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Abstract: Smart grids incorporate diverse power equipment used for energy optimization in intel-
ligent cities. This equipment may use Internet of Things (IoT) devices and services in the future.
To ensure stable operation of smart grids, cybersecurity of IoT is paramount. To this end, use of
cryptographic security methods is prevalent in existing IoT. Non-cryptographic methods such as
radio frequency fingerprinting (RFF) have been on the horizon for a few decades but are limited
to academic research or military interest. RFF is a physical layer security feature that leverages
hardware impairments in radios of IoT devices for classification and rogue device detection. The
article discusses the potential of RFF in wireless communication of IoT devices to augment the cyber-
security of smart grids. The characteristics of a deep learning (DL)-aided RFF system are presented.
Subsequently, a deployment framework of RFF for smart grids is presented with implementation
and regulatory aspects. The article culminates with a discussion of existing challenges and potential
research directions for maturation of RFF.

Keywords: radio frequency fingerprinting; machine learning; deep learning; software-defined radio;
Internet of Things; cybersecurity; smart city; smart grid

1. Introduction

Over the past few years, smart cities have experienced substantial growth and ex-
panded their horizon considerably. Notably, recent breakthroughs in IoT have opened
exciting avenues, serving as pivotal technological foundations for smart cities [1]. These
advancements facilitate the creation and automation of cutting-edge services and sophisti-
cated applications tailored to the diverse needs of urban communities, thus benefiting a
wide range of city stakeholders. Figure 1 illustrates key components of a modern smart city.

Complementary to these advancements, smart grids are transformative for smart
cities, optimizing energy usage in real time and pre-empting potential problems [2]. Smart
grids are an essential national asset for any country, playing a crucial role in modernizing
energy infrastructure. Traditional power grids comprise power generation, transformation,
transmission, and distribution. Smart grids incorporate diverse power equipment and may
incorporate IoT devices that sense humidity, temperature, immersion, vibration, current
leakage, and record video data. Pointed IoT equipment may enable implementation of
intelligent power systems [3–5]. These IoT devices establish wireless device-to-device (D2D)
communication at the physical layer [6]. Each network has a gateway for data concentration
which constitutes the network layer, and the control station serves the application layer
of IoT in smart grids. While smart grids offer immense benefits to smart cities, they also
present significant security challenges. A substantial review was conducted by Alsuwian
et al. [7] concerning cybersecurity threats in IoT of smart grids. These networks in smart
grids operate at the intersection of the physical layer, network layer, and application layer,
making them susceptible to cyber threats at multiple levels. Therefore, their security at all
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levels is paramount. The interconnected nature of smart grids entails that vulnerability
at one layer may cascade across the entire system, potentially leading to widespread
disruptions.
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Security requirements in a wireless network encompass several critical aspects to
safeguard the integrity and privacy of data transmission [8]. Authenticity is paramount
because unauthorized access is a major security concern, especially in life-critical IoT
applications [9]. In existing IoT devices, coprocessors are employed for symmetric key-
based encryption such as AES-128 and AES-256 [10]. However, maintenance of these keys
is an administrative overhead and must be mitigated through the use of public/private
key pairs [11]. Such pairs are mathematically correlated and allow for enhanced data
security compared to symmetric cryptography. Nevertheless, generating mathematically
complex key pairs using true random number generators is not a possibility on most low
resource IoT devices for the time being. It is envisioned that IoT of the future may benefit
from the massive potential of quantum cryptography in the post-quantum computing
era. High-efficiency quantum digital signature (QDS) protocols are being developed using
asymmetric quantum keys [12]. Another novel concept, Internet of Predictable Things
(IoPT), could be employed in mitigation of cyberattacks using energy forecasting in smart
grids with machine learning (ML) aids to detect anomalous data patterns [13]. These
directions possess substance in the improvement of cybersecurity for future IoT.

The authentication challenge extends to confidentiality and integrity compelling
drastic measures to limit access to sensitive data, allowing only intended users to view
or modify it. Lastly, availability is mandatory for allowing authorized users to reliably
access network resources whenever and wherever needed. Physical layer security measures
such as the long-range frequency hopping spread spectrum (LR-FHSS) [14] are gaining
popularity due to integration in contemporary long-range (LoRa)-based IoT devices. In the
event of jamming or interference, frequency hopping at multiple channels can ensure better
link availability. These security requirements collectively form the foundation of a robust
and reliable wireless network. Wired networks rely on physical cables for node connections,
while wireless networks are more vulnerable due to their broadcast nature making them
susceptible to eavesdropping, denial-of-service (DoS), spoofing, man-in-the-middle (MITM)
attacks, and message falsification. Cryptographic techniques are commonly used to prevent
eavesdropping, ensuring identity verification. In IoT, security gaps exist due to reverse
engineering threats and challenges in rapidly installing cryptographic protocols on insecure
devices. On the other hand, noncryptographic methods, such as device-specific signal
pattern analysis, complement traditional cryptography by identifying known devices and
detecting rogue ones, offering essential security without modifying the IoT devices.
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Radio frequency fingerprinting (RFF), being a noncryptographic method, has been in
use for a few decades now. However, its potential as a physical layer security feature in
wireless sensor networks of IoT has been gaining popularity recently [15,16]. RFF uses hard-
ware impairments in the radio section of an IoT device for classification. These impairments
are unique to each IoT device due to inherent nonlinearities in the manufacturing process
of these inexpensive devices. The components of an IoT device are shown in Figure 2. It is
imperative to point out that the aim of most studies on RFF has been device authentication
at the physical layer—threat elimination at the first line of defense.
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To this end, a gap exists in studying RFF deployment in a smart grid use case. This
article primarily explores the feasibility of integrating RFF into the existing infrastructure
of wireless sensor networks in smart grids. The body of this work investigates the po-
tential of RFF as a physical layer security feature for the said application and presents a
deployment framework.

The remainder of the article is structured as follows: Section 2 provides an overview of
related research. Section 3 illustrates ingredients of a typical DL-aided RFF system. Security
challenges and associated discussions are detailed in Section 4. Smart grids as a use case
for RFF deployment is covered in Section 5. The ensuing Section 6 argues the potential
challenges and directions for future research. Finally, Section 7 concludes the article.

2. Related Work

The core concept behind RFF involves the extraction of distinct patterns or features
from devices and utilizing them as signatures for device classification. Previously, a wide
range of features including but not limited to physical (PHY) layer and medium access
control (MAC) layer have been employed in RFF. However, some straightforward identifiers
like Internet Protocol (IP) addresses, MAC addresses, and international mobile station
equipment identity (IMEI) numbers are susceptible to spoofing. Similarly, received signal
strength indication (RSSI) and channel state information (CSI) could be affected by mobility
and environmental changes. A recent research focus has been the investigation of features
that are intrinsic to a specific device, possess stability over time, and are challenging for
malicious actors to replicate. The authors’ prior work has contributed to the advancement
of RFF while it was still a topic of academic research. However, the focus of this work is the
discussion of practical deployment aspects of RFF in real-world applications. The following
subsections cover the related work from all the domains associated with this body of work.

2.1. Previous Work

The primary focus of previous work has been the development of cost-effective tech-
niques for extracting RF fingerprints. In this context, a method for modifying transient
signals was presented [17]. Emphasizing cost-effectiveness, a modular RF front end for RFF
analysis of Bluetooth signals was offered [18]. Given the passive nature of RFF, modular
solutions are particularly relevant, enabling a single RFF system to classify multiple IoT
devices without any modification. A common use case of classifying Bluetooth radios of
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cellular devices was addressed in [19]. Firstly, the signal was preprocessed through tran-
sient signal decomposition using variational mode decomposition (VMD). Subsequently, a
linear support vector machine (LSVM) was employed as a classifier. A comparative study
on classifiers, considering varying signal-to-noise ratio (SNR) levels and dataset sizes was
organized in [20]. The experimental results yielded excellent classification accuracy even
at low SNR values, implying tremendous relevance in real-world scenarios. Adhering to
open science principles, a rich dataset to aid the research community in advancing RFF
technology was submitted in [21]. The goal was to aid prospective researchers with the in-
clusion of an acquisition method for gathering Bluetooth signals. Another potential avenue
for academic exploration is the application of RFF for localization. Addressing this, [22]
presented a discussion on recent advances and challenges surrounding RFF localization in
outdoor environments.

2.2. Cybersecurity in Smart Grids

As smart grids emerge to play an integral role in the evolution of smart cities, a rising
need to overhaul their cybersecurity is imminent. The threat spectrum of cyberattacks being
faced by smart girds is tremendous [23]. Various organizations, such as the National Insti-
tute of Standards and Technology (NIST) and the Smart Grid Interoperability Panel (SGiP),
are shaping security requirements for smart grids. Authentication and authorization are
central to the overall security of smart grids. Per the guidelines for smart grid cybersecurity
published by NIST [24], the focus of security has been limited to cryptographic techniques
only. A detailed framework for key management and associated operational issues was
provided in the referred document. Key management can be improved using physically
unclonable functions (PUF). Generation of PUF hinges on the intrinsic uniqueness within
the integrated circuit of a device. A key generated by a device employing PUF can only
be regenerated by the same device. This characteristic is leveraged by the utility to au-
thenticate data generated by smart meters [25]. With developed countries increasingly
embracing smart grids, the security concerns and potential remedies have become a focal
point for researchers and industry experts [26]. Ongoing endeavors are directed towards
securing the network and application layers of IoT in smart grids. Remarkably, the non-
cryptographic security techniques in IoT for smart grids have not been extensively studied.
This represents a novel area where RFF may emerge as a promising candidate.

2.3. Historical and Contemporary Use of RFF

The classification of signals using passive radio frequency (RF) receivers enhanced
by artificial intelligence has a historical precedent dating back three decades. Initial use
of RFF involved the classification of signals from multiple radar sources leveraging their
distinct attributes [27]. More recently, RFF has gained popularity in IoT with experiments
on wireless devices using frequency, magnitude, phase offsets, and in-phase and quadrate
(I/Q) imbalance as differentiating features [28]. Utilizing RFF for device authentication
finds its most straightforward application in RFID systems [29]. The cited studies exhibit
the relevance of RFF in various legacy and contemporary applications.

2.4. Physical Layer Security in Wireless Communication

There have been substantial studies concerning physical layer security in wireless
communication of IoT devices. In the era of ML and DL, physical, network, and application
layers of IoT are susceptible to security threats [30]. As adversarial attacks grow more and
more complex, security measures on all layers of communication networks are emerging
on the horizon. In this regard, classification efforts on cellular phones using their integrated
physical components have been conducted [31]. Non-cryptographic methods for user
authentication and device identification in static and mobile wireless networks have seen
academic interest [32]. Nevertheless, there are advantages, limitations, and implementation
challenges associated with these novel methods. A literature review of relevant studies



Electronics 2023, 12, 4914 5 of 17

underscore the potential of physical layer security in wireless communication between IoT
devices for authentication.

2.5. Machine Learning in RFF

Emitter-specific hardware attributes can be leveraged without the use of machine
learning employing expert features in RFF extraction algorithms such as signal phase [33].
However, this approach is over-reliant on the quality of the received signal, which is not
practical in actual scenarios as wireless signals undergo drastic changes in amplitude and
phase due to channel effects. Conversely, DL-aided RFF has gained popularity due to its
ability to detect unique features in datasets. This approach has made the identification
and classification problem scalable to cater unseen devices. More precisely, convolutional
neural networks (CNN) have exhibited even more accurate results [34]. Automated feature
extraction in DL has proven to be a potent solution, surpassing traditional methods em-
ploying only the handcrafted features. However, hybrid models have exhibited even better
results when a handcrafted feature such as carrier frequency offset (CFO) is used in unison
with DL [35]. An examination of reference studies reveals a multitude of prevalent ML, DL,
and hybrid methods. The choice of a specific model hinges on the adopted representation
of the RF signal, whether it be I/Q, spectrogram, or fast Fourier transform (FFT).

3. Typical DL-Aided RFF System

The two major domains in an RFF system comprise RF and DL. The choice of an SDR
architecture for the RF domain is governed by its flexible nature to process raw waveforms
and a wide range of operating frequencies. For the DL part, the host processor serves as a
platform for training a neural network (NN) on a given dataset followed by classification
in the inference stage. The following subsections provide some explanation for the process
of RF signal acquisition followed by the rationale for pre-processing before the signal is
subject to the training and inference stage.

3.1. RF Signal Acquisition

The first step in RFF comprises the RF signal acquisition. To make the signal fitting for
the classification stage, there is a need to pre-process the signal. The collection of signals
followed by pre-processing collectively constitutes the signal acquisition process. The
requirement for pre-processing stems from the problem statement inherent in the RFF-
based device classification. The classical wireless communication model serves a simple
mathematical explanation. For the sake of simplicity, the high-frequency carrier component
is omitted. Baseband signal at the input of the RFF system, y(t), can then be given:

y(t) = G(h(τ, t)) ∗ FK(x(t)) + n(t), (1)

where x(t) is the theoretical modulated signal. G(·) denotes the hardware effects of the
receiver and h(τ, t) is the impulse response of time dispersive wireless channel with delay
τ. FK(·) signifies the transmitter specific effect of device under test (DUT), K, n(t) is the
additive white Gaussian noise (AWGN), and ∗ is the convolution operation. The goal of
RFF is to extract FK(·), unique to each hardware and difficult to clone or tamper. There
are, however, some common hurdles in the development of a robust RFF. Firstly, the
transmitter specific FK(·) is miniscule and overly reliant on the signal quality [33]. One
approach could be to artificially create artifacts in the transmitter, but this could hamper
communication performance. Moreover, in practical wireless channels, the received signal
y(t) undergoes amplitude and phase dispersion due to channel impulse response h(τ, t).
Therefore, the NN shown in Figure 3 has the tendency to make inaccurate predictions,
since h(τ, t) is not predictable and may vary significantly between training and inference.
As already highlighted, DL-aided RFF systems have shown performance improvement;
however, DL relies on the assumption that the data points follow an independent and
identical distribution (i.i.d). In other words, statistical parameters, such as mean and
variance, must remain consistent across the entire dataset. The varying impulse response
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of a time-dispersive channel could therefore be a cause for a DL model to generalize poorly
on unseen data. In dynamic scenarios, the variance of h(τ, t) is an even bigger challenge.
In addition to the channel variance, the relative motion between the communicating nodes
induces Doppler shift given by the following expression:

∆ f = f c
c
v

cos(θ), (2)

where ∆ f is the Doppler shift in the carrier frequency fc due to relative motion between
the communicating nodes having a relative velocity v at an angle θ, and c is the speed
of light. The effect of Doppler shift causes signal degradation, which in turn affects the
classification performance. CFO is another challenge that is prevalent in inexpensive radios;
by virtue, low-cost crystal oscillators have accuracies in the excess of multiple tens of
parts per million (PPM). Amidst these challenges, there is a burgeoning requirement to
pre-process the signal before it is stacked in a dataset to train the NN. Pre-processing
comprises signal conditioning, as employed in any legacy radio receiver, for accurate
symbol detection. The most important aspect of pre-processing is to mitigate the channel
effects, since it is the most unpredictable variable in the entire process. Various mitigation
methods are prevalent in the literature, such as the channel-independent spectrogram for
narrowband communication channels that experience very little change in a short time
interval [36]. Another direction is data augmentation where a channel simulator may aid
in training the NN on simulated channel conditions. This approach can minimize the
channel effects since a NN trained on a dataset containing diverse channel conditions shall
generalize much better in the inference stage. Nonetheless, rationale for the requirement of
channel equalization is clear and justified. Detailed discussion of the implementation of
channel equalizers is beyond the scope of this work. More importantly, it must be realized
that synchronization is a mandatory step for channel equalization. Among other issues,
the effect of the receiver G(·) must not alter the classification performance. A practically
deployable RFF system must be agnostic to the effects of the receiver. A NN trained on one
RFF system must be able to perform equally well on the other if there is a need to replace it
in the event of failure. Lastly, normalization of the received signal is performed to bar the
NN from using signal strength as a feature for training.
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3.2. Deep Learning

Figure 3 illustrates the working of a modern RFF system as a two-stage process,
training and inference. As evident, training comprises receiving samples from N unique
devices and an RF signal is received from device K in the inference stage to differentiate
between a legitimate and rogue transmitter on a per packet basis. The mathematical model
for the classification problem ensues. Let Dtrain, a training dataset from N devices be
given by

Dtrain = {(ym, Pm)}Mtrain
m=1 , (3)
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where ym is the mth training sample and Pm is the respective output of the one-hot encoding
function O(·) for the mth DUT label, given by

Pm = O(lm), (4)

where lm is the ground truth DUT label of the mth training sample. If Mtrain is the total
number of training samples in a neural network f (y; Θ), parameters Θ can be optimized
using Dtrain by the following expression:

Θ = argmin
Θ

1
Mtrain

∑ (y,p)∈ Dtrain Lce ( f (y; Θ), p), (5)

where Lce(·) is the cross-entropy loss. In the inference stage, the receiver captures a signal
y′ and feeds it into the well-trained neural network f (y; Θ) for prediction. A probability
vector p̂ is obtained in the inference stage as

p̂ = f
(
y′; Θ

)
, (6)

where p̂ = {p̂1, . . ., p̂k, . . ., p̂N} is a probability vector over all the N DUTs, and p̂K is the
estimated probability for the Kth DUT. The predicted device label l̂ is derived by simply
selecting the index of the element with the highest probability as defined below.

l̂ = argmax
k

( p̂). (7)

The model outlined above serves as the foundation for device classification, utilizing
labels derived from a predefined dataset. To declare an unknown device as rogue, each
element from the set p̂ must exhibit a probability value below a predetermined threshold.
This criterion designates a device as absent from the roster of legitimate devices, thereby
classifying it as rogue. This ability of the NN to identify unseen devices adds scalability to
the system and makes the classification step an open-set problem.

To summarize, a typical DL-aided RFF system must have a common set of attributes.
The scope of this article is to present a practically deployable RFF system. Therefore, based
on state-of-the-art and literature reviews of relevant dissertations [37,38] and an elaborate
survey [39], essential features of a practical DL-aided RFF system are listed:

1. Synchronization.
2. CFO Compensation.
3. Doppler Compensation.
4. Normalization.
5. Channel Equalization.
6. Receiver Agnostic.
7. Scalability.

4. IoT in Smart Grids

The US Department of Energy defines smart grids as modernized electrical grids
that leverage advanced technology to enhance the efficiency, reliability, and sustainability
of electricity generation, distribution, and consumption [40]. They incorporate various
power generation sources, including customer-generated energy, solar, wind, and more.
Understanding the role of IoT in smart grids and the security challenges it presents is
crucial before delving into discussions about the necessity to bolster cybersecurity.

4.1. D2D Wireless Communication in Smart Grids

The effectiveness of smart grids is rooted in their ability to anticipate fluctuations in
energy supply, optimize grid operations, and promptly respond to changes in demand
and power failures. This capability not only strengthens grid stability but also contributes
to the reduction in energy wastage, enhancing overall sustainability [41]. Central to the
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realization of this concept is D2D wireless communication between IoT devices at the
control center, the power station, and consumers. Figure 4 shows the evolution of power
grids. The dotted lines mark the communication network, which is crucial in achieving the
functionality of smart grids.
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4.2. Security Challenges in Wireless Communication

In wired networks, nodes are physically linked by cables. Conversely, wireless net-
works face heightened vulnerability due to their broadcast nature. They are susceptible
to various malicious attacks, such as eavesdropping [42], denial-of-service (DoS) [43],
spoofing [44], man-in-the-middle (MITM) [45], message falsification/injection [46], etc. To
ensure confidentiality and authentication, existing systems commonly use cryptographic
techniques to prevent eavesdropping and unauthorized access to networks [47,48].

Conventional cryptography ensures identity verification using techniques like message
authentication codes, digital signatures, and challenge-response sessions [49]. However,
in widely distributed IoT, security gaps persist due to reverse engineering threats [50],
impracticality of rapid cryptographic protocol installation in insecure devices [51], and
inefficacy against hijacked devices.

In a post-quantum computing era, the above cited challenges could be overcome using
quantum cryptography. For instance, quantum light could be used to generate inherently
unforgeable quantum cryptograms [52]. These cryptograms have exhibited the potential
to be used in practical applications with near-term technology. Future IoT may benefit
tremendously at the application layer as a solution to vulnerabilities present in symmetric
cryptographic schemes. Non-cryptographic methods, such as device-specific signal pattern
analysis, supplement traditional cryptography by identifying known devices and detecting
rogue ones [53]. These approaches are crucial for enhancement of cybersecurity in IoT,
without requiring major system modifications [54].

4.3. Cybersecurity in Smart Grids

The layered architecture in IoT of smart grids is illustrated in Figure 5 [55]. At the
physical layer, data from sensors, actuators, and smart meters are collected at the gateways.
At the network layer, data from multiple gateways are concentrated and relayed to the
application layer operating on servers in the control center using legacy communication
methods. The goal of cybersecurity in IoT is to ensure protection at every layer; the same is
applicable in smart grids as well. A closer look at the threat spectrum being faced by smart
grids underscores the importance of device authentication [56,57], although physical layer
intrusion detection systems have the capacity to perform device authentication at the first
stage of defense in wireless networks [58]. But, to this end, there has not been a study on the
implementation of physical layer security measures in wireless communication between
IoT devices of smart grids for authentication. To fill this gap, RFF emerges as a potential
solution and this article builds the case for discussion on the associated deployment aspects
in smart grids.



Electronics 2023, 12, 4914 9 of 17

Electronics 2023, 11, x FOR PEER REVIEW 9 of 17 
 

 

4.3. Cybersecurity in Smart Grids  
The layered architecture in IoT of smart grids is illustrated in Figure 5 [55]. At the 

physical layer, data from sensors, actuators, and smart meters are collected at the gate-
ways. At the network layer, data from multiple gateways are concentrated and relayed to 
the application layer operating on servers in the control center using legacy communica-
tion methods. The goal of cybersecurity in IoT is to ensure protection at every layer; the 
same is applicable in smart grids as well. A closer look at the threat spectrum being faced 
by smart grids underscores the importance of device authentication [56,57], although 
physical layer intrusion detection systems have the capacity to perform device authenti-
cation at the first stage of defense in wireless networks [58]. But, to this end, there has not 
been a study on the implementation of physical layer security measures in wireless com-
munication between IoT devices of smart grids for authentication. To fill this gap, RFF 
emerges as a potential solution and this article builds the case for discussion on the asso-
ciated deployment aspects in smart grids.  

 
Figure 5. Cyber security in smart grids [55]. 

5. Deployment of RFF in Smart Grids 
The aim of this article is to conduct a feasibility study and discuss practical deploy-

ment consideration apropos of the use of RFF in smart grids. Existing IoT frameworks 
have been considered for seamless integration of RFF with minimal changes. The core idea 
is to present RFF as an addition to existing IoT infrastructure instead of reinventing the 
wheel. The following sub-sections provide considerations and requirements for deploy-
ment of RFF in smart grids. 

5.1. Network Considerations 
In line with the aim of this article, performance metrics of existing IoT serve as a good 

starting point. Coverage and energy efficiency are important metrics for choosing a net-
work topology [59]. Furthermore, data rate, range, application layer security, and locali-
zation are important factors for selecting a particular low-power wide-area network 
(LPWAN) [60]. From a practical standpoint, cost and scalability hold particular signifi-
cance [61]. In the UK, smart meters communicate via cellular networks, utilizing 2G or 3G 

Figure 5. Cyber security in smart grids [55].

5. Deployment of RFF in Smart Grids

The aim of this article is to conduct a feasibility study and discuss practical deployment
consideration apropos of the use of RFF in smart grids. Existing IoT frameworks have
been considered for seamless integration of RFF with minimal changes. The core idea is to
present RFF as an addition to existing IoT infrastructure instead of reinventing the wheel.
The following sub-sections provide considerations and requirements for deployment of
RFF in smart grids.

5.1. Network Considerations

In line with the aim of this article, performance metrics of existing IoT serve as a good
starting point. Coverage and energy efficiency are important metrics for choosing a network
topology [59]. Furthermore, data rate, range, application layer security, and localization are
important factors for selecting a particular low-power wide-area network (LPWAN) [60].
From a practical standpoint, cost and scalability hold particular significance [61]. In the
UK, smart meters communicate via cellular networks, utilizing 2G or 3G waveforms [62].
However, the use of a long-range wide-area network (LoRaWAN), a star-of-star network
topology, in advanced metering infrastructure has been reported as well [63,64]. Given
the novelty of RFF and the consideration of performance metrics including cost, energy
efficiency, network topology, and communication range, LPWAN is a suitable candidate
for the deployment of RFF.

5.2. Security Considerations

Cybersecurity experts have expressed concerns, revealing that 70% of IoT devices are
vulnerable to cyberattacks [65]. The wireless sensor network of IoT exhibits vulnerabilities
across various layers, and cyberattacks can manifest at different stages [66]. Likewise,
LPWAN is not exempt from cyber threats [67]. Wireless sensor networks in smart grids
comprise IoT devices equipped with temperature, humidity, light, and wind sensors. The
threat from rogue IoT devices to generate falsified data is a significant concern. For instance,
exaggerated sensor readings from a smart meter could lead to an unwarranted stimulus
from the control station. The limitations of existing security schemes have been discussed
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in the introduction section of this article. Considering the vulnerability of higher layers to
attacks, a novel approach is to secure the physical layer of D2D wireless communication
across the network. It is proposed that this extra layer of security should always be in the
loop for all end-to-end data transactions between IoT devices in the network.

5.3. Proposed RFF Framework

A key facet of smart grid infrastructure is the real-time estimation of household
loads [40,41]. This requirement can be effectively addressed by smart energy meters
transmitting data wirelessly at regular intervals. However, this simple task becomes
challenging from a cybersecurity perspective in the presence of rogue devices. This scenario
is accurately addressed in the physical layer security framework of RFF, as depicted
in Figure 6. The proposed configuration ensures that all data transmission from the
sensors must pass through the physical security barrier of the RFF system before reaching
the control station. The star-of-stars network topology ensures that all the sensors first
concentrate their data at their respective gateways. Hosted on the IoT gateways, RFF serves
as a filter to allow readings from only legitimate sources while filtering the rogue ones on a
per packet basis. Since these gateways can send and receive wireless data, they can filter
data from rogue gateways as well.
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It is worth mentioning that within a mini star network, multiple gateways could be
employed for time-based direction of arrival estimation. This can be extremely helpful
in the localization of a rogue device followed by necessary remediation. The IoT devices
equipped with sensors communicate unidirectionally with their respective IoT gateways.
However, to cater for dynamic load requirements, the control station may issue commands
to renewable energy plants, directing them to release stored energy into the system or
increase power generation. This requires bidirectional communication in line with the
fundamental characteristics of a smart grid [40,41]. This bidirectional communication offers
a significant challenge for deployment of RFF in existing low-resource IoT devices, which
is discussed in Section 6.

5.4. Performance Considerations

Before a technology is deemed suitable for practical deployment, it is important to
estimate its performance considering real-world conditions. The aim of presenting a typical
DL-aided RFF system in Section 3 was to highlight the hurdles in achieving the desired
outcome. The key performance indicator (KPI) of an RFF system is its classification accuracy.
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There has not been a study on the estimation of this KPI in a smart grid use case. However,
the authors’ previous work in [19] covered the performance comparison of various ML-
aided classifiers with different SNR values of the received signal. Table 1 summarizes the
experimental results from that study. The results show decent performance even in low
SNR conditions. Given that the IoT devices in wireless sensor networks of smart grids are
deployed in a static setting, empirical propagation measurements in urban environments
may serve as a good reference for RSSI estimation [68]. Figure 7 provides a path loss curve
in decibels (dB) against the distance between communicating nodes. Using the locations
of smart meters, sensors, and IoT gateways, the expected RSSI could be estimated at the
RFF receiver.

Table 1. Comparison of classifiers with various levels of SNR [19].

Classifier
SNR (dB)

(8–10) (12–15) (18–23)

L-SVM 79.3% 82.1% 90.5%
Complex Tree 66.8% 68.8% 85.4%

LDA 76.6% 77.8% 83.6%

Electronics 2023, 11, x FOR PEER REVIEW 11 of 17 
 

 

It is worth mentioning that within a mini star network, multiple gateways could be 
employed for time-based direction of arrival estimation. This can be extremely helpful in 
the localization of a rogue device followed by necessary remediation. The IoT devices 
equipped with sensors communicate unidirectionally with their respective IoT gateways. 
However, to cater for dynamic load requirements, the control station may issue com-
mands to renewable energy plants, directing them to release stored energy into the system 
or increase power generation. This requires bidirectional communication in line with the 
fundamental characteristics of a smart grid [40,41]. This bidirectional communication of-
fers a significant challenge for deployment of RFF in existing low-resource IoT devices, 
which is discussed in Section 6. 

5.4. Performance Considerations 
Before a technology is deemed suitable for practical deployment, it is important to 

estimate its performance considering real-world conditions. The aim of presenting a typ-
ical DL-aided RFF system in Section 3 was to highlight the hurdles in achieving the desired 
outcome. The key performance indicator (KPI) of an RFF system is its classification accu-
racy. There has not been a study on the estimation of this KPI in a smart grid use case. 
However, the authors’ previous work in [19] covered the performance comparison of var-
ious ML-aided classifiers with different SNR values of the received signal. Table 1 sum-
marizes the experimental results from that study. The results show decent performance 
even in low SNR conditions. Given that the IoT devices in wireless sensor networks of 
smart grids are deployed in a static setting, empirical propagation measurements in urban 
environments may serve as a good reference for RSSI estimation [68]. Figure 7 provides a 
path loss curve in decibels (dB) against the distance between communicating nodes. Using 
the locations of smart meters, sensors, and IoT gateways, the expected RSSI could be esti-
mated at the RFF receiver.  

Table 1. Comparison of classifiers with various levels of SNR [19]. 

Classifier 
SNR (dB) 

(8–10) (12–15) (18–23) 
L-SVM 79.3% 82.1% 90.5% 

Complex Tree 66.8% 68.8% 85.4% 
LDA 76.6% 77.8% 83.6% 

 
Figure 7. Empirical propagation model in urban environment [69]. 

Subsequently, the resultant SNR could be used to estimate the classification accuracy 
using Table 1. It is pointed out that the scope of this study is not limited to a specific smart 

Figure 7. Empirical propagation model in urban environment [69].

Subsequently, the resultant SNR could be used to estimate the classification accuracy
using Table 1. It is pointed out that the scope of this study is not limited to a specific smart
grid. It is expected that through careful decision making in the selection of appropriate
classifier and signal attributes, decent classification accuracy can be achieved, even with
low SNR. The classification accuracies of various signal representations for as many as
60 unique LoRa devices are given in Table 2. It may be noted that there is another important
aspect in gauging the performance of an RFF system: the time required for training. It is
only reasonable to assume that installation, repair, and maintenance of IoT devices in smart
grids is likely to be conducted by electric supply companies. Hence, this one-time training
activity, even in a practical deployment scenario, may be tolerable given the extraordinary
classification performance achieved as a trade-off. Therefore, for a smart grid use case,
training time may not be treated as a KPI. Referring to the star network topology outlined
in Section 5.3, each wireless sensor network incorporates an IoT gateway. These gateways
have been proposed as an optimal site for RFF, ensuring comprehensive access to all
IoT devices within the network for accurate classification. Considering the performance
metrics across a large set of devices, the findings from referred studies can be reasonably
extrapolated as a valuable reference for the smart grid.
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Table 2. Classification accuracy of different models with required training time [37].

Signal Representation DL Model
Accuracy

Number of Parameters Training Time (minutes)
w/o CFO Comp. w/o CFO Comp. Hybrid

I/Q samples
MLP 54.08% 55.73% 78.26% 19,018,009 25
CNN 64.10% 92.26% 98.11% 4,361,545 75
LSTM 61.16% 89.54% 95.14% 4,267,289 70

FFT results
MLP 55.44% 94.48% 96.17% 19,018,009 25
CNN 61.14% 82.10% 85.58% 4,361,545 75
LSTM 49.20% 58.26% 82.81% 4,267,289 69

Spectrogram
MLP 88.60% 91.82% 95.95% 8,821,017 22
CNN 83.53% 95.35% 96.40% 1,545,193 20
LSTM 68.16% 89.50% 98.04% 3,427,609 80

5.5. Implementation Aspects

The RFF for smart grids emerges as a highly feasible solution for deployment, primarily
owing to its cost-effectiveness and seamless integration capabilities within existing systems.
Positioned at the intersection of two prominent domains, RF and ML, RFF may seem
intricate from a technical perspective, but from the user’s perspective, it can be offered as a
plug-and-play solution, hence, simplifying its adoption into existing IoT. Smart grids, being
a critical infrastructure from an operation standpoint, can benefit from the passive nature
of RFF systems during training as well as inference stages. This can be helpful in ensuring
uninterrupted functionality of the smart grids during the deployment process. RFF systems
do not necessitate integration into every IoT device. Instead, they can be intelligently
deployed only into IoT gateways and leverage the available processing prowess. Moreover,
power efficiency poses no significant challenge since RFF systems operate in passive
mode, necessitating no significant power requirement. Considering RFF is deployed
as a technology, the hardware infrastructure overhead is minimal. In the features of
a typical DL-aided RFF system, the ability to be receiver agnostic was discussed as a
desirable feature. It would be a highly recommended feature in the event of a device
failure, allowing hot replacement but not necessitating training the NN again. Lastly,
an RFF system for smart grids was proposed as an open-set solution. This signifies that
once the NN is trained on all legitimate IoT devices, any number of rogue devices could
be detected [38]. This scalability further adds to the practicality of RFF. Overall, cost
effectiveness, power efficiency, low deployment overhead, and scalability make RFF an
appropriate practical choice. It is noteworthy that mobility-induced challenges such as
antenna cross-polarization loss and Doppler shift may not pose significant hurdles within
the context. This assertion is based on the observation that RFF gateways and IoT sensors
predominantly exhibit static characteristics in the said application. These elements further
simplify the implementation process.

5.6. Regulatory Requirements

The adherence to regulatory standards for RF-based systems stands as a crucial con-
cern. Every country delineates unique requirements governing the utilization of frequency
bands. Moreover, there is a limit on maximum permissible power levels for RF transmission.
However, RFF, being a passive technology, poses no challenges in this regard. Since the
addition of RFF has been proposed for existing LPWAN, the use of industrial, scientific,
and medical (ISM) bands for operation is possible. The use of LPWAN in unlicensed bands
is a viable direction for smart cities [53]. Having no additional regulatory compliance
contributes to the overall feasibility and cost-effectiveness [54] of implementing RFF tech-
nology in wireless sensor networks of smart grids. However, the SDR of an RFF system
may require EMC certification [69] subject to user needs.
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6. Challenges and Future Directions

Being a novel technology and an unprecedented use case in smart grids, RFF entails
challenges as well as significant potential for growth in the future. The aim of this section
is to underscore the existing challenges and their potential solutions that can significantly
advance the deployment of RFF in real-world applications. Additionally, prospective
research directions aimed at the maturation of RFF as a technology are deliberated.

6.1. Challenges

RFF for wireless sensor networks of smart grids faces a multifaceted set of challenges.
To start, long-term deviation in hardware impairments remains a largely uncharted ter-
ritory. There has not been a study on long-term operational performance of RFF in IoT.
Additionally, bidirectional communication security remains a notable challenge, particu-
larly in scenarios where IoT devices are deployed as receivers. Due to limited resources
available on these devices, identification of rogue gateways using RFF is not possible
at the present. Addressing these multifarious challenges constitutes a burgeoning area
of academic research. The longevity and robustness of RFF technology in the evolving
landscape of wireless sensor networks of smart grids needs to be closely monitored in the
years to come. Moreover, the emergence of deep generative attackers employing generative
adversarial networks is a growing apprehension. These attackers pose a significant threat
to device identification even at the physical layer. By leveraging these models, malicious
entities can effectively train highly realistic signal or data packet generators capable of
mimicking the signal characteristics of legitimate devices. This threat can overcome the
ability of RFF systems to identify rogue devices as the success rate of spoofing attacks
may increase from less than 10% to approximately 80% [70]. Another significant challenge
lies in the availability of abundant datasets for conducting research and experimentation.
Addressing these challenges can further add to the potential of RFF as a practical solution
for the enhancement of cybersecurity in smart grids.

6.2. Future Research

Research efforts in the realm of RFF are required for channel estimation and equal-
ization. This area holds immense potential for enhancing the reliability and performance
of RFF systems in practical scenarios. Specifically, researchers can focus on developing
advanced channel estimation techniques that effectively counteract signal distortion caused
by time-dispersive channels. However, long training sequences (LTS) can be used to achieve
high classification accuracy in 802.11 devices even if the training samples are collected from
diverse locations [71]. This research direction has massive potential to benefit LPWAN as
well. Simultaneously, the design of a receiver chain that minimizes the combined impact of
the channel and receiver components is of paramount importance. Such research efforts
can aid in the collection of I/Q datasets that closely resemble the originally transmitted
signals, thereby bolstering the overall resilience and classification accuracy of RFF in real-
world deployment scenarios. There is another issue in scenarios where IoT devices may be
spoofed from a rogue RFF gateway, mimicking its hardware attributes. Such threats may
be mitigated using multiple input multiple output (MIMO) receivers. Such localization
methods can aid in estimating the difference between the expected and actual position of
an IoT device. This additional check can be very useful, especially in smart grids, since the
devices in the network are static. But these research directions remain unexplored to this
end. Moreover, as already cited in the previous section, there is a pressing need for the
collection and publication of open-source datasets. The creation of such datasets will not
only facilitate a deeper understanding of RFF as a technology but also empower researchers
to develop and validate new algorithms and models effectively. A few datasets have been
published in [21,72], but this trend is limited. By fostering an environment of open data
sharing and collaboration, the research community can collaborate in improving RFF as a
technology for practical deployment in real-word scenarios.
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7. Conclusions

The article argues for the potential of RFF as a physical layer security feature for
wireless communication between IoT devices of smart grids. It underscores the importance
of smart grids and identifies associated cybersecurity threats. It offers RFF as a complemen-
tary addition to contemporary cryptographic methods in existing IoT. Characteristics of
a typical DL-aided RFF system were presented and the rationale behind design choices
was highlighted. Previous work and the reference literature were reviewed as a substantial
starting point. Cybersecurity aspects, network architecture, regulatory considerations, and
implementation aspects of RFF for smart grids were deliberated. The article culminates
with a discussion on the existing limitations and future research directions to improve RFF
as a technology and its utilization as a long-term solution for smart grids.
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