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Abstract 

Background Prevalence of dementia illness, causing certain morbidity and mortality globally, places burden 
on global public health. This study primary goal was to assess future risks of dying from severe dementia, given spe-
cific return period, within selected group of regions or nations.

Methods Traditional statistical approaches do not have benefits of effectively handling large regional dimensionality, 
along with nonlinear cross-correlations between various regional observations. In order to produce reliable long-
term projections of excessive dementia death rate risks, this study advocates novel bio-system reliability technique, 
that being particularly suited for multi-regional environmental, biological, and health systems.

Data Raw clinical data has been used as an input to the suggested population-based, bio-statistical technique using 
data from medical surveys and several centers.

Results Novel spatiotemporal health system reliability methodology has been developed and applied to dementia 
death rates raw clinical data. Suggested methodology shown to be capable of dealing efficiently with spatiotemporal 
clinical observations of multi-regional nature. Accurate disease risks multi-regional spatiotemporal prediction being 
done, relevant confidence intervals have been presented as well.

Conclusions Based on available clinical survey dataset, the proposed approach may be applied in a variety of clinical 
public health applications. Confidence bands, given for predicted dementia-associated death rate levels with return 
periods of interest, have been reasonably narrow, indicating practical values of advocated prognostics.

Key points 

▪ Novel spatiotemporal health system reliability methodology has been developed and applied to dementia death 
rates raw clinical data.

▪ Accurate disease risks multi-regional spatiotemporal prediction being done.

▪ Confidence bands given for predicted dementia-associated death rate levels with return periods of interest.
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Introduction
WHO (World Health Organization) estimates that the 
number of individuals with dementia worldwide being 
approximately 55 million, and this number expected to 
reach about 80 million by 2030 and 140 million by 2050 
[1]. Dementia trends more pronounced in South Korea, 
country experiencing rapid population aging; num-
ber of people aged 65, and older reached 8.5 million 
in 2021, and is expected to exceed 13 million by 2030, 
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and 19 million (accounting for about 40% of older adult 
population) by 2050. There are several types of demen-
tia, with Alzheimer’s disease being the most prevalent. 
Alzheimer’s disease along with vascular dementia being 
the most common dementia forms; to mention other 
types, one can refer to Lewy body dementia, frontotem-
poral dementia and Parkinson’s disease with dementia. 
This condition causes cognitive function and capacity 
to decline more quickly, than would be expected with 
normal aging; it might manifest itself either chronically 
or gradually. Dementia diseases impair range of mental 
processes, including learning, memory, understanding, 
judgment, and language. Figure 1 displays global map, 
showing prevalence of dementia-related death rates. 
In this study these rates have been age-averaged, but 
accounting for spatial variations, given list of coun-
tries of interest, as well as relevant temporal varia-
tions. Statistical aspects of dementia, and other current 
conditions, have been attracting quite a lot of research 
interest recently [1–11]. In general, utilizing traditional 
statistical theoretical approaches to determine epi-
demic/outbreak probability/risk and realistic biologi-
cal system reliability factors under real-world dementia 
settings being rather difficult [12–19]. The latter being 

often brought on by a variety of bio-system degrees of 
freedom (components), and numerous random vari-
ables that affect bio-system’s dynamics. In theory, a 
complex biological or public health system’s reliabil-
ity may be directly assessed by performing direct MC 
(Monte Carlo) simulations, or having enough clinical 
observations. For dementia, however, some of the avail-
able observed patient global numbers are limited by the 
beginning of the year 1990, (https:// ourwo rldin data. 
org/ causes- of- death.). To contribute further demen-
tia prognostic research, authors of this study have 
developed novel bio-reliability technique, suitable for 
bio and health systems, enabling accurate future risks 
forecast. Naturally, the entire world’ s countries were 
selected, due to availability of online health observa-
tions and associated research.

EVT (Extreme value theory) or and statistical lifes-
pan data modeling being widely used in bio-engi-
neering, public health and medicine. There have been 
numerous recent publications supporting and criticiz-
ing upper boundaries distribution of life expectancy 
[20, 21]. For statistically significant data, studies in 
these disciplines frequently use a parametric bivari-
ate lifespan distribution derived from the exponential 

Fig. 1 World’s countries map with dementia cases. All world’s countries have been accounted for in this study, (https:// ourwo rldin data. org/ 
causes- of- death)
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distribution [22]. In [23, 24], authors proposed new 
approach, that uses Power Variance Function copulas 
(for example Clayton, Gumbel, inverse Gaussian copu-
las), conditional sampling, and numerical approxima-
tion used in survival analysis.

For general reliability studies, not necessarily limited 
to bio and public health systems [25–29]. In [30–32] 
authors used EVT to predict mutation in evolutionary 
genetics risks, and further develop a likelihood frame-
work from EVT, that was used to determine mutation 
fitness effects. Similarly, in [33], authors used Beta-Burr 
distribution, expanding EVT theory to calculate muta-
tion fitness effects. In [22], authors discussed bivari-
ate logistic regression models, which were employed 
in a cognitive experiment for visual recognition and to 
access multiple sclerosis fatalities/hazards with walking 
impairments.

Clinical incidence data for dementia in 195 global 
nations between 1990 and 2019 has been obtained 
from a public source, (https:// ourwo rldin data. org/ 
causes- of- death). The bio-system under examination 
here can be thought of as a multi-degree of freedom 
(MDOF) dynamic bio-system, with highly inter-corre-
lated regional components/dimensions.

Although this study aimed at forecasting future 
dementia outbreaks, and not on disease symptoms 
themselves. Figure  1 presents global world countries 
map with related dementia cases.

While dementia is most common among people 
over 65  years old, almost 7% of dementia diagnoses 
in Ontario, Canada being made in people aged 40 to 
65  years. Additionally, about 64% of Ontario, Canada 
population that have been diagnosed with dementia, 
being women, Fig. 2.

Method
Let one consider multi degree of freedom (MDOF) 
dynamic bio-system, consisting of its critical system 
components X(t),Y (t),Z(t), . . . , being represented by 
response/load assembled vector (X(t),Y (t),Z(t), . . . ) , 
being either measured/simulated/observed or simu-
lated over a sufficiently long (representative) time lapse 
(0,T ) . Unidimensional biosystem component global 
maxima being denoted as Xmax

T = max0≤t≤T X(t) , 
Ymax
T = max0≤t≤TY (t) , Zmax

T = max0≤t≤TZ(t), . . . . By 
sufficiently long (representative) time lapse T  authors 
mean large enough (representative) value of T  with 
respect to the dynamic system auto-correlation and 
relaxation times. Let X1, . . . ,XNX be temporally conse-
quent local maxima of the biosystem component pro-
cess X = X(t) at discrete temporally increasing times 
tX
1
< · · · < tXNX

 within (0,T ) . Identical definitions fol-
low for other MDOF components Y (t),Z(t), . . . namely 
Y1, . . . ,YNY ; Z1, . . . ,ZNZ and so on. For simplicity, all bio-
system components, and hence their maxima have been 
assumed to be non-negative. Then

(1)P =
(ηX ,ηY ,ηZ ,... )

(0,0,0,,... )

pXmax
T ,Ymax

T ,Zmax
T ,... x

max
T , ymax

T , zmax
T , . . . dxmax

T dymax
T dzmax

T . . .

Fig. 2 Dementia percentage in Ontario, Canada, by age groups and gender [34]
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being the probability of dynamic biosystem survival with 
critical values of system components being denoted 
asηX,ηY ,ηZ,…; ∪ beings logical unity operator «or»; 
pXmax

T ,Ymax
T ,Zmax

T ,... being joint probability density function 
(PDF) of the individual component maxima. If biosys-
tem number of degrees of freedom (NDOF) being large, 
it being not practically feasible to estimate directly bio-
system’s joint PDF pXmax

T ,Ymax
T ,Zmax

T ,... and therefore target 
survival biosystem probabilityP . The latter probability P 
however, needs to be estimated, as system expected life-
time, according to Eq.  (1). Bio-system unidimensional 
components X ,Y ,Z, . . . being now re-scaled and non-
dimensionalized as follows

making all two responses non-dimensional and hav-
ing the same failure/hazard limit equal to 1. Next, uni-
dimensional system components local maxima being 
merged into one temporally non-decreasing synthetic 
vector R(t) ≡

−→
R = (R1,R2, . . . ,RN ) in accordance 

with corresponding merged time vector t1 ≤ · · · ≤ tN , 
N ≤ NX + NY + NZ + . . . . Each local maxima Rj being 
an actual encountered bio-system component local 
maxima, corresponding to either X(t) or Y (t) , or Z(t) or 
other system components. Constructed synthetic 

−→
R -vec-

tor has zero net data-loss, see Fig. 3.

(2)X →
X

ηX
,Y →

Y

ηY
,Z →

X

ηX
, . . .

Now the non-decreasing synthetic vector −→R  , and it’s 
corresponding temporally non-decreasing occurrence 
times t1 ≤ · · · ≤ tN , have been now fully introduced 
[35–45].

Results
In both neurology and mathematical biology, the focus 
has been on the prediction of dementia-like conditions. 
Public health dynamics being well-known for its highly 
non-linear, multidimensional, spatially cross-correlated 
dynamic bio-system properties, that being challenging 
to analyse. Different methods have been used in earlier 
research to mimic dementia death rates. This section 
uses a novel approach to raw clinical dementia datasets, 
given as annually recorded time-series for all nations in 
the world to demonstrate the effectiveness of the afore-
mentioned methodology [16].

The strategy mentioned above being illustrated in prac-
tice in this section. The present section’s statistics informa-
tion was obtained from the public website, (https:// ourwo 
rldin data. org/ causes- of- death). This website contains data 
on dementia death rates worldwide from 1990 to 2020. The 
component was the number of patients who died in 195 dif-
ferent nations throughout the world, with X ,Y ,Z, ... consti-
tuting one hundred ninety-five dimensional (195D) dynamic 
bio-system. In order to unify all 195 measured/recorded 
time series X ,Y ,Z, . . . the following scaling procedure 

Fig. 3 Example of how 2 components, X and Y, being merged to create 1 new synthetic vector 
−→
R  . Red ellipse highlights case of simultaneous 

maxima for 2 different biosystem components

https://ourworldindata.org/causes-of-death
https://ourworldindata.org/causes-of-death
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has been performed, according to Eq.  (2), making all 195 
responses non-dimensional and having the same failure/
hazard limits equal to 1. Failure/hazard limitsηX , ηY , ηZ , . . . , 
(dementia thresholds) being not an obvious choice; most 
straightforward option would be for various nations to 
establish failure limitations equal to the relevant nation’s 
population in percent to the local population, thereby mak-
ing X ,Y ,Z, . . . equal to annual death rate per country. All 
local biosystem component’s maxima from 195 measured 
time series have been merged into one single synthetic 
time series, by keeping them in time non-decreasing order: 
−→
R = (max{X1,Y1,Z1, . . . }, . . . , max{XN ,YN ,ZN , . . . }) 
with whole vector 

−→
R  being sorted, according to non-

decreasing times of occurrence of these local maxima. Fig-
ure  4, left represents dementia annually recorded death 
cases per each country, and per year.

Figure 4, right represents the number of new annually 
recorded dementia deaths as a 195D vector 

−→
R  , consisting 

of assembled regional/national new annually recorded 
death rates, for each corresponding country. Afghanistan 
and Kiribati data have been excluded from analysis, since 
they both have been regarded as statistical outliers. Vec-
tor 

−→
R  has been assembled of different regional/national 

components, having different dementia backgrounds. 
Index j being just a running index of biosystem compo-
nents local maxima encountered in a non-decreasing 
temporal sequence [46–48].

Figure  5 presenting annual death rates (as percent-
age of dead from dementia to the local/national popula-
tion per given country) prediction, 100-year return level 
extrapolation towards dementia outbreak, having 100-
year return period, indicated by horizontal dotted line, 
and somewhat beyond, � = 0.024 % cut-on value has 

been used, percentage of local population on horizon-
tal axis. Dotted lines indicate extrapolated 95% confi-
dence interval. Biosystem probability P(�) being directly 
related to the target biosystem failure/hazard risk 1− P 
from Eq.  (1). Thus, bio-system failure/hazard probabil-
ity 1− P ≈ 1− pk(1) may be now estimated. Condition-
ing number k = 3 has been found here to be sufficient, 
as convergence occurred with respect to k , for proofs see 
[46–48]. Figure 5b) presents reasonably narrow 95% CI, 
the latter being clear advantage of the proposed meth-
odology. Predicted dementia death rates in any world 
country, for years to come, e.g., for the next 100-years 
was found about 0.032% [49–51]. Figure  5a) presents 
prediction by Gumbel method, it is seen that advocated 
methodology in Fig.  5b) a) performs significantly more 
accurate than Gumbel extrapolation method, in terms of 
CI, however predicted risk levels are very close, namely 
near 0.03% [35, 52–58].

The  2nd-order difference plot (SODP), originated from 
well-known Poincare plot. SODP provides an efficient 
QC (quality control) tool for the underlying dataset pat-
tern and quality, based on consecutive differences within 
time series dataset.

Figure  6 presents  2nd-order SODP plot, based on 
dementia death-rate global statistics, (https:// ourwo rldin 
data. org/ causes- of- death). These plots are often used to 
identify dataset patterns and compare them with other 
datasets, especially when using an artificial intelligence 
(AI) identification method, based on entropy [59]. For 
review of biomedical-related deep learning, existing con-
cepts, and alternative methods see e.g. [60–63]. Note that 
while this study introduces MDOF biosystem sub-asymp-
totic technique, the EVT approach being asymptotic and 

Fig. 4 Dementia, Left: 2D surface of annual death cases as % of local population, per country, and per year. Right: Annual recorded death rate 
in percent as 195D vector 

−→
R  . scaled by in percent of corresponding country’s population

https://ourworldindata.org/causes-of-death
https://ourworldindata.org/causes-of-death
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Fig. 5 Death rate prediction. a 100-years return level extrapolation of pk(�) towards critical level (marked by star), in percent (%) to local population. 
Extrapolated 95% CI (Confidence Interval) marked by dotted lines. b prediction by Gumbel method. Percentage of local population being 
on horizontal axis
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only 1DOF. The above-described technique, albeit novel, 
has benefits of effectively utilizing measured raw clinical 
dataset, yet being able to handle biosystem’s multidimen-
sionality, and conduct accurate extrapolations, based on 
a relatively small/limited underlying dataset. Note that 
projected non-dimensional � level, indicated by red star 
in Fig. 5, represents biosystem probability/risk/hazard of 
dementia outbreak at any world country, during decades 
yet to come.

Discussion
Traditional biological and public health systems reli-
ability techniques, dealing with observed raw clinical 
time series, do not always cope easily with bio-system’s 
high-dimensionality, along with nonlinear cross-corre-
lations between different bio-system responses. The key 
advantage of the presented technique being its ability 
to analyze bio-reliability of high-dimensional nonlinear 
dynamic public health systems.

Current study proposes novel multidimensional spa-
tiotemporal modeling technique, and a methodologi-
cal route to execute forecasting of dementia death rates. 
It has been explored how to set health system hazard or 
failure limits appropriately for each nation of interest. 
This study examined global death rates from dementia, 
reported across all nations, representing an example of 
a 195-dimensional (195D) bio-system, observed during 

three decades 1990—2020. Annual dementia-related 
death rates constituted multidimensional bio-system’s 
dynamics in real-time, and has been studied, using the 
novel reliability approach. The detailed theoretical justi-
fication for the suggested strategy has been provided. It 
should be noted that while use of either direct measure-
ments or Monte Carlo simulations for dynamic biological 
or public health system’s reliability analysis being appeal-
ing, the complexity of bio-system, along with its high 
dimensionality necessitate development of new, accurate, 
yet robust techniques, that can handle limited amount 
of raw clinical data, and make optimal best use of what 
being already available. The major takeaway being that 
global public health bio-system being well-managed, gen-
erally speaking, if excluding countries like South Korea 
with alarming dementia growth rates. This study esti-
mated all age categories risk level of 0.032% for the yearly 
death rate during up to 100-year return period. For ages 
over 65  years, dementia still poses a potential threat to 
global health under the current framework for national/
regional health management.

A general-purpose, reliable, and simple multidimen-
sional reliability approach was the main goal of this work. 
The approach described in this study has been previously 
confirmed by application to a broad variety of simulation 
models, but only for one-dimensional system responses, 
and, generally speaking, extremely accurate predictions 

Fig. 6 Dementia death global statistics,  2nd order SODP plot
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were achieved. Time series responses can be measured 
and numerically simulated and analysed. The proposed 
strategy yielded reasonably narrow confidence intervals, 
as was demonstrated. As a result, the recommended 
technique may be useful for a range of reliability inves-
tigations on non-linear dynamic biological and public 
health bio-systems. When addressing relevant age and 
gender dependencies, prognostics methodology, advo-
cated in this study has wide applicability range, meaning 
that any specific age ang gender group can be well stud-
ied, using advocated methodology. As mentioned, the 
recommended technique has a wide range of potential 
applications in public health, thus by no means does the 
provided dementia example restrict the potential applica-
tions of new methodology.
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