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Abstract
Multiphase flow in porous media often occurs with the formation and coalescence of fluid ganglia. Accurate predictions of
such mechanisms in complex pore geometries require simulation models with local mass conservation and with the option
to improve resolution in areas of interest. In this work, we incorporate patch-based, structured adaptive mesh refinement
capabilities into a method for local volume conservation that describes the behaviour of disconnected fluid ganglia during
level set simulations of capillary-controlled displacement in porous media. We validate the model against analytical solutions
for three-phase fluid configurations in idealized pores containing gas, oil, and water, by modelling the intermediate-wet oil
layers as separate domains with their volumes preserved. Both the pressures and volumes of disconnected ganglia converge to
analytical values with increased refinement levels of the adaptive mesh. Favourable results from strong and weak scaling tests
emphasize that the number of patches per processor and the total number of patches are important parameters for efficient
parallel simulations with adaptive mesh refinement. Simulations of two-phase imbibition and three-phase gas invasion on
segmented 3D images of water-wet sandstone show that adaptive mesh refinement has the highest impact on three-phase
displacements, especially concerning the behaviour of the conserved, intermediate-wet phase.

Keywords Local volume conservation · Adaptive mesh refinement · Level set method · Pore-scale simulation ·
High performance computing

1 Introduction

Multiphase flow in porous media occurs in a wide range
of engineered applications in the subsurface, including
enhanced oil recovery, permanent CO2 storage, temporary
gas storage, and remediation of non-aqueous pollutants. For
all these applications it is important to determine the extent of
bypassed or trappedfluids after invasion of another fluid. This
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requires investigations on the pore scale where the mecha-
nisms for the formation of fluid ganglia by detachment from
the flowing phases can be described. During the flow pro-
cess, such ganglia may be displaced, split, reconnect with
other ganglia, or eventually get capillary trapped [50, 54,
64]. Pore geometry, rock-fluid and fluid-fluid interactions,
and fluid flow mechanics control such trapping. In three-
phase flow, capillary forces can lead to double displacements
at the pore scale where the continuous phase displaces a dis-
connected second phase that displaces the third phase [18,
42, 54]. These double displacements can lead to significant
fluid redistribution in the pore space and mobilization of
the trapped phase. Hence, modelling ganglion behaviour in
two- and three-phase systems at the pore scale is required
to estimate the extent of capillary trapping at larger scales.
This calls for pore-scale methods capable of preserving
mass locally during ganglion splitting and merging. Such
three-dimensional simulations are numerically demanding
for accurate results. But, adaptive gridding can improve com-
putational performance since higher grid resolutions are only
needed near the interfaces.
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Computational fluid dynamics (CFD) techniques formod-
elling multiphase flow at the pore scale include lattice-
Boltzmann methods [29, 30, 35, 49, 57, 59, 67, 71],
smoothed particle hydrodynamics methods [32, 65], and
phase-field methods [31, 60, 72]. More conventional CFD
methods typically combine the Navier-Stokes equations with
a technique for interface capturing, like the volume-of-fluid
(VoF) method [23, 48, 56] or the level set (LS) method
[44, 55]. These interface-tracking methods are implicit, so
that they can handle topological changes (like ganglia split-
ting and merging) in a natural manner. The VoF method
describes the phase locations with an indicator function, and
its motion is governed by a conservation law [23]. Thus, the
VoF method has intrinsic volume/mass conservative proper-
ties, but it requires advanced numerical methods to handle
the sharp changes of the indicator function at interfaces and
for calculating interface properties like curvature. The LS
method is based on advection of a smooth LS function typi-
cally given as the signed distance to the interface.As such, the
LS method is not conservative, but interface properties like
curvature is easily calculated directly from the LS function.
Several techniques has been developed to improve conserva-
tion of LS methods, including the implementation of higher
order numerical schemes [40], particle LSmethods [9], com-
bined LS and VoFmethods [61], the conservative LSmethod
which adopts a modified LS function [41], as well as various
interface-correction methods [13, 37].

Using the above methods for direct simulation of multi-
phase flow on segmented images of the pore structure, while
accounting for capillary, viscous, and gravitational forces, is
computationally costly. However, for multiphase flow at the
pore scale in reservoir rock, capillary forces normally domi-
nate over viscous forces and gravity [21]. Thus, it is adequate
to approximate the flow as multiphase displacements con-
trolled by capillary pressure, which makes for more efficient
simulations. These displacements are generally modelled
as a series of quasi-static equilibrium states for different
prescribed capillary pressures [17, 69]. Such quasi-static
simulations generate capillary pressure-saturation curves for
drainage and imbibition that can be correlated against exper-
imental data. Methods in this category include pore-network
modelling based on invasion percolation [2, 43, 45, 73], pore-
morphology methods [15, 22, 39, 66], and LS methods [18,
27, 47]. Within interface-capturing methods, we also note
that the MBO method [38] (named after its authors) and
related variants [51, 62], which solves a diffusion equation
and updates an indicator function in alternate steps, can be
used to simulate curvature-driven motion in multiphase sys-
tems. Common to all these approaches is that they need to
be supplied with methods for local conservation of mass (or
volume, for incompressible fluids) to accurately describe the
behaviour of fluid ganglia that detach from the continuous
phases.

Jettestuen et al. [28] presented a newmethod for local vol-
ume conservation (LVC) of fluid ganglia within the setting
of capillary-controlled displacement, using LS methods for
two-phase systems [27] and the multiphase level set method
(MLS) for three-phase systems [18], abbreviated as LS-LVC
and MLS-LVC methods, respectively. The LS/MLS-LVC
methods have the option to enforce conservation on selected
phases, and it calculates surface area, volume, and pres-
sure of individual fluid ganglia of the conserved phases
during displacement. A volume redistribution algorithm han-
dles volume conservation during splitting and coalescence of
isolated domains. Jettestuen et al. [28] applied the LS/MLS-
LVC methods to various 2D and 3D geometries, where it
showed a quadratic volume convergence with respect to res-
olution of the uniform grid. The model was used to simulate
gas invasion after primary drainage by conserving only the oil
phase in one case and both oil and water phases in another. It
demonstrated that local volume conservation of both phases
predicts a higher residual oil saturation than only oil con-
servation. However, we expect finer grids or adaptive mesh
refinement (AMR) to improve the resolution of this problem,
especially with respect to oil layers in three-phase systems
and small fluid ganglia. Consequently, the improved model
should generate more realistic capillary pressure curves and
distributions of trapped fluid ganglia, allowing a more accu-
rate ganglion characterization. Thus, the objective of this
work is to extend the LS/MLS-LVC methods such that they
can utilize AMR capabilities.

AMR is a computational technique that can help in the
dynamic focussing of refinement to resolve local features in
the computational domain without incurring time penalties
associated with global refinement. It is an effective tool for
improving the accuracyof numerical simulationswhilemain-
taining reasonable computational efficiency [10]. In general,
there are two main categories for AMR implementation, the
patch-based approach [4, 11, 14] and the tree-based approach
[46, 63, 70]. Thepatch-based approach requires taggingunre-
solved regions using special refinement criteria and then
grouping these grid cells into patches with a finer mesh [14].
On the other hand, a quadtree approach works on the princi-
ple of recursive decomposition, where a quadtree stores the
data [63]. Although the second method is computationally
fast and efficiently uses storage memory, its application can
require complicated algorithms and interpolations to man-
age hanging nodes. Jettestuen et al. [28] implemented the
LS/MLS-LVC methods for uniform grids using the soft-
ware framework SAMRAI [3, 24, 25], which is a C++
library for parallelism and AMR that uses ghost cells and a
patch-based approach to provide excellent parallel scalabil-
ity while handling a large number of processors [14]. Ghost
cells of a patch are extensions into the neighbouring patches
where the values on the grid are generated through coarsen-
ing and refinement of values on the neighbouring patches.
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Coarsening operations transfer data from finer grids to
coarser grids, and refining operations transfer data from
coarser grids to finer grids.

In this work, we extend the work of [28] by including
AMR capabilities for the LS/MLS-LVC methods and inte-
grating it in the parallel framework of SAMRAI. While
SAMRAI provides AMR capabilities for real numbers (e.g.,
to describe scalar fields), the challenge in our LVC applica-
tion is handling integers on a map that represents isolated
domains. The paper is organized as follows: First, Section 2
briefly describes the LS/MLS-LVC models, while Section 3
presents the methodology and related algorithms for incor-
porating AMR in the LVC method. In Section 4 we validate
the MLS-LVC implementation with AMR against analyti-
cal solutions for three-phase configurations in a triangular
pore. We discuss the computational efficiency obtained by
using AMR rather than a corresponding uniform fine grid in
the simulations. Then, we provide weak and strong scaling
test results to demonstrate the parallel scalability of the new
algorithm. Subsequently, we investigate the impact of AMR
on simulations of two-phase imbibition and three-phase gas
invasion with disconnected oil ganglia on 3D segmented
pore-space images of sandstone. Finally, Section 5 summa-
rizes the results.

2 Methods

We investigate capillary-controlled multiphase systems of
gas (g), oil (o) and water (w) at the pore scale, inwhich a series
of capillary equilibrium states for different imposed capillary
pressures describes the fluid displacement. At these equi-
librium states, the capillary pressure across the fluid/fluid
interfaces in the pore space satisfies theYoung-Laplace equa-
tion:

Pαβ = pα − pβ = σαβCαβ, αβ = go, ow, gw, (1)

where Pαβ [Pa] is the capillary pressure, σαβ [Nm-1] is the
interfacial tension between phases α and β, pα [Pa] is the
pressure of phase α, andCαβ [m-1] is the interface curvature.
The fluid/fluid interface meets the pore/solid interface at a
contact angle θαβ , which ismeasured through the denser fluid
phase β and satisfies Young’s equation:

σαβ cos θαβ = σsα − σsβ, αβ = go, ow, gw, (2)

where σsα and σsβ are the solid/fluid interfacial tensions.
By combining Young’s equations for all three fluid pairs, we
obtain the Bartell-Osterhof equation [e.g.,8],

σgw cos θgw = σgo cos θgo + σow cos θow, (3)

which constrains the interfacial tensions and contact angles
in three-phase systems at thermodynamic equilibrium.

In this section, we briefly describe the LS [27] and MLS
[18] methods for capillary-controlled displacement, as well
as the technique used for incorporating local volume conser-
vation (LVC) in these methods [28].

2.1 Level set method for two-phase
capillary-controlled displacement

The level set (LS) method is an Eulerian approach to model
propagation of interfaces under the influence of a velocity
functional [1, 44, 52]. In this method, a level set function
φ, normally given by the signed distance function, describes
the interfaces as φ = 0, so that φ takes different signs on the
inside and the outside of a fluid. The equation ofmotion for an
evolving level set functionφ under action of a normal velocity
FN and an advection velocity FA is given by Adalsteinsson
and Sethian [1]:

φt + FN |∇φ| + FA · ∇φ = 0. (4)

During evolution with Eq (4), the level set function φ gets
distorted and requires repeated reinitialisation to maintain
its signed distance nature. The reinitialisation is carried out
using the following equation [44]:

φt + S(φ)(|∇φ| − 1) = 0, (5)

where S(·) is a smoothed sign function given by

S(φ) = φ
√

φ2 + |∇φ|2(�x)2
, (6)

and �x is the grid spacing.
LSmethods have previously been used tomodel capillary-

controlled displacement at the pore scale [27, 47]. Following
Jettestuen et al. [27] the LS function φ describes the interface
between fluid phases α and β as the zero contour φ = 0,
where φ < 0 in phase α and φ > 0 in phase β. Another
LS function ψ is static and describes the pore geometry, so
that ψ > 0 in pore space, ψ < 0 in solid, and ψ = 0
on the pore/solid interface. A sharp Heaviside function H(·)
separates the velocity term in the pore space, which governs
the capillary-controlled displacement, from the velocity term
in the solid space, that forms the contact angle θ on the pore
walls. The evolution equation (4) takes the following form
[27]:

(φ)t + H(ψ) (C − κ) |∇φ|
+ H(−ψ)

�x
S(ψ) (∇φ · ∇ψ − |∇φ||∇ψ | cos ζ ) = 0.

(7)

Here, C = Pαβ/σαβ is a prescribed interface curvature, κ =
∇ · ∇φ/|∇φ| is the curvature field of the LS function φ, �x
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is grid spacing, S(·) is the sign function, and ζ is a fluid/solid
intersection angle which is related to the contact angle by
ζ = 180◦ − θαβ . H is the sharp Heaviside function given by:

H(ψ) =
{
0 ψ < 0,

1 ψ ≥ 0,
(8)

At capillary equilibrium (φt = 0) the velocity terms in
equation (7) are zero in vicinity of the interfaces. Then we
obtain C = κ (Young-Laplace equation) in the pore space,
while in the solid space and on the porewalls, the intersection
angle ζ satisfies

cos ζ = nφ · nψ = ∇φ

|∇φ| · ∇ψ

|∇ψ | , (9)

where nφ and nψ are unit normal vectors of φ and ψ ,
respectively. After each calculated equilibrium state using
equation (7), we can increase or decrease C stepwise to sim-
ulate drainage or imbibition, respectively. A more detailed
description of the LS method with numerical validation and
applications are provided by Jettestuen et al. [27], Helland et
al. [17], and Friis et al. [11].

2.2 Multiphase level set method for three-phase
capillary-controlled displacement

The MLS method describes each fluid phase α by its own
uniqueLS functionφα , so thatφα < 0 inside phaseα,φα > 0
on the outside, and φα = 0 on the boundary of α to the other
phases. While this representation can describe an arbitrary
number of phases,we focus here on three-phase displacement
where α = g, o, w. For each fluid phase, we also specify
a phase pressure pα , surface tension γα , and a fluid/solid
intersection angle ζα which is measured through phase α

and defined by cos ζα = nφα · nψ . The surface tensions and
intersection angles satisfy the following equations:

σαβ = γα + γβ, (10)

σαs = γs − γα cos ζα, (11)

cos θαβ = γβ cos ζβ − γα cos ζα

γβ + γα

, (12)

where αβ = go, ow, gw, and γs is an imaginary surface
tension for the solid phase that ensures σαs is always positive.
Hence, equation (12) is the same as Young’s equation (2).
Following [18], the intersection angles are taken as

ζw = θow, ζo = 180◦ − θow and ζg = 180◦, (13)

which, by equation (12), leads to a set of contact angles that
fulfills equation (3) for a given set of γα .

The evolution equations for the fluid LS functions φα are
given by [16, 18]:

(φα)t + H(ψ) (pα − γακα) |∇φα|+
H(−ψ)

�x
S(ψ)γα (∇φα · ∇ψ − |∇φα||∇ψ | cos ζα) = 0,

α = g, o, w.

(14)

Here, γ and ζ remain constant throughout the simulation.
On the other hand, pα is constant, as specified by the bound-
ary conditions, for continuous phases whereas it varies with
time for isolated domains. The calculation of isolated domain
pressures is detailed in the next section.

As these evolution equations are uncoupled, the three LS
functions φα will develop overlap and void regions around
the interfaces during evolution. Consequently, in an interface
region of two phases α and β, the intersection of φα and φβ

occurs at a nonzero contour (i.e., φα = φβ > 0 in case of void
region or φα = φβ < 0 in case of overlap region) rather than
at the zero contour (φα = φβ = 0) which would correspond
to a unique representation of the αβ-interface. This problem
is solved using the projection method of Lossaso et al. [36]
where, in every grid cell, the average of the two smallestφα is
subtracted from all φα at the end of each time-iteration step.
This stepmoves all intersections of the different LS functions
to zero contours, creating a unique delineation of the phases
in the computational domain. When the multiphase system
has relaxed to a steady state, i.e., (φα)t = 0, α = g, o, w, the
solution of equation (14) (with projection step included) sat-
isfies Young-Laplace equation in the pore space and Young’s
equation on the pore walls [16, 18]:

Pαβ = pα − pβ = (γα + γβ)κα, (15)

cos θαβ = γβ cos ζβ − γα cos ζα

γβ + γα

= ∇φβ

|∇φβ | · ∇ψ

|∇ψ | , (16)

since φα = −φβ in the vicinity of the αβ interfaces, which
implies ∇φα = −∇φβ and κα = −κβ .

The MLS method uses non-dimensional parameters for
length, surface tension and pressure, L , γ , and p, respec-
tively. These parameters are derived from actual values of
length Lactual [m], surface tension γ actual [Nm-1] and pres-
sure pactual [Pa], using characteristic properties for the
physical system:

L = Lactual

L∗ , γ = γ actual

γ ∗ , p = pactual

p∗ and p∗ = γ ∗

L∗ ,

(17)

where L∗ [m], γ ∗ [Nm-1], and p∗ [Pa] are the characteristic
parameters.
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In bothLS andMLSmethods, the numerical discretization
approximates the normal and advective velocity terms using
a weighted essentially non-oscillatory (WENO) schemewith
appropriate upwinding techniques, while the curvature terms
use central differences. The iteration-time discretization
uses a third-order Runge-Kutta method with a time step
determined from a standard Courant-Friedrichs-Lewy (CFL)
condition [44]. In this work, the CFL coefficient is 0.6.
Faster temporal discretization methods exist for steady-state
problems on structuredmesh [33, 68], but it remains to inves-
tigate their applicability to capillary-controlled displacement
on complex pore geometries. The convergence in the MLS
method is declared when the difference of φα between two
reinitializations, denoted bym and n, in a small band around
the zero contours of the LS functions in pore space is lower
than a specified tolerance value:

max

{∑
�Hε(ψ + ε)Hε(φ

n
α + λ)Hε(−φn

α + λ)|φn
α − φm

α |
∑

�Hε(ψ + ε)Hε(φn
α + λ)Hε(−φn

α + λ)

}

< c�x, ∀ α = g, o, w

(18)

where Hε is a smoothedHeaviside function and ε = 1.5×�x
is the smoothening parameter. In equation (18) λ = b × ε

is the width of the convergence band. In this work, we set
b = 5 and c = 0.001.

Note that the interface position can slightly shift after a
reinitialization step. This effect is most significant in MLS
simulations of triple junctions between the three fluids where
rounded features in the zero contours could form and result
in small overlap/void regions. This impact of reinitialization
is most severe when the angle at the triple junction through
one of the fluids is small (as determined by the interfacial
tensions). In our experience this region is about the size of one
to two grid cells, so the impact is small. The projection step
[36] in the MLS iteration after the reinitialization removes
these small regions.

2.3 Local volume conservationmethod

Jettestuen et al. [28] developed a technique for local vol-
ume conservation (LVC) of fluid ganglia in the LS and MLS
methods. Here, we describe the LVC method for a selected
conserved phase α in the MLS setting. The main idea is to
determine a spatially and temporal phase pressure pα(x, t)
for use in equation (14) that conserves the volumes of discon-
nected ganglia of phase α during level set evolution. To this
end, the method first identifies the disconnected domains of
phase α using a grassfiremethod [47] that is based on Cheby-
shev distance (i.e., L∞-norm) as metric with 8-connectivity
(in 2D) and 26-connectivity (in 3D). Note that the Cheby-
shev distance from the gridcell to these connected blocks is
1 unit. We denote the identified domains at iteration time t

as �a(t), where a ∈ Iα(t), and Iα(t) is a numbered list of
all ganglia of phase α at time t . Then, we construct extended
domains �ext

a (t) that completely encloses domains �a(t),
so that �ext

a (t) ⊃ �a(t). The extended domains include all
points nearest to the boundary of the corresponding domains
as determined by a distance map, using city-block distance
(i.e., L1-norm) as metric. Note that city-block distance (also
referred to as Manhattan distance or L1-norm) is the mini-
mum number of grid cells traversed laterally to reach a point
from another point. The extended domains are needed to
distribute volumes correctly from one iteration time step to
another, but they also ensure accuracy in the numerical dis-
cretization of equation (14) across interfaces. These extended
regions partition the computational domain � completely:

� = (∪a∈Iα(t)�
ext
a (t)

) ∪ �ext
α,bnd(t). (19)

Here, we have distinguished the extended disconnected
regions �ext

a (t) from the extensions �ext
α,bnd(t) of all regions

�α,bnd that are connected to inlet or outlet boundaries and
referred to as the continuous phase. The continuous phase
changes volume as phase α enters or leaves the computa-
tional domain.

Then, the phase pressure for a conserved phase α is given
by Saye and Sethian [52]:

pα(x, t)=

⎧
⎪⎨

⎪⎩

V (0)
a (t)−Va(t)

�t Aa(t)
, x ∈ �ext

a (t), a ∈ Iα(t),

pα,bnd, x ∈ �ext
α,bnd(t).

(20)

Here, pα,bnd is the continuous-phase pressure assigned to
regions connected to inlet or outlet boundaries. If phase α is
the invading phase, stepwise increments of pα,bnd after every
capillary equilibrium state drives the quasi-static displace-
ment. Further, V (0)

a (t) is the target volume of a disconnected
region�a , whileVa(t) and Aa(t) are volume and surface area
of the region, respectively, calculated at each iteration-time
t :

Va(t) =
∫

�ext
a (t)

Hε(ψ)Hε(−φα)dV , (21)

Aa(t) =
∫

�ext
a (t)

Hε(ψ)δε(φα)|∇φα|dV , (22)

where δε is a smoothed Delta function. Calculation of global
saturation uses equation (21) with integral over the entire
computational domain �. These smoothed Heaviside and
Delta functions are calculated as:

Hε(φα) =

⎧
⎪⎪⎨

⎪⎪⎩

0 φα < −ε,

1
2 + φα

2ε + 1
2π sin

(
πφα

ε

)
−ε ≤ φα ≤ ε,

1 φα > ε,

(23)
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and,

δε(φα) =

⎧
⎪⎪⎨

⎪⎪⎩

0 φα < −ε,

1
2ε + 1

2ε cos
(

πφα

ε

)
−ε ≤ φα ≤ ε,

0 φα > ε.

(24)

A conservative volume redistribution technique assigns
volumes to disconnected domains at the next time step based
on the volume of domains at the previous time step. The
method accounts for potential ganglia splitting and coales-
cence. Assume we have identified the sets of domains and
extended domains at iteration time t1, {�a(t1) : a ∈ Iα(t1)}
and {�ext

a (t1) : a ∈ Iα(t1)}, and similarly, at time t2 = t1+�t
these sets are {�b(t2) : b ∈ Iα(t2)} and {�ext

b (t2) : b ∈
Iα(t2)}. The intersection between the domain �a(t1) and the
extended domain �ext

b (t2) is

��ab(t1, t2) = �a(t1) ∩ �ext
b (t2). (25)

The target volume assigned to domain �b(t2) is given as

V (0)
b (t2) =

∑

a∈Iα(t1)

|��ab(t1, t2)|
|�a(t1)| V (0)

a (t1), (26)

where | · | denotes the volume measured in number of voxels.
Equation (26) uses the relative volume of overlap between
regions at t1 and t2 as a weight for the volume redistribution.
The set of extended regions cover the entire computational
domain, see equation (19), which ensures volume conserva-
tion during the redistribution. Further, restrictions on time
step in the MLS method guarantees small interface changes
within an iteration step, so that target domain volumes are
redistributed correctly. We remark that continuous-phase
domains�ext

α,bnd(t) are not part of the redistribution equations
as their pressure is prescribed. Their role is merely to limit
the extensions of nearby isolated domains.Whennew regions
form by detachment from the connected phase, their target
volumes V (0)

a (t) are calculated from equation (21). Thus,
equation (20) implies that the pressures of such regions will
be zero in the first time iteration step. However, their tem-
porary volumes Va(t), also calculated by equation (21), will
generally differ in subsequent iterations, resulting in nonzero
domain pressure.

The phase-by-phase representation of the MLS method
allows for applying LVC to one, two or three phases in a
three-phase system. The LS method, which instead uses one
LS function to describe interfaces in a two-phase system,
will also require a similar phase-by-phase representation to
account for LVC of both phases. However, conservation of
one phase follows the same approach as described above. The

main difference is that the LSmethod constructs a spatial and
temporal interface curvature C(x, t) that replaces pressure
(equation (20)):

C(x, t)=
⎧
⎨

⎩
ϒ
Va (0)(t)−Va(t)

�t Aa(t)
, x ∈ �ext

a (t), a ∈ I (t),

Cbnd, x ∈ �ext
bnd(t),

(27)

where ϒ = 1 if φ < 0 represents the conserved phase, and
ϒ = −1 if instead φ > 0 represents the conserved phase.

3 LVCmethodology for AMR and parallelism

Herewe introduce themethodology and algorithms for paral-
lel AMR implementation of MLS-LVC method. Apart from
the differences described in the previous section, the AMR
implementation for LS-LVC method will be similar. An
important part of the LVC algorithm presented by Jettestuen
et al. [28] is the identification of isolated fluid domains. The
software implementation uses a patch-based approach, so the
identification must first be performed on each patch. How-
ever, since a domain usually crosses (often several) patch
borders, unique global labelling (using integers) is neces-
sary. As discussed in [28], the corresponding computational
algorithm requires considerable communication in its paral-
lel version, which is implemented using Message Passing
Interface (MPI). The LVC algorithm constructs extended
domains by extending the global labels outward into the com-
putational grid from the interface of each isolated domain.
In the parallel setting, patch boundaries limit these exten-
sions, so that equation (19) does not generally hold. Thus,
additional extension procedures are carried out across patch
boundaries to construct sufficiently large extended domains.
Asmentioned inSection 2.3, the role of the extendeddomains
are as follows: (i) to conserve domain volumes during evolu-
tion, (ii) to redistribute volume during domain splitting and
coalescence, (iii) to calculate volume and surface area of the
domains, and (iv) to distribute the calculated phase pressure
on the computational grid (see also sections 3 to 5 in [28] for
details on LVC application for uniform grids).

A major challenge in applying local volume conservation
on a uniform grid is creating a computationally efficient way
of identifying isolated domains and populating appropriate
domain pressures on the geometry. Furthermore, these pres-
sures should be suitably extended from the interfaces so that
the size of the numerical stencil does not affect the level set
evolution. We handle this requirement by linking pressures
to the extended regions and using city-block distances for
modifying extended regions to suitable distances from the
interfaces across patches. However, the case for AMR grids
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is more complex than for uniform grids. Firstly, AMR grids
require additional attention in handling integers during data
communication between patches of different sizes. Secondly,
the city-block distance between patches with different grid
spacings will not correspond to each other. Finally, AMR
application requires regular regridding (changing the grid
structure) to maintain accuracy and be computationally effi-
cient. Consequently, additional efforts are needed to ensure
that various variables involved keep the same values before
and after regridding.

The MLS-LVC model is implemented in C++ program-
ming language using the SAMRAI software framework.
SAMRAI allows flexibility in cell refinement criteria and
frequency of regridding. The gridding and regridding pro-
cess is accomplished in a linear order time [14]. We have
utilised the framework to generate patches with finer mesh
and communicate relevant values between patches through
coarsening and refining variables in the ghost cells. In SAM-
RAI, adaptive grids are a layered structure where finer grids
are successively placed on top of the coarsest grid (see Fig. 1).
The calculations are done on the topmost layer or mesh (i.e.,
the finest grid) for each overlapping location. When needed,
the values are transferred to other meshes by coarsening or
refining operations.

In the following subsections, we provide the LVC algo-
rithm for AMR grids followed by a discussion on the
necessary modifications made to the original (uniform grid)
algorithm for AMR compatibility.

Fig. 1 AMR grid structure in SAMRAI framework with three patch
levels. The regions tagged for refinement are shown in green. The illus-
tration shows a case where each tagged grid cell is refined into four
equally-sized grid cells. The calculations at any spatial location are
done on the highest available patch level and then transferred to lower
levels through ghost cells. For details, see Anderson et al. [3]

3.1 MLS-LVC algorithmwith AMR

The LVC algorithm for AMR grids is a slight modification
of the parallel algorithm for uniform grids from Jettestuen
et al. [28](Section 5.1). The improvements reduce the mem-
ory space requirement for uniform grids while adding the
capability to handle AMR grids. The steps in the modified
algorithm are as follows, assuming α is a conserved phase:

1. Initialize the system at initial iterative time t0:

(a) Isolated domain identification (Algorithm 1, Sec-
tion 3.2): Construct domains {�a : φα ≤ 0 and ‖�a−
�b‖∞ > 1,∀ a �= b, a and b ∈ Iα(t0)}. Here,
‖�a − �b‖∞ represents the Chebyshev distance
between the boundaries of domains �a and �b. Fig-
ure 2 (top row) depicts isolated domains identified
under different levels of mesh refinement.

(b) Generate a set of extended domains {�ext
a : a ∈

Iα(t0)} (Algorithm 2, Section 3.2). Figure 2 (middle
row) shows the result after extension with different
levels of refinement.

(c) Modify extended domains (Algorithm 3, Section 3.2):
Modify the set of extended regions {�ext

a : a ∈
Iα(t0)}by extending the domain labels across patches.
The modification ensures that the numerical sten-
cils for grid cells near patch borders and fluid/fluid
interfaces use the correct pressures in the numerical
scheme. Figure 2 (bottom row) shows the result after
modification of extension maps with different levels
of refinement.

(d) Set tn = t0:
Loop over iteration time (from tn to tn+1):

2. Set pressure of conserved phase, pα(x, tn). For continuous-
phase domains, assign phase pressure pα,bnd to�ext

α,bnd(tn).
For isolated domains, set pressures in �ext

a (tn), a ∈
Iα(tn), using equation (20) (enforcing volume conser-
vation) as follows:

(a) On each patch: Perform computations according to
equations (21) and (22).

(b) On each processor: Aggregate the volume and area
information and communicate it to the root processor.

(c) On the master processor: Calculate pressure of iso-
lated domains using equation (20) and communicate
relevant information back to all processors and
patches.

3. Iterate the multiphase system from tn to tn+1 with equa-
tion (14) using the phase pressure from the previous step
and then enforcing the projection step [36]. This is done
in parallel using the patch-based parallelism in SAM-
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Fig. 2 Example with two
isolated circular regions that
illustrates the identification
(top), extension (middle), and
correction (bottom) of domain
integer values on patch for (a)
uniform coarse grid, (b) one
level of grid refinement, and (c)
two levels of grid refinement.
The figure highlights the
boundaries of coarsest patches
(black), the boundaries of
patches with one level of
refinement (purple) and two
levels of refinement (yellow)

RAI. Here, we also periodically reinitialise level sets and
check for convergence.

4. Repartition the system at time step tn+1, i.e., construct
isolated domains {�a′ : φα ≤ 0 and ‖�a′ − �b′ ‖∞ >

1,∀ a′ �= b′, a′ and b′ ∈ Iα(tn+1)} in a similar manner as
in step 1 (a) above. Then, extend the isolated domains to
obtain the set {�ext

a′ (tn+1)} in a similar manner as in step
1 (b) and (c) above.

5. Redistribute volumes according to equations (25) and (26)
while excluding continuous phase domains (�ext

α,bnd).
6. Identify new regions detached from the continuous phase

and calculate their region target volumes based on equa-
tion (21).

7. Regrid at regular intervals {n mod Q = 0 : Q is the
regridding interval} (Algorithm 4, Section 3.2).

8. Go to step 2 with n ←− n + 1.

3.2 Considerations for adaptivemesh refinement

Transforming the LVC algorithm for compatibility with
an adaptive grid necessitates reconciling variables between
meshes with different grid spacings. Compared to integers,

handling real numbers is easy; the values from a grid of one
size can be easily transferred onto a grid of another size
through interpolation, extrapolation, or averaging. SAMRAI
provides operators that carry out these operations for real
numbers. However, averaging integers can produce unde-
sired results for our purpose. For example, if four adjacent

Fig. 3 Integer operators where x and y are integer values and INT_MIN
is the minimum integer limit in C++. (a) Refining operator, (b) coars-
ening operator 1 for equal values, and (c) coarsening operator 1 for
different values
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fine grid cells have values 1, 2, 4 and 5 in the extended domain
map, then the coarser grid cell below them will be wrongly
filled with 3 after averaging. Thus, we define our own opera-
tors for coarsening and refining of the integer data type (see
Fig. 3).

Refining is easy since it creates copies of the coarser value
on the finer grid (see Fig. 3 (a)). Coarsening is more chal-
lenging since the finer grid cells over a coarser grid cell can
either have equal values or different values. So, we create an
operator that copies the value on to the coarser grid cell if
all the finer grid cells over it have the same value (see Fig. 3
(b)), otherwise it returns the minimum possible C++ integer
value, INT_MIN (see Fig. 3 (c)). This unique value on the
coarser grid allows us to check if the overlaying finer grid
cells have the same values or not. We use this operator on
patch variables M and E that store the isolated domains map
and the extended domains map, respectively. This operator
helps in preserving most of the original values on the coars-
ened regions and the rest can be recovered by extending the
map values on the new grid using Algorithm 2 and 3. We
also create another coarsening operator that always returns
INT_MIN. This second operator is used for dynamic identi-
fication of refined domains on the coarser patch throughout
the simulation. In this way the various computations (e.g.,
volume computations) can be performed with good paral-
lel efficiency. We use this second operator on patch variable
P that stores the processor rank. Since Open MPI library
provides only positive integers as processor identification
number, INT_MIN acts as a distinct value that will not be
provided by the MPI library.

In our model, integers are used for identifying isolated
domains �a and their extended domains �ext

a , a ∈ Iα(t).
Algorithm 1 describes the steps followed in identifying iso-
lated domains of a particular phase on the computational grid
in the modified algorithm. We identify isolated domains on a
given patch using the grassfire algorithmwithφα as the input.
The grassfire algorithm (referred to as grassfire transform in
image processing) can be described as ‘setting fire’ to the
zero level set contour. It finds the closest region to each grid
cell in the patch. The algorithm requires alternate sweeps of
the patch from any two diagonally opposite corners while
measuring backward distances from the area already swept.
In this patch-level identification, we use INT_MAX (themax-
imum integer limit in C++) to represent domains connected
to the computational grid boundary. We label the isolated
domains found on each processor sequentially (starting from
1) but the uniquely labelled isolated domains on a processor
are not necessarily disconnected from each other. Thus, we
use the processor number and the local domain number to
identify each domain uniquely.

Algorithm 1 Identify domains.
Require: Patch variables: Phase level set value (φα), processor rank

(P), domain map (M), and number of grid cells in z-direction (nz),
y-direction (ny), and x-direction (nx )

Ensure: (�a : φα ≤ 0) and (‖�α,bnd − �a‖∞ > 1) and (‖�b −
�a‖∞ > 1, ∀ a �= b)

1: Initialise patch variable M to zero.
2: Create an empty list Ll on each processor where l is the rank of

processor inMPI_COMM_WORLD. Also, create an empty list Lagg
on root processor.

3: Update P to the rank of processor. Then, update P and M on the
refined regions of a coarse patch to INT_MIN

4: Identify domains on a patchwhere φα ≤ 0 using grassfire algorithm.
Update M by labelling the domains uniquely using incremental tags
on each processor. Identify domains connected to boundary with
INT_MAX

5: Fill ghost cell data
6: for each gridcell {i, j, k} on each patch boundary do
7: Local = {i, j, k} and Neighbour = ad jacent ghostcell
8: Identify neighbours in a tuple with four elements, N =

{PLocal , MLocal , PNeighbour , MNeighbour }
9: if (PLocal ≥ 0) and (PNeighbour ≥ 0) and (MLocal > 0) and

(MNeighbour > 0) then
10: if (PLocal < PNeighbour ) or (MLocal = INT_MAX) then
11: Save neighbours tuple N in list Ll
12: else if (PLocal = PNeighbour ) and (MLocal < MNeighbour )

then
13: Save neighbours tuple N in list Ll
14: else
15: Ignore the neighbour pair
16: end if
17: end if
18: end for
19: On root processor, Lagg ⊃ Ll ,∀ l ∈ MPI_COMM_WORLD
20: On root processor, ∀ N ∈ Lagg , use P as an indicator to reidentify

patch-level unique M to globally sequential values M∗.
21: while on root processor and there exists N ∈ Lagg : M∗

Local �=
M∗

Neighbour do
22: Set both M∗ ∈ N to min{M∗

Local , M
∗
Neighbour }

23: For the M∗ value changed in the last step, update all the corre-
sponding M∗ in Lagg

24: end while
25: Reidentify all unique M∗ sequentially to Mglobal
26: Send relevant Mglobal to each processor
27: Update M on the patches to Mglobal

Steps 6 to 18 of Algorithm 1 check if two identified iso-
lated domains are adjacent to each other. Since step 4 prevents
such an identification inside the patch, it is sufficient to look at
patch boundary grid cells and the ghost cell adjacent to them
to find such pairs. Steps 9 to 17 of Algorithm 1 ensure that
for each neighbouring pair spanning adjacent patches, one
patch identifies the pair and the other ignores it. We analyzed
and compared the computational efficiency of sending the
complete initial dataset of identified neighbours to the root
processor vs. sending a reduced dataset to the root processor
after identifying unique isolated domains on each proces-
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Algorithm 2 Define extended domains
Require: Patch variables: Isolated domain label (M), extended domain

label (E), distance (D), ratio of patch grid spacing w.r.t. finest patch
grid spacing (R), and number of grid cells in z-direction (nz), y-
direction (ny), and x-direction (nx )

Ensure: Ei, j,k = a if (‖(i, j, k)−�a‖1 < ‖(i, j, k)−�b‖1), ∀a, b ∈
M

1: Update ghost cell data
2: Initialise E and D: E = 0, D = −1 × nx × ny × nz × R
3: if Isolated domain is present on the patch then
4: for k ∈ [0, nz), j ∈ [0, ny), i ∈ [0, nx ) do
5: if Mi, j,k > 0 then
6: Di, j,k = 0
7: Ei, j,k = Mi, j,k
8: else
9: Di, j,k = max{Di, j,k ,max{Di−1, j,k , Di, j−1,k , Di, j,k−1}+

R}
10: Update Ei, j,k to E of grid cell that modified Di, j,k above
11: end if
12: end for
13: for k ∈ (nz, 0], j ∈ (ny, 0], i ∈ (nx , 0] do
14: if Mi, j,k < 0 then
15: Di, j,k = max{Di, j,k ,max{Di+1, j,k , Di, j+1,k , Di, j,k+1} +

R}
16: Update Ei, j,k to E of grid cell that modified Di, j,k above
17: end if
18: end for
19: In case of AMR simulations, repeat steps 4 to 12
20: end if

sor. Our analysis shows that sending the original dataset
to the root processor provides faster results. This study is
detailed in Appendix A. On the root processor, steps 21 to
25 in Algorithm 1 provide globally unique labels to isolated
domains found on the patch (for details refer [28], Appendix
A). Figure 2 (top row) depicts an example of isolated domain
identification with different levels of refinement.

Algorithm 3 Modify extended domains across patches
Require: Patch variables: Processor rank (P), extended domain label

(E), distance (D), ratio of patch grid spacing w.r.t. finest patch grid
spacing (R), modification distance threshold (dc, in city-blocks),
and number of grid cells in z-direction (nz), y-direction (ny) and
x-direction (nx )

1: if region with values from refined areas exists (identified by P =
INT_MIN) then

2: for k ∈ [0, nz), j ∈ [0, ny), i ∈ [0, nx ) do
3: d f iner = ‖(i, j, k) − Finer patch boundary‖1 × R
4: if (d f iner < dc and Di, j,k > D f iner−ghostcell + d f iner ) or

Ei, j,k = 0 then
5: Ei, j,k = E f iner−ghostcell
6: end if
7: end for
8: end if
9: for k ∈ [0, nz), j ∈ [0, ny), i ∈ [0, nx ) do
10: d = ‖(i, j, k) − Patch boundary‖1
11: if (d < dc and D > Dghostcell + d) or Ei, j,k = 0 then
12: Ei, j,k = Eghostcell
13: end if
14: end for

Algorithm 4 Restructure variables during regridding
Require: Patch variables: Phase level set value (φα), Processor rank

(P), domain label (M), extended domain label (E), distance (D),
ratio of patch grid spacing w.r.t. finest patch grid spacing (R),
modification distance threshold (dc, in city-blocks), and number of
grid cells in z-direction (nz), y-direction (ny) and x-direction (nx ).

Array variables: original volume (V (0)
α ), temporary volume (Vα),

and temporary area (Aα) to store V (0)
a , Va , and Aa (where a ∈ M),

respectively for use in equation (20).
Ensure: New variables are sized according to the new grid geometry
1: Reinitialize the phase level set values to signed distance function
2: Tag cells for refinement and regrid
3: Refine and coarsen ghost cell data
4: Update the extended domains using Algorithm 2
5: Modify the extended map using Algorithm 3
6: Create new variables for volume and area, V (0)∗

α , V ∗
α , and A∗

α , sized
according to new grid geometry

7: Fill the new variables (V (0)∗
α , V ∗

α , and A∗
α) using old variables (V

(0)
α ,

Vα , and Aα) such that Enew = Eold

8: Free memory used by variables (V (0)
α , Vα , and Aα) based on old grid

geometry and use the new variables for further pressure calculations

We generate the set of extended domains�ext
a using Algo-

rithm 2 on each patch. On uniform grids, we accomplish it
by carrying out two sweeps of the patch for each grassfire
run (steps 4 to 18). But for AMR grids, the extended regions
are generated by running three sweeps of the patch. With
AMR, some parts on coarser patches have INT_MIN val-
ues since finer patches cover them. Generally, in our model,
the finer patches are not distributed in such a complicated
manner that multiple grassfire run sweeps are required to
distribute the pressure values effectively. In such scenar-
ios, the additional sweep of the patch (step 19, which is a
rerun of the first sweep) provides the correct minimum dis-
tance needed in the grassfire algorithm. Figure 2 (middle
row) shows the result after extension with different levels of
refinement.

These extended regions on the patch are further extended
into neighbouring patches by using distances from interfaces
and patch neighbourhood information (see Algorithm 3). As
mentioned earlier, the city-block distances aremeasurements
where one unit distance is equal to one grid cell. However,
the city-block distance on patches with different grid spac-
ing will represent different actual distances. To ensure that
this difference does not lead to insufficient domain exten-
sions across borders of patches with different grid spacings,
we use the ratio of patch grid spacing to make the distances
proportionate such that the finest grid cell equals one unit
of distance. For example, suppose the coarse grid spacing is
two times bigger than the finest grid spacing. In that case,
one fine-patch grid cell equals one unit of distance, and one
coarse-patch grid cell equals two units of distance. Another
point of importance is the order in which these extensions
are carried out from one patch to another. For uniform grids,
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the order of extension is inconsequential. However, on AMR
grids, the order is important to ensure that the level set
velocities near zero contour are independent of the patch
structure. So, we first carry out extensions from finer patches
to coarser patches below them (steps 1 to 8 of Algorithm
3). This first run ensures that if an interface lies only on
the finest patch, its effect extends into all the neighbouring
coarse patches. Then, we carry out a second extension (as
for uniform grid algorithm in Jettestuen et al. [28]) on all the
patches (steps 9 to 14). Since the minimum required depth of
modification depends on the numerical stencil size, an opti-
mal way to implement this algorithm is to find the necessary
patch boundary grid cells. In steps 1 to 8, this boundary is
the boundary of a finer patch lying inside the coarse patch,
and the distance of the ghost cell underlying the neighbour-
ing finer patch from the closest domain on that finer patch is
D f iner−ghostcell . While for steps 9 to 14, it is the boundary
with a patch on the sameor lower level, and the distance of the
ghost cell from the closest isolated domain on that neighbour-
ing patch is Dghostcell . Once the requisite boundary grid cell
has been found, we can check whether the extended domain
value on the grid cells within the required distance from this
grid cell needs to be modified. Figure 2 (bottom row) shows
the result after modification of extension maps with different
levels of refinement.

In our model, we store the original volume, temporary
volume, and temporary area (required in equation (20)) in
1D arrays based on the patch grid structure. We number the
patches on each processor sequentially and store these vari-
ables for extended domain labels present on that patch. For
example, if patch number 1 on processor 0 has extended
domain labels 2 and 3, then our array starts with the original
volume, temporary volume, and temporary area for domains
2 and 3, respectively. If patch number 2 on processor 0, has
extended domain labels 1, we append the original volume,
temporary volume, and temporary area for domain 1 to these
arrays. This array shape helps in limiting the communication
between root processors and other processors since we can
use MPI_Gatherv and MPI_Scatterv to share the arrays
efficiently. We update these variables after each regridding
operation using Algorithm 4. During regridding, we create
similar variables based on the newer grid configuration. We
refine and coarsen all patch variables using integer opera-
tors (described previously) and real operators (provided by
SAMRAI) before any other operation. Then, we extend the
domains using Algorithms 2 and 3. We utilize the extended
domain labels to link the variables based on the previous
grid structure to those based on the new grid structure. Then,
we erase the older variables from memory space and use the
newer ones in their place for further calculations.

4 Results and discussion

Here, we present simulation results with the LS/MLS-LVC
models using the new AMR capabilities. We start by vali-
dating the model against analytical results for three-phase
configurations in a 2D triangular pore and a 3D cylindrical
pore, followed by analysing the parallel performance of the
AMR implementation through scaling tests. Then, we apply
the LS/MLS-LVC models on segmented micro-CT images
of a sandstone to explore the significance of AMR in simula-
tions of two-phase and three-phase capillary displacements
with disconnected fluid ganglia.

In this section, the phrase ‘1-level’ or ‘AMR-1’ describes
simulations using AMR with one level of refinement, while
‘2-levels’ or ‘AMR-2’ describes simulations usingAMRwith
two levels of refinement. The phrase ‘LVC-1’ and ‘LVC-2’
refer to local volume conservation of one and two phases,
respectively. For visualization purposes, we use the software
VisIt developed by LLNL [6]. To visualize the fluid configu-
ration inside a pore geometry, we confine the zero contours of
φα to the pore space using φα = max(φα,−ψ), α = g, o, w.

4.1 Validation against three-phase fluid
configurations in a 2D triangular pore

We consider three-phase fluid configurations in a 2D trian-
gular pore where water is the wetting phase residing in pore
corners, oil is present as intermediate-wet layers, and gas is
the non-wetting phase occupying the central portion of the
triangle. This configuration is similar to the one theoretically
studied by Hui and Blunt [26]. We will assume the oil layers
are disconnected from each otherwith different pressures and
their individual volumes (areas in 2D) conserved. This situa-
tion is different fromour previous investigations on triangular
pores using MLS method where global oil volume conser-
vation led to a common pressure for all oil layers [18]. For
stepwise increments of gas pressure at constant water pres-
sure we simulate the displacement of oil layers toward pore
corners, applying LVC on the oil phase only. Our objective
is to show that higher levels of AMR improve the accuracy
in simulations based on a comparison with analytical solu-
tions and that AMR simulations provide similar results as
simulations on a corresponding uniform, fine grid.

Geometrically, an oil layer can exist in a corner if the
contact angles and interface curvatures, θαβ and Cαβ , αβ =
go, ow, satisfy the relations [26]:

θαβ < π/2 − �k, αβ = go, ow, (28)
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and

Cgo

Cow
<

⎧
⎪⎪⎨

⎪⎪⎩

cos θgo − sin�k

cos θow − sin�k
, θgo < θow,

cos
(
θgo + �k

)

cos (θow + �k)
, θgo ≥ θow,

(29)

where �k is the half-angle of corner k. Here we assume that
an oil layer ceases to exist when the gas-oil and oil-water
interfaces form a triple junction on the pore walls or at the
corner bisector. The volume Vo of an oil layer in corner k,
sandwiched by corner water and bulk gas, is [18]

Vo = Bgo

C2
go

− Bow

C2
ow

, (30)

where

Bαβ = cos θαβ

(
cos θαβ

tan�k
− sin θαβ

)

+ θαβ +
(
�k − π

2

)
, αβ = go, ow.

(31)

From equations (30) and (31) we find Cgo as a function of
Cow:

Cgo =
√

BgoC2
ow

VoC2
ow + Bow

(32)

The horizontal asymptote for the above equation is

Cgo =
√

Bgo

Vo
, (33)

which corresponds to the situation where all the water has
been displaced from the corner.

For the validation, we use a triangle with baseline 10 μm
and corner angles 30◦, 60◦ and 90◦, located on a spatial
domain of size 140L∗ × 95L∗. The characteristic parame-
ters for the MLS-LVC method is L∗ = 10−7 m, γ ∗ = 10−4

Nm-1, and P∗ = 103 Pa. We model a slightly non-spreading
fluid systemwith interfacial tensions σow = 20×10−3 Nm-1,
σgo = 12 × 10−3 Nm-1 and σgw = 30 × 10−3 Nm-1. The
contact angles are θow = 50◦, θgo = 30.3◦ and θgw = 39.3◦,
representing a water-wet state in which water is absent in the
90◦-corner by equation (28). Following [18], we initialize the
zero contours of the fluid LS-functions as concentric circles
that intersect the pore walls. Then, φw < 0 outside the largest
circle, φg < 0 inside the smallest circle, and φo < 0 in the
annulus (with thickness 0.5 μm). We initialize the gas and
water phase pressures to 110 kPa and 100 kPa, respectively.
The isolated oil layer pressures will be calculated from equa-
tion (20). So, we start from a gas-water capillary pressure of

Pgw = 10 kPa, and thereafter simulate capillary equilib-
rium states for each gas-pressure increment of 1 kPa until
Pgw = 20 kPa.

The simulation on the coarse, uniform grid uses grid-cell
spacing �x = 1, reinitialization frequency once every 5
MLS iterations, and c = 0.001 as MLS convergence cri-
terion in equation (18). Now, halving the grid spacing will
reduce theCFL-determined time-step four times. So, tomake
simulations comparable between meshes with different grid
spacing, we use a reinitialization frequency of once every 20
iterations for AMR-1 and once every 80 iterations for AMR-
2. To maintain comparable convergence criteria, we also set
c = 0.0005 for AMR-1 and c = 0.00025 for AMR-2 in
equation (18). Simulations on the corresponding uniform,
fine grids with �x = 0.5 and �x = 0.25 follow the same
procedure. In the AMR simulations we tag cells for refine-
ment around interfaces in the pore space according to the
criterion |φα| < �x and ψ > 0 for α = g, o, w. We per-
form regridding every 1000 iterations for AMR-1 and every
2000 iterations for AMR-2.

Figure 4 shows three-phase fluid configurations for Pgw =
10 and 20 kPa from the simulation on the finest uniform
grid (�x = 0.25) and the AMR-1 and AMR-2 simulations.
As the AMR simulations form grids with higher resolution
only around the fluid/fluid interfaces, the pore geometry is
resolved with coarse grid spacing (�x = 1) in areas away
from the interfaces, leading to rounded pore corners in case
of AMR-1 and AMR-2. Such differences in uniform (or ini-
tial) grid spacings also lead to minor differences in the input
interface location on the computational grids, which con-
tribute to slightly different original volume of the oil layers
in the corners. This difference is larger for the 30◦ corner in
comparison to the 60◦ corner. The supplementary informa-
tion provides zoomed-in views of the configurations in the
different pore corners for Pgw = 10, 14, and 20 kPa.

A comparison of the results from the AMR-1 simulation
with a simulation on the corresponding uniform, fine grid
(�x = 0.5) shows that the locations of the zero contours of
φα from the two simulations are nearly overlaying each other,
see Fig. 5 (a) and (b). The deviation between the two simu-
lations is largest for the oil/water interface in the 30◦-corner
where the zero contours are separated by at most one coarse
grid spacing (�x = 1). This separation can be attributed to
the slightly different initial oil-layer volumes, which leads to
a more pronounced separation as the oil is squeezed deeper
into the corner. The overlapping Cgo(Cow)-curves shown in
Fig. 5 (c) and (d) confirm that the AMR simulation is able to
mimic the results expected from the corresponding uniform
fine grid.

Figure 6 presents a similar comparison between the
AMR-2 simulation and the simulation on the corresponding
uniform, fine grid with grid spacing �x = 0.25. As for the
previous case, the zero contours ofφα are nearly overlapping,
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Fig. 4 Three-phase fluid configurations of gas (green), oil (red) and
water (blue) for gas-water capillary pressures Pgw = 10 kPa (top row)
and Pgw = 20 kPa (bottom row) from simulations in the triangular pore
with (a) uniform fine grid (�x = 0.25), (b) AMR-1, and (c) AMR-2. (b,

c) The results fromAMR simulations also show the rectangular patches
withfiner grid around the interfaces. The coarse grid spacing in theAMR
simulations is�x = 1. For visualization purposes, we confined the zero
contours ofφα to the pore space usingφα = max(φα,−ψ), α = g, o, w

Fig. 5 (a, b) Stable zero-contour
configurations of the fluid-phase
LS functions from simulations
with AMR-1 and uniform grid
(�x = 0.5) in the triangular
pore for (a) Pgw = 14 kPa and
(b) Pgw = 20 kPa. The figures
show φg = 0 (solid, light green
curve (AMR-1) and dashed,
dark green curve (uniform grid))
and φw = 0 (solid yellow curve
(AMR-1) and dashed red curve
(uniform grid)). We also plot the
fluid/fluid and fluid/solid
boundaries of all fluid phases in
the pore geometry in blue colour
by means of the zero contours of
φα = max(φα,−ψ), α =
g, o, w from AMR-1 results. For
the AMR-1 results, we also
show the rectangular patches
with finer grid around the
interfaces. (c, d) Relationships
between interface curvatures
Cgo and Cow for (c) 30◦-corner
and (d) 60◦-corner

123



Computational Geosciences

Fig. 6 (a, b) Stable zero-contour
configurations of the fluid-phase
LS functions from simulations
with AMR-2 and uniform grid
(�x = 0.25) in the triangular
pore for (a) Pgw = 14 kPa and
(b) Pgw = 20 kPa. The figures
show φg = 0 (solid, light green
curve (AMR-2) and dashed,
dark green curve (uniform grid))
and φw = 0 (solid yellow curve
(AMR-2) and dashed red curve
(uniform grid)). We also plot the
fluid/fluid and fluid/solid
boundaries of all fluid phases in
the pore geometry in blue colour
by means of the zero contours of
φα = max(φα,−ψ), α =
g, o, w from AMR-2 results.
The AMR-2 results also display
the rectangular patches with the
two different levels of finer grid
around the interfaces. (c, d)
Relationships between interface
curvatures Cgo and Cow for (c)
30◦-corner and (d) 60◦-corner

see Fig. 6 (a) and (b). The largest difference occurs in the 30◦
corner around the oil/water interface for Pgw = 20 kPa, in
which the zero contours of φo this time are separated by at
most half a coarse grid spacing (�x = 1). The better per-
formance of AMR-2 compared to AMR-1 in providing zero
level-set locations closer to the results on the uniform finer
grid is due to the improvement in initial oil volume with fur-
ther refinement of the grid. Figure 6 (c) and (d) show that
the AMR-2 simulation also replicates the Cgo(Cow)-curves
from the simulation on the uniform fine grid, which validates
the AMR implementation in the MLS-LVC model.

Figure 7 presents Cgo(Cow)-curves from the AMR-1 and
AMR-2 simulations along with the results from the simu-
lation on the coarse uniform grid (�x = 1). Clearly, the
coarse-grid simulation reasonably resolves the interface cur-
vatures in the 30◦-corner, while AMR improves accuracy of
the solution further (see Fig. 7 (a)). The resolution of oil-

water interface is more accurate in the 30◦-corner compared
to the 60◦-corner. So, the most significant improvements
with AMR occurs in the 60◦-corner, where the results on
the coarse, uniform grid noticeably differs from the analytic
solution (see Fig. 7 (b)). These results support the application
of AMR in complex 3D geometry to improve the accuracy
of results. Figure 8 explores convergence behavior of the oil-
layer volumes based on these three simulations. We present
results from the equilibrium states obtained at every 2 kPa
increase of Pgw and estimate the relative error E[V ] of the oil
volumes calculated during the MLS iterations with respect
to the initial (target) volume in each corner. In the case of the
90◦ corner, the relative error for different Pgw almost coin-
cide because the absenceofwater renders the gas-oil interface
static. All results show that the application of AMR in the
MLS-LVCmodel yields quadratic volume convergence with
respect to grid spacing.

Fig. 7 Analytical solutions for
gas-oil curvature vs. oil-water
curvature in the triangular pore
compared with simulation
results from uniform coarse
grid, AMR-1, and AMR-2: (a)
30◦ corner, and (b) 60◦ corner
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Fig. 8 Convergence of
conserved oil-layer volume with
respect to grid spacing for
different gas-water capillary
pressures in the triangular pore:
(a) 90◦ corner, (b) 60◦ corner,
(c) 30◦ corner, and (d) total oil
volume. E[V ] is relative error.
The data is from uniform grid
simulation (�x = 1), AMR-1,
and AMR-2 simulation. The
x-axis represents the grid
spacing on the finest grid in the
simulation

Finally, Fig. 9 depicts various aspects of the computational
performance of the MLS-LVC model with AMR. The total
number of grid cells decreases during the AMR simulations
because fewer grid cells are tagged for refinement when the

interfaces approach the corners, see Fig. 9 (a) and (b).We also
note that even the AMR-2 simulation forms a lower number
of grid cells than the uniform-grid simulation with grid spac-
ing�x = 0.5. Similarly, Fig. 9 (c) shows that the numbers of

Fig. 9 Performance of simulations with AMR and uniform grids as
function of the number of MLS iteration steps. (a) Ratio between the
numbers of grid cells for AMR and corresponding uniform, fine grid,

(b) number of grid cells (on a logarithmic scale), (c) number of patches,
and (d) CPU time taken per 1000 iterations (in seconds)

123



Computational Geosciences

Fig. 10 Three-phase fluid
configurations of gas (green), oil
(red) and water (blue) in a 3D
cylindrical pore with pore radius
= 15μm. (a) Initial
configuration, (b) uniform
coarse grid (�x = 1), (c)
AMR-1, and (d) AMR-2. The
coarse grid spacing in the AMR
simulations is �x = 1. The
AMR results display the
rectangular patches from the
refined grid with the first level
of refinement in light purple and
the second level of refinement in
dark purple

patches decrease during the AMR simulations, even though
they remain higher than the constant patch numbers from the
simulations with uniform grid.

Figure 9 (d) compares CPU time spent per 1000 iterations
in the simulations. The coarse-grid simulation (�x = 1)
is fastest, while the AMR simulations are faster than the
corresponding uniform fine-grid simulations. The number
of iterations required to reach the final stable state is the
same for the corresponding simulations with AMR and uni-
form fine grid. All the simulations become progressively
faster as the oil layers move deeper into the corners. This
is mainly because the periodic reinitializations of φα require
less iterations in the late stage of these simulations. In gen-

eral, a dynamic CPU time will also arise when the number of
patches spanned by conserved domains changes significantly
during a simulation, leading to varying communication loads
between processors in the LVCmethod. Specific to the AMR
simulations on the triangular pore is that both the numbers of
grid cells and patches decrease, although a generally higher
number of patches in the cases with AMR can maintain a
significant processor communication in the LVCmethod and
lead to more modest declines of CPU time. Still, Fig. 9 (d)
shows that, on an averageAMR-1 is twice as fast, andAMR-2
more than four times as fast, as the computation on a corre-
sponding uniform fine grid. Combining this efficiency gain
with the nearly overlapping results from Fig. 5 (c) and (d)

Table 1 Volume [10−15m3] and
pressure [kPa] of gas bubble and
oil droplets. Oil drop -1 refers to
the smaller drop

Gas bubble Oil drop - 1 Oil drop - 2
Pressure Volume Pressure Volume Pressure Volume

Pore radius 10 μm

Uniform 7.606 7.824 5.663 4.688 5.664 6.260

AMR-1 7.705 7.847 5.721 4.706 5.713 6.278

AMR-2 7.741 7.854 5.742 4.711 5.736 6.283

Analytical 7.765 7.856 5.759 4.713 5.759 6.285

Pore radius 12 μm

Uniform 6.718 11.383 5.084 6.756 5.084 9.019

AMR-1 6.774 11.413 5.115 6.780 5.111 9.043

AMR-2 6.803 11.421 5.131 6.786 5.126 9.049

Analytical 6.804 11.424 5.132 6.789 5.132 9.051

Pore radius 15 μm

Uniform 5.769 17.622 4.466 10.561 4.466 14.096

AMR-1 5.814 17.662 4.487 10.594 4.484 14.129

AMR-2 5.830 17.672 4.496 10.602 4.490 14.137

Analytical 5.843 17.676 4.506 10.605 4.506 14.140
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and Fig. 6 (c) and (d), we can conclude that AMR is compu-
tationally important for higher accuracy in large geometries.

4.2 Validation against three-phase fluid
configurations in a 3D cylindrical pore

We consider three-phase fluid configurations in a 3D cylin-
drical pore where water is the wetting phase, oil is the
intermediate-wetting phase, andgas is the non-wetting phase.
Water is present at the two ends, while two oil droplets of
different sizes surround a single gas bubble (see Fig. 10 (a)).
We conserve the volume of the gas bubble and the two oil
droplets, while we treat the water as a continuous phase with
a prescribed pressure. We provide the initial configuration
as cylindrical regions (fluid/fluid interfaces are parallel to
x-y plane) and allow the gas-oil and oil-water curvatures to
develop during simulation based on the fluid phase properties
(see Fig. 10 (a)).

For a given water pressure Pw, the oil pressure Po, and
gas pressure Pg can be calculated analytically from Young-
Laplace equation as:

Po = Pw + (2σow cos θow)

r
,

Pg = Pw + (2σow cos θow) + (2σgo cos θgo)

r
,

(34)

where r is the pore radius. Note that two oil droplets with
different (but sufficiently large) volumes will have identical
pressures in such straight tubes.

For the validation, we study the fluid configurations in
three pores with length 90μm, and pore radii 10μm, 12μm,
and 15μm. The spatial domain size is 40L∗ ×40L∗ ×90L∗.
The characteristic parameters for the MLS-LVC method are
L∗ = 10−6 m, γ ∗ = 10−4 Nm-1, and P∗ = 100 Pa.
Hence, the coarse grid spacing is �x = 1. We model a
slightly non-spreading fluid system with interfacial tensions
σow = 20 × 10−3 Nm-1, σgo = 11 × 10−3 Nm-1 and
σgw = 30 × 10−3 Nm-1. The contact angles are θow = 20◦,
θgo = 24.24◦ and θgw = 16.1◦. We prescribe the water drop
pressures to 2 kPa. All other simulation parameters are the
same as in the last section. During simulation, the pressures
of the two oil droplets and the gas bubble will be calculated
from equation (20). Figure 10 (b-d) shows the equilibrium
fluid interfaces for pore radius 15 μm. The supplementary
information contains images of the equilibrium fluid config-
urations for the other pore radii.

Table 1 lists the pressure and volume of the gas bubble
and the two oil droplets from our simulations and their ana-
lytical values. Figure 11 compares analytical and simulated
gas and oil pressures, while Fig. 12 shows the convergence
of the gas and oil volumes with respect to the grid spacing.
Figure 12 confirms a quadratic volume convergence for the

Fig. 11 Comparison of simulation results vs. analytical solutions for
oil droplet and gas bubble pressures in the three cylindrical pores of
different sizes. In each simulation, the two oil droplet pressures are
nearly identical and appear as one data point in the figure. The three
leftmost data sets represent oil droplet pressures, and the three rightmost
data sets represent gas bubble pressures

different pore sizes. Table 2 lists the computational data for
these simulations. It can be seen that the number of itera-
tions required for convergence increases with pore size. The
computational time is also affected by the changes in the
number of grid cells and patches in the geometry (computa-
tional performance analysis is discussed in detail in the next
section). The results show that increasing the refinement level
improves the accuracy of the pressure and volume results.

4.3 Scaling tests

In this section, we will discuss the parallel performance and
scalability of theMLS-LVCmethod with AMR. For uniform
grids, Jettestuen et al. [28] demonstrated that the algorithm
performance depends on the number of preserved domains.
Here, we investigate the parallel performance with one and
two levels of AMR, which are the most relevant cases for
application of the method on segmented micro-CT images of
rock samples. We carry out weak scaling and strong scaling
tests for uniform coarse grid, AMR-1, and AMR-2, while
conserving domains of one phase (LVC-1) and two phases
(LVC-2).

In the scaling tests, we consider a pore space occupied by
an equal number of disconnected oil and gas domains (see
Fig. 13). Continuouswater occupies the remaining part of the
computational domain (solid is absent). Pressures of contin-
uous phases are set equal, while pressures of disconnected
domains are calculated from equation (20). The simulations
consist of 24 level set iterations for each of the three fluid
phases, including the projection step calculations as well as
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the LVCcalculations for selected phase(s). Three reinitializa-
tion solves (each consisting of 10 iterations) are carried out at
the 10th and 20th level set iteration step. In AMR simulations
we refine all grid cells that satisfy |φα| < �x, α = g, o, w.
The simulation time in the scaling tests is the duration

Fig. 12 Volume convergence of oil droplets and gas bubblewith respect
to the grid spacing in the cylindrical pore: (a) r = 10μm, (b) r = 12μm,
and (c) r = 15μm. E[V ] is the relative error, and the x-axis represents
the grid spacing on the finest grid in the simulation. Gas in green-solid,
smaller oil drop in red-solid, and larger oil drop in blue-dashed

Table 2 Simulation performance in cylindrical pore for different pore
sizes. Time in CPU hours

Iterations Patches Gridcells Time

Pore radius 10 μm

Uniform 1680 45 144000 1.59

AMR-1 6660 109 403632 15.86

AMR-2 25920 257 1322296 156.01

Pore radius 12 μm

Uniform 2115 45 144000 2.02

AMR-1 8560 106 495336 23.59

AMR-2 34720 351 1733792 282.51

Pore radius 15 μm

Uniform 2545 45 144000 2.48

AMR-1 11280 135 661336 41.60

AMR-2 49600 512 2619456 623.01

between the 4th iteration step and the 24th iteration step and
thus we exclude gridding computation times. We refer to
Gunney and Anderson [14] for an investigation of the par-
allel performance of AMR regridding within the SAMRAI
framework. Even though the scaling performance of SAM-
RAI is linear for processor clusters much larger than the 512
processors used in our test, the scaling test performance pre-
sented in this section should diminish with the frequency of
regridding during the test. Overall, the scaling tests capture
60(= 20 × 3) level set iteration steps and 60(= 2 × 10 × 3)
reinitialization steps. All the computations are performed on
the supercomputer Fram provided by UNINETT Sigma2 -
the National Infrastructure for High-Performance Comput-
ing and Data Storage in Norway.

In the case of strong scaling, we consider a computa-
tional domain with 320 × 320 × 320 coarse grid cells for
the uniform-grid and AMR-1 simulations (see Fig. 13 (a)).
As this domain size leads to memory overflow for AMR-2
with less than512processors,weuse a computational domain
with 320× 320× 160 coarse grid cells for the strong scaling
tests with AMR-2 (see Fig. 13 (b)). In both cases the geome-
try contains a total of 216 (= 63) equally sized isolated fluid
domains. Figure 14 shows the results from the strong scaling
tests, and Tables 3 and 4 detail the speed-up and number of
patches data. The tests show that AMRhas a limited effect on
the speed-up behaviour of theMLS-LVCmethod. In general,
LVC-1 provides better scalability compared to LVC-2. Com-
pared to the results on the uniform coarse grid, the scalability
dips for AMR-1 but becomes equal or better for AMR-2. The
number of patches per processor are nearly constant for the
simulations on the uniform coarse grid, whereas in the AMR
runs, the number of patches per processor decreases as the
number of processors increases. The non-monotonic perfor-
mance is due to a more significant decrease in the number
of patches per processor for AMR-2 compared to AMR-1.
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Fig. 13 Geometries with gas (green) and oil (red) configurations used
in the scaling tests (the surrounding water phase is not shown): (a)
Strong scaling tests for uniform grid and AMR-1 (320 × 320 × 320
coarse grid cells and 63 = 216 isolated fluid domains), (b) strong scal-

ing tests for AMR-2 (320 × 320 × 160 coarse grid cells and 63 = 216
isolated domains), and (c) weak scaling tests (geometries of different
sizes containing 43 = 64 isolated fluid domains)

Such a decrease reduces the load on each processor, and it
also reduces the communication requirement and root pro-
cessor computations involved in identifying unique isolated
domains in the LVC algorithm.

In case of weak scaling, we consider a cubic domain with
320 × 320 × 320 coarse grid cells for 512 processors and
64(= 43) isolated fluid domains (see Fig. 13 (c)). Then we
proportionately reduce the number of coarse grid cells and the
number of processors by a factor of eight until we obtain 40×
40×40 coarse grid cells for one processor, while the number
of isolated fluid domains (64) remains constant. Tables 5 to 7
lists the results of the weak scaling tests. For the smallest and
least resolved geometry (using one processor), the first level
of refinement in the AMR simulations covers the complete
geometry instead of being limited to the region around the
interfaces. This leads to a longer computational time than for
the AMR simulations on the larger geometries with 8, 64,
and 512 processors.

Fig. 14 Strong scaling results for uniform coarse grid, AMR-1, and
AMR-2, with conservation of one phase (108 domains) and two phases
(216 domains)

Another trend is that the computational time for the AMR
runs is least for 64 processors, see Table 5. This trend results
from two parameters: the number of patches per processor
and the total number of patches. Like the strong scaling
test, the reduction in the number of patches per processor
can increase computational speed. However, an increase in
the total number of patches increases communication time
and computational time on the root processor. We illustrate
the impact of the total number of patches by comparing
computation times for AMR-2 runs with 64 and 512 pro-
cessors (Table 5) against corresponding patch numbers in
Table 6: Even though the number of patches per processor
is significantly lower for the 512-processor runs than for the
64-processor runs, the 512-processor runs are slower as they
form a nearly five times higher number of patches in total.
These findings demonstrate that weak scaling results are sen-
sitive to the total number of patches in the system, as reported
byGunney andAnderson [14]. The SAMRAI framework has
been designed such that, for given grid refinement criteria,
the scalability of the regridding process is of a linear order,
but there is no control on the total number of patches that
will be formed in the system.

An outlier in the weak scaling results is the 512-processor
runs for AMR-1which is slower than the 8-processor runs. In
this case, the number of patches per processor has increased
in comparison to the 64-processor case. The number of
patches for 512 processors is approximately 24 times higher
than for 8 processors. Based on the reasonsmentioned above,
there is a compounded decrease in performancewhichmakes
the overall computation slower. Table 7 highlights the reduc-
tion in the number of grid cells in AMR computations
compared to a corresponding uniform fine grid. These values
confirm the importance of using AMR to reduce the size of a
large computational grid and using a large number of proces-
sors. Additional results from the scaling tests are provided in
the supplementary information.
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Table 3 Speed-up (w.r.t. 64
processors) in strong scaling test

LVC-1 LVC-2
Processors Uniform AMR-1 AMR-2 Uniform AMR-1 AMR-2

64 1 1 1 1 1 1

128 1.715 1.824 1.805 1.664 1.795 1.764

256 3.150 2.976 3.121 2.903 2.885 3.049

512 4.663 3.951 4.205 3.772 3.764 4.096

Table 4 Number of patches per
processor in strong scaling test

LVC-1 LVC-2
Processors Uniform AMR-1 AMR-2 Uniform AMR-1 AMR-2

64 1.094 21.516 40.266 1.094 21.516 40.266

128 1.563 11.563 21.148 1.563 11.563 21.148

256 1.277 6.852 11.656 1.277 6.848 11.656

512 1.592 4.330 7.623 1.592 4.336 7.625

Table 5 Computation time in
weak scaling test

LVC-1 LVC-2
Processors Uniform AMR-1 AMR-2 Uniform AMR-1 AMR-2

1 11.923 118.777 398.994 12.462 128.688 432.552

8 12.771 47.366 146.219 13.548 51.350 158.142

64 17.571 33.106 90.371 19.130 36.517 101.186

512 19.817 71.723 147.780 21.908 76.648 156.282

Table 6 Number of patches per
processor in weak scaling test

LVC-1 LVC-2
Processors Uniform AMR-1 AMR-2 Uniform AMR-1 AMR-2

1 1 9 73 1 9 73

8 1 9 17 1 9 17

64 1.109 2.109 8.109 1.109 2.109 8.109

512 1.592 3.395 4.910 1.592 3.395 4.914

Table 7 Ratio of the numbers of
grid cells in simulations with
AMR and corresponding
uniform grid in weak scaling test

LVC-1 LVC-2
Processors AMR-1 AMR-2 AMR-1 AMR-2

1 1.125 0.357 1.125 0.357

8 0.341 0.134 0.341 0.134

64 0.216 0.068 0.216 0.068

512 0.166 0.041 0.166 0.041
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The SAMRAI framework provides flexibility in patch
generation by taking user inputs for the largest and small-
est patch sizes during simulation. In our model, we use the
computational domain size as the largest patch size and twice
our numerical stencil size on each axis as the smallest patch
size. This choice allows us to prevent a large number of small
patches that can hinder computational speed. An important
factor impacting the computational speed is the number of
isolated ganglia in the system,which is apparent by the longer
computation time of LVC-2 simulations compared to LVC-1
simulations.

4.4 3D LS/MLS-LVC simulations with AMR on
sandstone pore geometries

We use 3D pore geometries of sandstone to explore the
impact of AMR in simulations of capillary-controlled two-
phase and three-phase displacements where disconnected
fluid ganglia form. For this purpose, we have extracted sub-
volumes from a data set of segmented microtomography
images of Castlegate sandstone with voxel length 5.6 μm
[58]. We use LS-LVC method for two-phase simulations
and MLS-LVC method for three-phase simulations. In both
cases we compare the results produced with one level of
refinement (AMR-1) against the results from the simula-
tion on the coarse, uniform grid (represented by voxels). We
set the MLS characteristic parameters for the simulations to
L∗ = 5.6 × 10−6 m, γ ∗ = 10−4 Nm-1, and P∗ = 17.9 Pa.

The number of conserved domains doubles in LVC-2 sim-
ulations compared to LVC-1 simulations. For example, in
the weak scaling test, there are 32 and 64 locally conserved
domains in LVC-1 and LVC-2 simulations, respectively.
In contrast, the number of patches per processor typically
remains equal since we refine grid cells around all fluid/fluid
interfaces in the pore space (see Tables 4 and 6). The results
from the strong and weak scaling tests with 512 processors
present four different numbers of conserved domains on the
320×320×320 geometry. The results show that the factor by
which the computational time increases with a growing num-
ber of locally conserved domains is lower than the growth in
the number of such domains (see supplementary information
for details).

4.4.1 Two-phase imbibition

We explore two-phase oil/water displacements during imbi-
bition on a Castlegate rock geometry with volume 200L∗ ×
200L∗ × 200L∗ and porosity 22.7%. The rock is consid-
ered to be water-wet with contact angle θow = 20◦, and
interfacial tension is σow = 20 × 10−3 Nm-1. For this
case, Helland et al. [17] performed LS simulations of pri-
mary drainage and imbibition without LVC, by increasing
(drainage) and then decreasing (imbibition) the interface cur-

vatureCow = σow/Pow stepwise after each equilibrium state
achieved with equation (7). Here, we simulate imbibition
with LVC applied to oil, for both AMR-1 and coarse uniform
grid, starting from a reversal point on the primary drainage
Pow(Sw)-curve where Sw = 0.13 and Pow = 2.68 kPa.

Fig. 15 Location of oil phase (red) during AMR simulation of imbi-
bition in Castlegate sandstone for (a) Sw = 0.13 and Pow = 2.68 kPa
(initial state), (b) Sw = 0.39 and Pow = 1.07 kPa, and (c) Sw = 0.73
and Pow = −0.54 kPa (final state). Patches with finer grid are shown
in light blue
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Wetreat the top faceof the rock as inlet boundarywherewe
place a water-wet porous plate with thickness of two coarse
grid cells, which allows water to imbibe into the sample. Oil
withdrawal occurs only through bottom face (outlet) while
the sidewalls are sealed. The level set functions use reflective
conditions at all boundaries.We terminate the imbibition sim-
ulations when all the oil is capillary trapped as disconnected
ganglia. The coarse, uniform simulation uses grid spacing
�x = 1, while periodic reinitialization of φ occurs every
fifth LS iteration. The tolerance value in equation (18) is
c = 1.5 × 10−3. Based on the discussions in section 4.1,
we let the AMR simulation perform reinitializations every
20th LS iteration and set c = 7.5 × 10−4. We tag cells for
refinement that satisfy |φ| < �x, ψ > 0 and regrid every
2000 iterations.

Figure 15 shows the location of oil phase and finer grid
patches at three different capillary pressures during the AMR

Fig. 16 Residual oil configurations after imbibition in Castlegate sand-
stone from AMR-1 and uniform, coarse-grid simulations. Images (a)
and (b) show oil-phase locations from two diagonally opposite views
for AMR-1 (orange), coarse uniform grid (cyan), and the common loca-
tions from both simulations (red)

Fig. 17 Capillary pressure between continuous oil and water as a func-
tion of water saturation for primary drainage (coarse, uniform grid) and
imbibition (coarse, uniform grid and AMR-1). Capillary pressures of
disconnectedoil ganglia that formduring imbibition forAMR-1 (orange
circles) and coarse, uniform grid (purple crosses) are also shown

simulation. A video of the AMR simulation is provided as
supplementary information. During the initial stages of imbi-
bition, the oil phase is continuous while water layers in
crevices along the pore walls grow in thickness [17]. Even-

Fig. 18 Model performanceduring theAMR-1 simulationof two-phase
imbibition on Castlegate sandstone. (a) Evolution of the number of
patches and the ratio of the number of grid cells between AMR-1 and a
corresponding uniform fine grid. (b) Total CPU usage curve
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tually, water snaps off oil and invades narrow pore throats
while disconnected oil ganglia form and relax to stable states
in nearby pore openings. Figure 16 shows that the location
of oil ganglia changes slightly due to refinement. However,

Fig. 19 Three-phase fluid configurations of water (blue), oil (red) and
gas (green) from AMR simulation of gas invasion in Castlegate sand-
stone for (a) Pgw = 1.9 kPa (initial state), (b) Pgw = 2.77 kPa, and (c)
Pgw = 3.44 kPa (final state). Patches with fine grid are shown in black

the residual oil saturation after imbibition is Sor = 0.27 for
both the uniform coarse grid and AMR-1 runs.

Figure 17 reveals that the capillary pressure curves from
the two simulations are almost identical and that most oil
ganglia form when Sw > 0.4. An important point of note
is that interface relaxation creates stable states in which the
capillary pressures of oil ganglia differ from the prescribed
capillary pressure between the continuous phases at the inci-
dent of ganglia disconnection. The oil ganglia create a wide
range of capillary pressures, in which the majority of the
data are located between the continuous Pow(Sw)-curves for
drainage and imbibition. Such behaviour are also observed
in pore-scale experiments based on analysis of two-phase
micro-CT images [12, 20, 34]. The AMR simulation differ-
entiates the ganglia capillary pressures more distinctly as it
creates a wider spread among the majority of the data than
the coarse simulation.

Figure 18 (a) shows that the number of patches remains
nearly constant while the refined area increases during the
initial stages of the imbibition. The increase in refined area is

Fig. 20 Simulation results from gas invasion on Castlegate sandstone
using AMR and coarse, uniform grid: (a) Saturation paths, and (b) gas-
water capillary pressure curves
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due to the swelling ofwater layerswhich increases interfacial
area between oil and water [11, 17]. At later stages, both
the number of grid cells and the number of patches in the
computational geometry decrease as oil is displaced. This
speeds up the simulation and results in decreased slope of
the total CPU usage curve, as shown in Fig. 18 (b). The total
CPU time is the product of simulation time and number of
computing cores.

4.4.2 Three-phase gas invasion

To investigate the impact of AMR on simulations of three-
phase displacementswe use aCastlegate sandstone geometry
with size 128L∗ × 128L∗ × 128L∗ and porosity 20.8%. We
consider a water-wet state with a consistent set of contact
angles given by θgo = 23.1◦, θgw = 32◦ and θow = 40◦, and
a fluid system with interfacial tensions σgo = 11 × 10−3

Nm-1, σgw = 30 × 10−3 Nm-1 and σow = 20 × 10−3

Nm-1, representing a slightly non-spreading oil. For this
case Jettestuen et al. [28] performed a coarse-grid simu-
lation (�x = 1) of gas invasion after primary drainage
using MLS-LVC method with conservation of the oil phase
(LVC-1).

In the present study, we repeat the simulation of gas inva-
sion with one level of grid refinement (AMR-1). The inlet
is located at the bottom face of the cubic domain where we
add a two-voxel thick layer of pore space filled with invading

phase. With respect to LVC, the side walls are sealed and top
face is outlet. The level set functions use linear extrapolation
at inlet and reflective conditions at the other faces as boundary
conditions.We initiate gas invasion from a high water satura-
tion (Sw = 0.67) before oil breakthrough occurs in primary
drainage. Thus, all the oil is disconnected and subjected to
LVC in the beginning of the three-phase displacement. We
simulate gas invasion by increasing gas pressure stepwise
while the phase pressures of continuous oil and water are
held constant. The simulations are terminated when the oil
saturation no longer decreases. The coarse-grid simulation
performed reinitialization of level set functionsφα every 10th
MLS iteration and used c = 1.5×10−3 as tolerance value.As
we aremainly interested in the behaviour of the disconnected
phase in the AMR simulation, we only refine cells around oil
boundaries according to |φo| < �x and ψ > 0. Gas/water
interfaces will then be located on the coarse grid, sowemain-
tain a reinitialization frequency of once every 10 iterations
while we use a reduced tolerance value c = 7.5 × 10−4 as
discussed previously.

Figure 19 shows three-phase fluid configurations and
patches with finer grid for three different gas-water capillary
pressures during the AMR simulation. A video is provided
as supplementary information. In the initial stages, gas inva-
sion occurs by double displacements in which gas displaces
several oil slugs that displace water. After oil reaches the
top boundary the dominating mechanisms are direct gas-oil

Fig. 21 Oil (top) and gas
(bottom) configurations at the
final state (Pgw = 3.44 kPa) of
gas invasion in Castlegate
sandstone from three-phase
simulations with (a) AMR-1
(this work), and (b) uniform,
coarse grid [28]
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displacements (that reduces oil saturation) and double dis-
placements. During this process, oil ganglia detach fromboth
continuous oil and larger oil slugs of which some of the gan-
glia continue their displacementwhile others get trapped.The
trapped oil phase occupies mostly intermediate-sized pores
and pore corners as intermediate-wet layers. The last stage
of the simulation is dominated by direct gas-water displace-
ments.

Figure 20 compares the three-phase saturation paths and
gas-water capillary pressure curves from the AMR-1 and
coarse-grid simulations. Typically, capillary pressure curves
for drainage on small pore-scale samples display a stair-
case trend (for pressure-controlled invasion) that consists of
intervals with irreversible saturation jumps between equilib-
rium states (e.g., Haines jumps) connected by intervals with
smooth reversible saturation changes [7, 17, 19]. Although
the level of the two capillary pressure curves are similar,
the AMR simulation shows a more pronounced staircase
trend than the coarse simulation. The saturation paths from
the two simulations differ more. The deviation at interme-
diate gas saturations occurs because the AMR simulation

Fig. 22 Model performance during three-phase AMR-1 simulation on
Castlegate sandstone. (a) Evolution of the number of patches and the
number of grid cells (normalised by the number of grid cells in a cor-
responding uniform fine grid). (b) Total CPU usage curve

creates a different route for the gas and oil movement to
the top face, leading to gas breakthrough at a higher gas
saturation. Figure 21 shows that this leads to significantly
different residual oil configurations in which the AMR sim-
ulation traps more oil in the lower half of the geometry than
the coarse simulation. The residual oil saturations from the
simulations are Sor = 0.156 (coarse grid) and Sor = 0.182
(AMR). Further, the residual oil configuration from theAMR
simulation is less fragmented as it contains fewer but more
elongated oil ganglia with shapes that are more reminiscent
of intermediate-wet oil layers from three-phase pore-scale
experiments in porous rocks [e.g., 53]. Figure 21 shows that
there is also some differences in the final gas configurations
from the two simulations even though thefinal gas saturations
are about the same.

Figure 22 illustrates the performance of the MLS-LVC
model during the AMR simulation. The numbers of patches
and fine grid cells in the geometry increases as gas displaces
and traps oil. After gas breakthrough, these numbers reach a
maximum and experience a small decline when direct gas-
water displacements start dominating. The slope of the total
CPU usage curve responds to the change in the numbers of
patches and grid cells during the simulation.

5 Conclusion

This work has added structured, adaptive mesh refinement
capabilities to locally, conservative level set methods for
simulating two-phase and three-phase capillary-controlled
displacement with disconnected ganglia at the pore scale.
The AMR implementation of these LS/MLS-LVC methods
was carried out within the patch-based software framework
SAMRAI. We created new integer operators that are essen-
tial in preserving the local volume of isolated domains. The
implementation also improved memory requirements and
computations by preventing multiple identifications of any
particular set of neighbouring domains. We validated the
MLS-LVCmethod with AMR against analytical three-phase
configurations in idealized pores, where we treated the oil
layers as distinct domains with their volumes preserved. The
simulation results provide pressure and volume convergence
while tracking more than one isolated domain. Specifically,
we obtain second-order volume convergence with respect to
grid spacing. The computational performance of the model
during simulation underscores the strength of AMR com-
pared to a corresponding uniform fine grid. Further, the
results from simulations with AMR and a corresponding fine
uniform grid coincide, which shows that AMR simulations
provide similar accuracywith faster computations. TheAMR
implementation shows good performance in both strong and
weak scaling tests. The scaling tests also point out the impor-
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tance of the number of patches per processor as well as the
total number of patches in gaining computational efficiency.

Finally,t we investigated the impact of AMR on LS/MLS-
LVC simulations of two-phase imbibition and three-phase
gas invasion with formation of disconnected oil ganglia
on 3D pore structures of water-wet Castlegate sandstone.
Compared with coarse-grid simulations, the most significant
impact of AMR was obtained for three-phase displace-
ments with respect to the behaviour of the conserved,
intermediate-wet phase. Differences in the shapes and spa-
tial distribution of oil ganglia lead to different residual
oil saturations and saturation paths. These results suggest
that AMR is an important technology for obtaining desired
accuracy and efficiency in pore-scale simulations of three-
phase displacements. This will in turn, improve calculations
of constitutive relationships, such as three-phase capillary
pressure-saturation curves, which are required for large-scale
multiphase flow simulations in porous media.
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Appendix A: Analysis of isolated domain
identificationmethodology

In our work, isolated domains are identified in two steps: (1)
Identify isolated regions on a patch, and (2) generate unique
global tags for isolated domains. The first step provides iso-
lated regions on a patch with patch-level unique tags on each
processor. The second step uses the processor rank and patch-
level unique tags to generate unique global tags for isolated
domains. When an isolated domain lies on more than two
patches on a processor, we identify it with a different tag on
each patch. Identifying the same domain by multiple tags on
a processor leads to more data communication with the root
processor. A higher communication load negatively impacts
computational performance. An intuitive way to reduce the
data communication is to split the second step into two parts:
(i) processor level unique identification and (ii) unique global
identification from a reduced list aggregated from the proces-
sors. We refer to the two-step identification method as serial
identification and the three-step identification method as par-
allel identification.

We carry out three sets of strong scaling tests with both
serial and parallel identification of isolated domains follow-
ing the procedure described in Section 4.3. The tests are
carried out on a cubic geometry with two phases (using
LS-LVC model) such that one phase is completely contin-
uous and the other is completely disjointed (see Fig. 23). We
refine grid cells around all interfaces (|φ| < �x). This kind
of geometry provides the highest level of overlaps between
patches with different levels of refinement that identify the
same isolated region. Therefore, it is highly suitable for an
algorithm that gives processor-level unique tags to isolated
domains before providing them with globally unique tags in
the root processor. Table 8 shows the data from these tests.
We can see that the tagging criteria provides a large number
of refined grid cells because the number of grid cells between
different processors remains the same while the number of
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Fig. 23 Geometry used for strong scaling tests with isolated domains
of one phase (in blue) surrounded by a continuous phase that occupies
the remaining part of the computational domain. (a) Geometry used for
16, 32, and 64 processors contains 50 × 50 × 50 coarse grid cells. (b)
Geometry used for 128, 256 and512processors contains 160×160×160
coarse grid cells

patches increases. This is unlike the result seen in Section
4.3 with three phases.

Although not intuitive, Table 8 shows that the parallel
identification does not provide any gains. Instead, it is gen-
erally slightly slower than serial identification. The drop in
speed can be attributed to three factors. First parallel iden-
tification requires an extra iteration of reading and writing
data on a patch along with a processor level run for the
unique labelling of domains. These additional executions
increase the time spent on each processor before unique
global labelling. Second, over the years, there has been a con-
tinuous reduction in MPI data communication time between
processors, and nowadays, it is of linear order [14]. This
reduction diminishes the possible gain from a reduction in
computational time from parallel processing. Finally, in our
model we utilise the patch generation and load balancing

Table 8 Performance comparison between serial and parallel identifi-
cation of isolated domains for a given refinement ratio, R, and number
of processors, P .

P Nd R E Pat t(Serial) t(Parallel) S

16 27 2 0.183 317 13.092 13.415 0.976

32 27 2 0.183 400 8.688 8.924 0.974

64 27 2 0.183 504 5.520 5.636 0.979

16 27 4 0.031 499 23.931 24.453 0.979

32 27 4 0.031 587 13.951 14.239 0.980

64 27 4 0.031 768 9.411 9.587 0.982

128 216 2 0.208 5378 1496.570 1467.503 1.020

256 216 2 0.208 5562 874.735 849.366 1.030

512 216 2 0.208 6405 610.009 654.028 0.933

The table lists the time for computation, t , the speed-up with parallel
identification, S, the reduction in the number of elements compared to
a uniform grid, E , and the number of patches, Pat , for a particular
number of isolated domains, Nd

capabilities of the SAMRAI framework. SAMRAI provides
adequate load balancing by striving to put nearby patches into
the same processor. However, using the framework reduces
our control in forcing adequate overlap onto the patches in
a processor to ensure that parallel identification improves
computation time.
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