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Abstract

An online dictionary learning algorithm for kernel sparse repre-
sentation is developed in the current paper. In this framework, the
input signal nonlinearly mapped into the feature space is sparsely
represented based on a virtual dictionary in the same space. At any
instant, the dictionary is updated in two steps. In the first step, the
input signal samples are sparsely represented, in the feature space, us-
ing the dictionary that has been updated based on the previous data.
In the second step, the dictionary is updated. In this paper, a novel
recursive dictionary update algorithm is derived, based on the recur-
sive least squares (RLS) approach. This algorithm gradually updates
the dictionary, upon receiving one or a mini-batch of training sam-
ples. An efficient implementation of the algorithm is also formulated.
Experimental results over two datasets in different fields show the su-
perior performance of the proposed algorithm in comparison with its
counterparts. In particular, the classification accuracy obtained by
the dictionaries trained using the proposed algorithm gradually ap-
proaches that of the dictionaries trained in batch mode. Moreover,
in spite of lower computational complexity, the proposed algorithm
overdoes all existing online kernel dictionary learning algorithms.

Keywords: Sparse Representation; Online Dictionary Leaning; Ker-
nel Methods; Recursive Least Squares; Classification



1 Introduction

Data factorization methods have met with considerable success in discover-
ing latent features of the signals encountered in wide-ranging applications.
In this way, the representation bases, which make up the columns of the ba-
sis matrix or dictionary, are learned from the available samples of the target
environment. An example is the sparse representation (SR) in which the dic-
tionary is intended to best represent the data with a small number of atoms,
much smaller than the dimension of the signal space. It has been shown that,
in addition to a more informative representation of signals, imposing sparsity
constraints on the representation coefficients can improve the generalization
performance and the computational efficiency [1, 2, 3]. Furthermore, the
sparse representation is more robust to noise, redundancy, and missing data.
These features are mainly attributed to the fact that the intrinsic dimension
of natural signals is usually much smaller than their apparent dimension and
hence SR in an appropriate dictionary can extract these intrinsic features
more efficiently. SR has been a successful strategy and has received consid-
erable attention and achieved state-of-the-art results in many applications,
e.g. vision, signal and image processing, and pattern recognition [1, 4, 2, 3].

SR entails two main problems. The first problem is sparse coding or
Sparse Approximation (SA), in which, a data sample is represented using
a given dictionary, based on an optimization criterion. Many optimization
criteria and numerous solutions have been proposed for this purpose, mostly
with matching or basis pursuit algorithms [5, 6, 7]. The second and more
challenging problem is designing an effective and efficient dictionary [2]. Dic-
tionaries can be either pre-determined or data-driven. It is well-accepted that
data-driven dictionaries, learned from available training data samples via a
procedure called Dictionary Learning (DL), generally can better extract the
inherent features of signals and hence produce better results in many appli-
cations. DL is generally a combinatorial and highly non-convex optimization
problem with two outputs, namely the learned dictionary and the representa-
tion coefficients. Nevertheless, this problem is convex with respect to each of
these two arguments and is usually solved by alternating between two steps
of SA (fixing the dictionary) and dictionary update (fixing the representa-
tion coefficients). Two main algorithms for DL are the Method of Optimal
Directions (MOD) [8] and the K-Singular Value Decomposition (K-SVD) [9].

Classical SR-based methods represent data samples by linear combination
of the atoms of the dictionary in the Euclidean space. These linear models are
incapable of coping with nonlinearity encountered in many real applications.
One intuitive remedy for this shortcoming is utilizing the kernel methods
that have shown considerable success, in various fields [10, 11]. Many Kernel



SR (KSR) and KSR-based Classification (KSRC) algorithms have also been
derived. To this end, data samples are first nonlinearly mapped into a higher
(or even infinite) dimensional Reproducing Kernel Hilbert Space (RKHS),
known as the feature space, and are then sparsely represented based on a
dictionary in the same space. A few examples of the recent applications of
the KSRC are medical applications [12, 13|, image quality assessment [14],
image classification [15], computer vision [16], domain adaption [17] and fault
diagnosis [18].

Several SA algorithms have been straightforwardly extended to their ker-
nel counterparts [19, 20, 21]. A large number of studies reported on the KSR
have only considered this problem and have not touched the DL problem,
where the dictionary is represented by a subset of the transformed train-
ing exemplars [22, 23, 20]. The Kernel DL (KDL) problem has been first
addressed in [24] where in the update step, an approximate solution of the
stochastic gradient descent approach is used to optimize the dictionary, atom
by atom. The SA and DL problems in the spaces of symmetric positive def-
inite (SPD) matrices were addressed in [25, 26, 27], using the fact that the
SPD matrixes form a Riemannian manifold and then embedding this mani-
fold into an RKHS. As a result of using the gradient descent in the original
input space, the application of the abovementioned methods is restricted to
specific kernels.

The milestone in KDL is the Kernel Method of Optimal Direction (KMOD)
algorithm proposed in [21], in which Van Nguyen et al. have shown that the
solution of the KDL, formulated as a Least-Squares (LS) minimization prob-
lem, can be represented by a linear combination of the training data samples.
In particular, having L training data samples {z; € RY, [ =1,2,...,L}
that make up the columns of the matrix X € RV*% | the optimum dictionary
has the form

D*=¢(X)B € R™9 (1)

where () is the number of dictionary atoms and F' is the dimension of the
feature space or the length of each atom in that space. ¢ is a non-linear
mapping from R to the feature space F and the coefficient matrix B € R/*?
is optimized based on kernelized versions of K-SVD and MOD algorithms.
Hence, the complex problem of learning a dictionary in the high (or even
infinite) dimensional feature space can be simplified to finding the optimum
matrix B, while staying in the original space. To the best of our knowledge,
this simplification was adopted in all other similar studies [28, 29, 27, 30, 31].

Batch learning algorithms, in both linear and kernelized scenarios, incur
a significant burden on computational and storage; as they generally require
access to the entire batch of training data in each iteration. This problem



is more severe in the case of KSR, where, as a result of the representer the-
orem, the dictionary is represented by all training data samples. This issue
was addressed in [31], in which a hierarchical DL approach was proposed
that learns the matrix B in the coefficient space, independent of any com-
putations involving the kernel matrix; but the Kernel SA stage still depends
on the entire kernel matrix. Additionally, the Linearized Kernel Dictionary
Learning (LKDL) method proposed in [32] does not solve this problem, as
the complexity and the required storage still quadratically depend on the
number of input samples. Moreover, both K-SVD and MOD algorithms,
and their kernelized versions, suffer from the dilemmas of matrix inversion,
namely complexity, and singularity.

To address the essential shortcomings of the batch algorithms, in some
other fields, many algorithms have been proposed for online DL, but in the
Euclidean space [33, 34, 35]. These algorithms can better cope with the
dynamic change of the problem in non-stationary environments and have
appealing applications in real-time problems, such as prediction and tracking
problems. They have also been found useful in batch scenarios where the
amount of the training data is too large to be accessed and processed at
once. Among the proposed online linear DL algorithms, the current study
more relates to the RLS DL algorithm proposed in [34] which is essentially
an iterative version of the MOD algorithm. Nonetheless, a limited number
of studies have been reported on the online KDL and this field of research is
still infant. Reference [36] studies the problem of online dictionary learning
on the SPD manifolds. The proposed algorithm is an online version of the
batch DL algorithm proposed in [25] and hence is restricted to the Stein
kernel. A few online KDL algorithms have also been proposed in [30, 37, 38|
that they all rely on the representer theorem (1). Akin to other online kernel
methods that use this theorem, it is necessary to duly control the size of the
involved data samples; the set that we refer to it along with all corresponding
variables as the profile.

The sparse KDL (sKDL) algorithm was proposed in [30] in which a row-
sparsity constraint is imposed on the coefficient matrix B to restrict the
dictionary to be represented based on a few training samples. This algo-
rithm is then extended to online scenarios, where the profile size is limited
by selecting the incoming samples based on the reconstruction error. A simi-
lar row-sparsity constraint idea is used in the Online KDL with Row-Sparsity
(OKDLRS) algorithm developed in [37], where a new model is proposed to
simultaneously perform profile selection and kernel dictionary learning. The
formulated non-convex and non-smooth optimization problem is solved by
proximal alternating linearized minimization. Two slightly different Online
KDL algorithms with a Fixed Budget (OKDLFB) are also proposed in [38]
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based on the Stochastic Gradient Descent (SGD) method. The difference
between these two algorithms is in the space, whether feature space or pa-
rameter space, in which the dictionary update is performed.

In the current study, an online kernel dictionary learning algorithm is
developed that recursively solves the LS minimization problem, with the aid
of the Matrix Inversion Lemma (MIL). This algorithm is an extension of the
RLS DL algorithm proposed in [34] to the feature spaces; however with very
different concepts and challenges. This extension is done in a way similar to
that of the work reported in [39] that kernelizes the RLS adaptive filtering
algorithm for regression, but in a clearly different context and with absolutely
different derivations. On the other hand, our algorithm can be viewed as
an online extension to the batch KMOD algorithm of [21]. The derived
algorithm is formulated efficiently and various strategies are also examined
for restricting the size of the profile. The proposed algorithm differs from
all previous online KDL algorithms in that, instead of the gradient method,
our algorithm is based on the RLS approach. It is well-known that RLS
algorithms are an order of magnitude faster in convergence than the gradient-
based ones [40, 41]. Furthermore, our algorithm is not restricted to a specific
kernel.

In summary, the main contributions of this study are as follows:

1. A novel online KDL algorithm is developed that is the first one that is
based on the RLS method.

2. A relatively efficient implementation of the algorithm is derived.

3. The performance of the proposed algorithm in classification is studied
and compared with those of other KDL algorithms over two disparate
practical datasets.

After the introduction and the literature review presented in this section,
the remaining sections of the paper are organized as follows. The original
batch KDL problem is formulated in section 2 and its solution is derived
therein. In section 3, this algorithm is extended to the online mode, by
recursively updating the dictionary; all relevant aspects are also covered in
this section. Experimental results are reported in section 4 and the paper is
then concluded in the last section.

Notation review

In this paper, we assume the following sizes: s < Q < L < Lyae < Lot

and F' < 0o. s1is the number of non-zero elements in the SA of each data vec-
tor, () is the number of atoms in the dictionary D, L is the number of training



vectors that are (still) remembered, L, is the total number of available train-
ing vectors. F'is the dimensionality of the feature space that depends on the
kernel used and can be rather large, e.g., for polynomial kernels, or even
infinite, as for RBF kernels.. Furthermore, N is the dimensionality of the
feature space or the number of elements in each data vector, and M is the
number of training input data samples in each mini-batch. As we will see, L
can increase to L., as subsequent training vectors are processed. To make
the described algorithm more intelligible, the dimensions of all the variables
involved in the algorithm are summarized in Table 1. In this table, all vari-
ables are shown without any subscript ¢; moreover, these variables may be
used in the text with different subscripts or diacritical marks.

Table 1: Dimensions of the variables involved in deriving the algorithm (Vari-
ables that are not described in the third column are the intermediate variables
defined throughout the derivations.)

Variable = Dimension Description

b'q N x M a mini-batch of M input vectors in the original space
X N x L input matrix in the original space

o, T FxM input and error vectors in the feature space

P R FxL input and error matrixes in the feature space

D FxQ virtual dictionary in the feature space

w, u, h QxM w is (are) the coefficient vector(s).

W, U QxL W is the coeflicient matrix.

c, v QxQ C=WWT +£I)7! and ¥ is the dictionary Gram matrix.
k, v Lx M k is (are) the kernel vector(s).

A Lx1 forgetting factor vector

K, A LxL kernel and diagonal forgetting factor matrixes

Ox, @ M x M ox = k(x,X)

A 1x1 forgetting factor

2 Kernel Least Squares Dictionary Learning

The purpose of a dictionary learning algorithm for KSR is to find an optimum
dictionary for sparse representation of the input sample vectors, in a feature
space induced by a kernel function. This problem can be solved iteratively,
at each instant, in two steps.

e In the first step, having the dictionary updated in the preceding in-
stant, SA of the mapped input vector is found. For this end, we use
the KORMP algorithm, which is a kernelized version of the Order Re-



cursive Matching Pursuit (ORMP) algorithm, as described in [7].

e In the second step, having the coefficients for sparse representation
of previous samples, the dictionary is updated. For this purpose, we
develop a recursive algorithm based on the LS criterion.

The recursive solution to the LS problem is derived along the same lines as
the RLS and the Kernel RLS (KRLS) adaptive filtering algorithms [39] and
the RLS DL algorithm [34]. In this section, the objective function of the
KDL is defined and the direct solution to the optimum dictionary is derived.

2.1 LS Solution

At each instant, the objective is to find a (virtual) dictionary in the feature
space
D =[dy,dy,...,dg] €R™@ (2)

for sparse representation of the input vectors up to the current time. In
particular, we aim at a virtual dictionary D that the input vectors mapped
into the feature space can be represented by a linear combination of a small
number of atoms of that dictionary.

At each time instant, the memory consists of L input sample vectors
{x; }le which can be represented as columns of a matrix

X =[x,%g,...,x7] €RV*E (3)

The input vectors can, at least virtually, be mapped into the feature space
¢; = o(x;) and these feature vectors can be represented as columns of a
matrix

® = [p(x1), p(X2), ..., 0(X1)] = By, Py, ..., )] €RTE (4)

Moreover, we assume that, for each feature vector, the coefficients for a
sparse representation in the feature space, i.e. {wj}le, are available. The

coefficient matrix is therefore defined as:
W =[wy,wy,...,wy] &R (5)

These coefficients are typically found by SA, e.g. using the KORMP algo-
rithm, based on a dictionary from an earlier step/time in the DL process;
perhaps one that is close to the optimal dictionary D*.

Assuming that the approximation coefficients are available, we look only
at the dictionary update step in the iterative two-step DL procedure. This
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problem can be described as the following regularized (non-weighted) LS
minimization problem

L
D* = arnginZ;Her%ﬂLvIIDll%
=
L
= argmgnZH%—DWngJr’YHDH?- (6)

j=1

|| - || denotes the Frobenius norm, also known as the trace norm, and r; =
¢; — Dw; is the approximation error of the jth input sample, in the feature
space, using the dictionary D. Furthermore, v is a regularization parameter
to trade-off between the representation error and the energy of the atoms.
Note that the first 2-norm is in the feature space. The regularization effect of
7 is more easily seen from equation (8); adding a non-zero value is vital when
WWT is nearly non-invertible. Furthermore, a small non-zero v is helpful
for making the normalization step (described in subsection 3.4) needed less
frequently.
We may also define

R=1[ry,ry,...,vry] €R*E (7)
and express the LS problem (6) by matrixes in the Frobenius norm as:
D" = argmin||R|| +||D|[z
= argmin ||® — DW|[; + 7| DIf5. (8)
The solution of (8) is
D* = (WY (WWT +~1)~! = (dWT)C, (9)
where C' = (WWT + ~4I)~! and [ is the identity matrix. Alternatively
D* = oU”, (10)

where U = CW = (WWT +~1)7'W € RO*L. We see that each dictionary
atom is a linear combination of the columns of ® defined in (4), i.e. the data
vectors mapped into the feature space. This is in accordance with model (1)
which was first proposed in [21]; in the current work, B = UT € RX9 is
found adaptively.



2.2 Weighted LS Solution

Each term in (6) can be weighted with a given weight A;. Adjusting A;
appropriately can control the memory span of the algorithm, make the algo-
rithm less dependent on the initial dictionary, and improve both convergence
properties as well as the representation ability of the resulting dictionary. All
these weights can be collected into a column vector A of length L or along
the diagonal in a square diagonal matrix A = diag(A) € RI*L,

A= [/\1,/\2,...,)\L}T ERLXl, (11)
A = diag(A) € RFE (12)
The regularized weighted LS (WLS) problem is defined as:

D" = axgmin|(® — DW) A | + €] DI} (13)

where A%? is a matrix whose elements are square roots of the elements of A.
For now, £ can be set to . It is noted that

L

(@ — DW) A [ =D {\ll(¢; — Dw;)|[3} - (14)

J=1

The WLS solution is

1

D = (PAWT) (WAWT +¢&I) = (PAWT)C = oU”, (15)

where C' and U matrixes are defined as:
C=(WAWT +¢I)"" RO, (16)
U=CWA=(WAWT +€I) ' WA € R¥E, (17)

Finally, the reconstruction in the feature space is
&= DW = oUTW = & AWT (WAWT + 1) W. (18)

Note that it is not generally possible to go from ® to X, i.e. the recon-
struction in the original input space. However, this representation is still
meaningful and sensible; at least for applications in which signal reconstruc-
tion is not required, e.g. feature extraction and classification applications.



2.3 Kernel Sparse Approximation

One can perform Kernel sparse approximation without forming the dictio-
nary in the feature space. For instance, the ORMP algorithm, derived in
[7], can be extended to the kernel space straightforwardly. To this end, the
input variables of the ORMP algorithm in the signal domain, including the
dictionary D (F' in [7]) and the signal vector x, should be replaced with the
corresponding variables in the feature space. More particularly, the kernel-
ized ORMP algorithm, denoted as the KORMP algorithm, uses the dictio-
nary Gram matrix ¥, the inner product of the dictionary and data vectors
that is indicated by h, and 02 = k(x,x) as input variables to solve, in the
feature space, for the approximation coefficient vector w.
The dictionary Gram matrix ¥ can be expressed as:

U =D'D=UdToU" = UKUT ¢cR¥, (19)

where K = ®7® ¢ RY*L is a symmetric positive definite kernel matrix
with elements K;; = K;; = ¢>;TF¢)J- =< ¢;,¢; >= k(xi,%;). Usually, the
simple kernel function k(-) is given rather than the related, and possibly more
complicated, mapping function ¢(-). Let the new data vector be x, without
subscript, to distinguish it from the data vectors in memory as stored in X.
The inner product vector h can be represented as:

h=Dlpx)=UdTpx)=UdT¢p=Uk <cRO (20)
where k = ®T¢p € R¥*! and k; = q&fqﬁ = < ¢;, ¢ > = k(xj,x). Moreover,

2= ¢"d= < b, > = k(x,x). (21)

Note that ¥ is independent of x, while h and 02 depend on x. Using
these variables, the KORMP algorithm returns the sparse coefficients w,
with s non-zero elements, and also the squared error, in the feature space,

T 2
rir = [[r[l3.

3 Online Kernel Dictionary Learning

The common practice in online dictionary learning algorithms, such as the
KRLS DL algorithm proposed here, is to repeat a process of SA followed
by an update of the dictionary, for each new training vector x (or a mini-
batch of training vectors) that is presented to the algorithm. On the other
hand, in kernel methods, the size of the involved matrixes, such as U, W,
and K matrixes in the KRLS DL algorithm, grow unboundedly with time.
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This makes it necessary to restrict the size of data by storing only the most
informative samples and even removing some previously-stored samples from
the memory. Therefore, the dictionary update step, performed by updating
the involved matrixes or the profile, may require:

e adding one new training vector or a (mini-) batch of new training vec-
tors

e removing one or a (mini-) batch of the previously stored training vectors
e dictionary normalization, so that all atoms have unit /,—norm.

The iteration always starts by SA of new input data samples which returns
the new coefficient vector(s) w. The matrixes at the start are denoted by
subscript (-);, resulting after the previous iteration ¢. The step we consider
is iteration 7 + 1 and the resulting matrixes are thus denoted by a subscript
(1)iz1. Intermediate matrixes may be denoted by the hat symbol (*). For
simplicity vectors for step ¢ + 1 are usually denoted without a subscript, as
x and w. The involved matrixes are updated depending on what action we
want to do. In the following sections, the effect of each action on the involved
matrixes is described.

3.1 Adding data vectors

One of the main steps in KRLS DL algorithm is to add the new training data
vector and perhaps also apply a forgetting factor on previous data. Using a
forgetting factor A < 1, the weights of the previous approximation errors are
reduced by this factor, while the new approximation is added with weight
1. Having A = 1 is the dictionary update step without the forgetting factor.
Note that this step increases the size of some matrixes used in the KRLS DL
algorithm. Specifically, one term is added to the summation (14) and L is
increased by one and also

Aot = [T, 1) (22)

and
XfL'+1 = [X,L,X] and W/L'Jrl = [Wz,W] (23)

Another option is to add a mini-batch, a set of some few M data vectors,
instead of a single vector. This can be done by letting x and w in (23) be
matrices of size N x M and ) x M, respectively, and replacing the scalar
element 1 in (22) with the M-length row vector I7,.
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Referring to (16), to make it possible to derive a simple recursive update
equation for C}, here &; is defined as:

)\j €N,

where €); is the set of forgetting factors that correspond to all input data
samples that have engaged in dictionary learning, up to time instant .
Note that when no input sample is pruned (as described in subsection 3.2),
I new N = Ai(1), i.e. the first element in the A; vector which equals the
product of all previously used A values. With this definition, C; can be
recursively updated as:

Cii =2C M +ww'. (25)

)

The term ww’ is a Q x Q matrix; when M < Q, its rank can be up to M.
Applying Matrix Inversion Lemma (MIL):

(A+ EFG) ' = A" - AT'E(F' + GAT'E)'GA™! (26)
on (25) with A=\C; ', E=w, F = I, and G = w' gives
Civ1 = A0 — A Cow (L + WA Cow) T WA 1
As (ANA)™P = X"TA™L this gives
Ciyp =1 (Ci — Ciw( My +wCiw) ™ WTCZ')
and
Ciyp =271 (CZ» — uauT), (27)
where,

u=Cw eRYM and a= (My+ wTu)f1 € RM*M, (28)

As C; is symmetric positive semi-definite (PSD), wlu = u’w = w’C;w and
also o are M x M symmetric PSD matrixes. Hence, assuming that w has
full rank, these two matrixes are also full-rank.

Other relevant matrixes can also be recursively updated. The symmetric
(and PSD) kernel matrix K, contains the results of evaluating the kernel
function over all pairs of training data vectors in matrix X. By adding new

data vectors, this matrix grows and its size increases from K; of size L; X L;
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to K;yq of size L;y1 X L;y1, where L;y 1 = L; + M. To add the effect of the
new input vector(s), matrix K can be updated as:

oTe, ¥Tp] [ K k
¢Tq)i ¢T¢ — kT 0.2 9

where ¢ = p(x) € RI*M k = ¢F'¢p € REXM and 02 = ' ¢ = k(x,x) €
RMXM.

Matrix U = CWA € R¥*E| that is defined in (17), also grows as W
grows and L increases from L; to L;; = L; + M. Matrix U is used to find
vector h in (20) for SA and can be updated as (refer to appendix A.1):

Kiyy = [q)z', d’]T[(Dm ¢] = [ (29)

U= |Ui —uav?, ua], (30)

Note that A is scalar, o« € RM*M and we have used acu’w = I); — Ao from
(28) and defined:

vl =uf WA, v= AiVVZ-Tu e RI>M, (31)

If p(-) function is accessible, it is possible to update the dictionary from
equation (15) as (refer to appendix A.2):

Di+1 = Dl + I‘OéllT, (32)

since ®;v = O\, W Cyw = O,UTw = D;w = ¢p and r = ¢ — .
Updating ¥, which is PSD of size ) x @), is more complicated; referring
to appendix A.3, it can be done as:

Uiy =V, +uat” +dou’ +ua(v Kiv — vk —kI'v +02)au’, (33)
where we have defined:
i=Uk—-Kyv) €RYM (34)

Note that, for M = 1, all these update equations involve only matrix-by-
vector multiplications. In this case, by recasting the initial matrix-by-matrix
multiplication to only matrix-by-vector multiplications, the complexity is
reduced from O(QL?) to O(L?), since the largest matrix involved is the L x L
matrix K.
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3.2 Removing data vectors

It may be required to remove one or a mini-batch of data sample(s), say M
vectors, from the profile; e.g. to make sure that the size of the profile does
not exceed a predefined bound. These data vectors should be selected prop-
erly. The approach we use here to update the profile is to first remove the
effect of these vectors in matrixes C', D, U, and W. Then we may choose, if
we want, to zero out the corresponding M columns in X, W, and ®; and the
corresponding M columns and rows in matrixes K and A, or to remove them.

We assume that the indices of M data samples that are selected to be
removed are collected in vector m. Defining A,, = A;(m), we start by setting
the corresponding M elements in X to 0, i.e. A(m) = 0, and also A(m, m) =
0; the other elements of X and A are as in \; and A;, respectively. Note that
A € RM and f\(m, m) € RM*M At first, nothing is done with X; and W
(and ®,), the effect of columns m is canceled by this change in A. Referring
to (16), setting A, to zero thus gives

C =C7 — W Anwh, (35)
where w,,, = W;(:,m) € R*M contains the M coefficient vectors that should
be removed. The special definition for the regularization factor (24), makes
it possible to derive this recursive update equation.

Assuming that C~! is (still) an invertible matrix, using MIL (26) with
A=C'F=—-I)yand E = G" = w, A2 results in (refer to appendix
A4):

C=0C;+ U, ap,ul (36)
in which
u, =Cw,, and o, = ()\;11 — Wﬁum)fl. (37)

The new U matrix will be
ﬁ = ém.f\ = CZWzA + umamuTTnWi/A\ = CZWZ/A\ + umoszTTn, (38)

where v = uZ W;A or if we prefer v,, = AW u,,. Note that v,, is defined
similar to equation (31), but elements m are set to zero and C;W;A is defined
similar to U; in (17), with columns m equal to zero; thus U equals U; +

u,, 0, v | with columns m set to zero. Equation (38) can be rewritten as

A

U:Ui—Um—i—umamvT, 39
A% m

14



where U}, € R®*L is a matrix for which M columns whose indices are
specified by m are the corresponding columns on U; and all other elements
are zero. Note that columns m in U are all-zero.
With this notation (refer to appendix A.5),
D = D; — [pmAm — PiVynam|ul,. (40)
Since A = A; — Ay, where A, is defined similar to Uy, (refer to appendix
A.6),

We have used the fact that A,,ul w,, = Iy — A,al. Inserting ®;v,, from
(41) into (40) yields to (refer to appendix A.7):

D = D; —rpo,ul. (42)

One can compare (42) with (32).
The new ¥ can also be updated as (refer to appendix A.8):
U = U, — (w0l + a,ul)

+ W [ A2 A — Akl Vit — a0 VE Ky A,

+ v Kivpan,|ul (43)
where 1, = U;[Kpn A — KiVinam] € R?XM . The same result can be achieved
using (42) and the fact that ¥; = DTD.

Finally, the size of the involved matrixes X;, W;, A;, ®; and K; can be
reduced by discarding the columns m, or the rows m. This prevents the
size of these matrixes from growing unboundedly. Again, for special case of
M = 1, update equations involve only matrix-by-vector multiplications and
the complexity is of order O(L?).

3.3 Profile abstraction

In the context of KSR, there are two complementary concepts of dictionary
sparsification. In kernel methods, the size of the network over which the
signal is expanded, or the number of past samples, increases with the size
of the data. This phenomenon is also clear from the algorithm derived in
section 2, where the size of the matrixes X, W, K, and U grow linearly
with time. In other words, at each time instant, the algorithm needs to
store all previous data samples. In the context of kernel methods, this set of
stored data is usually called “dictionary”. By contrast, to distinguish it from
the “representation dictionary” used in the context of sparse representation,
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we use the term “feature space profile”, or “profile” to refer to these data
samples along with all corresponding matrixes and vectors that collectively
represent the representation dictionary. In practice, redundancy among the
input data makes it possible to reduce the size of this profile, at the cost of
a negligible effect on the performance of the model. In the context of kernel
methods, this procedure is termed “sparsification” , but we call this procedure
“profile abstraction”, or “abstraction”. Abstraction is essentially an active
data selection problem in which the aim is to select the most informative
or the most salient data points. This can be accomplished based on two
different approaches, namely “growing” and “pruning”.

3.3.1 Profile Growing

In the growing procedure, the algorithm starts with an empty, or an initially
filled, profile and gradually adds important data samples into the profile, as
iterations go on and new learning vectors arrive. This is generally carried
out greedily by selecting, based on a measure, the most informative data
and discarding the others. Note that, when any sample data is included in
the profile, the definition of most of the previously defined variables should
be revised accordingly. The update equations for this step were derived in
subsection 3.1. Furthermore, the set 2; used in defining the & value in (24)
is the set of forgetting factors that correspond to all input data samples that
have been selected in this step.

Coherency and representation error are two criteria that have been widely
used, in the context of kernel learning, for profile abstraction [40]. However,
we use a closely linked criterion known as the projection measure [30], based
on which the new data sample x is added to the profile if the projection
of ¢ into the space spanned by the columns of ®; is small enough. More
specifically, the new data is accepted to be informative if:

@@ @) 0] @7 < Ol
(44)

or
k'K, 'k < d02, (45)

where 0 is a pre-set threshold.

3.3.2 Profile Pruning

The pruning procedure is based on excluding less important elements from
the profile, to restrict the size of the profile and hence harness the complexity
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of the algorithm. This can be done by removing a properly-selected mini-
batch of M data samples, when the size of the profile exceeds the pre-set
threshold L, so as the size of profile reduces to L,,.. — M. Again, the
indices of the data sample that should be removed are stored in vector m. In
our problem, removing the stored input vectors necessitates updating some
matrixes, as described in subsection 3.2. However, pruning does not affect the
set €);; as this set corresponds to the input samples that have been included
in the profile. This special definition is necessary for deriving (35).

One idea for selecting the least important input sample is to discard data
samples in the order of their entrance. Specifically, the effect of the first M
data samples, that are the oldest input vectors in X;, can be removed. A
more reasonable idea is to discard data samples with the least contribution
in representation. In the proposed approach, this contribution should be
calculated in the feature space. At each time instant, the input data samples
mapped into the feature space, i.e. ®;, is approximated based on the profile
dictionary D; using the coefficient matrix W; as:

d; = D;W; = (D,UNW;. (46)
Defining B; = Ul W; € RE*E | this gives:

Column j of B; thus gives the coefficients for the linear combination of the
mapped data samples within the profile, i.e. the columns in ®;, as used
in the approximation of the column j in ®,. In other words, each row of
B; represents the contribution weights of the corresponding data sample in
representation of all retained data samples. Based on this criterion, denoting
the jth row of the matrix B; by l;j, the indexes of the candidate data samples
is found as those with the minimum value of ||B]T| 2. But, to consider also the
order of the entrance, we decided to select the M data samples based on the
proposed contribution criterion, only from the first half of the data samples
within the profile.

However, when a data sample is discarded from the profile, zeroing out the
corresponding coefficient vector of W;,; may render (/\;L1 — w%um) singular.
Note that, unlike the a parameter defined in (28), the denominator of a,
in (37) may be singular. In this situation, the matrix W@+1/A\W/izl is singular
and hence it does not have an inverse. Moreover, as the coefficient vectors are
generally sparse, removing w may cause some rows of the matrix W;, 1 to be
all-zero and hence render the matrix I/qurl./A\V[/fjrl non-invertible. Therefore,
to make certain that removing the coefficients vectors does not cause the W,
matrix to become singular, two conditions must be checked, before removing;:
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()\;11 - W%um) is non-singular and all rows of W;,; at least have a non-zero
element. In other words, we decide to select the first M coefficient vectors,
based on the proposed contribution criterion, for which these two conditions
are satisfied.

3.4 Dictionary Normalization

In some situations, it is preferable to normalize the dictionary so that all
atoms have unit /o—norm. This restrains the approximation from trivial
solutions. However, the profile update steps do not preserve the norm of
the dictionary columns and hence it may be necessary to re-normalize the
dictionary, even if periodically. The virtual dictionary D can be simply
normalized by rescaling the Gram matrix W. Defining a diagonal matrix S
whose jth diagonal element is the square root of the jth diagonal element of
the matrix W, this rescaling can be formulated as:

U, =S 1ust (48)

where S~ is the inverse of S. This normalization necessitates rescaling some
other matrixes, in particular W, C, and U matrixes must be rescaled as:

W, =SW, C,=S8"'CS" and U,=S"'U. (49)

3.5 Final Algorithm

In the proposed algorithm, the dictionary is represented by the profile that
is the collection of X;, K;, W, C;, U;, and ¥; matrixes and A; vector. The
algorithm starts with initializing the profile. Assuming that at start L = @,
the columns of X; can be filled randomly or, if available, with () data samples
and then Kj is calculated using the kernel function. By initializing X; in this
way, W;, C;, and U; are initialized with @) x @) identity matrixes and \; is
formed with the @) first values of the \ parameter, that we assume to be
all 1. After initializing, the profile is sequentially updated at each iteration,
according to the remaining steps summarized in Algorithm 1.
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Algorithm 1: KRLS DL Algorithm

Input: Training data samples x € RY, that are sequentially fed into
the algorithm, in mini-batches of M vectors
Output: The updated profile, represented by X;, K;, W;, C;, U;, ¥,
and \;

o Initialization: Initialize the profile, as described in subsection 3.5.
While new data is available, iterate over the next four steps.

1 New Data: Get the new M data samples x and check for the
informativeness of each data sample independently, e.g. using (45).
If the informativeness of at least one data sample is satisfied,
discard the non-informative vectors and go to the next step;
otherwise, go to Step 1 on the next iteration.

2 SA: Calculate w by SA, e.g. using the KORMP algorithm.

3 Profile Growing: Grow the profile, using equations (22), (23),
(27), (29), (30), and (33).

4 Profile Pruning: If the profile size is greater than L,,,., prune the
profile, using equations (36), (38), and (43), and then discard the
columns m of X;, W;, K;, and U, the rows m of K , as well as the
elements m of \;.

5 Normalization: Normalize the dictionary based on the procedure
described in subsection 3.4, if necessary, but normally not.

It is worth noting that the proposed algorithm still involves matrix inver-
sion in equations (28) and (37). But now, the matrixes that must be inverted
are of size M x M, which can be selected very small. More importantly, for
the case M = 1, which is quite a usual case in practice, matrix inversion
is replaced by division. With regard to the profile abstraction, our tests
showed that by just checking the informativeness of the new data vectors,
based on the growing procedure, the size of the profile may grow well be-
yond a reasonable bound. Therefore, it may be necessary to implement this
algorithm in a fixed-budget fashion, i.e. restricting the size of the profile to
a predefined limit, say L,,q., based on the pruning procedure. When a new
batch of input vectors are included in the profile or old vectors are excluded
from the profile, corresponding matrixes are updated based on the formulas
derived in subsections 3.1 and 3.2, respectively. Moreover, since in practice
the dictionary changes slowly over the successive iterations, one can skip the
last step, i.e. normalization, for most iterations and employ it periodically.
In the simulation tests reported in the next section, we decide to apply this
step every time the profile is pruned.
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4 Simulation Tests

To evaluate the performance of the proposed online dictionary learning algo-
rithm, some numerical tests were conducted for the KSR-based classification
task in two different applications. This evaluation was carried out in com-
parison to existing online KDL algorithms. To the best of our knowledge,
hitherto three online KDL algorithms have been proposed for general kernels
[30], [37] and [38], whose algorithms are denoted as sKDL, OKDLRS and
OKDLEFB, respectively. Furthermore, the batch KMOD algorithm proposed
in [21] is considered as the benchmark. The main results of these tests are
reported in this section. It is noted that batch DL algorithms are not alterna-
tives to online DL algorithms. As explained in section 1, the computational
cost and storage cost of batch algorithms increase prohibitively, as size of the
training set increases. This can also be seen from the results reported later
in Table 2 for moderately sized datasets used in the experiments.

4.1 Datasets

The simulation tests were conducted on the following datasets:

USPS: United States Postal Service (USPS) digit recognition dataset
contains 16 x 16—pixel images of handwritten digits from 0 to 9 in 8—bit
grayscale, created by scanning digits on the envelopes. Therefore, a ten-class
classification task is defined for digit recognition. In the version used in
the current study !, each class contains 1100 images and all images are first
vectorized to 256—dimensional data samples, i.e. N = 256.

ISOLET: ISOlated LETter (ISOLET) recognition dataset contains speech-
specific features extracted from spoken letters. To generate this dataset, 150
subjects spoke the name of each letter of the English alphabet twice; that
is there are 300 samples for each letter. 617 features, including spectral,
contour, sonorant, pre-sonorant, and post-sonorant features, were extracted
from each utterance; therefore in this case N = 617. All feature values are
continuous, real-valued attributes scaled into the range —1.0 to 1.0. This
dataset ? is used for spoken letter recognition which is a 26—class classifica-
tion task.

EEG: EEG in schizophrenia dataset [42] comprised 14 patients with para-
noid schizophrenia and 14 healthy controls. Therefore, the aimed problem
is a 2—class classification task. Data were acquired with the sampling fre-
quency of 250H z using the standard 10 — 20 EEG montage with 19 EEG

https://cs.nyu.edu/~roweis/data/usps_all.mat
’https://datahub.io/machine-learning/isolet/r/isolet.csv
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channels. The signals of healthy and patient cases are of length 925 and
845 seconds, respectively, but only the first 169 seconds of signals, in both
classes, were used in the current study. Each 19—channel signal is divided
into non-overlapping segments of 1—second length, and each segment is re-
garded as an independent data sample. Hence, each class contain 2366 data
samples. Four frequency features, known as delta (0—4Hz), theta (4—8Hz),
alpha (8 — 13Hz), and beta (13 — 31Hz), were extracted from each channel.
This procedure results in 4 features over each channel, i.e., totally N = 76
features are extracted from each data sample.

DistNet One feeder named “Persian Gulf” from the “Malayer 17 dis-
tribution substation of the “Hamedan power distribution system” in Iran,
which is a critical feeder, was simulated to generate simulated data for fault
detection. The simulation was done in Electromagnetic Transient Program
(EMTP) software under various fault conditions and factors. In addition to
the no-fault condition, different short-circuit faults, including Single-Line-
to-Ground (SLG), Line-to-Line (LL), Double-Line-to-Ground (LLG), and
Triple-Line (LLL), were considered. 400 cases were conducted for each condi-
tion, where for each case, the main factors of the grid and fault (including the
fault location, the load value of each consumer, the fluctuation of the voltage
of the main source, the inception angle, and the impedance of the fault) were
assigned randomly, within reasonable ranges. One cycle (201 samples) of the
three-phase voltage and current signals at the beginning of the feeder was
recorded with the sampling frequency of 10K Hz. These signals were con-
catenated and are used for this study. In summary, generated data samples
are of N = 1206 dimensions and are employed for a 5—class classification
task.

4.2 Test Scenario

All evaluations are performed using 5—fold cross-validation. One dictionary
is trained for each class and each test sample is assigned to the class whose
dictionary results in the minimum representation error. For online DL learn-
ing algorithms, training samples, i.e. all samples within other 4 groups over
each fold, are exposed to the algorithm in mini-batches of M samples. By
receiving a mini-batch of data from each class, the corresponding profile is
updated. The learning procedure is proceeding for a predefined number of
batches. If the total number of available batches of training samples is less
than that number, the learning procedure sequentially iterates over the pre-
viously seen data vectors, for some epochs. As the profiles are sequentially
trained based on the training data samples, the updated dictionaries are in-
termittently used to classify all test samples, i.e. the samples in the hold-out
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group. The total number of tests is set to 20. Ideally, by increasing the
number of training batches and exposing more data samples, the classifica-
tion accuracy should increase and reach the accuracy obtained by the batch
KMOD DL algorithm.

For all tests reported herein, a quadratic polynomial kernel is used. The
forgetting factor A linearly increases from 0.98 to 1 for the first 80% of batches
and is then kept constant for the remaining batches. Moreover, the number of
dictionary atoms and the maximum size of the profile are set to () = 30 and
Lpar = 200, respectively. The batch size for both growing and pruning steps
were set to 10, and v regularization parameter is set to 0.1. To provide a fair
comparison among different DL algorithms, the test samples were always
approximated using the KORMP algorithm [7] with sparsity level s = 5,
regardless of the approximation algorithm proposed in the DL algorithm.
Each algorithm is implemented with its own parameter values that result
in higher accuracy. As an indication of the computational complexity of the
algorithms, the average training time over all mini-batches is also reported. It
should be noted that for the online DL algorithms the training time depends
on the profile size that gradually increases to L,,q., as mini-batches arrive.
All simulation tests were conducted using MATLAB 20190 in 64bit Windows
operating system on a 3.2G' H z Intel CPU and 16G B memory while only one
core is enabled 3.

4.3 Results

Classification accuracies averaged over k = 5 folds as a function of the number
of mini-batches for four datasets are shown in Figure 1, where the perfor-
mance of the proposed algorithm is compared with that of all other existing
KDL algorithms. The averaged accuracy achieved by the batch KMOD algo-
rithm is also reported; this can be considered as a benchmark. Furthermore,
the average training time of each class per each mini-batch for the online
kernel algorithms along with the averaged execution time of each class per
each iteration of the batch algorithm, are tabulated in Table 2. To provide a
more detailed analysis of the computational cost for the proposed algorithm,
the average time of two main tasks of the training procedure is reported in
this table. The growing task represents steps 2 and 3 of the algorithm, i.e.,
SA and profile growing, while the pruning task accounts for steps 4 and 5;
i.e., profile pruning and normalization. The total average training time of
the KRLS algorithm hence equals the sum of these two values.

These results clearly show the outperformance of the proposed algorithm.

3Simulation codes are available at https://github.com/G-Alipoor/KRLS_DLA.

22



In particular, during the training progress, the proposed algorithm is always
of higher classification accuracy. Moreover, the accuracy achieved by the
proposed algorithm almost monotonically increases toward that of the batch
algorithm; this observation shows the high scalability of the KRLS DL algo-
rithm. This improvement is achieved despite a smaller execution time. The
decrease in the training time is an indication of the smaller computational
complexity of the KRLS DL algorithm that is in turn a direct effect of the
efficient derivation of the algorithm.

Classification Accuracy
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Figure 1: The averaged classification accuracy of DL algorithms

Table 2: Average training time (milliseconds)

KRLS

Growing Pruning

Algorithm OKDLRS OKDLFB sKDL KMOD

- USPS 2856.6 1415 872  4651.3 2.0 2.3
2 ISOLET  2868.3 117.5 373 114.1 2.3 2.5
g EEG 2910.5 5.1 0.7 69860 1.8 2.4

DistNet 354.3 55.2 5 174.9 5.4 5.1

In another test the robustness of the dictionaries trained with the pro-
posed algorithm is evaluated. For this aim, a randomly selected portion of
the data points of all test samples are removed by replacing their values with
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0. It should be noted that this destruction is only applied to the test data
samples, that is dictionaries are trained with the un-changed data samples.
The averaged classification accuracies for different percentages of missing
data points are summarized in figure 2. These results show the robustness
of the dictionaries trained with the KRLS DL algorithm against noise, even
in severe cases when most data points are removed.
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Figure 2: Effect of missing pixels on the classification accuracy of the KRLS
DL algorithm

5 Conclusion

Online dictionary learning algorithms have appealing properties in many ap-
plications where it is not practically possible to utilize batch algorithms. An
online kernel dictionary learning algorithm was developed in this work whose
objective is to sequentially optimize a dictionary in a feature space induced
by a Mercer kernel that minimizes a weighted recursive least squares function
of the sparse representation error in the same feature space. This recursive
solution was derived using the matrix inversion lemma. The proposed algo-
rithm is an online version of the KMOD batch dictionary learning algorithm
and at the same time can be viewed as an extension of the RLS dictionary
learning algorithm to kernel space. In spite of the possibly apparent similar-
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ity, this work addressed an absolutely different problem with its own concepts
and challenges. Moreover, the derived algorithm is the first LS-based ker-
nel dictionary learning algorithm that inherits the good property of a higher
convergence rate from the LS approach.

An efficient implementation of the solution is also derived which makes
the implementation only-matrix-by-vector for batch size of 1 sample and
thus the final algorithm is of considerably lower computational complexity.
Experimental tests conducted on four practical datasets in quite different
applications, i.e., image recognition, sound classification, disorder diagnosis
in medical science, and fault detection in power distribution networks, showed
the outperformance of the proposed algorithm, in terms of both classification
accuracy and computational burden. Overall, we think that the proposed
algorithm is a considerable progress in the field of online kernel dictionary
learning algorithms.

A Appendix: Some Mathematical Derivations

Detailed derivations for equations (30), (32), (33), (36), and (40)-(43) are
provided in this appendix.

A.1 Equation (30)

Uz‘+1 = Ci—i-lWi—i-lAi—i-l
= ! (CZ» — uauT) (Wi AA;, W]
AL [C’iI/Vi)\AZ- —uau! WAA;, Cow — uauTW]
= A'AU; —uau"WdA;, u—u(ly — Aa) |

Uisx = [Ui —uav’, uoz},
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A.2 Equation (32)

Ul —vau®
Diy = (I)i—i-lUi::-l: [‘I)m(ﬁ]{ ! T }

au
= ;U — d;vau” + pau’ = D; + (¢ — ®;v)(au’)

= D;+rou’,

A.3 Equation (33)

Uiy = D Diyy = Ui Kia U
K, k ] {Ug—vauT}

kT o2 au®

= [U; —uav’, ua] [

= (U; — uavh)K;(Ul — vau®)

+(U; —uavh)kau” + uak® (Ul — vau®) + uacZau®
= UiKiUiT — uoszKiUiT — U;K;vau®! + uav! K;vau®

+ Uikau® — uav'kau” + uak’ Ul — uak’ vau’ + uacZau”
= U, +uak! —v'K)U! + Ui(k — K;v)au”

+ua(v Kiv — vk —k'v + 02)au’

Uiy = ¥, +uai’ + dou’ +ua(v' Kiv — vk — kfv +02)au’,

A.4 Equation (36)
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A.5 Equation (40)

D=oU" = U -~ UL, + vimanul]
= QDZ-UiT — @Z-Ufm + @ivmamuﬁ
= D;— [gbmAm - (I)ivmam]uT

m:*

A.6 Equation (41)

Div,, = OAW 1, = AW Ciw,
= O,NWCiw,, — OA L, W Ciw,y,
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= cAﬁm — @, + D Ama

A.7 Equation (42)

A
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_ T
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A.8 Equation (43)
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