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Abstract
In this paper, we propose the use of recurrent neural networks
(RNNs) for artifact correction and analysis of heart rate
variability (HRV) data. HRV can be a valuable metric for
determining the function of the heart and the autonomic
nervous system. When measured during exercise, motion
artifacts present a significant challenge. Several methods
for artifact correction have previously been proposed, none
of them applying machine learning, and each presenting
some limitations regarding an accurate representation of HRV
metrics. RNNs offer the ability to capture patterns that might
otherwise not be detected, yielding predictions where no prior
physiological assumptions are needed.

A hyperparameter search has been carried out to determine
the best network configuration and the most important
hyperparameters. The approach was tested on two extensive
multi-subject data sets, one from a recreational bicycle race
and the other from a laboratory experiment. The results
demonstrate that RNNs outperform by order of magnitude
existing methods with respect to the calculation of derived
HRV metrics. However, they are not able to accurately fill in
individual missing RR intervals in sequence. Future research
should pursue improvements in the prediction of RR interval
lengths and reduction in necessary training data.

Keywords: HRV, heart rate variability, artifact, correction,
RNN, recurrent neural network

Introduction
Heart rate (HR) variability (HRV) is the variation in
time difference between successive heartbeats. The
electrical signals that control the contraction of the
various components of the heart are referred to as the
PQRST-complex, where the QRS-complex is responsible
for ventricular depolarization [1]. The R-wave coincides
with the contraction of the left ventricle, commonly

known as the heartbeat. By measuring the distance
between consecutive R-waves, we get the RR interval
length, i.e., the time between heartbeats. These electrical
signals can be measured by using an electrocardiogram
(ECG), which registers the heart’s electrical activity.
Since the RR interval length varies, the electrical signal
is sampled irregularly, making HRV data irregular. Fig.
1 shows three typical PQRST-complexes, and Fig. 2
displays a plot of typical RR interval sampling.
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Figure 1: Three PQRST-complexes displaying the typical
pattern of electrical activity to the heart. This figure is
for illustration purposes only, and does not represent real
data.

The heart is controlled by the autonomic nervous
system (ANS), with the sympathetic branch increasing
HR, and the parasympathetic branch lowering HR. HRV
is higher during parasympathetic activity and lower during
sympathetic activity [2]. Increases in HR can occur
directly from sympathetic activation, but also from
the interaction of levels of expression of vagal and
sympathetic activation. Notably, changes in HR level
can be as important as changes in HRV for ANS
assessment. An important component of the beat-to-

© 2023 Author(s). This is an open access article licensed under the Creative Commons Attribution License 4.0.
(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.2478/nmi.10140
http://creativecommons.org/licenses/by/4.0/


Svane et al.: Recurrent Neural Networks for Artifact Correction in HRV Data During Physical Exercise. NMI, 3, 1–12, 2023

2 4 6 8 10
Time (s)

326

328

330

332

334

336

338

R
R

-in
te

rv
al

 le
ng

th
 (m

s)

Figure 2: Example of RR interval length plotted over time
during exercise. It should be noted that the RR interval
length here is substantially shortened compared to during
non-strenuous activity. The data are gathered from a
subject from the NEEDED study.

beat variability is respiratory sinus arrhythmia (RSA). RSA
is the variation in HR within a respiratory cycle, with
HR slightly increasing during inspiration, and decreasing
during expiration [3]. During rest, the amplitude of
HRV can be considered an expression of vagal activity.
Thus, HRV can be used as a noninvasive assessment
of the autonomic nervous system regulation, as well
as an indicator of underlying cardiovascular diseases
[4]. Importantly, assessment of respiration should be
considered to validate RSA for vagal influence (i.e., when
reproducing circumstances for HRV measurements during
rest, breathing frequency should be identical).

The most common metrics regarding HRV in the
time domain include the root mean square of successive
differences (RMSSD) and the standard deviation of all
normal-normal intervals (SDNN), where normal-normal
intervals are error-free RR intervals. In addition, three
frequency bands in the power spectrum, as well as the sum
of these, are commonly used: very low frequency (VLF),
0Hz–0.04Hz; low frequency (LF), 0.04Hz–0.15Hz; high
frequency (HF), 0.15Hz–0.4Hz; and total power (TP). To
calculate the frequency domain metrics, the HRV-data are
usually interpolated and resampled evenly, and then the
Fast Fourier Transform (FFT) is applied [5]. The Lomb-
Scargle-Periodogram method has also been suggested for
ultra-short-term recordings [6].

Objective
Data artifacts present a significant issue for the analysis of
HRV data, as they produce unrealistic RR interval lengths
and consequently erroneous HRV metrics. Measurements
taken during exercise are particularly prone to motion arti-
facts, making reliable artifact correction methods crucial.
The objective of this paper is to test the performance of
recurrent neural networks as an artifact correction method
on HRV data measured during exercise. It is important to

note that we are interested in gap-filling, not prediction.
Detection of artifacts will not be included in this paper.

Background
NEEDED Project
HRV data may differ between individuals with and without
heart disease [7]. The North Sea Race Endurance
Study Research program (NEEDED) [8] works to identify
asymptomatic heart disease based upon alterations in
biomarker response to physical exercise [9]. The program
was initiated in 2012 and has included more than 1100
presumably healthy asymptomatic individuals in several
clinical studies. The current phase of the NEEDED
research program develops new assessment methods
using new exercise protocols, biomarkers and HRV data,
both at rest and during exercise, to determine the
relationship between these markers and heart disease
in different populations. Measurements in relation to
these protocols require HRV data derived from shorter
duration than traditional HRV studies, which renders
these protocols more susceptible to be influenced by
artifacts and therefore require accurate artifact correction
methods.

Artificial Intelligence in Wearables
With advances in wearable sensor technology, the possi-
bility of incorporating artificial intelligence (AI) algorithms
as a part of data handling in wearable sensors increases
[10]. Coutts et al. [11] applied deep learning on HRV
data from wearable devices for the prediction of mental
and general health, demonstrating the potential of com-
bining artificial intelligence and wearable tracking. It has
been proposed that most machine learning based tech-
nologies that detect cardiovascular outcomes using wear-
ables are not operational due to failing to acquire proper
realistic data [12]. The same paper also suggests more
frequent application of sequential neural networks in data
processing. Challenges with regard to data collection and
data processing when using AI in wearables have also been
highlighted [13].

HRV Data Artifacts
Typically, HRV has been measured in controlled settings
to assess parasympathetic activity using ECG. However,
with the development of HR chest straps and photo-
plethysmography (PPG), it is now also possible to mea-
sure HRV during movement and exercise [10]. Analyz-
ing HRV during exercise might provide insight that is not
available during rest, as the heart and cardiovascular sys-
tem is placed under more strain [14]. A significant chal-
lenge with HRV monitoring during exercise is the introduc-
tion of movement-related artifacts that distort the signal,
causing changes to the calculated metrics. It has been
shown that a single artifact on a 4-minute reading could
increase RMSSD by as much as 413% [15]. Cajal et al.
[16] found that in order to obtain estimations with an
error less than 20% for both time domain and frequency
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domain metrics, segments with more than 25% of missing
beats should be discarded.

Previous Work
Common methods for artifact correction include deletion
and linear, cubic and spline interpolation [17]. Although
widely used, these methods have several drawbacks.
Deletion causes discontinuity and loss of samples, which
affect spectral analysis to a large extent, whereas
interpolation induces bias and produces an unrealistic
beat-to-beat variability [17]. Other methods for artifact
correction during resting conditions [16, 18], as well
as for during exercise [19], have also been proposed.
Despite working well for shorter gaps, they are less
accurate for larger gaps, causing larger errors in the
HRV metrics. Moreover, it has been shown that the
application of different artifact correction methods can
have a significant impact on HRV metrics [20]. Neural
networks are widely used in time series data handling and
prediction [21], including for ECG signal handling [22],
but have not been used for raw RR interval data artifact
correction, to our knowledge.

Detection
Artifact detection is often handled by threshold filtering
and visual inspection [23]. Azar et al. [24] used a
combination of a convolutional neural network and a
recurrent neural network autoencoder for PPG artifact
filtering, achieving 90% precision and 95% recall. Zubair
et al. [22] applied a recurrent neural network and a
deep neural system for removing motion artifacts in ECG
signals. In many cases, detection is also carried out
manually by an experienced human reviewer. For complete
automatic HRV artifact handling, both detection and
correction are needed. Nevertheless, detection will not
be a part of the current paper, as we will rather focus on
correction.

Ultra-short-term Recordings
When measuring HRV in the short-term, recordings of
5 minutes are recommended [5]. The use of ultra-
short-term (UST) analysis as a surrogate of standard 5-
minute analysis has also been investigated [25, 26], as
it provides a more convenient and accessible method for
measurement. Exercise causes a transient physiological
state, thus imposing the need for reliable UST analysis.
Baek et al. [25] explored the reliability of UST analysis,
showing insignificant differences in RMSSD calculated
using 30-second interval length, SDNN from 240-second
interval length, LF from 90-second interval length, HF
from 20-second interval length, LF from 90-second
interval length, and VLF from 270-second interval length,
compared with the same HRV variables calculated using
standard 5-minute interval data. For UST recordings, the
effect of artifacts is magnified, making artifact handling
essential [27]. Importantly, caution must be exercised
when assessing ANS regulation based on UST recordings.
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Figure 3: Architecture of a deep recurrent neural network.
The figure shows how the input, X, is fed to the hidden
layers, a, which in turn lead to the output, O. The
subscript denotes the time step, and the superscript
denotes the hidden layer. Thus, in this figure, there are
N+1 time steps and L hidden layers.

Due to the effect of respiration on HRV, a low breathing
rate may yield only a few cycles of variability for a
measurement of ultra short duration. Whether a true
cyclicity in frequency domain metrics can be inferred
from such a minimal amount of cycles must therefore be
considered when interpreting the results.

Recurrent Neural Networks
Recurrent neural networks (RNNs) are network architec-
tures that are designed to work with sequential data.
RNNs can be used to make predictions on sequential data
based on previous data points, which in turn can work as
a method for imputing missing values. Figure 3 illustrates
a typical network structure for RNNs.

Based on Figure 3, the equations constituting a RNN
can be described. For any hidden layer a(L)t , where the
superscript denotes the layer and the subscript denotes
the time step, its value can be calculated as

a
(L)
t = f (Waa

(L−1)
t +Wta

(L)
t−1 + b), (1)

where f is an activation function such as sigmoid or tanh,
Wa and Wt are the weights associated with the previous
layer and previous time steps, respectively, and b is the
sum of the bias associated with the previous layer and
previous time step. The value for the first layer at any
time step (second to bottom row in Figure 3) is

a
(1)
t = f (Wta

(1)
t−1 +WxXt + b), (2)

with Xt being the input at time step t, and Wx being
the weight associated with the input. At the first time
step, tN , where N is the number of previous time steps
considered, the value of the first hidden layer is only based
on the input. Knowing Equations (1) and (2), the output
at time step t can be calculated as
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Ot = f (Wta
(L)
t + b). (3)

Considering these equations, we see that the output
at time step t is not only based on its own input, but
also the values of the N previous time steps. To apply
the model, the weights are randomly initialized and all
values are calculated in the forward propagation, before
the error is calculated and the backwards propagation
updates the weights. A thorough explanation of various
design possibilities and applications of RNNs can be found
in [28].

Two of the most popular RNNs are Long Short-Term
Memory (LSTM) and Gated Recurrent Units (GRU)
networks. Staudemeyer and Morris [29] give a detailed
and clear explanation of how LSTM works, and Chung et
al. [30] detail how GRU works, as well as the difference
between the two. Greff et al. [31] performed a large-
scale analysis of various LSTM variants, showing that no
variants improve significantly upon the standard LSTM,
but that GRU simplifies the model without compromising
performance significantly. We have therefore limited this
paper by only considering these two architectures.

Data Set
The data sets inspected in this paper consist of HRV
data from two different databases. From the North Sea
Endurance Exercise Study (NEEDED), HRV data from 15
different individuals were collected with a Garmin HRM
chest strap during a bicycle race. For each participant,
the HRV data from the whole race were visually inspected,
and the longest section of data with no visible artifacts
and no missing samples was extracted. Fig. 4 shows a
segment of raw HRV data containing artifacts, and an
artifact-free section within the original segment. The
average length of the sections was 5 minutes and 2
seconds, with the shortest being 3 minutes and 10 seconds
and the longest being 8 minutes and 1 second. The
sections were extracted from random locations in the race
for different participants and include both HR acceleration
and deceleration. Fig. 5 shows the altitude profile and HR
for a section of the race for one of the participants.

Data from a separate laboratory experiment using 12
volunteers were also used. These were the Physionet
simultaneous physiological measurements [32, 33]. The
data from Physionet were collected at four different
physiological loads of 5 minutes each using a Polar
RS800 Multi chest strap. Only the 5 minute segment
corresponding to uphill walking on the treadmill (15%
track inclination, 1.2 m/s) was extracted for use in this
paper. One participant from the Physionet database was
excluded, due to apparent data errors during the 5-minute
segment (participant 5).

By utilizing the data from both NEEDED and Phys-
ionet, the method can be tested on two completely inde-
pendent data sets. NEEDED provides data from the field,
at different work-loads and external conditions, whereas

Figure 4: Two segments of RR interval length plotted
over time. One containing artifacts (top), and the other
a section of the first without artifacts (bottom). The data
are gathered from a subject from the NEEDED study.

Physionet provides data from a more controlled laboratory
setting. There is also the advantage that the NEEDED
data was collected during a bike race and the Physionet
data were collected while uphill walking on a treadmill,
possibly validating the current method for both modali-
ties.

In both data sets, the data consist of the RR interval
lengths in seconds, exemplified in Figure 2. The data are
irregularly sampled, as each data point is sampled at the
detection of the R-wave by the HR chest strap.

Materials and methods
Hyperparameter Search
When building and training a RNN, there are several
hyperparameters that can be adjusted to configure the
network architecture and training configuration. In
addition to hyperparameters such as batch size, dropout,
epochs, hidden layers, learning rate and units per layer
in traditional non-temporal neural networks, RNNs also
include sampling rate and sequence length. Sequence
length is the number of time steps that are used as input
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Figure 5: Altitude profile (grey shaded area) and heart rate for example participant from NEEDED during section of the
race.

for the prediction of the following value (N in Figure 3),
whereas sampling rate is simply the rate of samples used
in the sequence length. With the objective of the paper
being gap filling, bidirectional layers may also be utilized.
Bidirectional layers allow the RNN to be trained in the
positive and negative time direction simultaneously. In
other words, both previous and future data points are
used as input to predict the missing values, in many cases
improving results [34].

Moreover, two different methods for prediction can be
used. In rolling prediction, one value is predicted at a
time, and then used as input when predicting the next
value. In this case, the RNN is trained for only one step
ahead, but the process is repeated for the desired number
of predicted steps. The loss is calculated as the error
between the predicted value and the true value. The error
calculation depends on which loss function is chosen. In
single-shot prediction, the model is trained for the desired
number of steps ahead, with all values predicted at once.
The loss is calculated as the mean of the error between
each element in the output vector and the true values.

To test the various configurations of RNN as an artifact
correction method, a hyperparameter search was carried
out using the sweep tool from WandB [35]. First, a larger

search was performed for three participants’ data from
NEEDED to get a sense of the influence and importance
of the various hyperparameters. Subsequently, the search
was narrowed for the remaining participants’ data to
save computational cost. We tested three different loss
functions: root mean square error (LRMSE), error in
RMSSD (LRMSSD), and error in dynamic time warping
(LDTW ). The loss function LRMSE is defined as the
Euclidean distance between the predicted and true values,
whereas LRMSSD was calculated as the difference in the
true RMSSD and the predicted RMSSD, and LDTW
applied dynamic time warping [36] between the true and
predicted values. Further, we assessed both LSTM and
GRU, as well as whether applying differencing one or two
times beforehand would improve the results by removing
trends. Bidirectional layers were also tested. These layers
include data points following immediately after the gap
as input, and can be applied since we are interested in
gap-filling and not prediction. The full range of the
hyperparameter values are shown in Table 1.

The work in this paper was carried out using Keras 2.9.0
[37] in Python 3.9.7.
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Table 1: All the parameters tested in the hyperparameter
search and the range of values for each.

Range of values

Batch size 10-100%
Bidirectional Layers No Yes

Differencing No Yes Two times
Dropout 0 - 20%
Epochs 30 - 80

Hidden layers 1 - 8
Learning rate 0.001 - 0.1
Loss function LRMSE LDTW LRMSSD
Network type GRU LSTM
Sampling rate 1 - 2

Sequence length 1 - 100
Units per layer 32 - 1024

Prediction

Each participant’s data were split in three sections: a
training set (50%), a validation set (20%) and a test
set (30%). Next, a gap of length 1, 3, 7 and 10 was
introduced in the test set by removing successive values.
At a random location, one gap was introduced in each
test set (as long as the number of points before were
equal to or bigger than the sequence length). Finally, the
missing values were replaced by the RNNs’ predictions,
using either rolling prediction or single-shot prediction.
This way the true HRV metrics can be compared to
those of the gap-filling approach. When using single-shot
prediction, only a gap size of 10 is evaluated since we are
mostly interested in longer gaps, and one would need to
retrain the model for each gap size. The hyperparameter
search was then carried out on the training and validation
sets, and the performance of each configuration tested
on the test data. The results from the RNNs were
then compared to the results from both cubic spline
interpolation and deletion of the artifact, as a baseline for
performance. It should be noted that the method assumes
that the number of missing beats are known, which is not
always true. However, this issue will not be addressed
in this paper, as we consider it a part of the preceding
artifact detection.

In this paper, the models are trained on several data
sets from two different databases. However, in a real-
life setting, there might only be one data set. In this
instance, the application of k-fold cross-validation (CV)
might better fit the purpose. With k-fold CV, the data
set is split into a training set and a test set, and the
training set is divided into k groups, where the model is
trained on k − 1 groups, and the last group is used as
validation set. This is then repeated for all k groups.
This requires more computational power, but can be very
useful for finding optimal hyperparameters on a smaller
data set. Additionally, using k-fold CV, the uncertainty of

the model can be estimated, indicating the credibility of
the model.

Evaluation
The performance of the RNN models is evaluated by
calculating the relative error in RMSSD, SDNN, VLF,
LF, HF and TP from the predictions made by the RNN
models. It is then compared to cubic spline interpolation,
as it is the most commonly used artifact correction
method for HRV data [17]. It is also compared to deletion,
i.e., simply removing the data points where the artifacts
occur. The frequency domain metrics are calculated by
resampling by interpolation and then applying FFT. A
visual comparison of the predicted and true RR interval
lengths is also performed. To evaluate the importance of
each hyperparameter, the parameter-importance function
(PIF) from WandB is applied. The PIF works by
training a random forest with the hyperparameters as
input and the metric as the target output. Based on the
parameter’s position in the decision trees in the random
forest algorithm, the parameter is given a score ranging
from 0 to 1, so that the sum of all parameters equals
1 (i.e., a score of 1 means that the parameter is the
only relevant parameter, whereas a score of 0 means
that it is not relevant at all). This way, the importance
of each hyperparameter on each of the HRV metrics
can be assessed. It is important to note that the PIF
is affected by the number of values tested, and should
not be considered a definite result, but rather be used
as an indication for which parameters should be tuned.
Thus, the PIF was inspected only for three participants
in the NEEDED study, but with a large range of values
for each parameter. The results were used to select
the most important parameters for the hyperparameter
search, allowing us to narrow the search on the other
participants to reduce computational costs.

Results
Hyperparameter Search
The hyperparameter search showed that for all metrics,
the worst-performing models were those with the LRMSSD
loss function, and the best were usually those with one-
differenced data sets. There were no clear indications
on whether LSTM or GRU performed better, nor which
loss function gave the best results between LRMSE and
LDTW . Models using LDTW were significantly slower
in training, thus LRMSE seems the most practical loss
function. The PIF for the three first hyperparameter
searches is summarized in Fig. 6, showing that the most
important hyperparameter for each metric was sequence
length, followed by the number of hidden layers and
units. There were no clear indications of which values
these parameters should have. Although learning rate,
batch size, number of epochs, dropout and sampling rate
affected the results as well, they were not included in
the hyperparameter searches on the remaining data sets,
as they were less significant. That is not to say that
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tuning these hyperparameters as well would not improve
the model, but rather that they were omitted here to
reduce computational cost.

To demonstrate the impact of these three hyperparam-
eters on the models, Figures 7-9 show how the error in
HF changes for different values of sequence length, hid-
den layers and units for three different participants from
NEEDED. All other hyperparameters are kept the same.
Error in HF is chosen for these figures since it is one of the
metrics with the biggest error using common approaches
such as cubic interpolation or deletion, but it could have
been any of the other metrics.
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Figure 6: Importance of the three most important
parameters for each metric using rolling prediction, for the
three extended hyperparameter searches. RMSSD=root
mean square of successive differences; SDNN=standard
deviation of NN-intervals; VLF=very low frequency;
LF=low frequency; HF=high frequency; TP=total power.

HRV Metrics
Relative errors in the HRV metrics for the RNNs using
rolling prediction, cubic spline interpolation and deletion
on the NEEDED data for varying gap sizes are shown
in Table 2. The RNNs outperform the cubic spline
interpolation and deletion method for all metrics, across
all gap sizes evaluated. In particular, the error in the
frequency domain metrics was improved upon the most,
compared to cubic spline and deletion. Single-shot
prediction yields similar results, as can be seen in Table
3. It can also be seen in Table 3 that the RNNs on a
gap size of ten outperform the method from Królak et al.
[19] on a gap size of seven, for the same data. It should
be noted that there is no significant difference in relative
error when applying bidirectional layers as compared to
unidirectional layers.

RR Interval Length
The shapes of the predicted values for the RR interval
lengths were visually not similar to the true values when
using rolling prediction. Fig. 10 shows the predicted

0 20 40
Sequence length

0

200

400

600

800

R
el

at
iv

e 
Er

ro
r [

%
]

Error in HF as function of sequence length
Participant 1
Participant 2
Participant 3

Figure 7: The error in HF for different sequence
lengths, with all other hyperparameters the same, on
three different participants from NEEDED. HF = high
frequency.

values for RNNs with rolling prediction and cubic spline
for a gap of size 10 for two participants from Physionet
and NEEDED. Notably, the predicted values tend to either
steadily increase or decrease from the first predicted value
to the last predicted value. On the other hand, single-
shot prediction seems to yield slightly more appropriate
results. Fig. 11 shows the predicted values using single-
shot prediction with unidirectional layers, whereas Fig. 12
shows the predicted values using bidirectional layers.

Evidently, the single-shot prediction better captures
the variability of the data than the rolling prediction,
although it is not able to precisely predict the true
values. The bidirectional layers seem to improve the
results compared to the unidirectional layers. It should
be noted that choosing which model’s prediction to use
is not straightforward. The values chosen in the figures
are those of the model with the smallest validation
loss. However this approach will not necessarily always
give the best results. Figure 13 shows two participants
from Physionet and NEEDED in which using the lowest
validation loss yields poor results. Also, the best
performing model varies between subjects.

Discussion
The objective of this paper was to test the performance of
RNNs as a method for HRV data artifact correction. The
data were retrieved from 15 different individuals during
a bicycle race (NEEDED) and from 12 individuals during
a treadmill experiment (Physionet), both measured with
HR chest straps.

Hyperparameter Search
A hyperparameter search was carried out to achieve the
best results with the RNNs. Sequence length, number of
units per layer and number of hidden layers seem to be the
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Figure 8: The error in HF for different numbers of
layers, with all other hyperparameters the same, on
three different participants from NEEDED. HF = high
frequency.

Table 2: Relative mean error for typical HRV metrics for
various gap sizes after applying the best RNN model with
rolling prediction, cubic spline interpolation and deletion
on the data from NEEDED. RMSSD=root mean square of
successive differences; SDNN=standard deviation of NN-
intervals; VLF=very low frequency; LF=low frequency;
HF=high frequency; TP=total power; RNN=recurrent
neural network; CUBIC=cubic spline interpolation.

Gap size Method RMSSD SDNN VLF LF HF TP

1 RNN 0.15% 0.01% 0.29% 2.02% 0.35% 0.12%
CUBIC 0.45% 0.09% 1.24% 8.35% 4.75% 0.56%

DELETION 0.59% 0.37% 8.61% 18.32% 7.64% 4.64%
3 RNN 0.14% 0.01% 0.57% 3.21% 2.20% 0.17%

CUBIC 0.94% 0.12% 1.53% 13.87% 8.74% 1.18%
DELETION 0.89% 0.59% 9.84% 27.69% 15.61% 7.54%

7 RNN 0.26% 0.07% 0.57% 5.79% 4.53% 0.24%
CUBIC 1.56% 0.41% 7.02% 55.71% 38.94% 4.76%

DELETION 1.57% 1.16% 17.33% 54.88% 15.36% 12.01%
10 RNN 0.31% 0.06% 1.26% 9.37% 3.59% 0.84%

CUBIC 2.15% 1.02% 12.51% 12.78% 36.01% 8.86%
DELETION 2.00% 1.71% 20.86% 73.39% 45.16% 16.87%

most important parameters to tune correctly, but there
were no clear indications on which values gave the best
performing models. Figures 7-9 also show the difficulty
in choosing the optimal hyperparameters, as there is no
clear trend in HF error, and the models act differently for
different data sets. One-differencing as a preprocessing
step improved the performance. There were no apparent
differences in performance between GRU and LSTM,
supporting the results from Greff et al. [31]. Bidirectional
layers seemed to better capture the variability of the data
than unidirectional layers, but impose the issue of needing
continuous error-free data directly following the gap as
well.
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Figure 9: The error in HF for different numbers of
units, with all other hyperparameters the same, on
three different participants from NEEDED. HF = high
frequency.

Table 3: Relative mean error for typical HRV metrics for
a gap size of ten after applying the best RNN model
with single-shot prediction, cubic spline interpolation
and deletion on the data from Physionet. The results
from Królak et al. [19] on the same data are also
included, but for a gap size of seven. RMSSD=root
mean square of successive differences; SDNN=standard
deviation of NN-intervals; VLF=very low frequency;
LF=low frequency; HF=high frequency; TP=total power;
RNN=recurrent neural network; CUBIC=cubic spline
interpolation; N.A=not available.

Gap size RMSSD SDNN VLF LF HF TP

7 Królak et al. 1.42% 0.85% N.A 6.13% 4.74% 2.03%
10 RNN 0.62% 0.24% 1.96% 3.01% 1.85% 2.45%

CUBIC 2.63% 1.98% 24.64% 76.29% 51.7% 30.23%
DELETION 1.30% 1.44% 29.76% 26.86% 18.53% 18.12%

Performance

The best performing RNNs outperformed cubic spline
interpolation and deletion for all gap sizes and all metrics.
In particular, frequency domain metrics were significantly
more accurate with RNNs. Improving the error in the
frequency domain metrics is very beneficial, as it has been
shown that the frequency domain is particularly sensitive
to artifacts in HRV data [38, 39]. The RNNs gave
better results than the method from Królak et al. [19]
on the same data, even when the gap size was longer
for the RNNs. Although the RNNs in this paper were
not able to predict true RR interval lengths, HRV is
usually expressed as a derived metric rather than by the
timeseries in itself, thus proving the usefulness for RNNs
as an artifact correction method.
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Figure 10: Comparison of the true RR interval lengths with RNN rolling prediction and cubic spline interpolation for gap
size 10 for two different participants.
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Figure 11: Comparison of the true RR interval lengths with RNN single-shot prediction and cubic spline interpolation for
gap size 10 for two different participants.
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Figure 12: Comparison of the true RR interval lengths with RNN single-shot prediction and bidirectional layers and cubic
spline interpolation for gap size 10 for two different participants.
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Figure 13: Example of poor predictions made by RNNs with single-shot prediction and bidirectional layers when choosing
values based on the models’ validation loss.

Limitations and Future Work
It is desirable to improve the prediction of RR interval
lengths, since there are other HRV metrics not mentioned
in this paper that also depend on error-free data [40].
Also, applying RNNs necessitates segments of continuous
error-free training data, which is not always available [38].
In addition, training RNNs, and in particular performing
hyperparameter searches, is computationally expensive
and not always feasible. Choosing the best model is not
straightforward, as a visual inspection of the predicted
values shows that the model with the lowest validation
loss will not always yield the best results, and that the
best model depends on the data set. Hence, a network
configuration that performs well across all data sets and
metrics should be pursued. A possible solution to all of
these problems might be to gather a large database of
error-free data and applying transfer learning as a method
for reducing the amount of individual training data and
create a general model for all subjects [41].

Conflict of interest
Authors state no conflict of interest.

Resources
Our software implementation can be found at https:
//github.com/jakobsv97/HRV-RNN.
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