usually underdiag-
nosed and undertreated, because of its episodic nature and
its recognition. It is usually based on the patient report of the
home symptoms, while this motor phenomenon may not be
clear during a standard outpatient visit. Remote continuous
monitoring of patient movements through our WBAN has
been proposed to increase the sensitivity in detecting FoG
events regardless of the patient awareness and frequency
of outpatient visits. Moreover, detection devices paired to
systems that deliver different types of rhythmic stimuli
(auditory, visual or vibratile cues) have been proposed to
help the patients overcome FoG events [19]. Detecting FoG
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and pre-FoG episodes is of great importance to provide an
objective measure of a motor PD complication that may
not be appropriately explored in routine outpatient visits.
Recognizing where/when FoG episodes take place (e.g.,
turning, stepping over an obstacle) offers additional advan-
tages, e.g. allowing the prediction of contexts that increase
the likelihood of FoG. Adding an additional stimulation unit
helps the patient to overcome the FoG episode. Training a
HAR algorithm to expect a condition of high FoG likelihood
increases the efficacy of the system to appropriately give the
patient stimuli to overcome the FoG.

Figure 5(e) shows the application of the WBAN to de-
tect FoG episodes in PD. The detection occurs before the
actual FoG appears through the analysis of motor changes
preceding it, i.e., through a pre-FoG detection. Moreover,
in this application scenario, we integrate a pair of smart
glasses as one of our standalone nodes. They have been
used to provide automatic rhythmic visual/audio stimuli to
mitigate and overcome FoG episodes when they occurred.
Figure 6(e) shows that the accelerometer data collected by
the WBAN, allow to automatically recognize when the pa-
tient was walking, standing or experiencing a FoG episode.
For this study, we have collected data from 22 different
subjects.

3.2.3 Usability for professional staff

During the experiments reported in the previous para-
graphs, after an initial training phase, the WBAN has been
used, autonomously, by eight healthy-living professionals
and physicians working at the University of Verona, the
Polytechnic of Turin and the corresponding city hospitals.
An anonymous questionnaire with 10 questions concerning
the WBAN easiness of use has been administrated to them.
Answers were provided according to a 4-point Likert scale:
0) not at all true, 1) very little true, 2) somehow true,
and 3) very true. The results, supporting the fact that the
proposed WBAN easy to be used by professionals without
the intervention of ICT experts, are reported in Table 5.

TABLE 5
Questionnaire results: WBAN easiness of use by professional staff.

0 (not at all true), 1 (very little true), 2 (somehow true), and 4 (very true)

Answer
Question 0 1 2 3
Q1: Is the WBAN user friendly? 0% 0% 50% 50%
Q2: Did the WBAN help you in
your research activity? 0% 0% 87.5% 12.5%

Q3: Would you recommend the WBAN
to another researcher? 0% 0% 0% 100%

Q4: Was the WBAN easy to use? 0% 0% 50% 50%
Q5: Did the WBAN interfere with
motor activities? 12.5% 87.5% 0% 0%

Q6: Did the WBAN harm you or the
patients during usage? 100% 0% 0% 0%

Q7: Was the WBAN reliable? 0% 0% 75% 25%
Q8: Did you encounter any technical
issue? 25% 37.5% 37.5% 0%

Q9: Did you need help/support to use
the WBAN after the first training? 50% 37.5% 12.5% 0%

Q10: Are you willing to continue using
the WBAN? 0% 0% 12.5% 87.5%

4 COMPARISON WITH THE STATE OF THE ART

As stated on recent survey studies [28], [29], despite the
challenges and advantages introduced by WBANs in mul-
tiple research fields [20], [21], which are mainly related to
sports and healthcare, it is difficult to find in the recent
literature similar systems accessible to everyone that can
be easily reused. In particular, most of the WBANs dis-
cussed in [28], [29] present a simple configuration with at
most three nodes and no data annotation capability. On the
contrary, the possibility of connecting several nodes and the
support for data annotation are two relevant features that
characterize our solution in terms of versatility. Moreover,
WBANs reported in [28] are not open-source or not easily
reproducible at low cost, since they employ commercial
and proprietary devices. The research activities presented
in [29], instead, are mainly focused on reducing the energy
consumption of WBAN devices by designing low-power
communication protocols and processing units. On the other
hand, in this paper we are targeting the overall functionality
of the WBAN and its flexibility in different medical and
well-being contexts.

Other systems, which allow to connect more than one
data collection node or that can be easily reproduced, are
then analyzed hereafter. In particular Table 6, we present
an overview of existing non-proprietary (rows 2 to 6) and
proprietary (rows 7 to 10) WBAN-based solutions com-
paring their characteristics and costs with respect to the
WBAN we have proposed and discussed in the previous
sections. In detail, columns one to three present, respec-
tively, the publication reference (year) or device name, the
battery duration of the data collection nodes, and the cost.
Instead, columns four to seven present, respectively, the
type of data aggregator device, the number of devices (data
aggregator/s, standalone data collection nodes), additional
characteristics of the WBAN, and the WBAN application
context (i.e., medical and non-medical). The last row is
referred to our WBAN.

Among the solutions reported in Table 6, it is worth
describing more in details the most recent ones. Authors
of [23] proposed a low-power, high-speed WBAN composed
of wireless sensors, a central aggregator module, and a
smartphone used as central node. This WBAN aims to
monitor vital parameters through real-time data acquisition
and remote monitoring. However, the system has multiple
drawbacks. First, it has a reduced wearability, since its
dimension (12 x 8 x 1.5 cm) may cause issues for the
end-user leading to reduced data quality due to the noise
provoked by the instability of the device placement. Second,
the silicon boards of the sensors touch the skin directly,
causing overheating of the patient body during long runs.

In [24], the authors presented a wearable sensor system
to detect ADLs. It is composed of an Arduino board to
collect, process, and classify activities such as smoking,
drinking, eating, etc. Even though the results are very in-
teresting, the set of recognized activities is small and very
similar. In addition, the wearability issue (7 x 5.5 x 4.5 cm) is
not addressed. The adopted classification models are costly
in terms of memory and computational resources.

The authors of [25] presented a WBAN based on a BLE
wearable node powered by solar energy placed on the sub-
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TABLE 6
Comparison with existing WBAN research and commercial solutions

Article Battery Cost Data Devices Additional Application
ref. Life (h) ($) aggregator (Aggregator, Nodes) characteristics context

[23] (2020) 5 150 Dedicated board (1, 2) Inertial, Disease prevention M
[24] (2020) 5 30 Arduino 101 (1, 0) ADLs feature extraction NM
[25] (2017) 24 150 Smartphone (1, 2) Solar energy harvesting M
[26] (2012) 6 300 Android Dev. Board, PC (2, 7) ECG, Inertial Oxygen, GPS M
[27] (2008) 6 500 Mobile system (1, 4) Physiological sensors M

GWalk 80-250∗ 3900 PC (1,1) Calibrated on
specific activities M, NM

ActiGraph
wGT3X-BT 93-600∗ 250 PC (1,1) Collection of data on device

or transmitted to a PC in real-time N, NM

Shimmer3 90 598-7000∗∗ PC (1,15)
Inertial, Altimeter, EMG,
Galvanic Skin Response,

Photoplethysmogram, Heart Rate
N, NM

Verisense 90 1600-4300∗∗ Smartphone (1,7) Motion and Sleep analyses N, NM

Proposed
WBAN 120 35-350∗ Smartphone (1, 11)

Inertial, Environmental,
Stimulation, Real-time data

annotation, Video-Recording
M, NM

∗: transmitting data through wireless connection to the aggregator – storing data into the node M: Medical NM: Non Medical
∗∗: price for one single node and the SW suite on aggregator – price of N nodes and the SW suite on aggregator EMG: Electromyography

ject body for heart rate, temperature, and fall detection. In
their experimental tests, the solar energy harvesting feature
provided a node runtime of 24 hours. However, this solution
has limitations concerning node dimensions (12.2 x 11 x
2 cm) and frail solar panels, compromising the system’s
integrity and functionality. Furthermore, the autonomy of
the system depends on the weather or environmental light
conditions.

Finally, the authors of [26] and [27] proposed a medical
WBAN, which is able to collect vital and health informa-
tion like blood oxygen, respiration rate, Electrocardiography
(ECG), and body temperature, making use of BLE and Zig-
Bee communication technologies. Both these solutions are
subject to limitations related to the battery life, dimension
of single nodes, and sampling frequency.

Overall, compared to the analysed WBANs, also con-
sidering commercial WBANS such as GWalk, ActiGraph
wGT3X-BT, Shimmer3, and Verisense, , our solution
presents features that make it more easily usable in different
contexts at a relatively low cost. The node size (5 x 5 x 1.5
cm) is small enough to be easily worn, and the application
on the smartphone acts as a data aggregator presenting
the capability to synchronize the collected data to a video
stream, thus, facilitating the labeling process. The data ag-
gregator is a standard smartphone that, compared to the
data aggregators of existing WBANs of Table 6, is a highly
portable device. Our WBAN presents stimulation (i.e., vi-
sual, tactile, and audio) and real-time annotation capabili-
ties. A data annotator node allows an external observer to
perform real-time annotation of the data perceived by the
standalone nodes. Besides, the proposed WBAN has been
tested on different application scenarios by employing dis-
tinct configurations (i.e., node positions, number of nodes,
used sensors, and utilization of smartwatch and/or smart-
glasses and/or data annotator nodes in addition to the data
collection nodes), presenting the capability to connect more
than seven standalone nodes simultaneously. In particular,
concerning the commercial WBANs, the cost of our WBAN
is highly competitive, and only the Shimmer3 and Verisense
platform presents the capability to connect to more than
one data collection node. Nevertheless, they do not present

the capability to perform video registration of the moni-
tored subject/context or real-time annotation/stimulation.

Finally, the implemented software (i.e., the firmware of
the Thingy 52, Android code for the data aggregator and
the annotator, and the WearOS smartwatch application) are
freely accessible to the scientific community8.

5 CONCLUSIONS

This paper presented a versatile WBAN for HAR-based
medical and non-medical applications, characterized by low
cost, extended battery life, and long transmission range.
In particular, the proposed WBAN integrates up to eleven
data collection nodes among standalone Thingy 52 devices,
smartwatches, smart glasses, and smartphones. The data
collected by using such nodes are synchronized with a cen-
tral data aggregator represented by an Android smartphone.
The WBAN presents the capabilities to collect acceleration,
angular velocity, compass heading, quaternion, rotation ma-
trix, pitch, roll, yaw, step counter, Euler angles, and gravity
vector data. The data aggregator node presents the capa-
bility to video-record the subjects while they are wearing
the WBAN. Such a video is synchronized with the recorded
data to enable their offline annotation with the activities
performed by the subject wearing the WBAN. However, a
smartphone application has been also developed to provide
an external observer with the capability of performing the
run-time annotation of the collected data. Nevertheless, the
annotator can directly interact with the users through three
different stimulation methods, i.e., audio, visual, and tactile,
when, in a coaching context, they need stimulation to learn,
remedy or avoid specific activities/movements.

Concerning its versatility, the WBAN has being used
in different application scenarios, achieving excellent per-
formance results concerning, in particular, data loss, wear-
ability, battery life, and transmission range. In addition,
the data collected by the WBAN revealed to be suited for
the automatic recognition of several patterns of interest for
kinesiologists, physiatrists and neurologists through a HAR
framework.

8. Request (link) access to the data aggregator mobile application.
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Concerning future developments, we are working to
integrate a light but effective data analysis layer directly in
the WBAN edge devices, i.e., the standalone nodes and the
data aggregator node.
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